
GUANG YANG ET AL.: JOINT RECONSTRUCTION AND REGISTRATION IN DBT ��

A Nonlinear Least Squares Method for

Solving the Joint Reconstruction and

Registration Problem in Digital Breast

Tomosynthesis

†

Guang Yang, John H. Hipwell
{g.yang,j.hipwell}@cs.ucl.ac.uk

David J. Hawkes, Simon R. Arridge
{d.hawkes,simon.arridge}@cs.ucl.ac.uk

Centre for Medical Image Computing
Department of Computer Science
and Medical Physics
University College London
London, UK, WC1E 6BT

Abstract

Digital Breast Tomosynthesis (DBT) offers potential insight into the fine details of
normal fibroglandular tissues and abnormal lesions, e.g., masses and micro-calcifications
associated with breast cancer, by the production of a pseudo-3D image. In addition, it
avoids the superposition, which is usually found in X-ray mammography, with a compa-
rable radiation dose. Algorithms to aid the human observer process DBT data sets involve
two key tasks: reconstruction and registration. In established medical image modalities
these tasks are normally performed sequentially; the images are reconstructed and then
registered. In this paper, we hypothesise that, for DBT in particular, combining the op-
timisation processes of reconstruction and registration into a single algorithm will offer
satisfactory for both tasks. Based on this hypothesis, we have devised a mathematical
framework to combine these two tasks, and have implemented both affine and non-linear
B-spline registration transformation models as plug-ins. By applying our algorithm to
various simulated data, we demonstrate the success of our method in terms of both re-
construction fidelity and in the registration accuracy of the recovered transformations.

1 Introduction
Digital breast tomosynthesis (DBT), is a tomographic modality in which a volumetric im-
age is reconstructed from the acquisition of multiple X-ray images over a limited angular
range [3]. By acquiring a 3D image, albeit with coarse depth resolution, DBT aims to disam-
biguate the overlapping tissues that degrade the sensitivity and the specificity of conventional
mammography. In so doing, DBT could be a suitable complementary imaging modality to
mammography, enhancing the performance of screening and diagnosis of breast cancer by
clinicians.

The workflow in which DBT would be used clinically, involves two key tasks: recon-
struction, to generate a 3D image of the breast, and registration, to enable images from
different visits to be compared, a task that is routinely performed by radiologists working
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with conventional mammograms. In other modalities, such as MRI and CT, these tasks have
traditionally been performed sequentially, i.e. the temporal data sets are first reconstructed
independently and then registered. This can be effective if reconstructing using a complete
set of data. However, for ill-posed limited-angle problems such as DBT, estimating the de-
formation is challenging due to the presence of significant reconstruction artefacts, which
can lead to severe inaccuracies in the registration.

In this paper, we hypothesise that combining the reconstruction and registration of DBT
into a single process will offer satisfactory for both tasks. There is little previous research
in this field, and existing techniques applied to modalities other than DBT have focussed
on either 2D affine or 3D rigid motion correction rather than 3D affine and non-rigid B-
spline implemented in our method. Chung et al. [1] elucidated a combined framework to
solve the super-resolution problem of motion correction in MR images, using a 2D affine
model. In 2009, Schumacher et al. [2] proposed a method to combine reconstruction and
motion correction for SPECT imaging, but only considered 3D rigid motion. The authors
have approached the combined problem in DBT using an iterative method before [4, 5].

In addition to the novelty of our fully-coupled simultaneous approach (cf. the iterative
method) in incorporating more complex transformation models, we also address the chal-
lenging task of applying these techniques to the limited angle datasets acquired in DBT. We
test and validate this method using various phantom data, breast MRI, and simulated breast
images.

2 Method
Forward Problem: A 3D image, fg

1 2 RD3, two sets of temporal data, p1, p2 2 Rpnum⇥D2,
the parametric transformations, T g

z , and the system matrix, A 2 Rpnum⇥D2⇥D3 : RD3 7! RD2,
can be related via

p1 = Afg = AR(x); (1)

p2 = AT g
z fg = AT[Tz (x)], (2)

where pnum is the number of limited angle projections, and D2 and D3 denote the 3D vol-
ume space and 2D projection space. In addition, fg

1 and T g
z are the ground truth of the

reconstruction and the parametric transformations respectively, whilst R and T represent the
interpolations at original coordinates x and transformed coordinates Tz (x).
Inverse Problem: We solve the inverse problem by forming the objective function given by

{f?,z ?}= argmin
f,z

⇣
f (f,z ) = 1

2
���Af�p1

��2
+
��ATz f�p2

��2�⌘
, (3)

in which f denotes the estimation of the unknown volume, and z is the estimation of the
unknown parametric transformations.

A minimiser {f?,z ?} 2 Rn of f (f,z ) is characterised by the necessary condition that the
partial derivative with respect to f and z equals zero. The partial derivative with respect to f
is straightforward, and is given by

g(f) =
∂ f (f,z )

∂ f
= AT (Af�p1)+T ⇤

z AT (ATz f�p2), (4)

in which g(f) is the gradient with respect to f, and T ⇤
z is the adjoint operator of Tz .
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To derive the partial derivative with respect to z , we apply a small perturbation to the
objective function and the linearisation via the norm yields,

f
⇣

f,z +Dz
⌘
=

1
2

⇣��Af�p1
��2

+
��ATz+Dz f�p2

��2
⌘

(5)

⇡ 1
2

⇣��Af�p1
��2

+
��ATz f+A

∂Tz
∂z

fDz �p2
��2
⌘
. (6)

If g(z ) denotes the gradient then we have,

g(z ) = ∂ f (f,z )
∂z

=
⇣

A
∂Tz
∂z

f
⌘T⇣

ATz f�p2

⌘
=
⇣

AT
0

z f
⌘T⇣

ATz f�p2

⌘
.

Adjoint Operator of the Transformations: The adjoint operator of the transformation,
denoted by T ⇤, is used to solve the inverse problem. The definition of the adjoint operator
in the context of linear transformations on finite dimensional vector spaces is straightforward.
By adopting a matrix representation of the linear transformations, we utilise the fact that the
adjoint of such a matrix is the same as its transpose.

Original fwdInterp2D (0.0082 secs) interp2 (0.0577 secs) diffImage1

Original transposeInterp2D (0.00424 secs) linterp (0.0193 secs) diffImage2

Figure 1: 2D results of the interpolation operation and its transpose. First row: Forward interpolation
with deformed grid on; Second row: transpose of the interpolation. From left to right: Original
image; Implementation using C with Matlab MEX interfaces; Implementation using Matlab; Difference
images between two implementations. The results have shown that our C implementation is faster and
accurate.

The adjoint operator, also known as the Hermitian conjugate, can be defined by

hT (f1), f2i= hf1,T
⇤(f2)i (7)

in which h·, ·i is the inner product. f1 and f2 are arbitrary vectors such that 8f1, f2 2 Hs,
where Hs denotes the Hilbert space; a vector space with an inner product with respect to the
associated norm. Although T is nonlinear with respect to the transformation, z , it is linear
with respect to the image intensities f. Since Tz f = T[Tz (x)],

T ⇤
z f = T T

z f = TT [Tz (x)]. (8)

In other words, the transpose of an image transformation is the transpose of an interpolation
operation. To illustrate this property we implemented both the image interpolation (bilin-
ear interpolation) and the equivalent transpose operation and applied them to 2D (Fig. 1)
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and 3D (Fig. 2) test images using randomly created B-spline transformations. In addition,
we validated our implementation using Equation 7 with an arbitrary image, to test various
transformations. In all cases we obtained the same inner product results.
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Figure 2: 3D results of the interpolation operation (Left) and its transpose (Right).

Derivative Operator of the Transformations: The derivative of the transformation opera-
tion is a key component of the algorithm and has great impact on the result of the optimisa-
tion. Deriving an analytical derivative of the transformation is desirable because it would be
fast to compute but is complicated by the need to formulate the derivative of the underlying
interpolation. In addition, some interpolation schemes have no analytical derivative. For this
reason therefore, we use the Finite Difference Method (FDM) to approximate the derivative
operation:

T
0

z ⇡
Tz+e +Tz�e

2e
(9)

where e is a small number.
Optimisation: The optimisation is performed using a quasi-Newton based Limited Memory
BFGS (L-BFGS) method. This approximates the inverse of the Hessian matrix whilst avoid-
ing the considerable memory overhead (for large DBT data sets) associated with computing
2nd order derivatives or their fully dense approximations directly.

3 Results
In this section we investigate the performance of our framework using (a) an affine transfor-
mation model and (b) a non-rigid B-spline transformation model.
Affine based experiments: In the first experiment, a 3D toroidal phantom image was cre-
ated, and subjected to 20 affine transformations to test the robustness of our joint method.
In the second experiment, 15 randomly generated affine transformations were applied to a
3D breast MR image. The specific parameters recovered are shown in Fig. 3. In a third
experiment, we tested the methods using two MRI acquisitions obtained before and after ap-
plication of a lateral-to-medial plate compression of the breast. There is no ground truth for
the deformation of this dataset, however from the mean squared error (MSE in Table 1), we
can conclude that our joint method has successfully reconstructed the data with reasonable
registration.
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B-spline based experiments: In the fourth experiment, we created a 3D Shepp-Logan phan-
tom image. Although the 3D Shepp-Logan phantom does not represent the structure of the
breast, it is a widely used phantom image for tomographic reconstruction. Fig. 4(a) shows
central orthogonal slices through the 3D Shepp-Logan phantom (65⇥ 65⇥ 65 in voxels),
and the regular grid of B-spline control points for the central slice of the transverse plane.
The transformed phantom is shown in Fig. 4(b), with the ground truth transformation. This
ground truth deformation is randomly simulated with 9 control points in each dimension us-
ing the B-spline transformation model. From the results shown in Figs. 4(c) and (d), we can
conclude that our joint method has obtained a reconstruction in high fidelity with an accurate
recovery of the non-rigid deformation.
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Figure 3: Mean and standard deviation of the absolute error between the recovered and the ground truth of differ-
ent sets of affine transformations. Parameters 4, 8, and 12 are the translations along each axis. (Left: Experiment
on a 3D toroidal phantom image with 20 randomly created affine transformations; Right: Experiment on a 3D
breast MRI image with 15 randomly created affine transformations. The translation could be measured in voxels;
however, other parameters have no defined unit because they are calculated using matrices multiplication, e.g., 3D
rotation matrix is multiplied by 3D shearing matrix and etc.)

Table 1: Comparison of the MSE error 1
Nkf?� fgk2 before and after performing our joint reconstruc-

tion and registration (N is the number of voxels).

Initial Joint Method

Toroid Phantom 5.66⇥106 0.24⇥103

Uncompressed Breast MRI 1.18⇥106 3.01⇥103

In vivo DBT simulation 5.32⇥106 3.22⇥104

4 Conclusion
We have presented a method to jointly reconstruct and register temporal DBT datasets and
tested it using both affine and B-spline transformation models. Our work has led us to
conclude that this joint method produced satisfactory results in both registration accuracy
and reconstruction appearance. Furthermore, our framework should be straightforward to
incorporate other non-rigid transformation models and priors to regularise the solution. This
method has application for the detection of change in temporal DBT data sets. It may also be
applied to the combined reconstruction and registration of two view (cranial-caudal (CC) and
Mediolateral-oblique (MLO)) DBT data sets, to overcome the null-space limitation of the
individual views and produce a single reconstructed volume with improved depth resolution.
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Figure 4: (a): Original fixed 3D Shepp-Logan phantom and the regular B-spline control point grid for the central
slice; (b): Transformed 3D Shepp-Logan phantom and its deformed grid for the central slice, i.e., the ground
truth transformation; (c): Joint reconstruction and registration result and its recovered transformation grid for the
central slice; (d): Difference image between the joint result and the original fixed image, and the recovered grid
superimposed on the ground truth transformation. (Four sub-figures from top to bottom and from left to right are:
Transverse view; Coronal view; Sagittal view; Grid of the central slice of the transverse view.)
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