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Abstract 

Uncertainty and sensitivity analysis was conducted on the SHERPA model, predicting air 
quality improvement linked to emission reduction scenarios. Major responsible of output 
uncertainty (PM2.5 concentration reductions in g/m3) stems from the uncertainty in the 
policy options followed by the uncertainty in the emissions (kTon/year) of PPM, NOX, and 
NH3. 
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Foreword 

This deliverable was carried out under the umbrella of the European Commission 

Competence Centre on Modelling. 

The Competence Centre on Modelling promotes a transparent, coherent and responsible 

use of modelling to underpin the evidence base for EU policies. It leverages the modelling 

capacity and competences across the Commission and beyond. Starting with the 

Commission-wide modelling inventory MIDAS, it supports a proper documentation, use, 

and reuse of models. It further helps identifying common approaches to quality and 

transparency of model use, and establishes a Community of Practice on Modelling.  

Within the Competence Centre on Modelling, the Sensitivity Analysis of Model Output 

(SAMO) team has the mission to carry out uncertainty and sensitivity analyses of EC 

workhorse models, to conduct research in this field, to provide tools, training and ad hoc 

scientific support to model users in order to enhance the robustness of model-based 

evidences in the European Commission.  

For more information on the Competence Centre please visit https://ec.europa.eu/jrc/en/ 

modelling. 
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Executive summary 

In the report, an uncertainty case-study has been carried out on one of the key SHERPA 

(Screening for High Emission Reduction Potential on Air) model modules, forecasting air 

quality improvement (measured as reduction in concentrations in PM2.5 yearly average) 

related to emission reduction scenarios. Thirteen main sources of uncertainty in model 

inputs were investigated including policy options for reducing air pollution. Ten European 

cities (Berlin, Brussels, Bucharest, Helsinki, Constanţa, London, Madrid, Milan, Paris, and 

Utrecht) - representative of different meteorological and emission inventory conditions in 

Europe - have been chosen for the uncertainty (UA) and sensitivity analysis (SA) 

exercise. 

Policy context 

The SHERPA model has been developed as a tool to support regional/local decision 

makers to design air quality plans. The issue of air quality in Europe calls for novel policy 

approaches to support air quality management at the local level, and reinforce the 

EU-wide existing policies. SHERPA rapidly turned out to be a valuable instrument for 

evidence-based policy. Given the high stake, and the fact that uncertainty ‘could change 

the ranking and conclusions about the policy options’ (EC Better Regulation Toolbox #62 

(2017))1, an uncertainty analysis (UA) and a sensitivity analysis (SA) of a key SHERPA 

model module were conducted. 

Key conclusions 

In almost all cities, according to the model forecasts, the first action should be for the 

policy makers to discuss upon the best policy to implement. Afterwards the discussion 

could move on to how to reduce the uncertainty on the model emissions, in particular the 

emissions of primary particulate matter (PPM), nitrogen oxides (NOX), and ammonia 

(NH3). 

Main findings 

It was found that, for eight cities out of ten, the policy option uncertainty is the most 

responsible of the uncertainty in PM2.5 concentration reductions. Among the other 

inputs, the uncertainty on the emissions is by far the most influential ones, in particular 

the emissions of PPM, NOX, and NH3.  

Related and future JRC work 

JRC.I1 and JRC.C5 are foreseeing to extend the sensitivity analysis to the entire 

European space domain, so to create extended maps of uncertainty and sensitivity (in 

the present work, the focus was on specific cities – grid cells). In addition, as new 

versions of SHERPA will also include specific measures to abate emissions, one option 

would be to test how SHERPA uncertainties will affect the selection of abatement 

measures and their impact. 

Quick guide 

The report is structured in three main parts: 

 Description of the SHERPA module; 

 Description of the methodology to perform sensitivity and uncertainty analysis; 

 Analysis of the results and discussion. 

 

Annex 1 contains the profiles of the investigated cities. 

Annex 2 illustrates the Web-App for sensitivity analysis developed by the JRC.I1 Unit. 

  

                                           
1 Brussels, 07/07/2017 - SWD(2017) 350 final 
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1 Introduction 

In recent decades, Europe has significantly enhanced air quality (EEA, 2016). 

Nevertheless, alert limits are still detected for pollutants as ozone (O3), nitrogen dioxide 

(NO2) and particulate matter (PM10 and PM2.52). While in the past years, these 

exceedances were wide-spread across Europe, they now tend to concentrate mainly in 

hot-spots at regional and city level (Kiesewetter et al., 2015). Consequently, this new 

scale of the air quality issue (from “Europe-wide” to “local” exceedances) requires 

innovative approaches targeted to the regional air quality management, to integrate and 

reinforce the current EU-wide policy. In this frame, air quality models have been used, 

traditionally, to support the design of air quality policies. Various techniques are available 

for this purpose. 

A first set of techniques is based on three dimensional numerical models that simulate 

transport, chemistry, emissions, and deposition in the atmosphere (Mailler et. al., 2016, 

Pernigotti et al., 2013). These models are very complex and computationally demanding 

(in terms of data preparation, scientific/technical knowledge and computing power) and 

in some cases are not fit-for-purpose (i.e. in the “science-to-policy” interface, when 

model should be ideally used in an interactive mode, to analyse the impact of alternative 

scenarios). 

A second set of techniques is the so-called ‘Integrated Assessment Models’, which have 

been implemented mainly to deal with the ‘science-to-policy’ interface. These models are 

able to include various dimensions such as air quality, policy costs, benefits, etc… in a 

unique frame. The GAINS-EU integrated assessment model (Amann et al., 2011) has 

been routinely applied to select optimal country-based emission reductions, in order to 

achieve environmental improvements at minimum cost. In the last years, the EU 

integrated assessment modelling application has been complemented by regional and 

local approaches. This has been done with, e.g., national versions of GAINS based on 

finer scale modelling (as in GAINS-Italy, d’Elia et al, 2009), or with regional tools (e.g. 

RIAT, the Regional Integrated Assessment Tool, Carnevale et al., 2012, Pisoni et al., 

2010). Unfortunately, also these tools are quite complex to be applied, mainly at 

regional/local scale, as they also require local data and/or a high scientific/technical 

know-how to be run. 

To face this new challenge (i.e., addressing in a comprehensive way the air quality policy 

design issue at regional/local scale) the SHERPA (Screening for High Emission Reduction 

Potential on Air) modelling tool has been recently developed (Clappier et al., 2015, 

Thunis et al., 2016, Pisoni et al., 2017). Indeed, SHERPA aims at supporting 

regional/local decision makers in designing air quality plans, and - more in general – at 

contributing to the evaluation of the impact on air quality of locally-tailored policies. 

SHERPA is a Java/Python meta-model running on a desktop PC, able to replicate the 

outcomes of more complex physically-based models in a faster and resources saving 

way. 

SHERPA is user-friendly, and does not require any preliminary complex 

scientific/technical tasks. Data covering the whole Europe are provided, but specific 

regions can be selected by the users. In addition, to decision-makers who need to plan 

air quality policies, SHERPA gives the possibility of implementing issues such as “source 

allocation” (to apportion air pollution in terms of sectors and precursors of origin); 

“governance” (to identify the key geographical entities contributing to the pollution in 

one specific area); “scenario” (to test the effect on air quality of a given sector-specific 

emission abatement scenario). 

As the SHERPA model is used in the policy arena, it is crucial to evaluate (and guarantee) 

the robustness of the model responses to different sources of uncertainty. It is 

recommended that model output uncertainties be taken into account in the policy context 

- uncertainty that, as stressed in the EC Better Regulation Toolbox 62 (2017), ‘could 

                                           
2 PM: inhalable particles, with diameters that are 10 or 2.5 micrometers. 
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change the ranking and conclusions about the policy options’. For this purpose, 

uncertainty analysis (UA) and sensitivity analysis (SA) are valuable and suited techniques 

Models may be considered “fit for purpose”, when the uncertainty of the model output, is 

acceptable. In the modelling process, the uncertainty analysis aims at quantifying 

uncertainty in the model output, and sensitivity analysis investigates the dependency of 

the model output from different sources of uncertainty in the model inputs. These two 

types of analyses are complementary with the uncertainty analysis ideally preceding the 

sensitivity analysis (Saltelli et al., 2008). 

Uncertainty and sensitivity analysis also assess whether alternative assumptions would 

lead to significantly different results. 

Sensitivity analysis identifies and ranks by their influence the uncertain responsible 

factors (variables, assumptions, …) at play. Obviously, the most influential factors must 

be known with the maximum accuracy while the less influential ones can sometimes be 

ignored for model simplification sake.  

Sensitivity analysis also reveals the possible interactions among the inputs. It can 

highlight unexpected relationships between inputs and outputs, and helps identifying 

regions of the input space that are responsible for critical values of the output.  

An important point is that sensitivity analysis only refers to the model logical consistency 

and not to its veracity. It is an iterative process and the modellers must constantly 

engage with the sensitivity analysis practitioners (the analyst), so as to better interpret 

the results of the UA and the SA, and link them to concrete meanings in the real world. 

Both uncertainty analysis and sensitivity analysis have been applied to the SHERPA 

‘scenario’ module (Thunis et al., 2016). This module estimates the changes in pollutant 

concentrations for a given pollutant emission reduction scenario, and it is the core of the 

SHERPA model. Therefore, testing it appeared to be of first priority. To encompass model 

inputs (including coefficients) spatial variation, a number of selected European 

cities - showing different meteorological and emission inventory conditions - have been 

chosen for the SA exercise. 

The UA-SA analyses focus on three main issues: (1) what is the level of uncertainty 

associated to the SHERPA outcomes (uncertainty analysis), (2) which model 

inputs - parameters, precursors, and policy choices – drive the uncertainty (sensitivity 

analysis) (3) how SA can help the policy/decision making. Finally, the consequences of 

the analyses for policy/decision-making have been spotted and discussed. 

In this study, global sensitivity analysis (GSA) has been carried out using the popular 

Sobol’ sensitivity indices whose values were obtained by the variance based (VB) method 

and by the Polynomial Chaos Expansion (PCE) method (Sudret, 2008). For this purpose, 

we use the Web-App for sensitivity analysis of model output recently developed by Unit 

JRC.I1 and described in Appendix 2. Both methods provided similar results. 

 

The results confirm the relevance of the policy option impact, and help identifying how 

and where to prioritise further model improvements and model users’ actions in an 

effective way. 
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2 The SHERPA tool  

SHERPA (Screening for High Emission Reduction Potentials for Air quality) is a modelling 

tool for studying alternative solutions to reduce the air pollution in a given region in 

Europe. SHERPA relies on the following steps: 

• Source allocation: this step aims to assess the degree of control policymakers 

have on air pollution over their area. If most of the pollution is imported from outside 

their region, the policy makers have little control (and vice-versa). During this step, 

SHERPA provides information on (a) the amount of pollution originating from inside the 

region, detailed in terms of sectors and precursors and (b) the amount of pollution 

originating from outside the region. 

• Governance: this step identifies the principal source areas (i.e. regions, countries) 

of the pollution at a location. Emissions from agriculture which require time to form 

secondary particulate matter will have a longer distance influence than traffic emissions 

that directly impact concentrations at the local scale. The SHERPA methodology is 

designed to identify and rank contributions (to air pollution levels) by all neighbouring 

and non-neighbouring regions for a specific sector of activity. This step sets the basis for 

fixing priorities in terms of regional collaborations that can increase the efficiency of 

abatement strategies. 

• Scenario: the scenario analysis is the final stage in the process, once the activity 

sectors and their areas of origin have been identified. The policymaker then fixes the 

desired sector-specific emission abatements in terms of intensity and spatial coverage 

and tests their impacts on air quality levels. 

 

These three steps form the core of the SHERPA methodology. They are depicted in the 

next figure: 

 

 

 

Figure 1 Schematic overview of the three steps methodological approach used in SHERPA. After the 
“source allocation”, “governance” and “scenario” steps, impacts are computed. Details are 
provided in the text. 

 

This sensitivity analysis has been applied to the SHERPA ‘scenario’ module, which 

represents the core of the modelling tool, and is also a basis for the other SHERPA 

modules (i.e. ‘source allocation’ and ‘governance’). 
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2.1 The SHERPA Source/receptor relationship 

2.1.1 Methodology 

Air quality models are the starting point to develop the source-receptor relationships. 

Air quality models use mathematical and numerical techniques to simulate the physical 

and chemical processes that affect air pollutants. Based on inputs of meteorological data 

and emissions, these models are designed to characterize both primary pollutants (that 

are emitted directly into the atmosphere) and secondary pollutants (that are formed as a 

result of complex chemical reactions within the atmosphere). In particular for emissions, 

these type of models use, as input, both of biogenic (generated by natural phenomena) 

and of anthropogenic (generated by human activities) origin emissions. Emissions are 

generally related to: nitrogen oxides, volatile organic compounds, ammonia, primary 

particulate matter, sulphur dioxide. 

When the input data of these models (as said meteorology and emissions) are ready, 

these models can be used to design policy scenarios, which is to say to simulate pollutant 

concentrations deriving from emission reduction policies.  

As this last type of application (scenarios) is typically a request in the ‘science-to-policy’ 

interface, the main aim of SHERPA is to mimic the behaviour of fully-fledged air quality 

models (AQM), so that it is able to simulate the effect on concentrations of emission 

changes. To do so, SHERPA assumes a linear relationship between concentration and 

emission changes. This has been shown by Thunis et al. (2015a,b) to be a valid 

assumption as long as long-term (i.e. yearly or seasonal) concentration averages are 

considered, as in this work. 

In SHERPA the links between emission and concentration changes respectively Ej,k and 

Ci, are computed cell by cell without any a-priori definition of emission aggregations: 

 

 
prec cell

N

j

N

k
kjkjii

EaC
,,,
 

One of the main benefits of this approach lies in its spatial flexibility. Once the 

coefficients “ai,j,k” are calculated, the previous equation delivers the concentration 

changes resulting from emission changes applied over any geographical area, without the 

need to run specific additional simulations. It has been assumed that the coefficients 
“ai,j,k” in the previous equation can be approximated by the following distance-function: 

 

 
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ikjikji
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,

1
,,,
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
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where “i” is a grid cell within the domain in which the concentration delta is estimated, 

the index “k” runs over all grid cells within the domain and “dik“ is the distance between 

cells “i” and “k”.  With only two unknowns per cell and per precursor (“j” see previous 

equation) the number of equations requested to solve the system of equation is in theory 

equal to twice the number of precursors. We however used slightly more simulations 

(between 15 and 20) to improve the robustness of the estimation of the α and ω 

coefficients. 

http://www.sciencedirect.com/science/article/pii/S0301479716307125#bib17
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This methodology permits spatial flexibility in the definition of emission abatement zones 

while keeping a light training phase (only a few AQM simulations are required). The 

cell-to-cell relationships however increases CPU time compared to other approaches but 
it is nevertheless manageable, taking 1–5 minutes to perform one scenario over Europe. 

2.1.2 Model set-up 
The SHERPA interface and tool can in theory be adapted to any region if fed with 

appropriate input data. By input data we mean (1) a gridded emission inventory detailed 

in terms of activity sectors and precursors (left to user’s choice) over the area of 

interest; (2) a series of 15-20 simulations performed with an AQM for a series of 

pre-defined emission scenarios to generate the source-receptor relationships (SRR); and 

(3) a correspondence table matching the user-defined shape files with the emission grid 

cells. These shape files are then used to define the areas where emission reductions are 

imposed. 

In this work, the CHIMERE model (AQM, Menut et al., 2014) is used to derive the SRR 

over the whole European territory with a spatial resolution of 7 × 7 km2. The areas of 

interest (i.e. the possible control areas) are based on the European Nomenclature of 

territorial units for statistics (NUTS) covering the NUTS0 (countries), NUTS2 (regions) and 

NUTS3 (province) levels. 

 

2.1.3 Model baseline 

In the equations Ci is linked to Ej,k. Given the presence of delta values, a baseline is 

indispensable. The anthropogenic emissions underlying the model simulations are based 

on the TNO-MACC3 emission inventory (Kuenen et al., 2014), with residential sector 

emissions modified to account for the enhanced wood consumption at extremely low 

temperatures (Terrenoire et al., 2015). The meteorological input data is based on IFS 

(Integrated Forecasting System from ECMWF4) for the year 2010.  

 

2.1.4 Model precursors 

The model has been run using as input the emissions of nitrogen oxides (NOX), ammonia 

(NH3), primary particulate matter (PPM), sulphur dioxide (SO2). The output of the model, 

as considered in this study, is the yearly average PM2.5 concentrations deriving from a 

policy scenarios. 

2.1.5 Model validation 

Model validation results have been presented in literature, and can be found in Clappier 

et al. (2015), Pisoni et al. (2017), Thunis et al. (2016). 

 

2.2 The case study set-up 

Uncertainty analysis and  sensitivity analysis were performed on the SHERPA “scenario” 

module in order to estimate (1) what is the level of uncertainty associated to the SHERPA 

outcomes (uncertainty analysis), (2) which model inputs – parameters, precursors, and 

policy choices- drive the uncertainty (sensitivity analysis) (3) how SA can help the 

policy/decision making. 

Thirteen main sources of uncertainty in model inputs were investigated: the four 

pollutant emissions, their  and ω coefficients (different for each pollutant), and the 

policy option in terms of expected improvement in air quality. 

                                           
3 TNO is the Netherlands Organisation for Applied Scientific Research 
4 European Centre for Medium-Range Weather Forecasts 

http://www.sciencedirect.com/science/article/pii/S0301479716307125#bib12
http://www.sciencedirect.com/science/article/pii/S0301479716307125#bib11
http://www.sciencedirect.com/science/article/pii/S0301479716307125#bib16
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Being SHERPA based on spatially dependent coefficients with a huge number of grid cells, 

we limited the uncertainty and sensitivity analyses to ten European cities: Helsinki, 

Constanţa, London, Milan (Pisoni et al., submitted) in a first step, and successively Berlin, 

Brussels, Bucharest, Madrid, Paris, and Utrecht. These cities were selected to create 

synergies with the on-going “partnership on air quality” project, an initiative of the 

“Urban Agenda” for the EU (http://urbanagendaforthe.eu/partnerships/air-quality/) and 

to cover the different meteorological and emission inventory conditions in Europe. 

As already said, in this study, we refer to the model linking emission reduction scenarios 

(of nitrogen oxides, ammonia, primary particulate matter, sulphur dioxide) to yearly 

average reduction in concentrations of PM2.5.  

The delta emissions data represent the contributions from primary particulates matter 

(PPM) and the contributions from the secondary particulate matter from gases (NOx, 

NH3, SO2) that, together, form the total PM2.5 concentrations. The model output, the 

delta concentrations data (Ci), thus represents the yearly average PM2.5 

concentrations, as a total of primary and secondary PM2.5 fractions. 

Emission reduction scenarios were utilised for a set of CHIMERE simulations, over the 

entire modelling domain – the European territory - , to derive the  and ω coefficients 

required in the simplified SHERPA equation for each grid cell and precursor (pollutant). 

More details on the whole procedure can be found in Thunis et al. (2016) and Pisoni et al. 

(2017).  

Four different policy options, that is air quality improvement at 25%, 50%, 75%, and 

100% (sampled between the Current LEgislation and Maximum Feasible Reductions), 

were taken into account. 

Global sensitivity analysis has been carried out referring to the Sobol’ sensitivity indices 

(Sobol, 1993) whose values are obtained by both the variance based (VB) method and 

the spectral Polynomial Chaos Expansion (PCE) approach (Sudret, 2008).  

 

http://urbanagendaforthe.eu/partnerships/air-quality/


 

11 

3 Uncertainty and sensitivity analysis 

Nowadays, the policy making process relies on mathematical models in many fields such 

as Economics, Engineering, Health, and Environment. At EU level, the policy-making 

process, and the policy impact assessment process strongly need mathematical model 

support. 

Therefore, quality of models is of crucial importance in policy-making and that is where 

the concept of Model Quality Assurance (MQA) comes into play. MQA draws on methods 

and tools that offer more guarantee on the reliability of the model output(s).  

Unfortunately, model outcomes are intrinsically affected by some degree of uncertainty 

and, in some cases, this uncertainty can be very significant. 

In presence of uncertainty, model results might be no longer reliable and show low 

quality. The policy assessment process and thus the underlying policy decision will not be 

optimised and can even be wrong. Consequently, model outcomes can be effective and 

responsibly used only if the output uncertainties (intrinsic to any model) are 

acknowledged and quantified, and the relevant uncertainty sources identified. 

Both model and data are subject to uncertainty, and propagate their uncertainty to the 

model output. Models as a tentative simplification of reality can be affected by 

uncertainty at different levels, namely theories, assumptions, lack of knowledge, and 

imperfect understanding. Input data uncertainty may have different causes such as i.e. 

measurement mistakes, inappropriate measurement method, poor definition of the 

variables, and scarcity of data. Moreover, key input knowledge is not always well known, 

as well as the dependency/variability linking different inputs. 

Uncertainty analysis  and sensitivity analysis methods contribute to the necessary MQA 

scheme, in a prominent and unique way, by quantifying how model output, and thus 

policy options impacts, would change w.r.t. the alternative assumptions or different 

(even slight) input amplitudes, i.e. different input uncertainty characteristics. 

 

Box 1. The Monte Carlo method 

Monte Carlo is a popular computational method to simulate random events. It can be used to 

propagate the input uncertainty through the computer model and quantify the uncertainty in model 
output(s). The Monte Carlo approach relies on three steps: 

1. Generate for each of the k input(s), N sampled values  from  their respective probability 
distribution or better their probability density function (p.d.f.), 

2. Generate a Monte Carlo sample associating randomly the N sets of the k sampled values , 

3. For each of the N sets of sampled input values, run the model and save the response(s) of 

interest, 

3. Perform the uncertainty and sensitivity analysis by examining the input and output values. 

Specifically, uncertainty analysis (UA) techniques aim at characterising model outcome 

uncertainty given the model input uncertainties, while sensitivity analysis (SA) methods 

explore the dependency of quantified model output uncertainty on the different sources 

of uncertainty in the model inputs. Therefore, they should be considered as inseparable 

and complementary parts of the model assessment, with the uncertainty analysis 

notionally carried out before the sensitivity analysis (Saltelli et al., 2008). 

UA-SA can reveal unexpected relationship(s), identify crucial input factors (data, 

variables, assumptions…) and how their influence would shape different policy options 

and policy impacts.  

Yet, sensitivity analysis refers to the model logical reliability (model consistency), and not 

the correctness of the model per se (model veracity). Therefore, an active (and 

continuous) collaboration between modellers (including model expert-users) and 
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sensitivity analysis practitioners (analysts) is strongly recommended to better interpret 

findings and evaluate their meanings in the real world.  

A UA and a SA popular technique were used to evaluate the SHERPA ”scenario” module 

(Thunis et al., 2016) developed to forecast, air quality improvement linked to emission 

reduction scenarios. Additionally, both the Sobol’ main indices and total indices were 

computed again employing the recent polynomial chaos expansions method (PCE). 

The UA and SA exercises will first focus on two main concerns: (1) the resilience of the 

SHERPA model in terms of outcomes uncertainty (uncertainty analysis), (2) the 

dependency of the model output(s) from the uncertainty in the model inputs – 

parameters, precursors, and policy choices – and consequently, the better assessment of 

the variable roles (sensitivity analysis). 

 

3.1 Methodology 

Uncertainty analysis assesses the model output uncertainty on the basis of the known 

uncertainties in the model inputs. Conversely, sensitivity analysis aims at apportioning 

total output variability to the different input factors. UA and SA are different but 

complementary analyses. Historically, uncertainty analysis and sensitivity analysis were 

firstly carried out using local approaches, where inputs (or model parameters) are 

changed One at a Time (OAT) while the others are maintained fixed. In this way, 

calculations (or estimations) of indices are possible only around a specific (given) point in 

the input space, whose exploration is thus reduced. Local sensitivity analyses are 

computationally cheap, but they do not account for possible interactions between model 

inputs or can be poorly informative for non-linear models, and models with high 

dimensional input spaces.  

Global sensitivity analysis overcomes the drawbacks of local analysis, allowing the 

simultaneous and full range exploration of all uncertain inputs and capturing 

nonlinearities and interactions among model inputs, whatever the dimension. The 

drawback is that GSA is much more expensive to carry out than a local analysis because 

many model executions are often necessary. Consequently, GSA is strongly 

recommended when models are not linear or not merely additive (Campolongo & Saltelli, 

1997, Saltelli & Annoni, 2010). Moreover, with respect to local derivative-based SA, GSA 

better assures against the risk of declaring non important an input which is actually 

important (type II errors5). 

The global approach takes its origin in the early nineties, with the screening methods 

(Morris, 1991), the non-parametric or regression-based approaches (Saltelli & Marivoet, 

1990; Helton, 1993), the variance-based methods (Sobol’, 1993; Iman & Hora, 1990; 

Sacks et al., 1989), and density-based studies (Park & Ahn, 1994). Since then, GSA has 

been successfully carried out in a huge number of domains (i.e. Environment, 

Engineering, Medicine, Chemistry …) showing itself vital and providing a crucial 

contribution to modelling. 

  

                                           
5 From “Global Sensitivity – The Primer”, page 15: we refer to type I error when erroneously defining as 

important a non-influential factor. Type II error occurs when we classify an important factor as non-influential 
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3.1.1 Uncertainty analysis 

As previously mentioned, both the uncertainty analysis and the sensitivity analysis of the 

SHERPA model have been carried out, with the sensitivity analysis following the 

uncertainty analysis. For the uncertainty analysis we used the Monte Carlo (MC) 

simulations. This method implies the propagation of the input uncertainty throughout the 

model using a comprehensive set of random value inputs.  

The simulation thus needs a prior clear identification and characterization, in terms of 

probability density function, of each uncertain model input (inputs included in the 

analysis), to be able to create a set of random value inputs. The relevant distribution 

functions can be known by the modeller (i.e. input collected data, literature review, 

laboratory measurements…), or must be indirectly appraised (i.e. Bayesian inference, 

expert judgement, belief…). On this basis, the set of random input values is generated 

and then passed through the model. The model output is quantitatively estimated, and 

analysed, deriving for example the output mean and variance or spread, in other words 

the sought output uncertainty. 

It is important to stress that the model structure (internal model function) per se may be 

ignored by the uncertainty practitioner, who is primarily interested in recorded model 

output values to estimate the model output uncertainty. 

Uncertainty analysis has been applied to the SHERPA “scenario” module in order to 

evaluate the range of variability of the output depending on the different uncertainties in 

the model inputs. The function form of the model (non-linear additive) and the prominent 

model inputs to be investigated were already well-known to the modellers. Consequently, 

the first step of the process was a short check of the identified input variables and the 

quantification of their level of uncertainties (see Box 2). 

 

Box 2. Input of the UA-SA analysis  

Model coefficients:    and  are spatially dependent coefficients. They define the link between 

emissions and concentrations (one for each emission input), 

Emission inputs:  Pollutant elements - nitrogen oxides (NOX,), ammonia (NH3), primary 

particulate matter (PPM), sulphur dioxide (SO2), 

Selected policy:   level of ambition in air quality improvement (in terms of emission 
reductions) - four policies have been investigated as in the Air Quality 
Package Review (Amann et al., 2014). 

 

The SHERPA model utilises spatially dependent coefficients ( and ), and obviously their 

values vary from city to city. Consequently, the analysis was firstly restricted to four 

cities: Helsinki, Constanţa, London, and Milan were selected to create synergies with the 

“partnership on air quality” project (http://urbanagendaforthe.eu/partnerships/air-

quality/), an initiative of the “Urban Agenda” for the European Union. Later, it was 

extended to six additional cities: Berlin, Brussels, Bucharest, Madrid, Paris, and Utrecht, 

to encompass different conditions in Europe. We report in the following the main input 

data for the city of Milan (see Annex I for the other cities): 

  

http://urbanagendaforthe.eu/partnerships/air-quality/
http://urbanagendaforthe.eu/partnerships/air-quality/
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Table 1: Model input values and ranges  

(1) U: Uniform distribution,    N: Normal distribution  
(2) C: Continuous variable,    D: Discrete variable  
(3) The modellers belief regarding the assigned prior uncertainty: L=Low, M=Medium and H=High. 

Mean (central value) and standard deviation of  and  coefficients were known to the 

modeller for each grid cell as well as their Gaussian/Normal distribution characteristics. 

Mean and standard deviation together with the relevant probability density function 

(p.d.f.) were used for the random generation of the data in the MC simulations.  

Greater ‘ignorance’ concerned the distributions of the emissions inputs (NOX, NH3, PPM 

and SO2)
6. Thus, their probability density functions were assumed to be uniform around 

their respective nominal value, obtained from the SHERPA emission inventory, while the 

ranges of variability were derived from scientific literature (Nielsen et al., 2014; Kuenen 

et al., 2014). These assumptions were kept constant for all the examined cities. In 

Table 1, the ranges are reported: i.e. NH3 shows a variation of 50% around its nominal 

value. 

Finally, four policy options, that is four different levels of ambition in trying to improve air 

quality, were considered as discriminant variables, choosing the values between the 

CLE-Current LEgislation and the MFR-Maximum Feasible Reductions (the two extreme 

policies). Specifically, air quality improvement at 25% (between CLE and MFR), 50%, 

75% and 100% were defined as possible policy options.  

                                           
6 The issue of emission uncertainties in air quality modelling has been recently cited in Trombetti et al., 2018. 
The authors analysed the six main emission inventories available in Europe, and showed that substantial 
differences in terms of total emissions, sectorial emission shares and spatial distribution exist between these 
datasets. 

 variable acronym Distribution1 Type2 Accuracy3 

C
o

e
ff

ic
ie

n
t*

 

X1 _NOX N(1.97, 4.88x10-4) C H 

X2 _NH3 N(1.60, 4.08x10-4) C H 

X3 _PPM N(2.33, 3.00x10-4) C H 

X4 _SO2 N(1.34, 8.34x10-5) C H 

X5 _NOX N(0.05, 2.55x10-5) C H 

X6 _NH3 N(0.07, 1.76x10-4) C H 

X7 _PPM N(1.97, 1.78x10-3) C H 

X8 _SO2 N(0.01, 2.27x10-5) C H 

 

P
r
e
c
u

r
s
o

r
 

E
m

is
s
io

n
s
 X9 NOX U(-0.30 - 0.30) C L 

X10 NH3 U(-0.50 - 0.50) C L 

X11 PPM U(-0.50 - 0.50) C L 

X12 SO2 U(-0.10- 0.10) C L 

 X13 Policy U[1-2-3-4] D M 

   *Values for Milan 
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3.1.2 Sensitivity Analysis - Variance-based sensitivity indices 

Variance–based sensitivity analysis notion moved from the possibility of decomposing the 

total variance of the model output into terms of increasing dimensionality, as suggested 

by the Russian mathematician I.M. Sobol’ in the early nineties (Sobol’, 1993). When the 

output function f(X)=Y is square-integrable and the inputs X=(X1,…,Xd) are independent, 

the total variance of the output can be split into the sum of different terms (partial 

variance) over the input space d (the so-called ANOVA decomposition): 

 

V(Y)= ∑ V𝑖

d

𝑖=1

+ ∑ V𝑖,j

d

j>i

+ ⋯ + V1,…,d 

 

where the first term of this sum Vi represents the partial contribution to the variance of 

the input solely considered (1st order effect): 

 

V𝑖 = V(E(Y|X𝑖))  

 

and Vij measures the interaction effect of the pair (Xi, Xj) on Y (2nd order effect): 

 

V𝑖,j = V𝑖,j(𝐸(Y|X𝑖 , Xj)) − V𝑖(E(Y|X𝑖)) − Vj(𝐸(Y|Xj)) 

 

while the following V1,2,...d terms of the sum show the higher order interactions. 

Finally, dividing the variance (de)composition by V(Y), gives the sensitivity indices: 

 

1 = ∑ S𝑖

d

𝑖=1

+ ∑ S𝑖,𝑗

d

j>i

+ ⋯ + S1,…,d 

 

The first-order effect of model input Xi, that is the conditional variance, is defined by 

V(E(Y|Xi)), that divided by the total variance V(Y) of the model output gives the first 

order sensitivity index Si, also called main effect of the model input Xi: 

 

S𝑖 =
V(E(Y|X𝑖))

V(Y)
 

 

The first-order sensitivity index Si is thus normalized between 0 and 1. The same is done 

for the higher order indices (Si,j, Si,j,k, …).  

A high value of Si denotes a prominent quantitative influence of the Xi uncertainty on the 

model output (Y) uncertainty, while low values of the index mean a negligible influence of 

the Xi variable alone. 

The total sensitivity effect of an input (Homma and Saltelli, 1996) is expressed by the 

sum of all the effects of any order involving that same input (STi = S1 + S1,2 + S1,3+ … + 

S1,2,3 + …). The sum of all possible sensitivity terms should be equal to 1. Consequently 



 

16 

the difference between 1 and the normalized value of V(E(Y|X~𝑖)) - that is all terms of 

any order that do not include input Xi (i indicates all terms but i) - gives The total effect 

of input Xi. It is given by the following expression: 

 

STi = 1 −
V(E(Y|X~𝑖))

V(Y)
   with index ~i meaning all terms but Xi 

Therefore, given that:V(Y) = E (V( Y| X𝑖  )) +  V (E( Y|X𝑖  )) 

 

the total sensitivity index of Xi can also be calculated with: 

STi =
E(V(Y|X~𝑖))

V(Y)
  

Third-order and higher sensitivity indices have analogous definitions. 

 

Box 3. Variance-based Sensitivity index properties  

Main properties of variance-based sensitivity indices: 

— Are model free, 

— Provide an X-ray of the input-output relationship: 

1 ≥ 𝑆𝑇𝑖 ≥ 𝑆𝑖 ≥ 0   Always (unless inputs are dependent) 

∑ 𝑆𝑖 ≤ 1𝑑
𝑖=1     Always (unless inputs are dependent) 

∑ 𝑆𝑖 = 1𝑑
𝑖=1    Additive model (no interactions) 

1 − ∑ 𝑆𝑖 ≫ 0𝑑
𝑖=1   Indicator of the presence of interactions 

An overall set of 2d-1 indices can be computed that reflect the structure of the input-output 
relationship. 

 

Sensitivity indices can be computed with many different methods (Sobol’, 2001; 

Kucherenko et al., 2012, Borgonovo, 2007, Liu & Homma, 2009, Plischke et al., 2013, 

Saltelli et al., 2010, Mara & Tarantola, 2012), and among the most powerful and popular 

ones, we have: meta-modelling based approaches (Oakley & O’Hagan, 2004; Buzzard & 

Xiu, 2011), spectral techniques (Saltelli et al, 1999; Sudret, 2008; Shao et al., 2017), 

and sampling-based Monte-Carlo evaluations (Saltelli, 2012, Sobol’, 1933, Saltelli et al., 

2010). 

On top of the GSA VB technique, the GSA spectral Polynomial Chaos Expansion (PCE) 

technique (Sudret, 2008) was also successfully used in this study and both techniques 

showed very similar results. 
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3.1.3 Sensitivity Analysis - Polynomial chaos expansions (PCE) 

 

An advanced SA method  

A quite recent computational method to assess the Sobol’ indices is the polynomial chaos 

expansion technique (Sudret, 2008). While the Monte-Carlo approach, applied to the 

previous phase of the research (Pisoni et al., submitted), aims at directly estimating the 

individual terms of the sum into which the total variance is decomposed, PCE gives an 

estimation of the output function (Y). The intuition of the method is that the assessment 

of each term of the variance of the estimated output function is easily possible starting 

from the multi-dimensional orthonormal polynomial approximating the characteristics of 

the function f(x)=Y. 

Under the same assumptions as the ANOVA decomposition, the function can be 

(re)written as: 

 

𝑌 = ∑ 𝑎𝜶𝜓𝜶(𝒙)

𝜶∈𝑘

 

 

where 𝜓𝜶(𝒙) is the so-called multivariate orthonormal polynomial chaos: 

 

𝜓𝜶(𝒙) = 𝜓𝛼1
(𝑥1) × … × 𝜓𝛼𝑑

(𝑥𝑑) 

 

and 𝜶 = 𝛼1 … 𝛼𝑑, with 𝛼𝑖 ∈ ℕ, is a multi-index and 𝑎𝜶 the polynomial coefficient indicating 

the dependency of Y on 𝜓𝜶(𝒙)7. The polynomial 𝜓𝛼𝑖
(𝑥𝑖) is of degree 𝒊.  

Therefore, 𝜓𝜶(𝒙) is a multidimensional polynomial of degree (1 + 2 … + 𝛼𝑑). Notably, we 

always have 𝜓0(𝑥𝑖) = 1. 

The appropriate form of the univariate polynomial 𝜓𝛼𝑖
(𝑥𝑖) is derivable from the 

probabilistic distribution of the input variables (Xiu & Karniadakis, 2002). Such univariate 

orthonormal polynomials are, for instance, the normalised Legendre polynomials when 𝑥𝑖 

is uniformly distributed. Therefore, given the orthonormality property of polynomial 

elements (𝐸 (𝜓𝜶(𝒙) × 𝜓𝜷(𝒙)) = 𝛿𝜶𝜷)8 the total variance is: 

 

𝑉(𝑌) = ∑ 𝑎𝜶
2 − 𝑎0…0

2

𝜶∈𝑁𝑑

 

 

and consequently, the Sobol’ indices can be estimated from the PCE coefficients as 

follows: 

 

𝑆𝑖 =
𝑉[𝐸(𝑌|𝑋𝑖)]

𝑉(𝑌)
=

∑ 𝑎0…0𝛼𝑖10…0
2

𝛼𝑖1
∈

∑ 𝑎𝜶
2 − 𝑎0…0

2
𝜶∈𝑑

 

 

 
 

 

                                           
7From this representation any statistical moment of Y=f(X) can be computed: 

 [Y]= 𝑎0…0; [Y2]= ∑ 𝑎𝜶
2

𝜶∈𝑑 ;V(Y)=[Y2]-[Y]2=∑ 𝑎𝜶
2 − 𝑎0…0

2
𝜶∈𝑁𝑑  

8 [f(X)f(X)]=V where  is the symbol of Kronecker 
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𝑆𝑇𝑖 =
𝐸[𝑉(𝑌|𝑋~𝑖)]

𝑉(𝑌)
=

∑ 𝑎𝜶
2

𝜶∈𝑑:𝛼𝑖1>0

∑ 𝑎𝜶
2 − 𝑎0…0

2
𝜶∈𝑑

 

 

 

The challenge with the PCE method for variance-based sensitivity analysis is the 

estimation of the coefficient 𝑎𝜶  (polynomial chaos expansion). When this estimation is 

obtained, the following step of the index computation is quite immediate and (very!) 

cheap. In fact, all indices are calculated from the same polynomial expansion. The 

elaboration cost (number of model runs) is an imperative element to be considered when 

the SA of a model response is undertaken, and PCE is generally a very cost-effective 

technique. 

The rate of convergence of the polynomial series depends on the smoothness of the 

model response. When the output function is not regular (i.e. binary/discrete values), the 

PCE might encounter some difficulties and fail at estimating with the needed precision. In 

this case, other SA methods should be preferred. 

 

The regular responses of the SHERPA model shown by prior SA make this model a 

suitable case-study for the application of the PCE technique. In this work, we used the 

Bayesian sparse PCE approach as proposed by Shao et al. (2017). This method provides 

the variance decomposition from one single Monte Carlo sample of size N with N typically 

less than a thousand.  
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4 Results and Discussion 

i), thus 

represents the yearly average PM2.5 concentrations, as a total of the primary and 

secondary PM2.5 fractions. 

The preliminary uncertainty analysis of the SHERPA model, aiming at the quantification of 

the uncertainty in the model output, identifies different ranges depending on the city.  

For example the concentration reduction range (uncertainty) for Helsinki is around 

3 g/m3 while Milan shows more than 40 g/m3 uncertainty. Nevertheless, the 

predominant influence of the assumptions linked to the chosen policy (four air quality 

improvement at 25%, 50%, 75%, and 100%) is constantly confirmed. 

Hence, it was decided to study the effect of the four main policies, namely the air quality 

improvement at 25%, 50%, 75%, and 100%. 

 

The global sensitivity analysis provided a rank for the 13 uncertain inputs, namely the 

four coefficients  and , the four emissions (NOX, NH3, PPM, and SO2), and the policy 

options. It still confirms the latter to be a very relevant input.  

On the contrary, the study shows the  and  coefficient inputs to be quite negligible, 

that is their variabilities do not bring about a consistent uncertainty in the model output. 

Note that the four pollutants (NOX, NH3, PPM, and SO2) show variant SA indices, with an 

eventual importance of PPM uncertainty in many cities. 

 

Another remark is that all the first order sensitivity indices (Si) and their corresponding 

total sensitivity indices (STi) present very little difference, which is a sign of absence of 

interactions among the inputs in the model. As a result, we only consider only total 

indices (STi) in the following. 

 

Results for the city of Helsinki, London, and Milan are shown in the following section. 

Results for all the investigated cities are reported in Annex-1. 

 

4.1 Uncertainty Analysis 

As already mentioned (section 3.1.1), the model coefficients  and  are defined at 

regional level and their distribution functions are specific for each city (spatially 

dependent), consequently also UA results are specific for each city. For all cities, 

increased ambitions in terms of pollutant concentration reduction (higher C) are 

associated to a larger range in model outcomes, as expected, while the associated 

probability density function (pdf) is smoother. Results are showed for the city of Helsinki 

(figure 2), London (figure 3), and Milan (figure 4). The x-axis represents the pollutant 

concentration reduction (C) in concentrations in PM2.5 yearly average (in relation to the 

baseline case), and the y-axis represents the probability of the linked occurrence9.  

For the case of Helsinki, UA shows values between 1 g/m3 and 4.5 g/m3 (figure 2a), 

giving a range of about 3 g/m3. When the four policies are distinctly considered (figure 

2b), ranges associated to each case are different. When the ambition level grows (from 

25% to 100%) also the uncertainty on the results grows. The black line shows that the 

pdf of the most ambitious policy (100%) is clearly much larger (range of uncertainty) 

                                           
9 The pdf have been estimated on the basis of the results of the MC perturbation of the nominal values of inputs 

and model coefficients 
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than in the other three cases. For the intermediate policy (at 50%), the most frequent 

result is around 2.1 g/m3.  

 

 

Figure 2a: Probability Density Function of the estimated 
 concentration reduction 

Figure 2b: Probability Density Function of concentration 
reduction grouped into the four analysed policies 

 

A similar uncertainty is shown for London (figure 3a). For this city, the uncertainty 

ranges from 2 g/m3 to 6 g/m3, being quite similar to the prior case (4 g/m3 while 

3 g/m3 for Helsinki). The Policy 50% (figure 3b – red line) has as ‘most frequent’ value 

around 3.4 g/m3. Again, moving to the cases of Policy 75% and Policy 100% the 

uncertainty widens (figure 3b –purple and black line respectively). 

 

 

Figure 3a: Probability Density Function of the estimated 
 concentration reduction 

Figure 3b: Probability Density Function of concentration 
reduction grouped into the four analysed policies 

 

The case of Milan is the most uncertain one. Pollutant concentration reduction varies 

between 10 g/m3 - 52 g/m3, with a range of uncertainty of more than 40g/m3. 

Considering the individual policies, even the case of Policy 25% shows a higher 

uncertainty range (about 25g/m3) than the other investigated cities (see also Annex 1). 

Thus, for the Milan case, policy decision-making might be less effective due to the 

greater uncertainty in the model outcomes. 
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The above results stress how the model appears more robust, in terms of reduced 

variability, when working in “less extreme” scenarios, as i.e. the one close to Policy -

25/50% air quality improvement. In fact, this case shows a smaller range of uncertainty 

(see blue curves compared to the others one in figure 4b). However, the most 

remarkable result of the UA study is the constant overlapping of the four areas 

representing the different policies. This means that due to the hypothesized uncertainty 

in the inputs, the derived uncertainty in the output gives no possibility to distinguish 

between the policy options. The investment in the most costly option Policy 100% does 

not guarantee a better result in absolute terms.  

 

 

Figure 4a: Probability Density Function of the estimated 
 concentration reduction 

Figure 4b: Probability Density Function of concentration 
reduction grouped into the four analysed policies 

 

In similar case, the decision ‘impasse’ is solved devoting more efforts to the study of the 

sources of uncertainty, identified by SA to reduce the overlapping of the outcomes, 

namely an attempt to have distinct policy effects, and thus a more effective decision (see 

section 4.3). 
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4.2 Sensitivity Analysis 

As for uncertainty analysis, sensitivity analysis of SHERPA model has been carried out 

with respect to the different city profiles/characteristics. Therefore, the SA results might 

be different from one city to another, being not unique the distributions of the associated 

coefficients s and s and pollutant emission levels. 

The analysis took account of thirteen uncertain inputs, namely the four s and s, the 

four emissions (NOX, NH3, PPM, and SO2), and the policy option (ambition in air quality 

improvement). For almost all cities, the SA results show the policy option to be the main 

input. In fact, the total SA indices for the policy variable are in the range between 0.39 

(Madrid) and 0.64 (London). This means that a significant part (~40%) of the 

uncertainty in the outcome can be apportioned to the uncertainty in the policy choice. On 

the other hand, the global sensitivity study reveals that the coefficient  and  values 

are quite negligible. In most cases the SA indices are lower than 0.005having thus very 

little impact on the uncertainty in the model output. The four pollutants emissions (NOX, 

NH3, PPM, and SO2) show variant SA indices, with some noticeable importance for the 

PPM uncertainty in many cities (the highest one equals 0.38 for Milan). 

In a next step, sensitivity analyses were conducted assuming a given policy (i.e. 25% air 

quality improvement) taking thus into account 12 uncertain inputs. The SA results show 

which inputs, among the remaining 12 (the policy is fixed), mainly contribute to the 

uncertainty in the concentrations reduction. The different outcomes, achieved with this 

additional analysis, confirm a diverse behaviour of the evaluated cities. Nevertheless 

again the coefficients s and s have little effect on the uncertainty of the model output 

(concentration reduction). 

In the case of Helsinki (figure 5), SA 

indicates that the ‘policy option’ (total 

index STi = 0.59) and the emission PPMs 

(STi = 0.31) are the most important inputs, 

explaining together about 80% of the 

variability of the outcomes. The NH3 

follows with a total SA index of around 8%, 

while all other inputs have a very low 

influence on the concentration reductions. This 

means that time and efforts should not be 

focused on reducing the uncertainty of such 

inputs because the pollutant reduction values are 

not ‘sensitive’ to their improvement in terms of 

accuracy.  

Figure 5: Sensitivity Analysis results for Helsinki (13 inputs) 

Figure 6: Sensitivity analysis results for Helsinki (12 inputs) 
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Once the policy is fixed, the PPMs emission becomes the main contributor to model 

uncertainty. The STi for PPM input reaches 0.78 and the NH3 STi index increases up to 

0.15. These two emissions explain about 83% of the variability in the model. The 

uncertainties associated to the coefficients s and s continue to be not influential. 

Similarly to Helsinki, the results for London (figure 7) show that the policy input is 

predominant (STi = 0.64) with respect to the other uncertain inputs. Still, this confirms 

that it is important to devote efforts to better know the uncertainty on the policy choice. 

However, contrarily to the prior case, the PPMs emission sensitivity index is only 0.04. In 

fact, the uncertainty is mainly attributed to the NH3 and NOx inputs, which have a total 

index (STi) equal to 0.19 and 0.09 respectively. This pattern is replicated when the policy 

is fixed (figure 8). Therefore, when the policy option is certain and when we want to 

improve the accuracy of the concentrations reductions, we should make efforts to better 

know the uncertainty on the emissions of NH3 and NOX. The indices related to s and s 

are still negligible. 

 

 Figure 8: Sensitivity results for London (12 inputs) 

 
 

Figure 7: Sensitivity results for London (13 inputs) 

Finally, we present the results for the city of Milan (for an extensive discussion of this 

case see the following paragraph). The study with the 13 input variables indicates that 

the policy option and the PPM emissions are the only relevant factors. 
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Their SA indices are STi = 0.43 for policy and STi = 0.52 for PPMs, thus only a residual 

5% of model)  outcome uncertainty is not explained by these two inputs. If the policy 

uncertainty is eliminated, PPMs variability is able to give total account of almost the 

totality of the model output uncertainty. Its STi is equal to 0.90 (figure 10). All other 

inputs are individually little relevant. 

 

Figure 10: Sensitivity results for Milan (12 inputs) 

  

Figure 9: Sensitivity results for Milan (13 inputs 

 

 

4.3 UA-SA for decision-making: The case of Milan 

4.3.1 The problem setting 

We have shown that, among the studied cities, Milan was the case with the highest 

potential of pollutant concentration reduction. Indeed, the uncertainty analysis has 

shown that the possible reduction that one could achieve lies within the range [10, 45] 

µg/m3.  

We now undertake a more insightful analysis aiming at pointing out the best policy 

choice. The question asked is: « Given that Policy 100% is more expensive to implement 

than Policy 25%, is it worth to choose it? ».  

To answer the question, an analysis must be carried out by making a clear distinction 

between the two policy options. Instead of re-executing the SHERPA model with a new 

sample set for the two different policies, we filter the sample at hand by only keeping the 

input/output draws that only concern Policy 25% and Policy 100% respectively. This 

provides two subsamples of modest sizes (around 512 draws) that we subsequently 

analyse with the Polynomial Chaos Expansion method (see section 3.1.3). 
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4.3.2 Decision-making under uncertainty 

Computer models can be valuable tools for decision-making in a policy context. Modellers 

usually provide model-based evidences after executing their model by assuming that the 

model input values are known and correct, and that their models are error-free. They 

tend to overlook the inevitable issue of uncertainty. Good modelling practice should 

acknowledge the presence of uncertainties in the model and the data. This is the 

prerequisite for robust decision-making.  

 

Although uncertainty due to model error is 

not easy to handle, accounting for model 

input uncertainty (data) is straightforward 

and should at least be of current practice. 

As an illustration of how classical 

approaches can go wrong, let us consider 

the problem defined in the previous 

section. We computed the expected 

reduction of pollutant concentration with 

SHERPA if Policy 25% and Policy 100% are 

respectively applied to the city of Milan. In 

this exercise, the input parameters are set 

to their nominal value.  

The results are depicted in figure 11. We 

note that, by doing so, the results lead to 

the conclusion that by applying 

Policy 25%, a reduction of the pollutant of about 24 µg/m3 could be achieved while 

applying Policy 100% a reduction of about 37 µg/m3 could be expected. Therefore, a 

further improvement of 13 µg/m3 could be achieved with Policy 100%. This inference is 

of course misleading because it is not clear whether this improvement is significant or 

not. This is a crucial issue as Policy 100% might be more difficult and/or expensive to 

implement than Policy 25%.. Hence, it is important to assess whether the policy-makers 

will get their money worth. One way to assure that is to rely on the modeller’s best 

knowledge about the model input values. As discussed in section 3.1.1, uncertainties in 

the model inputs were quantified by the modeller and a rough estimation of the model 

input distributions was undertaken on the basis of a good literature review (see Table 1). 

SHERPA was executed/run with a quasi 

Monte Carlo sample in order to account for 

model inputs uncertainties. For each policy, 

a subsample of the predicted pollutant 

concentration reduction was obtained as 

described in section 4.1. The resulting 

uncertainties in the model responses for the 

two policy scenarios are depicted in figure 

12. We can see that the predicted pollutant 

concentration reduction ranges from 12 

g/m3 to 35 g/m3 for Policy 25% while it 

ranges within [17, 55] g/m3 for Policy 

100%. We also note that the predicted 

probabilities overlap. Therefore, it is not 

clear whether Policy 100% would effectively 

be more efficient than Policy-25%. In such 

a situation, it is difficult to make a choice 

between the two policies. 

It is then recommended to identify the 

inputs responsible for such an overlapping. This is the role of sensitivity analysis. 

Figure 11: SHERPA result assuming known the model inputs 

Figure 12: SHERPA response uncertainty when 
uncertainties in the inputs are accounted for. 
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4.3.3 Sensitivity analysis for guiding future works 

Reducing the uncertainty in the model responses is the key to clearly assess the benefit 

of applying/implement one policy instead of the other one. Therefore, we carry out a 

study to compare the effect of two different policies.  

To this aim, the sensitivity analysis of the difference between the pollutant concentration 

reductions obtained with the two policies has been performed. The model was run with 

the two policies separately but with the same sets of input values. This exploratory step 

was based on the polynomial chaos expansions identified in the previous analysis (i.e. 

the PCEs are used as surrogate models).  

 

Figure 13: On the left, probability density of the difference between the reduction in concentration of pollutant due to the 
two policies (25%, 10%). On the right, variance decomposition of the difference between the two policies. The latter 
highlights the importance of emission of primary particulate matter. 

We performed 1024 runs of the two surrogate models (PCE expansion) and computed, 

for each run, the difference between the predicted pollutant concentration reductions 

provided by Policy 25% and Policy 100%. The uncertainty of the computed response is 

shown in figure 13 (left-hand side). We can infer that the difference between the two 

policies in terms of pollution reduction varies from 6 g/m3 and 20 g/m3. The difference 

is positive which means that Policy 100% will always perform better than Policy 25%. 

However, the improvement can be significant (close to 20 g/m3) or not (~6 g/m3).  

After, another iteration of the sensitivity analysis was necessary to know which input - if 

better characterized - would allow reducing the uncertainty in the model prediction so 

that the stakeholder could take an easier decision. 

 

This is achieved with the Web-App for sensitivity analysis of model output developed by 
Unit JRC.I1 and described in Annex 2. 
 

The results are represented in figure 13 (right-hand side) in the form of a pie chart. The 

latter is the variance decomposition of the difference in pollution reduction between the 

two policies. The sensitivity analysis clearly pointed out the importance of the value 

assigned to the Emission of PM2.5 (KTons/year) in the surroundings of Milan. We recall 

that this input varied between +/- 50% with respect to the reference value. As a 

conclusion, future effort should be dedicated to the characterization of the emission of 

PM2.5 in the area of Milan if one wants to infer if one policy is significantly better than 

the other one. 
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5 Conclusions 

 

In the report, we addressed the use of ‘uncertainty and sensitivity analysis techniques’ to 

check the robustness of air quality models. As in Europe, we are moving to a situation in 

which exceedances of air quality legislation thresholds are mainly measured in specific 

regions or cities, the focus has been on the application of uncertainty and sensitivity 

analysis to the SHERPA model, which has been specifically designed for supporting 

regional/local decision makers. 

A case-study has been conducted on one of the key SHERPA modules used to forecast air 

quality improvement linked to emission reduction scenarios. Given that SHERPA is based 

on coefficients and spatially varying inputs, a number of selected European cities10 - 

representative of different meteorological and emission inventory conditions - have been 

chosen for the UA-SA exercise.  

Firstly, the uncertainty of the SHERPA outcomes (yearly concentrations of PM2.5 in 

g/m3) has been quantified by uncertainty analysis (UA). This has been done considering 

the SHERPA inputs variability (in terms of emissions of precursors of PM2.5 

concentrations), the SHERPA model coefficients uncertainty (considering perturbation of 

coefficients s and s nominal values), and the policy option variable. The results helped 

identifying how and where to prioritise further model improvement and policy makers’ 

actions. 

Moreover, the uncertainty analysis was followed by a sensitivity analysis to identify the 

most influential inputs and their possible interactions. It was found that, for eight cities 

out of ten, the policy option, that is the level of desired reduction considered by the air 

quality plan, is the most influential input. This means that the choice of the policy, 

namely, the policy option variability is more important than the other model input and 

coefficient variabilities. In the two remaining cases (Milan and Madrid), the sensitivity 

index of the policy choice is the second relevant one. 

This means that according to the model forecasts, the first action should be for the policy 

makers to discuss upon what is the best policy to implement. After, once the policy has 

been agreed upon, the discussion could move on to how to reduce the other sources of 

uncertainty. Among the other inputs, the pollutant emissions (KTons/year) are by far the 

most influential ones, in particular the emissions of PPM, NOX, and NH3. The SHERPA 

model coefficients ( and ) are quite unimportant inputs, even if the  coefficients are 

slightly more relevant than the  ones.  

In the Milan and Madrid cases, the uncertainty on the emissions of PM2.5 is the main 

contributor to the inaccuracy of the model output (total sensitivity indices are STi=0.52 

for Milan and STi=0.59 for Madrid). For these cities, it would be advisable also to spend 

resources to get a better knowledge of the PPMs emission quantities.  

As shown in a recent work (Trombetti et al., 2018), EU cities show substantial differences 

in terms of total emissions, sectorial emission shares and spatial distribution. These 

differences determine different model output uncertainty. Therefore, a specific UA-SA is 

necessary for each city. 

Finally, the case of Milan has been exhaustively discussed. The authors used the 

Web-App for sensitivity analysis developed within the Competence Center on Modelling 

(CC-MOD) to carry out a forecasting analysis. This last step confirmed that the 

knowledge (and possible control) of the level of uncertainty affecting the model inputs is 

determinant for the policy-decision process, and the key-role played by SA in this regard. 

 

                                           
10 Berlin, Bruxelles, Bucuresti, Helsinki, Constanţa, London, Madrid, Milan, Paris, and Utrecht. 
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ω_NOx 1.87 0.01 

ω_NH3 1.62 0.01 

ω_PPM 2.51 0.66x10-2 

ω_SO2 1.38 0.01 

α_NOx 0.01 0.06x10-2 

α_NH3 0.07 0.31x10-2 

α_PPM 0.28 0.03 

α_SO2 0.23x10-2 0.05x10-2 

LONDON The U.K. Inhabitants:  8,787,892 

 

 

ω_NOx 1.87 0.01 

ω_NH3 1.62 0.01 

ω_PPM 2.51 0.66x10-2 

ω_SO2 1.38 0.01 

α_NOx 0.32x10-2 0.04x10-2 

α_NH3 0.14 0.54x10-2 

α_PPM 0.50 0.87x10-2 

α_SO2 0.26x10-2 0.04x10-2 

HELSINKI Finland Inhabitants:  629,512 
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ω_NOx 1.97 0.02 

ω_NH3 1.60 0.02 

ω_PPM 2.33 0.02 

ω_SO2 1.34 0.91x10-2 

α_NOx 0.05 0.50x10-2 

α_NH3 0.07 0.01 

α_PPM 1.97 0.04 

α_SO2 0.01 0.48x10-2 

MILAN Italy Inhabitants:  1,368,590 

 

 

ω_NOx 1.87 0.01 

ω_NH3 1.62 0.01 

ω_PPM 2.51 0.66x10-2 

ω_SO2 1.38 0.01 

α_NOx 0.02 0.10x10-2 

α_NH3 0.04 0.24x10-2 

α_PPM 0.56 0.05 

α_SO2 0.55x10-2 0.12x10-2 

UTRECHT The Netherlands Inhabitants:  338,000 

 

 

ω_NOx 1.97 0.02 

ω_NH3 1.60 0.02 

ω_PPM 2.33 0.02 

ω_SO2 1.34 0.91x10-2 

α_NOx 0.05 0.41x10-2 

α_NH3 0.07 0.39x10-2 

α_PPM 0.53 1.33x10-2 

α_SO2 0.65x10-2 0.04x10-2 

CONSTANȚA Romania Inhabitants:  300,000 
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ω_NOx 1.97 0.02 

ω_NH3 1.60 0.02 

ω_PPM 2.33 0.02 

ω_SO2 1.34 0.91x10-2 

α_NOx 0.0078 0.0013 

α_NH3 0.0320 0.0060 

α_PPM 1.5938 0.0198 

α_SO2 0.0084 0.0021 

MADRID Spain Inhabitants:  3,141,991 

 

 

ω_NOx 1.87 0.01 

ω_NH3 1.62 0.01 

ω_PPM 2.51 0.66x10-2 

ω_SO2 1.38 0.01 

α_NOx 0.0180 0.0011 

α_NH3 0.0506 0.0031 

α_PPM 0.4518 0.0407 

α_SO2 0.0036 0.0011 

BRUSSELS Belgium Inhabitants:  1,175,173 

 

 

ω_NOx 1.87 0.01 

ω_NH3 1.62 0.01 

ω_PPM 2.51 0.66x10-2 

ω_SO2 1.38 0.01 

α_NOx 0.01 0.08x10-2 

α_NH3 0.06 0.47x10-2 

α_PPM 0.92 1.69x10-2 

α_SO2 0.35x10-2 0.13x10-2 

PARIS France Inhabitants:  2,229,621 
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ω_NOx 1.87 0.01 

ω_NH3 1.62 0.01 

ω_PPM 2.51 0.66x10-2 

ω_SO2 1.38 0.01 

α_NOx 0.02 0.11x10-2 

α_NH3 0.08 0.40x10-2 

α_PPM 0.57 3.50x10-2 

α_SO2 0.39x10-2 0.08x10-2 

BERLIN Germany Inhabitants:  3,670,622 

 

 

ω_NOx 1.97 0.02 

ω_NH3 1.60 0.02 

ω_PPM 2.33 0.02 

ω_SO2 1.34 0.91x10-2 

α_NOx 0.04 0.69x10-2 

α_NH3 0.06 0.01 

α_PPM 0.95 0.02 

α_SO2 0.76x10-2 0.11x10-2 

BUCURESTI Romania Inhabitants:  1,883,425 
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Annex 2. An on-line EC Application for Sensitivity Indices Estimate 

Introduction 

In order to assist the European commission in their daily work, the Sensitivity Analysis of 

Model Output (SAMO) team of the Competence Center in Modelling (CC-MOD) in 

Directorate I (Competence) has developed the present online application to allow any 

modellers within the Commission to compute variance-based sensitivity indices also 

called Sobol’ indices (Sobol', 1993) from given Monte Carlo samples. It is assumed then 

that the modeller has drawn N independent set of values of the model input X and for 

each draw has executed/run the model and calculated the response of interest y. For 

example, the modeller has the following samples at hand: 

X=[
𝑋11 ⋯ 𝑋1𝑑

⋮ ⋱ ⋮
𝑋𝑁1 ⋯ 𝑋𝑁𝑑

] and Y =  [
𝑌1

⋮
𝑌𝑁

], where each corresponds to a model run. 

The purpose is then to assess the relative importance of each input variable xi against 

the output y. This can be achieved (under the independence assumption of the 

x-variables) by decomposing the variance of y in terms of partial contributions stemming 

from each input variable (so individually or in cooperation with others) as follows: 

 

            (2.1) 

 

where Vi is the individual contribution of xi while Vij is a mutual contribution of (xi,xj) 

called interaction, etc. 

It is usually more convenient to normalise the variables., i.e. to have ranges [0.0, 1.0] 

which leads to the concept of variance-based sensitivity indices (or Sobol’ indices), 

 

            (2.2) 

with the nice property that they sum-up to one. They measure the amount of the 

variance of y due to xi alone (i.e. Si) or by its interactions with the other variables (e.g. 

Sij, Sijk). The higher its contribution the more y is sensitive to xi. It is also convenient to 

introduce the total sensitivity index that capture the overall contributions of xi (Homma & 

Saltelli, 1996),  

𝑆𝑇𝑖 = 𝑆𝑖 + ∑ 𝑆𝑖𝑗
𝑑
𝑗≠𝑖 + ∑ 𝑆𝑖𝑗𝑘 + ⋯𝑑

𝑘≠𝑗≠𝑖       (2.3) 

If STi = 0, then xi is deemed non-important for the model response. 

Details about the Web-App 

Step 1: uploading the data 

By clicking on the link http://siprapp01-riod.jrc.org:3838/SA_app/ the user is connected to the 

remote application. The welcome page is depicted in fig. A1. On the left-hand side, the 

user has to specify the format of the data to be uploaded. The latter can be a csv file or 

any ASCII format like ‘txt’, data with a specific separator (comma, semicolon, 

tabulation). It is not mandatory but the first row should contain the name of the 

variables (e.g. x1;x2;….;xd;y).  
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On this page, one must: 

- Click on Browse to upload the data from your computer, 

- Select or unselect Header, 

- Specify the Separator, 

- And possibly indicate whether the header (when any) is quoted or not (e.g. “x1” 

instead of x1, …), 

- If the data upload is successful, then one can Execute/Run the program. 

 

If the data upload is successful one should obtain a result similar to what is depicted in 

fig. A2, otherwise the results will look like fig. A3. 

 

 

Fig.  A1: Welcome page of the Web-App dedicated to sensitivity analysis of model response 

 

Fig.  A2: Successful data upload. The program recognizes the number of input variables.  
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Fig.  A3: Failure of the data upload. The program is not able to recognize the number of input variables and the array is 
not displayed properly. 

 

 

Fig.  A4: Window displayed during the program execution. 

 

Step 2: Execution and analysis of the results 

When executing/running the program, a message is displayed indicating that the 

calculation is in progress (see fig. A4). Once the calculation has finished a message 

appears to warn the user. Then, one can check the results. To this end, three types of 

result presentation are proposed in different tabs: 

- Tab SA (fig. A5): Gives some information about the results of the polynomial chaos 

expansion (PCE), the Npce (Number of terms in the expansion), the Q2 (amount of 

variance unexplained by the PCE approximation, a value < 0.10 is recommended), 

the first-order and total index of each variable, and the variance decomposition as 

shown in (2.1) and (2.2), 
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- Tab SI Plot (fig. A6): In this tab, the first-order (i.e. Si) and total-order (i.e. STi) are 

displayed graphically for a faster inference, 

- Tab Main Effects (fig. A7): Display the marginal effect of each variable (univariate 

effect) versus the scatterplots. The marginal effect normally shows the trend of the 

effect of each variable onto the model response y. 

 

 

 

Fig. A5: Results displayed in the tab SA. The results indicate that the PCE contains 13 terms. The unexplained variance is 
about 3/1000. The estimated first-order sensitivity indices are respectively: S1=0.31, S2=0.46 and S3=0. The total-order 
sensitivity indices are respectively: ST1=0.54, ST2=0.46 and ST3=0.24. One can infer that x3 is not important alone but is 
important because of its interaction with x1 (S13=0.24). The variance decomposition is: 1 = S1 + S2 + S13. 

 

 

Fig. A6: Results displayed in the tab SI Plot. 
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Fig. A7: Results displayed in the tab Main Effects. 
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