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Abstract 

We review and provide a perspective on multiscale modeling of catalytic reactions with 
emphasis on mechanism development and application to complex and emergent systems. We 
start with an overview of length and time scales, objectives, and challenges in first-principles 
modeling of reactive systems. Subsequently, we review various methods that ensure 
thermodynamic consistency of mean-field microkinetic models. Next, we describe estimation of 
reaction rate constants via quantum mechanical and statistical-mechanical methods as well as 
semi-empirical methods. Among the latter, we discuss the bond-order conservation method for 
thermochemistry and activation energy estimation. In addition, we review the newly developed 
group-additivity method on adsorbate/metal systems and linear free energy or Brønsted-Evans-
Polanyi (BEP) relations, and their parameterization using DFT calculations to generate databases 
of activation energies and reaction free energies. Linear scaling relations, which can enable 
transfer of reaction energetics among metals, are discussed. Computation-driven catalyst design 
is reviewed and a new platform for discovery of materials with emergent behavior is introduced. 
The effect of parameter uncertainty on catalyst design is discussed; it is shown that adsorbate-
adsorbate interactions can profoundly impact materials design. Spatiotemporal averaging of 
microscopic events via the kinetic Monte Carlo method for realistic reaction mechanisms is 
discussed as an alternative to mean-field modeling. A hierarchical multiscale modeling strategy 
is proposed as a means of addressing (some of) the complexity of catalytic reactions. Structure-
based microkinetic modeling is next reviewed to account for nanoparticle size and shape effects 
and structure sensitivity of catalytic reactions. It is hypothesized that catalysts with multiple sites 
of comparable activity can exhibit structure sensitivity that depends strongly on operating 
conditions. It is shown that two descriptor models are necessary to describe the thermochemistry 
of adsorbates on nanoparticles. Multiscale and accelerated methods for computing free energies 
in solution, while accounting explicitly for solvent effects in catalytic reactions, are briefly 
touched upon with the acid catalyzed dehydration of fructose in water as an example. The above 
methods are illustrated with several reactions, such as the CO oxidation on Au; the
hydrogenation of ethylene and hydrogenolysis of ethane on Pt; the glycerol decomposition to 
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syngas on Pt-based materials; the NH3 decomposition on single metals and bimetallics; and the 
dehydration of fructose in water. Finally, we provide a summary and outlook. 

Keywords: Catalysis; Chemical reactors; Kinetics, Simulation; Multiscale modeling; 
Catalyst design; microkinetic modeling  
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1. Introduction 
With the interest for more energy efficient, selective and renewable chemical processes 

intensifying, the need to control chemical reactions at the molecular level is also rapidly 
increasing. Controlling reactions at the molecular level depends critically on our ability to 
describe the elementary reaction steps involved in a chemical transformation from reactants to 
products and assign a rate constant to each individual step. With this knowledge, one can predict 
the ‘work-flow’ of a chemical transformation and develop methods and catalysts to direct a 
chemical reaction toward a lower energy direction (easier or faster) and/or more selective 
pathways. 

While the above goal has been the dream of the catalysis community for the past century, 
computational techniques have been lagging spectroscopic characterization. Also, experiments 
conducted on ideal catalysts (single crystals), under well-defined conditions (ultrahigh vacuum 
(UHV)), have not been bridged with those on supported catalysts working under realistic 
operating conditions. These well-known materials and pressure gaps have seriously impeded 
progress in heterogeneous catalysis driven by fundamentals. With the advent of abundant 
computational power and more accurate methods over the past decade, first-principles 
techniques, and specifically Density-Functional Theory (DFT), are revolutionizing our thinking 
on catalytic reactions. Still, our ability to describe, and eventually control, chemical 
transformations by first-principles modeling, at the molecular level, is hindered by multiple 
challenges.  

In this paper, we provide a perspective on multiscale modeling for the development and 
simulation of catalytic reaction mechanisms. First, we provide an overview of the length and 
time scales in reacting systems, of the objectives of multiscale modeling, and of the challenges in 
first-principles modeling of chemical reactions and reactors. We also underscore the need for 
detailed reaction models by way of a few examples. The greater part of the review then focuses 
on mean-field microkinetic models and their hierarchical multiscale refinement. Emerging topics 
in computation-driven catalyst design and uncertainty quantification are also reviewed.  Recent 
developments in ab initio kinetic Monte Carlo simulations are then presented, and structure-
dependent microkinetic models are discussed. New methods to describe catalytic chemistry in 
solution are outlined and an example from the homogeneous catalytic dehydrogenation of 
fructose to 5-hydroxylmethylfurfural is summarized. Finally, concluding remarks and an outlook 
are given. 

2. Overview of multiscale modeling of chemical reactions and reactors 

2.1 Scales in reacting systems 
There are at least three scales encountered in a chemical reactor (Figure 1). At the 

microscopic, or electronic, length and time scales (bottom of Figure 1), adsorbate-catalyst and 
adsorbate-adsorbate interactions determine the potential energy surface and thus the free energy 
barrier and entropy of the chemical transformation. A coarse description at this scale is the free 
energy of transformation from reactants to the transition state (TS) and then to products. The 
thermal rate constant is a convenient way of coarse-graining the information from this scale, and 
quantum mechanical methods are ideally suited, at least in principle (see below), for this task. 

Given a list of reaction events and their rate constants, adsorbates arrange themselves in 
spatial configurations or patterns, as a result of the collective behavior of the ensemble of all 
species. At this mesoscopic scale (middle of Figure 1), the collective behavior has to be averaged 
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over length and time scales that are much larger than the characteristic length and time scale of 
the underlying pattern -- or what is known as the correlation length -- in order to compute the 
reaction rate. This can be achieved via non-equilibrium statistical mechanics techniques. Due to 
the fast vibrations of adsorbates with respect to the reaction time scales, adsorbates are typically 
thermally equilibrated, and reaction events can be thought of as rare events, i.e., over the time 
scale of a chemical reaction, the system loses its memory and can be approximated as a Markov 
process. The kinetic Monte Carlo (KMC) method is the most commonly used statistical 
technique for averaging spatiotemporal events and providing the reaction rate (Bortz et al., 1975; 
Chatterjee and Vlachos, 2007). 

At the macroscopic (reactor) scale (top of Figure 1), there are gradients in fluid flow, 
concentration and temperature fields over scales that are typically much larger than the spatial 
inhomogeneity of the patterns of adsorbates. As a result, the reaction rate computed at the 
mesoscopic scale can be applied over a certain length scale (discretization size) of a chemical 
reactor. Due to spatial macroscopic gradients, the rate has to be evaluated at all discretization 
points of the macroscopic (reactor) domain. 

At each scale, computation can be done with various methods whose accuracy and cost vary. 
As one moves from left to right of the graph at each scale, the accuracy increases at the expense 
of computational intensity. Thus, at each scale, one can think of a hierarchy of methods. The 
accuracy of these methods does not vary in a continuous fashion, i.e., each method is different. 
Typical methods are depicted in Figure 1. Hierarchy adds a new dimension to multiscaling: at 
each length and time scale, more than one model can be employed in the same simulation 
scheme, in order to refine the results or calculate error estimates.  

2.2 Objectives of multiscale modeling 
The early vision of multiscale modeling was rooted in the bottom-up modeling strategy for 

predicting the macroscopic (reactor) behavior from microscopic scale calculations (Raimondeau 
and Vlachos, 2002), as shown in Figure 2. This approach naturally leads to process design, 
control, and optimization with unprecedented accuracy. It departs significantly from the 
empirical process design and control strategies of the past, whereby fitting to experimental data 
was essential to model building. 

Due to the disparity in length and time scales over which various tools apply (Figure 2), the 
straightforward, if not the only, way to reach macroscopic scales is by coupling models 
describing phenomena at different scales. Over the past fifteen years or so, several algorithms 
have been developed to achieve this bi-directional or two-way coupling (the branches of 
multiscale modeling are discussed elsewhere (Vlachos, 2005). The structural difference of 
models across scales (continuum vs. discrete and deterministic vs. stochastic) leads naturally to 
hybrid simulations, whose numerical solution poses new challenges and opportunities for 
multiscale mathematics. The hybrid multiscale integration algorithm (Christofides, 2001; Drews 
et al., 2004; Lou and Christofides, 2003; Rusli et al., 2004; Vlachos, 1997), the equation-free 
approach (Gear et al., 2003; Kevrekidis et al., 2004) and the heterogeneous multiscale method (E 
et al., 2003) are typical names and variations of coupling algorithms.  

The aforementioned coupled multiscale simulations have been applied to prototype systems 
where the emphasis was on method development rather than on the physical systems themselves. 
As a result, the models were oversimplified. In catalysis, the majority of hybrid multiscale 
models with detailed mechanisms has tacitly ignored the coupling i.e., only one-way coupling 
was considered whereby the smaller scale model passed information to the next (larger) scale 
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model.  One of the most physically interesting, one-directional multiscale models for reactions in 
zeolites has recently been reported by (Hansen et al., 2010). Some examples of two-directional 
coupling have also been reported (Makeev et al., 2002; Raimondeau and Vlachos, 2002). 

Molecular modeling, such as molecular dynamics (MD) and kinetic Monte Carlo (KMC), is 
often limited to short length and time (mesoscopic) scales. Over the past ten years, various 
coarse-graining and acceleration methods have been developed to enable molecular simulation of 
larger systems. The coarse-grained KMC method reviewed herein is such an example. 
Accelerated MD methods are briefly discussed below (Section 11). Similar to hybrid multiscale 
modeling, most coarse-grained KMC and to some extent MD simulations have again focused on 
method development. The coupling of mesoscopic and macroscopic scales of chemical reactors 
is covered in (Raimondeau and Vlachos, 2002; Vlachos, 1997) and will not be further discussed 
here. Instead our focus will be on the micro- and meso-scales where several exciting 
developments have taken place over the past decade. 

Coupling of models across scales enables top-down modeling whereby one defines 
optimization targets (e.g., maximum activity and/or selectivity) and then searches for materials 
with suitable electronic properties. This opens up exciting opportunities for product design, 
rather than just process design (Vlachos et al., 2006).  In Section 6 we discuss how this concept 
is put to use for computation-driven catalyst design, especially of materials exhibiting emergent 
behavior. 

2.3 Challenges in multiscale modeling of catalytic systems 
Multiscale modeling of reactions and reactors imposes multiple challenges, as shown in 

Figure 2 and Figure 3. The first challenge in describing heterogeneous catalytic chemistry via 
first principles is that phenomena involving chemical reactions and reactors are multiscale in 
nature (Raimondeau and Vlachos, 2002; Vlachos, 2005). Individual reaction events take place on 
specific sites of a catalyst, at the sub-nanometer length scale and over picosecond to nanosecond 
time scales. Yet, the macroscopic behavior is determined by the collective behavior of reaction 
events (ensemble average), which emerges over length scales ranging from nanometers to 
millimeters and evolves over time scales from picoseconds to milliseconds or longer. Internal 
and external transport processes further complicate the observed behavior by creating an intimate 
coupling between microscopic events and macroscopic reactor processes. As a result, first 
principles methods alone cannot predict common experimental observables (e.g., reaction rates, 
selectivity, coverage of intermediates, etc.).  

A second and often overlooked challenge is the many-body nature of a catalytic reaction. 
Unlike gas-phase reactions, where reaction events are a result of a bimolecular collision and 
associated energy transfer, the local environment of co-reactants in a surface reaction can have a 
profound effect on the speed of a transformation (catalyst activity) and the specific pathway it 
follows (catalyst selectivity). The local environment entails co-adsorbates or the specific 
arrangement of catalyst atoms in close proximity to the reactant pair. As a result, the 
parameterization of a rate constant with a simple Arrhenius form with constant parameters (pre-
exponential, activation energy), as in gas-phase reactions, is generally inadequate for surface 
reactions. The functional dependence of kinetic rate constant parameters on coverage (e.g., linear 
dependence of activation energy on coverage) is a simplistic (mean-field) way of dealing with 
these many body effects that fundamentally does not address the challenge itself.  

Catalytic reactions exhibit intrinsic heterogeneity in both adsorbate distribution and catalyst 
sites. Adsorbate inhomogeneity is the result of intermolecular forces and/or chemical reactions 
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and is manifested as spatiotemporal patterns of adsorbates with a characteristic length that 
depends on the chemical reaction and operating conditions. The p2x2 adsorbate structure or the 
spatiotemporal patterns in CO oxidation are such examples (Ertl, 1991). As a result, the 
adsorbates’ distribution cannot be assumed uniform, even at a length scale that is small (pellet 
size or even smaller) compared to that of a chemical reactor, as typically done in the so called 
mean-field approximation. Catalyst inhomogeneity can be manifested in multiple ways (Figure 
3). One example entails nanoparticles and clusters, consisting of distinctly different types of 
catalyst sites. Another example is a particle size distribution due to competition of nucleation and 
growth during synthesis. Such adsorbate and catalyst non-uniformities can span length scales 
from nanometer to millimeter and control macroscopic reaction rates at the pellet scale. 

Another challenge in modeling catalytic reactions arises from the multiphase nature of 
chemical reactions in condensed matter. Reactions carried out in solvents, such as aqueous 
reforming of biomass over noble metals or dehydration of fructose to hydroxyl methyl furfural in 
HCl, are strongly affected by the solvent. For example, the solvent can participate in the TS, e.g., 
via hydrogen bonding or even in the reaction itself, e.g., via solvent-assisted proton transfer, and 
affect the reaction mechanism or the reaction rate. As a result, free energies rather than energies 
in the presence of explicit solvent are necessary for computing reaction rate constants. This task 
requires conformation sampling and averaging using statistical mechanics. MD is an ideally 
suited method for this task, but large free energy barriers render classical and ab initio MD 
methods impractical. Similarly, the catalyst support can often strongly affect reactivity by 
modifying the catalyst nanoparticle size and shape, via creating interfacial support/metal sites, 
and by electronic coupling, such as electron exchange with the metal.  

Finally, it is commonplace to assume that the catalyst is static over the time scale of a 
chemical reaction. In reality, the catalyst is dynamic in response to its local environment, such as 
the gases and adsorbates present, the temperature, the pressure, etc. Catalyst dynamics, such as 
reconstruction and isomerization between various conformations, maybe more common than we 
currently think, but their effect on the kinetics of catalytic reactions is poorly understood. 

3. Closed-form empirical kinetic models 
Here we give a brief overview of the types of empirical reaction models discussed in 

(Raimondeau and Vlachos, 2002) to underscore the need for detailed surface reaction 
mechanisms. The connection between multiscaling and detailed reaction mechanisms becomes 
transparent later. 

3.1 Power-law kinetics 
In early days, the power-law functional form was the most common type of rate expression.  
 
 effE /RTa b

eff A B eff effr=k C C ; k =A e�  1 
 

Eq. 1 estimates the rate using an effective rate constant, reaction orders, and activation energy. 
Despite its fundamental limitations and lack of predictive power, power-law rate expressions are 
still commonly used in reactor and process design since they involve a small number of 
parameters that can easily be regressed to a limited number of experimental data. Given its 
limited value, this type of model is not further discussed here.  
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3.2 Langmuir-Hinshelwood-Hougen-Watson (LHHW) models 
A LHHW model starts with a detailed surface reaction mechanism. Subsequently, a priori 

assumptions about fast and slow processes are made. For example, it is commonly assumed that 
adsorption-desorption processes of reactants and products are in partial equilibrium (PE) and one 
of the surface reaction steps is the rate-determining step (RDS). Upon development of a closed 
form rate expression, one examines whether the rate expression provides a qualitative description 
of the experimental data. If not, a different set of assumptions is made and a new rate expression 
is developed (an iterative process). If the model appears to qualitatively capture experimental 
data, the rate and equilibrium constants of the LHHW expression are fitted using (a limited 
number of) experimental data from a single kind of experiment, e.g., ignition or conversion and 
selectivity data.  

Due to their empirical nature, multiple rate expressions can describe the same data with 
similar statistics, i.e., the rate expressions are not unique (rate expression multiplicity (Prasad et 
al., 2009). In addition, multiple parameter values, which describe experimental data reasonably 
well, may exist for the same rate expression (rate constant multiplicity). Even when a rate 
expression reproduces the data reasonably well, it may describe the wrong physics (assumptions 
are incorrect) or the parameters may be physically unrealistic. Consequently, the model may be 
unable to predict underlying properties such as the most abundant surface intermediate (MASI), 
which controls blocking of catalyst sites, or quantities such as the effective reaction orders. 
Finally, LHHW rate expressions, even if correct, are typically limited to one regime of operating 
conditions where the rate changes monotonically with respect to a parameter. They cannot 
describe changes in the RDS with varying operating conditions, often manifested with maxima 
or minima in the response (e.g., activity).  

In order to illustrate the aforementioned limitations, we provide some examples. In the steam 
reforming of methane over Ni catalyst, the well-known Xu and Froment model (Xu and Froment, 
1989), shown in Table 1, is used. The model indicates a complex dependence on concentration of 
reactant species. In contrast, experiments conducted under kinetically relevant, well-controlled 
conditions indicate that the overall reaction is fairly simple first-order in methane and zero-order 
in steam (Wei and Iglesia, 2004). In addition, the reaction rate and its dependence on pressure 
developed by Numaguchi and Kikuchi (Numaguchi and Kikuchi, 1988) (also shown in Table 1) 
differ significantly from those of Xu and Froment, seriously questioning the validity of these 
empirical rate expressions. 

As a last example, a LHHW model was recently developed for the partial oxidation of 
methane over a Rh/a-Al2O3 catalyst  (Tavazzi et al., 2006). Even though the model describes 
data fairly well over a range of operating conditions, the parameters are not physically relevant, 
as shown in Table 2. These examples underscore the fact that although LHHW models are 
capable of fitting experimental data reasonably well, the fundamental mechanisms may still be 
elusive and the physical significance of parameters can be questionable. 

4. Mean-field microkinetic modeling 
Given the limitations of LHHW models, it is becoming increasingly clear that detailed 

surface reaction mechanisms need to be developed. The term microkinetic model implies the use 
of a detailed reaction mechanism describing elementary-like processes occurring on a catalyst. 
Detailed reaction mechanisms have been used in gas-phase reactors, such as flames and chemical 
vapor deposition reactors, for decades. Detailed catalytic reaction models have been reported as 
early as in 1986 and a few papers have appeared thereafter (Hickman and Schmidt, 1993; Oh et 
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al., 1986). The microkinetic modeling framework was formalized by the book of Dumesic and 
co-workers (Dumesic et al., 1993).  In these models, one lays down all relevant elementary steps 
and solves the mathematical problem without any assumptions about a RDS, PE of reactions, 
quasi-steady state (QSS) assumption of intermediates, or a specific MASI.  

Unlike power-law expressions, which are regressed to a specific range of experimental 
conditions, detailed kinetic models are predictive over an extended range of experimental 
conditions (Prasad et al., 2009).  Ultimately, this sequence of elementary reactions gives 
fundamental insights into surface intermediates, reaction rates, reaction rate sensitivity to 
specific model parameters, and can be used as a predictive tool for reactor optimization. General 
chemical kinetic codes, such as CHEMKIN (Coltrin et al., 1991; Kee et al., 1991a), used for 
detailed reaction mechanism studies, enable a straightforward reaction mechanism 
implementation. 

Such implementations have the great advantages of being widely applicable and modular. 
Conventionally, a mechanism containing elementary steps can be applied to various chemistries 
that contain similar reactant, product and reactive intermediates (Gokhale et al., 2004).  For 
example, the water-gas shift reaction, the CO oxidation, and the selective oxidation of CO share 
several elementary steps. In addition, one can build mechanisms of larger species from those of 
smaller ones, making mechanism-building easier. For example, the steam reforming of ethane 
encompasses also the elementary steps of methane steam reforming and of the water-gas shift 
reaction.  

In the first generation of microkinetic models (up to the late 1990s), the rate constants were 
fitted to experimental data. The lack of methods for estimating a large number of parameters 
limited the use of microkinetic modeling and confidence in their predictive ability abated. Over 
the past decade (2000s), semi-empirical methods offered an inexpensive and fairly accurate 
approach for estimating activation energies of simple adsorbates participating in small reaction 
networks. This approach worked well for small molecules, such as CO, NH3 and CH4. The 
abundant computer power available nowadays has made possible the estimation of rate constants 
through first-principles methods, and in particular density functional theory (DFT). A summary 
of estimation methods is shown at the bottom of Figure 1.  Table 3 depicts examples of recently 
published microkinetic models developed using different estimation methods, along with their 
applications. 

Mean-field models are based on the assumption of a uniform distribution of adsorbate and 
catalyst sites. They couple mechanistic energetics with reaction rates and species concentrations, 
and thus, they link fundamental quantum mechanical and statistical mechanical calculations to 
reactor scale phenomena. 

A reaction is represented as 0�� k k
k

S� , where � k  is the stoichiometric coefficient of species

kS . The reaction rate of an elementary, irreversible reaction follows mass action kinetics as 
follows: 

 i
i i j i j

j jB

Er k C A exp C
k T

� ���
� � 	 


� �

 
  2 

 
Here ki is the forward rate constant reaction i, Ai is the pre-exponential factor, ΔEi is the 
activation energy, kB is the Boltzmann constant, T is the absolute temperature, and Cj is the 
reactant concentration. This parameterization of surface reaction rates follows the same logic as 
that of bimolecular gas-phase reactions, i.e., the rate constant is taken to be independent of the 



9 
 

local environment in which a reaction takes place. Due to the many-body nature of catalytic 
reactions, this is a major conceptual limitation. In this section, we follow this common 
assumption and describe corrections in later sections.   

Kinetic models used to describe wide temperature ranges often employ the modified 
Arrhenius equation. The pre-exponential factor is written as, e.g., (Maestri et al., 2009; Maestri 
et al., 2008; Mhadeshwar and Vlachos, 2005c; Mhadeshwar and Vlachos, 2007; Salciccioli et 
al., 2011):  

 � �' '
i i i i

0

TA A or A A T
T

�
�� �

� �	 

� �

 3 

 
This modified form is used in the thermodynamic (Kee et al., 1991a) and kinetic modeling 

tool CHEMKIN (Coltrin et al., 1991; Kee et al., 1991a) and provides flexibility for fitting β of 
sensitive reactions to experimental data or for temperature dependent pre-exponential factors 
calculated from transition state theory (TST).  As alluded to above, TST relates rate constants 
with the Gibbs free energy of reactant, product and transition states. 

 
‡ ‡ ‡

B i B i i
i

B B B

k T G k T S Hk exp exp exp
h k T h k k T

� � � � � ��� � ��
� �	 
 	 
 	 


� � � � � �
 4 

 i i i
i

B B B

G S HK exp exp exp
k T k k T

� � � � � ��� � ��
� �	 
 	 
 	 


� � � � � �
 5 

 
Eq. 4 describes the irreversible elementary reaction rate constant of reaction i (ki) as a 

function of the change in Gibbs free energy from reactant to transition state (ΔGi
‡), and further as 

a function of change in entropy (ΔSi
‡) and enthalpy (ΔHi

‡) from reactant to transition state.  An 
additional factor consisting of the Boltzmann constant, absolute temperature and Planck’s 
constant (kBT/h) approximates the contribution from the frequency associated with the negative 
curvature of the potential energy surface in the direction of the reaction coordinate (Houston, 
2001).  Figure 4a shows a schematic of thermochemical property evolution along the reaction 
coordinate of an elementary reaction.  The reaction coordinate is the arc-length along the path of 
minimum potential energy from reactant to product.  Eq. 5 gives the equilibrium constant as a 
function of free energy of reaction (first equality) and entropy and enthalpy of reaction (second 
equality). 

4.1 Thermodynamic consistency in microkinetic modeling 
An important aspect of microkinetic model development that is often overlooked when 

combining the kinetic and thermodynamic parameters of individual species and elementary 
reactions into a mechanism is thermodynamic consistency. The importance of ensuring 
thermodynamic consistency in kinetic mechanism development cannot be overstated.  First, the 
underlying equilibrium constants of reaction mechanisms are directly tied to thermodynamic 
quantities.  If these equilibrium constants are incorrect, predictions pertaining to equilibrium 
limited processes will be inaccurate.  Secondly, under non-isothermal conditions inconsistencies 
between the kinetic parameters and thermodynamic properties result in incorrect solutions of the 
energy balance and thus of temperatures and compositions (Mhadeshwar et al., 2003).   

The forward (f) and backward (b) kinetic parameters are related to the equilibrium constant 
as follows: 
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 i,f
i

i,b

k
K

k
�  6 

Thermodynamic constraints were described comprehensively by Dumesic and co-workers in 
four equations (Dumesic et al., 1993).  First, thermodynamic consistency of individual 
elementary reactions implies that: 

 , ,i b i f iE E H� � � ��  7 

 , , exp i i
i b i f

G HA A
RT

� �� ��
� 	 


� �
 8 

Here, �Ei,b is the backward activation energy, �Ei,f  is the forward activation energy, and ΔHi 
is the standard enthalpy change of reaction.  Ai,b is the reverse pre-exponential factor, Ai,f is the 
forward pre-exponential factor, ΔGi  is the change in standard Gibbs free energy of reaction, T is 
the absolute temperature, and R is the ideal gas constant (Dumesic et al., 1993).  The term in 
parenthesis is the equivalent of the standard change in entropy of reaction (ΔSi) divided by R.   

A net reaction, starting from gaseous reactants and ending with gaseous products (Figure 4b), 
is often invoked that can be expressed as a linear combination of several reactions. The following 
equations then apply: 

 � � � �, ,� � � � �� �i i f i i b net
i i

E E H� �  9 

 ,

,

exp
� � � �� ��

�	 
 	 
	 
 � �� �



i

i f net net

i i b

A G H
A RT

�
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In Eqs. 9 and 10 (Dumesic et al., 1993), the subscript “net” denotes the change in the 
thermodynamic state properties from net reactants to net products.  The factor of � i denotes the 
coefficient of elementary reaction i in the linear combination comprising the desired net reaction. 
If one further considers a gas-phase reaction having the same stoichiometry as the net reaction 
just noted, a thermodynamic cycle is formed, along which free energies and entropies are 
conserved (Hess’s law). 

Figure 4b illustrates the interplay between the gas and surface-phase thermochemical 
properties of gas and surface intermediates and transition states for the simplified A↔B↔C 
mechanism.  ζ denotes any thermochemical property involved in rate and equilibrium constant 
evaluation (H,S,G). In Figure 4b property changes associated with the elementary gas-phase 
reactions A↔B and B↔C are Δζ1,gas and Δζ2,gas, respectively, and for the overall gas-phase 
reaction A↔C is Δζ3,gas = Δζ1,gas + Δζ2,gas .  If not experimentally known, these gas-phase 
properties are often calculated from high level ab initio calculations (accurate within a couple of 
kcal/mol) described elsewhere (Baboul et al., 1999; Curtiss et al., 2007; Raghavachari et al., 
1997a; Raghavachari et al., 1997b; Wang and Brezinsky, 1998).  While these methods have 
recently been shown to be accurate for energies of transition metal-containing molecules 
(Mayhall et al., 2009),  the expense associated with calculating properties for adsorbates on 
several metal atom clusters for entire reaction mechanisms is unreasonable. For this reason, 
generalized gradient approximation (GGA) functionals are commonly employed for calculating 
structures and properties of adsorbate-metal configurations.  This type of method strikes a 
reasonable compromise between accuracy and cost, and satisfies the uniform density limit 
(which is an important constraint for predicting bulk metal properties) (Sholl and Steckel, 2009).  
It is also important to note that distinct GGA functionals are developed for specific calculations 



11 
 

and for specific types of molecules.  Venturing outside of these limitations will result in 
questionable results (Sholl and Steckel, 2009).  Additionally, when considering the most 
common computational methods methods used (which balance accuracy and expense) for 
surface-phase vs gas-phase thermochemical properties, the accuracy of surface thermochemistry 
is lower than that of the gas-phase thermochemistry.  So while Eqs. (6-10) that govern the 
thermodynamic constraints of the kinetic parameters in microkinetic models (shown in Figure 
4b) are exact, the difficulty arises in their implementation.   

Examples of model thermodynamic consistency and violation 
To illustrate this difficulty in implementation, parameters of a subset of the water-gas shift 

chemistry are shown in Table 4 (taken from the thermodynamically consistent model of 
(Mhadeshwar and Vlachos, 2007)).  Specifically, this is the reaction pathway from CO and H2O, 
through the carboxyl intermediate (COOH), to form CO2 and H2. The reaction is slightly 
exothermic, and thus thermodynamically limited at higher temperatures. This makes the 
thermodynamic consistency of water-gas shift mechanism extremely important in terms of being 
able to predict equilibrium conversion accurately.  Using the subset of reactions below, the 
resulting equilibrium constant of the water-gas shift reaction (CO + H2O ↔ CO2 + H2O) is 
calculated from the linear combination of all seven reactions (the product 1 2 3 4 5 6 7K K K K K K K with 
Ki calculated from Eqs. 3, 4 and 6).  At 300 K, KWGS calculated from this catalytic cycle is 
109,100. This value agrees reasonably with that obtained from NIST gas-phase thermochemical 
properties (Burgess, 2009) of 93,500.  The slight discrepancy arises from the implementation of 
the thermodynamic constraints. Since irreversible reactions were defined (one forward and one 
backward for each elementary reaction), exact thermodynamic consistency at all temperatures is 
difficult to ensure; relative tolerances result in errors that are amplified due to the exponential 
relationship between Gibbs free energy and the equilibrium constant (Eq. 5).  This results in a 
small (~15%) error in KWGS at 300 K with respect to the NIST value. 

As an example of violation of the thermodynamic constraints, consider altering one 
reaction’s activation energy by 2 kcal/mol in order to better describe experimental data in a 
kinetically limited regime. The adjustment of a single activation energy of irreversible reactions 
of a thermodynamically consistent mechanism leads to thermodynamic violations.  For example, 
by increasing the ΔEi of the forward reaction 4 (CO*+OH*→COOH*+*) from 19.1 to 21.1 
kcal/mol, the KWGS calculated from the catalytic cycle is 3,800.  This value is dramatically 
different from that calculated from the NIST database and leads to predicting concentration with 
considerable error in equilibrium-limited regimes.  The disturbance of equilibrium constants 
from their correct values (as seen in the example) can be avoided if kinetic parameters are 
adjusted in a pair-wise fashion for irreversibly defined reactions.  

Next, we use the same WGS mechanism to illustrate the importance of constraining surface 
DFT calculations (less accurate) to gas-phase thermochemistry (more accurate) in kinetic model 
development.  As an example, reaction energies from DFT calculations (Grabow et al., 2008) are 
shown in the last column of Table 4.  Using these energies as the Gibbs free energy (neglecting 
zero-point energy (ZPE) corrections, temperature corrections at 300 K and the PV correction, as 
often done in the literature), the KWGS at 300 K is 1.1 x 1015, several orders of magnitude larger 
than the NIST calculated equilibrium constant given above. This error in KWGS corresponds to a 
difference in ΔGrxn of ~13 kcal/mol. Use of these uncorrected DFT energies in a microkinetic 
model would, in this case, over-predict the conversion for equilibrium-limited conditions.  While 
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simplistic, this example demonstrates the necessity of enforcing Eqs. 6-10 in kinetic mechanism 
development, even when using self-consistent DFT calculations.  

 
Thermodynamic consistency through the adjustment of surface reaction properties 
Thermodynamic consistency is straightforward to enforce when a single method is employed, 

but less so when a multitude of estimation-methods are employed.  For first-principle or semi-
empirical-based microkinetic models, the major difficulty with thermodynamic consistency is 
merging gas-phase properties with surface properties.  The former are computed using ab initio, 
high level theory and are considered to be ‘exact’ (with an error of 1-2 kcal/mol). Additionally, 
constraining a mechanism to gas-phase properties avoids inconsistencies when combining 
multiple models that share gas-phase species.  For example, one can build an ethane oxidation 
mechanism into a propane oxidation mechanism, as the C2 and C1 chemistry are submechanisms 
of the C3 mechanism. There are two major schools of thought on how to constrain the surface 
mechanism to gas-phase properties.  The first centers on using adsorption properties as a basis 
set. This methodology is useful when integrating semi-empirical thermochemical property 
techniques or not having the resources to calculate partition functions for all surface 
intermediates and transition states. 

 � �i,surf j i,gas ads,i j(T ) (T), T,� � � � ��� �  11 
In Eq. 11, the surface species properties (ζi,surf) are defined through the corresponding gas-

phase species and the change in state property associated with adsorption.  This quantity can also 
be a function of temperature or surface coverages.  Upon defining the thermophysical properties 
of adsorbates, the change in a state function of surface reactions (Δζ1,surf, Δζ2,surf, and Δζ3,surf in 
Figure 4b) can easily be related to those of the gas-phase reactions (Δζ1,gas, Δζ2,gas, and Δζ3,gas in 
Figure 4b) and the adsorption properties of the intermediates (ΔζA,ads, ΔζB,ads, and ΔζC,ads, as 
shown in Figure 4b). 

In 2003, a methodology for ensuring thermodynamic consistency was presented by 
Mhadeshwar et al. which involved constraining kinetic parameters by the use of a linearly 
independent basis set of elementary reactions (Mhadeshwar et al., 2003). This approach 
essentially connects the thermochemical properties of surface species to the thermochemical 
properties of gas species through the forward and reverse kinetic parameters of the linearly 
independent reactions.  It was suggested that the difference between originally calculated 
reaction properties and newly defined reaction properties be divided equally between the forward 
and reverse rate constant (Mhadeshwar et al., 2003) (this is not a unique way).  Building on this 
notion, methods were later developed to divide this error between the forward and reverse rate 
constants using as criterion the proximity of the transition state to reactants or products.  In these 
cases, a proximity factor (Grabow et al., 2008) or a modified bond index (used in association 
with unity bond index-quadratic exponential potential (UBI-QEP) based models, see below) 
(Maestri and Reuter, 2011; Maestri et al., 2009; Mhadeshwar and Vlachos, 2007) is defined and 
is related to the location of the transition state along the reaction coordinate.   
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Eq. 12, taken from a recent water-gas shift microkinetic model (Grabow et al., 2008), describes 
this implementation.  The activation energy used in the microkinetic model (ΔEi) is the DFT 
calculated activation energy, plus the proximity factor (ω) multiplied by the difference between 
the defined heat of surface reaction (ΔHi,surf) through the gas-phase thermodynamic loop and the 
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energy of reaction from the DFT calculation (ΔEi,DFT).  A similar equation can be used to adjust 
the entropic terms. 
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In Eq. 13, the pre-exponential factor used is the TST calculated pre-exponential factor 
(Ai,TST) multiplied by a correction term that includes the proximity factor and the difference in 
entropy of reaction of the original system and the one constrained to the gas-phase species. One 
advantage of this type of scheme is the convenient implementation into commercial kinetic 
modeling software.  Thermochemical properties can be stored in a NASA polynomial database 
(Eqs. 14-16), as in CHEMKIN (Kee et al., 1991a). Then, one can easily adjust the coefficients to 
convert the properties of a gas-phase species into those of its corresponding surface-phase 
intermediate.  
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Coefficients a1-a7 are those of the gaseous species, often available in gas-phase thermodynamic 
databases, such as that of NIST. Eqs. 17 and 18 show the adjustments needed to define the 
properties of surface species i (index dropped above for simplicity), based on the corresponding 
gas species and the change in entropy and enthalpy upon adsorption.  It should be noted that to 
account for coverage, and to some extent temperature, effects, one would need to extend 
CHEMKIN (Kee et al., 1991b) so the last coefficients are temperature and coverage dependent 
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Here i,adsH�  and i,adsS�  are the heat and entropy of adsorption of species I, which are generally 
functions of temperature T and coverage of all species, j� . This method is easily implemented. 
However, one drawback is the adjustment of competing surface reaction activation energies, 
which will be discussed in the following example.  While not necessarily accurate in an absolute 
sense, one advantage of periodic DFT calculations for energetic profiles is the high relative 
accuracy (Blaylock et al., 2009; Sholl and Steckel, 2009).  The use of the proximity factor for 
adjustment of reaction properties can cancel out this benefit from using DFT energies.  

As an example, Eq. 12 is used to adjust two competing reactions for ethanol decomposition 
on Pd(111): CH3CH2OH*→CH3CHOH*+H* and CH3CH2OH*→CH2CH2OH*+H* 
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Based on Eq. 19, the heat of surface reaction i in Eq. 12 is defined based on gas-phase heats of 
formation (Hj,gas

f,298), the heat of chemisorption (Qj) and the stoichiometric coefficient (νj) for 
each reaction intermediate j.  Taking DFT data from Li et al. (Li et al., 2009) and gas-phase 
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thermochemical data from Dyke et al. (Dyke et al., 1997), Table 5 shows the application of Eq. 
12 to the first dehydrogenation reactions for ethanol on Pd(111).  The DFT barriers for 
decomposition to CH3CHOH or CH2CH2OH are similar (21.3 vs. 21.9 kcal/mol), which would 
imply competition between reactions with comparable rates.  Once the thermodynamic 
correction (Eq. 12) is implemented, the barrier for CH2CH2OH formation becomes ~5 kcal/mol 
lower than the barrier for CH3CHOH formation.  In this case, the enforcement of thermodynamic 
consistency through adsorption properties makes the relative magnitude of rate constants depart 
from that of the DFT calculations.   
 

Thermodynamic consistency through the adjustment of adsorption properties 
The above problem is avoided if we use another thermodynamic consistency method, which 

involves adjusting adsorption/desorption reaction energetics (Δζi,ads) to a self-consistent surface 
mechanism and the properties of gas-phase species.  While the first method discussed adjusts 
surface reaction energies to constrain to gas-phase and adsorption/desorption reaction properties 
(Δζi,ads and Δζj,gas are constant), this method instead alters adsorption/desorption reaction 
energetics (Δζi,surf and Δζj,gas are constant). We recommend this method when a surface reaction 
mechanism is fully defined from first-principle DFT calculations.  As discussed by Blaylock et 
al., the accuracy associated with surface reaction energies is most likely higher than that of 
adsorption/desorption energies, because reaction energy calculations benefit from partial 
cancellation of errors between the bonds that are formed and broken (Blaylock et al., 2009).  In 
this methodology, the absolute energy of surface species and transition states should be defined 
by specific gas-phase references.     

This second adsorption-based method can also be incorporated in CHEMKIN (Kee et al., 
1991a), albeit in a less straightforward way than the previous method.  First, thermochemical 
properties of adsorbed intermediates must be regressed into NASA polynomials.  Second, pre-
exponential factors and activation energies (Coltrin et al., 1991; Kee et al., 1991a) must be 
defined such that the transition states’ thermochemical properties (relative to reactant 
thermochemical properties) are satisfied through forward rate constants.  The temperature 
exponent β (Eq. 3) can be fitted to capture the full extent of the temperature dependence of the 
rate constant.   

As an illustration, Figure 5 compares the two methods for the CH2*+H*→CH3* reaction on 
Ni(111).  DFT total energy and vibrational frequency results reported by Blaylock et al. were 
used to calculate the rate constant using method 2.  The same DFT information was also used, 
along with gas-phase thermochemical data from the NIST database (Burgess, 2009), to 
extrapolate ΔH‡ and ΔS‡  at various temperatures using a proximity factor of 0.5.  In this case, 
reasonable agreement is observed between the two methods.  This is because the ΔHrxn computed 
from the thermodynamic loop through the gas-phase is somewhat similar to the ΔEDFT obtained 
from the DFT calculations (difference of 4.5 kcal/mol at 300 K). In a more extreme case, 
Grabow et al. found that the difference between ΔEDFT and ΔHrxn (calculated from the 
thermodynamic loop through the gas-phase intermediates) at 548 K for the COOH* + O* → 
CO2* + OH* on Pt(111) is >40 kcal/mol.  This would greatly change the DFT calculated 
activation barrier if method 1 was used.   

The use of either thermodynamic consistency method depends greatly on the source of 
kinetic model’s parameters.  The following sections discuss various techniques to calculate and 
estimate thermodynamic and kinetic model parameters. 

4.2 Elementary rate constant estimation from quantum mechanical calculations 
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This section summarizes recent methods for estimating rate constant parameters in Eq. 4.  
Rate constant parameterization follows an important general theme of scientific modeling in that 
the methods often balance calculation accuracy with expense.  This section focuses on first-
principle techniques followed by a next section where less accurate, albeit less expensive semi-
empirical techniques are discussed. 

The details of quantum mechanical calculations relevant to catalytic kinetic mechanism 
development are beyond the scope of this review and are covered sufficiently elsewhere (Sholl 
and Steckel, 2009).  Instead, the focus of this section is on translating the output of modern 
quantum mechanical calculations into surface reaction rate constants.  Within the context of 
mean-field kinetic models, the essential piece of information from a DFT calculation is the total 
energy (Etotal).  The DFT total energy is a function of the number and type of atoms, volume of 
cell, and atom configuration.  This total energy corresponds to a relative Helmoltz free energy at 
0 K, neglecting ZPE.  In the case of molecules adsorbed on a 2-dimensional surface, Reuter and 
Scheffler have shown through dimensional analysis that the PV contribution to the Gibbs free 
energy can be neglected and thus, the Hemholtz and Gibbs free energies are approximately equal 
in this scenario (Reuter and Scheffler, 2002).   

Additional information is necessary when ZPE and temperature corrections are included in 
the calculation of relative free energies of different reactant, product and transition states. 
Specifically, modes of vibration of the adsorbed species are necessary to compute these 
corrections.  Fortunately, modern DFT codes can compute these frequencies accurately.   
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The ZPE correction is a function of the sum of the product of ½, each vibrational frequency 
νi, and Planck’s constant h (Sholl and Steckel, 2009).  Obviously, changes in the high 
frequencies, through reaction (see below) or isotopic labeling (changing the mass of atoms, 
specifically hydrogen, will alter the frequencies), can significantly affect the calculated energies.  
Specifically, dehydrogenation mechanisms are greatly affected by ZPE as the frequencies 
associated with hydrogen stretching modes are usually the largest.  Figure 6 shows the energies 
(referenced from isolated ethanol in vacuum and hydrogen adsorbed on separate slabs) of 
dehydrogenation products of ethanol on Pt(111) (Salciccioli et al., 2010). The solid line is the 
energy directly from the DFT calculation.  The dotted line includes ZPE corrections for each 
level of dehydrogenation.  As dehydrogenation proceeds, ZPE corrections become more 
significant.   

Temperature dependent properties of intermediates and transition states 
Vibrational frequency calculations are also needed for estimating state properties of species 

at finite temperatures via statistical mechanics (McQuarrie, 1976). The problem then is to define 
appropriate degrees of freedom for surface species; to this end, several approaches exist.   

The simplest approach is to assume that all degrees of freedom are modes of vibration (Jones 
et al., 2008b).  Another method, which takes into account the lateral movement of adsorbates, 
uses surface diffusion barriers along the directions parallel to the surface to estimate a spring 
constant used to calculate the two low frequencies associated with frustrated translation (Gokhale 
et al., 2004; Salciccioli et al.).   
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With this methodology the number of relaxed atoms (N) in the DFT calculation will dictate the 
number of vibrational frequencies (νi) to include in Eq. 21.  This method allows for a partition 
function made up of only vibrational contributions from harmonic oscillators (Blaylock et al., 
2009).  This is a low temperature/high binding energy simplification and assumes that barriers to 
diffusion and rotation are greater than the thermal energy. 

Recent work by Blaylock et al. has fully taken into account rotation and translational 
movement of more weakly bound surface species (Blaylock et al., 2009).  This particular method 
assesses the barrier of surface diffusion of an adsorbate, as well as the barrier of Z-axis rotation 
(normal to the surface), and compares these values to kBT.  If the thermal energy exceeds these 
barriers, the vibrational modes that correspond to these frustrated translations and rotations are 
identified and replaced with the appropriate partition function (Blaylock et al., 2009). 
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This method is useful for species that bind weakly to the surface (e.g., water or methane).  
Eq. 22 is the partition function for the two translational degrees of freedom parallel to the surface 
and orthogonal to one another.  In this expression, M is the mass of the adsorbate, N0 is the 
standard state number of binding sites per adsorbate and A is the surface area per binding site 
(Blaylock et al., 2009).  Eq. 23 can be used as the rotational partition function for free rotations 
of weakly bound surface adsorbates. Additional information regarding the symmetry number (σs) 
and the moment of inertia (I) are needed for this contribution, both of which can be calculated 
from the geometry of the molecule.  Given the definition of the partition function for each state, 
the thermochemical properties of each state can be computed, which can be used to compute 
Arrhenius parameters. 
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The activation energy at a given temperature is equal to the change in enthalpy from the 
reactant state to the transition state (ΔH‡).  It is important to note that in the case of surface 
species, enthalpy and internal energy are approximated as equal due to neglecting the PV 
contribution.  ΔETotal represents the change in total energy of the DFT output from the reactant 
state to the transition state.  The difference in ZPE correction between states, ΔZPE, is added to 
this value.  Finally, a correction for temperature is added, ΔH‡

0,T, which represents the change of 
enthalpy from 0 K to the desired temperature.  This final term can be calculated given the 
selected partition function (it is a function of qvib, qrot and q2D-trans). 

For surface reactions, the pre-exponential factor is related to the activation entropy ΔS‡ or the 
change in entropy from the reactant to the transition state (Houston, 2001).  Again, this quantity 
can be calculated given the specific partition function being used to describe these states.   
For adsorption, collision theory is often employed (Blaylock et al., 2009; Dumesic et al., 1993; 
Grabow et al., 2008; Kandoi et al., 2006; Mhadeshwar and Vlachos, 2007; Salciccioli et al., 
2011), which typically contains the sticking coefficient si, which is the probability of a gas-phase 
species coming into contact with the surface and forming a bond. Thus, the pre-exponential for 
adsorption is given as: 
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As a last note, DFT calculations are performed at a certain coverage (e.g., 1/4 or 1/9 for a 2x2 

or 3x3 unit cell, respectively).  As a result, the thermochemistry and reaction barrier do not 
account for coverage (many-body) effects.  They can be thought of as the low-coverage limit that 
corresponds to the unimolecular or bimolecular rate constants of gas-phase reactions.  This idea 
will be discussed further in a later section (adsorbate-adsorbate interactions).    

 

4.3 Elementary rate constant estimation from semi-empirical methods 
While semi-empirical methods are rarely as accurate as quantum mechanical approaches, 

they offer an inexpensive approach to estimating kinetic parameters.  This can be extremely 
useful when mechanisms involve a large number of intermediates and reaction steps.  The ability 
to accurately predict kinetic parameters from thermochemistry can greatly reduce the cost of 
model development and allow for fast screening of different catalytic surfaces. 

Semi-empirical methods relate thermochemical properties of surface adsorbates to atomic 
properties or properties of smaller units that make up the adsorbate and draw on properties from 
the corresponding gas-phase molecule. Additionally, semi-empirical methods are often used to 
correlate thermochemical parameters with kinetic parameters.  

Bond-order conservation (BOC) or unity bond index-quadratic exponential potential (UBI-
QEP) method 

A useful approach, applicable to small molecules, is the bond-order conservation (BOC) or 
unity bond index-quadratic exponential potential (UBI-QEP) technique (Shustorovich and 
Sellers, 1998).  This technique allows for the estimation of molecular binding energies from 
atomic binding energies and gas-phase bond dissociation energies. Activation barriers are 
estimated by minimizing the energy of a two-body adsorbate configuration modeled through a 
Morse potential (Shustorovich and Sellers, 1998).   

BOC was originally used to predict activation energies of various elementary steps in order 
to provide insights into possible pathways, the RDS, and compare various metal catalysts. BOC-
based microkinetic modeling was introduced by Vlachos and co-workers in 1999 and found that, 
with reasonable parameter adjustment, the method can describe quantitatively a breadth of 
experimental data (Park et al., 1999). The double mapping from atomic biding energies to 
molecular binding energies and from molecular binding energies to activation energies, shown in 
Figure 7, enables the estimation of entire microkinetic model parameter sets from just atomic 
binding energies, a technique that has proven extremely powerful (Hansgen et al., 2010; Kuz'min 
and Zeigarnik, 2004; Maestri et al., 2009; Maestri et al., 2008; Mhadeshwar and Vlachos, 2005c; 
Mhadeshwar and Vlachos, 2007; Mhadeshwar et al., 2003; Raimondeau and Vlachos, 2002). A 
major advantage of the BOC method, besides being inexpensive, is that it automatically ensures 
thermodynamic consistency at the enthalpic level since the adsorbates form the thermochemical 
basis from which heat of reactions and activation energies are estimated.  

This method has been found to be accurate within 2-4 kcal/mol when compared to 
experimentally determined binding and activation energies (Raimondeau and Vlachos, 2002). In 
addition, the method was found to describe the profound effect of coverage on activation 
energies and reconcile disparate values reported from different labs (Park et al., 1999). While the 
limited accuracy of the predicted activation energies was once a deterrent to using BOC, a 
recently developed variant of this method has successfully addressed this issue, improving the 
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accuracy of the predictions at varying coverages (Maestri and Reuter, 2011). Currently, the 
major drawback of this semi-empirical technique is the questionable accuracy when predicting 
reaction parameters for larger (specifically multidentate) species, such as those encountered in 
oxygenates, biomass, Fischer-Tropsch chemistry, etc. In addition, unless one compares BOC 
predictions to experimental data, one cannot be certain of how reliable predictions are.  

Group additivity method for estimation of surface thermochemistry 
In order to predict properties of larger adsorbates, group additivity offers an attractive 

alternative.  Originally developed by Benson for predicting thermochemical properties of gas-
phase molecules (Benson, 1976; Benson and Buss, 1958; Benson et al., 1969), this method 
approximates the thermophysical properties of a molecule as the sum of properties of its sub-
parts. More recently, this method has been extended to the prediction of properties of 
hydrocarbons on various transition metal catalysts (Kua et al., 2000; Kua and Goddard, 1998) 
and oxygenated hydrocarbons on platinum (Salciccioli et al., 2010).  These methods are 
particularly useful for screening out stable adsorbates to hierarchically study with more accurate 
methods (see glycerol example in Section 5).  Unfortunately, the application of these methods to 
surface intermediates is limited to the group contributions that have been derived, although one 
can develop new groups at reasonable cost.   Additionally, this scheme is limited to 
thermochemistry and does not predict kinetic parameters for surface reactions. A method for 
achieving this is described below. 

The major benefits of this scheme are the simplicity and negligible computational cost.  For 
example, calculating the ΔHf,298 of the n-butyl radical (CH3CH2CH2CH2) adsorbed on Ir amounts 
to the following summation: [C-(Ir)(C)(H)2] + 2[C-(C)2(H)2] + [C-(C)(H)3] = (-3.73) + 2(-4.93) 
+ (-10.20) = -23.79 kcal/mol (group values from (Kua et al., 2000)).  This simplicity is also 
accompanied by reasonable accuracy.  Figure 8 shows a comparison of DFT calculated Hf,298 to 
Hf,298 calculated from group additivity for C2HxO2 and C3HxO3 adsorbed oxygenates 
(dehydrogenated intermediates of ethylene glycol and glycerol) on Pt (Salciccioli et al., 2010).  
For many uses, this method offers a great balance between accuracy and expense.  

Estimation of entropic parameters  
Entropic contributions to rate constants (pre-exponential factors and sticking coefficients) 

can be obtained by expensive calculations either through vibrational analysis and TST for 
activated processes, or molecular dynamics (MD) if the activation barriers are low (Raimondeau 
and Vlachos, 2002).  Further, obtaining the partition function of adsorbed species from first 
principles can be difficult, and thus, approximate methods can be useful.  It has been shown that 
temperature dependent properties of surface species can be estimated reasonably from a simple 
analysis of the change in the degrees of freedom upon adsorption (Mhadeshwar and Vlachos, 
2007; Mhadeshwar et al., 2003).  Along those same  lines, a simple estimation method would 
entail approximating the entropy associated with an adsorbate as that of the corresponding gas-
phase molecule minus the entropic contribution from translational degrees of freedom (Grabow 
et al., 2008; Kandoi et al., 2006; Salciccioli et al., 2011; Santiago et al., 2000): 
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Eq. 26 further includes a factor (Floc), which is the fraction of local entropy of the species 
retained upon adsorption (Santiago et al., 2000).  The value of Floc has been used as an adjustable 
parameter in recent microkinetic models (Grabow et al., 2008; Kandoi et al., 2006), and is 
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usually close to unity.  In case of Floc=1, Si,trans is equal to the magnitude of the entropy of 
adsorption (ΔSi,ads) in Eq. 18. 

 Pre-exponentials can be approximated based on the type of reaction.  Dumesic provides 
order of magnitude estimates of pre-exponential factors based on the class of surface reaction or 
activation of adsorption (Dumesic et al., 1993).  For example, estimates from TST for Langmuir-
Hinshelwood (LH) type reactions are given in Table 6.  In this case, information about surface 
mobility can be used to better approximate pre-exponential factors.  Diffusion barriers of surface 
intermediates can be estimated from the binding energy (Nilekar et al., 2006).  In essence, 
knowledge about the binding energy of adsorbates allows for more accurate estimates of pre-
exponential factors.   

Linear scaling relations and transferability of thermochemistry among metals 
Once the thermochemical properties of reaction intermediates in a microkinetic model are 

defined on a single surface, a recent development by Nørskov and co-workers can be used to 
transfer these energetics to other surfaces based solely on atomic binding energies (Abild-
Pedersen et al., 2007; Fernandez et al., 2008; Jones et al., 2008a).  This method correlates 
molecular heat of chemisorption linearly to the atomic binding energy of the heteroatom binding 
to the metal, according to (Abild-Pedersen et al., 2007) 
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Here, QAHx is the molecular heat of chemisorption and QA is the (heteroatom) atomic heat of 
chemisorption.  For example, the binding energy of methyl (QCH3) can be linearly correlated 
across metals as a function of the carbon binding energy (QC).  The slope of this correlation (γ) is 
a function of the valency of the binding atom 
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where x is the number of ligands (excluding the metal) of the binding atom.  xmax corresponds to 
the maximum number of ligands the central atom can take (i.e., C=4, N=3, O=2). For example, 
the slope of the CH3 relationship will be (4-3)/4 = 0.25.  The intercept, ξ, can be set from 
knowing the adsorbate binding energy on one metal.  

This method can be extended to multidentate intermediates (Jones et al., 2008a; Salciccioli et 
al., 2010), an important step toward developing microkinetic models of larger molecules, by 
taking into account second-order effects, specifically the weak oxygen-metal interactions and 
strain effects caused by scaling to different sized lattices.  With these corrections, it was shown 
that this linear scaling method can predict the adsorption of C2HxO2 intermediates on Ni(111) 
and Ni-Pt-Pt(111) bimetallic surface from only the adsorption energies on Pt(111) (Salciccioli et 
al., 2010).  Parity plots showing the comparison of these scaling predictions to DFT calculated 
energies of adsorption are shown in Figure 9.  An obvious limitation of this method is its 
inability to predict transition state properties directly from the equations above.  However, with 
the assumption that the transition state structure is constant from surface to surface, the energy of 
the transition state should be a linear function of atomic binding energies for the transition state 
atoms which interact to the surface (Falsig et al., 2008).  

DFT-based linear free energy or Brønsted-Evans-Polanyi (BEP) relations 
Brønsted-Evans-Polanyi (BEP) relationships or linear free energy relationships (when 

associated with Gibbs free energy) enable the prediction of kinetic properties from 
thermochemical properties of adsorbates (Brønsted, 1928; Evans and Polanyi, 1936) (middle box 
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of last row in Figure 1). The need for this approach becomes imperative for large reacting 
systems. Its validity has been known for many decades for gas-phase chemistry but has only 
recently proved for surface reactions, e.g., (Alcalá et al., 2003; Bligaard et al., 2004; Nørskov et 
al., 2002).  

The fundamental aspects of these relationships are discussed in depth in recent works (van 
Santen et al., 2010)  

i i,rxnE E�� �  ��         29 
Eq. 29 shows a general relationship where δΔEi is the change in activation energy, δΔEi,rxn is the 
change in energy of reaction and α is a constant related to the specific classification of a reaction.  
Essentially, this model offers a way to predict the activation energy of a reaction using the 
energy of reaction, from the correlation developed from similar reactions that belong to the same 
homologous series (these relationships have been used for free energies as well as enthalpies).  
The idea is to perform a small number (ideally only 2; practically 3-4) TS searches for a 
homologous series, i.e., reactions that have a similar TS, such as hydrogen abstractions from C, 
C-C bond scissions, etc. Using such linear free energy relations, one can determine the 
parameters of the rest of the reactions in each homologous series from the thermochemistry. 
Such relationships have been developed in recent literature for a variety of chemistries on many 
metals including but not limited to diatomic gas dissociation (Cheng et al., 2008; Falsig et al., 
2008; Gajdos et al., 2006; Michaelides et al., 2003; Nørskov et al., 2002) and dehydrogenation 
chemistry (Chen and Vlachos, 2010; Cheng et al., 2008; Garcia-Mota et al., 2010; Michaelides 
et al., 2003; Wang et al., 2006).  

Figure 10 shows an example of this type of BEP relationship taken from (Michaelides et al., 
2003), where the activation barriers (ΔEi) are plotted as a function of the heat of reaction ΔHi,rxn 
for CHx → CHx-1+H reactions over several transition metal surfaces.  In this example, the 
constant α appearing in Eq. 29, is equal to 0.72.  

While the BEP relationship defined by Eq. 29 can be used to describe reaction energetics, a 
slightly different linear free energy relationship has emerged, which is frequently used.  
Proposed by Alcalá et al., these types of correlations linearly relate the transition state energy to 
reactant or product energy, referenced from the corresponding gas-phase energy of the reactant 
(Alcalá et al., 2003).   

The accuracy in estimating the transition state energy has later been shown to improve based 
on reaction type classification (Loffreda et al., 2009).  The schematic in Figure 11 shows the 
definition of initial state (EIS), transition state (ETS) and final state (EFS) energies for an 
elementary reaction.  An example of a linear relationship between the final state energies and the 
transition state energies (for methanol dehydrogenation reactions written in the exothermic 
direction (Greeley and Mavrikakis, 2004b)) is shown in Figure 12.   This type of relationship has 
primarily been used for dehydrogenation reactions (Li et al., 2009; Maestri and Reuter, 2011) 
and C-C and C-O bond cleaving reactions (Alcalá et al., 2003; Chen and Vlachos, 2010; Li et al., 
2009).  These reactions are well suited for this type of BEP, because the transition states are 
generally either very late or very early.  The slope of these regressions is generally below but 
close to one, which implies that the reverse activation energy of reaction is similar for all 
reactions (assuming that the x-axis is EFS). 

Aside from the ability to inexpensively predict somewhat accurate transition state energies 
from reactant and product energies, a major advantage of these BEPs is their metal-
transferability.  When coupled with the aforementioned linear scaling relationships, this creates a 
powerful tool for probing different metals with the same microkinetic model.  This is done via a 
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scheme that uses the linear scaling relationships to transfer thermochemical properties of 
intermediates from the original metal to a new metal.  Then these scaled thermochemical 
properties are used in BEP relationships to calculate activation energies on the new metal.  Ferrin 
et al. applied this method to ethanol decomposition to compare the relative activity of several 
noble metals (Ferrin et al., 2009).  Similarly, direct regressions from DFT data on multiple 
metals can be used to correlate transition state properties to atomic binding energy descriptors 
(Ferrin and Mavrikakis, 2009; Jones et al., 2008b; Schumacher et al., 2005). 

Adsorbate-adsorbate interactions in mean-field models 
The results of microkinetic models can be greatly affected from adsorbate-adsorbate interactions 
(Getman and Schneider, 2010; Mhadeshwar et al., 2004).  An example for NH3 decomposition is 
shown in Figure 13a.  Lateral interactions are typically calculated via DFT or determined from 
surface calorimetry (Brown et al., 1998; Yeo et al., 1997) or temperature programmed 
desorption experiments (Masel, 1996).  The inclusion of these interactions into a microkinetic 
model is not trivial.  A certain course-graining needs to take place to convert spatially dependent 
DFT calculated interaction energies into coverage dependent microkinetic model parameters.  
Even for smaller, monodentate adsorbates, the configurations that produce minimum energy at 
specific coverages can be hard to predict.  In the case of asymmetric, multidentate adsorbates, the 
existence and location of spectator molecules can markedly influence the predicted energetics.  
Mean-field microkinetic models approximate a limit of infinite coordination of the surface 
lattice.  On the other hand, DFT calculations have well defined, finite coordination of surface 
atoms that depend on the material and surface facet.  As a result, information based on DFT 
energies that change with addition of adsorbates cannot be accurately translated into these mean-
field models.  For lattice KMC models, this detailed spatial information can be retained.   

DFT calculations are performed to monitor the change in energy with the addition of 
adsorbates in the proximity of the structure of interest (whether it be an intermediate or transition 
state). In general, coverage dependencies of mean-field kinetic model parameters are determined 
from regressions of several DFT data points.   Previous models have included linear functions of 
surface coverage (Getman and Schneider, 2010; Kitchin, 2009; Mhadeshwar and Vlachos, 2007; 
Salciccioli et al., 2011) as well as more complicated exponential functions (Grabow et al., 2008; 
Kandoi et al., 2006).  The expense of performing several DFT calculations for such regressions 
makes a priori application of DFT to all multicomponent interactions impractical. We revisit this 
topic below (Section 5) where the hierarchical multiscale modeling framework is presented.  

4.4 Analysis of microkinetic modeling results 
Analysis of a microkinetic model is important when applying it to reactor and catalyst 

design.  A posteriori analysis is centered on reaction intermediates and reaction fluxes.  
Organizing and interpreting this data enables a fundamental understanding of the surface 
chemistry and descriptors that control it.   

The simplest analysis is performed by observing the concentration profiles of surface species 
as a function of time, location, or environmental condition in a chemical reactor model.  The 
MASIs on the surface give insights into active reaction pathways and specific elementary 
reactions that can increase global rates. By increasing the temperature or by modifying the 
catalyst, one can free the occupied surface sites, and thus, lower the surface coverage.  

Analyzing the specific elementary reaction rates is also important in gaining a better 
understanding of the reaction network.  Typically, reaction path analysis (RPA) is used to 
identify the specific sequence of elementary reactions that convert reactants to products.  This is 
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specifically valuable for selectivity (Grabow et al., 2008; Kandoi et al., 2006; Maestri et al., 
2009; Mhadeshwar and Vlachos, 2005c; Mhadeshwar and Vlachos, 2007; Salciccioli et al., 
2011).  Eq. 30 shows the general equation for RPA  
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Here rj is the rate of irreversible reaction j, f and b stand for forward and backward, respectively, 
and νi,j is the stoichiometric coefficient of species i in reaction j (summation over all reactions k).  
!i,j is the fraction of production (νi,j>0) or consumption (νi,j<0) that reaction j contributes to the 
flux of species i.   

Comparing forward and reverse reaction rate pairs is important in identifying elementary 
reactions that are in PE.  PE identifies fast reactions whose reactants’ and products’ 
concentrations are controlled by thermodynamics.  A simple way identifying reactions in PE is to 
compute the PE ratio of reaction i  
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Reactions with PE ratios between 0.45 and 0.55 are considered to be in PE for model reduction 
(Mhadeshwar and Vlachos, 2005a).  The PE ratio is also important for identifying irreversible 
reactions.  These are reactions whose rate in one direction is at least two orders of magnitude 
higher than the reverse direction (φ > 0.99 or φ < 0.01).  When reactions are (partially) 
equilibrated ( 0.5+ 0.5 ), their net rate is close to zero. In this case, one should also consider the net 
rates in using Eq. 30 to determine which reactions form and consume each species. It is entirely 
possible that some slow reactions may affect the fate of species more than fast reactions. 

Elementary reaction rates can also be used to identify intermediates in quasi-steady state 
(QSS).  If the rate of change of the species concentration (dCi/dt) is small (e.g., 1% is typically 
used as a threshold) compared to the actual elementary reaction rates in the material balance, the 
species is considered to be in QSS.  This occurs when the elementary reaction rates are much 
larger than the intermediate’s net flux. Neglecting the transient term is useful in model reduction, 
as it converts differential equations into algebraic equations which can lead to closed form rate 
expressions that are easily solvable (Mhadeshwar and Vlachos, 2005a; Salciccioli et al., 2011).   

Finally, important model parameters can be identified using sensitivity analysis (SA).  SA 
identifies the RDS of reaction mechanisms, i.e., the step(s) that control the overall reaction rate, 
along with steps that control responses beyond the RDS, such as selectivity, the MASI, a hot 
spot, etc. Additionally, SA results at various conditions can also be used as input to a principal 
component analysis (PCA), which is an important tool in model reduction (Mhadeshwar and 
Vlachos, 2005a).  Eq. 32 is the general form of sensitivity analysis used for microkinetic models.   

 � �
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This equation describes a log-normalized sensitivity analysis which allows for head to head 
comparison of model parameters. In this equation, Rj is the measured response, which is an 
important metric of model performance.  For example, conversions of reactants, global reaction 
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turnover frequency (TOF), or selectivity to a desired product are common metrics used as a 
response.  Ai corresponds to the model parameter which is being perturbed to change the 
response.  The specific sign of the normalized sensitivity coefficient (NSCi,j) also gives 
information on whether differential increase of the parameter enhances or represses the metric of 
interest.  Ai is typically the pre-exponential factor of reaction i or the forward rate constant of 
reaction i (these two lead to equivalent results in Eq. 32).   

SA indicates which elementary reactions are most important in achieving the desired metric.  
If the metric is global reaction rates, the RDS is determined.  SA can be conducted on any model 
parameter.  For example, the sensitivity of enthalpy of intermediates can be probed to better 
understand thermodynamically which surface species’ stability most greatly affects reaction rates 
or product selectivity.  This can be a valuable analysis for catalyst design by understanding 
trends of intermediate binding energy on different catalyst surfaces.  For instance, one would 
expect the net reaction rate to exhibit a high sensitivity on the enthalpy of the MASI, since the 
latter blocks active surface sites. The sign of the corresponding sensitivity coefficient will 
indicate that a lower enthalpy (a stronger binding energy) results in lower global reaction rates, 
since the species blocks more active sites.   

Application of these analyses is illustrated in a recent publication describing a mechanism for 
C2 hydrocarbon chemistry on Pt (Salciccioli et al., 2011).  The elementary reactions involved in 
this model are shown in Table 7.  PE analysis is shown in Figure 14a.  This plot shows that the 
C-C cleaving of adsorbed ethyl (C2H5*) and adsorbed ethylidene (CHCH3*) are the only 
irreversible active reactions in hydrogenolysis of ethane.  The SA of Figure 14b reveals that 
these C-C bond cleaving reactions are rate determining in ethane hydrogenolysis.  Figure 15 
contains PE analysis and SA for the same mechanism, but in conditions where ethylene 
hydrogenation is active.  The juxtaposition of Figure 14 and Figure 15 illustrates that while one 
single mechanism can describe multiple chemical processes and conditions, active elementary 
reactions and sensitive model parameters vary with feedstock composition, process, and 
operating conditions.  More details of this example, including the full RPA, can be found 
elsewhere (Salciccioli et al., 2011).   

5. Hierarchical multiscale mechanism development 
The inclusion of highest level theory at each scale (Figure 1) is computationally intractable.  

For this reason, the hierarchical multiscale modeling framework was introduced (Vlachos et al., 
2006) the essence of which is a simple, yet powerful procedure. One starts with a sufficiently 
simple but physically relevant model at each scale and performs a sensitivity analysis 
(Mhadeshwar and Vlachos, 2005c; Mhadeshwar and Vlachos, 2005b; Mhadeshwar and Vlachos, 
2007), i.e., one uses a model at or near the left of the hierarchy of each scale in Figure 1. Upon 
identification of the important scale and parameter(s), higher level theory can be used to improve 
the accuracy of the parameter(s) in the relevant scale. The procedure needs to be iterated until the 
important parameters do not change between iterations. Below we discuss examples of 
hierarchical multiscale modeling with focus on treating some of the complexity of catalytic 
reactions (Figure 3) arising from the sheer size of reaction mechanisms of large molecules and 
the many-body nature of kinetic rate constants. 

5.1 Accounting for adsorbate-adsorbate interactions 
In Section 4.3, we briefly introduced some of the challenges of incorporating the effect of 

lateral interactions in a microkinetic model.  The discrete to continuous mapping from DFT to 
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mean-field models and the large number of DFT calculations needed for multicomponent 
systems limit the a priori estimation of kinetic parameters as a function of coverage. In 
hierarchical modeling, models without adsorbate-adsorbate interactions (or with interactions 
included for those species for which parameters are available) are used to probe sensitive 
parameters and abundant surface intermediates, whereupon the parameters are reassessed via 
DFT in the presence of the predicted abundant intermediates.  Identification of the MASI and 
important reactions can reduce the computational cost tremendously, since the thermochemistry 
and reaction barriers of those important parameters can be parameterized by only the coverage of 
the MASI. This a posteriori analysis can greatly reduce the expense of calculating all possible 
adsorbate-adsorbate interactions. 

 

 

Figure 13Figure 13 shows an example of hierarchical model refinement and comparison to 
experimental data for the ammonia decomposition reaction (Mhadeshwar et al., 2004). In the 
specific example, the activation energies were estimated using the UBI-QEP method and the 
refinement was done by incorporating N-N interactions using DFT calculations into the UBI-
QEP framework. In two iterations, the model was sufficiently refined. The MASI changed 
considerably between iterations (Figure 13b), indicating the importance of adsorbate-adsorbate 
interactions.  

Recently, attention has been paid to the nature of these interactions (Kitchin, 2009; 
Mortensen et al., 1998; Stampfl and Scheffler, 1996).  Kitchin and co-workers formulated a 
simple model to predict adsorption energies as a function of surface coverage (İnoğlu and 
Kitchin, 2010).  Additionally, Maestri and Reuters implemented accurate coverage dependencies 
within the UBI-QEP framework for activation energy prediction (Maestri and Reuter, 2011).  
Further development of these types of inexpensive predictive models will provide an 
approximate but a priori method to include the important adsorbate-adsorbate interactions within 
the microkinetic modeling framework.  Upon solution of the microkinetic model, refinement via 
DFT may follow.  
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Figure 16 shows the binding energy of various intermediates NHx vs. the coverage of N on a 

Ru catalyst in NH3 decomposition. The points are DFT data. The lines are obtained by applying 
the linear scaling relations (Eq. 27) to account for coverage effects, i.e., by relating the molecular 
species’ binding energies to that of atomic N where the latter is taken as a linear function of N 
coverage from DFT calculations. It is clear that linear scaling relations extend to apply for 
coverage effects. This approach offers an a priori method to incorporate coverage effects in 
microkinetic models and has been used in (Hansgen et al., 2010). As suggested above, 
hierarchical refinement can follow.  

5.2 An example of hierarchical refinement in developing a surface reaction mechanism: 
Glycerol decomposition on Pt 

A recent example of developing a catalytic kinetic mechanism via hierarchical refinement 
entails the glycerol decomposition on Pt (Chen et al., Submitted).  Figure 17 shows the general 
methodology followed in developing this mechanism.  The overall concept is to use an 
inexpensive semi-empirical technique to eliminate energetically unreasonable intermediates and 
reaction paths.  This prevents the use of expensive DFT calculations on unimportant mechanistic 
species and paths. The first hierarchical refinement in this example is on intermediate stability. 
The second is on reaction barriers.   

Essentially, the reaction network for glycerol catalytic decomposition consists of 84 C3HxO3 
reaction intermediates (glycerol decomposition intermediates).  The relative stability of these 
intermediates was estimated using the group additivity technique for surface oxygenates recently 
developed (Salciccioli et al., 2010).  At this point, 47 stable C3HxO3 surface species were 
identified using specific energetic criteria (unstable intermediates were omitted).  The relative 
stability of these intermediates was then refined via DFT calculations, to obtain more accurate 
predictions.   

Given the 47 stable (determined via DFT) C3HxO3 intermediates, 101 possible 
dehydrogenation reactions and 79 possible C-C bond scission reactions could occur (C-O bond 
cleaving reactions were left out in this case due to the lack of hydrocarbons in product streams of 
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glycerol decomposition experiments) (Davda et al., 2005; Skoplyak et al., 2008a; Skoplyak et 
al., 2008b).  The activation barriers of these reactions were estimated using the BEP 
relationships.  From the results of this semi-empirical analysis, 18 dehydrogenation and 6 C-C 
bond cleaving reactions were identified to have reasonably low activation barriers.  The energy 
of the transition states of these reactions was then refined via DFT for a more accurate 
assessment.  From this final refinement, the probable reaction pathways were determined, as 
shown in Figure 18.   

Starting from adsorbed glycerol, a sequence of several dehydrogenation reactions is 
reasonably likely. Although our DFT results suggest several possible reaction pathways, the most 
energetically favorable pathway proceeds as follows: C3H8O3 → 
CHOHCHOHCH2OH→CHOHCHOHCHOH → CHOHCOHCHOH → COHCOHCHOH → 
COCOHCHOH → CO + COHCHOH. All the reaction barriers in this path are below 0.75 eV, 
consistent with reactions occurring at low temperature (Wang and Liu, 2008). The most likely C-
C bond cleaving reaction occurs through the COCOHCHOH intermediate.  In general, -CO 
terminated oxygenates exhibit lower barriers for C-C bond scission.  This has been observed 
both for glycerol and in a DFT study of ethylene glycol decomposition on Pt (Salciccioli et al., 
In Press).   

Figure 19 shows the estimated computational costs associated with three methods of 
mechanism development for glycerol decomposition on Pt(111), and one using only semi-
empirical methods.  The latter carries little to no computational cost; however, the accuracy of 
kinetic parameters may not give quantitative predictions.  The ‘DFT’ column represents a 
mechanism which is developed exclusively from DFT calculations.  While this type of 
development results in high accuracy, it is inefficient, as DFT is being used to precisely 
determine unimportant mechanistic parameters.  The middle columns represent hybrid 
combinations of group additivity and DFT. The two bars shown are the two ends of the spectrum 
in terms of semi-empirical use and refinement.  The first (‘screen conformers via GA’) is a more 
conservative approach in which group additivity is only used to screen for the most stable 
conformers of each adsorbate, and those are used to guide the DFT calculations.  While CPU 
savings are seen with this approach, much higher savings are seen with the method used here 
(‘GA/BEP→DFT’), in which only the lowest energy intermediates and pathways are refined via 
DFT. Not all the model parameters are determined with DFT accuracy but, the most probable 
reaction parameters are.  In a sense, this optimizes resources as seen in Figure 19.   

6. Prediction of novel catalysts via multiscale modeling 
While microkinetic modeling can predict catalyst activity and selectivity and provide 

mechanistic insights into the RDS and the MASI, its true value is in the design of chemical 
reactors and/or novel catalysts. The former is congruent with the original objective of multiscale 
modeling in predicting macroscopic behavior from first principles (Figure 2). Due to the cost of 
computational fluid dynamics (CFD) simulations and the incompatibility of complex reaction 
mechanisms with process design software, e.g., Aspen, a posteriori model reduction to closed 
form rate expressions is a necessity. A simple but powerful methodological approach toward this 
goal has been presented and examples have been demonstrated for various chemistries, so we do 
not further review this subject (the interested reader is referred to a tutorial in (Mhadeshwar and 
Vlachos, 2005a)). Here we focus on an emerging and admittedly more exciting objective, namely 
use of multiscale modeling for product (catalyst) design. 
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6.1 Catalyst prediction using Sabatier’s principle based on a single descriptor 
Sabatier’s principle indicates that binding energies of species should be intermediate in 

magnitude for high activity. Very strong binding energies lead to catalyst poisoning and low 
reaction rates, whereas very weak binding energies lead to fast desorption, low surface 
concentrations, and low surface reaction rates. Due to differences in the binding energies of 
species, it is often the case that one or two species are the most abundant surface intermediates. 
As a result, the activity of a catalyst is often described in terms of the binding energy of a single 
species (a single descriptor), as shown in Figure 20. Due to Sabatier’s principle, the activity 
exhibits a maximum at intermediate values of the binding energy, forming a so-called volcano 
curve.  

In the realm of searching for catalysts with improved activity and/or reduced cost, bimetallic 
catalysts may be used. Typically, a dominant surface species is assumed and an overall LHHW 
rate expression is derived using a priori assumptions (see Section 3). The reaction rate depends 
on a single descriptor. By varying the value of the descriptor, a volcano curve can be generated. 
The values of binding energies of known materials are put on the volcano curve and additional 
ones can be computed via DFT. The composition of mixed alloys that maximizes activity (max 
of volcano curve) can be predicted by simple interpolation of the properties of single metals.  

The interpolation principle was successfully used to propose a CoMo catalyst in ammonia 
synthesis from calculations of N binding on Co and Mo metal slabs. Mo and Co, metals with  
high and low nitrogen binding energies respectively, were selected to make a catalyst with an 
intermediate binding energy. After synthesizing this bimetallic catalyst, its activity was found to  
be comparable to that of the best, but expensive, single metal Ru catalyst (Jacobsen et al., 2001).  
Another example of this approach includes the prediction of Fe-Ni alloys that are superior and 
less costly to Ni in the methanation reaction (CO+3H2 = CH4+H2O) (Nørskov et al., 2009). 

Overall, current studies have been limited to cases when thermodynamics, specifically the 
heat of adsorption of a single species, dominates (Greeley and Mavrikakis, 2004a; Strasser et al., 
2003) and the concept of linear interpolation applies (Jacobsen et al., 2001). Next, limitations of 
this approach are discussed and a new framework is proposed that can account for kinetics and 
transport phenomena in addition to thermodynamics. 

6.2 Overcoming limitations of Sabatier’s principle via multiscale modeling 
Prediction of new materials using interpolation principles οf the periodic table for mixed 

alloys and its experimental verification has resulted in considerable excitement. However, there 
are several limitations of this approach. First, the ‘key’ surface intermediate has to be guessed. 
This is not as difficult if the chemistry has been studied for years. For example, in the case of 
ammonia chemistry, years of research have indicated that N is a dominant surface species. In the 
case of ethylene hydrogenation, it is known spectroscopically that ethylidene is an important 
species. By assuming a dominant species, prediction of materials for which little fundamental 
research has been conducted is a challenge. In addition, the dominant species may change with 
operating conditions and/or location in a chemical reactor. Second, with a limited number of 
exceptions for fairly simple reactions, such as ethylene epoxidation (Linic et al., 2004) and 
selective acetylene hydrogenation (Nørskov et al., 2009),  computational studies have focused on 
activity. An even more important attribute of a catalyst is its selectivity. Improved selectivity 
reduces the need for energy intensive separation of products. Maximum selectivity does not 
follow Sabatier’s principle, and as a result, there is no general method for predicting catalyst 
performance.  
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The use of a multiscale model can allow for the prediction of optimal properties in a way that 
goes beyond a single descriptor and Sabatier’s principle, while fundamentally one still uses the 
interpolation principle of the periodic table. This can be achieved by formulating an optimization 
problem and explore values of binding energies that maximize or minimize multiple responses 
(e.g., activity, selectivity, cost, hot spot, etc.). The metal-transferability of the linear scaling 
relationship, Eq. 27, combined with BEPs provide a mapping from atomic heats of adsorption to 
activation energies (Figure 7), and thus a means for using microkinetic models for catalyst 
discovery.  This enables one to use atomic or diatomic binding energies as descriptors and probe 
their optimal values.  A full microkinetic model predicts the dominant intermediates and makes 
no assumptions about PE and RDSs. As a result, it can circumvent problems arising from 
oversimplification.  Finally, the link among scales (i.e., by having a true reactor model) enables 
one to identify optimal catalyst properties as a function of operating conditions. An example for 
the NH3 decomposition reaction is shown in  

Figure 21. Figure 22 shows examples for CO oxidation.  

6.3 Design of catalysts with emergent behavior 
There has been recent interest in exploiting ‘monolayer’ bimetallic catalysts where a second 

metal is deposited either on the top of another metal (core-shell structure in the case of 
nanoparticles) or beneath the top layer of the metal. Due to strain and charge transfer effects, the 
electronic and thus the catalytic properties of these architectures are not linear combinations of 
those of the parent metals. Rather, they are outside the range of properties (either above or 
below). Such structures are termed as emergent materials, i.e., their properties cannot be 
predicted from those of the parent metals. Table 8 illustrates this point through an example for 
the binding of N on such architectures.  

Recently, a computational platform was developed to predict these novel catalysts for 

any reaction. First, one develops a microkinetic model for the specific chemistry following 

the hierarchical methodology discussed above. It is important that semi-empirical methods 

(e.g., group additivity and BEPs or the BOC method) are used for parameter estimation to 

allow for transferability of thermochemistry among materials. The microkinetic model is 

incorporated into a simple reactor model (one-dimensional). Low dimensionality of the 

reactor model is also important to enable fast calculations. Second, in order to determine 

optimal atomic binding energies, an optimization problem is formulated, whereby the 

response of interest (activity, selectivity, etc.) is maximized, subject to thermodynamic 

constraints (imposed through the microkinetic model as discussed earlier). An example for 

the NH3 decomposition reaction is shown in Figure 21. Figure 23 and Figure 22 show 

similar examples for CO oxidation that will be discussed below.  
Having identified optimal binding energies, the next task is to find suitable materials. For this 

purpose, a library of atomic binding energies is constructed using DFT for various catalyst 
architectures (surface and sub-surface configurations of various hosts; e.g., M1-M2-M1 and M2-
M1-M1 for various combinations of hosts M1 and adlayer M2 metals). This database is 
subsequently searched to identify a structure (e.g., top, M2-M1-M1, or subsurface, M1-M2-M1) 
whose properties are close to the optimal ones. An example, using Pt(111) as the host, is shown 
in Table 8. This approach does not rely on interpolation of the periodic table and is ideally suited 
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to cope with the emergent behavior. As a last step, the materials should be synthesized and tested 
in the lab and the procedure iterated if need be.  

The overall framework is depicted in Figure 24. Application of this framework to the 
ammonia decomposition reaction led to the discovery of Ni-Pt-Pt (Ni on the top of the Pt host) as 
an excellent candidate. This was indeed confirmed experimentally and found to have the highest 
catalytic activity known today for ammonia decomposition to hydrogen for fuel cells (Hansgen 
et al., 2010). 

7. Uncertainty analysis 

7.1 Parametric uncertainty 
Kinetic models are subject to various types of uncertainty. The first and most common one is 

parameter uncertainty. Due to errors in the estimation methods, even when the most accurate 
DFT methods are employed, kinetic parameters are uncertain. For example, it has been reported 
that activation energies are estimated with an accuracy of 5 kcal/mol. Pre-exponentials are 
uncertain within one or even two orders of magnitude. This uncertainty propagates through 
scales to produce uncertainty of the macroscopic (reactor) scale prediction. Other quantum 
mechanical method related issues, such as the use of specific functionals for certain species, the 
lack of spin polarization for certain metals, such as Ni and Co, the lack of good convergence of 
DFT results, or the use of a small unit cell and a small number of metal layers, can actually cause 
much larger parameter uncertainty than the error reported above. Due to all these reasons, 
models usually are not in quantitative agreement with experimental data. That requires model 
refinement within the uncertainty range. Irrespective of the estimation method, model and 
experimental uncertainties make parameter refinement a necessity for a quantitative description 
of experimental data. Systematic refinement methods, using design of experiments, are described 
in (Aghalayam et al., 2000). In doing so, the refined parameters may not be unique (Prasad et al., 
2009) but at least are physically relevant. The number of multiple parameters describing data is 
much smaller compared to those obtained from fitting with physically unconstrained parameter 
values.  

The development of various mechanisms (e.g., ammonia decomposition on Ru, partial 
oxidation of methane on Rh, etc.) in our published papers illustrates another point: comparison of 
microkinetic models to experimental data is essential for model assessment and refinement of 
key parameters. In fact, while conversion and selectivity data are important macroscopic data to 
compare to, spectroscopic data are also important in order to interrogate a model. In our 
experience as a minimum requirement, a model should be able to at least describe the effect of 
temperature and overall reaction orders well. In addition, catalyst characterization is important to 
carry out and use its results as input to minimize ambiguity in kinetic parameters arising from 
surface area effects. 

7.2 Lack of (important) reaction pathways 
Aside from parameter uncertainty, several other possibly more severe issues can hamper the 

predictive ability of models and overall have to do with lack of correct or complete Physics. The 
second type of uncertainty is lack of a comprehensive set of elementary steps. For example, in 
the CO oxidation chemistry, one typically does not include the reaction CO* + O2

*↔ CO2(g) + 
O* + *, which has been found to be very important on metals such as Au and Ag. Similarly, the 
old water-gas shift reaction mechanism considers the redox mechanism whereby H2O completely 
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disocciates to form O, H2O↔OH+H↔O+2H, followed by the oxidation of CO by O, 
CO+O↔CO2. However, recent work (Grabow et al., 2008; Mhadeshwar and Vlachos, 2005b) 
underscores the importance of the carboxyl intermediate, CO+OH↔COOH↔CO2+H or 
COOH+O↔CO2+OH, which is not customarily included in reaction mechanisms. Comparison 
to experiments may reveal the inadequacy of a model that lacks this chemistry, if the latter is not 
equilibrated and plays a role in the overall chemical transformation, and guide a modeler into 
examining novel pathways. Chemical intuition is also important in that regard.  An example of 
including the COOH intermediate in predicting the strong promoting effect of H2 on CO in the 
context of environmental catalysis was recently reported (Hauptmann et al., 2011). 

7.3 Uncertainty due to complexity 
The third and most difficult uncertainty type has to do with the multiscale modeling itself, 

such as the use of mean-field models instead of the KMC method, the inability of treating 
stiffness (multiple time scales) in KMC simulations causing the omission of surface diffusion, 
and the lack of structure-based microkinetic models, such as support and nanoparticle size and 
shape effects. Currently, it is not generally clear what the impact of incorrect and/or incomplete 
Physics is. Comparison of models to experiments across scales remains essential in improving 
our understanding and continuing to build better models. Sections 8 and 9 give some examples of 
this type of uncertainty. 

7.4 Effect of parametric uncertainty and lateral interactions on catalyst design 
Next, we briefly describe the effect of parametric uncertainty and adsorbate-adsorbate 

interactions on the identification of optimal catalyst properties, i.e., on the location of the 
maximum of the volcano curve (in one-dimension) or mountain (in two dimensions). Uncertainty 
analysis has recently been conducted in a microkinetic model (Ulissi et al., 2010). Various 
parameters were pertrubed simultaneously using a Monte Carlo search engine. In addition, BOC 
and BEPs were used to explore the effect of semi-empirical method on predicting the optimal 
catalyst properies. An example is shown in Figure 25 when lateral interactions are included and 
excluded. The distributions in each case reflect the effect of an order of magnitude uncertainty in 
the pre-exponentials. It is clear that while a single value of optimal properties is meaningless, a 
very tight distribution of optimal properties is predicted. In other words, parametric uncertainty 
can be ignored in searching for novel materials, as far as a reasonable set of parameters is used. 
What is interesting, is that lack of lateral interactions shifts the optimal values far way from those 
predicted when interactions are accounted for. Specifically, if the strong N-N repulsion is 
neglected, Ni and Pt are predicted to be active toward ammonia decomposition. In contrast, when 
interactions are accounted for, the Ni-Pt-Pt bimetallic is predicted to be active. Experimental 
results support the importance of lateral interactions that appear, at least for this chemistry, to be 
critical in the correct identification of suitable catalysts (Hansgen et al., 2010). 

8. Monte Carlo models of chemical kinetics 

8.1 Historical overview 

The utility of mean-field microkinetic models halts at the necessity to understand spatially 
localized effects or specific pairwise interactions between adsorbates.  While mean-field 
microkinetic models can be used for catalytic systems with multiple site types, sites are included 
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in an average way and are not properly coupled. The physics of multisite or metal-support 
mediated processes can be lost in mean-field models, as any spatially resolved phenomena 
require more complex mesoscopic modeling techniques, such as the kinetic Monte Carlo (KMC) 
method.   

The development of spatial KMC methods for simulating discrete events on lattice models 
has a history that spans several decades. The first spatial KMC algorithm, used to simulate the 
Ising spin model, is attributed to Bortz et al. (Bortz et al., 1975). Since then, several 
methodological advances have resulted in a variety of algorithms and frameworks (reviewed in 
Chatterjee and Vlachos, 2007). 

The KMC method became very popular in the 80’s and 90’s for simulating kinetic phase 
transitions in model systems (Evans, 1991; Fichthorn et al., 1989; Jensen and Fogedby, 1990; 
Meakin and Scalapino, 1987; Meng et al., 1994; Zhdanov and Kasemo, 1994; Ziff et al., 1986), 
investigating the effect of lateral interactions (Myshlyavtsev and Zhdanov, 1989; Silverberg and 
Ben-Shaul, 1987b; Silverberg and Ben-Shaul, 1987a; Silverberg and Ben-Shaul, 1989; 
Silverberg et al., 1985; Stiles and Metiu, 1986), and assessing the effectiveness of mean-field 
models in capturing system behavior close to critical points of the phase diagram (Araya et al., 
1989; Dickman, 1986; Dumont et al., 1986; Evans and Miesch, 1991a; Evans and Miesch, 
1991b; Jensen et al., 1990; Lutsevich et al., 1991). These works shed light into a variety of 
interesting phenomena, such as bimodality in temperature programmed desorption (TPD) 
spectra, noise-induced bistability and stochastic transitions, oscillatory and chaotic behavior in 
chemical systems, and spatiotemporal pattern formation (reviewed in Albano, 1996; Zhdanov, 
2002). However, the majority of these works used simple reaction mechanisms and arbitrary 
kinetic parameters, and for the most part, they were focused on Physics (non-equilibrium phase 
transitions) and were disconnected from experimental data. Several nice reviews of the early 
work on KMC have appeared (Broadbelt and Snurr, 2000; Catlow et al., 1994; Dooling and 
Broadbelt, 2001; Keil et al., 2000; Lukkien et al., 1998). The KMC method has been applied to 
metal catalysis as well as zeolites, e.g., (Auerbach, 2000; Coppens et al., 1999; Keil et al., 2000), 
with the latter focusing more on diffusion and less so on reaction. For this reason, KMC studies 
in zeolites are not reviewed here. 

8.2 Coupling of KMC method with the bond-order conservation (BOC) method 
In order to introduce a physically relevant methodology for the study of heterogeneous 

catalysts, the semi-empirical BOC method was introduced to compute activation energies and 
account for lateral interactions (Fu et al., 1999; Lombardo and Bell, 1989; Raimondeau and 
Vlachos, 2002; Wang et al., 1998).  This KMC-BOC method has given its place to the KMC-
DFT method, described below, due to the increase in computational power and improved 
accuracy of the DFT calculations. 

8.3 Coupling of KMC method with quantum scale calculations 
In the late 90’s and with the advent of first-principles calculations, the KMC method was 

connected to the quantum-mechanical scale (Figure 26). In the first-principles (or ab initio) 
KMC, the parameters entering the stochastic rate expressions are obtained through quantum-
mechanical calculations (Figure 27a). Ab initio KMC simulations were originally performed in 
the context of epitaxial layer growth on metals (Ovesson et al., 1999; Ruggerone et al., 1997) 
and semiconductors (Kratzer and Scheffler, 2002), and were soon adapted to catalytic processes. 
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An overview of the methodology (with one way of interaction between scales) is depicted in 
Figure 27a. Coupling between scales is discussed below. 

Neurock and co-workers were the first to employ such an approach in simulating surface 
reactions. They introduced a KMC algorithm (Hansen and Neurock, 1999b; Neurock and 
Hansen, 1998) that takes into account adsorbate binding on different sites (atop, bridge and 
hollow), and incorporates lateral interactions through either pairwise or the bond-order 
conservation (BOC) models built from DFT calculations (Hansen and Neurock, 1999a). The 
algorithm simulates unimolecular and bimolecular reactions, assuming fast diffusion of the 
adsorbates by equilibrating the lattice after each reaction event. The authors elucidated the effect 
of interactions on the rates of NO decomposition on Rh(100) (Hansen and Neurock, 1999a) and 
showed agreement with experimental data. More recently, detailed simulations of the NO 
chemistry on Pt nanoparticles were also performed (Mei et al., 2010), showing the interplay 
between NO oxidation and NO reduction on the different facets (100 and 111) and providing an 
explanation for the apparent structural insensitivity of NO oxidation.  

Ehylene hydrogenation on Pd(100) was simulated (Hansen and Neurock, 1999b; Hansen and 
Neurock, 2000a) showing that spatial correlations, stemming from lateral interactions and 
competitive adsorption, result in apparent reaction orders that are less than unity with respect to 
hydrogen and negative with respect to ethylene. Mei et al. simulated the selective hydrogenation 
of acetylene on Pd(111), predicting the apparent activation energies and reaction orders with 
respect to hydrogen and acetylene (Mei et al., 2006). This work was more recently extended to 
ethylene/acetylene mixtures on Pd and Pd-Ag alloys (Mei et al., 2009; Sheth et al., 2005). 

Hansen and Neurock simulated the temperature programmed desorption (TPD) spectra of 
oxygen from Rh(100) (Hansen and Neurock, 2000b) and found to be in good agreement with 
experimental data. Simulations revealed that at high coverages, oxygen occupies bridge sites, 
whereas for lower coverages it binds preferentially to 4-fold hollow sites. Moreover, acetic acid 
temperature programmed reaction (TPR) spectra calculations (Hansen and Neurock, 2001) 
showed that the surface was covered by acetate islands surrounded by chemisorbed oxygen 
atoms that affect the low temperature spectra.  

Reuter et al. used ab initio KMC simulation to study the CO oxidation chemistry on 
RuO2(110) (Reuter et al., 2004; Reuter and Scheffler, 2006). The adsorbates can bind to the 
bridge or cus sites of RuO2. The results obtained from these simulations are in quantitative 
agreement with experiments and shed light on the relation between the fluctuations on adlayer 
composition and the catalytic activity. For the same system, Temel et al. compared KMC 
simulations to mean-field results (Temel et al., 2007). Energetic interactions were neglected and 
diffusion was accounted for in the KMC simulations, thereby allowing for a fair comparison of 
the two approaches. The models were in good qualitative agreement; however, the quantitative 
differences were prominent: the range of partial pressures of CO where the catalyst is active is 
much greater in the mean-field model than in the KMC simulations, and the gas composition for 
which the maximum TOF is achieved is not accurately predicted by this model. Moreover, the 
reaction rates calculated with the two approaches differ significantly. These discrepancies were 
attributed to correlations between the positions of vacant sites, introduced solely by adsorption-
desorption and reaction events. Further, Rieger et al. evaluated the effect of surface structure on 
the TPR spectra for the CO oxidation on RuO2 in the absence of energetic interactions (Rieger et 
al., 2008). Their work showed that analysis with mean-field models is inappropriate and can lead 
to incorrect conclusions on the reactivity of the oxygen atoms that are bound to the two different 
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sites (bridge or cus). In another study, Meskine et al. identified the rate-limiting step for CO 
oxidation on RuO2(110) (Meskine et al., 2009). 

Aiming at bridging the pressure gap, Rogal et al. (Rogal et al., 2008) presented first-principle 
KMC studies of CO oxidation on Pd(100). This study indicates the presence of a catalytically 
active surface oxide structure at ambient pressures and at relevant CO:O2 ratios. It was 
concluded that both the reduced Pd(100) and the oxide phase have to be modeled for a detailed 
understanding of the CO oxidation on Pd(100). 

8.4 Limitations of current KMC simulations 
The studies just reviewed demonstrate that the coupling of KMC with first-principles 

methods can provide a powerful multiscale modeling framework for quantitative predictions of 
turnover frequencies, apparent reaction orders and activation energies, as well as TPD and TPR 
spectra. However, there are still overarching challenges that available KMC codes cannot treat, 
namely chemical complexity, separation of length and time scales, and heterogeneity of chemical 
reactivity.  

Chemical complexity 
The representation of adsorbate binding and elementary reactions has so far been simplistic. 

A single site adsorption representation does not account for the multi-dentate nature of several 
adsorbates (Lukkien, 2009; Meskine et al., 2009; Silverberg and Ben-Shaul, 1987b; Silverberg et 
al., 1985; Zhdanov and Kasemo, 1998). Furthermore reactions frequently are limited to involve 
up to two sites.  A notable exception is the multisite approach of Hansen and Neurock (Hansen 
and Neurock, 1999b; Hansen and Neurock, 2000a) that entails reaction detection on the basis of 
at most two sites, with the possibility of reactants appearing in reflected or intermediate sites. 
Yet, this approach is inadequate when products appear in sites other than those just mentioned. 
To overcome this problem, Stamatakis and Vlachos have developed a graph theoretical KMC 
framework that treats multi-dentate species and arbitrary neighboring and coverage patterns in 
specifying elementary steps (Stamatakis and Vlachos, Under Review).  

The problem then is to define all topologically distinct reactive configurations, since in all 
current KMC codes elementary reactions are created and imported manually. As the number of 
adsorbed species and elementary reactions increases, it is impractical to employ ab initio 
approaches to calculate all rate constants. It might be the case that several of these elementary 
steps are rarely sampled in a KMC simulation; however, this does not mean that they could 
safely be omitted since it may be just these rare events that are the most important for the 
chemistry into consideration. 

Separation of scales 
It is typically the case that there is a large disparity between the length- and time-scales in 

which various elementary events occur. For example, diffusion of mobile species evolves much 
faster than reactions, rendering KMC simulation impractical even on the fastest supercomputer, 
since the algorithm samples almost exclusively unimportant (fast only, e.g., diffusion) events. 
Similarly, one cannot currently simulate supported catalysts with nanoparticles being far away 
from each other while accounting for diffusion and possible slow reaction on the support, due to 
separation of length scales (large distances between nanoparticles). Larger metal nanoparticles 
are too demanding to simulate with brute-force KMC methods; however, a few sites (e.g., steps) 
are often actually active but are far from each other (separation of length scales). 
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To overcome this multiscale challenge, adaptive mesh coarse-grained Monte Carlo (CGMC) 
algorithms, having microscopic resolution near edges and corners (where reactivity is higher) 
and a coarse mesh on flat surfaces, can be employed. This is expected to eliminate error from 
coarse-graining (or minimize it in the case of chemistry on flat surfaces). An example of 
adaptivity on a prototype reaction (Figure 28) testifies, for the first time, for the proposed 
computational method. The proposed adaptivity eliminates the need for domain decomposition, 
where a deterministic and a KMC model are patched, and alleviates associated problems, such as 
lack of convergence, mass conservation, and incorrect noise (Schulze et al., 2003), and provides 
a consistent way to compute ensemble average properties at reduced computational cost.  

Heterogeneity of chemical reactivity and many-body effects 
Energetics depends on the local environment of species (adsorbates) in the neighborhood of 

the microscopic event (see DFT examples in second row of Figure 3). At the global mean-field 
level, we have successfully incorporated such effects via a hierarchical, albeit lumped, approach 
(Deshmukh et al., 2004; Mhadeshwar et al., 2004; Mhadeshwar and Vlachos, 2005b; 
Mhadeshwar and Vlachos, 2005a; Vlachos et al., 2006), whereby the activation energy of 
important reactions is parameterized as a function of the coverage of the MASI (see Section 4.3).  

Adsorbate-adsorbate interactions make the parameterization of the rate constant on a single 
catalyst site (or a small ensemble of them) a many-body problem whose solution leads to 
combinatorial explosion in the number of DFT calculations needed. As an example let us 
consider the parameterization of the Ising Hamiltonian (which assumes only pairwise additive 
interactions) for m species on a regular lattice: 
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where n is the neighbor “depth”: 1 for nearest neighbors, 2 for next-nearest neighbors etc. The 
number of such calculations increases rapidly for complex chemistries. For example in ethylene 
glycol decomposition chemistry, if one was to include up to next-nearest neighbor interactions, 
the number of species is roughly m = 30 and the neighbor depth n = 2. Thus one has to perform 
around 1000 DFT calculations. Note that this is just for a rather crude approximation of the 
Hamiltonian, since the interactions are generally non-additive; clusters of more than two adatoms 
may have a significant contribution to the total energy and need to be computed. It becomes 
obvious that computation of the energy of the system after every KMC event (to compute 
barriers) leads to an intractable problem.  

Short-range interactions reduce significantly the number of configurations that need to be 
computed via DFT. Still, the computational cost remains prohibitive and explains why 
researchers use either a coverage-independent rate constant (the bimolecular analogue of gas-
phase kinetics) or include coverage effects via BOC or through a mean-field manner. Needless to 
say, for large molecules, such as polyols and sugars, there exist also a large number of 
conformers that are close in energy and should thus be all modeled. 
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These challenges necessitate the development of novel approaches that will enable the 
application of ab initio KMC methodologies in complex chemistries while accurately accounting 
for the distribution and the conformations of adsorbates. Self-learning KMC techniques (Kara et 
al., 2009; Trushin et al., 2005), importance sampling (Baggerly et al., 1999), as well as 
parallelization (Martínez et al., 2011) could be proven invaluable in overcoming the 
aforementioned obstacles and making ab initio KMC calculations with bi-directional coupling 
feasible on a large scale. 

Even though the number of possible configurations may in principle be vast, only a handful 
of configurations are usually important under any set of conditions. This is a result of the 
dissipative nature of diffusion-reaction problems on surfaces and the competitive nature of 
adsorbates for catalyst sites, i.e., the difference in binding energies usually results in only one or 
two species being dominant under any set of conditions. In other words, the system samples only 
a small hyperspace of the entire space of configurations, reminiscent of low-dimensional 
manifolds. As a result, the probability distribution function (pdf) of configurations is rather low 
dimensional. These configurations are unknown a priori. One can develop a computational 
method, termed novelty sampling (Ludwig and Vlachos, 2007; Ludwig and Vlachos, 2008) 
shown in Figure 27b, for the parameterization of stochastic simulation via a handful of DFT 
calculations. Specifically, one can run a KMC simulation to compute pdfs. Subsequently, novel 
(not in the database) configurations can be passed to the DFT solver to improve their parameters 
and the KMC simulation must be repeated to identify new candidate configurations. In summary, 
in the novelty sampling method, a KMC simulation generates an ensemble of configurations, 
steady state DFT computes the parameters for these configurations, and the procedure is iterated 
until convergence (e.g., when no new configurations are generated). This approach was recently 
demonstrated in coupling DFT and molecular dynamics (MD) (Ludwig and Vlachos, 2007; 
Ludwig and Vlachos, 2008).  

Aside from lateral interactions, the reactivity of metal nanoparticles and clusters depends also 
on the coordination number, on the curvature angle on which the adsorbate binds, as well as on 
hetero-epitaxial strain and charge transfer, the latter effects being crucial in core-shell bimetallic 
nanoparticles (Mpourmpakis et al., 2010b). In other words, the rate constant of each catalyst site 
is often a function of two descriptors, as discussed in the next Section 9. To our knowledge, such 
effects have never been considered in KMC simulation. 

9. Structure-based microkinetic modeling 
Despite the development of first-principle-based microkinetic models, these models are 

‘structureless’. They typically use input from a single crystallographic plane, e.g., the (111). As a 
result, they are strictly applicable to ‘ideal’ single crystals. In reality, even the (111) plane 
contains point defects and steps and thus, these models are only an approximation of a true single 
crystal. They should not be compared to supported catalyst-data, except possibly for structure 
insensitive reactions.  

Supported nanocatalysts bigger than a couple of nanometers consist of distinct 
crystallographic planes, edges and corners, and the reaction rate is a statistical mechanical 
average (Figure 1and Figure 2) of the microscopic events happening on all these sites (Figure 3). 
Until recently, all microkinetic models with single crystal DFT input have been compared to 
supported catalyst data and their parameters tuned, with reasonable success, to describe data. 
Obviously, this approach is limited in scope and predictive ability. It is also unclear whether the 
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success of mean-field microkinetic models is due to structure insensitivity of a reaction or tuning 
(even if moderate) of the model parameters to describe data. 

The structure sensitivity of a chemical reaction is a fundamental topic in heterogeneous 
catalysis that has received considerable attention over the years. Yet, little modeling of the 
structure sensitivity has been carried out and typically with simple reactions and non-first 
principle-based parameters. In this section, we review examples of mean-field and kinetic Monte 
Carlo (KMC) studies focusing on real mechanisms and parameters applied to understanding 
structure sensitivity. 
 

9.1 Structure sensitivity via mean-field models 
As an example of a semi-empirical based microkinetic model (BEPs developed from DFT; 

Figure 1) addressing structure sensitivity, the CO oxidation reaction is considered (Wang et al., 
2011, submitted). The mechanism entails the following reversible elementary steps, with the last 
reaction occurring only on steps (Falsig et al., 2008): 

O2(g) + * ↔ O2
* (R1) 

CO(g) + * ↔ CO* (R2) 
O2

* + * ↔ 2O*  (R3) 
CO* + O*↔ CO2(g) + 2*                                            (R4) 
CO* + O2

*↔ CO2(g) + O* + * (steps only) (R5) 
The model considers nanoparticles of octahedral shape, which consist of a single facet type 
(111), as well as edges and corners. Counting of the sites of each type as a function of 
nanoparticle size is straightforward. The rate constants on the (111) facets are approximated with 
those of an infinite (111) plane and the edges and corners with those of (211) steps. 

Figure 29 shows the effect of particle size on the reaction rate for Pt and Au catalysts at three 
sets of operating conditions. The observed behavior is complex. In the case of Au, as the particle 
size increases, the rate per unit site (turnover frequency (TOF)) decreases, indicating that steps 
are more active than terraces under all conditions. On Au, the CO2 formation channel through 
CO*+O2* (reaction R5) is facile even when CO covers most of the surface sites. 

In contrast, the structure sensitivity of Pt catalyst depends on the operating conditions. Under 
oxygen-rich conditions and relatively low temperatures, larger Pt particles are more active than 
smaller ones, indicating that terrace sites are effectively more active than step sites. Under fuel-
rich conditions and low temperatures, Pt appears as structure insensitive (slight variation of the 
TOF with size). In contrast, under fuel-rich conditions and high temperatures, larger particles are 
less active than smaller ones, a feature attributed to steps being more active than terraces. At 
higher temperatures, a larger fraction of the Pt sites is vacant, and as a result, the reactivity 
corresponds to the low coverage limit. These simple calculations underscore that the structure 
sensitivity may depend strongly on operating conditions for some catalysts. This finding may 
rationalize the apparent discrepancy in the literature of whether the CO oxidation is structure 
sensitive or not on some metals. In contrast, for other metals, such as Au, the steps are so much 
more active than the terraces, that the structure sensitivity is independent of operating conditions. 
The dependence of structure sensitivity on operating conditions highlights the fact that coverage 
effects have a profound effect on where the chemistry happens. 

Figure 23 shows a volcano map for the CO oxidation reaction, i.e., the turnover frequency vs. 
the CO and O binding energies, on terraces with and without lateral interactions between 
adsorbates at 600 K. Figure 22 shows similar plots on stepped surfaces at two temperatures. The 
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properties of known materials are also superimposed. It is clear that the optimal properties 
(indicated with a cross) can vary considerably because of lateral interactions and, for this 
chemistry, with operating conditions. 

As another example, Figure 30 shows modeling results for the effect of particle size and 
shape on the activity of Ru catalyst toward ammonia decomposition, a reaction that is known to 
be very structure sensitive (Karim et al., 2009). Modeling results are in very good agreement 
with experimental data (not shown). The model consists of step (B5) sites and terrace sites. The 
activity on the former is much higher than that on the latter. Computations and experiments 
indicate that aside from size, shape can also have an important effect on catalyst activity. The 
optimum particle size at which the activity reaches a maximum is a strong function of shape, 
with flat-like nanoparticles of 1-2 monolayers in height exhibiting maximum activity at an 
unusually large size of ~7.5 nm. Hemispherical nanoparticles exhibit very low reactivity at these 
large sizes due to their small fraction of B5 sites. 

The sensitivity of the volcano map of the CO oxidation on lateral interactions is consistent 
with that seen for ammonia decomposition and underscores the need to account for adsorbate 
interactions in catalytic chemistry (Figure 23). The dependence on operating conditions in the 
CO oxidation reaction is not seen in the case of ammonia decomposition. Taken together it 
appears that if one site is much more active than the rest, the TOF varies monotonically with 
respect to size. On the other hand, when the activity of various sites is comparable, operating 
conditions can play a decisive role in the dependence of TOF on size. 

As a first step in modeling a distribution of sites of different activity, one can consider the 
fraction and the reactivity of each site and carry out an area weighted average of the reaction rate 
using a mean-field microkinetic models. This is obviously an oversimplification of the actual 
phenomena. The spatial arrangement of sites and the coupling between sites should also be 
considered. Surface diffusion, which is considered infinitely fast in mean-field models, further 
couples various sites. This task cannot easily and correctly be handled by a mean-field 
microkinetic model. 

9.2 Structure sensitivity via KMC simulation 
In an early work, Zhdanov and Kasemo studied the Langmuir-Hinshelwood mechanism of 

the prototypical reaction 2A + B2 / 2AB, in a supported nanoparticle exposing (100) and (111) 
planes, for which species A and B2 exhibit different sticking coefficients (Zhdanov and Kasemo, 
1998; Zhdanov and Kasemo, 2000). It was thus shown that the A-B2 composition window for 
which the reaction proceeds on the nanoparticle is different from that of an infinite surface.  In 
another study, Zhdanov considered the generic reaction A + B / AB in a three-phase system 
consisting of metal, electrolyte and gas, in the context of electrochemical applications. Species A 
represents the ion, whereas B is the gas (Zhdanov, 2003). Migration of A to the gas-metal 
boundary and reaction with B results in the formation of AB in the gas phase. According to the 
Tafel law for this system, the reaction rate should increase exponentially with the electrode 
potential; however, the KMC simulations revealed lower reaction rates as a result of diffusion 
limitations.  

Gracia and Wolf developed a KMC method for simulating the generic reaction A + ½B2 / C 
on supported crystallites (nanoparticles), and showed that the crystallite size (for uniformly sized 
particles) or the distribution thereof has a non-trivial effect on the reaction rate (Gracia and Wolf, 
2001). Further, by applying an extension of this method to the CO oxidation reaction (Gracia and 
Wolf, 2004) over Pt/SiO2, they analyzed structure sensitivity as well as thermal effects, and 
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demonstrated agreement with experimental data. Qin et al. also studied CO oxidation on 
supported catalysts, incorporating variable activity of the surface due to an oxidation-reduction 
phenomenon that results in temporal variations of the O2 sticking coefficient (Qin et al., 1998). It 
was shown that this phenomenon could explain the self-sustained oscillations observed 
experimentally for this chemistry. Among first-principle structure-based KMC studies, Mei et al. 
simulated the NO oxidation and reduction chemistry on a nanoparticle exposing (100) and (111) 
facets as well as edge and corner sites (Mei et al., 2010). It was shown that NO reduction to N2 
occurs primarily on the (100) sites, whereas NO oxidation occurs predominantly on the (111) 
facets and less intensely on the (100) terraces. 

Finally, motivated by the mean-field studies on the structural sensitivity of CO oxidation 
presented, we performed kinetic Monte Carlo (KMC) simulations for this chemistry on Au 
surfaces with different step site densities. These surfaces are summarized in Table 9 and for 
illustration purposes, the Au (533) surface and the corresponding KMC lattice are shown in 
Figure 31. We assume that all surface species (CO*, O2*, O*) bind to fcc hollow sites, and we 
distinguish two types of sites, namely steps and terraces. The reaction mechanism of (Wang et 
al., 2010) was used, along with the parameters and energetics corresponding to Au (also shown 
in Table 10). For simulating this system, the graph-theoretical KMC framework was developed 
(Stamatakis and Vlachos, Under Review).  

A snapshot from these simulations, pertaining to the Au(533), is shown in Figure 32a, in 
which the step sites are denoted by squares and the terrace sites by circles. The surface is 
primarily covered by molecular oxygen followed CO and O in comparable coverages. It is worth 
noting that O2 dissociation happens predominantly on step sites. As a result, the computed 
turnover frequencies (TOF) per monolayer scale linearly with respect to the step site density, as 
shown in Figure 32b, whereas the Au(111) surface that lacks step sites is practically inactive.  
Thus, the steps are the active sites for the CO oxidation chemistry on gold, consistent with the 
mean-field microkinetic model. If the step site density is mapped to an equivalent ratio for 
octahedral Au nanoparticles, then the TOF can be plotted with respect to an equivalent particle 
diameter, in line with the mean-field microkinetic model. 

9.3 Thermochemical properties on nanoparticles and clusters 
Periodic (plane wave) slab DFT calculations can be applied on single crystals (infinite 

surfaces, such as the (111) plane). However, catalyst particles consist of flat surfaces, edges, and 
corners (multiple length scales). It is generally known that steps (and by extension corners) are 
more active than flat surfaces, provided that they are not poisoned. In order to simulate the 
chemistry on nanoparticles, one can perform DFT calculations on various local environments 
(e.g., on each metal atom having a different number of nearest neighboring metal atoms – termed 
also the coordination number (CN)). DFT simulations (inset of Figure 33) indicate that one can 
relate the binding energy, Qk, of species k, with the CN, i.e., Qk=Qk(CN). With thermochemistry 
at hand, one can estimate activation energies on each site of the nanoparticle (e.g., flat surfaces, 
edges, corners), accounting for the variation of the CN with particle size and shape using BEPs 
or linear free energy relations. Currently, such an applicability of BEPs on nanoparticles has not 
been proven. Smaller nanoparticles (<1-2 nm) have no well-defined structure. They consist 
exclusively of undercoordinated sites. In this case, one has to develop models that explicitly 
depend on the catalyst structure. One recent example considered the CO binding on Au clusters 
supported on MgO. By considering a database of clusters in quantum calculations of n=6, 12, 
and 20 atoms  (Mpourmpakis and Vlachos, 2009) and 16, 18, 19, 25, 26, 30, 37, and 45 atoms 
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(Mpourmpakis et al., 2010a), i.e., up to 1.2 nm, via massive DFT calculations  using the 
Turbomole 5.9.0 program, it was found the BE scales linearly with the coordination number, CN, 
for each cluster (as shown in the inset of Figure 33). This indicates that the CN number is, as 
expected, a main descriptor of thermochemistry, e.g., of the binding energy. However, in 
comparing the linear relationship on many clusters, it was clear that the BE varies considerably 
among clusters for the same coordination, e.g., CN=6, by as much as with the CN, as shown in 
the main Figure 33. This indicates that the development of a physicochemical model requires at 
least one more descriptor beyond the CN to describe the effect of local environment on 
thermochemistry. In exploring various secondary descriptors, it was found that the curvature 
angle of the plane of Au on which CO binds is important. Biquadratic models adequately fitted 
the DFT data. Application of these nanoparticle models to predict reactivity and compare to 
experimental data will be valuable. 

10. Catalyst dynamics 
Most first-principle calculations assume a static picture of the catalyst that is typically 

observed in microscopy studies or determined from the Wulf plot of thermodynamic stability. In 
reality, catalysts are dynamic and respond to their external environment by changing size and/or 
shape. Dynamics is a hard, multiscale problem, whereby phase transitions and reconstructions 
occur over second to minute time scales, well beyond the nanosecond realm of molecular 
dynamics modeling. Below we describe a first attempt on understanding catalyst dynamics 
subject to annealing with an example on bimetallic catalysts. 

10.1 An example of combined molecular modeling and experiments for structure 
determination of bimetallic catalysts 

Bimetallic catalysts have recently become the focus of attention due to their higher activity 
and selectivity compared to their parent metals in several reactions, such as reforming and 
hydrogenation. Recent studies have elucidated the mechanisms that lead to these desirable 
properties and explored potential applications of these novel materials (reviewed in Chen et al., 
2008). On the other hand, the mechanisms that contribute to structure determination and mixing 
between two metals and catalyst stability remain largely elusive. Experimental techniques such 
as scanning tunneling microscopy (STM) and Auger electron spectroscopy (AES) can provide 
useful information, but detailed characterization of the first few layers and understanding of the 
dynamics are currently impossible. This need necessitates the use of molecular simulation to gain 
relevant insight. An example of such studies is presented next. 

Motivated by experimental studies on bimetallic catalysts for ammonia decomposition 
(Hansgen et al., 2010) and reforming (Skoplyak et al., 2008a), Wang et al. employed a multitude 
of multiscale tools that span a vast range of time-scales (Figure 34) to probe the structure and the 
mixing of a Ni monolayer (as well as half and two monolayers) deposited on the Pt(111) surface 
(and stepped surfaces) (Wang et al., 2010). Auger spectroscopy experiments were also 
performed and indicated that the Ni/Pt mixing at higher temperatures (600-900 K) occurs on the 
order of seconds to minutes. At the finer time-scale (order of several nanoseconds), molecular 
dynamics (MD) simulations were performed using the embedded atom method potential (Daw 
and Baskes, 1984; Foiles et al., 1986). At low temperatures, the Ni monolayer remains on the 
surface, and metastable Ni clusters form on the Pt(111) surface due to the smaller lattice constant 
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of Ni compared to that of Pt. At higher temperatures, these structures are dynamic in nature and 
may play a crucial role in determining the reactivity of the catalyst, as they result in the 
formation and reconstruction of active sites for the underlying elementary reactions. It was also 
shown that the rate of mixing increases rapidly with temperature, resulting in the formation of 
alloys at high temperatures, as evidenced by the coordination numbers of the two atomic species 
(Figure 35). More specifically, the Pt coordination around Ni (labeled as Ni-Pt) increases with 
temperature, while that of Ni around Ni (labeled as Ni-Ni) decreases, as a result of the Ni atoms, 
originally on the surface layer, diffusing into the second layer first and at longer times and/or 
higher temperatures deeper into Pt.  As a result, mixing entails multiple time scales. Simulations 
indicate that higher temperatures, smaller Ni coverages and the presence of Pt steps (in this case 
there is inlayer mixing) facilitate mixing between Ni and Pt. It is expected then that actual single 
crystals that exhibit defects and nanoparticles with undercoordinated sites will facilitate mixing. 

Accelerated MD gave insights on the behavior of the system at longer time-scales (on the 
order of milliseconds), whereas the infinite time behavior was investigated through simulated 
annealing. Both simulation methodologies showed that the system reaches a well-mixed state, 
thereby forming a Ni/Pt solid solution. Thus, the surface configuration seen at low temperatures 
is metastable (kinetically trapped).  

Nudged elastic band (NEB) calculations provided a static picture of the potential energy 
surface and elucidated possible pathways for Ni diffusion in the subsurface (Figure 36). 
Combined with transition state theory, NEB can provide insights on the timescale of mixing. 
Specifically, the energy barriers of various mechanisms contributing to Ni diffusion in the Pt 
bulk were found to be on the order of 2 eV resulting in a timescale of mixing on the order of 
seconds, which compares well with experimental data. Further, by means of NEB calculations 
and analysis of the MD trajectories, using the van Hove correlation function, it was demonstrated 
that Ni migration occurs through correlated hops. Thermal fluctuations create holes in the surface 
of Pt into which Ni diffuses. 

While these multiple simulation methods, pertaining to different time-scales, have not been 
coupled, valuable information of the structural characteristics of a catalyst can still be developed. 
More studies along these lines will be valuable, especially if linked with predicting the effect of 
structure on catalyst performance. 
 
11. Free energy calculations and accelerated molecular dynamics for catalysis in condensed 

phases 
The majority of first-principle studies in catalysis have considered reactions on metals in 

vacuo. While lessons learned from these studies have been invaluable for solid-gas 
heterogeneous catalysis, as the previous sections made the case, a number of reactions occur in 
solution phase where solvent effects are important and cannot be ignored. A notable example is 
biomass processing. Due to low thermal stability and volatility of biomass derivatives, such as 
glucose and fructose, selective catalysis must be carried out in an aqueous phase. For these 
reactions, different computational tools (beyond periodic DFT calculations) are needed, which 
are traditionally used in other research areas. In this section, we provide an overview of these 
computational tools. 

Understanding of physical or chemical phenomena in condensed phases (including metal 
surfaces discussed above) requires knowledge of the free energy landscape. The stable basins, 
the separating saddle points and the connecting reaction paths are essential to understand the 
direction and mechanism of the process, as well as the relative stability of the various states of 
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the system.  Knowledge of the mechanism is important, as it directs the thinking about how to 
modify the reaction under study, how to carry out the reaction with a solvent that is 
environmentally (more) benign, how to modify the catalyst being used so as to make the process 
technologically more attractive (i.e., lower cost), or even how to create a new reaction – all very 
valuable to emerging technologies, whose viability and sustainability very often hinges upon 
tight process optimization, availability of resources and adherence to environmental imperatives.  

Lower bounds to the time scales for the decay of states of metastability (i.e., for reactivity) 
may also be determined, as, within the framework of Classical Transition State Theory, one can 
obtain an upper bound to the rate constant for barrier crossing:  
where  is the activation free energy,  is Boltzmann’s constant,  is Planck’s constant, and  

is temperature. For systems with only a few degrees of freedom,  activation free energies are 
usually (and routinely) obtained within the harmonic approximation, which entails mapping out 
the ground, adiabatic potential energy surface (PES) of the system – by means of electronic 
structure calculations in vacuo – and subsequent normal mode analysis at the critical points. The 
difficulties (and theoretical limitations) of this approach, even for gas-phase reactions, are well-
understood. The PES of even the simplest chemical reaction has dimensionality larger than 2 and 
computing it can become a daunting task.   For complex systems, like reactions in solution, such 
approach is inapplicable and theoretically unfounded. Structures optimized at 0 K do not 
represent finite temperature conformational distributions; and solvent dynamics effects are 
suppressed. Optimized structures of the reactant complex that include a number of explicit 
solvent molecules, say, water, can be specious: For one, because the stationary conformations of 
the multi-dimensional surface are not guaranteed to be the optimal ones. Also, because at 0 K 
water (or any other solvent for that matter) is hardly in the liquid phase. In fact, as one includes 
more of these explicit waters in the calculation, emergent properties of the corresponding 
thermodynamic state may become more prominent. In condensed phases, one must sample the 
phase space and map out a free energy surface (FES). The tool for that is mainly molecular 
dynamics (MD).  

By way of example, in Figure 37, we show the free energy profile for hydride transfer during 
the multi-step, acid-catalyzed dehydration of D-fructose to 5-hydroxymethyl-furfural (HMF) in 
water. We have recently shown that the reaction proceeds through a series of steps that involve 
hydride and proton transfers. In the particular step shown in Figure 37, the free energy profile is 
analyzed in the internal energy and entropy terms and we see that, in most part, the change in the 
total internal energy is responsible for the free energy barrier. What is more interesting, however, 
is that the internal energy barrier is almost entirely due to solvent re-organization. We arrive at 
this conclusion by writing the internal energy in terms of contributions from the quantum 
mechanical energy of the reacting system and interactions of type solvent-solvent and solvent-
reacting system. In this study, the free energy calculations were performed using hybrid 
Quantum Mechanics/Molecular Mechanics MD simulations and biased sampling (Caratzoulas 
and Vlachos, 2011). The picture that would emerge if we merely looked at the curve , 
which depicts the change in the quantum mechanical energy of the reacting system alone, would 
be different – physically incomplete and quantitatively inaccurate. The effects of solvent 
dynamics would be missing. This example of homogeneous catalysis indicates that these 
simulations are feasible and lead the way to computationally design, aside from the catalyst, also 
the medium (solvent). 
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Free energy calculations have a long history and, here, we can merely scratch the surface. 
The objective is the obvious one: to calculate a FES with the right dynamical content to describe 
a complex system. The problem is twofold. (i) How to reduce the dimensionality of the system 
by identifying the slow dynamical variables – also referred to as the problem of reaction 
coordinates. (ii) How to accelerate the dynamics in order to access time scales associated with 
so-called rare events, i.e., the problem of the statistically significant sampling of the high-energy 
regions of phase space that separate FES basins of metastability with long lifetimes, on the order 
of microseconds and longer. 

Methods that heavily rely on the choice for reaction coordinates to accelerate the dynamics 
can be categorized as umbrella or importance sampling methods (Frenkel and Smit, 2002). They 
apply a biasing potential in the prescribed reaction coordinates with the intent to “lift” the stable 
basins of the energy landscape, where an MD trajectory may indefinitely get trapped, and thus 
help the trajectory explore regions of phase space in the vicinity of the barrier; these are the 
regions where the dynamics decides the fate of the trajectory, namely, whether it will roll 
downhill towards the products basin or back to where it started. Choosing a functional form for 
the bias potential is not a trivial matter. Nevertheless, it is open to one’s ingenuity, so long as it is 
computationally efficient and effective in helping the trajectory escape from deep valleys; a 
commonly used form is that of overlapping parabolic potentials. Notable also is Voter’s choice 
in his hyperdynamics MD method, where a more “global” approach to the biasing potential is 
taken (Voter, 1997a; Voter, 1997b). Umbrella sampling techniques can give accurate FESs for 
multi-dimensional reaction coordinates. A more recent development in this front is Parrinello’s 
metadynamics method (Laio and Parrinello, 2002), a very promising approach that deserves 
special mention and for that we shall return to it shortly. One may even dispense with the biasing 
potential altogether by simply constraining the system at fixed values of the reaction coordinate 
and then carrying on with the sampling. This approach goes by the name constrained dynamics 
and employs thermodynamic integration to obtain the potential of mean force from the 
ensemble-averaged constraint forces. For multi-dimensional reaction coordinates the method 
becomes cumbersome. A popular variant of it is called steered MD and is based on Jarzynksi’s 
equality, which allows the calculation of potentials of mean force from non-equilibrium 
trajectories (Jarzynski, 1997). 

The choice of reaction coordinates poses many challenges, theoretical and practical, 
especially in complex systems where the slow dynamics is in collective modes that involve slow 
environmental coordinates, such as solvent re-organization during a chemical reaction in 
solution, the participation of active site residues in enzymatic catalysis, or strong coupling 
between the reactant complex and low frequency surface phonons of metal catalyst, etc. In the 
late nineties, Dellago, Bolhuis and Chandler came up with a method that addresses one of the 
fundamental questions of reaction rate theory in condensed phases: If we know the location of 
the bottleneck, the dynamics of the rare event is solved by initiating trajectories from that 
bottleneck. But what if the bottleneck is not known? And, worse, what if it is not even 
specifiable in terms of a small number of coordinates? How then can rare events be studied? 
Their method, named Transition Path Sampling (TPS) (Dellago et al., 1998), solves the problem 
by requiring as only input an order parameter that uniquely identifies the reactant and product 
metastable states and an initial path that connects them, the latter usually obtained by Nudged 
Elastic Band calculations. It does not require a priori knowledge of saddle points, nor does it 
require the definition of a reaction coordinate, and for that matter it dispenses with pre-conceived 
notions about the slow dynamical variables of the system. One no more speaks of a unique 
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transition state, but of an ensemble of transition states, harvested via a Metropolis algorithm. It is 
a hybrid Monte Carlo-Molecular Dynamics method and its power lies in the fact that is captures 
the true reactive dynamics. As a bonus, a reaction coordinate with the right dynamical content 
can be extracted by appropriate analysis of the sampled reactive paths. It is a computationally 
demanding method. 

Parrinello’s metadynamics is, in essence, an umbrella sampling technique, but an adaptive 
one at that. It addresses the hard problem of constructing a good biasing potential. It does so by 
considering the history of the system – where it appears to be spending most of its time – and by 
improving the bias on the fly. It permits to sample, in a seamless way, the FES in a set of 
prescribed reaction coordinates. The idea is to extend the phase space so as to include the 
reaction coordinates as additional dynamical variables that carry mass and are restrained by 
harmonic springs to move in the vicinity of the manifolds defined by the reaction coordinates. By 
also including in the Lagrangian a history-dependent biasing potential (a non-Markovian term in 
the reaction coordinates), the trajectory is discouraged from visiting regions of configuration 
space that it has already explored. The non-Markovian term consists of repulsive, Gaussian-
shaped potentials that are “dropped” on top of the underlying FES. As the trajectory lingers 
around a certain region, more and more of the Gaussians are dropped in and as they accumulate 
they counterbalance the underlying free energy valley, thus allowing the trajectory to escape. 
This way, the method not only accelerates the simulation of rare events but also maps out the 
FES as the negative of the sum of the repulsive Gaussians. Unlike TPS, metadynamics is not 
designed to find the “perfect” reaction coordinate. However, by keep expanding the set of 
prescribed reaction coordinates, it can, in principle, capture all the relevant dynamical 
bottlenecks. Naturally, this expansion cannot continue indefinitely, as the method progressively 
becomes impractical. One of its advantages is how versatile it is with respect to the collective 
variables one can use to define reaction coordinates (e.g., coordination numbers, the number of 
hydrogen bonds, potential energy, lattice parameters, etc.). As this list of types of collective 
variables grows, the scope of applications can only broaden. Currently, metadynamics can 
effectively compute FESs as a function of three to four collective variables and accelerate the 
escape from deep local minima with up to four to six collective variables. The method is not a 
“black box” by any means. The computational efficiency is inversely proportional to the width of 
the Gaussians raised to the power of the dimensionality of the problem (number of reaction 
coordinates). On the other hand, the resolution of the FES is no better than the width of the 
Gaussians. Thus, increasing the resolution has an adverse effect on the convergence properties of 
the metatrajectory. Furthermore, the mass and stiffness parameters associated with the reaction 
coordinates must be chosen so as to ensure adiabatic decoupling, namely, that the extra 
dynamical variables are indeed the slow ones. Given some accuracy requirements, estimating the 
optimal choice of the parameters involved is not a trivial matter.   

While the aforementioned techniques have successfully been applied to enzymatic and liquid 
phase reactions, their extension to heterogeneous gas-solid and liquid-solid catalytic reactions is 
just emerging (Vlachos and Caratzoulas, 2010). For example, Pignedoli et al. have recently used 
hybrid classical/DFT metadynamics simulations to study the mechanism for the dehydrogenation 
reaction of cyclohexaphenylene at a Cu(111) surface and to explain experimental findings that 
want the reaction to proceed only from hydrogen atoms of the “mobile” phenyl groups 
(Pignedoli et al., 2010). Another example of application of the multiscale QM/MM MD method 
to acid catalyzed dehydration chemistry was recently reported in (Caratzoulas and Vlachos, 
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2011) and free energy calculations in the synthesis of catalytic materials have been illustrated in 
(Caratzoulas et al., 2006). 

12. Summary and outlook 
The previous decade experienced rapid development of multiscale methodology and 

algorithms. However, the focus was clearly on method development for prototype systems and 
less so on application to realistic systems. Given the complexity and emergent behavior of 
catalytic reactions and reactors, the full impact of multiscale modeling will be materialized if 
novel tools are developed that should, at least initially, be application- rather than mathematics- 
or computer science-driven. 

This review paper described recent developments and a perspective in multiscale modeling 
with focus on reaction chemistry and mechanism, i.e., at phenomena spanning from the 
electronic up to and including the mesoscopic scale. Emerging topics, such as complexity, 
catalyst dynamics, computation-driven catalyst discovery, emergent behavior in materials design, 
catalyst structure-based microkinetic models, and chemistry in condensed phase and in particular 
in solvents were discussed.  

Hierarchical multiscale modeling was discussed as an approach to coping with the complexity 
of realistic systems. The recently introduced DFT-based semi-empirical methods (e.g., linear 
scaling relations, group additivity, Brønsted-Evans-Polanyi (BEP) relations, metal 
transferability) provide a powerful framework for estimating thermochemistry and reaction 
barriers with a minimum number of descriptors (atomic heats of adsorption of elements existing 
in a reaction mechanism). These semi-empirical methods expand the scope and power of the 
hierarchical multiscale modeling. The graph-theoretical kinetic Monte Carlo (KMC) method 
provides a general framework to interface with quantum mechanical calculations and account for 
the complexity of multidentate adsorbates and multiple types of active sites. It seems that a 
single structural descriptor (e.g., coordination number) is insufficient for parameterizing the 
thermochemistry at the nanoscale. Rather, a dual structural descriptor appears to be necessary. 
Further work will be necessary for a comprehensive understanding of phenomena on ~1 nm 
nanoparticles. 

Several exciting developments have taken place over the past five years. For example, a 
systematic methodology has been introduced that enables one to predict novel catalytic materials 
while accounting for catalyst molecular architecture, catalytic kinetics and reactor effects and 
cope with the possible emergent behavior of electronic and catalytic properties. As another 
example, multiscale simulations of fairly large molecules, such as fructose, in solution are 
entirely feasible. This provides an unprecedented opportunity for understanding the chemistry of 
biomass processing and eventually improving the catalyst and reaction media. Finally, 
understanding structure sensitivity via structure-based microkinetic models may enable one to 
tune the nanoparticle size and shape to improve activity and selectivity. 

Despite these exciting developments, there are still many challenges that need to be 
addressed. While schemes that take advantage of semi-empirical methods, (e.g., linear free 
energy relationships) are useful for catalyst design, a question that arises is if binding energies 
are sufficient descriptors given the complexity and multiscale nature of catalytic reactions.  
Additionally, quantification of the error incurred in applying semi-empirical methods to surfaces 
that they were not developed on and its impact on understanding the reaction pathways and 
predicting new materials needs to be addressed.  Moving into the realm of complex system feeds 
(e.g., biomass) and liquid phase processing will require more accurate semi-empirical methods 
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and multi-descriptor models for fast prediction of optimal catalysts and reactor conditions.  
Additionally, shape selective catalysts and supports (e.g., zeolites) will become important in 
selectively cleaving functional groups and linkages of polymerized feeds.  The current 
microkinetic modeling framework must evolve to predict the complex reaction behavior of these 
materials.  Additional topics need to be accounted for in computation-driven catalyst design, 
such as the effect of the architecture of the catalyst, the catalyst stability, and the effect of the 
support. It is also important to quantify the effect of error propagation on multiscale modeling at 
various scales, along the lines of uncertainty analysis presented in this paper. 

An increasing number of studies, in which ab initio or first-principles KMC simulations have 
been used, has clearly shown that such frameworks have predictive power, stemming from the 
fundamental description of elementary surface processes at the quantum level, coupled with a 
statistical mechanical description of the dynamics at the molecular level. The multiscale 
character of this approach enables one to access a wide range of temporal and spatial scales, and 
allows for the detailed and accurate modeling of intricacies pertaining to surface chemistries, 
such as spatial heterogeneities of surface and reactivity, or competition effects and complex 
dynamical behavior. These effects play a significant role in determining the performance of a 
catalyst, and can now be understood with the aid of first-principles KMC, thereby making 
possible the computational design and screening of catalysts and the identification of candidates 
that can be synthesized and tested in the laboratory. Building published accelerated algorithms 
from prototype systems to treat multiple length and time scales will further increase the impact 
of KMC methodologies. It is also clear that the nanoscale structure still imposes challenges in 
modeling: these are large nanoparticles for direct massive DFT calculations but small enough 
that quantum finite size effects are important. Parameterization of thermochemistry and kinetics 
at this scale are still needed. 

Finally, the rather limited number of computational studies indicates that at elevated 
temperatures of relevance to catalytic chemistry, the catalyst structure may be very dynamic. As 
a result, over the time scale of slow reaction events, an ensemble of structures needs to be 
considered for estimating the kinetics. Multiscale methods can be subsequently integrated with 
electronic structure calculations for the determination of the chemical properties of these 
materials. This integration could provide a comprehensive framework for the computational 
design and screening of candidate catalytic materials, which can subsequently be tested in the 
laboratory. 
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Table 1. Overall reactions used to describe methane steam reforming. The reactions are catalytic combustion, steam 
reforming, water-gas shift and reforming combined with water-gas shift reaction. Kinetic rate expressions from (Xu 
and Froment, 1989) and (Numaguchi and Kikuchi, 1988). 

Reaction Rate equation (Xu and Froment, 1989) Rate equation (Numaguchi and 
Kikuchi, 1988) 
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Table 2.  Comparison of estimated from fitting and literature (either DFT or experimental) values for heats of 
adsorption. Since the coverage of H2O and OH on Rh under typical conditions is low, the fitted heat of adsorption of 
H2O (second column) differs considerably from that of DFT and experiment (third column). Similarly, even if the 
coverage of CO on Rh is high, there is significant discrepancy between fitted (second column) and experimental and 
DFT values (third column). 
Surface 
species 

Heat of adsorption (Q) 
from fitting [kcal/mol]; 
from (Tavazzi et al., 
2006) 

Heat of adsorption (Q) from 
experiments or DFT [kcal/mol];  
see (Mhadeshwar and Vlachos, 

2005b) 
H2O -39.5 -10.8+4.5�H2O-25�OH 

CO -6.2 -38.5+17�CO+3.7�H 
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Table 3. Examples of microkinetic models in recent literature. 
Application Model 

Type/Method (see 
Figure 1) 

Model Description Reference 

Fundamental 
mechanistic insights 

DFT DFT-based NO oxidation on Pt (emphasis on coverage 
dependent model parameters) 

(Getman and 
Schneider, 2010) 

DFT DFT-based CH4 steam reforming on Ni (thorough 
implementation of statistical mechanics for temperature 
dependent kinetic parameters) 

(Blaylock et al., 
2009) 

DFT DFT-based water-gas shift mechanism on Pt (Grabow et al., 2008) 
DFT and BOC NH3 decomposition on Ru (applying DFT calculated 

coverage dependent atomic binding energies into semi-
empirical methods) 

(Mhadeshwar et al., 
2004) 

BOC Hydrocarbon-based selective catalytic reduction of NOx 
on Ag 

(Mhadeshwar et al., 
2009) 

Catalyst Design 

DFT, linear scaling 
and BEP 

BEP and linear scaling relationships. CH4 steam 
reforming activity across transition metals 

(Jones et al., 2008b) 

DFT and BOC NH3 decomposition on several metals (uses model to find 
optimal N binding energy) 

(Hansgen et al., 
2010) 

DFT Ethanol synthesis from syngas on Rh (sensitivity analysis 
is used to probe for catalyst promoters) 

(Choi and Liu, 2009) 

DFT and BEP CO oxidation activity of nanoparticles (simplified model 
to explain activity of gold nanoparticles at low 
temperatures and pressures) 

(Falsig et al., 2008) 

DFT, linear scaling 
and BEP 

Water-gas shift model with DFT derived linear free 
energy relationships to probe the CO and O binding 
energy phase space for active catalysts 

(Schumacher et al., 
2005) 

Reactor Design 

BOC and 
experimental tuning 

CH4 reforming chemistries on Rh (multiscale refinement 
and adjustments to predict experimental results; derived 
reduced rate expression) 

(Maestri et al., 2008) 

Experimental tuning CH4 partial oxidation over Pt microkinetic model inserted 
into CFD model  

(Quiceno et al., 
2006) 
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Table 4. Arrhenius parameters for a subset of the water-gas shift chemistry. 

All Arrhenius values taken from (Mhadeshwar and Vlachos, 2007).  aValue shown is a 
sticking coefficient (unitless).  bValues for ΔE are DFT numbers taken from (Grabow et al., 
2008) (not corrected for ZPE). 
  

Elementary  Reaction 
Pre-exponential 

factor [1/s]    β 

 
ΔEi 

[kcal/mol] 
 ΔEi,rxn

b 
  [kcal/mol] 

 CO +* →CO*   1.00a 0.000 0.0 -42.0 
 CO* →CO +*   5.66 x 1015 -0.500 40.0  
 H2O +* →H2O*   0.108a 1.162 0.0 -6.2 
 H2O* →H2O +*   2.03 x 1012 1.372 10.0  
 H2O* +* →H* +OH*   9.36 x 1012  -0.118  17.8 16.1 
 H* +OH* →H2O* +*   9.99 x 1012  -1.049  13.5  
 CO* +OH* →COOH* +*   1.19 x 109  -0.024  19.1 -10.4 
 COOH* +* →CO* +OH*   8.43 x 108  0.024  5.3  
 COOH* +* →CO2* +H*   1.06 x 1011  0.549  1.0 -0.2 
 CO2* +H* →COOH* +*   9.45 x 1010  -0.549  2.4  
 2H* →H2 +2*   7.95 x 1012  -0.001  19.8 19.6 
 H2 +2* →2H*   0.129a  0.858  0.0  
 CO2* →CO2 +*   3.63 x 1012  -0.250  3.6 2.5 
 CO2 +* →CO2*   0.195a  0.250  0.0  
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Table 5. Adjustment in activation energy based on Eq. 12 for competitive dehydrogenation reactions of ethanol on 
Pd(111). 
Parameter 
[kcal/mol] CH3CH2OH*→CH3CHOH*+H* CH3CH2O*→CH2CH2OH*+H* 

ΔHi,surf  2.1 3.6 
ΔEi,rxn,DFT 2.3 11.0 
ΔEi,DFT  21.3 21.9 
ΔEi  21.1 16.4 
DFT data taken from (Li et al., 2009).  Gas-phase thermochemical data taken from (Dyke et 

al., 1997).  For this example ω is set equal to 0.75 reflecting a moderately late transition state. 
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Table 6. Estimates of pre-exponential factors for LHHW reactions. 

Reaction type: A*+ B* → C* + D* 
Pre-exponential 

factor estimate [1/s] 

Mobile surface species with rotation 108 
Mobile surface species without rotation 1011 
Immobile surface species without rotation 1013 
Information taken from (Dumesic et al., 1993). 
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Table 7. Full C2 mechanism for ethane hydrogenolysis and ethylene hydrogenation. 
Reaction 
Index 

Reaction 

R1 H2 + 2* ↔ 2H* 
R2 CH4 + 2* ↔ CH3* + H* 
R3 C2H4 + 2* ↔ π-C2H4** 
R4 C2H4 + 4* ↔ σ-C2H4**** 
R5 C2H2 + 2* ↔ C2H2** 
R6 C2H6 + 3* ↔ C2H5** + H* 
R7 π-C2H4** + 2* ↔ σ-C2H4**** 
R8 π -C2H4** + H* ↔ C2H5** + * 
R9 C2H5** + 3* ↔ σ-C2H4**** + H* 
R10 σ-C2H4**** ↔ C2H3** + H* + * 
R11 C2H2** + H* ↔ C2H3** + * 
R12 C2H** + H* ↔ C2H2** +* 
R13 CHCH3** ↔ CCH3* + H* 
R14 CCH3* + 2* ↔ CCH2** + H* 
R15 C2H5** + * ↔ CHCH3** + H* 
R16 CHCH3** + * ↔ C2H3** + H* 
R17 C2H3** + * ↔ CCH2** + H*  
R18 C2H** + H* ↔ CCH2** + * 
R19 C2H5** ↔ CH3* + CH2* 
R20 2CH2* + 2* ↔ σ-C2H4**** 
R21 C2H3** ↔ CH* + CH2* 
R22 C2H2** ↔ 2CH* 
R23 C2H** ↔ CH* + C* 
R24 CHCH3** ↔ CH3*+ CH* 
R25 CH3* + C* ↔ CCH3* + * 
R26 CCH2** ↔ CH2* + C* 
R27 CHCH3** + 2* ↔ C2H4**** 
R28 C2H3** ↔ CCH3* + * 
R29 C2H2** ↔ CCH2**  
R30 C* + H* ↔ CH* + * 
R31 CH2* + * ↔ CH* + H* 
R32 CH3* + * ↔ CH2* + H* 
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Table 8. Library of DFT binding energies (BEs) of atomic nitrogen (N) at a 1/9th monolayer (ML) coverage on 
various monolayer bimetallic surfaces on a Pt(111) host. The BE of N on bimetallic surfaces varies widely. The 
different colors in the structures (left column) indicate different architectures. Taken from (Hansgen et al., 2010). 

Structure (111) 
Surface 

QN 
(kcal/mol) 

 Pt-Ti-Pt -70.6 
 Pt-V-Pt -80.9 
 Pt-Cr-Pt -76.3 
 Pt-Mn-Pt -77.5 
 Pt-Fe-Pt -78.4 
 Pt-Co-Pt -83.5 
 Pt-Ni-Pt -87.4 
 Pt -102.2 
 Ni -113.7 
 Ni-Pt-Pt -130.8 
 Co-Pt-Pt -126.4 
 Fe-Pt-Pt -134.2 
 Mn-Pt-Pt -207.1 
 Cr-Pt-Pt -188.4 
 V-Pt-Pt -188.2 
 Ti-Pt-Pt -176.2 
 

  

Subsurface

Top 

Single Metal 
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Table 9. Au surfaces simulated with the kinetic Monte Carlo method. 

Surface Step:Total 
Sites Ratio 

Au(111) 0 
Au(544) 1/9 
Au(755) 1/6 
Au(322) 1/5 
Au(533) 1/4 
Au(211) 1/3 
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Table 10a. Elementary steps and kinetic parameters for terrace (trc) site events for the CO oxidation on Au used in 
the microkinetic model simulated with the kinetic Monte Carlo method. 

Element Step 
Prefactor A 
(fwd, bkwd) 

Activation Energy (eV) Reaction energy (eV) 

O2(g) + * / O2* 1.8-108 bar 
−1, 8.6-1014 0 0.89 �EO, trc + 0.17 

CO(g) + * / CO* 1.9-108 bar 
−1, 8.6-1014 0 �ECO,trc 

O2* + * / 2O* 6.2-1012, 3.3-1012 0.50 �EO,trc + 1.39 1.11 ΔEO,trc – 0.17 

CO* + O* / 
CO2(g)+2* 

1.1-1013, 8.2-1012 bar 
−1 

– 0.3 (�EO,trc + �ECO,trc) + 
0.02 

– 3.08 – �EO,trc – 
�ECO,trc 

Coverage effects: �EO,trc = – 0.2 + 2.76 �CO + 2.83 (�O2 + �O); �ECO,trc = 0.12 + 1.312 �CO + 
2.011 (�O2 + �O) 

 

Table 10b. Elementary steps and kinetic parameters for step (stp) site events. 

Reaction Step 
Pre-factor A 
(fwd, bkwd) 

Activation energy, (eV) Reaction energy (eV) 

O2(g) + * / O2* 1.8-108 bar 
−1, 8.6-1014 0 0.89 �EO,step – 0.3 

CO(g) + * / CO* 1.9-108 bar 
−1, 8.6-1014 0 �ECO,step 

O2* + * / 2O* 7.4-1012, 4.2-1012 0.50 �EO,step + 0.82 1.11 �EO,step + 0.3 
CO* + O* / CO2(g)+2* 5.6-1013, 1.3-1013 bar 

−1 – 0.3 (�EO,step + �ECO,step)+0.02 – 3.08 – �EO,step – �ECO,step 
CO* + O2* / 
CO2(g)+O*+* 

8.2-1013, 2.9-1013 bar 
−1 

– 0.11 �EO,step – 0.22 �ECO,step + 
0.092 

– 2.69 + 0.11�EO,step – �ECO,step 

Coverage effects: �EO,stp = – 0.56 + 2.76 �CO + 2.83 (�O2 + �O); �ECO,stp = – 0.54 + 1.312 �CO + 
2.011 (�O2 + �O) 
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Figure 1. Schematic of three scales and a possible hierarchy of models at each scale. At each scale, additional 
models may exist. The accuracy and cost increase from left to right.  Acronyms from top to bottom: PRF, plug flow 
reactor; CSTR, continuously stirred tank reactor; ODE, ordinary differential equation; PDE, partial differential 
equation; CG-KMC, coarse-grained kinetic Monte Carlo; KMC, kinetic Monte Carlo; UBI-QEP, unity bond index-
quadratic exponential potential; TST, transition state theory; DFT, density functional theory; GA, group additivity; 
BEP, Brønsted-Evans-Polanyi; QM/MM, quantum mechanics/molecular mechanics.   

Semi-empirical: 
UBI-QEP, TST

ab initio:
DFT, TST, DFT-

MD

Continuum: 
MF-ODEs

Discrete: 
KMC

Ideal: 
PFR, CSTR, etc.

Computational 
Fluid Dynamics 

(CFD)

Mesoscopic:
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Discrete:
CGMC
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Transport correlations

DFT-based 
correlations, BEPs

Catalyst/adsorbed 
phase:

Reaction rate

Reactor scale:
Performance

Electronic:
Parameter estimation

Accuracy, cost
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Figure 2. Schematic of various models operating at various scales. Redrawn from (Vlachos, 2005). 
 
 
  



70 
 

 

Figure 3. Overview of challenges in the multiscale modeling of catalytic systems and specific examples. In the many 
body effects, selected configurations (top view) in the presence of 0, 1, and 3 oxygen atoms for the 1,2 H shift 
reaction (ethylene isomerization of CH2CH2 CHCH3) and corresponding activation energy (kcal/mol) from 
periodic DFT calculations on Pt(111) indicate that the presence of co-adsorbates can strongly affect the reaction 
barriers. White: H atoms, gray: C atoms, red: O atoms.  

 

 
 
 
 

  

Multiple scales 

(b) �Ei = 41 kcal/mol (c) �Ei = 23 kcal/mol (a) �Ei = 54 kcal/mol  

Intrinsic heterogeneity in 

adsorbate 
distribution 

catalyst sites 

Many-body effects 

Multiple phases 

Catalyst dynamics 

reconstruction 

isomerization 

edge corner 

support 
(111) 

(100) 

Missing row reconstruction on (110) plane 



71 
 

 

 

a) b) 
 
Figure 4. Schematic of sample thermochemical property evolution with elementary reaction progression (a). 
Diagram of thermochemical property changes in the simple A↔B↔C surface reaction mechanism (b). 
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Figure 5. Comparison of thermodynamic consistency enforcement methods for CH2*+H*→CH3* reaction on 
Ni(111).  Methods 1 and 2 refer to adjustment of surface reactions or adsorption properties, respectively, to match 
the surface thermochemistry to the gas-phase one (see text in Section 4.1). Information for assessment taken from 
(Blaylock et al., 2009).  
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Figure 6. Comparison of energy profile for initial dehydrogenation reactions of ethanol on Pt(111) 
(CH3CH2OH→CH3CH2O+H→CH3CHO+2H→CH3CO+3H) with and without ZPE corrections.  All energies taken 
with respect to gas-phase ethanol and hydrogen adsorbed on a separate slab (hydrogen is excluded from graph for 
clarity).  Energetic values and vibrational frequencies taken from (Salciccioli et al., 2011).   
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Figure 7. Schematic of mapping from atomic binding energies Q to molecular species binding energies Q (left map) 
and from molecular species binding energies to activation energies of a microkinetic model (right map). These 
mappings can be materialized either via the bond-order conservation method (used for both maps) or via linear 
scaling relations and group additivity (left map) and Brønsted-Evans-Polanyi (BEP) relations (right map). These 
relations can be derived via DFT. The double mapping compounded with metal transferability (Figure 9) enables 
optimization for optimal catalyst property identification ( 

Figure 21). 
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Figure 8. Comparison of group additivity calculated and DFT calculated Hf,298 for C2 and C3 oxygenates.  Replotted 
from (Salciccioli et al., 2010). 
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Figure 9. Transferability of thermochemistry from a single metal to other single and bimetallics: Comparison of 
energy of adsorption for C2HxO2 species estimated from linear scaling relationships (Eq. 27) to DFT calculated 
energy of adsorption for (A) the Ni-Pt-Pt(111) bimetallic surface and for (B) the Ni(111) surface.  Re-plotted from 
(Salciccioli et al., 2010). 
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Figure 10. Demonstration of BEPs in terms of reaction barrier vs. heat of reaction. BEP for CHx dehydrogenation 
reactions (data from (Michaelides et al., 2003) and line is obtained by regression). 
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Figure 11. Elementary reaction diagram showing the definition of initial state (EIS), transition state (ETS) and final 
state (EFS) energies for linear free energy relationship (Alcalá et al., 2003). 
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Figure 12.  Demonstration of BEPs in terms of transition state energy vs. final state energy: Transition state energies 
as a linear function of final state energies (both referenced from the gas-phase initial state) for methanol 
dehydrogenation reactions on Pt.  Data replotted from (Greeley and Mavrikakis, 2004b). 
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Figure 13. Effect of interactions in ammonia decomposition chemistry. (a): Conversion vs. temperature without 
interactions (red, dashed line; first modeling iteration) and with interactions (solid, black line; refined model in 
second iteration) along with experimental data (blue circles). (b): Most abundant species without interactions 
(adsorbed N dominates) and with interactions (adsorbed H and N dominate at moderate temperatures). Taken from 
(Mhadeshwar et al., 2004). 
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Figure 14. a) Partial equilibrium ratio (Eq. 31) and b) normalized sensitivity coefficients (Eq. 32) at 623 K for 
ethane hydrogenolysis.  Analysis done at two feed conditions: PH2=25 Torr and PC2H6=25 Torr (shaded) and  
PH2=349 Torr and PC2H6=122 Torr (striped). Data replotted from (Salciccioli et al., 2011).   
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Figure 15. a) Partial equilibrium ratio (Eq. 31) of each reaction at 298 K and b) normalized sensitivity coefficient 
(Eq. 32) of each reaction at 298 K for ethylene hydrogenation.  Analysis done at two conditions of varying hydrogen 
pressure: PH2=50 Torr (shaded) and PH2=665 Torr (striped). Data replotted from (Salciccioli et al., 2011).   
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Figure 16. DFT binding energies (points) of NHx species as a function of increasing atomic N coverage compared to 
binding energies predicted through scaling relationships (lines).  Taken from (Hansgen, 2011). 
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Figure 17. Schematic of hierarchical refinement methodology showing progression from a broad data set to an 
accurately computed glycerol decomposition reaction path on Pt. Redrawn from (Chen et al., Submitted). 
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Figure 18.  Most probable reaction paths for glycerol decomposition on Pt(111) calculated via DFT.  Activation 
barriers for elementary reactions are shown above arrows (kcal/mol).  The electronic energy of each intermediate is 
shown in parenthesis (kcal/mol) relative to glycerol in vacuum and hydrogen adsorbed on separate slabs.  Excess 
hydrogen atoms are not shown in reactions for clarity.  Redrawn from (Chen et al., Submitted). 
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Figure 19. Estimated computational costs of glycerol decomposition mechanism development.  The ‘GA/BEP’ value 
represents use of semi-empirical methods for mechanism development (this value is set arbitrarily to 1, as it carries 
very little cost).  The first hybrid value (‘screen conformers via GA’) group additivity is used to screen for the most 
stable conformers, followed by DFT refinement for important species and all of their reactions.  In the 
‘GA/BEP→DFT’ method, important species and important reactions are identified followed by DFT refinement.    
The “DFT” column estimates the expense of computing all mechanism parameters via DFT.  A CPU hour unit is the 
estimated expense associated with utilizing one processor for one hour. Redrawn from (Chen et al., Submitted). 
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Figure 20. Volcano curve for prediction of optimal catalyst for NH3 synthesis. The line is a guide to the eye of 
model-predicted data. The synthesis conditions are 400 ºC, 50 bar, gas composition H2:N2 = 3:1 containing 5% NH3. 
Taken from (Jacobsen et al., 2001). 
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a) b)  
 
 

Figure 21: (a) Volcano mountain: conversion of NH3 vs. the atomic heats of adsorption computed via Monte Carlo 
optimization (searching randomly in binding energies and solving the microkinetic model at each pair of binding 
energies) using a microkinetic model in a plug-flow reactor model.  (b) Elementary reaction mechanism.  Taken 
from (Ulissi et al., 2010). 
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Figure 22. Log of TOF for CO2 formation on steps without lateral interaction at 600 K (left) and 800 K (right).  
Reaction conditions: PO2=0.3 bar, PCO2=0.04 bar, PCO/PO2=2, T= 600 K. Optimal properties are QO= -0.6 eV, QCO=-
0.8 eV (left) and QO= -0.5 eV, QCO=-1.2 eV (right). 
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Figure 23. Log of TOF for CO2 formation on terraces without lateral interactions (left) and with lateral interactions 
(right).  Reaction conditions: PO2=0.3 bar, PCO2=0.04 bar, PCO/PO2=2, T= 600 K. The optimal properties are QO= -1.5 
eV and QCO=-0.9 eV in the absence of interactions and QO= -2 eV, QCO=-0.95 eV when interactions are accounted 
for.  
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Figure 24. Proposed computational approach for the identification of novel catalyst formulations and surface 
structures. The approach combines microkinetic modeling (MKM), input via semi-empirical methods, such as the 
bond-order conservation (BOC), group additivity (GA), linear scaling relations and Brønsted-Evans-Polanyi (BEP) 
relations derived from DFT, an optimization with respect to atomic binding energies, stability studies via DFT 
and/or MD under working conditions (based on most abundant surface intermediate), database generation of binding 
energies via DFT on different structures, materials selection based on optimization and database results, hierarchical 
refinement of the models of novel materials via higher level theory, and lab testing for promising candidates. 
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Figure 25. Uncertainty map for the NH3 decomposition reaction.  The distribution indicates the location of optimal 
binding energies of N and H(i.e., the probability distribution) due to uncertainty in pre-exponentials. The crosses 
indicate the standard deviation of the distribution. Uncertainty in most parameters of the microkinetic model has a 
slight effect of the optimal properties. The inclusion of lateral interactions shifts significantly the optimal catalyst 
properties of -QH, -QN from 64.3 1 0.9, 106.3 1 2.1 to 57.1 1 0.9, 131 1 2.9 kcal/mol.  Taken from (Ulissi et al., 
2010). 
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Figure 26. Timeline for the development of kinetic Monte Carlo (KMC) methods. The KMC method, attributed to 
Bortz et al., was originally used for exploring kinetic phase transitions and critical phenomena. In these prototype 
KMC simulations, parameters were usually chosen arbitrarily. With the advent of BOC-KMC and ab initio KMC 
methods in the late 90’s, realistic parameters were inputted making the investigation of complex chemistries 
possible. 
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(a)

 

 

Figure 27. (a) Flow of information in a multiscale kinetic Monte Carlo (KMC) framework: density functional theory 
(DFT) provides the vibrational frequencies of adsorbates and transition states. The vibrational partition function Qvib 
can thus be approximated, which along with the translational and vibrational components give an estimate of the 
entropy of the transition state. DFT also provides reaction and transition state energies, which can be used along 
with BOC and cluster expansions to calculate coverage-dependent activation energies for each elementary step. By 
using standard approximations within the framework of harmonic transition state theory, the kinetic rate constant of 
each elementary step is calculated. These constants are input to the kinetic Monte Carlo (KMC) framework that 
simulates stochastic paths of a discrete master equation. Statistical analysis of the KMC trajectories conveys 
information about the chemistry studied. This schematic ignores many-body effects. (b) Iterative scheme indicating 
how the KMC can compute the probability distribution function (pdf) of possible configurations on which the DFT 
can be carried out. Upon improving the input of KMC, the procedure is iterated until the configurations generated 
via the KMC have been parameterized via DFT. 
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Figure 28. (a) Two-dimensional adaptive mesh used in coarse-grained kinetic Monte Carlo (CG-KMC) simulation to resolve high 
reactivity near a step. (b) Comparison of adaptive CG-KMC and microscopic KMC steady state solution averaged along the step. 
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Figure 29. Normalized TOF of CO oxidation on Pt (a) and Au (b) vs. effective particle diameter, d, for various 
conditions noted in the legend (the latter pertains to both panels) using the mean-field microkinetic model. In all 
cases, PO2=0.03 bar and PCO2=0.004 bar.  Due to the maximum fraction of steps on the smallest nanoparticle, the 
theoretical minimum and maximum values are around 0.2 and 5 of the normalized TOF.   
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Figure 30. Size and shape sensitivity of the ammonia decomposition reaction on Ru/�-Al2O3 catalyst. Lines connect 
the simulation points. Redrawn from (Karim et al, 2009). 
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Figure 31. Au(533) surface (a) and the corresponding KMC lattice (b). For simplicity, only fcc hollow sites are 
considered here. Terrace sites are denoted with dark blue circles and step sites with blue squares.  
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Figure 32. (a) Snapshot of the KMC simulation at steady state. The colored sites indicate occupied sites with 
adsorbates shown in the legend. (b) Turnover frequencies per monolayer with respect to step site density. The 
surface corresponding to each point in the plot is mentioned in parentheses next to the points. By mapping the step 
site density to an equivalent ratio for octahedral Au nanoparticles, the TOF can be plotted with respect to an 
equivalent particle diameter (see inset of panel b). Note that the (111) does not appear because it maps to an 
equivalent diameter of infinity. All simulations were performed at 300 K temperature and partial pressures pCO = 
0.006, pO2 = 0.030, pCO2 = 0.004 bar. A total of 0.025 s were simulated, which is much larger than the equilibration 
time for this system. 
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Figure 33. CO binding energy, Q, on different coordinated Au atoms of Aun clusters consisting of n atoms; n= 16, 
18, 19, 25, 26, 30, 37, and 45 vs. Au atom coordination number (CN). The CO binding energy (absolute value) 
decreases as the Au CN increases (the dotted line is a guide to the eye). The large vertical scatter indicates that 
coordination number cannot be the only descriptor. Inset: Nanoparticle DFT calculations of binding energy for CO 
binding on Au (with 45 atoms) vs. the coordination number. A linear dependence of Q on CN is found.  Taken from 
(Mpourmpakis et al., 2010a). 
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Figure 34. Multiscale modeling of Ni/Pt mixing and experimental data. At the finer time-scale (order of several 
nanoseconds) molecular dynamics (MD) simulations were performed. Accelerated MD gave insights on the 
behavior of the system at longer time-scales (on the order of milliseconds). The infinite time behavior was 
investigated through simulated annealing. Nudge elastic band calculations provide a static picture of the potential 
energy surface; combined with transition state theory, they can provide insights on the timescale of mixing. 
Experimentally accessible time scales are on the order of several minutes. Based on simulation and experimental 
methodology presented in (Wang et al., 2010). 
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Figure 35. Coordination numbers Pt-Pt, Pt-Ni, Ni-Pt and Ni-Ni in the Ni/Pt(111) system at 900 K, averaged from 
MD trajectories during the final 2 ns after the structure has equilibrated. The coordination number of Pt-Pt in pure Pt 
bulk is also shown for comparison. r is the distance to the center atom. Taken from (Wang et al., 2010). 
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Figure 36. Results from nudge elastic band calculations in terms of potential energy surface and snapshots along it: a 
Pt atom close to the left edge of the “hole” enters the surface layer.  Subsequently, a vacancy is formed in the  first Pt 
layer, which diffuses to the right when a Pt atom hops in the opposite direction overcoming a barrier of 1.1 eV 
(transition between configurations 2 and 3). Finally, a Ni atom from the surface monolayer fills this vacancy. Taken 
from (Wang et al., 2010). 
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Figure 37. Energy profiles for hydride transfer during the multi-step dehydration of D-fructose to HMF in water. 
The free energy change, , is analysed in internal energy, , and entropy, , terms. The energy , is 
further analysed in contributions from the quantum mechanical energy of the reacting system, , the van der 
Waals interactions , and the electrostatic interactions . Taken from (Caratzoulas and Vlachos, 2011). 

 

 

 

 

 

 

 



Research highlights 

A perspective on multiscale modeling of mechanism development  

Estimation of thermochemistry and kinetics via hierarchical multiscale methods 

Computation-driven catalyst design and discovery of materials with emergent behavior  

Uncertainty on catalyst design, particle effects, and structure sensitivity of reactions 

Free energies in solution and solvent effects in catalytic reactions 

 




