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Foreword 

This report is the delivery 2018 of the work package 6410 FISSION Advanced studies of 

the nuclear fission process the Project ANDANTE and contributes to the Policy Area "Safe 

and secure use of nuclear energy"     

   

Key orientation of the WPk 6410 is towards the enhanced safety of nuclear reactors and 

nuclear fuels through collecting, analysing and assessing the operational experience of 

nuclear power plants worldwide and disseminating information to the Member States' 

regulatory authorities.  

The work summarized in the present report contributes to the research on the 

improvement of the safety assessments of innovative reactor designs in synergy with the 

Generation IV International Forum (GIF), the generation of reference scientific data on 

the safety performance and to the development of codes and models for safety 

assessment of both conventional and innovative nuclear fuels in operational, transient 

and accident conditions. It may help supporting the EU's internal policy on nuclear safety 

and the implementation of related EU directives and EU policy by providing state-of-the-

art technical and scientific knowledge  
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Abstract 

This report is in response to a nuclear data request on the OECD-NEA high priority 

request list for new measurements of prompt neutron multiplicities from 239Pu(n,f) in the 

incident neutron energy range from thermal to 5 eV. There exists experimental evidence 

for strong fluctuations of the average neutron multiplicity from resonance to resonance in 
239Pu(n,f). These fluctuations have been shown to impact nuclear reactor benchmarks by 

reducing the criticality. One explanation for the fluctuating neutron multiplicity may be 

the competition between direct fission and the (n,γf) process. However, there is also 

evidence for fluctuations of the fission fragment mass yields from resonance to 

resonance. The mass yield fluctuations may also contribute to fluctuations of the neutron 

multiplicity averaged over all fission fragment masses. In order to model the contribution 

to the neutron multiplicity fluctuations by the fission fragment mass yield fluctuations 

new data on the correlations between fission fragment properties and neutron 

multiplicities are in need. 

In this report we present an experiment carried out to determine prompt neutron 

multiplicity correlations with fission fragment masses and total kinetic energies. The 

experiment has been carried out at the GELINA facility at JRC-Geel. Correlations between 

average neutron multiplicities and fission fragment properties have been measured with 

improved resolution in both mass and TKE, compared to data from the literature. Results 

show that the dependence of average neutron multiplicity per fission and fission fragment 

mass split is weak. 
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1 Introduction 

Fluctuations of the average prompt neutron multiplicity (nubar) from the reaction 
239Pu(n,f) in the incident neutron energy range of the resonances have been observed 

(Shackleton et al., 1973, Weston et al., 1974 and Gwin, 1984). In Figure 1 experimental 

data and evaluations of these types of fluctuations in the incident neutron energy range 

below 120 eV are shown. Changes in nubar between 1-10% at the resonance energies 

are evident. The fluctuations have been shown to impact nuclear reactor benchmarks by 

reducing the criticality (Fort, 1988). 

A new evaluation of the prompt fission neutron spectrum (PFNS) in the thermal energy 

range has determined a lower value of the average neutron energy than that reported in 

the existing evaluated nuclear data libraries (Pigni et al., 2017). The lower average 

neutron energy is in agreement with independent evaluations (Capote et al., 2016). A 

number of thermal-solution benchmarks have shown that the use of a softer prompt 

fission neutron spectrum at thermal energy, combined with new thermal neutron 

constants (adapted to fit with the IAEA standards), yields k-eff values that are larger 

than measurements by a margin that increases as the above-thermal-leakage fraction 

increases (De Saint Jean, 2014). Therefore a reduced criticality is needed for high-

leakages solutions. Accordingly, the OECD-NEA high priority request list is asking for new 

measurements of nubar in 239Pu(n,f), in the incident neutron energy range from thermal 

to 5 eV (Capote, 2018). 

Figure 1. Fluctuations in the average neutron multiplicity as a function of the incident neutron 

energy in the 239Pu(n,f) reaction. 

 

 

Fluctuations of nubar in the region of the resonances is suspected to be due to 

competition between direct fission and the (n,γf) process, in which fission proceeds after 

the emission of a gamma-ray. The pre-scission gamma-ray caries away energy, as a 

consequence, the neutron multiplicity is lowered when the importance of the (n,γf) 

process is higher. For accurate evaluation of nubar it is, however, also necessary to 
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account for fluctuations of the fission fragment mass yields. In the present report we are 

presenting an experiment performed at the GELINA time of flight facility, where both the 

fission fragment mass yields as a function of the incident neutron energy and the 

dependence of nubar on the fission fragment mass has been studied. We are reporting 

here on the results of the correlation of the average number of emitted neutrons with the 

fission fragment mass and total kinetic energy (TKE) release. This data provide crucial 

input required to model the influence of mass yield fluctuations on nubar as a function of 

the incident neutron energy. The results on fission fragment mass yield fluctuations will 

be reported at a later time. 

This report is also presenting plans to adapt the existing experimental setup, essential in 

order to meet the required accuracy on nubar in the incident neutron energy range from 

thermal to 5 eV. 
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2 Experiment 

The experiment has been performed at the GELINA neutron time-of-flight facility at the 

JRC Geel site. The detector setup is located at the 10 m measurement station on flight-

path 17. It is schematically illustrated in Figure 1, and consists of two parts: an array of 

proton recoil scintillators (SCINTIA) and a twin position-sensitive ionization chamber 

(2PIC) for fission fragments. More details about the detector setup are given in the 

following sub-sections of this report. The data acquisition is based on wave-form 

digitizers. A pulse from the common cathode of the 2PIC triggers the data acquisition to 

store digital wave forms from all ionization chamber electrodes and scintillation detectors 

on disk for offline analysis. Together with the wave-form data, 800 MHz time-stamp 

information is also written. The t0-signal from the accelerator, generated just before an 

electron pulse hits the neutron producing target and a neutron pulse is produced, is used 

to reset the time stamp. This allows the incident neutron energy to be determined via the 

time-of-flight technique. The main experiment was performed with GELINA operating at 

800 Hz repetition frequency. With the incident neutron flight-path length of 8.81 m, the 

lowest neutron energy accessible in this measurement is 0.26 eV. To avoid overlap of low 

energy neutrons from a former electron beam pulse, a Cd filter with an areal density of 

0.7 g/cm2 was placed in the beam. 

Figure 2. Illustration of the experimental setup with the 2PIC in the centre surrounded by the 22 
neutron detectors of the SCINTIA array. The GELINA neutron beam enters from the left and runs 
through the centre of the ionization chamber, perpendicular to the electrode plane. 

 

 

2.1  Fission Fragment Detection 

 

The 2PIC is used for determination of fission fragment masses and energies. The detector 

was developed at JRC-Geel and is described in detail elsewhere (Göök et al., 2016), 

some essential details will be repeated here. In principle, the detector is a twin Frisch 

gridded ionization chamber. However, the standard anode plates are replaced by position 

sensing readout electrodes. The fission target consists of a thin layer (29.95 μg/cm2 Pu) 

of PuF4 on a backing of gold covered polyimide. The fission target is placed in a hole in 

the common central cathode. The very thin target and backing allows for both of the 

fission fragments from a binary event to escape and ionize the gas on either side of the 
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cathode plate. Fission fragment energies and masses are determined via the double-

kinetic-energy (2E) technique. For the purpose of calibration, we have used data 

collected with GELINA operating at 50 Hz repetition frequency. This allows the selection 

of thermal neutron induced fission in the time of flight spectrum, which has well known 

characteristics. During the 50 Hz run the Cd-filter was removed from the beam. 

As counting gas pure CH4 is used. The choice of this counting gas is motivated by its high 

drift velocity compared to the P-10 gas mixture, which is more commonly used with this 

detector. The high drift velocity helps reducing the effect of pile-ups present due to the 

high alpha activity of the 239Pu target.  

2.1.1 Determination of Mass and TKE 

The masses 𝑚1,2
∗  and energies 𝐸1,2

∗  before neutron emission in a binary fission event are 

related via conservation of linear momentum, according to  

 
𝑚1,2

∗ = 𝑚𝑐𝑛

𝐸1,2
∗

𝐸1
∗ + 𝐸2

∗, 
(1) 

where 𝑚𝑐𝑛 is the mass of the compound nucleus undergoing fission. Under the 

assumption of isotropic neutron emission from fully accelerated fragments, the energies 
before neutron emission 𝐸1,2

∗  are related to the energies after neutron emission 𝐸1,2 by the 

approximation  

 
𝐸∗ = 𝐸

𝑚∗

𝑚∗ − �̅�(𝑚∗, TKE)
, 

(2) 

where �̅� is the number of neutrons emitted by the fragment. The dependence of �̅� on 

mass and TKE can only be derived from the data once the 2E analysis is completed. As 
initial assumption we have used the evaluated data on �̅�(𝑚∗) from Wahl (1988) and the 

parametrization  

 
�̅�(𝑚∗, TKE)∗ = �̅�(𝑚∗) +

�̅�(𝑚∗)

�̅�(𝑚∗) + �̅�(𝑚𝑐𝑛 − 𝑚∗)

𝑇𝐾𝐸(𝑚∗) − 𝑇𝐾𝐸

𝐸𝑠𝑒𝑝

, 
(3) 

where 𝐸𝑠𝑒𝑝= 8.6 MeV/n is the average energy necessary to emit a neutron (Nifenecker, 

1973). The analysis was later repeated using the results for �̅�(𝑚∗) and 𝐸𝑠𝑒𝑝= 8.51 MeV/n 

derived from the data. No significant changes in the results were observed between the 

two analyses; hence no further iteration was made. For the case when a neutron 

coincidence is required, an additional correction to the fragment energy according to 

Gavron (1974) is applied. The pulse height defect of the counting gas is corrected for as 

described by Hambsch et al. (1995), with parameters adjusted to reproduce known 

values of the average light and heavy fragment masses (Geltenbort et al, 1986) and TKE 

(Gönnenwein, 1991) from 239Pu(nth,f). 

The intrinsic energy resolution of the ionization chamber is for fission fragments 0.6 MeV 

(Budtz-Jørgensen, 1987). However, the finite target thickness causes an uncertainty in 

the energy loss correction that dominates the resolution for the individual fragment, 

since the depth inside the target where the fission took place is unknown. This 

uncertainty is on average about 0.67 MeV, as determined from the observed energy loss 

in the target material. In addition to the resolution of the measured energies, conversion 

of the measured post-neutron energies to pre-neutron energies, relevant for calculating 

the fission fragment masses, adds broadening. The resolution due to neutron emission 

can be estimated according to Terrell (1962). Combined an average mass resolution of 

about 4-5 u (FWHM) is expected. The expectation is verified by comparing the mass 

distribution, selecting only thermal incident neutron energies from the present 

measurement, to high resolution double velocity data from Geltenbort et al. (1986), as 

displayed in Fig. 2. The red dashed line corresponds to the data of Geltenbort et al. 
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(1986) convoluted with a Gaussian resolution function; the best fit for the FWHM of this 

resolution function was found to be 3.9 u. Considering a mass resolution of 1-1.5 u 

(FWHM) for the double velocity experiment we arrive at a mass resolution around 4 u 

(FWHM). 

Figure 3. Observed fission fragment mass distribution from 239Pu(nth,f) compared to high 
resolution data from Geltenbort et al. (1986). The full red line corresponds to the data from 
Geltenbort et al. (1986) convoluted with a Gaussian resolution function with a FWHM of 3.9 u. 

 

The resolution in TKE due to the target thickness was estimated to 0.1 MeV, based on 

energy loss calculations of typical fission fragments using TRIM (Ziegler, et al. 2008). 

This figure is significantly smaller than the resolution that applies to the individual 

fragments. This is because the uncertainty on the depth inside the target where the 

fission takes place cancels to a large extent. Due to the very thin target used in the 

present experiment the post-neutron TKE resolution is dominated by the intrinsic energy 

resolution of the ionization chamber and estimated to be 0.6 MeV.  

The orientation of the fission axis is determined in the 2PIC from combined information 

on the electron drift time and charge division from the position sensitive electrodes. This 

gives the position of the centre of gravity of the charge distribution along the stopping 

tracks of both fission fragments individually. By connecting these two points by a straight 

line, the position of the fission event on the target plane as well as the orientation of the 

fission axis is extracted, with resolutions of 1.5 mm (FWHM) and 7° (FWHM), 

respectively. This information is then used to determine the relative orientation of the 

fission fragment velocity and the velocity of a neutron detected in any of the scintillators. 

A more detailed account of this analysis has been published earlier (Göök et al., 2016). 

The 2PIC covers nearly 4π of the solid angle. However, due to energy straggling and 

uncertainty in the energy loss corrections, fission fragment masses cannot be accurately 

determined for angles of emission larger than 60◦ with respect to the target normal. The 

collimation is done during the offline data analysis by imposing a cutoff angle using the 

information extracted on the fission axis orientation. The cutoff angle causes a fission 

fragment efficiency that varies as a function of angle relative to a specific neutron 

detector ϑL. By counting the number of fissions as a function of ϑL (regardless of whether 

a neutron has been registered in coincidence or not) the fission fragment efficiencies are 

determined and accounted for; cf. Göök et al. (2016). 
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2.2 Prompt Neutron Detection 

Prompt fission neutrons (PFN) were detected in an array of proton recoil scintillators. The 

array is illustrated in Figure 2. In Table 1 the neutron detector array is summarized. The 

table includes properties of the neutron detectors and their position relative to the centre 

of the fission target inside the ionization chamber. 
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Table 1 Summary of the neutron detector array. Three different type of detectors were used; the 

EJ-301 is an NE-213 equivalent liquid scintillator, while the paratherphenyl (pth) and the stilbene 

are organic crystal scintillators. The distance from the centre of the 239Pu target to the centre of the 
individual detector is denoted by d. The detector orientation axis is given by the polar θd and 
azimuthal φd angles with respect to the incident beam direction. The position of the individual 
detector was determined with an accuracy of 0.2 mm, using a measuring arm (ROMER Absolute 
Arm 7530, Hexagon Metrology). The last column gives the size of the scintillator. 

Type d 

(cm) 

θd 

(deg.) 

φd 

(deg.) 

diameter x height 

(cm x cm) 

stilbene 43.37 134.47 −177.16 8.00×5.00 

pth 41.04 161.88 −174.20 8.00×5.00 

pth 41.24 159.78 −4.41 8.00×5.00 

pth 41.83 133.69 −3.30 8.00×5.00 

EJ-301 45.65 129.35 88.01 10.16×5.10 

EJ-301 43.58 161.73 84.27 10.16×5.10 

EJ-301 43.58 160.96 −86.74 10.16×5.10 

EJ-301 47.98 47.89 93.09 10.16×5.10 

EJ-301 43.79 44.86 179.37 10.16×5.10 

EJ-301 43.32 17.26 177.89 10.16×5.10 

EJ-301 42.5 16.48 −97.41 10.16×5.10 

EJ-301 44.93 16.9 100.25 10.16×5.10 

EJ-301 45.9 18.17 0.18 10.16×5.10 

EJ-301 45.46 41.74 −1.46 10.16×5.10 

EJ-301 44.82 151.34 38.79 12.70×5.10 

EJ-301 46.42 154.85 140.9 12.70×5.10 

EJ-301 45.37 151.54 −129.30 12.70×5.10 

EJ-301 45.25 149.55 −50.51 12.70×5.10 

EJ-301 45.89 27.48 137.85 12.70×5.10 

EJ-301 44.68 28.14 −136.51 12.70×5.10 

EJ-301 45.47 24.78 −48.97 12.70×5.10 

EJ-301 44.06 26.29 45.6 12.70×5.10 
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For the purpose of studying correlations between neutrons and fission fragments it is 

necessary to know the neutron detection efficiency as a function of the energy of the 

prompt neutrons. In order to determine this, a dedicated measurement with a 252Cf 

source placed inside the ionization chamber was performed. The prompt fission neutron 

spectrum (PFNS) emitted in the spontaneous fission decay of 252Cf is known with an 

accuracy of about 1-3% in the energy range 0.15 to 11 MeV, and is considered as a 

neutron standard. Hence, by forming the ratio of observed and evaluated (ENDF/B.VII-1) 

PFNS for this decay the neutron detection efficiency can be determined. The 252Cf source 

was deposited on a thin (220 μg/cm2) Ni foil, and had an activity of about 3300 

fissions/s. The 252Cf measurement was performed under the same experimental 

conditions as the 239Pu(n,f) measurement, except for the incident neutron beam which 

was not present. When determining the PFNS no selection of fission fragment emission 

angle is made. In fact, for this purpose only the signal from the 2PIC's central cathode is 

used as a fission trigger, with a threshold adjusted to discriminate against α-decay. The 

very thin targets used for the measurements and the large solid angle of acceptance of 

the fission fragment detector ensures that the PFNS is unperturbed by this selection. 

The PFN energy is determined from the flight time of the neutrons from the ionization 

chamber to the scintillation detector, according to  

 𝐸 = 𝑚0𝑐2(𝛾 − 1), (4) 

where 𝑚0𝑐2 = 939.565 MeV is the rest energy of the neutron and 𝛾 is the Lorentz factor, 

given by 

 
𝛾 = (1 − (

𝑙

𝑡𝑐
)

2

)

−1/2

. 
(5) 

In Eq (5) 𝑙 is the flight-path length, 𝑡 is the flight time and 𝑐 is the speed of light in 

vacuum. 

The energy resolution is given by the combination of uncertainty in the flight time and 

the flight-path length, due to the size of the detectors (as given in Table I). The 

combined timing resolution of the ionization chamber and the scintillation detectors is 

dominated by the ionization chamber, and has been determined to be 1.1 ns (FWHM). 

The selection of prompt fission neutrons is made using pulse-shape discrimination (PSD) 

and pulse-height thresholds. In addition to neutrons, fission is accompanied by prompt γ-

ray emission. For low energy deposits in the scintillators, PSD fails to distinguish between 

γ-rays and neutrons, leaving a residual γ-ray component. Most of the prompt γ emission 

happens at the instant of fission and up to a few ns later. Within the same time range, 

high-energy neutrons, which are emitted with a very low intensity, will arrive in the 

detectors. Therefore, the very high-energy region of the neutron spectrum is most 

sensitive to false events induced by γ-rays. In order to reduce the effect of such false 

events, the pulse-height threshold is made to depend on the time of flight. The rate of 

background events caused by interactions of the neutron beam with the experimental 

environment, as well as ambient background, was determined by counting, as a function 

of the pulse height threshold, the number of accidental coincidences before the prompt γ-

ray peak, in the time-of-flight interval [−500,−10] ns. 

2.3 Analysis of Fission Fragment and Prompt Neutron 
Coincidences 

 

A neutron detected in coincidence with fission may originate from either of the two 

fragments. However, due to the kinematic boost, the probability that the detected 

neutron originates from the fragment detected in the same hemisphere as where the 

neutron detector is located is much higher (Budtz-Jørgensen, 1987). The data analysis is 
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first made assuming that the probability to detect a neutron from the complementary 

fragment is zero. With the kinematic information (neutron energy, fission fragment 

energy and mass, as well as the angle between neutron and fragment velocities) 

obtained in the laboratory reference frame, the kinematics in the c.m. frame can be 

reconstructed. Once the neutron spectrum in the c.m. frame has been obtained the 

contribution from the complementary fragment may be estimated and subtracted. The 

data analysis procedure has been developed and applied in our earlier works (Göök et 

al., 2014 and Göök et al., 2018) and is described in more detail there. In the present 

experiment, as well as in our earlier work (Göök et al., 2018) on 235U(n,f) we did allow 

for the spectral shape to depend on the mass number of the primary fragment. The 

effect of ambient background events on each of the observables, presented in section 3, 

was estimated in a Monte Carlo like fashion, using the fission fragment data without 

requiring coincidence with the neutron detectors. For each fission event, a false 

coincidence is generated by randomizing a time of flight, and giving it a weight according 

to the determined background intensity. The event is then propagated through the 

analysis as if it were a real event, so that all the same selection criteria are applied. 

Finally, for each measured distribution a background distribution is obtained that is 

subtracted from the measured one. The magnitudes of these corrections are shown as a 

function of fragment mass in Figure 4. The black points are the efficiency corrected 

number of recorded neutron coincidences per fission event; the full green line is the 

background due to accidental coincidences, while the dashed red line is the number of 

neutrons from the complementary fragment. The correction due to complementary 

fragment neutrons is small, and for most masses negligible. The correction is smaller 

than 1% over the whole mass range except around 130 u where it reaches a maximum 

of around 5%. The larger of the two corrections is due to the accidental coincidences with 

ambient background. The magnitude of this correction is 3.5% of the total number of 

recorded coincidences. At masses around 80 u and 130 u, where the number of emitted 

neutrons is small, it reaches about 10% and 15%, respectively. 

Figure 4. Fission neutron yield and background components versus fragment mass. The black 
points (1) represent the measured yield, background due to accidental coincidences is represented 
by the full green line (2), and the dashed red line (3) represents the neutron yield from the 

complementary fragment. 
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3 Experimental Results and Discussion 

In this section results on the correlations of nubar with properties of the fission fragment 

is presented. The present results are compared to data from earlier experiments at 

thermal incident neutron energies. In the present experiment the average neutron 

multiplicity correlations have been measured with unprecedented resolution in both mass 

and TKE, compared to earlier data. 

 

In Figure 5 the average neutron multiplicity per fission as a function of TKE is compared 

to data from Tsuchiya et al. (2000). As expected from energy balance considerations, a 
close-to-linear decrease of �̅� with increasing TKE is observed. A weighted least-square fit 

results in an inverse slope − 𝜕TKE
𝜕𝜈⁄ = 11.4 MeV/n. This value is close to the value 

observed by us in the spontaneous fission of 252Cf (Göök et al, 2014), as well as in 
235U(n,f) (Göök et al, 2018). It is clear, from a visual inspection of Figure 5 that the 

present data are in disagreement with the data of Tsuchiya et al. (2000). We have 

observed similar discrepancies with earlier experiments for the reaction 235U(n,f) (Göök 

et al., 2018). As described in (Göök et al., 2018) those discrepancies are explained by 

better resolution in TKE in our experiment. The same arguments presented for 235U(n,f) 

apply also to the present experiment. 

Figure 5. Average prompt neutron multiplicity per fission as a function of the fragment TKE. Data 

obtained in this study is compared to data from literature. The dotted black line shows the shape of 
the fission fragment TKE distribution (without absolute scale). The full black line represent a least 

square fit of a straight line to the data from this study with an inverse slope − 𝜕TKE
𝜕𝜈⁄ = 11.4 

MeV/n. 

 

 

In Figure 6 and Figure 7 data from the present experiment on the dependence of 

prompt neutron multiplicity on fission fragment mass is shown and compared to data 

from literature. The neutron multiplicity per fission fragment is shown in Figure 6, the 

present results show good agreement with data from Tsuchiya et al. (2000) and Batenko 

et al. (2004), in the region around the asymmetric mass peaks. In the region of 

symmetric mass split the present data shows a lower neutron multiplicity than the earlier 
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experiments. The data of Tsuchiya et al. (2004) shows less pronounced minima in the 

sawtooth like curve (around fragment masses of 80 u and 130 u). This could be related 

to the approximately 50% poorer mass resolution in their experiment (6 u).  

Pronounced (Hambsch, 1989) and slightly weaker (Hambsch, 2010) incident neutron-

energy dependent fluctuations of the fission fragment mass yields have been found in 

resonance-neutron induced fission on 235U and 239Pu, respectively. This would influence 

the average neutron multiplicity, if the fragement-mass dependence of the same was 

also strong (Hambsch, 1989). This dependence, obtained by summing the multiplicity of 

light and heavy fragment, is shown in Figure 7. In contrast to earlier experimental 

results (Apalin et al., 1965 and Tsuchiya et al., 2000) the present study show a much 

flatter behaviour as a function of fragment mass. The difference with respect to the data 

of Apalin et al. (1965) can be understood in terms of a missing correction in the data 

analysis. Namely, the effect of the recoil of the emitted neutrons on the fission fragment 

mass determination. This effect was first discussed by Gavron (1974), i.e. years after the 

experimental data of Apalin et al (1965) was published. Hence, we may assume that 

Apalin et al. have not accounted for this effect. The recoil effect shows up in experimental 

data as an increase in neutron multiplicity for the heaviest fragments in the mass yield 

distribution, as well as around the symmetric mass split (Gavron, 1974). Consequently, 

the dependence of the total number of neutrons per fission will show an increased slope 

as a function of the heavy fragment mass as well as a large increase around symmetric 

mass splits. 
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Figure 6. Average prompt neutron multiplicity per fragment as a function of the fission fragment 

mass. Data obtained in this study is compared to data from literature. The dotted black line shows 
the shape of the fission fragment mass distribution (without absolute scale). 

 

Figure 7. Average prompt neutron multiplicity per fission as a function of the heavy fission 
fragment mass. Data obtained in this study is compared to data from literature. The dotted black 
line shows the shape of the fission fragment mass distribution (without absolute scale). 

 

 

The total number of prompt neutrons per fission does not show a strong dependence on 

fission fragment mass. Therefore, we may rule out fission fragment mass yield 
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fluctuation as a major contribution to nubar fluctuations observed in resonance neutron 

induced fission on 239Pu. The more prominent contribution should be due to the 

competition between the direct (n,f) and the (n,γf) processes.  Minor contribution of the 

fragment mass yield fluctuations can be estimated using the data presented in Figure 7 

and data on the fragment mass yields as a function of the incident neutron energy. The 

energy dependent fragment mass yields are currently under evaluation and will be 

presented at a later stage.  
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4 Conclusions and Outlook 

We have reported on measurements of the average neutron multiplicity correlations with 

fission fragment mass and TKE in 239Pu(n,f). The correlations have been measured with 

improved resolution in both mass and TKE, compared to data from the literature. The 

new data provide crucial input required to model the influence of mass yield fluctuations 

on nubar as a function of the incident neutron energy. 

In order to reach the target statistical accuracy on nubar, below about 1% at the 

resonances (Capote, 2018), the present experimental setup must be modified. Based on 

the results presented in section 3 we may rule out fission fragment mass yield 

fluctuations as a major contribution to the fluctuations of nubar as a function of incident 

neutron energy. Therefore, the updated experimental setup will focus on measurement of 

the neutron multiplicity as a function of incident neutron energy alone. That is, the 

experiment will not attempt to measure the correlation between neutron multiplicity and 

fission fragment masses. This greatly simplifies the requirements on the fission fragment 

detector and allows us to construct a detector whose sole task is to identify when fission 

takes place. The foreseen detector is a parallel plate ionization chamber with 12 layers of 
239Pu. The targets are currently under production. Each target will have an areal density 

of around 120 μg/cm2. This leads to an increase in the expected fission rate in the 

experiment by a factor of 48, compared to the experiment described in section 2.  

Recently, Lynn et al. (2018) published a list of resonance which are the most likely 

candidates to exhibit an observable (n,γf) effect, based on their theoretical calculations. 

For these resonances the expected statistical uncertainty after half a year of 

measurement at GELINA has been estimated, as listed in Table 2. The estimation is 

based on the number of prompt fission neutrons observed in the experiment described in 

section 3, and the increase in fission rate with the modified setup. For most of the 

candidate resonances the expected statistical uncertainty is well below the expected 

fluctuation of nubar which lies between 5-10 %. The candidates for observing the (n,γf) 

effect all have small fission cross sections. In the incident neutron energy region below 5 

eV the fission cross section is much larger, hence the expected statistical accuracy is well 

below 1% there. 

In order to measure nubar in the energy range below 0.3 eV a dedicated run with 

GELINA operating at 50 Hz repetition frequency will be necessary.  

Table 2 Parameters for resonances that appear below 100 eV in the n + 239Pu reactions, which 
are the most likely candidates to exhibit an observable (n,γf) effect, according to Lynn et al. 
(2018). The last column lists the expected statistical uncertainty on nubar for the updated 

setup after half a year of measurement at GELINA. 

Eres (eV) Γf (meV) Expected stat. unc. (%) 

27.29 2.8 5.0 

35.49 3.5 2.3 

41.46 6.4 0.9 

44.53 4.4 0.9 

50.14 5.0 0.6 

82.77 5.2 1.1 
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