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ABSTRACT 
 
Several approaches have been used in the past to model heterogeneity in bacterial cell 
populations, with each approach focusing on different source(s) of heterogeneity. However, a 
holistic approach that integrates all the major sources into a comprehensive framework 
applicable to cell populations is still lacking. 
 
In this work we present the mathematical formulation of a cell population master equation 
(CPME) that describes cell population dynamics and takes into account the major sources of 
heterogeneity, namely stochasticity in reaction, DNA-duplication, and division, as well as the 
random partitioning of species contents into the two daughter cells. The formulation also takes 
into account cell growth and respects the discrete nature of the molecular contents and cell 
numbers. We further develop a Monte Carlo algorithm for the simulation of the stochastic 
processes considered here. To benchmark our new framework, we first use it to quantify the 
effect of each source of heterogeneity on the intrinsic and the extrinsic phenotypic variability for 
the well-known two-promoter system used experimentally by Elowitz et al. (2002). We finally 
apply our framework to a more complicated system and demonstrate how the interplay between 
noisy gene expression and growth inhibition due to protein accumulation at the single cell level 
can result in complex behavior at the cell population level. 
 
The generality of our framework makes it suitable for studying a vast array of artificial and 
natural genetic networks. Using our Monte Carlo algorithm, cell population distributions can be 
predicted for the genetic architecture of interest, thereby quantifying the effect of stochasticity in 
intracellular reactions or the variability in the rate of physiological processes such as growth and 
division. Such in silico experiments can give insight into the behavior of cell populations and 
reveal the major sources contributing to cell population heterogeneity. 
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INTRODUCTION 
 
Virtually every population of living organisms exhibits heterogeneity, a characteristic that 
endows even the simplest forms of life, bacteria, with the ability to exhibit surprisingly complex 
behavior at the population level. Until the previous decade, however, the biological paradigms 
and modeling frameworks for the design and control of biochemical processes did not consider 
population heterogeneity (Chung & Stephanopoulos, 1995; Fedoroff & Fontana, 2002). Their 
key assumption was that all cells behave like the average cell and, thus, continuum models of 
ordinary differential equations can describe the behavior of the population (Avery, 2006; 
Davidson & Surette, 2008). Even when one is interested only in the average dynamics of a 
population, however, the use of such continuum models may result in incorrect predictions 
(McAdams & Arkin, 1998). Thus, one must explicitly account for the heterogeneous nature of 
cell populations if one wants to accurately predict their productivity and to optimally design 
and/or control the associated biochemical process (Mantzaris, 2005). 
 
A second important reason for studying non-genetic heterogeneity is its physiological 
importance for the survival of cell populations. Several studies have suggested that the viability 
of a cell population and its ability to efficiently adapt to sudden changes in environmental 
conditions may be linked to its phenotypic heterogeneity (McAdams & Arkin, 1999; McAdams 
et al., 2004; Sumner & Avery, 2002; Veening et al., 2008a; Veening et al., 2008b). Thus, the 
resistance of certain infectious bacteria to antibiotics could be explained on the basis of the 
existence of a small subpopulation that survives the shock and resumes growing after the 
antibiotic has been removed (Booth, 2002). Even when environmental changes do not pose a 
threat for the viability of the cell population, it has been demonstrated theoretically that a 
heterogeneous cell population can achieve faster growth rates than those of a homogeneous one 
(Thattai & van Oudenaarden, 2004). 
 
From the above discussion it emerges that a mathematical description of heterogeneous cell 
population dynamics is of great interest to several disciplines, ranging from chemical 
engineering to microbial ecology. Before we present an overview of the main frameworks 
developed for this purpose, we will define what we will refer to subsequently as “cell chain” and 
“cell population”. A cell chain is a collection defined by the following procedure: start from one 
mother cell; upon division choose one of its daughter cells; set this daughter to be the next 
mother cell; repeat (Figure 1). When tracking a cell chain in time, we essentially monitor the 
history of a single cell. On the other hand, a cell population consists of all the viable offspring 
observed at time t, which were generated by an arbitrary number of cells at t = 0. For simplicity, 
Figure 1 shows a population was generated from a single cell. However, our definition is more 
general. 
 
In order to predict the behavior of heterogeneous cell populations, Fredrickson and coworkers 
introduced the cell population balance (CPB) approach in the 1960’s (Eakman et al., 1966; 
Fredrickson et al., 1967; Tsuchiya et al., 1966). These models consist of partial integro-
differential equations that describe the dynamics of the distribution of the physiological state of 
cells and are nonlinearly coupled with ordinary integro-differential equations describing 
substrate availability. The physiological state is generally a vector, whose components can 
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include the intracellular contents of chemical species as well as morphometric characteristics of 
the cell (like size). CPB models require single cell information to predict the distribution of 
phenotypic characteristics at the population level. Specifically, they require knowledge of three 
intrinsic physiological functions that provide the growth rate, the division rate and the partition 
probability density function. For CPB models, therefore, heterogeneity is a consequence of the 
physiological functions that account for the different growth and division rates of the cells, as 
well as for unequal partitioning effects. 
 
When the physiological state vector has two or more components, this approach leads to 
multidimensional CPB models that are very difficult to solve, even with the current 
computational power available. Therefore, Monte Carlo algorithms were developed to simulate 
realizations of the underlying processes and compute phenotypic distributions, numbers of cells 
or any other desirable characteristic of the cell population. Shah et al. (1976) developed such an 
algorithm to simulate mass distribution dynamics and Hatzis et al. (1995) extended it to simulate 
the multi-staged growth of phagotrophic protozoa. These algorithms are again computationally 
intensive because the number of cells in the population increases exponentially with time. 
Constant-number Monte Carlo algorithms (Mantzaris, 2006; Smith & Matsoukas, 1998) 
overcome this problem by simulating a constant number of cells that are assumed to be a 
representative sample of the overall population. These algorithms may start with a single cell and 
simulate the dynamics of the population until the number of offspring reaches the maximum 
number allowed. 
 
All these CPB models, however, are deterministic since they assume that the underlying single 
cell dynamics are deterministic and provide the expected number density function of the cell 
population. Thus, CPB models cannot account for the inherent stochasticity of chemical 
reactions occurring in cellular control volumes or stochastic DNA-duplication. In addition, they 
neglect the fact that cell populations consist of discrete individual cells (Ramkrishna, 2000). 
Consequently, CPB models cannot account for stochastic effects originating from low cell 
numbers in the population. Such effects are significant during the initial times of population 
growth. Thus, one needs different approaches such as Monte Carlo algorithms (Mantzaris, 2006; 
Smith & Matsoukas, 1998) to successfully simulate them.  
 
Shuler and coworkers used a conceptually different approach to describe the dynamics of cell 
populations (Ataai & Shuler, 1985; Domach & Shuler, 1984; Henson, 2003). They developed 
ensemble models that start with a number of individual cells, randomly perturb the intracellular 
parameters (or the initial conditions) of these cells to create an ensemble and use a single cell 
model to simulate the dynamical behavior of each cell in this ensemble. Thus, one can obtain 
distributions over the ensemble for any variable of the single cell model. Ensemble models have 
certain advantages. They are simpler than CPBs to formulate and do not require knowledge of 
the intrinsic physiological functions. Also, they can directly incorporate any single cell model 
and can solve problems involving many species. The disadvantages of the ensemble models 
include the prohibitively slow dynamic simulation for large ensembles, coupled with the fact that 
the accuracy with which we can determine the population distribution(s) depends on the 
ensemble size. Finally, ensemble models (like the CPB models) neglect the discrete nature of the 
intracellular content and do not take into account stochasticity of reaction phenomena. 
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The idea that intracellular reactions are stochastic processes was introduced in the early 20th 
century with the advent of the chemical master equation (Gillespie, 1976; McQuarrie, 1967). 
Some of the early studies examined the effect of stochasticity in biochemical processes such as 
protein synthesis (Rigney & Schieve, 1977; Singh, 1969). Berg (1978) demonstrated the effect of 
stochasticity in partitioning events under the assumption of binomial partitioning (that is, each 
protein molecule has equal probability of being inherited by either daughter cell). Ko (1991; 
1992) described stochasticity in gene induction using a model whose derivation is based on the 
random timings of bindings and dissociations of a transcription factor.  
 
More recently, McAdams and Arkin employed an approach that takes into account stochastic 
effects in the entire biochemical pathway (gene induction and protein synthesis), but not in cell 
division events (McAdams & Arkin, 1997). Their approach was based on Gillespie’s Monte 
Carlo algorithm (Gillespie, 1976; 1977) which can be used to simulate exact sample paths of the 
chemical master equation. McAdams and Arkin (1997) used this algorithm to simulate the 
stochastic dynamics of intracellular processes, thereby showing that randomness can result in 
phenotypic variability within a cell population. 
 
Gillespie’s algorithm was originally developed for constant control volumes. Gardiner (1983) 
generalized it by showing how to modify the propensity functions so that the algorithm can be 
used when the volume changes with time. Gibson and Bruck (2000) developed an exact efficient 
version of the algorithm that was further extended by Swain et al. (2002) to account for cell 
growth and division. This latter algorithm accounts for linear single cell growth, division after 
fixed time T into two cells of equal sizes, binomial partitioning of the contents to the two 
daughters and DNA-duplication at time arbitrarily set to 0.4⋅T. Only one daughter is followed 
after division, thereby simulating a cell chain (see Figure 1). Using this algorithm, Swain et al. 
(2002) demonstrated that the total noise of a genetic network can be decomposed into an intrinsic 
and an extrinsic component which have orthogonal contributions to the total noise. Extrinsic 
noise stems from noisy “inputs” to the genetic network such as a repressor concentration or the 
cell cycle state. Intrinsic noise stems from the randomness in the occurrence of the reactions that 
form the network. To test the orthogonality hypothesis experimentally, they suggested the two-
reporter method used in a subsequent experimental work (Elowitz et al., 2002). Exponential cell 
growth and symmetric division was also incorporated to the Gillespie algorithm by Lu et al. 
(2004) who used the resulting algorithm in conjunction with hybrid simulation techniques to 
analyze the behavior of an unregulated gene system.  
 
The algorithms proposed by Lu et al. (2004) and Swain et al. (2002) do not take into account 
variability in DNA-duplication or division times, but assume that the mother cell produces two 
daughters with the same volume. Furthermore, the hybrid simulation techniques used by the 
algorithm by Lu et al. (2004) are valid only for the limiting case of small and fast noise which 
requires high species copy numbers. Finally, both algorithms simulate single cells (cell chains) 
instead of cell populations. 
 
Gillespie’s algorithm is computationally intensive when the species under consideration have 
high copy numbers. In this case, the algorithm spends most of the computational time sampling 
between fast events, whereas rare events are hardly ever simulated, a problem referred to as 
stiffness. A remedy for this problem is provided by the tau-leaping algorithms (Gillespie, 2001; 
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Gillespie, 2003) that collectively sample fast events over a time interval by employing Poisson 
random variables. While these algorithms can result in huge savings in computational time, they 
fail if the number of reacting molecules is small. Since the Poisson distribution, is unbounded, a 
tau-leaping algorithm always runs the risk of predicting negative concentrations. More 
sophisticated tau-leaping algorithms have been developed to avoid this situation (Cao et al., 
2005b), as well as algorithms that utilize the binomial distribution which is bounded (Chatterjee 
et al., 2005; Tian & Burrage, 2004). A different class of algorithms that accelerate stochastic 
simulation of reacting systems is based on the projection of fast dynamics onto slow ones, 
according to a procedure generally known as adiabatic approximation of fast modes (Cao et al., 
2005a; Cao et al., 2005c; E et al., 2005; E et al., 2007). These algorithms employ a quasi-
equilibrium approximation for the distribution of fast evolving variables, and subsequently 
simulate a master equation for the slow variables. In the latter equation, the propensities appear 
as averages over the distribution of the fast variables. For an excellent review of acceleration 
strategies in simulating the chemical master equation the reader is referred to Gillespie (2007). 
 
In another approach to overcome the problem of stiffness, several studies modeled stochasticity 
in intracellular reactions, using stochastic differential equations (SDEs). We will refer to the use 
of SDEs as the Langevin approach following van Kampen (van Kampen, 1992). The resulting 
chemical Langevin equation treats the species concentrations as continuous random process of 
diffusive type (Gillespie, 2000; Kurtz, 1972; van Kampen, 1992). For, example, Kepler and 
Elston (2001) derived elegant approximations to exact stochastic models describing gene-
regulatory networks. In these approximate models, noise captures the inherent stochasticity of 
the network in the limit of small noise amplitudes and fast fluctuations. Using these 
approximations, Kepler and Elston (2001) showed that qualitative changes in the probability 
density functions obtained by such networks can result solely from changes in the rate of 
operator fluctuations. Following a more phenomenological approach, other models impose noise 
as an ad hoc external noise source (Hasty et al., 2001; 2000) Such an approach has been used by 
Hasty et al. (2000) to build a model for the λ-bacteriophage genetic network  showing how 
random fluctuations can be used to control the state of a biochemical switch. In this approach, 
however, stochasticity is somewhat artificial, since it does not stem from the randomness in 
reaction occurrences or cell division events. 
 
Still, none of the aforementioned algorithms focuses on the cell population level. In an attempt to 
simulate cell populations exhibiting stochasticity in intracellular reactions and in cell division, 
Mantzaris (2007) proposed an algorithm that is based on the deterministic analogue (Mantzaris, 
2006) but uses SDEs (Langevin approach) instead of deterministic reaction expressions. Using 
this algorithm, Mantzaris simulated a genetic network with positive feedback and showed that 
different sources of stochasticity can have a marked effect on the region of the parameter space 
where the system exhibits bistability (Mantzaris, 2007). However, the Langevin approach 
neglects the discrete nature of the molecular content of the cells and treats the copy numbers of 
species as continuous variables. In fact, the Langevin approach is valid for limiting cases of fast 
stochastic fluctuations with small amplitude since it is derived as an asymptotic approximation 
for large species copy numbers and fast operator fluctuations (Kepler & Elston, 2001). Thus, the 
predictive power of the algorithm developed by Mantzaris (2007) may be limited since 
significant intrinsic noise is brought about by low species copy numbers which result in slow and 
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large stochastic fluctuations. Furthermore, the effects of cell growth, DNA-duplication and the 
partitioning of molecules as discrete entities are not taken into account by this algorithm. 
 
Finally, Volfson et al. (2006) have developed an approach that combines ideas from the CPB and 
ensemble modeling frameworks and incorporates intrinsic noise effects in order to describe GFP 
production in yeast populations. This approach incorporates protein production under continuous 
cell growth, and asymmetric division effects, and can be used to simulate cell populations. 
However, several simplifying assumptions are made: the model distinguishes between only two 
generations of cells (mothers and daughter), assumes that all cells grow with the same rate, and 
upon division it treats the ratio between mother and daughter cell contents and volumes as fixed 
quantities, as opposed to random variables used in the CPB approach (see supplemetary text of 
Volfson et al., 2006). No DNA dynamics are modeled, but intrinsic stochasticity is taken into 
account using Gillespie’s approach. 
 
The conclusion emerging from the previous discussion is that none of the current mathematical 
frameworks accounts for all the various sources of cell population heterogeneity, namely growth 
rate variability, stochasticity in DNA-duplication and cell division, and stochastic reaction 
occurrences for the genetic network under consideration. Thus, the scope of this work is to 
develop a general mathematical formulation that can incorporate the major sources of 
stochasticity at the cell population level (Table 1). Our study begins with some preliminary 
definitions regarding the state of a single cell and the state of the cell population. We 
subsequently build the cell population master equation (CPME) that governs the temporal 
dynamics of the probability of finding the cell population at a specific state and develop a Monte 
Carlo algorithm that enables us to simulate exact stochastic paths of this master equation. 
Finally, we apply these tools to analyze extrinsic and intrinsic noise sources on a two promoter 
system and investigate cell population behavior in an inducible system where protein 
accumulation slows down single cell growth. 
 

MODEL DEVELOPMENT 
 

Framework 
 
Adopting the formalism of the population balance framework (Ramkrishna, 2000), we assume 
that each cell can be completely described by a state vector that contains information about the 
chemical content of the cell and its morphometric characteristics such as length, membrane area 
or volume. This work will utilize only one morphometric characteristic, the volume. However, 
additional morphometric characteristics like membrane area or length can be incorporated. Thus, 
the state vector z of a cell is a vector of size n + 1 with n entries for species copy numbers and 1 
entry for the volume. Clearly: 
 

( ) ( )n
0 0,V += ∈ = ×z X    (1) 
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We also need to define a vector w for the state of the overall cell population. This vector will 
contain one entry for the number ν of individuals in the population and ν × (n + 1) entries that 
represent the states of each and every cell in that population. Therefore: 
 

0
0∈ ×w 

   (2) 
 
In order to develop a cell population master equation (CPME) for the evolution of probability in 
our process we need to first define our ensemble. Since our focus is the cell population, our 
ensemble is a collection of cell populations. It is thus natural to consider the probability that we 
randomly sample the ensemble at time t picking a cell population that has ν individuals with 
individual states zi, i = 1,…,ν. We denote this probability by Jν(z1,…,zi,…,zν;t), the analog of the 
Janossy density used in the continuous population balances (Ramkrishna, 2000). It is important 
to note that this density is symmetric since the cells cannot be distinguished in any way other 
than their state. Thus, the value of Jν(z1,…,zi,…,zν) remains unaltered by permutations of the zi 
vectors and the normalization condition for Jν will be (see Section 2 in the Supplemental 
Material for the derivation): 
 

( ) ( )( )1 1
0

1... J ,V ,..., ,V ; t dV ...dV 1
! ν ν

ν≥

  ⋅ = ν  
∑ ∑ ∑∫ ∫

1 ν

ν 1 ν
X X

X X  (3) 

 
The probability that the cell population will be extinct at time t is J0(t). The probability that at 
time t the population will have ν cells is given as: 
 

( ) ( )( )population 1 1
1P N ... J ,V ,..., ,V ; t dV ...dV
! ν ν = ν = ⋅  ν∑ ∑∫ ∫

1 ν

ν 1 ν
X X

X X  (4) 

 
With the above observations in mind we are ready to write the cell population master equation 
that will describe the evolution of the probability distribution for a population of cells. In order to 
correctly derive each term, we need to keep in mind that Jν((X1,V1),…,(Xi,Vi),…,(Xν,Vν);t) 
behaves as probability mass function in the species content coordinates but as probability density 
in the volume coordinates. Thus, the CPME (which is essentially a probability balance) will be 
written as: 
 

( ) ( ) ( )( )

( ) ( ) ( )( )

1 i k
k 1

1 i k
k 1

4 4

k k
k 1 k 1

J ,V ,..., ,V ,..., ,V ; t t V  

J ,V ,..., ,V ,..., ,V ; t V

ProbIn ProbOut

ν

ν ν
=

ν

ν ν
=

= =

+ ∆ ⋅ ∆

− ⋅ ∆ =

+ −

∏

∏

∑ ∑

1 i ν

1 i ν

X X X

X X X  (5) 

 
where the product: 
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k 1 2
k 1

V V V ... V
ν

ν
=

∆ = ∆ ⋅∆ ⋅ ⋅∆∏   

 
denotes the volume of a small hypercube in the continuous component of the cell population 
state space, which pertains to the cell volumes. Therefore, the expression, 

( ) ( )( )n 1 i 1 2J ,V , , ,V , , ( ,V ); t V V ... Vν ν… … ⋅∆ ⋅∆ ⋅ ⋅∆1 i νX X X  gives the probability of having cell 1 
with contents X1 and volume between [V1,V1+∆V1), cell 2 with contents X2 and volume between 
[V2,V2+∆V2), etc. Note that V1, V2, …, Vν are continuous random variables pertaining to 
different cells in the population. 
 
We will now derive term by term the probability inflows and outflows. In this process, we will 
only consider single events occurring at the time interval [t, t+∆t], since the probability of two 
events happening in this interval is (∆t2). 
 
Chemical Reactions 
 
Chemical reactions can result in the production or degradation of molecules, the synthesis of a 
new molecule from other molecules that serve as building blocks, or the fission of a molecule to 
its building blocks. Since our goal is to build a general framework we need to utilize a general 
formulation that will allow us to incorporate any chemical reaction network in the final CPME. 
 
Let us now define the vector S with the chemical species of interest: 

 
{ }

1 d d1 2 n n 1 n 2 n s N s 1 N s 2 N

non chrom. DNA chrom. DNA species 1 chrom. DNA species d
in its various states in its various states

S ,S ,...S ,S ,S ,...,S ,..., S ,S ,...,S+ + + − + − +

−

=S


 

 (6) 

 
The total number of species is: 
 

d

i
i 1

N n s
=

= + ∑  (7) 

 
where n is the number of non-chromosomal DNA species and d the number of chromosomal 
DNA species. The necessity for discriminating between chromosomal and non-chromosomal 
species comes from the fact that, upon division, chromosomal DNA species are partitioned 
equally in the two daughters. However, this is not generally true for the other species. 
Furthermore, each of the chromosomal DNA species i = 1,…,d may exist in si states. For 
example an operator may exist in three states: the free state O, the repressed state with one 
repressor molecule bound RO, or the repressed state with two repressor molecules bound R2O. 
Thus for this case, s1 = 3 and (Sn+1, Sn+2, Sn+3) = (O, RO, R2O). 
 
The chemical species of interest are assumed to interact according to a general chemical reaction 
network of m reactions with the N participating species Si: 
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j

mN N
k

ij i ij i
i 1 i 1 j 1

S S
= = =

 α → β 
 
∑ ∑  (8) 

 
where kj is the deterministic reaction rate constant (intensive quantity). This is essentially the 
network of biochemical reactions that models the biological system or pathway of interest. In 
order to be able to assess the effect of reactions on the state of the cell we need to know how the 
species copy numbers change once a specific reaction event has occurred, and how frequently 
such reaction events occur.  
 
If Xi denotes the copy number (number of molecules) of species Si, we can define a vector vj 
which expresses the change in the contents X of the cell as reaction j occurs in a cell. This vector 
is given as: 
 

{ }N

ij ij i 1=
= β − αjv  (9) 

 
That is, if the reaction is A + B → C and the species vector is [A B C], then vj = [−1 −1 1]. 
 
To determine how frequently reactions occur, we consider the propensity function for reaction j, 
aj(X,V), which is the stochastic analogue of a reaction rate. The propensity function gives the 
probability density that one event of reaction j will happen in the (t, t + ∆t) time interval. Thus, 
the larger the propensity function of reaction j, the more likely it is that many reaction events of 
index j (j = 1,…, m) will happen during a time interval. Furthermore, the propensity that any 
reaction is going to happen is equal to the sum of the propensities (since the reaction occurrence 
events are mutually exclusive): 
 

( ) ( )
m

r j
j 1

a ,V a ,V
=

= ∑X X  (10) 

 
Particular expressions for the propensity functions will be given in a subsequent section since 
here we are primarily interested in deriving the general cell population master equation. 
 
Now, the inflow of probability to state ( ) ( ) ( )( )1 i, ,V ,..., ,V ,..., ,Vνν 1 i νX X X  will be a sum of the 
contributions of each cell ς that exists in state (Xς−vj,Vς) and undergoes one reaction event of 
index j in the next ∆t. Therefore: 
 

( ) ( ) ( ) ( )( )
1

m

j 1 k
1 j 1 k 1

ProbInfl

a ,V t J ,V ,..., ,V ,..., ,V ; t V
νν

ς ν ς ν
ς= = =

=

− ⋅∆ ⋅ − ⋅ ∆∑∑ ∏ς j 1 ς j νX v X X v X
 (11) 

 
The outflow of probability due to reaction contains contributions from the cells that exist in state 

( ) ( ) ( )( )1 i, ,V ,..., ,V ,..., ,Vνν 1 i νX X X  and undergo any reaction event: 
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( ) ( ) ( ) ( )( )
1

m

j 1 k
1 j 1 k 1

ProbOutfl

a ,V t J ,V ,..., ,V ,..., ,V ; t V
νν

ς ν ς ν
ς= = =

=

⋅∆ ⋅ ⋅ ∆∑∑ ∏ς 1 ς νX X X X
 (12) 

 
DNA-duplication 
 
The chromosomal DNA species are doubled during duplication. We assume that the newly 
produced chromosomal DNA species i exists in a basal state ηi. For example, in the 
aforementioned example of the operator existing in the free and the two bounded states, the basal 
state will be the free state. Then the production of new DNA can be expressed as: 
 

{ }{ }i

i i i

i 1ds

j j i jj 1 i 1 j 1
S S S where : n s 1

−

η + η + η = = =

→ + η = + +∑  (13) 

 
Note that ηi, i = 1,…d, gives the index of the species in the S vector (equation 6) that 
corresponds to the basal state of the ith DNA species.  
 
To clarify the use of equation (13), we will consider a system involving three operators: O1, O2 
and O3. All three operators can be found in the free states just noted, but the first two can also be 
found in the repressed states O1R, and O2R respectively. From equation (6), the species vector 
becomes S = {S1, …, Sn | O1, O1R, O2, O2R, O3}. For illustration purposes we used a vertical bar 
to separate the non-DNA species from the DNA ones. In this example, d = 3, s = [2, 2, 1] and 
equation (13) translates to the following set of DNA duplication reactions: 
 

1 1 1

1 1 1

2 2 1

2 2 1

3 3 1

O O O
O R O R O
O O O
O R O R O
O O O

→ +
→ +

→ +
→ +

→ +

 

 
During a single duplication event, each of the previous reactions occurs as many times as the 
number of reactant molecules, during a single duplication event. For example, if O1 = 2, O2R = 1 
and O3 = 1, and all other contents are zero just before duplication, then the first DNA duplication 
reaction will occur twice, and the fourth and fifth reactions once. The resulting change in the 
species copy numbers is given by vector vs, which has all its elements equal to zero except for 
those that correspond to each basal state ηi of DNA species i. The latter elements are equal to the 
number of available DNA species i = 1, …, d in all possible states: 
 

i

i i

Nsd

j 1
i 1 j 1 k 1

,kXη + −
= = =

η
 

= ⋅δ 
 
∑∑sv  (14) 
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For the aforementioned example, equation (14) gives vs = [0, …, 0 |  2, 0, 1, 0, 1]. 
 
Moreover, the DNA-duplication propensity function is ( )sa ,VX  and expresses the probability 
that duplication will happen in the next  ∆t as a function of the cell’s state. 
 
Thus, similarly to the case of the reactions, the probability inflow to state 

( ) ( ) ( )( )1 i, ,V ,..., ,V ,..., ,Vνν 1 i νX X X  will be a sum of the contributions of each cell ς that exists 
in state (Xς−vs,Vς) and undergoes one duplication event in the next ∆t. Therefore: 
 

( ) ( ) ( ) ( )( )
2

s 1 k
1 k 1

ProbInfl

a ,V t J ,V ,..., ,V ,..., ,V ; t V
νν

ς ν ς ν
ς= =

=

− ⋅∆ ⋅ − ⋅ ∆∑ ∏ς s 1 ς s νX v X X v X
 (15) 

 
The outflow of probability due to reaction contains contributions from the cells that exist in state 

( ) ( ) ( )( )1 i, ,V ,..., ,V ,..., ,Vνν 1 i νX X X  and undergo DNA-duplication: 
 

( ) ( ) ( ) ( )( )
2

s 1 k
1 k 1

ProbOutfl

a ,V t J ,V ,..., ,V ,..., ,V ; t V
νν

ς ν ς ν
ς= =

=

⋅∆ ⋅ ⋅ ∆∑ ∏ς 1 ς νX X X X
 (16) 

Growth 
 
The aforementioned reactions are assumed to be taking place in the volume of a cell, V(t), which 
is obtained by solving a differential equation governing cell growth like (Cooper, 1988): 
 

( )dV g ,V
dt

= X  (17) 

 
This formulation assumes that growth is a deterministic process once X and V have been 
defined. Stochasticity comes from the randomness in the state of the cell. In reality the increase 
in cell mass and volume is random, due to stochasticity in the uptake and metabolism of nutrients 
from the extracellular environment. If the extracellular environment is homogeneous and since 
the overall cell consists of a large number of molecules, however, it is safe to assume that 
stochasticity in these processes will be neglegible. 
 
For a single cell, equation (17) states that g(X,V)⋅∆t is the volume change that will occur during 
the infinitesimal time interval (t, t + ∆t) and then the inflow of probability due to growth for any 
cell is: 
  

( ) ( ) ( ) ( )( )3 1 k
1 k 1

k

ProbIn g ,V t J ,V ,..., ,V ,..., ,V ; t V
νν

ς ν ς ν
ς= =

≠ς

= ⋅∆ ⋅ ⋅ ∆∑ ∏ς 1 ς νX X X X  (18) 
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The outflow of probability due to growth will be due to the growth of cells existing in states 
(Xς,Vς + ∆Vς): 
 

( ) ( ) ( ) ( )( )
3

1 k
1 k 1

k

ProbOut

g ,V V t J ,V ,..., ,V V ,..., ,V ; t V
νν

ς ς ν ς ς ν
ς= =

≠ς

=

+ ∆ ⋅∆ ⋅ + ∆ ⋅ ∆∑ ∏ς 1 ς νX X X X  (19) 

 
Essentially, the growth rate of each individual cell can be thought as the component of a vector 
field that is responsible for the transport of the Janossy density in the continuous component of 
the cell population state space. The probability inflow and outflow terms just noted will give rise 
to advective derivatives in the cell population master equation. 
 

Division 
 
We further assume that the cell divides with a propensity ad(X,V) that is a function of the cell’s 
state. Since the partitioning of the content of the mother cell to the two daughters is random, we 
need to define the partitioning probability density function ( )d mh , V | , Vd mX X  that gives the 
probability of a daughter cell having contents Xd and volume Vd, given that the mother had 
contents Xm and volume Vm. The contents and the volume of the other daughter will then be Xm 
− Xd and Vm − Vd respectively. Thus, for the mass and volume to be conserved the following 
must hold: 
 

( ) ( )d m m d mh ,V ,V h ,V V ,V= − −d m m d mX X X X X  (20) 
 
The partitioning probability density function has been introduced in the population balance 
framework (Ramkrishna, 2000). However, the state variables of that framework were continuous 
quantities. Clearly, the partitioning density function h can be constructed so that it expresses any 
partitioning law, such as binomial partitioning for non-chromosomal DNA species and equal 
partitioning with randomized state for the chromosomal DNA species. 
 
We are now ready to derive the corresponding probability influx and outflux terms for the 
CPME. Whenever a cell divides it increases the number of cells in the population by one. Thus, 
the probability inflow to state ( ) ( )( )1, ,V ,..., ,Vνν 1 νX X  caused by division will come from cell 

populations that exist in some state ( ) ( )( )1 11, , U ,..., , U− ν−ν − 1 ν 1Y Y  at time t. Since one cell 

divides into two daughters, the contents of two of the cells that exist in ( ) ( )( )1, ,V ,..., ,Vνν 1 νX X  
at time t + ∆t were previously (i.e. at time t) contained in a single cell within 

( ) ( )( )1 11, , U ,..., , U− ν−ν − 1 ν 1Y Y . Thus, consider an ensemble of cell populations that contain ν − 1 

cells, exactly one of which exists in state ( ),V Vς θ+ +ς θX X  and is dividing in the next ∆t time 

interval. The fraction of populations that will end up in state ( ) ( )( )1, ,V ,..., ,Vνν 1 νX X  is equal to 

the fraction of those in which the dividing cell will produce daughter 1 in state ( ),VςςX  plus the 
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fraction of those with daughter 1 in state ( ),VθθX . This can also be thought as the probability of 

the event that daughter 1 will be in state ( ),VςςX  or in state ( ),VθθX . Since the two latter 
events are disjoint, their probabilities are summed. Thus: 
 

( )

( )

( ) ( ) ( ) ( ) ( )
index index 1ind

1

4 d

ex

1 1

k
k 1
k

1 1 1 1

ProbIn a ,V V t

h ,V ,V V V V

J ,V ,..., ,V V ,..., ,V , , V ,..., ,V ; t

h ,V ,

ν− ν

ς θ
ς= θ=ς+

ν

ς ς θ ς
=
≠ς

ν− ς θ − θ−

θ νς

+ θ+ ν

θ

−

= + + ⋅∆


⋅ + + ⋅∆ ⋅ ∆


 
 ⋅ + +  
 

+ +

∑ ∑

∏

ς θ

ς ς θ

1 ς θ θ 1 θ 1 ν

θ ς θ

X X

X X X

X X X X X X

X X X

 



( )

( ) ( ) ( ) ( ) ( )

k

index 1index index

k 1
k

1 1 1 1

V V V V

J ,V ,..., ,V , ,V ,..., ,V V ,..., ,V ; t

ν

ς θ θ
=
≠θ

ν− − ς− + ς+ ς θ ν

ν−ς θ

+ ⋅∆ ⋅ ∆

 
 ⋅ + +    

∏

1 ς 1 ς 1 ς θ νX X X X X X


 

 (21) 

 
and due to the already discussed symmetry properties of h and J: 
 

( ) ( )
( ) ( ) ( ) ( ) ( )( )

1

4 d k
1 1 k 1

1 1 1 1

ProbIn 2 a ,V V t h ,V ,V V V

J ,V ,..., ,V V ,..., ,V , ,V ,..., ,V ; t

νν− ν

ς θ ς ς θ
ς= θ=ς+ =

ν− ς θ − θ− + θ+ ν


= ⋅ + + ⋅∆ ⋅ + + ⋅ ∆


⋅ + + 

∑ ∑ ∏ς θ ς ς θ

1 ς θ θ 1 θ 1 ν

X X X X X

X X X X X X
 (22) 

 
The outflow of probability due to division is: 
 

( ) ( ) ( ) ( )( )4 d 1 k
1 k 1

ProbOut a ,V t J ,V ,..., ,V ,..., ,V ; t V
νν

ς ν ς ν
ς= =

= ⋅∆ ⋅ ⋅ ∆∑ ∏ς 1 ς νX X X X  (23) 

 

Overall Cell Population Master Equation 
 
By substituting equations (11, 12, 15, 16, 18, 19, 21, 22) into equation (5), collecting terms, 

dividing by k
k 1

V t
ν

=

∆ ⋅∆∏ , and taking the limits as ∆Vk → 0, ∆t → 0, we derive the following 

master equation: 
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( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( )

1 i

m

j 1
1 j 1

j 1

s s 1 s
1

s 1

J ,V ,..., ,V ,..., ,V ; t
t

a ,V J ,V ,..., ,V ,..., ,V ; t

a ,V J ,V ,..., ,V ,..., ,V ; t

a ,V J ,V ,..., ,V ,..., ,V ; t

a ,V J ,V ,...,

ν ν

ν

ς ν ς ν
ς= =

ς ν ς ν

ν

ς ν ς ν
ς=

ς ν

∂
=

∂

 − ⋅ −

− ⋅ 

+ − ⋅ −

− ⋅

∑∑

∑

1 i ν

ς j 1 ς j ν

ς 1 ς ν

ς 1 ς ν

ς 1

X X X

X v X X v X

X X X X

X v X X v X

X X ( ) ( )( )

( ) ( ) ( ) ( )( )

( ) ( )
( ) ( ) ( ) ( ) ( )( )

( ) ( )

1
1

1

d
1 1

1 1 1 1

d 1
1

,V ,..., ,V ; t

g ,V J ,V ,..., ,V ,..., ,V ; t
V

2 a ,V V h ,V ,V V

J ,V ,..., ,V V ,..., ,V , ,V ,..., ,V ; t

a ,V J ,V

ς ν

ν

ς ν ς ν
ς= ς

ν− ν

ς θ ς ς θ
ς= θ=ς+

ν− ς θ − θ− + θ+ ν

ν

ς ν
ς=




∂  − ⋅ ∂

+ ⋅ + + ⋅ + +

⋅ + +

− ⋅

∑

∑ ∑

∑

ς ν

ς 1 ς ν

ς θ ς ς θ

1 ς θ θ 1 θ 1 ν

ς 1

X X

X X X X

X X X X X

X X X X X X

X X ( ) ( )( ),..., ,V ,..., ,V ; tς νς νX X
 (24) 

 

Expressions for the Propensity Functions 
 
In the previous section we derived the cell population master equation considering generic 
expressions for the propensity functions that pertain to transitional events such as reactions and 
divisions. Here we are going to discuss the specific forms of the propensity functions that will be 
used for the application of our model at the cell population level. 
 
Chemical Reactions 
 
Consider a reaction network of the form of equations (8) where chemical species interact inside a 
cellular volume V that is assumed to be well stirred. Following Gillespie (Gillespie, 1976), the 
propensity function aj(X,V) of reaction j is a function of the number of molecules Xi of species i 
and the volume of the “container” that hosts the interacting molecules: 
 

( )
( ) ij

N
iij

j j A
iji 1 A

X!
a ,V k N V

N V α
=

α  
= ⋅ ⋅ ⋅ ⋅ α⋅  

∏X  (25) 

 
where NA is Avogadro’s number. 
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Growth 
 
Following Cooper (1988), this study will assume exponential cell growth. Other researchers have 
proposed linear, bilinear or other laws for cell growth during one cell cycle. Irrespectively of the 
particular growth law used, the model will always be able to reproduce Malthusian growth for 
the overall cell population. However, we choose the exponential law because it is biologically 
plausible (Cooper, 1988). Then: 
 
dV g V
dt

= ⋅  (26) 

 
Thus, given the state of the cell at time t and assuming that this state does not change, the cell 
volume at times t + τ can be found for every positive t. 
 

( ) ( )( ) ( ) gV t ,V t , V t e ⋅τ+ τ = Φ τ = ⋅X  (27) 
 
DNA-duplication 
 

The DNA-duplication propensity function is ( )sa ,VX  and expresses the probability that 
duplication will happen in the next ∆t depending on the cell’s state. We use a volume dependent 
expression for the duplication propensity: 
 

( ) 1

s

1

n s

j
j n 1

n

s
s,crit X ,U

Va ,V
V +

= +

 
= ⋅δ  

  ∑
X  (28) 

 
where the Kronecker delta δ is unity when the copy numbers of chromosomal species 1 in any 
state sum to a nominal pre-duplication copy number U1. This ensures that duplication is 
performed only once per cycle, when the chromosomal DNA species have copy number equal to 
U and the cell volume (size) is close to Vs,crit. Furthermore, ns modulates the sharpness of the 
DNA-duplication mechanism: very high values result in duplication occurring precisely when 
the cell volume reaches the value Vs,crit. Lower values result in DNA duplication occurring 
randomly when the cell volume is around this critical value. 
 
Division 
 
For the division propensity we use an expression similar to that used for DNA-duplication: 
 

( ) 1

d

1

n s

j
j n 1

n

d
d,crit X ,2 U

Va ,V
V +

= +
⋅

 
= ⋅δ  

  ∑
X  (29) 
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where Vd,crit is a critical volume that need to be approached for the division to occur and nd 
modulates the sharpness of the division mechanism. Here we require the copy numbers of 
chromosomal DNA species to be equal to 2⋅U. The partitioning of the content of the mother cell 
to the two daughters is governed by the partitioning probability density function (see equation 20
). In order to construct a partitioning probability density function, we assume that volume 
partitioning is independent of content partitioning and, thus, can factorize the partitioning 
probability density function into a term for volume partitioning and a term for content 
partitioning. Following Ramkrishna (2000), the former term is assumed to have the form of a 
symmetric beta distribution: 
 

( ) ( )
( )( )

q 1 q 1

d d
d m 2

m m m

2 q V V1V | V 1
V V Vq

− −
Γ ⋅    

β = ⋅ ⋅ ⋅ −   
Γ    

 (30) 

 
where q is a parameter controlling the sharpness of the division mechanism. Higher values of q 
result in equal partitioning events being more probable. 
 
We assume binomial partitioning for all non-chromosomal DNA species. The binomial 
partitioning of each species is performed independently and the “success probability” is equal to 
the daughter to mother volume ratio. This choice has the following physical meaning: during 
division, the mother cell “donates” each of the molecules it contains to one of the daughter cells. 
For each “donation event,” the probability that one molecule will result in the first daughter cell 
is Vd1/Vm (that is, the probability of success in each Bernoulli trial). Thus, the probability of the 
first daughter inheriting Xd,i molecules of species I, given that the mother has Xm,i molecules and 
the volumes of the daughter and mother are Vd and Vm respectively, is: 
 

( )
d ,i m,i d ,iX X X

m,i d d
i d,i m,i m d

d,i m m

X V Vb X | X ,V ,V 1 for i 1,..., n
X V V

−
     

= ⋅ ⋅ − =     
    

 (31) 

 
The chromosomal DNA species require symmetric partitioning (each daughter will inherit equal 
DNA content) but with randomized state. Let us focus, for example, on the chromosomal DNA 
species i which may be an operator that may exist in one of the following three states: free (O), 
bounded with one repressor (RO), bounded with two repressors (R2O). The copy numbers of that 
species in the different states are given by vector DNA,i

mX  (subscript m stands for “mother”) 
defined as: 
 

{ }
i

j
j 1

i 1

j
j 1

n s

m,k
k n s 1

X =
−

=

+

= + +

∑
=

∑
DNA,i
mX  (32) 

 
Also, let us set the copy number of DNA species i in any state for the mother and the daughter 
as: 
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is
DNA,i

i m, j
j 1

M X
=

= ∑  (33) 

 
is

DNA,i i
i d, j

j 1

MD X
2=

= =∑  (34) 

 
Then, if the mother cell has one operator in the bounded state and the other in the free state, the 
daughter cell may inherit any one of the two operators. In general, let us focus on DNA species i 
that may exist in si states. The probability of the daughter cell inheriting DNA,i

d,1X  molecules at 

state 1 out of the DNA,i
m,1X  that the mother has and DNA,i

d,2X  out of the DNA,i
m,2X  etc., will be the 

product of the combinations of DNA,i
m, jX  per DNA,i

d, jX  for all states j, divided by the overall 
combinations of the total molecules of DNA species i in the mother per those in the daughter 
cell. This resembles the hypergeometric distribution but with a finite population containing more 
than two types of objects. For the simulation of a sequence of n draws without replacement from 
such a population see Section 3 of the Supplemental Material.  
 

( )
i

1DNA,is
m, j i

i m d DNA,i
j 1 d, j i

X M
c | ,V ,V for i 1,...,d

X D

−

=

   
= ⋅ =       

∏DNA,i
d mX X  (35) 

 
Finally assuming that the partitioning occurs independently for every species (namely non-
chromosomal DNA and chromosomal in any state), the overall partitioning probability density 
function ( )d mh ,V | ,Vd mX X  will be: 
 

( )

( ) ( ) ( )
d m

n d

d m i d,i m d i m d
i 1 i 1

h ,V | ,V

V | V b X | ,V ,V c | ,V ,V
= =

=

β ⋅ ⋅∏ ∏
d m

DNA,i
m d m

X X

X X X
 (36) 

 

Monte Carlo Simulation 
 
Inter-arrival times for reaction events 
 
Our Monte Carlo algorithm must simulate continuous cell growth and the assumed instantaneous 
events of reaction, DNA-duplication or division. Thus, we need to know the distributions of the 
inter-arrival times between these instantaneous events. To calculate these distributions, we will 
use the concept of the interval of quiescence (Shah et al., 1977).  
 
The probability at time t that the next reaction event will occur in the time interval [t+τ, t+τ+dτ] 
is equal to the following product of probabilities: 
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[ ] [ ] [ ]
reaction even occurs in no reaction occurs in no reaction occurs in

P P
t , t d t, t t, t

   
⋅    + τ + τ + τ + τ + τ  

 (37) 

 
Let us first consider the probability that no reaction event occurs, given that the cell exists in 
state (X,V) at time t. The following notation will be used: 
 

no rxn

initial number volume through
p ending time initial time, ,

of molecules time interval
    

    
    

 (38) 

 
Note that the initial number of molecules stays constant throughout the time interval in which no 
reaction occurs. Evidently, the probability that no reaction will happen at time t = 0 is equal to 1 
and this information will be used as an initial condition. Furthermore, since ar(X,V) is the 
probability density that some reaction is going to happen at the next dτr time interval we can 
write the following probability balance: 
 

( )( )( )
( )( )( ) ( )( )( )( )

( )( )

no rxn r r r r

no rxn r r r r r

no rxn

p t d t, , ,V t , d

p t t, , ,V t , 1 a , ,V t , d

subject to :

p t t, ,V t 1

+ τ + τ Φ τ + τ =

+ τ Φ τ ⋅ − Φ τ ⋅ τ

=

X X

X X X X

X

 (39) 

 
Therefore: 
 

( )( )( )( ) ( )( )( )no rxn r r r r
r

d ln p t t, , ,V t , d a , ,V t ,
d

 + τ Φ τ + τ = − Φ τ ⇒ τ
X X X X  

 

( )( )( ) ( )( )( )
r

no rxn r r r
0

p t t, , ,V t , exp a , ,V t , d
τ 

′ ′+ τ Φ τ = − Φ τ τ 
  

∫X X X X  (40) 

 
Now, the probability density that any reaction event will happen exactly at time t + τr is 
ar(X,Φ(X,V(t),τr)). Therefore, the probability that the first reaction (of any kind) after time t will 
happen at time t + τr is: 
 

( )( )( )

( )( )( ) ( )( )( )
r

some rxn r r

r r r
0

p t t, , ,V t ,

a , ,V t , exp a , ,V t , d
τ

+ τ Φ τ =

 
′ ′Φ τ ⋅ − Φ τ τ 

  
∫

X X

X X X X
 (41) 
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Equation (41) defines the probability density of the inter-arrival times of reaction events. This 
equation needs the following information: the current state of the cell (X,V(t)), the cellular 
growth expression Φ that essentially gives the volume throughout the waiting-time interval, and 
the propensity functions of each reaction. The state of the cell is known at each step of the Monte 
Carlo algorithm and the cellular growth expression Φ is obtained from equation (27). Thus, one 
can generate random numbers following density (41) at any stage of the Monte Carlo run.  
 
Note that the probability density (41) is not necessarily normalized to unity. In other words there 
may be cases where there is a finite probability that no reaction occurs in the future. This 
probability can be calculated as follows: 
 

( )( )( ) ( )( )( )
r

no rxn r r r
0

I

lim p t t, , ,V t , exp a , ,V t , d

∞

∞

τ →∞

 
′ ′+ τ Φ τ = − Φ τ τ 

 
  

∫X X X X


 (42) 

 
Therefore, if the integral I∞ diverges to infinity, it is almost sure that at least one reaction is going 
to occur in finite time. From the particular functional forms of the propensity functions, and 
assuming that Φ is monotonically increasing, one can easily deduce that in a network containing 
0th and 1st order reactions I∞ diverges to infinity. 
 

Kind of reaction to be simulated 
 
Once the Monte Carlo algorithm has determined that a reaction event is going to occur, a random 
number must be generated in order to determine which reaction is going to take place. This 
random number µ follows the probability mass function (Gillespie, 1977; Lu et al., 2004): 
 

( )( )( )
( )( )( )

r
reaction kind m

k r
k 1

a , ,V t ,
p

a , ,V t ,

µ
= µ

=

Φ τ
=

Φ τ∑

X X

X X
 (43) 

 
Thus, given the propensity functions at time t + τr the algorithm can generate a random number 
that represents which reaction event must be simulated. 
 
Inter-arrival times for duplication events 
 
One can repeat the derivation of the probability density of the reaction events’ inter-arrival times 
but now for the DNA-duplication events. The result is that the probability density of the inter-
arrival times between division events is 
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( )( )( )

( )( )( ) ( )( )( )
s

DNA dupl s s

s s s
0

p t t, , ,V t ,

a , ,V t , exp a , ,V t , d
τ

+ τ Φ τ =

 
′ ′Φ τ ⋅ − Φ τ τ 

  
∫

X X

X X X X
 (44) 

 
The probability density as(X,V) has to be chosen carefully, so that the cell divides after some 
random time that is distributed around some fraction of the E. coli division time (the latter is 25 - 
45 min for E. coli cells). To avoid infinite duplication times (equivalently: no future duplication 
events) the integral of as has to diverge to infinity: 
 

( )( )( )s
0

a , ,V t , d
∞

′ ′Φ τ τ → ∞∫ X X  (45) 

 

Inter-arrival time for division events 
 
Similarly to the inter-arrival times for reaction or DNA-duplication events, the inter-arrival times 
for division events will be given as: 
 

( )( )( )

( )( )( ) ( )( )( )
d

no div d d

d r d
0

p t , ,V t ,

a , ,V t , exp a , ,V t , d
τ

+ τ Φ τ =

 
′ ′Φ τ ⋅ Φ τ τ 

  
∫

X X

X X X X
 (46) 

 
To avoid infinite division times the following must hold: 
 

( )( )( )d
0

a , ,V t , d
∞

′ ′Φ τ τ → ∞∫ X X  (47) 

 

Volume ratio of the mother to the daughter cell 
 
Once the Monte Carlo algorithm has determined that a division event is going to occur, a random 
number needs to be generated in order to determine the volume ratio of mother to daughter cell. 
This random number ρ ∈ [0,1] must follow a symmetric distribution in the sense that ρ and 1 − ρ 
must be identically distributed. In accordance to equation (30): 
 

( )~ q,qρ β  (48) 
 

Number of non-chromosomal molecules inherited by one daughter cell 
 
For partitioning the non-chromosomal DNA species, the algorithm has to determine for each 
species how many molecules will be inherited by one daughter. Thus, n random numbers, one for 
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each species, must be generated. In accordance to (31), these numbers will be chosen to follow 
binomial distributions with probability of success equal to ρ and number of trials equal to the 
molecular content of the mother cell. 
 

( )i i~ , for i 1,..., nν ρ ω =b  (49) 
 

Number of chromosomal molecules inherited by one daughter cell 
 
For partitioning the chromosomal DNA species, the algorithm will apply equal partitioning on 
the number of molecules but it will still have to determine the states of the inherited DNA 
molecules. As shown in Section 3 of the Supplemental Material, for the algorithm to determine 
how many molecules of chromosomal DNA species i will be inherited in state j, it suffices to 
generate a random number i 1
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Note that for the generation of each random number pertaining to state j the quantities that enter 
the calculation are always known: they are either mother cell contents or daughter cell contents 
of states 1,…, j − 1. 
 

Outline of the algorithm 
 
Consider a population that at time t has ν cells, each at state (Xi,Vi) for i = 1,…,ν. We assume 
that the cells do not interact with each other and, thus, we can compute a DNA-duplication, a 
division and a reaction inter-arrival time for each one of the cells. For each cell i (i = 1,…,ν), we 
can compute the inter-arrival times for the occurrence of a reaction, a DNA-duplication or a 
division event. The event that will take place first will be the one with the shortest inter-arrival 
time τ. Then, the first event will be simulated. If the event is a division, then both of the newborn 
cells will be taken into account by increasing the cell population number by one and storing the 
state of both newborn cells in the population state vector. Of course, one daughter will replace 
the mother cell. If the event is a reaction or a DNA-duplication, the state of the individual cell in 
which the reaction happened will be updated. Thus, the new state of the population will reflect 
the reaction duplication or division event and the inter-arrival times for the occurrences of the 
reaction or division events will be updated. For additional details on the algorithm (pseudo-code) 
please refer to Section 1 of the Supplemental Material. 
 
The following important observations will help us optimize the algorithm: 
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1. The inter-arrival times of one cell are independent of those of all other cells. Thus, suppose 
that we have a population of ν cells at time t and the algorithm determines that a reaction or 
duplication event will happen in cell i at time t + τ. Then, the state of cell i will change and 
we will have to calculate new division and reaction inter-arrival times for cell i. For all the 
other cells, however, we can merely subtract τ from their inter-arrival times and the resulting 
inter-arrival times will follow the correct probability distributions for the respective event 
occurrences (see also Gibson & Bruck, 2000). We can use this strategy because there is no 
interaction between the cells in the population and, thus, if a reaction happens in cell i the 
other cells will not be affected. This would not be the case if the cells interacted with each 
other by an extracellular messenger and the event to be simulated was secretion of one 
messenger molecule to the extracellular space. In that case, all cells in the population would 
be affected by this event. Similarly, if a division event happens we will have to generate 
inter-arrival times for the reaction and division events of the two daughter cells. For all other 
cells, however, we can merely subtract τ from their inter-arrival times. Furthermore, we can 
eliminate the need for subtracting τ each time an event occurs by working with absolute 
rather than relative time since we can then always store the absolute time for the occurrence 
of the events of interest. 

 
2. Since a duplication event always precedes a division event, we can set the duplication time to 

infinity immediately after a duplication event and recalculate it after a division event. 
Similarly, we can set the division times of the two daughters to infinity immediately after 
their birth and recalculate them after a duplication event. 

 
3. Once we have taken care of the precedence of the duplication to division, the inter-arrival 

times for division and duplication are only volume dependent and volume evolves 
deterministically. Thus, we can calculate duplication or division inter-arrival times only once 
(after a division or a duplication event respectively). We do not have to update them every 
time a reaction event happens. This would not be the case, however, if the division or 
duplication propensities were also dependent on the copy numbers of other species in the 
cell. 

 
4. The above observations enable us to make the minimum possible updates to the vectors 

containing the absolute times for the occurrences of the events to be simulated. Evidently, 
after each simulated event we will have to update at most 2⋅(m+2) absolute times (reaction, 
division and duplication times for two newborn cells) and to find the minimum between all 
times. Both tasks can be efficiently accomplished by using heap structures (binary trees). The 
absolute times for reaction, division and duplication are stored in three different heaps. 
Sorting in the heap occurs automatically upon update or addition of a new time after 
simulation of reaction/duplication or division events respectively. 

 
Finally, we note that the number of cells in a population typically increases exponentially with 
time, thereby making the computational cost of long simulations prohibitive. To overcome this 
issue, we employed a constant number Monte Carlo scheme, in which a maximum number 
Ncellsmax of tracked cells (e.g. Ncellsmax = 10000) is retained in the population under consideration. 
If a division event results in a population size equal to Ncellsmax + 1, then the algorithm removes 
randomly a single cell from the population to restore the population size to Ncellsmax (Lee & 
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Matsoukas, 2000; Smith & Matsoukas, 1998). Each cell in the population has equal probability 
of being discarded. This procedure results in a biased estimation of quantities, such as the cell 
population average. However, the bias becomes negligible as the maximum number of tracked 
cells (Ncellsmax) increases. 
 

NUMERICAL RESULTS  
 
Extrinsic and Intrinsic Noise in a Two Promoter System 
 
For a first test of our algorithm, we will simulate the population dynamics resulting from a 
genetic network that consists of two genes under the influence of two identical repressible 
promoters. Elowitz and coworkers (Elowitz et al., 2002) used such a genetic network to 
decompose the extrinsic and intrinsic contributions of noise to the overall single cell noise. In 
particular, two GFP variants, a yellow (YFP) and a cyan (CFP), were cloned in opposite 
positions from the origin of replication into the E. coli chromosome. Expression of both proteins 
is driven from identical Lac repressible promoters and the fluorescence intensity of both variants 
is approximately the same. Thus, measurements of the fluorescence of the cells in the two 
different channels, yellow and cyan, can give indications of the intrinsic and the extrinsic noise. 
In particular, difference in the fluorescence of the two channels for the same cell originates from 
the intrinsic noise, and difference in the fluorescence between distinct cells is a result of the 
extrinsic noise. 
 

Reaction Network, Growth, Duplication and Division Mechanisms 
In order to model this system we consider a set of reactions with the participating species 
summarized in Table 2. Note that we have two chromosomal DNA species (the two operators) 
each of which can exist in two states namely OYfp, OYfpLac and OCfp, OCfpLac. Therefore the 
species vector is: 
 

{ }Yfp Cfp Yfp Yfp Cfp Cfp

non chrom. DNA chrom. DNA species 1 chrom. DNA species 2
in its various states in its various states

RP , RB, Lac, R , Yfp, R , Cfp , O , O Lac, O , O Lac
−

=S
 



 (51) 

 
The reaction network is summarized in Table 3 together with the propensity functions of the 
reactions. The expression for the propensity functions are constructed using general formula (25) 
for each reaction. Equation (26) is used to simulate the cell growth process (exponential growth). 
The DNA-duplication propensity is taken as in expression (28). At every division event the total 
operator contents for yfp and cfp are doubled by introducing free operator contents equal to 
Oyfp,Total and Ocfp,Total. The division propensity is given by equation (29) and the partitioning 
mechanism is given by equations (30, 31, 35, 36). Table 4 gives the values for all parameters 
used in our simulations. 
 
The system was simulated using several different parameter sets in order to elucidate the effect 
of each mechanism on the overall, as well as extrinsic and intrinsic noise (heterogeneity) in the 
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cell population. The parameter values for the nominal set appear in Table 4 and when different 
parameter values are used, it is noted so in the particular Figure caption. For the nominal 
parameter set, the rate of repressor production k3 is set equal to zero. Thus, even if repressor 
molecules exist initially, they will soon degrade leaving the operator eventually unrepressed. 
 
The initial conditions for all simulations were constructed by solving the corresponding 
deterministic model and converting the concentrations to numbers of molecules. A population 
consisting of one cell (ν = 1) having those molecular contents is then used as the initial 
condition. Alternatively, one can also simulate a single cell chain prior to simulating the whole 
cell population.  To obtain a cell chain, we start with a cell and track only one daughter after 
each successive division event. After sufficient time has passed so that the process has reached 
time invariance, the state of the cell is recorded. A population consisting of one cell having that 
recorded state can then be used as initial condition for the simulation of the population. 
 
Nominal Parameter Set 
 
The parameter values for the nominal parameter set (Table 4) were chosen such that the 
simulation results agree qualitatively with the results in Elowitz et. al (Elowitz et al., 2002). 
Figure 2 shows a simulation for this parameter set for which all sources of noise that can be 
captured with our model are present. Panel (a) shows transients for the volume and CFP content. 
It is apparent that there is considerable stochasticity in both the content time course as well as the 
division times. Panel (b) portrays the population average CFP content with respect to time and 
panel (c) the number of individual cells in the population. For low numbers of cells the average 
content oscillates following the dynamics of the division. As more cells are born, however, their 
divisions occur in a much less synchronized fashion and the population average tends to a 
constant value. 
 
Finally, panel (d) shows the normalized YFP content versus the normalized CFP content in a plot 
similar to that used by Elowitz et al. (2002). Each point in this plot corresponds to one cell of the 
population. The observed scatter of points indicates the existence of noise which results in cell 
population heterogeneity. In our case, transcriptional and translational stochasticity is significant 
due to the low copy numbers of mRNA and protein. These are the intrinsic noise sources and 
contribute to the spread of points far from the diagonal CFP = YFP. Furthermore, the 
stochasticity in DNA-duplication and division, as well as the fluctuations in the contents of RNA 
polymerase and ribosomes, are the extrinsic noise sources and contribute to the elongation of the 
ellipsoid along the diagonal CFP = YFP. 
 
Homogeneous Populations 
 
In homogeneous populations, all cells have to behave identically which means that (i) the 
fluctuations of the species copy numbers due to reactions must be infinitesimally small, (ii) 
duplication and division events must occur in synchrony, (iii) the cells must divide in a way that 
the two daughter cells have equal volumes and contents. These three conditions will be met when 
the following are true. 
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First, the species copy numbers have to be as high as possible. It is known (Schrödinger, 1967) 
that the standard deviation of the species copy number in a reacting system is of the order of the 
inverse square root of the total number of interacting molecules. Thus, these fluctuations become 
negligible as the overall production rates of the interacting species become much larger than their 
respective degradation rates. Note that manipulating the copy number of the chromosomal 
operators has no physical significance. When no repression exists, however, the operator is 
always in the unbound state and thus does not contribute at all to the overall noise. 
 
When reactions and divisions are synchronized, nd and ns must tend to infinity in equations (28) 
and (29). Also, parameter q in equation (30) must tend to infinity in order to have the cells 
partition into two daughters of the same volume,. Thus, the random number that expresses the 
ratio of volumes, ρ = Vd/Vm, will almost surely take the value of ½. In this case, and for large 
copy numbers of molecules in the cell, cell contents will then be partitioned equally between the 
two daughters. Equal partitioning of the contents is guaranteed by the limiting properties of the 
binomial distribution: as the number of molecules to be partitioned increases to infinity, the 
probability in the binomial distribution (31) tends to accumulate to the point ρ⋅Xm. Thus, each 
daughter will inherit approximately half of the molecules of the mother cell. 
 
Figure 3 shows a simulation of the case where no heterogeneity is observed. For this case, the 
single cell time-courses for CFP content and volume appear periodic (Figure 3a), and so does the 
cell population average since the cells are synchronized (Figure 3b). As a result of this 
synchrony, the number of cells in the population increases in steps, in each of which the number 
of cells is doubled (Figure 3c). Finally, since no intrinsic or extrinsic noise is present, the CFP 
and YFP contents of all cells are identical at all times and, thus, the CFP versus YFP plot shows 
that all points representing cells are concentrated to a very narrow region of the CFP-YFP plane. 
 
Only Extrinsic or Only Intrinsic Noise 
 
We have so far analyzed the limiting cases where the noise is negligible and where all sources of 
noise are significant. However, one can construct parameter sets where only extrinsic or only 
intrinsic noise is present. Thus, Figure 4a shows the CFP versus YFP graph in the case where 
only intrinsic noise is present. Stochasticity in the biomolecular reactions is significant, but DNA 
duplication and symmetric division events occur in synchrony. In this case, the points that 
represent cells form a circular pattern, showing that the variability in the Cfp and Yfp content of 
a single cell is equal to the variability of Cfp (or Yfp) content between different cells of the cell 
population. 
 
On the other hand, Figure 4b pertains to a case where only extrinsic noise is present. The latter is 
brought about only by fluctuations in the RNA polymerase. Division is still symmetric in this 
case, and the duplication and division events are synchronized. Moreover, extrinsic noise is 
negligible because the transcriptional rates of cfp and yfp are high, thereby keeping mRNA and 
protein contents high. In this case, the points in the CFP and YFP graph are arranged along the 
line CFP = YFP. This indicates that the CFP and YFP contents are identical in any cell, but there 
exists variability between different cells of the cell population. 
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Furthermore, in order to isolate the effect of stochastic division we simulated a case that involves 
only this noise source (Figure 4c). In this case, the cell division events occur asynchronously, 
and thus, the cell population splits into two subpopulations, the mother cells and the daughter 
cells, that appear as two dots in the scatter plot because no other source of noise is present. Note 
that since division is still symmetric, the protein contents of the former are twice those of the 
latter (normalized contents of 1.12 and 0.56 respectively). 
 
Similarly, the effect of stochastic DNA duplication was isolated as shown in Figure 4c. For this 
simulation, DNA duplication events are not synchronized between the cells, thereby creating 
heterogeneity in the rates of protein expression. This randomness manifests as an extrinsic noise 
source and results in a spread of the points along the line CFP = YFP. 
 
Effect of Repression 
 
In order to elucidate the effect of repression on the extrinsic and intrinsic noise, we first consider 
a parameter set that results in high numbers of molecules for all the species except the operators. 
Figure 5a shows that, for this parameter set, significant intrinsic noise is observed due to the 
uncorrelated fluctuations of the states of the cfp and yfp operators. If we consider a parameter set 
for which all species copy numbers are high, on the other hand, the noise becomes negligible as 
shown in Figure 5b. Note that the total copy number for each of the two operators is 1,000. 
 
The two simulations just discussed pertain to cases where the repressor copy numbers are high. 
This is why no extrinsic noise was observed. If the repressor copy numbers are low, however, 
fluctuations in the state of the repressor create variability among the cells of the population 
(extrinsic noise), which is manifested as an ellipsoidal deformation of the cloud of points along 
the line CFP = YFP (Figure 5c). For the simulation of Figure 5c, only one operator for each 
protein exists. When the operator copy numbers are high (Figure 5d where Oyfp,Total = Ocfp,Total = 
1000), then both intrinsic and extrinsic noise become negligible. One might have expected that 
only intrinsic noise would be eliminated. Since the repressor fluctuates in low copy numbers, 
however, the additional operators it can repress are a tiny fraction of the overall operators that 
exist in this case. Thus, the fluctuations of the number of free operators are low, thereby making 
extrinsic as well as intrinsic noise negligible. 
 

Emergent complexity in population dynamics of protein expression 
 
In the previous section, we assumed volume dependent growth rate and investigated the effect of 
extrinsic and intrinsic noise sources in the population behavior. In this section, we will consider a 
more complicated situation in which noisy protein expression slows down single cell growth. 
Cell population simulations will elucidate how this deceptively simple negative feedback can 
lead to emergent complexity in population level dynamics. The reaction network for this system 
appears in Table 5. The scheme incorporates constitutive repressor production, repression and 
induction of protein expression as well as leak expression (reaction viii). The inducer is assumed 
to exist in high concentrations that are also equal in the extracellular and intracellular space. 
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Thus, the concentration of the inducer [Iex] appears in the propensity of reaction (iii) rather than 
the number of inducer molecules. 

 
Constitutive protein expression and size dependent growth rate 
 
Let us first simulate the system neglecting repression and assuming growth rate to be only size 
dependent. For these simulations, no repressor is produced (parameter kMR is set to zero) and 
thus the protein is constitutively expressed. Single cell growth is exponential (equation 27) and at 
every division event the total operator content is doubled. The division propensity is given by 
equation (29) and the partitioning mechanism is given by equations (30, 31, 35, 36). Table 6 
gives the values for all parameter used in our simulations. These values were loosely based on a 
previous work on the effect of intrinsic stochasticity on the lac operon system (Stamatakis & 
Mantzaris, 2009). 
 
We investigate two scenarios: (i) slow transcription and fast translation and (ii) fast transcription 
and slow translation. These scenarios correspond to panels (a, b) and (c, d), respectively of 
Figure 6. Panels (a) and (c) show scatter plots for the protein contents versus cell volumes, in 
which each point represents one cell. High (low) numbers of points in the (P, V) plane are 
denoted with warm (cold) colors. Thus, this graph mimics a flow cytometry scatter plot in which 
the horizontal axis could be a fluorescence level (FL1) and the vertical axis the forward scatter 
(FSC). Panels (b) and (d) show the single cell probability distribution in comparison to the cell 
population number density for the protein content. 
 
These graphs reveal that when transcription is slow, transcriptional noise dominates population 
heterogeneity (Figure 6, panel a) and the variability of the protein contents in the cell population 
is larger. Furthermore, the probability distribution for the protein content in a cell chain appears 
to be very close to the distribution of protein contents across the cell population (Figure 6, panel 
b). 
 
When translation is slow and transcription is fast, several interesting phenomena are observed. In 
this case, the dominant source of noise is at the translational level and, since mRNA is abundant, 
the population variability is significantly lower than in the previous case. Such phenomena have 
been observed before (Thattai & van Oudenaarden, 2001). What is notable in this case, however, 
is that the subpopulations with different DNA contents can be identified in the scatter plot. The 
cells that have not undergone DNA duplication yet have lower volumes and protein contents, in 
contrast to those that have undergone this process. This generates bimodality in the distribution 
of protein contents (Figure 6, panel d).  
 
Interestingly, Figure 6d shows that the distribution of protein contents in a cell chain (see Figure 
1 for definition) is different than that across the cell population. Specifically, the model predicts 
lower protein contents for the cell population, since the lower mode of the population 
distribution is more prominent than the corresponding mode of the cell chain. The opposite holds 
for the upper mode. This phenomenon is a direct consequence of the fact that cell populations 
include all pairs of newborn daughter cells, whereas only one of the daughter cells is accounted 
for in a cell chain. More specifically, the division event produces two daughters with low 

 -27- 



contents which both become members of the overall cell population. Therefore, in the cell 
population, the lower contents of the newborn cells are weighted more heavily due to the fact 
that the newborn cells at time t + dt are twice as many as those which underwent division in the 
time interval [t, t + dt]. Such an effect is absent when one is simulating a cell chain, thereby 
generating a disparity between the cell chain and the cell population distributions observed in 
panel (d). Note that this disparity also exists in panel (b) but is much less prominent because of 
the dominance of the transcriptional noise in the overall heterogeneity. 
 
Interplay between growth rate variability and intrinsic noise 
 
For the simulations just shown, the single cell growth rate was taken to be dependent on the 
volume (size) of the cell and independent of the protein concentration. Let us now assume that 
high protein concentrations result in growth retardation either due to toxicity or just by imposing 
a burden on the metabolic machinery of the cell. Consequently, the exponential single cell 
growth rate equation (26) no longer holds in this case. Instead, we can model this retardation 
effect by considering a growth rate that depends on volume and protein concentration: 
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[P]crit is the protein concentration for half-maximal growth (the maximum growth is obtained for 
zero protein concentration), and ng modulates the sharpness of the decrease of the growth rate. In 
this case, function Φ will be the solution of the differential equation: 
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and is given in closed form as: 
 

( )
( )( )( )g 0 1 g

0 1
n g t C ln α n

αΦ V, t | V
W e− ⋅ ⋅ + −

=  (54) 

 
where: 
 

[ ]

( )
g

critA
n

1 0
g 0

Pα
N P

1 αC ln V
n V

=
⋅

 = − ⋅ 
 

 (55) 

 -28- 



and W is the product-log or Lambert W function, namely the inverse of f(w) = w∙exp(w). Note 
that in the argument of W in equation (54) evaluation of the exponential may result in overflow 
errors if large times are considered (such as the division times when growth is very slow). To 
circumvent this problem we used the de Bruijn and Comtet’s expansion for W(ex) retaining terms 
up to ((ln(ln(x))/ln(x))6) (Corless et al., 1997). 
 
Figure 7a shows a logarithmic plot of the number of cells in the population as a function of time 
for three different values of [P]crit: 275, 400 and 1,200 nM. The simulation predicts that the 
number of cells in the population increases exponentially in time, and the rate of increase 
(proliferation rate) is a strong function of [P]crit. The lower the value of [P]crit, the lower the 
average single cell growth rate is and, therefore, the higher the cell division time becomes as 
shown in panel (b). The division time probability densities shown in panel (b) were calculated 
from a cell chain. It is interesting to observe that the division times exhibit a higher variability as 
the proliferation rate decreases. As shown in Table 7, the coefficient of variation (CV) for the 
division time increases from 15 % for [P]crit = 1200 nM, to 25 % for [P]crit = 275 nM. 
 
Panel (c) of Figure 7 shows the effect of [P]crit on the distribution of protein concentration. We 
observe that the distribution shifts to higher protein concentrations for lower values of [P]crit, a 
phenomenon that could be explained as follows: since lower [P]crit values result in slower growth 
rates; the dilution effect due to the expansion of the cell volume (Fredrickson, 1976) 
progressively diminishes. Consequently, more protein is accumulated into the cell, thereby 
shifting the cell population distribution for [P] to higher values. Additionally, the CV of the 
distribution increases (Table 7), an effect that could be attributed to the higher variability of 
division times for lower [P]crit. 
 
It is of great interest to investigate the effect of noise strength on the cell population proliferation 
rate, since for other systems it has been observed that noise promotes proliferation (Thattai & 
van Oudenaarden, 2004). To this end, we perform simulations with the parameter sets of Figure 
6b and 6d for a range of critical concentrations [P]crit for half-maximal growth. These two 
parameter sets result in different noise strengths, which we will refer to as high (Figure 6b, high 
CV in the distribution) and low (Figure 6d, low CV).  In the absence of growth retardation 
effects (that is if [P]crit → ∞), the mean protein content and concentration over the population are 
practically the same (P  ≈ 193 molecules, [P] ≈ 348 nM), thereby allowing us to isolate the effect 
of noise magnitude on proliferation rate. The latter is quantified by the (average) doubling time, 
calculated as follows: for each simulation we fit a line to the base 2 logarithm of the number of 
cells versus time, and take the doubling time as the inverse of the slope. 
 
The results are shown in Figure 8a and 8b. The retardation effect is apparently more prominent 
for lower values of [P]crit, for which the cell grows more slowly, thereby taking more time to 
divide. Hence, for both noise strengths the doubling time is a decreasing function of [P]crit. 
However, there is a striking difference between the doubling times computed for the two 
parameter sets. For low [P]crit values (strong growth retardation), high noise appears to promote 
faster proliferation. This trend is reversed for high [P]crit values for which high noise results in 
lower proliferation rates. Figure 8b shows that the difference between the doubling times in the 
two cases becomes more pronounced for higher values of the sharpness parameter ng (see 
equation 53). For an intermediate [P]crit the proliferation rates of the two cases become equal. 
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Panels (c) and (d) of Figure 8 provide an explanation for this “inversion” effect. For high noise, 
the cell population distribution of the protein concentration is wider than that for low noise, as 
shown schematically in Figure 8, but they both have the same mean. The dashed vertical line 
indicates the critical protein concentration [P]crit for which half-maximal growth rate is achieved. 
For protein concentrations [P] > [P]crit, the retardation effect is rather strong, while the opposite 
holds for [P] < [P]crit. Let us first consider the case where [P]crit is high (Figure 8c). In this case, 
the proportion of the high noise distribution that lies to the right of the dashed line is much 
greater than the corresponding proportion for the low noise distribution. Consequently, the 
population following the high noise distribution is more susceptible to growth retardation, and 
therefore, the population with the low noise distribution will proliferate faster. This situation is 
reversed for low [P]crit (Figure 8d). In the latter case, the low noise distribution lies almost 
entirely in the region where the retardation effect is strong, and thus the population exhibiting 
low noise will proliferate faster. The arguments just presented neglect the specifics of single cell 
growth shaping the cell population distribution (see discussion of Figure 7). They provide, 
however, a simple intuitive explanation of the behavior observed in Figure 8a and 8b. The same 
arguments are also valid for multimodal distributions, such as those of Figure 6d. In conclusion, 
noise can play a dual role. It can either promote or inhibit cell proliferation, depending on the 
specifics of the underlying single cell dynamics. 
 

Inducible protein expression in the presence of noise and growth rate variability 
 
Having investigated the dynamics of the systems in the absence of repressor, we now turn our 
attention to the case where repressor is being produced and protein expression is triggered by a 
non-metabolizable inducer (such as IPTG). 
 
Figure 9a shows the average doubling time with respect to the extracellular inducer 
concentration for a low value of [P]crit (the critical protein concentration for half maximal 
growth), and for the two different noise magnitudes investigated in Figure 8. Interestingly, the 
“inversion” effect is also observed in this case and can be explained in a similar way as before.  
For low induction levels, the low noise distribution remains localized to low protein 
concentrations [P] < [P]crit whereas the high noise distribution spans across a wide concentration 
range, including values [P] < [P]crit (refer to Figure 8c). Thus, low induction levels promote faster 
growth rates (shorter doubling times) for the population exhibiting low noise. The situation is 
reversed for high induction levels, for which the low noise distribution now lies entirely in a 
range of concentrations that result in slow growth. The high noise distribution on the other hand 
exhibits a tail at low protein concentrations for which cells proliferate faster (refer to Figure 8d). 
Hence, for high induction levels, the population with the high noise grows faster. This inversion 
effect is suppressed for higher values of [P]crit, as shown in Figure 9b, since for such values both 
distributions span protein concentrations appreciably smaller than [P]crit. In this case, low noise 
invariably results in faster growth. 
 
It is also worth noting that due to the dilution effect previously discussed in Figure 7c, the 
average protein concentration of the cell population is affected by the value of [P]crit. In 
particular, this average concentration is observed to shift to higher values for more pronounced 
growth retardation, as shown in Figure 9c.  
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From the preceding discussion it emerges that if one is interested in producing high amounts of a 
protein that slows down cell growth, high induction levels have two major competing effects. On 
the one hand, induction leads to the de-repression of the gene of interest and subsequently to 
high protein expression rates; this is a desirable effect. On the other hand, protein accumulation 
following induction impedes single cell growth and thus the number of cells in the population 
increases at a lower rate; this is an undesirable effect, since the protein yield is proportional to 
the number of cells harvested. Thus, for very high or very low induction levels, protein yields 
would be low. It is expected that an optimal induction level exists, for which the protein yield is 
maximized. 
 
Using our framework, we can identify this optimal induction level. To this end, we assume that a 
batch reactor is inoculated with 108 cells at time ti = 0 hrs and the cells are harvested at time tf = 
12 hrs. The protein yield would then be equal to the number of cells at the final time multiplied 
by the average protein content over the population. Note that for the calculation of the latter we 
need to average over the cell population number density function and not the probability density 
of a cell chain (see Figure 6d and pertinent discussion). Thus: 
 

fg t8Y 10 P 2 ⋅= ⋅ ⋅  (56) 
 
where Y is the yield in mols, P  the population average protein content and g  the population 
average growth rate (obtained by linear fitting of the log2 of the number of cells versus time). 
Figure 10 presents the resulting yields as a function of extracellular inducer concentration. Panel 
(a) corresponds to the high noise parameter set and panel (b) to the low noise case. As expected, 
the yield is a monotonic function of induction level when there is no growth retardation. If 
retardation occurs, the simulations predict that maximum yield is achieved for relatively low 
induction levels. Stronger retardation shifts the optimum induction levels to lower values for 
both noise magnitudes (high, panel a; and low, panel b). Notice also that low noise leads to 
higher yields, due to the fact that higher proliferation rates are achieved for induction levels in 
the vicinity of the optimum one (namely for Iex around 500 µM to 1 mM). 
 

DISCUSSION 
 
This study presented the development of a cell population master equation that models the 
dynamics of a heterogeneous cell population. The processes modeled are cell growth, 
intracellular reactions, DNA-duplication and cell division and the equation treats the reacting 
molecules and the cell numbers as discrete quantities. We also developed a Monte Carlo 
algorithm that allows for the simulation of exact paths of this cell population master equation We 
used this algorithm to demonstrate the effect of various extrinsic and intrinsic noise sources on a 
two-promoter system, as well as emergent complexity at the cell population level for an 
inducible expression system in which protein accumulation slows down growth. 
 
The importance of developing these tools becomes apparent in view of the complex interplays of 
the different sources of heterogeneity observed in biological systems. Studying one source of 
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heterogeneity in isolation can definitely give insight on the effect of this source. For example, a 
Gillespie simulation can show the effect of stochasticity in intracellular reactions. However, the 
sources of heterogeneity are in dynamical interaction. In the second system studied here, the 
effect of stochasticity in intracellular reactions depends on the cell size and the number of DNA 
molecules that exist in the cell. Thus, if we consider two cells, one of which has undergone 
DNA-duplication and is larger than the other, stochasticity in intracellular reactions will result in 
different phenotypic variations for these cells. This was demonstrated by the numerical results 
presented in the previous section, in which a cell population was observed to split into two 
subpopulations as a result of stochasticity in division (Figure 4c), or stochasticity in DNA 
duplication and low intrinsic noise (Figure 6d). Consequently, a mathematical framework that 
can accurately describe the interactions of the various sources of heterogeneity may reveal novel 
features that could not be discovered by studying each source in isolation from the others.  
 
Furthermore, the necessity of focusing on populations rather than on single cells becomes 
evident when the number of cells in the population may change as a result of the function of the 
genetic network under consideration. Typical examples of such genetic networks are those that 
contribute to the survival of a cell population under environmental stress conditions like heat 
shock protein systems (heat shock protein systems, Genevaux et al., 2007) or antibiotic 
resistance (Jayaraman, 2008), post-segregational killing systems (Mongold, 1992), or the cell 
cycle (Murray, 2004). Moreover, it is important to take into account the dynamics of the whole 
cell population when phenotypic variability, results in differential fitness. This study investigated 
such a case, in which protein accumulation slows down single cell growth. Since protein 
expression is noisy, there is significant variability in the protein concentrations of the cell 
population, which results in growth rate variability. For this case, our simulations revealed that 
the magnitude of intrinsic noise affects the cell population proliferation rates: high noise may 
lead to faster or slower proliferation depending on the strength of the growth retardation effect. If 
protein expression is triggered by an extracellular inducer, we also showed that, in the presence 
of growth retardation, there is an optimum level of induction that maximizes protein yield for a 
batch process. 
 
The mathematical and computational tools developed here are suitable for the analysis of more 
complicated cases as well. In a system, for example, where two phenotypes exist with one 
phenotype growing faster than the other, one expects that the faster growing phenotype will 
become dominant. Now, suppose that a drug is administered in the environment and only the 
slower growing phenotype exhibits drug resistance. In this case, it is not trivial to predict which 
phenotypes and at what fractions will be observed in the cell population. In silico viability 
studies with our framework could give tremendous insight in patient recovery and relapse during 
treatment of a disease with a drug. 
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FIGURE LEGENDS 
 

Figure 1: Cell chain versus cell population. 
 
Figure 2: Panel (a): Transient behavior of the CFP content and the volume for one cell chain out 
of the cell population. Panel (b): Transient behavior of the average CFP content of the cell 
population. Panel (c): Number of cells in the population as a function of time. Panel (c): 
Representative stochastic paths for the molecular content and the volume for the first 25 min 
(both computed by MC simulation). Panel (d): Normalized YFP content with respect to the 
normalized CFP content. Each point represents one cell. Color coding corresponds to density of 
points. Nominal parameter set (Table 4). 
 
Figure 3: Negligible intrinsic noise and synchronized DNA duplication and division. Panels (a-d) 
as in Figure 2 for the following parameter set: k1 = 4800 nM/min, k2 = 8500 nM/min, k5 = 0.12 
(nM⋅min)−1, ns = nd = 10000. The requirement q → ∞ was numerically implemented by setting 
the daughter volumes equal to half the mother volume at every division. All other parameters as 
in Table 4. 
 
Figure 4: Isolation of intrinsic and extrinsic noise sources. Panels (a): intrinsic transcriptional 
noise only. Parameters as in Figure 3 but with k5 = 2⋅10−4 (nM⋅min)−1. Panel (b): extrinsic noise 
arising only from fluctuations in the RNA polymerase. Parameters as in Figure 3 but with k1 = 
1.2 nM/min, k5 = 480 (nM⋅min)−1. Panel (c): extrinsic noise arising from stochasticity in division 
as the only source. Parameters as in Figure 3 but with nd = 20. Panel (d): extrinsic noise arising 
from stochasticity in division as the only source. Parameters as in Figure 3d but with ns = 20. 
 
Figure 5: Effect of repression in the apparent intrinsic and extrinsic noise. Panel (a): intrinsic 
apparent noise for single operators and high molecule numbers for other species. Parameter 
values as in Figure 3 but with k3 = 2000 nM/min, k4 = 2.4⋅10−5 (nM⋅min)−1. Panel (b): negligible 
noise for multiple operators. Parameter values as in panel (a) with k5 = 0.12⋅10−3 (nM⋅min)−1, 
Ocfp,Total = Ocfp,Total = 1000. Panel (c): extrinsic and intrinsic apparent noise for low repressor 
copy numbers and single operator. Parameter values as in panel (a) with k3 = 8.1⋅10−2 nM/min, k4 
= 7.2⋅10−1 (nM⋅min)−1. Panel (d): negligible noise for multiple operators even for low repressor 
numbers. Parameter values as in panel (b) with k3 = 35 nM/min, k5 = 0.12⋅10−3 (nM⋅min)−1, 
Ocfp,Total = Ocfp,Total = 1000. 
 
Figure 6: Cell population scatter plots and comparison of the cell chain versus population 
distributions for the system, in the absence of repressor (kMR = 0 nM/min). Panels (a, b): slow 
transcription, k1MP = 0.5 min−1, k0MP = 0.01 min−1, and fast translation, kP = 30 min−1. Panels (c, 
d): fast transcription, k1MP = 50 min−1, k0MP = 1 min−1, and slow translation, kP = 0.3 min−1. The 
error-bars in panels (b) and (d) show the mean and the two standard deviations for the population 
distributions (each line segment denotes one standard deviation). The values of parameters that 
are not mentioned appear in Table 6. 
 
Figure 7: Cell population simulations when protein production results in retardation of cell 
proliferation in the absence of repressor (kMR = 0 nM/min) for different values of [P]crit (noted in 
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the legends). Panel (a): number of cells in the population versus time. Panel (b): probability 
density of the division times from a simulation of a cell chain. Panel (c): cell population 
distributions of the protein concentration. Fast transcription, k1MP = 50 min−1, k0MP = 1 min−1, and 
slow translation, kP = 0.3 min−1. Other parameters as in Table 6.  
 
Figure 8: Effect of noise strength on cell proliferation rates in the absence of repressor. Panel (a): 
kMR = 0 nM/min; intermediate sharpness value, ng = 5. Panel (b): as in panel (a) with higher 
sharpness value, ng = 10. Parameter values: for the high noise simulations as in Figure 6a, b and 
for the low noise as in Figure 6c, d. Panels (c, d): explanation of the inversion effect shown in 
panel (a). See text for details. 
 
Figure 9: Panel (a): Average doubling time as a function of external inducer concentration [Iex], 
for different noise magnitudes. High and low noise case parameter sets as in Figure 8a, b, 
respectively, and kMR = 0.5 nM/min, kR = 8 min−1, [Pcrit] = 380 nM. Panel (b): as in panel (a), 
with [P]crit = 500 nM. Panel (c): protein concentration in the cell population at 360 min, as a 
function of [Iex] for the low noise case and varying [P]crit noted in the legend (∞ denotes absence 
of growth retardation). Each bar denotes one standard deviation of the cell population 
distribution. 
 
Figure 10: Protein yields as a function of extracellular inducer concentration for three different 
values of [P]crit. Panel (a): high noise case (parameter set as in Figure 9a, b). Panel (b): low noise 
case (parameter set as in Figure 9c, d). 
 
 

 -39- 



TABLES 
 

Table 1. (a): Summary of the sources of heterogeneity taken into account by the major 
theoretical frameworks pertaining to cell populations 
 

 Intrinsic 
Noise 

Intracellular 
Parameter 
Distributions 

Growth DNA 
Species 

DNA 
Duplication 

Stochastic 
Division 

Population 
Level 

Cell Population 
Balances        
Ensemble 
Methods  

 1      
SVNMC 

Algorithm 
 2       

Our Framework  
 3      

 
1 Cell-to-cell variability is introduced a-priori with distributions in initial values of intracellular 

parameters and kinetic constants. 
 

2 Intrinsic noise is realized through the Langevin formulation that does not account for the 
discrete nature of molecular contents.  

 
3 Variability of intracellular parameters (i.e. concentrations of regulatory species, such as 

activators, repressors, polymerases, or inducers) is a consequence of the stochastic nature of 
our algorithm. 

 
(b) Comparison of the chemical master equation with the cell population master equation 
 

 Intrinsic 
Noise 

Cell-to-Cell 
Variability Growth DNA 

Species 
DNA 

Duplication 
Stochastic 
Division Applicability 

Chemical Master 
Equation  No 

 1  
 1 

 1 Cell Chain 

Cell Population 
Master Equation  Yes     Population 

 
4 These sources were incorporated in the works of Swain et al. (Swain et al., 2002) and Lu et al. 

(Lu et al., 2004). 
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Table 2. Symbols used for the species 
Symbol Species denoted 

RP RNA polymerase 
RB ribosome 
Lac Lac repressor 
OYfp free operator of yfp gene 

OYfpLac Lac repressed operator of yfp gene 
RYfp yfp mRNA 
Yfp Yfp protein molecule 
OCfp free operator of cfp gene 

OCfpLac Lac repressed operator of cfp gene 
RCfp cfp mRNA 
Cfp Cfp protein molecule 
∅ Generic source or sink 

 

 -41- 



Table 3. Propensity functions for the two promoter model 
 Reaction Propensity1, 2, 3, 4 Description 

(i) 1k RP∅ →  1 Ak V N⋅ ⋅E.coli  RNA polymerase production 

(ii) 2k RB∅ →  2 Ak V N⋅ ⋅E.coli  Ribosome production 

(iii) 3k Lac∅ →  3 Ak V N⋅ ⋅E.coli  Lac repressor production 

(iv) 4kO Lac O Lac+ →yfp yfp  4

A

k
O Lac

V N
⋅ ⋅

⋅
yfp

E.coli

 Repression of yfp gene 

(v) 4kO Lac O Lac− +→yfp yfp  4k O Lac
−

⋅ yfp  Derepression of yfp gene 

(vi) 5kO RP O RP R+ + +→yfp yfp yfp  5

A

k
O RP

V N
⋅ ⋅

⋅
yfp

E.coli

 yfp m-RNA production 

(vii) 6kR RB R RB Yfp+ + +→yfp yfp  6

A

k
R RB

V N
⋅ ⋅

⋅
yfp

E.coli

 Yfp protein production 

(viii) 7kO Lac O Lac+ →cfp cfp  7

A

k
O Lac

V N
⋅ ⋅

⋅
cfp

E.coli

 Repression of cfp gene 

(ix) 7kO Lac O Lac− +→cfp cfp  7k O Lac
−

⋅ cfp  Derepression of cfp gene 

(x) 8kO RP O RP R+ + +→cfp cfp cfp  8

A

k
O RP

V N
⋅ ⋅

⋅
cfp

E.coli

 cfp m-RNA production 

(xi) 9kR RB R RB Cfp+ + +→cfp cfp  9

A

k
R RB

V N
⋅ ⋅

⋅
cfp

E.coli

 Cfp protein production 

(xii) 10kRP ∅→  10k RB⋅  RNA polymerase degradation 

(xiii) 11kRB ∅→  11k RP⋅  Ribosome degradation 

(xiv) 12kLac ∅→  12k Lac⋅  Lac repressor degradation 

(xv) 13kR ∅→yfp  13k R⋅ yfp  yfp m-RNA degradation 

(xvi) 14kYfp ∅→  14k Yfp⋅  Yfp protein degradation 

(xvii) 15kR ∅→cfp  15k R⋅ cfp  cfp m-RNA degradation 

(xviii) 16kCfp ∅→  16k Cfp⋅  Cfp protein degradation 

 
1 Variables without brackets denote number of molecules of the corresponding species. 
 
2 All propensity functions have units of min−1  
 
3 Propensity functions contain a volume term VE.coli are functions of time, since VE.coli changes 

as the cell grows. 
 
4 Avogadro’s number: NA = 6.0221367⋅1014 nmol−1. 
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Table 4. Parameter values for the two promoter system 
Symbol Units Value 
k1 (nM⋅min−1) 480 
k2 (nM⋅min−1) 850 
k3 (nM⋅min−1) 0 
k4 (nM−1⋅min−1) 240 
k−4 (min−1) 2.4 
k5 (nM−1⋅min−1) 1.2⋅10−2 
k6 (nM−1⋅min−1) 1.3⋅10−7 

k7 (nM−1⋅min−1) 240 
k−7 (min−1) 2.4 
k8 (nM−1⋅min−1) 1.2⋅10−2 
k9 (nM−1⋅min−1) 1.3⋅10−7 

k10 (min−1) 0.01 
k11 (min−1) 0.01 
k12 (min−1) 0.01 
k13 (min−1) 0.4 
k14 (min−1) 0.01 
k15 (min−1) 0.4 
k16 (min−1) 0.01 
Ocfp,Total (molec.) 1 
Oyfp,Total (molec.) 1 
g (min−1) 0.0231 
nd (dim/less) 20 
Vd,crit (L) 1.1⋅10−15 
q (dim/less) 80 
ns (dim/less) 20 
Vs,crit (L) 0.8⋅10−15 
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Table 5. Reaction network for the inducible expression system 

 Reaction Propensity Description 

(i) MRk
RM∅ →  MR Ak V NE.coli⋅ ⋅  Repressor m-RNA production 

(ii) Rk
R RM M R→ +  R Rk M⋅  Repressor production 

(iii) ik
2R 2I I R+ →  [ ]2

i exk I R⋅ ⋅  Repressor –inducer 
association 

(iv) ik
2I R R 2I−→ +  i 2k I R− ⋅  Repressor –inducer 

dissociation 

(v) skR O RO+ →  sk R O⋅ ⋅  Repressor –operator 
association 

(vi) skRO R O−→ +  sk RO− ⋅  Repressor –operator 
dissociation 

(vii) 1MPk
PO O M→ +  1MPk O⋅  Protein m-RNA production 

(viii) 0MPk
PRO RO M→ +  0MPk RO⋅  Leak m-RNA production 

(ix) Pk
P PM M P→ +  P Pk M⋅  Protein translation 

(x) MRλ
RM →∅  MR Rλ M⋅  Repressor m-RNA 

degradation 

(xi) RλR →∅  Rλ R⋅  Repressor degradation 

(xii) I 2Rλ
2I R →∅  I2R 2λ I R⋅  Repressor -inducer 

degradation 

(xiii) MPλ
PM →∅  MP Pλ M⋅  Protein m-RNA degradation 

(xiv) PλP →∅  Pλ P⋅  Protein degradation 
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Table 6. Parameter values for the inducible expression system 
Symbol Units Value 
kMR (nM⋅min−1) 0.5 
kR (min−1) 8 
ki (min−1) 3⋅10−7 
k−i (min−1) 12 
ks (nM−1⋅min−1) 960 
k−s (min−1) 2.4 

k1MP (min−1) 0.5 
k0MP (min−1) 0.01 
kP (min−1) 30 
λMR (nM−1⋅min−1) 0.462 
λR (min−1) 0.2 
λI2R (min−1) 0.2 
λMP (min−1) 0.462 
λP (min−1) 0.2 
OTotal (molec.) 1 
g0 (min−1) 0.0231 
ng (dim/less) 3 
[P]crit (nM) ∞ 
nd (dim/less) 25 
Vd,crit (L) 1.4⋅10−15 
q (dim/less) 80 
ns (dim/less) 25 
Vs,crit (L) 10−15 
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Table 7. Means and CVs for division times and protein concentrations 
[P]crit 
(nM) 

Mean tdiv 
(min) CV for tdiv 

Mean [P] 
(nM) CV for [P] 

275 134 25 % 414 21 % 
400 58 20 % 388 18 % 
1200 31 15 % 352 14 % 
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