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Abstract 

This document describes the main pre-requisites and conditions that have to be addressed 

by a given EU Member State in order to implement on operational basis the CAP monitoring 

as a substitute of the OTS Controls. It further provides guidance on how the MS 

Administrations could check the fulfilment of these pre-conditions and how to interpret the 

outcomes of these checks. 

The main considerations for implementing monitoring are: (1) the conformity of specific 

elements of the Integrated Administrative and Control System (LPIS, GSAA, cross-checks, 

retroactive-recovery system) to ensure the correctness of the “area component” of the 

farmer declarations; and (2) specificity of the agricultural landscape of the region subject 

to monitoring, in terms of land management structure (land fragmentation/land change 

dynamics) and cropping/agronomic practices. 

The first component can largely be verified through the annual LPIS Quality Assessment, 

while the second relies on analysis of the crop/land use recognition using machine learning 

and EO data provided by Copernicus Sentinels, as well as on assessment of the relevance 

of the small parcels on the processing of the farm dossier. 

This document constitutes the Commission’s proposal of common practices and includes 

comments from: DG AGRI D3, DG AGRI H3, DK, BE-FL, MT, ES, CZ and HU. The feedback 

received during the series of technical meetings on the CTS for monitoring made in 2018, 

is also taken into account. 

 
 
Declaration: the document provides details of the current status of the thinking process and should be viewed 

as provisional. There are gaps in some areas and further elaboration will be added following discussions with 

the main stakeholders and practitioners involved in the processing and management of aid application 

process of ‘checks by monitoring’.  
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1 LPIS and GSAA data pre-requisites 

1.1 Background 

The effective and efficient performance of the monitoring of agricultural parcels declared 

by farmers depends on three main assumptions: 

● The eligible area declared within the agricultural parcel for a particular payment 

scheme is truthful, as confirmed by the administrative checks; 

● The agricultural land cover or eligible non-agricultural land cover associated to 

the declared land use is truthful, as confirmed by the administrative checks; 

● The graphical outline (spatial extent) of the declared agricultural parcel 

corresponds with the true land use “exerted” on the ground. Said otherwise, 

there is either (1) a one-to-one spatial match between the declared agricultural 

parcel and its actual “footprint” present on the field; or (2) the declared 

agricultural parcel correctly reflects a portion of larger homogeneous unit of 

management.  

The role of these three pre-requisites in the monitoring is essential for the correct handling 

and automated processing of farmer applications: 

1. Ensuring the area component in advance would allow the monitoring to focus on what 

it is efficient at – tracing the agricultural activity (or absence thereof) declared by the 

farmer within the eligible area declared. Although it can detect anomalies in relation to 

the correctness of the eligible area, the spatial resolution of imagery currently available 

for the monitoring is not sufficient for precise verification of the eligible area in line 

with the established Community standards.  

2. The land use/crop declared by the farmer is constrained by the land cover present on 

the ground. The definition of the correct scenario for each agricultural parcel and the 

associated markers largely depends on the type of land cover. If the true land cover is 

correctly provided by the input reference data (LPIS), then the follow up of the relevant 

scenario and the interpretation of the associated markers will provide meaningful 

outcomes. Certainly, monitoring would be able to verify the correctness of the land 

cover too. However the systematic application of this verification would require 

additional time, which will render the system less efficient with respect to the 

processing of the farmer applications and the possible “early warning” messages.  

3. The correspondence between the agricultural parcel and its “footprint” present on the 

ground would ensure that any outcomes generated by the markers as part of the 

relevant scenario, reflect the land behaviour associated to one and only one unit of 

management, defined as feature of interest (FOI). We would expect that in the majority 

of the cases, the “footprint” would encompass areas occupied by a single crop or single 

crop group. However, there would be cases where such 1:1 cardinality might not be 

present; for example, parcels under horticulture cultivation may have different crops 

within same agricultural parcel and may vary during the season especially in intensive 

farming areas. The degree of homogeneity of the crop or agricultural activity within 

the agricultural parcel would strongly influence the adopted approach – namely, extent 

of the FOI and the type of applicable markers that need to be selected within a given 

scenario.  

 

 

The Integrated Administration and Control System (IACS) provides the necessary 

components to ensure the above-mentioned pre-requisites. These components are 

namely: (1) the Land Parcel Identification System (LPIS), (2) the Geo-Spatial Aid 

Application (GSAA), and the (3) system for administrative cross-checks. 
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LPIS can provide a stable, up-to-date and truthful spatial reference for the correct 

localization of the agricultural parcel by providing a “tessellation” of the territory on non-

overlapping and uniquely defined units of management (reference parcels) in which 

agricultural activity can occur. In this context, “truthful” means that it reflects the reality 

of the agricultural management in the given territory, while “stable” means persistent over 

time. Moreover, LPIS should provide for each specific scheme/measure the value for the 

maximum eligible area possible to declare within a given reference parcel, as well as the 

spatial extent and type of agricultural and eligible non-agricultural land cover within. All 

this information is verified and validated by the LPIS custodian. The stringent and regular 

LPIS update cycle would also support effective retroactive recovery. 

The GSAA provides the interface for the farmer to prepare and submit a correct declaration 

in an electronic form. It acts as a single entry point for all spatial and alphanumeric data 

associated with the farmer declaration: spatial extent of the agricultural parcel, crop/land 

use, specific practices and commitments relevant to particular schemes. It can also provide 

the communication channel for all further farmer inputs related to the update of his/her 

declaration, and (if found appropriate) for the provision of supplementary evidence. GSAA 

also assists the farmer during the declaration process by providing for consultation all 

necessary reference geospatial information in GIS-enabled environment such as: LPIS, 

orthoimagery, previously declared agricultural parcels, relevant third-party layers 

(cadaster, NATURA 2000, ANC, etc..). In such case the farmer can define graphically and 

describe the thematic content of the correspondent agricultural parcels, taking into 

account the conditions and constraints outlined by the validated reference data. In the 

ideal case it will result in agricultural parcels fulfilling all three pre-requisites given above. 

Finally, the subsequent administrative cross-checks will confirm and “validate” all initial 

data provided by the farmer by carrying out spatial intersection of the digitized area 

declared with the identification system of agricultural parcels, which in addition would 

prevent duplicate claims on the same area. 

1.2 Quality of the LPIS 

In order to be successful, the monitoring requires a spatial reference system (LPIS) of 

appropriate quality. The LPIS quality can roughly be defined as the ability of the system 

to fulfil two explicit LPIS functions: 

1. the provision of unambiguous and stable reference for the localisation of all declared 

agricultural parcels by farmers, the control measurements of the inspectors and the 

CAP-relevant spatial data provided by other stakeholders,  

and 

2. the correct quantification of all agricultural and eligible area (per payment scheme) 

available to the farmer for his/her declarations and for the administrative cross-checks 

by the paying agency. 

The correct fulfilment of these functions is a key pre-condition for effective and efficient 

checks by monitoring. 

The LPIS Quality Assurance (LPIS QA) provides the technical framework for planned and 

systematic demonstration of the LPIS quality, through the annual quality assessment. 

Article 40a(2) of Regulation (EU) 2018/746 explicitly requires those competent authorities 

in the EU MSs that decide to carry out checks by monitoring to prove the quality of the 

identification system for agricultural parcels as assessed in accordance with LPIS QA 

(Article 6 of Regulation (EU) No 640/2014). Table 1 provides a comprehensive list of the 

quality elements of the LPIS QA with their relevance in the context of monitoring, as well 

as their interdependency. 
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Table 1. List of the quality elements of the LPIS QA and their importance in the context of the 

monitoring. 

Quality Element Relevance to the monitoring Relevance of 

its conformity 

in the 

monitoring 

context 

First conformance class 

QE1a and QE1b: correct 

quantification of the 

maximum eligible area for 

the whole system 

This quality element provides an 

information on the area correctness for 

the entire LPIS.  

The monitoring is based on the fact that 

the LPIS in combination with effective 

GSAA is able to guarantee an error rate 

with respect to the quantification of the 

maximum eligible area below the 

materiality threshold of 2%. If the LPIS 

shows systematic bias with respect to 

area correctness (overestimation or 

underestimation) beyond these 2%, 

the whole credibility of the monitoring 

with respect to the correctness of EU 

Fund expenditures will be 

compromised. 

Mandatory 

QE2a: proportion of 

reference parcels with 

incorrect maximum eligible 

area recorded or 

“contaminated” with 

ineligible features 

This quality element provides 

information on the correctness of the 

“eligible area component” at the level 

of the individual reference parcel and 

on its “purity”, as representation of the 

unit of management.  

It assesses whether the proportion of 

reference parcels with incorrect eligible 

area or contaminated with ineligible 

features is significant enough to create 

notable negative impact on monitoring.  

Mandatory 

QE2c: proportion of 

reference parcels with 

incorrect agricultural land 

cover area (AL, PC, PG) 

recorded 

This quality element provides 

information on the correctness of the 

“agricultural land cover” at the level of 

the reference parcel, as representation 

of the unit of management. It assesses 

whether the proportion of reference 

parcels with incorrect agricultural land 

cover is significant enough to create 

notable negative impact on monitoring. 

Mandatory 

QE3: occurrence of 

reference parcels with 

critical defects 

This quality element provides 

information on the extent to which the 

reference parcel represents correctly 

the unit of management. It assesses 

whether the proportion of reference 

parcels with incorrect design is 

Mandatory 
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significant enough to create notable 

negative impact on monitoring. 

Second conformance class 

QE4: categorization of non-

conformities found within 

reference parcels 

 

This quality element is correlated with 

the results of QE2a, QE2c and QE3, as 

it provides information on the causes of 

non-conformities, found in the first 

conformance class. Yet, it provides 

more “insight” information on the 

possible reasons for the non-

conformities found, which individual 

magnitude might have specific impact 

on the performance of monitoring.  

 

Recommended 

QE5: ratio of declared area 

in relation to the maximum 

eligible area inside the 

reference parcels 

This quality element is only partly 

derived from the quality elements of 

the first conformance class, as it relies 

on a data input, external to the ETS 

(the declared area of the farmer). 

Although without particular threshold, 

this quality element is essential to 

understand the cardinality between 

agricultural parcel and reference 

parcel, and to assess the level of 

convergence of the LPIS towards the 

unit of management - a key concept in 

monitoring. 

Recommended 

QE6: proportion of 

reference parcels which 

have been subject to 

change, accumulated over 

the years 

This quality element is partly derived 

from the quality elements of the first 

conformance class, but it also relies on 

the cumulative results for this quality 

element from previous years. It 

provides indications for the up-to-

datedness of the LPIS, which is critical 

factor to ensure the correctness of the 

area component, taken for granted in 

the monitoring workflow. A LPIS which 

is systematically lagging in picking up 

the annual changes affecting the 

eligible area and agricultural land cover 

cannot ensure an effective monitoring 

of the farmer applications (AP-based 

monitoring), as well as efficient 

recovery of undue payments. 

Recommended 

As evident from the table above, achieving conformity with respect to the quality elements 

of the first conformance class is mandatory, for effective and efficient checks by 

monitoring. However, it is recommended to strive for achieving conformity also with 

respect to the quality elements from the second conformance class. Certainly, the 

conformance must be ensured not only prior to the implementation of monitoring, but as 
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to enable full operation of monitoring in the longer term, also in the subsequent annual 

cycles.  

Even if the ETS assessment report reveals that the given LPIS implementation is 

conforming to the expectations set in the LPIS QA Framework (scores of the quality 

elements are found below the correspondent thresholds), EU MSs are encouraged to 

evaluate further the results achieved. It would help them to understand better the impact 

of the LPIS quality on the performance of the different components of the monitoring and 

to identify eventual pitfalls. Such evaluation might comprise, for example: 

● Analysis of the abundance and nature of the reference parcels that were found 

as not measurable (size, land cover); 

● Assessment of the histogram of the reference parcels found as area non-

conforming (standard deviations, outliers); 

● Assessment of the correlation between the nature of the non-conformity found 

and the cause for non-conformity assigned. 

An LPIS that meets the quality requirement laid down in the LPIS QA, would 

ensure that nearly any agricultural parcel located within a given reference parcel 

(or the part of it within the same agricultural land cover) will have the correct 

eligible area and appropriate agricultural land cover corresponding to the given 

scenario. 

1.3 Effective recovery of undue payments, GSAA and cross-checks 

In addition to the quality of the LPIS, the competent authority in a MS/region must 

demonstrate that the operational procedures related to the recovery of undue payments, 

the full GSAA implementation and the administrative cross-checks (Articles 7, 17 and 29 

of Regulation (EU) No 809/2014 respectively) are effective. 

In the ideal case, the GSAA in combination with LPIS and third-party thematic data, should 

enable the farmer to determine the spatial extent of his/her agricultural parcel as present 

on the ground. For many current LPIS implementations and IACS setups, this is not always 

possible, due to different reasons as for example: 

1. The reference parcel (due to adopted reference parcel type) does not match the 

agricultural parcel or farmer block, but represents a bigger/smaller unit. Since several 

agricultural parcels or farmers blocks can be present within the reference parcel or vice 

versa, it might be difficult for the farmer to outline correctly the extent of the individual 

agricultural parcel. As the farmer cannot rely on the validated reference data, he/she 

needs to use reference orthoimagery, which might not depict the actual situation on 

the ground, especially if not acquired in the same year. 

2. Due to national specificities and local rules, the limits of the agricultural parcels might 

be further constrained by cadastral or other administrative boundaries, which are 

virtual and not physical by nature. 

Furthermore, even if the farmer outlines correctly the extent of the agricultural parcel at 

the time of the declaration, he/she might decide to change (or “swap”) the location and 

type of land use of the parcel within the declared (BPS/SAPS) eligible area of the farm, 

without an obligation to notify the administration. These cases would be handled by the 

concept of Feature of Interest (FOI), explained in the further sections. 

In order to understand the possible cardinalities between the agriculture parcel and the 

reference parcel, and the role of the other relevant “layers”, the EU MS should perform a 

more comprehensive analysis of the LPIS design and the interaction of the different 

datasets in the GSAA and administrative cross-check. 

The tool for such analysis is already available in the form of the TG IXIT, a key component 

of the LPIS Model Test Suite (MTS), part of the LPIS quality assurance framework.  
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TG IXIT can be regarded as a structured set of questions on the design/assembly of the 

LPIS reference parcel and related components such as landscape features (subject to 

retention) and maximum eligible area. They are grouped into so-called qualifiers, which 

correspond to/reflect specific requirements set in the EU regulation in relation to the LPIS 

and to the GSAA. The combination of choices made for these qualifiers by an EU MS can 

reveal the level of complexity of the given LPIS implementation and can provide a proxy 

for the correspondence between the declared agriculture parcels and the unit of 

management represented by the LPIS reference parcels.  

More specifically, IXIT can provide important information and indications on:  

● the qualities of a reference parcel in GSAA terms, (provide/confirm the true 

extent of his/her agricultural parcels and the correct value for the maximum 

eligible area per scheme),  

● the individual particularities of the LPIS concept applied,  

● the ability of the given LPIS implementation to process and integrate correctly 

the information from third-parties for the purpose of the GSAA.  

For example, for an EU MS that has LPIS implementation ready and 'fit for purpose' (ideal 

case of agricultural parcel), one would expect the following outcomes from IXIT:  

1. The unit of land representing agricultural area can be directly provided/located by the 

farmer in an unambiguous way at the level of the single crop/management practice; 

2. The RP can be created through delineation or confirmation on the basis of the 

information provided by a geospatial aid application. Validation of the RP by the MS 

Administration would be always required; 

3. The maximum eligible area is directly derived from this delineation and immediately 

confirmed by the reference information in the GSAA. 

In relation to the procedures that form part of the administrative cross-checks, particular 

attention should be paid to ensure correctness (in terms of precisions, consistency and 

robustness) of the spatial handling and interaction of the declared agricultural parcels in 

between and with the reference parcels from the LPIS. 
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2 Guidelines and parameters for optimal machine learning 

use  

In order to understand the degree of suitability of the agricultural landscape of a given 

country/region for CAP monitoring, it is recommended (but still optional) to perform an 

assessment of the land use/crop recognition capability over the agricultural area using 

machine-learning techniques. The assumption is then that, if a high accuracy of recognition 

is achieved for a given land use/crop, then there would be a high probability for its 

detection in the monitoring process, though the relevant scenarios and markers defined 

(as explained in the Second discussion document on the introduction of monitoring to 

substitute OTSC (Devos et.al., 2018)). Initially, the assessment could focus on the main 

land uses/crops present in the area of interest and the expected target accuracy 

(discrimination ability) could be set as 95%.  

The results from machine-learning on those land uses/crops depicted with high accuracy 

could be then used in the following year to “train” the scenarios and “instantiate” the 

relevant marker parameters. In the following paragraphs of this chapter, a full example of 

assessment of the crop recognition for an entire country using machine learning is given. 

The two kay datasets required are: (1) the declared agricultural parcels (declared area 

and declared crops), represented by the vector dataset; and (2) the Sentinel-1 data, 

represented by the raster dataset. 

As machine learning technique for land use/crop recognition, the Commission (DG JRC) 

has chosen Tensorflow1 based on its growing reputation as a versatile open source toolkit 

for a wide range of machine learning problems. Nevertheless, results reported in this 

document are likely to be reproducible in other (python based) open source machine 

learning libraries (theano2, scikit-learn3, etc.). 

Tensorflow is installed by building from source4, which optimizes the use of specific 

hardware acceleration features of the platform. The tflearn module5 is required as ancillary 

library to run the deep neural network for training and testing. Tensorflow runs are 

launched either from a command line or as a batch procedure. 

The exported feature vector set is further prepared by removing parcel attributes that 

should not be used in the training and testing phase (e.g. area, perimeter, crop name, 

etc.). The set has to be split into a training and testing samples. For large sets (> 100000 

records), a random selection of 20% of the overall set is recommended. This step is 

repeated 5 times to produce 5 distinct training sets with their complementary test sets. 

We illustrate results using a subset of 114477 parcels of the 2017 Danish open access 

parcel set (DK2017), for which 10 classes are defined. 

For information, the single Tensorflow run for the DK2017 record set required less than 5 

minutes of processing time (100 epochs, 8 core Intel Xeon E3-1505M v6 @ 3.00 GHz, with 

64 GB RAM and Quadro M2200 GPU)6. Training accuracy levels off beyond 80 epochs, and 

does not significantly increase with higher numbers of epochs. 

A (current) drawback in machine learning is the need for consistently sampled, gap-free 

feature vectors that feed into the learning framework of the method (typically a neural 

network). Feature vectors are the records that are extracted for each “feature”, which is 

typically a declared parcel. The elements of the record are the individual values in the time 

series, usually in time order, and often “reduced” to a single value, usually the arithmetic 

 

1 https://www.tensorflow.org/  
2 https://github.com/Theano  
3 http://scikit-learn.org/stable/  
4 https://www.tensorflow.org/install/install_sources  
5 http://tflearn.org/  
 

https://www.tensorflow.org/
https://github.com/Theano
http://scikit-learn.org/stable/
https://www.tensorflow.org/install/install_sources
http://tflearn.org/
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mean and/or the standard deviation, for all pixels that are included in the feature. 

“Consistently sampled” does not necessarily mean that a regular, equal interval sampling 

is required, but whatever sampling approach is chosen, it needs to be applied, consistently, 

for all features. In practice, a regular equal interval sampling is preferred.  

It is relatively straightforward to extract such series for the entire (national or regional) 

territory for Sentinel-1, for instance, as weekly averages. Due to cloud cover, this is less 

straightforward for Sentinel-2, for which data composition and gap filling methods are 

needed to create consistent, gap-free time series. However, the application of the machine 

learning is adaptable with respect to the type of feature data (e.g. S1 polarization bands 

or S2 multi-spectral bands) that is fed into it, as long as they have no missing data. The 

manner in which the time series are extracted from the Sentinel data stacks is not relevant, 

e.g. either from discrete stand-alone download-process-storage solutions or cloud-hosted 

solutions.  

The procedure to create the Sentinel-1 feature vector set currently relies on the use of 

Google Earth Engine (GEE7), as it is the only "Big Data" repository that provides access to 

geocoded, calibrated S1 backscattering coefficients at the full 10m resolution, and for 

arbitrary selections. The GEE team downloads Interferometric Wide mode (IW) GRD 

images from the Copernicus Sentinel hub8 and runs these through the open source SNAP 

Sentinel-1 toolbox9 using a standard recipe, to convert to geocoded, calibrated 

backscattering intensity imagery, which is then added to the catalogue (with 

approximately a 1 day delay after publication on the Copernicus Sentinel Hub). With the 

recent deployment of the Copernicus DIAS instances, effort will be made so that a 

European data access and processing capacity will be available in the course of 2019, 

facilitating analogous workflows, for instance, with the use of the open source sen4agri for 

Sentinel-2. 

Using standard functions in GEE, weekly images are stacked for a predefined period (e.g. 

1 April - 1 August) for both VV and VH polarizations (Figure 1 and 2). The parcel sets are 

imported as a table asset into GEE. For each parcel outline, this stack can be reduced to 

a mean temporal signature (by week). Optionally, parcels are buffered with an internal 

boundary of 10m, to avoid including edge pixels. The complete set of signatures can then 

be exported to a CSV formatted table, retaining the original and calculated feature 

attributes for each parcel (e.g. including a unique ID and crop code, crop name, area, 

perimeter, etc.). 

 

 

 

 

 

 

 

 

 

 

 

7 https://earthengine.google.com/  
8 https://scihub.copernicus.eu/dhus/#/home 
9 https://github.com/senbox-org/s1tbx 

https://earthengine.google.com/
https://scihub.copernicus.eu/dhus/#/home
https://github.com/senbox-org/s1tbx


 

11 

 

Figure 1. Example of weekly country-wide composite for Denmark, for the weeks starting on 6 

May, 27 May and 17 June 2017 (VV polarization). 

 

Figure 2. A full resolution zoom of Figure 1 into an area West of Otterup (DK) for the weeks 
starting on 6 May, 27 May and 17 June 2017 (VV polarization left, VH polarization right). 

 

It is not yet entirely clear whether a full country approach is preferable over a segmented 

approach, e.g. for agro-environmental areas that have similar cropping parameters. One 

would assume that the latter would provide some opportunities to fine tune crop class 

composition and training set selection. On the other hand, the dimensions of the extracted 

data sets do not restrict the application of machine learning techniques to smaller than 

country-wide application. 
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The technical tests in this document focus on the comparison of declared parcel labels with 

those predicted by a trained deep neural network. There are many variations possible, 

though: e.g. approaches that may try to separate the more heterogeneous classes (e.g. 

grassland); compare distinct crop development by phenological progress and/or 

agronomical relevant factors (e.g. soil type); etc. The tools are rather generic and leave it 

up to the practitioner to device the test set-up and working hypothesis.  

Based on the analysis of parcel statistics for the full set, those crop codes for which the 

summed area coverage of the correspondent parcels is larger than 95% of the total area 

of the full set are selected. Optionally, it can be decided at this stage to eliminate small 

parcels (e.g. < 0.3 ha) or parcels with odd shapes to exclude noisy samples. These codes 

are then grouped, based on the crop category and crop name, into crop classes. Separation 

in crop classes is partially based on the expectation that these classes have distinct 

temporal signatures. For instance, silage Maize and corn Maize will be grouped in one class 

in first instance. They may be dealt with separately in additional machine learning runs, 

especially if such discrimination is relevant for a particular aid scheme/measure or type of 

operation. 

Note that a number of parameter settings have been fixed in the reported tests as 

discussed above. These are summarized in Table 2, together with some remarks on what 

effect on overall accuracy (OA) would be expected from changing of the parameters.  

Table 2. Parameter settings used in the reported tests and expected effects of changing those 
parameters on overall accuracy. 

Parameter 

setting 

Value Expected effect on overall accuracy if changed 

Time step for S1 

sampling 

7 days Shorter time step will introduce more noise in the 

time series, longer time steps risk missing 

characteristic sharp transition phases of particular 

crop classes. For Northern latitudes (> 52 N), 5 days 

would likely still work. OA would drop if > 10 days. 

Period of S1 

selection 

1 April -  

1 August 

This captures the main part of growing season of 

both winter, summer crops and grassland (at mid - 

high latitudes). This can easily be adapted to the 

prevalent season start and duration, where 

appropriate. Including extended parts of the “off-

season” risks including temporal phenomena (pre-

sowing, post-harvest) that are not necessarily 

representative for all parcels in a crop class, and 

thus decrease OA.  

Summed area 

covered by the 

parcel declared 

with the crop codes 

(types) selected  

95% of the 

area of the 

full parcel 

set 

If increased, a much larger set of, relatively minor 

crop types need to be included. Most of these would 

mostly contribute to omission and commission, i.e. 

decreasing OA. 

Composition of 

crop categories 

Main crop 

categories 

Several crop codes are lumped together, e.g. seed 

potatoes and consumption potatoes in POT, while 

these may have a distinct seasonal profile. 

Separation in distinct classes would be feasible, as 
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Parameter 

setting 

Value Expected effect on overall accuracy if changed 

long as a sufficient number of samples of each are 

available into the training set. OA would likely be 

lower, if more distinct classes would need to be 

separated. Separate Tensorflow runs on the distinct 

classes only, would be an alternative. 

Training set size 20% of the 

full set of 

parcels 

This primarily affects the rate at which the to-be-

separated crop classes are represented for training 

the model, and, the speed of the training. A lower 

set size risks under-representation of minor classes, 

and likely decrease OA. A higher number requires 

fewer epochs to train, which is overall somewhat 

faster.  

Probability 

threshold 

max(probN) The predicted class is assigned on the basis of the 

maximum probability. This could be thresholded, for 

instance, by requiring the maximum to be > 0.50. 

This is likely to increase OA somewhat, but only by 

excluding inconclusive cases. This may be desired in 

particular tests, i.e. selecting “pure” representatives 

of a particular class.  

Prediction threshold majority A mismatch is tagged if the majority of predicted 

labels is different from the parcel label. This could 

be made stricter (e.g. none of the predicted labels 

can be different) or less strict (at least one must 

match), with similar effects as the probability 

threshold, i.e. higher/lower pseudo-OA by 

excluding/including inconclusive cases. 

 

  



 

14 

 

3 Interpretation/reporting of machine learning results 

Based on the analysis of the results from the machine learning, and considering the 

availability of the LPIS/GSAA pre-requisites, the EU MS Administration would be able to 

estimate the expected performance of the monitoring system, if implemented. Machine 

learning will also continue to play essential role in the operational monitoring, since it 

would allow for yearly fine-tuning and improvement of the marker parameters, as well as 

for structural assessment of the difficult/complex cases, requiring an implementation 

approach that is more specific. 

Tensorflow results (extracts) are output as presented in Table 3. 

Table 3. Results from Tensor flow. 

id klass 
prob

0 

prob

1 

prob

2 

prob

3 

prob

4 

prob

5 

prob

6 

prob

7 

prob

8 

prob

9 

a4 0 98.39 0.04 0.00 0.19 0.00 0.03 0.01 0.77 0.54 0.01 

3b 7 0.03 98.18 0.85 0.00 0.38 0.00 0.00 0.43 0.03 0.12 

1d 7 0.02 0.01 0.00 0.01 0.00 0.00 0.00 99.25 0.51 0.20 

06 3 1.58 0.04 0.00 93.77 0.00 0.10 0.00 3.69 0.80 0.01 

For each parcel (id), which has class label in column ‘klass’ (‘class’ is a reserved word in 

python/pandas), 10 probabilities are estimated by the trained model, i.e. one for each 

crop class. The first parcel (a4) has the highest value for prob0, i.e. predicted class (0), 

thus matching and conforming its input klass label (0). On the contrary, for the second 

entry there is a significant mismatch between the input klass label 7 and the predicted 

higher class 1). For the third parcel, the predicted label and input label are matching, and 

so on. 

A single confusion matrix can now be created for each run, by accumulating the counts of 

each matching case (on the matrix diagonal elements) and each mismatch on the relevant 

off-diagonal element. Assignment is based simply on the maximum probability across the 

row for each parcel. Overall accuracy is then the sum of the diagonal counts divided by 

the total count of all confusion matrix elements. Off-diagonal elements can be inspected 

to understand likeliness that particular class pairs are confused (omission and 

commission). An example confusion matrix for a single run is given in Table 4 below. 

Table 4. Confusion matrix from TensorFlow run. Overall Accuracy: 93.46%.  

 GRA MAI POT WWH SBT WBA WOR SCE WCE VEG 

GRA 31416 141 82 328 3 36 9 467 86 28 

MAI 136 3790 63 15 5 6 0 132 43 16 

POT 34 124 516 3 124 20 0 43 1 41 

WWH 191 9 10 19472 3 52 11 238 39 5 

SBT 18 14 38 4 685 1 0 53 10 16 

WBA 34 2 5 71 0 4363 6 20 20 1 

WOR 12 0 0 12 0 16 5346 31 1 3 
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 GRA MAI POT WWH SBT WBA WOR SCE WCE VEG 

SCE 507 148 44 248 19 23 12 15871 184 108 

WCE 323 49 10 167 4 20 3 857 3319 14 

VEG 14 33 81 1 22 0 1 122 14 812 

                                                                                                  

The counts in this confusion matrix are the number of parcels assigned to each matrix 

element. The overall accuracy for each of the 5 runs ranges between 93.1% and 93.6%. 

Expressing the confusion matrix counts by area in each parcel will lead to an increase of 

several percent in overall accuracy, reflecting the fact that the larger parcels contribute 

more to correctly classified, while smaller parcels are more often counted on the off-

diagonal elements. The overall accuracy is an overestimate, because it excludes 5% of 

parcels in the crop groups. 

Each parcel is selected once to be part of the 20% training set, and classified 4 times for 

those cases when the parcel is in the complementary 80% testing set. For each parcel, 

the join of the individual runs can be generated, as in the example shown in Table 5, i.e. 

for each unique parcel ID the 4 predicted majority labels can be compared to the parcel 

label. 

Table 5. Majority labels cf. parcel labels. 

id klass pred0 pred1 pred2 pred3 pred4 majarg majcount 

76 0 0 0 -1 0 0 0 4 

b0 3 3 3 -1 3 3 3 4 

78 8 -1 8 8 8 8 8 4 

89 3 3 -1 3 3 3 3 4 

ea 8 -1 7 7 7 7 7 4 

The -1 value is for the run in which the parcel was selected as training sample (thus, no 

predicted label available). The obtained total number of parcels for which the majority of 

predicted labels is not the same as the parcel label is 7542 (out of the 114477 from 

DK2017), i.e. 6.5%, which is more or less the same as the 1 - OA (6.9% - 6.4%) achieved 

for each individual run. This shows that the method is very robust.  

One can note that for 4456 parcels (out of the 7542 predicted with different label than the 

one declared), all 4 predicted labels are identical and contradict the declared label. For 

further processing of the dataset, these parcels could be reallocated to their respective 

identified ‘correct’ crop class. 

The tabular result can now be categorized to prioritize follow-up activities. From the 

confusion matrix it can be determined which cases of omission and commission are likely 

to have relevant impact on compliance in the context of the farmer dossier with respect 

to particular scheme (e.g. preservation of permanent grassland as part of greening 

measures). Also, in case small and oddly shaped parcels were not excluded from the 

feature vector data set, the results’ size and shape attributes distribution can be analysed 

to understand whether noise factors play an important role. Re-runs with fine-tuned 

parameter settings (accounting for the regional/local specificities) may help in eliminating 
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or better specifying outlier categories. Outliers can be analysed in the context of the farmer 

dossier, e.g. to highlight whether they are spatially clustered and how they impact the 

dossier for a given scheme (e.g. crop diversification). The combination of these analysis 

results helps in defining possible follow-up approach, such as: the selection and use of 

Sentinel-2 imagery; the generation of specific time series for analysis; the use of 

longer/shorter time series analysis; or as later resort a field visit. In order to reduce the 

follow-up activities at minimum, the development of efficient tools to process the outliers 

in order to confirm or reject them within the automated monitoring process, could be a 

next focus. 

The overall accuracy of 93.4% produced for the DK2017 data, being close to the desired 

target accuracy of 95% (discrimination ability), is an excellent result, considering that the 

machine-learning was run without particular fine-tuning, and only using Sentinel-1. Note 

that the same order of accuracy has also been obtained with NL2017 and BEVL2017 data, 

using exactly the same workflow but with different crop class compositions. To note also 

in the DK2017 data set, the encouraging high accuracies amongst the distinct cereal 

categories, as this is considered a major challenge in conventional crop classification 

approaches. 
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4 Analysis of optimal “classes” towards scenarios / 

targeted discrimination 

4.1 Visual Interpretation of temporal profiles 

Once high accuracy crop classification/recognition is obtained using the machine learning 

models, the next step, in this preparatory process towards operational monitoring, is to: 

(1) define the possible scenarios,; (2) define the sequence of expected markers  and their 

instantiation with the relevant signal types.. 

It is important then to establish the expected sequence of farming activities needed for 

each crop. Such list is not only crop-dependent but might also be refined at regional-(or 

even farm) level. It is thus recommended to consider homogeneous sub-regions 

(depending on, e.g., the climate, the meteorological conditions, the altitude, the agro-

economic conditions…). For example Figure 3 presents average temporal series of sets of 

20 parcels of potatoes selected in 3 different geographical zones in 2017. On NDVI profiles, 

no significant distinction can be made. However, in the case of VH minus VV (in dB) 

profiles, one can see that the North zone (sandy zone) exhibits a distinctive than the other 

two (loamy areas). 

Figure 3. Comparison of the average temporal profiles of potato fields from three different sub-

regions and for both NDVI (left) and VH-VV (right). 

 

A phase of mutual learning between knowledge on crop cycles/crop phenology and 

classification results has to be undertaken in order to adjust the sequence of activities. For 

instance:  

● Profiles will help to define the expected calendar for each of the crops. The crop 

calendar is directly describing the period over which the crop is expected to be 

present on the field. Hence, it exactly determines the period over which one 

should focus. For winter crops, there might be a need to look back to October 

of the previous year in order to observe the full crop calendar. 

● With the sequence of expected events, one can better interpret the temporal 

profiles behind the feature vectors that were fed in the machine learning 

classification and focus on the most relevant of their characteristics. 

● For each of the expected events, one must assess whether it can be 

seen/detected using Sentinel or equivalent remotely sensed images. It is 

counter-productive to try to impose the detection of a physical phenomenon 



 

18 

 

that is not manifested by any of the data at hand (both radar and optical). For 

instance, there are no chances to detect the pesticide and fertilizer sprays using 

Sentinel data. 

To help deriving information from the different “optimal classes”, one can first select a 

sample (e.g. 20 parcels) for each of the classes and graphically superimpose their temporal 

profiles. Like this, one can better spot the patterns for the specific class. 

In addition, superimposing the temporal profiles of two different classes can also help to 

understand what really differentiate these two classes. The Figure 4 provides examples of 

a pairwise comparison of 4 classes using the difference of polarization VH-VV (in dB) over 

the April-July period. The grassland (dark blue) clearly shows a steady flat trend over the 

period compared to the other crops. The winter barley (light blue) presents a high amount 

of vegetation already in April with an early decrease (by end of June). Comparatively, the 

maize (orange) and the sugar beets (green) both present a low level in April-beginning of 

May (when parcels are ploughed and sown). Differences appears after for these latter two 

crops. The sugar beet is characterised by a fast growth followed by a long plateau phase. 

For maize, we observe a regular growth over May to August.  

Figure 4. Comparison of the temporal profiles of VR-VV for four different classes. Each class is 

represented by 20 parcels (no restriction of sub-regions). 

 

Obviously, many options can be envisaged in order to identify pertinent information. For 

instance, Figure 5 presents the temporal profiles of the parcels corresponding to a same 

holding and grouped by classes. One can see the coherence of the profiles for each of the 

classes (certainly reflecting the fact that parcels are in equal soil and weather conditions). 

However, for maize fields, one can observe two different patterns probably due to two 

different practices i.e. Maize preceded by a winter cover and Maize sown on a soil left bare 

for a while. 
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Figure 5. Comparison of the temporal profiles of VR-VV for the parcels of a single holding. 

 

 

 

 

4.2 Analysis of the classification model 

Apart from a visual interpretation of the temporal profiles, one can also try to analyse the 

data used by the classification model. However, this task may be difficult depending on 

the complexity of the model (“black box” interpretation problem). 

Some models use few parameters (e.g. the multinomial logistic regression model) and are 

thus easier to interpret. There can be as many parameters as input variables, each 

contributing to the final classification. Sorting the parameters by decreasing order can 

already give an idea of the most important input variables to use. Moreover, such 

statistical models generally allow testing the significance of the parameters, which in turn 

can be translated in “contribute or do not contribute to the classification”. On the other 

hand, such models are relatively rigid and are less effective than other non-parametric 

(non a priori knowledge) approaches. 

Artificial neural networks (ANN) are a family of models that are increasingly used in 

different contexts. The TensorFlow tool from Google is precisely using ANN. The structure 

of an ANN tends to be rapidly complex as it depends on the number of layers and the 

number of neurons in each of the layers (see Figure 6 as illustration for an ANN with 20 

inputs, 7 classes and two layers of 10 neurons each). Potentially, all neurons are 

communicating between two consecutive layers. It is thus problematical to evaluate the 

actual contribution of each of the initial input variables to the output (final) layer (i.e. the 

layer that provides the probability of the different classes). 
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Figure 6. Illustration of the complexity of an ANN with 20 inputs, 2 hidden layers with 10 neurons 

each and an output layer with 7 outputs. 

 

Nevertheless, several approaches exit for highlighting the main contributors within this 

complex structure. 

Neural Interpretation Diagram (NID) provides a visual interpretation of the connection 

weights by changing the width of the corresponding lines (the larger weights represented 

with a thicker line).  

Sensitivity analysis can also be applied. It consists of adding random noises to the model 

inputs and observing how the estimated weights change. Stable weights (i.e. less sensitive 

to noise) are then considered as the main contributors of the model. 

More sophisticated approaches exist. Garson (1991) proposed a method that aims at 

weighting the contribution of each of the inputs on the outputs by combining all the inner 

hidden layers. This method has been implemented in the R software: 

(https://www.rdocumentation.org/packages/NeuralNetTools/versions/1.5.1/topics/garson). 

Olden and Jackson (2002) are using a randomization procedure in order to test which of 

the input contributions is significant. Similarly to Garson’s algorithm, the contribution of 

each of inputs is first evaluated and stored. Then, the outputs are randomly permutated 

and the ANN is retrained on the permutated outputs and the contributions are evaluated 

and stored. This three-steps procedure is iterated several times. The original contributions 

are then compared to the randomized contributions. If the original contribution is 

significantly different from “the randomized contributions” (i.e. it is not contained in the 

95% probability interval), then the contributions is considered to be significant. 
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5 Consumer/producer error analysis 

The Commission proposes one simple expectation on the reliability (quality) of the 

automated system, as the backbone of the monitoring process, based on the statistical 

widespread concepts of the type I (α) and type II (β) errors: 

1. type I error [α] is the rejection of a true null hypothesis (a "false positive" or false RED 

finding for a particular GSAA parcel/FOI), the α expectation is set at 5%, 

2. type II error [β] is the failure to reject a false null hypothesis (a "false negative" finding 

or false GREEN for a particular GSAA parcel/FOI), the β expectation will be set at the 

later point when having more information on performance of the monitoring systems. 

Whilst in principle this value should be set at 5%, in absence of historical data and as 

to ensure the practicability of the monitoring procedure in the initial phase, the initial 

value for β can be set in the range of 10-20%. 

Type I (α) and type II (β) errors express the robustness of the standalone automated 

procedure with respect to the appropriateness of the defined compliance and non-

compliance markers and the performance of the “detection engine”. As concepts, type I 

and type II errors, seem analogous to the user (UA) and producer (PA) components of the 

Overall Accuracy, used to validate the results from machine-learning, before being used 

as an input for the marker parameters. Yet, the presented error concept could, under the 

principles laid down above, be used also in the operational phase of the monitoring to 

express the tolerable error with respect to the final verdict for the farm application 

(including any follow up and assessment on the effect on payment). 

In such context, GREEN would be interpreted as “the farmer is confirmed to be compliant 

and RED being “the farmer is confirmed to be non-compliant”.  

A type I error would occur when an applicant with correct declaration is classified by the 

automation system as non-compliant. In such cases, applicants will most likely and rightly 

not agree with the verdict and react or launch appeal procedures. The expectation of α 

5% means that less than 1 out of 20 non-compliant farmers should have a cause to appeal. 

A type II error occurs when an applicant who in reality is not (completely) compliant passes 

through the automation and hence receives (a part of the) subsidies he is not entitled to. 

An expectation of β of e.g. 20% means that only 1 out 5 non-compliant applicants can slip 

through the automation system undetected. It is unlikely that this will trigger reaction or 

appeals from his part, but there remains the following year where the applicant faces the 

same odds. 

The feasibility of achieving these expectations over a reasonable amount of time for a 

given system and landscape can reliably be derived from validating the machine learning 

results with the corresponding field observations. As monitoring is an approach that is 

believed to be improving at every campaign year (better markers and scenario 

parameters), the phrase “over a reasonable amount of time” was added to indicate this is 

not an absolute starting criterion. Field observations would need to be collected also on 

regular basis to act as representative ground truth for the performance/tuning of the 

monitoring as part of the quality management of the monitoring system10. Relevant 

“ground truth” could be collected also from voluntary farmer input or from the system 

monitoring processes (LPIS upkeep). 

 

10 See Section 3.4 of “Second discussion document on the introduction of monitoring to substitute OTSC: rules 

for processing applications in 2018-2019” 



 

22 

 

Here is an example of analysis between the TensorFlow classification results on selected 

set of GSAA parcels and the “ground truth” from OTSC on the corresponding parcels in a 

given member state: 

Table 6. Example of consumer/producer error analysis. 

All classes regrouped 

Field visits  

Crop confirmed Problem found TOTAL 

TensorFlow 

Crop confirmed 3593 6 3599 

Problem found 216 41 257 

 TOTAL 3809 47 3856 

 

The type I error is computed as 216/3809≈5.7%. 

The type II error is computed as 6/47≈12.8%. 

These results are computed on all the classes. The same analysis can be performed at 

class level (i.e. crops) in order to identify for which scenarios there might be a higher need 

for yellow flags and/or warnings. 
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6 Assessment of the impact of small parcels on the 

monitoring: an example of crop diversification 

 

6.1 General remarks 

 

One of the major concerns of the EU Member State towards the operational 

implementation of checks by monitoring is the perceived limitation of the monitoring 

approach with respect to the small parcels. This, according to the MS Administration, would 

create an “avalanche” of field visits needed to provide conclusions on the conformity of 

these small parcels.  

The problem with the small parcels should be always put in the context of their relevance 

to conclude on the payment of the given farmer dossier. In many cases, small parcels will 

have either marginal or no impact on the final conclusion for the payment. The number of 

the parcels requiring such conclusion would depend on the size and structure of the farm 

and the applicable scheme. The following example illustrates a possible approach to assess 

the impact of small parcels in the context of greening (crop diversification - CD). It could 

be extended towards other schemes/requirements, i.e. EFA, BPS etc. 

Similarly as indicated in the general approach of the Technical Guideline for the On-the-

Spot checks of Crop Diversification (DS-CDP-2015-08), it might not be necessary to check 

all the parcels by monitoring in order to reach a conclusion on the compliance of a holding 

with respect to CD. However, while the focus of that technical guidance was on the 

potential optimisation of the selection of the parcels subject to the CD OTS check, here 

the focus is on the parcels that are suboptimal (e.g. too small) for conclusive analysis 

using the Sentinel data. A methodology for assessing the impact of the small parcels in 

the context of the operational implementation of checks by monitoring is presented in the 

following sections. 

6.2 Methodology 

Assuming that the CD requirements for each holding were already established, the 

methodology is based on the additional assumption that the small parcels are hidden (or 

unseen so that no conclusive information can be derived for them from the Sentinel data) 

and thus any discrepancy with the declaration can be assumed. Then, the core of the 

methodology is to apply the simple principle of “worst case scenario” (WCS) on these 

“hidden” parcels, i.e. “which small parcel configuration would lead to the worst situation 

in the context of CD for this specific holding?” In that sense, the approach can be seen as 

“what could be the conditions of the small parcels that would bring a compliant CD holding 

to non-compliance?” 

One must pay particular attention to the conditions for CD exemptions. Following the WCS, 

the CD exemption of a holding might be impacted by the small parcels but it does not 

mean that the holding will have to respect some CD requirements. For instance, a holding 

that is exempted because it has less than 10ha of arable land (AL) might also be exempted 

because it has more than 75% of “grasses” on the AL. The WCS must also take these 

particularities into account. 

There are four main potential situations where (some of) the small parcels might have a 

significant impact on the conclusion on CD at holding level: 

● All the small non-AL parcels could actually be used for arable crops (Situation 

1; threshold on Total Arable Land (TAL)) 

● All the small ‘grasses’ parcels might not actually be ‘grasses’ (Situation 2; 

percentage of ‘grasses’ on TAL or on Total Eligible Area - TEA) 
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● All the small parcels (both AL and non-AL) could be used for the main crop 

(Situation 3; 75% threshold on the main crop for arable land) 

● All the small parcels (both AL and non-AL) could be used for one of the two 

main crops (Situation 4; 95% threshold on the two main crops for arable land) 

These different potential situations are not mutually exclusive, i.e. more than one potential 

situation could take place in the same holding. 

For each of these potential situations, a potential impact on the area is then computed by 

comparing the result of the new hypothetical assignation of the small parcels with the 

corresponding threshold.  

6.3 Examples 

6.3.1 No CD with potential influence on TAL less than 10ha 

 

Table 7. Summary of a holding declaration (situation 2). 

Holding Crops 
Number 

of parcels 

Area of 

parcels [ha] 

Number of  

small 

parcels 

Area of small 

parcels [ha] 

AL Zea 2 9.9625 0 0 

PG 
Permanent 

grass 
3 6.4563 1 0.0470 

TOTAL - 5 16.4188 1 0.0470 

The declared total arable land is 9.9625ha. 

In the worst case scenario all the small permanent grasslands are actually arable crops 

and the TAL would be = 9.9625ha + 0.0470ha = 10.0095ha. In such case the area of 

arable land is larger than 10h and the holding should not be exempted from crop 

diversification. 

6.3.2 CD2 with potential influence on the 75% limit for the main 
crop 

Table 8. Summary of a holding declaration (situation 1). 

Holding Crops 
Number of 

parcels 

Area of 

parcels [ha] 

Number 

of small 

parcels 

Area of 

small 

parcels [ha] 

AL 

Triticum_winter 3 9.6611 0 0 

Beta 1 2.0057 0 0 

Hordeum_winter 1 1.3442 0 0 

PG Permanent grass 4 0.6817 4 0.6817 

TOTAL - 9 13.6927 4 0.6817 
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The declared share of the main crop is 9.6611ha/(9.6611ha + 2.0057ha + 1.3442ha) = 

74.25%. 

In the worst case scenario all the small permanent grasslands are actually arable crop 

(Triticum_winter). In such case the share of the main crop would be (9.6611ha + 

0.6817ha)/(9.6611ha + 0.6817ha + 2.0057ha + 1.3442ha) = 75.53% and thus is too 

large to comply with the requirement of the main crop to stay below 75% of the TEA. 

The impacting (CD rules violating) area can be computed as (75.53% - 75%)*(9.6611ha 

+ 2.0057ha + 1.3442ha) = 0.0689ha. In order to conclude on the holding compliance with 

the 75% limit of the main crop on arable land, the land use (arable land or grassland) 

need to be confirmed on this 0.0689ha. 

 

6.4 Generic method of small parcels “sifting”  

 

Section 6.3 outlines an example of impact analysis of the small parcels on the conclusion 

for crop diversification at a holding under checks by monitoring. Based on this example, 

some generic steps for such parcel “sifting” analysis, can be drafted. The following logic 

should be applied: 

1. Quantify/locate all the parcels of area below a certain threshold (e.g. <0.5ha 

or less). Other parcels traits suspected suboptimal for monitoring with Sentinel 

data for a given scenario may also be considered here, e.g. elongation and 

width. 

2. Per scheme, operate the steps below. 

a. Identify, from GSAA, adjacent parcels, declared with the same land 

cover/land use, and aggregate into a larger unit (FOI) (see details in section 

4.3 of the Second discussion document on the introduction of monitoring to 

substitute OTSC). 

b. Identify and eliminate parcels  

i. either irrelevant to the conclusion on the payment at holding level  

ii. or belonging to a holding that is exempted from a given scheme e.g. 

as shown in the crop diversification example in section 6.3. 

c. Assess whether the parcel can be checked through a multi-annual procedure 

(e.g. permanent crops and permanent grasslands) and process through the 

LPIS update cycle.  

3. Analyse how many parcels will be eliminated by applying the financial 

thresholds (50Eur and 250Eur) at the holding level (see details in section 3.2 

of the Second discussion document on the introduction of monitoring to 

substitute OTSC).  

For the remaining small parcels, alternative check methods should be prepared, e.g.: 

 Feasibility studies for the use of HHR data depending on markers and parcel 

geometry (size/shape) could be performed to procure such data. 

 Targeted input from the farmer (e.g. geotagged photos or seed labels) should be 

carefully set up to timely provide the required check data. This requires careful 

design of the information request timeline and communication channels. 

At the end of this sifting process, one should be able to estimate the remaining number of 

small parcels, that would, in worst cases, need a check in the field.  If the estimated 

number of small parcels that could require a field visit turns up to be substantially higher 



 

26 

 

than the average number of parcels checked in field during On-The-Spot Checks, the 

scheme concerned should probably not be a priority to start monitoring. 
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7 Final remarks 

 

The present technical guidance focusses on the main points that EU MS administration 

should assess and address in the preparatory phase toward implementation of monitoring 

as a substitute of the OTSC. These points concern  (1) the pre-requisites that ensure the 

correctness of the “eligible area” component (LPIS, GSAA) and (2) the specificities of the 

agricultural landscape with respect to parcels size, agronomic conditions and related 

region-specific farming activities.  

The document lists the key methods and tools for assessing the readiness of the 

LPIS/GSAA systems for the implementation of checks by monitoring. It further gives 

certain guidelines with respect to the use of novel technologies, such as machine learning, 

to evaluate the capabilities of the automated systems to discriminate the crop/land use 

types at country/region level.  

It provides a real case computation in the context of the monitoring workflow and 

interpretes the achieved results and related accuracies. A draft methodology for impact 

assessment of the small parcels on the checks by monitoring is illustrated on the crop 

diversification example.  

 

Acknowledging raised concerns on the Sentinel based checks by monitoring, this document 

guides the EU MS Administration towards addressing the possible bottlenecks, through the 

implementation of sound and pragmatic solutions.  
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9 List of abbreviations and definitions 

AL Arable land 

ANC Area with natural constraints 

ANN Artificial neural network 

AP Agricultural parcel 
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GEE Google Earth Engine 
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YFS Young farmer scheme  
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