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Existing kinetic Monte Carlo (KMC) frameworks for the simulation of adsorption, desorption, dif-
fusion, and reaction on a lattice often assume that each participating species occupies a single site
and represent elementary events involving a maximum of two sites. However, these assumptions
may be inadequate, especially in the case of complex chemistries, involving multidentate species
or complex coverage and neighboring patterns between several lattice sites. We have developed a
novel approach that employs graph-theoretical ideas to overcome these challenges and treat easily
complex chemistries. As a benchmark, the Ziff-Gulari-Barshad system is simulated and comparisons
of the computational times of the graph-theoretical KMC and a simpler KMC approach are made.
Further, to demonstrate the capabilities of our framework, the water-gas shift chemistry on Pt(111)
is simulated. © 2011 American Institute of Physics. [doi:10.1063/1.3596751]

I. INTRODUCTION

Since the advent of the lattice kinetic Monte Carlo
(KMC) approach, attributed to Bortz et al.,1 numerous stud-
ies have employed KMC simulation for catalytic systems.
KMC studies have focused on characterizing non-equilibrium
(kinetic) phase transitions in model as well as realistic sys-
tems, understanding the effect of adsorbate-adsorbate inter-
actions on surface coverage and reaction rates,2–6 or more
recently investigating diffusion in zeolites7, 8 and detailed
chemistries using kinetic rates obtained from ab initio or first-
principles calculations.9–18 The transition probabilities for
various elementary reaction steps were generalized in Reese
et al.19 Reviews of KMC simulation methodologies appear
in Refs. 20 and 21, whereas accelerated and coarse-grained
methods have recently been reviewed in Ref. 22.

Simulation of more complex reaction mechanisms using
existing KMC frameworks, can produce inaccurate results,
due to the simplistic representation of adsorbate binding and
elementary reactions. It is often assumed that an adsorbate
occupies a single site; this approach cannot account for the
multidentate nature of several adsorbates. Further, previous
studies are frequently limited to reactions that involve 1 or 2
sites.3, 4, 14, 15, 23, 24 On the other hand, the multisite approach
of Hansen and Neurock9, 11 entails reaction detection on the
basis of at most two sites, with the possibility of reactants ap-
pearing in reflected or intermediate sites. Yet, this approach is
inadequate in cases where products appear in sites other than
those just mentioned; in such cases, specific spatial arrange-
ments of multidentate reactant species need to be explicitly
considered. Such challenges call for a KMC framework, ca-
pable of efficiently accounting for these complexities.

In this paper, we present a graph-theoretical KMC ap-
proach that provides freedom and specificity in defining el-
ementary events, thereby being capable of capturing more

a)Author to whom correspondence should be addressed. Electronic mail:
vlachos@udel.edu. Tel.: 302-831-2830.

complex and realistic processes. The generality of the formal-
ism makes this approach applicable to a vast array of lattice
chemical kinetics, and the use of efficient data structures and
algorithms makes the computational overhead comparable to
that of simpler KMC approaches. In the following, we discuss
this framework in detail using simple examples to illustrate
the key ideas and procedures. We further simulate a prototype
system devised by Ziff et al.25 in order to compare the results
and the performance of our approach with a simpler KMC ca-
pable of simulating 1- and 2-site processes only. Finally, we
demonstrate the capabilities of the graph-theoretical KMC by
simulating the water-gas shift chemistry on the Pt(111) sur-
face using mainly density functional theory (DFT) input.

II. METHODS

In our discussion of the graph-theoretical KMC ap-
proach, we will use a simple prototype model to illustrate the
underlying ideas and procedures. Thus, consider a catalytic
surface that is initially partially covered by species A* and B*.
These species can diffuse and react with each other, thereby
forming a bidentate species AB**. The latter can leave the
surface by desorption.

A. Lattice representation

In order to represent the catalytic surface we assume that
there exist well-defined sites on which the adsorbates A*, B*,
and AB** are bound. Each one of these sites is defined on
the basis of its type and position. Thus, each site si is repre-
sented by a three-element vector: the first element denotes the
site type, an integer ranging from 1 to ST, and the subsequent
elements the site’s x- and y-coordinates,

si ∈ {1, 2, . . . , ST} × R
2, i ∈ S = {1, 2, . . . , SL},

s = {
(si,j)

3
j=1

}SL

i=1, (1)
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s11 = (1; 4.8 Å, 5.5 Å)

FIG. 1. Illustration of a small periodic lattice, with a single site type and 6-fold coordination. Site 11 is represented by the vector s11 = (site type; x-coordinate,
y-coordinate) = (1; 4.8 Å, 5.5 Å). The table on the right shows the adjacency list of the lattice graph. Thus, the neighbors of site 3 are sites 1, 2, 4, 5, as well as
8 and 10 (due to the periodicity).

where S is the index set of all sites on the lattice and SL de-
notes the number of these sites. The lattice is then represented
as a graph L in which each vertex is a site index and each edge
introduces a neighboring relation between two sites,

L = (S, E), (2)

where E contains two element subsets of S. Given the graph
L, one can form the adjacency list of the graph, which encodes
the lattice structure as a series of lists of all the neighbors of
each and every site. Note that even though all lattice sites are
on a plane, the graph is not necessarily planar, since the edges
may intersect at points other than the lattice sites.

Figure 1 presents a small periodic lattice with a single
site type and 6-fold coordination. In line with Eq. (1), site 11
is represented as (1; 4.8 Å, 5.5 Å). The table on the right of
this figure shows the adjacency list for this lattice graph. For
instance, site 3 has a total of six neighbors, namely, sites 1, 2,
4, 5, as well as 8 and 10 (due to the periodicity).

B. State of the system

Having specified a lattice, we now need to define a state
variable, which contains all information about where each ad-
sorbate is located. Thus, we need to know whether an ad-
sorbate binds to a single site (monodentate species) or more
(multidentate species). In the latter case, we will need to spec-
ify the sites occupied by the adsorbate as well as the orienta-
tion of the molecule.

Thus, suppose that there exist NS different surface
species. The number of sites that species k occupies is de-
noted by dk and can take non-negative integer values,

d ∈ {1, 2, . . .}NS . (3)

If k is a monodentate species, then dk = 1; for multiden-
tate species dk > 1. For instance, in our prototype example,
there are three surface species (A*, B*, and AB**), the first
two monodentate and the third bidentate, so that d = [1 1 2].

At any particular time instance, a lattice site can be
either unoccupied or occupied. In the former case, the site is
considered to be “occupied” by a “free site” species, also

referred to as a vacancy. In the latter case, one needs to
know which adsorbate is bound to which site and with what
configuration. Consequently, at any time the surface sites can
be occupied by SL entities at maximum, an entity being a
distinct free site or adsorbate. We thus label each entity that
exists on the lattice by an integer and represent the state of
each site with a three element vector σ i: the first element
provides the entity label, the second gives the species number,
and the third gives the subunit number that occupies the site
in consideration. The state of the system is then given by an
SL × 3 array σ ,

σ i ∈ {1, 2, . . . , SL}×{0, 1, . . . , NS}
× {1, 2, . . . , max(d)} i ∈ S

σ = {
(σi, j )

3
j=1

}SL

i=1. (4)

We further introduce an inverse mapping which, for every
entity η, gives the species and the sites occupied by this entity,

ωη = [θ ; v] s.t. σvj,1 = η, σvj,2 = θ,

σvj,3 = j, ∀ j = 1, . . . , dθ , (5)

where η is the entity number, θ the corresponding species, and
v the vector with the sites occupied.

In order to clarify the purpose of labeling the entities that
exist on the lattice, recall our prototype model, two possible
configurations of which are portrayed in Fig. 2. In the two
lattice plots, sites are either empty (grey) or occupied by the
species A*, B*, and AB** (purple, red, and orange). The dif-
ference between the two lattice configurations is only in the
orientation of the two adsorbates; yet, species and dentate in-
formation is identical in both cases. In order to distinguish
the two configurations, all entities are labeled so that A* oc-
cupying site 1 is entity 1 (see Table c in Fig. 2), the adsorbate
AB** occupying sites {9, 2} is entity 2, empty site 3 is en-
tity 3, AB** occupying sites {4, 11} is entity 4, etc. Thus, the
pairs of sites {9, 2} and {4, 11} are occupied by the same en-
tity in Fig. 2(a), whereas in Fig. 2(b), it is the pairs {4, 2} and
{9, 11} that are occupied by the same entity. Hence, the state
of the system in each case has been unambiguously specified.
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FIG. 2. The state of each site is completely defined by three variables: species number and dentate bound to that site as well as entity number. One can see why
an explicit numbering of the entities is required by considering the examples of panels (a) and (b). Each circle represents a single site; grey circles are vacant
sites; colored circles represent sites occupied by the species A*, B*, and AB** (numbered 1 to 3, respectively). Site numbers are shown in the center of the
circles, and dentate numbers on a top right position outside the circles. In both cases, the species and dentate information is exactly the same; what changes is
the orientation of the two AB** adsorbates. Thus, in the lattice of panel (a), sites 2 and 9 are occupied by entity 4 and sites 4 and 11 by entity 10. In panel (b),
however, sites 2 and 4 are occupied by entity 4 and sites 9 and 11 by entity 10. (c, d) Array σ for the two configurations of panels (a, b), respectively.

Note that the state specification is unique up to a permutation
of the labels of the entities; thus, the adsorbate AB** occu-
pying sites {9, 2} in Fig. 2(a) could have been relabeled as
the 10th entity and the empty site 12 as the 2nd entity without
changing the observed lattice configuration.

Note that the two tables in Fig. 2 show array σ for each
configuration (Eq. (4)). The inverse mapping (Eq. (5)) would
consist of the species and site numbers pertinent to each en-
tity. Thus, for the configuration of Fig. 2(a), ω1 = [1; 1],
ω2 = [3; 2, 9], ω3 = [0; 3], . . . , ω10 = [0; 12].

C. Elementary step representation

The state of the lattice can change through the occurrence
of adsorption, desorption, reaction, or diffusion events. Thus,
we need a way to represent such events in a general way.

Each event, referred to as an elementary step, is thus rep-
resented by a connected graph with specified site types as well
as initial and final coverage patterns. For our purposes, no po-
sition data are required for the sites of the elementary reaction
graphs. Thus, one does not need to define multiple orienta-
tions for a reaction pattern as done in previous KMC frame-
works (for instance in the CARLOS code, Ref. 23); as long as
the neighboring of the entities on the lattice is similar to that
of the elementary reaction pattern, the latter will be detected

as a legitimate lattice process. It is still straightforward to add
spatial information in the framework if required for a particu-
lar application. Thus, if elementary step k involves SR,k sites,
each site will be assigned a site type (similarly to Eq. (1)),

ξk,i ⊆ {0, 1, 2, . . . , ST}, i ∈ �k = {1, 2, . . . , SR,k},
(6)

where site type 0 means that a site of any type can be involved
in the elementary step k. Then, one defines the graph of this
elementary step as follows:

Rk = (�k, Ek). (7)

Furthermore, the initial and final coverage patterns of el-
ementary step k can be defined as the states of the elementary
step graph in accordance with Eq. (4),

σ ini
k,i , σ

fin
k,i ∈ Z ⊆ {1, 2, . . . , SR,k} × {0, 1, . . . , NS}

×{1, 2, . . . , max(d)}, i ∈ �k. (8)

Note that an elementary reaction affects the coverage of
the corresponding sites but not their types or neighboring
structure; in other words, this formalism does not account for
catalyst reconstruction.

Going back to our prototype model, the four elementary
events it entails are shown in Fig. 3: diffusion of species A*,
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FIG. 3. The graph representation of each of the four elementary steps (panels a–d) for the prototype model. The tables below each of the elementary step-
schematics show the initial and final coverage patterns (Eq. (8)) marked as “Ini” and “Fin.”

diffusion of B*, reaction between A* and B* to form the
bidentate species AB**, and desorption of the latter leaving
two empty sites. For each of these elementary steps, the initial
and final coverage patterns σ ini

k,i , σ fin
k,i (see Eq. (8)) are shown

in the tables below the schematics.
In order to demonstrate the extensive capabilities of

the graph-theoretical KMC approach in defining elementary
events, we also consider an example of an elementary reaction
involving two bidentate species (Fig. 4(a)). For simplicity, in
this example a single site type is considered. This reaction
would be conventionally represented as A** + B** → C**
+ D**; however, this representation does not convey infor-
mation about the specific configuration that would result in
the realization of this reaction. On the other hand, the graph
representation shown in Fig. 4 explicitly requires that dentate
2 of A** neighbors with dentate 1 of B** for the reaction to
proceed. Thus, only two out of the three neighboring A** and
B** pairs appearing in Fig. 4(b) can react. The sequence of el-
ementary reaction events appears in Fig. 4(b)–4(d). The upper
left pair reacts first (c) followed by the pair on the right (d).
After these two events, no more reactions can occur. Find-
ing which lattice adsorbates can react according to a given
elementary reaction patterns is a core procedure of the graph
theoretical lattice KMC. This procedure is described in detail
in Sec. II D, where we also discuss the sequence of elemen-
tary events shown in Figs. 4(e) and 4(f).

Thus, the initial and final coverage information (Eq. (8))
along with the neighboring structure of the sites involved
(Eq. (7)), and the kinetic constant, completely specify the el-
ementary step. The kinetic rate constant just mentioned can
be calculated according to (classical) transition state theory
as14, 15, 26, 27

kTST = Q�=

QR

kBT

h
exp

(
−�E�=

kBT

)
, (9)

where h is Planck’s constant; kB is Boltzmann’s constant; T
the temperature; Q �= and QR are the partition functions of the
activated complex and reactants, respectively; and �E�= is the
energy barrier (total energy of the transition state minus that
of the initial state). For immobile adsorbed species, the par-
tition function has only vibrational components, whereas for
gas-phase species, translational and rotational degrees of free-
dom have to be included as well,

Qsurf = qvib,

Qgas = qtrans,3Dqrotqvib.
(10)

Expressions for these components are provided from sta-
tistical mechanics textbooks28 and the information needed
for computing them can be obtained from quantum chem-
istry calculations. Finally, the partition function of the re-
actants QR is by assumption equal to the product of the
partition functions of each reactant species. Thus, one can
calculate the rate of any elementary step that involves gas
and surface species. For instance, for an Eley Riedel reac-
tion, X(gas) + Y* → Z*, the rate would be (see Sec. 1 of
Ref. 29),

kEley−Riedel = q�=
vib

qvib,X(gas) qrot,X(gas) qtrans2D,X(gas) qY,vib

× pXAst√
2πmXkBT

exp

(
−�E�=

kBT

)
. (11)

The partition functions can be calculated from standard
statistical mechanical expressions.28 A more detailed discus-
sion of the rates for several different types of elementary steps
is given in Sec. 1 of Ref. 29.

To account for lateral interactions, the forward and back-
ward activation energies can be parameterized in terms of the
coverage in the neighborhood of the reaction pattern. This can
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FIG. 4. Example demonstrating the representation of elementary steps as graphs and their mapping to lattice processes. (a) The elementary step involves two
bidentate adsorbates, species A** and B**, that get converted to species C** and D**. This is a four-site process (site labeling appears in the top-right corner
outside the circles representing the sites). Dentate numbering appears in the center of the circles. (b), (c), (d) Two out of the three neighboring pairs of A** and
B** comply with the pattern of panel (a). The top left pair reacts first (c) followed by the pair on the right (d). (e, f) For the starting configuration shown in
panel (e), a single reaction event can occur (panel f).

be done using cluster expansion techniques.30–32 For simplic-
ity, in practice one avoids expanding the activation energies;
rather, a cluster expansion of the energy of the system is intro-
duced from which the difference in the initial and final state
energies can be deduced. The latter difference is the reaction
energy,

�Erxn (σ ) = �Erxn,0 (σ ) + F (σ ) , (12)

where the �Erxn,0 term includes no lateral interactions (as if
the entities in the lattice were infinitely separated), and F(σ )
is the lateral interaction term computed through the cluster
expansion. The simplest cluster expansion is the Ising model

with nearest-neighbor pairwise additive iteractions,

�Erxn (σ ) =
SL∑
i=1

hiσi + 1

2

SL∑
i=1

SL∑
j=1
j�=i

Ji,jσiσj

︸ ︷︷ ︸
F(σ )

. (13)

Then, the forward and backward activation energies can
be calculated as follows:

�E�=
fwd (σ ) = �E�=

fwd,0 + (1 − ω) · F (σ ) ,

�E�=
bwd (σ ) = �E�=

bwd,0 − ω · F (σ ) ,
(14)
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where ω is a proximity factor,33 expressing how reactant- or
product-like the transition state is. For the extreme values
ω = 0 or ω = 1, the transition state is reactant-like or product-
like, respectively.

D. Mapping to lattice processes

Having defined the elementary steps, the basic idea is
then to solve a subgraph isomorphism problem for each ele-
mentary step defined, in order to identify the lattice processes
that can take place. Thus, in order to find feasible lattice pro-
cesses corresponding to elementary step k, one needs to find
mappings of the elementary step sites to the lattice sites, such
that the site types and coverages of elementary step k match
those of the lattice. More specifically, a lattice process is a
mapping between the vertex sets of Rk (the subgraph) and L
(the “large” graph),

M : �k → S, (15)

such that,

1. M is a subgraph isomorphism, namely for every pair p, q
of neighboring sites in the edge set of the pattern Ek (see
Eq. (7)), there exists a pair M(p),M(q) of neighboring
sites in E of L, namely in the lattice,

∀
1≤p≤SR,k
1≤q≤SR,k

{p, q} ∈ Ek ⇒ {M (p) ,M (q)} ∈ E, (16)

2. the site types of p on the pattern and M(p) on the lattice
are the same,

sM(p),3 = ξk,p 1 ≤ p ≤ SR,k, (17)

3. there is a mapping between the elementary step entities
and the lattice entities,

F : {1, 2, . . . , NRE} → {1, 2, . . . , NE} , (18)

such that,

σM(p),1 = F
(
σ ini

k,p,1

)
1 ≤ p ≤ SR,k, (19)

namely the coverage patterns of the elementary step and the
lattice match.

Note that there are as many such mappings M (Eq. (15))
as lattice processes.

To exemplify the mapping of elementary reaction pat-
terns to lattice processes consider the configuration shown in
Fig. 2(a). Table I lists the twelve possible lattice processes
according to the elementary step patterns of Fig. 3, showing
the mappings between sites and entities. For instance, pro-
cess number 5 (A + B reaction) involves sites 1 and 8; thus,
sites 1 and 2 of pattern (c) in Fig. 3 are mapped to lattice
sites 8 and 10. This process requires the participation of two
lattice entities belonging to species A* and B*, respectively.
Thus, pattern entities 1 and 2 are mapped to entities 8 and
10. As another example, consider process 12 (AB desorption),
which involves lattice sites 4 and 11, occupied by lattice entity

TABLE I. List of processes for the prototype model in the configuration of
Fig. 2(b).

Process
number Elementary step Sites mapping M Entities mapping F

1 AB desorption {1, 2} → {9, 2} {1} → {2}
2 A diffusion {1, 2} → {1, 3} {1, 2} → {1, 3}
3 A diffusion {1, 2} → {1, 5} {1, 2} → {1, 5}
4 A diffusion {1, 2} → {1, 12} {1, 2} → {1, 10}
5 A + B reaction {1, 2} → {1, 8} {1, 2} → {1, 8}
6 A diffusion {1, 2} → {6, 5} {1, 2} → {6, 5}
7 A diffusion {1, 2} → {6, 7} {1, 2} → {6, 7}
8 B diffusion {1, 2} → {8, 7} {1, 2} → {8, 7}
9 B diffusion {1, 2} → {8, 10} {1, 2} → {8, 9}
10 B diffusion {1, 2} → {8, 3} {1, 2} → {8, 3}
11 B diffusion {1, 2} → {8, 12} {1, 2} → {8, 10}
12 AB desorption {1, 2} → {4, 11} {1} → {4}

4 (species AB**). Thus, the mappings in this case are: sites
mapping {1, 2} → {4, 11} and entity mapping {1} → {4}.

To further demonstrate the specificity in the detection of
patterns let us consider the two cases shown in Fig. 4. For
the configuration shown in Fig. 4(b), only two out of the
three A** and B** pairs can react, as already discussed in
Sec. II C. For these two, the mappings of elementary reaction
sites to lattice sites are {1, 2, 3, 4} → {6, 17, 18, 29} and {1,
2, 3, 4} → {33, 34, 35, 36}. Each of these mappings is a lat-
tice process and has a probability of occurrence in the next dt
time interval. Eventually both processes occur (Figs. 4(c) and
4(d)) and the reactant species A** and B** are substituted by
the products C** and D** on the lattice. Note that the adsor-
bates on sites {13, 14} and {11, 12} cannot react since their
orientation is not compatible with the elementary reaction pat-
tern; in other words, there does not exist a mapping M that
satisfies Eq. (16).

Further, consider another configuration shown in
Fig. 4(e), that demonstrates the importance of the third con-
dition for the mapping to exist (Eqs. (18) and (19)). Suppose
that species A** is entity 1 and B** is entity 2 in the elemen-
tary step. Also, suppose that the adsorbate occupying the pair
of lattice sites {14, 25} is labeled as entity 26, the one on sites
{26, 35} is entity 36 and the one on {36, 37} is entity 47. Ob-
viously, a lattice process involving sites {14, 25, 26, 37} can-
not exist since sites 26 and 37 are occupied by different adsor-
bates. However, if one was to check only the site type, species,
and dentates occupying each of these sites, then one would
have concluded incorrectly that the elementary reaction could
take place. The requirement that a mapping between elemen-
tary step entities and lattice entities exist prevents such prob-
lems. In particular, for sites {14, 25, 26, 37} such a mapping
does not exist, since there is an ambiguity as to where to map
entity 2 (B**) of the elementary step. On the other hand, such
a mapping between entities exists for the lattice process de-
fined as M([ 1 2 3 4 ]) = [ 14 25 26 35 ]. The mapping be-
tween entities in this case is: F([ 1 2 ]) = [ 26 36 ], and the
lattice process takes place in the next Monte Carlo step as
shown in Fig. 4(f).
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E. Event statistics

Whenever a mapping (15) is found, there is the chance
that elementary event i will happen sometime in the future. In
the general case, in which the rates are time-dependent, the
inter-arrival time for event i is calculated as34

p (τi) = kTST
i (t + τi) exp

[
−

∫ τi

0
kTST

i (t + τ ′
i )dτ ′

]
. (20)

Thus, in order to calculate a time for which the next event
will happen, one has to solve the equation,∫ τi

0
kTST

i (t + τ ′)dτ ′ + ln(1 − u) = 0, (21)

where u is a uniformly distributed random number. Note that
if the rate is not time dependent, the inter-arrival time follows
the exponential distribution,

τi ∼ Exp
(
kTST

i

)
. (22)

Thus, in order to generate a random inter-arrival time,
one uses the mapping,

τi = − 1

kTST
i

ln (1 − u) , (23)

where u is a random number sampled from the continuous
uniform distribution: u ∼ U(0,1).

F. Pseudocode

The graph-theoretical KMC method is outlined in the fol-
lowing pseudocode and schematically shown in Fig. 5(a). An
open source freely distributed FORTRAN implementation can
be found at our webpage.35

0. Start
1. Define simulation lattice (Eqs. (1) and (2)), conditions,

participating species and elementary steps (Eqs. (6)–(9))
2. Initialize the lattice state (Eqs. (4) and (5)) and set the

time clock to t = 0
3. Find all elementary events that can happen (Eq. (15)) and

generate a random time at which they will take place
(Eq. (21) or, for constant rates, Eq. (23)); put these times
in an event-queue

4. While t < tfinal

4a. Find the process μ that will occur next and update the
time

4b. Remove the reactants from the lattice as well as all
the processes which they participate in from the event-
queue

4c. Add the products of process μ in the lattice and find
elementary events in which products participate; for
each of these events calculate a random inter-arrival
time and include it in the event-queue

4d. Update the rates of existing processes in the case
where energetic interactions exist

5. Repeat
6. Terminate

Start

Terminate 

Define simulation 

Initialize lattice 
Set t = 0 

Initialize event 
queue 

Find next process 

μ and update time 

t = tμ

t < tfinal 

Remove reactants 
& corresponding 

processes 

Add products & 
processes 

Update rates of 
existing processes 

no 

yes

4
0.02

1
0.06

5
0.08 

8
0.11

10
0.23

2
0.12

7
0.10 

6
0.11

9
0.23

3
0.42

process 
time (a.u.) 

“top priority” 
process 

Lattice
Processes

Lattice
Sites

Entities
(adsorbates or 
empty sites) 

ω 
σ 

 

(a)

(b)

(c)

FIG. 5. (a) Flowchart of the KMC algorithm. (b) A binary heap structure
in which the occurrence times for all processes are stored. (c) The flow of
information in the KMC algorithm. Structures σ , ω, M, and P are explained
in the text (Eqs. (4), (5), (15), and (24) respectively).

In order to minimize the computational overhead, sev-
eral optimization strategies were used. Absolute reaction
times were used (as opposed to time increments with respect
to the current t), and these times were stored in an index
priority queue, an optimization scheme that has also been
used in well-mixed KMC algorithms.36 This form of queue
was implemented as a binary heap structure (chapter II.6 in
Ref. 37), an example of which appears in Fig. 5(b). The latter
is a special type of a complete binary tree with the property
that a node has “priority” over all its children. In our case,
each node contains information about the time at which each
lattice process occurs, and thus, the top node always returns
the time the process that will be simulated next (in step 4.a). In
other words, step 4.a requires constant (computational) time
whereas removing (adding) an element from (into) the heap
during steps 4.b and 4.c has complexity O(log(n)), with n be-
ing the number of processes stored in the queue at a given
instance. Thus, in the example of Fig. 5(b), there are 10 pro-
cesses stored in the queue, and the 4th one is about to occur in
0.02 time units.

Moreover, the algorithm uses a 2-dimensional array P
that stores the processes in which each entity participates.
Thus, for entity η, which may be an adsorbate or an empty
site, Pη,0 gives the number of processes in which this entity
is involved and Pη,m, m = 1, . . . ,Pη,0 gives these processes.
Note that P satisfies,

σs,1 = η ∀ site s ∈ M (�k)Pη,m
∀ m = 1, . . . ,Pη,0,

(24)
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TABLE II. The P structure for the processes of Table I.

Entity Number of processes List of processes

1 4 2, 3, 4, 5
2 1 1
3 2 2, 10
4 1 12
5 2 3, 6
6 2 6, 7
7 2 7, 8
8 5 5, 8, 9, 10, 11
9 1 9
10 2 4, 11

where k is the elementary step type for process Pη,m and con-
sequently s must be a lattice site occupied by the entity η.
Therefore, using P with the lattice state array and the inverse
mapping (Eqs. (4) and (5)), the algorithm can identify the pro-
cesses in which each entity participates, as well as the lattice
sites involved in each process (Fig. 5(c)). This scheme allows
for the efficient retrieval of information pertaining to which
processes each entity or site is involved in, thereby accelerat-
ing the procedures of steps 3, 4.b, 4.d, and 4.c. To exemplify
the use of this data structure, Table II shows the information
contained in P for the processes of Table I, pertaining to the
configuration of Fig. 2(a).

Finally, for the elementary reaction pattern search of
steps 3 and 4.c, Ullmann’s algorithm for subgraph isomor-
phism was used.38 The algorithm is applicable to non-planar
graphs as required in the general case. In specific cases where
the lattice can be represented by a planar graph, one can use
even more efficient algorithms.39 Furthermore, since in step
4.c the only change in the lattice state pertains to the addi-
tion of the products of process μ, the elementary reaction pat-
tern search is further facilitated by searching only for the el-
ementary events in which each product participates locally in
the neighborhood of the newly added entity. This is achieved
by building two data structures right after step 1: (i) a de-
pendency array that contains the elementary events in which
each species participates; this way only the relevant elemen-
tary events are considered in step 4.c. (ii) An array that gives
the “pattern level” for each elementary event and for each en-
tity thereof. The “pattern level” lk,j for entity j participating in
elementary event k is expressed as follows:

lk,j = max
p∈�k: σ ini

k,p,1 �=j
min

q∈�k: σ ini
k,q,1=j

dRk (p, q) , (25)

where dRk (p, q) denotes the graph distance between vertexes
p and q of graph �k. Thus, the pattern level has the follow-
ing meaning: starting from the sites that entity k occupies in
pattern k, it gives the neighboring level of the farthest neigh-
bor, where the level of the nearest neighbors is 1, that of the
next nearest neighbors is 2 and so on. For instance, in the el-
ementary step pattern shown in Fig. 6(a), if species A** and
B* are entities 1 and 2, respectively, the pattern level with re-
spect to entity 1 is lk,1 = 1 since the farthest neighbor is site
3, whose minimum distance from A** is 1, the distance be-
tween the second dentate (site 2) and that site. On the other

hand, for entity 2, lk,1 = 2, since the farthest neighbor from
site 3 (occupied by B*) is site 1. This way, the pattern search is
localized, since in the implementation discussed only the rele-
vant neighboring sites are considered in solving the subgraph
isomorphism problem of step 4.c. As shown in Fig. 6(b), if
adsorbate B* was a newly added entity, one has to consider
candidate sites up to the next nearest neighbors, while solving
the graph isomorphism problem to find whether the elemen-
tary reaction can be mapped to a lattice process. If, however,
adsorbate A** was the newly added entity, one would have to
search the nearest neighbors of sites 20 and 31 occupied by
A** (Fig. 6(c)). In this case both searches will detect a lattice
process that complies with the elementary reaction pattern of
Fig. 6(a), which is executed at the next KMC step (Fig. 6(d)).

III. COMPUTATIONAL RESULTS AND DISCUSSION

A. Ziff-Gulari-Barshad model system

The Ziff-Gulari-Barshad (ZGB) system is a prototype
surface reaction model, whose development was motivated by
the investigation of kinetic phase transitions in the CO ox-
idation reaction.25 Here we will apply the graph-theoretical
KMC method to reproduce the results by Ziff et al.25, thereby
showing that for chemistries that contain only 1-site and 2-
site elementary events, our method is equivalent to the simpler
“traditional” KMC. Furthermore, we will investigate the per-
formance by comparing the computational times of the two
KMC implementations.

The reactions considered in the ZGB model are shown
in Table III, where A, B, and C denote the CO, O, and CO2

species. Note that the algorithm used by Ziff et al.25 operates
in discrete time; thus, in order to ensure the equivalence of
our simulation setup with that of the cited paper, we need to
cautiously assign the values of the kinetic rates.

Ziff et al.25 assume that the gas-phase consist of a mixture
of A and B2 and no inert exists, so that the species partial pres-
sures are related as PB2 = PTotal −PA; further PB2 = yB2PTotal

and PA = yAPTotal, with y denoting molar fractions. Since the
algorithm of the cited paper operates in discrete time, at every
trial one selects randomly the type of molecule that hits the
surface. That molecule is B2 with probability proportional to
yB2, and A with probability proportional to yA. Thus, in con-
tinuous time (our implementation), the propensities are taken
to be proportional to PB2 and PA. The factor of 10 appearing
in the first propensity is an arbitrary constant that scales time.
Finally, the factor 1/4 that appears in the propensity for the
two site events (B2 adsorption and A* + B* reaction) is due
to the 4-fold coordination of each site on the rectangular lat-
tice. The kinetic constant of the A* + B* reaction is taken to
be large compared to the other constants, in order to reproduce
the instantaneous oxidation assumed in Ziff et al.25

The result of a KMC simulation for a particular value of
PA appears in Fig. 7(a), where the lattice state is plotted. Grey
and black points denote molecules of A and atoms of B, re-
spectively. For this parameter set, about half of the surface
area is covered with B atoms and there exist some clusters
of A. For higher values of PA, these clusters cover the en-
tire surface area, in a transition that occurs discontinuously
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FIG. 6. Example demonstrating the pattern level concept and the localized pattern search. The elementary step shown in (a) involves a bidentate species A**
that reacts with a monodentate species B* to produce species C** and an empty site. The pattern levels with respect to A** and B* are 1 and 2, respectively.
Thus, if one searches for the pattern based on knowledge that B* occupies site 18, then one will have to consider only the sites enclosed in the hexagon of panel
(b) for solving the graph isomorphism problem. On the other hand, if one knows that species B** occupies sites 20 and 31, one has to consider the sites marker
in panel (c). In both cases a lattice process will be detected and executed at the next KMC step (d).

(Fig. 7(b)). The results of these simulations (Fig. 7(b)) are in
perfect agreement with the results of the paper of Ziff et al.25

Finally, Fig. 7(d) shows a comparison of the computa-
tional times for the graph-theoretical KMC and a KMC that
can only simulate 1- and 2-site processes. The latter imple-
mentation goes through each site and neighbors thereof upon
initialization, and calculates the propensities of the 1- and 2-
site events. The simulation proceeds similarly to Gillespie’s
direct method:40 to determine when the next process will oc-
cur, an exponentially distributed random number r1 is gener-
ated with rate parameter equal to the total sum of the propensi-
ties; to determine which process will occur, a uniform random
number r2 is generated and the partial sums of the propensities
of processes 1 to k are evaluated. The first k for which the ra-
tio of the partial sum over the total sum is greater than r2 gives

TABLE III. Elementary events in the ZGB model.

Elementary event krxn(s−1)

1 A(g) + * → A* 10PA

2 B2(g) + 2 * → 2 B* (1/4)10PB2

3 A* + B* → C(g) + 2 * (1/4)105

the process about to occur. For efficiency the propensities and
their partial sums are stored in a binary tree. Thus, the search-
ing for the process that will occur next is done in a divide-
and-conquer approach that takes O(log2(Nproc)) time (where
Nproc is the number of individual lattice processes). More in-
formation about this scheme can be found in Appendix 7.2 by
Gibson and Bruck36 and Sec. 6.2 in Chatterjee and Vlachos.22

Furthermore, once a lattice process has occurred, only the
propensities of the sites involved and their neighbors are up-
dated, thereby performing the minimum number of update
operations.

The simulations of Fig. 7(d) were performed in an In-
tel Core 2 Duo E8300 processor running at 2.83 GHz. The
code was compiled using the Intel R© Visual Fortran Compiler
Professional Edition 11.1 using the “Maximize Speed” op-
timization option. Each run utilizes a single core (no paral-
lelization) and the times reported are averages from triplicate
runs. It is observed that the computational times of both KMC
approaches scale approximately linearly with respect to the
number of lattice sites for the same simulated time interval. In
practice there is a small overhead associated with the search
and update operations of larger binary trees, as evidenced by
the exponents of the exponential fits, which are greater than
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FIG. 7. (a) Elementary reaction patterns for the ZGB system. (b) A snapshot of 300 × 300 lattice at t = 100, for PA = 0.525. (c) The phase diagram of coverage
versus partial pressure of A, showing the kinetic phase transition at around PA = 0.53. (d) Comparison of the computational times of the graph-theoretical KMC
(GT-KMC) and a KMC that can simulate 1- and 2-site processes only (see text for more details), for the ZGB system with PA = 0.5. The system was simulated
for a total of 100 time units. The times are averages over three runs.

unity. This overhead is smaller in the graph-theoretical KMC
where the search is performed in constant time, O(1), and the
update takes at most O(log2(Nproc)). Thus, as the lattice size
increases, the graph-theoretical KMC progressively becomes
as efficient as the simpler KMC implementation. The com-
putational times for each run are also reported in Sec. 2 of
Ref. 29.

B. Water-gas shift on Pt(111)

The water-gas shift (WGS) reaction has recently attracted
attention as a means for producing H2 from reforming of fos-
sil fuels and biomass. Here we demonstrate how one can use
our graph-theoretical KMC to study this reaction mechanism.

There are five gas species and eight surface species that
participate in this chemistry, as shown in Table IV. Note that
two surface species are multidentate: HCO binds to two sites
(top-bridge) and HCOO occupies three sites (top-bridge-top).
We assume that each of these species can be found in the pre-
ferred binding site of the Pt(111) surface, the lattice represen-
tation of which appears in Fig. 8(a). It is worth noting that
DFT calculations predict that CO preferentially binds to the
fcc hollow sites, even though experimental evidence suggests
otherwise.41 For our purposes, we assume that CO binds to
the fcc sites.

Seventeen elementary steps are considered for this chem-
istry, outlined in Table V along with the corresponding pre-
exponentials, activation, and reaction energies. In the calcula-
tion of the latter energies, CO-CO pairwise additive repulsive
lateral interactions were taken into account between nearest

neighbor fcc sites (see Eq. (13)), since this was observed to
be the dominant species on the surface. Note that for some
events, the reactants and products may appear in different site
types and extra empty sites may also be involved, for exam-
ple in the reaction between CO* and H* the product HCO**
binds to top-bridge configuration on the surface, whereas CO*
and H* bind to fcc sites (see Fig. 8(b)); the graph repre-
sentation of each one of these steps appears in Sec. 3 of
Ref. 29. Thus, OH decomposition and disproportionation
reactions between COOH and O or OH (reactions 7, 11,
and 12 in Table V) involve more than two sites in a linear

TABLE IV. Gas (a) and surface (b) species participating in the water-gas
shift chemistry.

Gas species

CO
CO2

O2

H2O
H2

Surface species Binding site(s)
CO* fcc
O* fcc
H2O* top
OH* top
H* fcc
HCO** top-bridge
HCOO*** top-bridge-top
COOH* top
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FIG. 8. (a) The Pt(111) lattice for the water-gas shift simulations. (b) An example of an elementary reaction pattern: formyl formation.

connectivity pattern; further, OH-OH disproportionation,
HCO formation, and all reactions involving HCOO involve
more than 3 sites in complex patterns (reactions 8, 13–17 in
Table V).

The rate constants for each step are computed from TST
expressions (see Sec. 1 of Ref. 29), for which the input is
found in the literature or calculated through quantum chem-
istry software. Specifically, we use DFT as implemented in
the SIESTA code,42 with which we model bound configura-
tions on four layers of metals (16 atoms), with the bottom two
layers fixed, and the top two layers and the adsorbates relaxed.
The vacuum region between slabs is ∼10 Å. A p(2 × 2) unit
cell and surface Monkhorst Pack meshes of 5 × 5 × 1 k-point
sampling in the surface Brillouin zone are used. The DZP ba-
sis set and the PBE-GGA functional were chosen for all cal-
culations. Thus, we compute the total energies and vibrational
frequencies of surface, transition state, and gas-phase species
(summarized in Sec. 4 of Ref. 29). The vibrational frequen-
cies are subsequently used in the calculation of vibrational
partition functions and zero-point energy corrections. For the

rotational partition functions of gas molecules, the moments
of inertia are read from Table A6.2 in Ref. 43. For the trans-
lational partition functions, the mass of each gas molecule
is required, which is trivial to calculate. From this infor-
mation, the rate of each elementary event can be calculated
(see Eq. (9)).

Simulations for this system are performed for PH2O

= 0.10 bar and CO/H2O gas molar fraction of 1/2. In pre-
liminary simulations the adsorption and desorption processes
of CO and H2O were found to be in partial equilibrium and
6 orders of magnitude faster than all other processes. Thus,
to accelerate the simulations both forward (adsorption) and
reverse (desorption) rates were divided by 100; all results
shown here were obtained with these latter rates. A lattice
with surface area around 6120 Å2 containing 5520 sites (of
any site type) is used. The results of these simulations are
portrayed in Fig. 9: panel (a) shows the lattice coverages of
CO* and H2O* at 650 K, normalized with respect to the
number of fcc and top sites for the two species, respectively.
The system is observed to quickly reach a stationary state

TABLE V. Elementary events and rate parameters of the water-gas shift chemistry for T = 650 K.

Elementary event Afwd (s−1) Afwd/Abwd Ea,fwd (eV) �Erxn (eV)

1 CO(g) + * ↔ CO* 3.41×105 bar−1 3.43×10−9 0.00 − 1.82 + 0.11NCO
a

2 O2(g) + 2 * ↔ 2 O* 1.18×108 bar−1 4.84×10−8 0.00 − 2.32
3 H2(g) + 2 * ↔ 2 H* 2.87×107 bar−1 4.65×10−6 0.00 − 1.00
4 CO2(g) + 2 * ↔ CO* + O* 6.65×104 bar−1 5.66×10−8 1.23 − 0.18 + 0.11NCO

5 H2O(g) + * ↔ H2O* 7.20×105 bar−1 1.69×10−7 0.00 − 0.29
6 H2O* + * ↔ OH* + H* 4.48×1012 6.39 0.65 0.40
7 OH* + * ↔ O* + H* 2.36×1013 19.8 0.79 − 0.31
8 2 OH* ↔ O* + H2O* 3.09×1011 3.09 0.00 − 0.71
9 CO* + OH* ↔ COOH* + * 4.58×1011 3.90×10−2 0.48 −0.055NCO − 0.17 − 0.11NCO

10 COOH* ↔ H* + CO2(g) 5.28×1014 8.96×109 bar 0.67 0.04
11 COOH* + O* ↔ OH* + CO2(g) 6.93×1011 4.53×108 bar 0.45 0.35
12 COOH* + OH* ↔ H2O* + CO2(g) 1.04×1013 1.40×109 bar 0.10 − 0.36
13 H* + CO* ↔ HCO** 1.98×1011 2.35×10−2 1.35 −0.055 · NCO 1.08 − 0.11NCO

14 HCO** + O* ↔ HCOO*** 6.15×1011 4.89×10−2 1.06 − 0.54
15 HCOO*** ↔ CO2(g) + H* + 2 * 5.97×1013 1.54×1010 bar 0.91 − 0.36
16 HCOO*** + O* ↔ CO2(g) + OH* + 3 * 1.19×1012 7.76×108 bar 1.71 − 0.05
17 HCOO*** + OH* ↔ CO2(g) + H2O* + 3 * 6.30×1012 2.40×109 bar 0.92 − 0.76

aThis term denotes CO-CO pairwise repulsive interactions of 0.11 eV per CO molecule adsorbed in a neighboring fcc site. The value was obtained from Ref. 45: 15 kcal/mol per
monolayer that corresponds to 0.11 eV per each one of the 6 possible neighboring CO molecules.
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FIG. 9. (a) Coverage fractions for CO* and H2O* as a function of time. The surface is almost poisoned by CO. (b) Number of gas species molecules produced
or consumed per time per monolayer. (c) Arrhenius plot for the Pt (111) water-gas shift model. The apparent activation energy is ∼32 kcal/mol. (d) Frequencies
for the elementary events observed during the course of the simulation. The vertical line corresponds to the frequency of a single event = (tfin −tini)−1. For all
simulations T = 650 K (except in panel d), PH2O = 0.10 bar, PCO = 0.05 bar.

(equilibration time less than 5 ms for all conditions inves-
tigated) in which carbon monoxide almost poisons the sur-
face, whereas water coverages are low due to this species’
weak binding on Pt. Note that diffusion was neglected for
the simulations shown here. The effect of this process was
assessed by allowing CO and H to hop between neighbor-
ing sites and the results obtained were practically the same
with those obtained in the absence of diffusion (see Sec. 5 of
Ref. 29).

Furthermore, Fig. 9(b) shows the frequencies of the el-
ementary events that took place in the course of the simu-
lation (reaction channels not mentioned in the bar graph did
not fire within the accessible time scale). It is observed that
H2O and CO adsorption-desorption are partially equilibrated
processes, validating our treating them as such to accelerate
the simulations. Further, HCO formation-decomposition is in
partial equilibrium too, indicating that HCO does not con-
tribute to the overall water-gas shift chemistry. On the other
hand, H2O dissociation and COOH formation and subsequent
decomposition towards adsorbed H and CO2 gas are non-
equilibrated processes, indicating that the overall chemistry
on Pt(111) proceeds through the carboxyl pathway. H2O dis-
sociation appears to be the rate-determining step (RDS), hav-
ing a partial-equilibrium ratio (PE ratio) of 0.79 at 530 K and
0.62 at 650 K (the PE ratio is defined as the ratio between
the forward rate over the sum of forward and backward rates).
The subsequent step in the chemistry, namely the carboxyl
formation, remains irreversible (PE ratio of 1.0 at both 530
and 650 K). These observations are in agreement with the re-
sults of Grabow et al.33 where it was reported that the direct
COOH decomposition accounts for the majority of CO2 pro-
duced and that H2O dissociation is the RDS.

Furthermore, Fig. 9(c) shows the number of H2 and
H2O gas-phase molecules produced and consumed, respec-
tively, as a function of time. From the slope of the number
of H2 molecules and given the number of sites on the sur-
face, one can calculate the overall reaction rate per mono-
layer, for various temperatures. In our calculations of the
rate, we discard the first 0.001 s in order to sample the sta-
tionary part of the trajectory. The resulting Arrhenius plot
is shown in Fig. 9(d). The error bars in this plot quantify
the uncertainty in the calculated rate due to the finite num-
ber of H2 molecules produced over the course of a simula-
tion. The smaller the total number of H2 molecules, the larger
the uncertainty. For a detailed description of the error esti-
mation procedure please refer to Sec. 6 of Ref. 29. The ap-
parent activation energy varies from 24.3 kcal/mol for the
low temperature range, to 12.0 kcal/mol for higher tempera-
tures. These values compare well with the experimentally ob-
served barriers of 13.9–27 kcal/mol (Ref. 44) and the value of
16.2 kcal/mol (67.8 kJ/mol) calculated by Grabow et al.33

through mikrokinetic mean-field modeling. The observed
drop in the activation energy can be attributed to the CO poi-
soning effects. Thus, for high temperatures the apparent ac-
tivation energy is close to the barrier of the RDS, namely
15 kcal/mol for the H2O dissociation, whereas for low tem-
peratures it appears that CO poisoning is prominent; conse-
quently, the rate is determined by the equilibrium between gas
and surface CO.

Finally, it is interesting to note that throughout the course
of the simulation, no HCOO molecules were observed. This
can be attributed to the lack of adsorbed O on the sur-
face, which eliminates the possibility of HCOO being pro-
duced through the association of HCO and O (reaction 14 in
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Table V), and the high barriers exhibited by the Eley Riedel
reactions (15)–(17) in Table V.

IV. CONCLUSIONS

We have presented a novel KMC framework that employs
graph theoretical ideas to explicitly account for the neighbor-
ing patterns in complex surface kinetics. In this approach, lat-
tice structure and elementary events are represented as graphs,
and the identification of lattice processes is done by solving
subgraph isomorphism problems during the course of a simu-
lation. Optimized algorithms and data structures are used in
order to minimize the computational overhead resulting in
computational times comparable to simpler KMC techniques.

We further demonstrated the capabilities of this frame-
work by simulating the water-gas shift reaction on Pt (111).
This chemistry proceeds in several different site types, in-
volves species that bind to more than one site and contains
elementary reactions with complex geometrical arrangements
of reactants and products. KMC simulations using our frame-
work predicted surface coverages and activities as a func-
tion of temperature, thereby providing an estimate for the ap-
parent activation energy for the overall chemistry. Moreover
using statistical analysis, we identified partially equilibrated
reversible events and elucidated the main pathway through
which the chemistry proceeds.

The flexibility and specificity in the definition of elemen-
tary events within the presented framework makes the lat-
ter applicable to a vast array of problems involving complex
chemistries and geometries, such as those encountered in vic-
inal surfaces or the facets of nanoparticles.
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