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Impact assessment study on societal benefits of Arctic observing systems 

The study compares costs and benefits of Arctic observation systems. Ten case studies show that annually 

economic benefits exceed by at least 50% investments. The analytical framework can be further developed for 

quantifying societal benefits from local to global scales. 
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Executive summary 

The goal of the IMOBAR study is to estimate and compare costs and benefits of Arctic 

observation systems as a contribution towards the "business case" for sustaining Arctic 

observations in the long-term and to support the decision-making process. 

Accelerated warming and rapid environmental changes in the Arctic require development 

and implementation of a sustained, integrated and pan-Arctic observing system, capable 

of allowing timely access to information and data about the Arctic, capable of better-

documenting processes within key sectors and capable of better-informing the decision-

making processes. A diverse range of information is needed for managing, for planning, 

for developing adaptation solutions, and for designing sustainable development policies 

at local to planetary scales. Within this context, long-term perspective investments in 

research, operational infrastructure and logistical support services are essential. 

The study proposes a new conceptual framework to link observations to benefits. The 

framework is based on well-established methodologies and builds on the extensive 

knowledge collected in the context of the International Arctic Observations Assessment 

Framework performed in 2017 (IDA-STPI and SAON, 2017). The IMOBAR study estimates 

the costs attributable to major observing systems in the Arctic, and for ten case studies 

develops the links between observing systems, their outcomes and impacts on twelve 

societal benefit areas and a partial quantification of economic benefits. 

The results of the IMOBAR study show a positive return on investment for the considered 

case studies and for selected Arctic challenges. Observing systems in the Arctic strongly 

support the preservation of ecosystems, provide information for protecting human health 

and lives and reducing pollution, and provide savings by directly reducing losses in 

economic activities. 

Even in a very conservative scenario, when the lowest identified total benefits are 

compared with highest identified total costs and considering the range of uncertainties 

and underestimates, it is possible to show that annual economic benefits exceed by at 

least 50% annual investments in Arctic observing systems. This demonstrates that 

investments in Arctic observing systems are fully justified by economic returns, even for 

the limited number of economic activities evaluated in the study. 

Additional economic returns may be expected from other societal benefits including 

impacts on human health, ecosystem preservation, or global societal benefits like 

understanding and predicting global sea level rise or weather. Finally, the study focused 

mainly on local-to-regional benefits but the proposed analytical framework can be easily 

further developed for accounting for societal benefits of Arctic observing systems ranging 

from local to global scales. 
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1 Introduction 

The Arctic is undergoing the most rapid changes in the climate system worldwide. This is 

demonstrated by the thinning and reduction of sea ice, the melting of ice sheets and 

glaciers, the progression in thawing of permafrost, and the triggering of more extreme 

weather events in particular in the northern latitudes. These changes are closely 

connected to the earth surface and ocean warming due to increased greenhouse gas 

concentration in the atmosphere (AMAP 2017).   

While the role of these Arctic changes in increasing risks of extreme events remains a 

critical but hotly debated question, interlinked processes in the Arctic are expected to 

increase the risk from natural hazards such as increased erosion and icebergs break-off 

(AMAP 2017). Thawing of permafrost will release greenhouse gases that will further 

enhance the warming of the atmosphere and ocean (Schuur et al. 2015). This will have 

wide implications for the environment, ecosystems and communities in the Arctic and on 

the global scale (AMAP 2015). Environmental conditions in the Arctic may drastically 

change in the coming decades strongly influencing ecosystems and requiring adaptation 

measures by local communities (Arctic Council 2016).  Arctic research and observation 

are essential to monitor and predict the evolution of these changes and its impacts on 

regional to global scales. In particular, observations in the Arctic bring information on 

ongoing changes, providing the basis for the theoretical understanding and prediction of 

complex environmental processes (Schlosser et al. 2016).   

On the other hand, the warming of the Arctic will improve access to the Arctic and its 

resources, offering new opportunities for local communities and for economic 

development related to exploration of natural resources, transport, and other industries. 

Responding to these opportunities will require planning and decision-making based on 

scientific and economic assessments and predictions that rely on observations (AMAP 

2017). 

Observed environmental changes in the Arctic include large-scale near-surface warming, 

sea-ice, ice sheet and permafrost melting, changes in pollution loads and modifications of 

flora and fauna (AMAP 2017). Observational records of many important environmental 

parameters are however shorter than in other regions. This complicates the 

interpretation of tendencies and the distinction between natural climate and 

anthropogenic forcing of enhanced warming and environmental changes (AMAP 2017). 

Traditional knowledge1 may represent in many cases the only source of information for 

the past environmental conditions in the Arctic (Schlosser et al. 2016). 

Due to the large area, remote position and harsh environmental conditions, the 

development of observing systems in the Arctic requires coordinated international efforts 

in order to maximise the impact of observations. The combination of observing system 

information with knowledge of local population may improve the understanding of current 

processes even in the absence of long-term observing records (Schlosser et al. 2016, 

AOS 2018).  

Against this background and building on previous initiatives, the European Commission 

and the High Representative of the Union for Foreign Affairs and Security Policy adopted 

the Joint Communication to the European Parliament and the Council on “An Integrated 

EU Policy for the Arctic” (JOIN (2016) 21). The communication identifies three priority 

areas that are closely related to large environmental changes happening in the Arctic: 

—  Climate change and safeguarding the Arctic environment; 

—  Sustainable development in and around the Arctic; 

                                           
1 Traditional knowledge refers to the knowledge and practices of indigenous and local communities that have 

developed over centuries and are traditionally transferred from elders to young people in concrete working 
and life situations (https://www.arcticcentre.org/EN/communications/arcticregion/Arctic-Indigenous-
Peoples/Traditional-knowledge). 

https://www.arcticcentre.org/EN/communications/arcticregion/Arctic-Indigenous-Peoples/Traditional-knowledge
https://www.arcticcentre.org/EN/communications/arcticregion/Arctic-Indigenous-Peoples/Traditional-knowledge
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—  International cooperation on Arctic issues. 

Research, science and innovation are key elements to tackle these priorities. In this 

sense, the EU has launched several initiatives to better understand the Arctic 

environment, under the 7th Framework Programme and Horizon 2020 (link to the EU 

Arctic research cluster https://www.eu-polarnet.eu/eu-arctic-cluster/). Amongst those 

research projects, some were devoted to observing systems (OS).  

Key components of the EU Arctic policy are supporting Arctic observational systems to 

better understand climate change in, and environmental protection of, the Arctic, to 

underpin sustainable development in the region and international scientific cooperation in 

the continuing development of observational systems. 

Today the challenge is to move toward a sustained, integrated and pan-Arctic observing 

system capable of better-informing the decision-making process and better-documenting 

processes within key sectors (e.g. local communities, shipping, tourism, fishing). The 

EU’s strategies for the Arctic emphasise the need to implement monitoring programmes 

to underpin sustainable development in the region. To build and sustain an integrated 

system of many discipline-specific observing systems requires agreement among the 

major players from Europe, North America and Asia who can contribute to this system.  

The EU is not acting alone in this respect. In 2016 over 450 delegates of the 3rd Biennial 

Arctic Observing Summit (AOS) from 30 countries discussed recommendations and a 

pathway toward the implementation of an internationally supported, pan-Arctic 

observing system that is considerate of and responsive to both local and global needs. 

They recommended to (Schlosser et al., 2016): 

“Propose to the highest levels of government, the business case for a comprehensive 

pan-Arctic observing system. This proposal should assess the costs and demonstrate 

the benefits for society at various levels, including an Implementation Plan that builds 

upon the present system and past planning, and that identifies needed resources 

including infrastructure, instrumentation, human capacity, the pathways to financing, 

and a strategy for sustained financing.” 2 

Later in 2016, at the first Arctic Science Ministerial Meeting in Washington on 28th 

September 2016 the Science ministers of the 8 Arctic states, 14 additional states (half of 

which are EU members) and the European Union, joined by Arctic indigenous 

representatives, asserted the importance of improving collaborative science efforts in the 

Arctic and committed to: 

“the shared development of a science-driven, integrated Arctic-observing system that 

has mechanisms to maximize the potential of community-based observing and to draw 

on traditional and local knowledge; a design for sustained observations of vital 

variables and comprehensive studies of Arctic climate processes; technology 

development; and actions to provide enhanced and open access to data, products, and 

services.  In this context, we see a critical role for the Sustaining Arctic Observing 

Networks (SAON) initiative—a joint responsibility of the Arctic Council and the 

International Arctic Science Committee—and encourage continued cooperation in other 

international science organizations that contribute to Arctic observing and data-sharing 

and building a network of community-based observation.”3   

As a response to these commitments, the Institute for Defense Analyses-Science and 

Technology Policy Institute (IDA-STPI) and SAON published the International Arctic 

Observations Assessment Framework, constructing a value tree analysis (VTA) for major 

Social Benefit Areas (SBAs) requiring observational capacity (IDA-STPI and SAON 2017). 

This value tree structure provides a comprehensive and consistent theoretical framework 

for the evaluation of possible benefits from Arctic observing systems. The framework can 

                                           
2http://www.arcticobservingsummit.org/sites/arcticobservingsummit.org/files/AOS%20Conference%20Stateme

nt_Final_RELEASED-2016-03-23.pdf  
3https://obamawhitehouse.archives.gov/the-press-office/2016/09/28/joint-statement-ministers  

https://www.eu-polarnet.eu/eu-arctic-cluster/
http://www.arcticobservingsummit.org/sites/arcticobservingsummit.org/files/AOS%20Conference%20Statement_Final_RELEASED-2016-03-23.pdf
http://www.arcticobservingsummit.org/sites/arcticobservingsummit.org/files/AOS%20Conference%20Statement_Final_RELEASED-2016-03-23.pdf
https://obamawhitehouse.archives.gov/the-press-office/2016/09/28/joint-statement-ministers
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steer the work of SAON in its objective of the development of a “well-coordinated and 

sustained Arctic Observing Network that meets scientific and societal needs”.  

In 2018 participants from 26 countries of the 4th AOS stated (AOS 2018): 

“expansion of observing activities will reduce vulnerability and build resilience of Arctic 

societies, environments and infrastructure. Not doing so increases the risk of greater 

impacts and associated costs.” 4  

The present study builds on the extensive knowledge collected in this wide context and 

on the IDA-STPI and SAON (2017) findings. It is intended to be a contribution to the 

evidence base for the discussions and conclusions of the second Arctic Science 

Ministerial5, taking place in Berlin on October 25-6th, 2018. By following and extending 

the VTA methodology, the study develops and applies a consistent and reproducible 

methodology to the study of individual “branches” of the value tree in several case 

studies, connecting SBAs to corresponding observing systems. The analysis further 

applies the intervention logic (IL) methodology, relates it to the VTA methodology and 

includes as much as possible, estimates of Arctic observing system costs and their 

economic benefits. Moreover, this study makes an effort to widen the stakeholders group 

and introduces work carried out by the JRC to reflect the view of local populations in the 

benefits analysis through social analysis.  

Due to the limited time and resources, the study does not develop the full VTA analysis 

covering all societal benefits and observational costs. It selects several case studies 

covering as wide a variety as possible of different activities in the Arctic benefiting from 

observations. In this way, the study contributes to the understanding of how investments 

in observing systems respond to societal needs by covering as much as possible costs of 

existing observing systems and a wide spectrum of SBAs including the economic 

evaluation of selected benefits. Where benefits are evaluated economically, the study 

takes a doubly conservative approach, only looking at benefits accruing over the next 10 

years and secondly, looking at the benefits directly accruing in the Arctic region, rather 

than worldwide. 

By providing a synthesis of costs of producing observations in the Arctic and partly 

estimating observational contributions to the society, the study represents a unique 

attempt to understand the relationship between investments into Arctic observing 

systems and return in form of societal benefits.   

This report represents a synthesis of several more detailed precursor reports (JRC 2017; 

Everis 2018; Deloitte 2018). The IMOBAR project provides a structured analysis of Arctic 

observing system costs and demonstrates their links to societal benefits. Finally, this 

report provides a list of findings and recommendations in support for future investments 

in Arctic observing systems.   

                                           
4http://www.arcticobservingsummit.org/sites/arcticobservingsummit.org/files/AOS_Statement_Aug24_clean.pdf 
5 ttps://www.arcticscienceministerial.org/en/index.html 

http://www.arcticobservingsummit.org/sites/arcticobservingsummit.org/files/AOS_Statement_Aug24_clean.pdf
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2 Methodology 

The goal of the IMOBAR study is to estimate and compare costs and benefits of Arctic 

observation systems as a contribution towards the "business case" for sustaining Arctic 

observations in the long-term and to support the decision-making process. 

In the first step of the study, observing systems have been identified and linkages 

between observing systems and their benefits have been established. This step required 

the design of a conceptual framework to link observing systems with societal benefits. 

The proposed framework combines two well-known methodologies: Value Tree Analysis 

and Intervention Logic. In Section 2.1 the proposed conceptual framework is described. 

In the second step, several case studies have been selected in order to provide a set of 

detailed analysis of societal benefits deriving from observing systems. Case studies have 

been selected in a way to cover as much as possible the spectra of existing observing 

systems and societal benefits. The selection of the case studies is described in Section 

2.2. Finally, the costs of observing systems have been defined and their quantifiable and 

non-quantifiable benefits have been assessed. Description of the assessment of costs and 

quantifiable benefits and evaluation of non-quantifiable benefits is given in Section 2.3. 

2.1 The conceptual framework linking observations to benefits  

Observing systems in the Arctic have been identified by using information from previous 

publications (e.g. EU-PolarNet 2016) and all other available information on positions of 

observing systems like the World Meteorological Organization (WMO) tables or 

information from Copernicus Web pages dedicated to the observational data download.  

The next two subsections briefly describe the two methodologies that are used to design 

the conceptual framework to link the information produced by observations to societal 

benefits and their relevance for the study. 

Table 1. List of SBAs developed by IDA-STPI and SAON. 

Societal Benefits Area  

1.   Disaster Preparedness 

2.   Environmental Quality 

3.   Food Security 

4.   Fundamental Understanding of Arctic Systems 

5.   Human Health 

6.   Infrastructure and Operations 

7.   Marine and Coastal Ecosystems and Processes 

8.   Natural Resource 

9.   Resilient Communities 

10. Sociocultural Services 

11. Terrestrial and Freshwater Ecosystems and Processes 

12. Weather and Climate 

2.1.1 Value Tree Analysis  

Value Tree Analysis (VTA) was developed in the IDA-STPI and SAON (2017) report to link 

observing systems to Societal Benefit Areas (SBAs). The VTA methodology relies on the 

expert domain knowledge. Experts connect Observing Systems (OS) to Key Products, 

Services and Outcomes (KPSOs), which further link to Key Objectives (KO). KOs are 
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connected to societal benefit sub-areas that form Societal Benefit Areas (SBAs). In the 

Arctic, experts have defined 12 SBAs listed in Table 1. The SBAs are associated with four 

focus areas: Economy, Environment, People and Climate. Each SBA contains a number of 

key sub-areas, which in turn contain a number of KOs and these are further divided into 

KPSOs. The idea is that each KPSO has observational systems requirements and when 

these are identified, the societal benefits accruing from any observational system can be 

evaluated and compared by integrating their potential contributions over the twelve 

SBAs.  

 

Figure 1. Value Tree analysis of the key objective "Provide sector-specific weather predictions for 
economic activity" in relation to the Societal Benefit Area "Weather and Climate" 

The VTA developed by IDA-STPI and SAON (2017) represents a first attempt to 

systematically link observing systems to societal benefits in the Arctic. For each specific 

practical benefit, or KO, the KPSOs involved are identified and linked through the key 

observables to the relevant OSs. Going back up the value tree, they can be also linked to 

one or more SBAs. For example, Figure 1 shows that a large number of OSs measuring 

a wide variety of parameters may be linked to the SBA named “Weather and Climate” 
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(Table 1), through effects on the economic productivity, providing weather predictions 

which are fundamental in several economic sectors, such as shipping, fishing and 

aviation. This is achieved by first linking those OSs to observed variables and evaluating 

how information on the state of each variable may contribute to possible activities in the 

Arctic. These activities are then divided into different KPSOs that may contribute to KOs 

and finally to sub-areas and SBAs.    

While ideally the complete value tree for the whole Arctic should be evaluated, in this 

study a subset of value tree branches have been analysed. Several reasons are behind 

this choice: The study was performed with limited resources and time constraints, there 

was a need not to duplicate work performed elsewhere and, given that this is the first 

time that such an analysis has been attempted for the Arctic, it has been necessary to 

invest resources in developing a robust, comprehensive and consistent methodology that 

is reproducible, giving quantitative cost and benefit analyses where possible.  

2.1.2 Intervention Logic 

Since 2016, the European Commission has been pursuing the "Better Regulation" (BRG) 

concept, in EU policy-making. BRG is supported by the Better Regulation Toolbox which 

includes the Intervention Logic (IL) methodology.  

 

Figure 2. Correspondences between VTA and IL. VTA connects OSs with KPSOs and KOs and 
finally to societal sub-SBAs and SBAs. IL instead starts from a longer logical chain that evaluates 
Challenges, Needs and Objectives that provide the motivation for Inputs, Activities and Outputs, 

producing Results and Impacts. Inputs are investments that correspond to OSs in VTA. Activities 

and Outputs correspond to KOs and KPSOs benefiting from observations, while Impacts and 
Results are closely related to sub-SBAs and SBAs in VTA. Challenges, Needs and Objectives are not 

present in VTA. They represent the general set-up requiring intervention. In each selected case 
studies they may represent specific environmental conditions that may require responses by 

producing observations. 

IL builds a logical link between the problem that needs to be tackled, or the objective 

that needs to be pursued, the underlying drivers of the problem and the action (e.g. the 

policy) to address the problem and achieve the objective. It consists of eight sequential 

steps: Challenges, Needs, Objectives, Inputs, Activities, Outputs, Results and Impacts. In 

this context inputs are the consequence of the previous requirements and they may 

produce activities and outputs that further may contribute to results and impacts. By 
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applying IL it is possible to plan, organize and evaluate impacts that should meet the 

initial challenges and needs. In the IL context investments in OSs correspond to Inputs. 

The Activities and Outputs are improved products using observations like more accurate 

weather forecasts, corresponding to KOs and KPSOs, while SBAs arise from the Results 

and Impacts that follow from Outputs (Figure 2).    

In IL investments in observations can be represented by inputs and Societal benefits by 

results and impacts. While VTA provides a consistent approach to evaluation of societal 

benefits across the 12 SBAs, IL complements this with descriptions of other steps in the 

policy process. The additional components are represented by challenges, needs and 

objectives that motivate investments into observing systems. These steps may, for 

example, represent environmental pressures due to climate change in the Arctic. Unlike 

VTA which does not consider the motivation for developing a value tree, IL may logically 

explain how investments in OSs respond to these pressures by contributing to societal 

benefits. The present study combines the two approaches. Definitions and descriptions of 

case studies given in Section 3 represent challenges, needs and objectives in the IL 

framework. Then estimation of observing systems in Section 4 and benefits in Section 5 

use both VTA and IL methods. Future iterations of this study may thus take advantage of 

both VTA and IL to link observing systems to societal benefits. 

2.2 Selection of case studies  

The case studies considered by the study were identified by experts from the Arctic 

science community and Arctic stakeholders during a workshop in November 2017. Ten 

case studies, distributed across five wider domains that met the criteria of: 

— relevance and sensitivity to climate change in the Arctic; 

— capable of producing quantifiable and non-quantifiable benefits; 

— cover a wide spectrum of different observing systems; 

— and taken together they produce benefits in all of the twelve Arctic SBAs.  

In each of the case studies, relevant KPSOs were logically connected with one or more 

SBAs to which they are known to be beneficial (Table 2 in Section 4). At the same time, 

on the other side of the Value Tree, the main OSs relevant for the case studies were 

identified (Table 4 in Section 4). Additional information on observing systems and 

societal benefits arising in selected case studies were obtained by extensive literature 

review (e.g. EARSC and The Green Land BV., 2016; Melvin et al., 2017), structured 

interviews and surveys addressing stakeholders and experts.  

2.3 Assessing cost and benefits  

The quantitative estimate of costs and benefits has been the core of the last step of the 

IMOBAR study. Two different types of challenges had to be faced. In the case of costs, 

comprehensive information concerning the overall OS costs is not readily available, while 

available information is not always reported consistently. Moreover, several of the OSs 

considered are not specifically designed only for Arctic, so it is necessary to determine 

the share of their costs that refers specifically to the Arctic. Secondly, only a limited 

number of societal and environmental benefits could be readily expressed in monetary 

form and it was also difficult to estimate the fraction of these benefits that can be 

attributed to observational systems. The practical approach requires assumptions for 

economic benefits that, in a conservative manner, frequently assume lower benefits than 

really available for economic activities. 

Although in general, cost-benefit evaluations are limited to the activities that have 

measurable monetary benefits, such an approach would have risked ignoring important 

societal and environmental benefits that are difficult to measure in monetary terms. For 

this reason, non-quantified benefits have been also summarised in the analyses. 

Important non-quantified benefits include the benefits of observations as perceived by 
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the peoples of the Arctic, which were investigated via a complementary social science 

research activity that focused on the Arctic population and local communities (Romero 

Manrique et al., 2018). 

2.3.1 Costs of Observing Systems  

In order to quantify the costs a two-fold approach has been used. First, the cost of the 

whole observing system was estimated by applying a top-down approach without 

evaluating their relative contributions to specific KPSOs. Then, in a bottom-up approach, 

observing systems contributing to each case study were identified separately. The two 

approaches are complementary: on the basis of the top-down approach, it is possible to 

give estimates of the costs of observing systems in the Arctic, while the bottom-up 

approach provides qualitative insights into the links between OSs and SBAs analysing 

their relevance in relation to the different case studies.  

In practice, costs include capital investments (CAPEX) and operating costs (OPEX). 

CAPEX comprises costs of the research, design, production and installation of the 

observing system. OPEX accounts for costs of operation, maintenance and personnel 

costs, including costs of data elaboration, storage and provision, that cover the life span 

of observing systems. The actual life span is often longer than the predicted life 

expectancy and it differs significantly between observing systems. Some observing 

system costs were available only as the annual values. In these cases CAPEX and OPEX 

were not estimated.  

Costs of OSs operating beyond the Arctic, like those associated to polar orbiting 

satellites, have been rescaled on a geographical base, using the ratio between the Arctic 

and the total areas covered by the observing system. Estimates of observing system 

costs for the Arctic are thus highly sensitive to the geographical definition of the Arctic 

used in the study. Data have been obtained from literature, reports (e.g. Zeug 2011; 

Eyre and Reid 2014; JERICO 2014; Everis 2018; Deloitte 2018) and interviews with 

experts.  

2.3.2 Evaluating Societal Benefits 

Whenever it has been feasible, the analysis of societal benefits arising from observing 

systems was quantified. In these cases, the current economic activity related to the case 

study is estimated and its possible future evolution predicted. For each case study, three 

scenarios are defined: The first is conservative assuming the slow-down of economic 

activities, the second is central assuming the most probable growth rate of activities, 

while the third assumes that economic growth in the Arctic is faster than currently 

expected.  

In several of the case studies, potential economic savings by reducing costs and losses 

due to unexpected environmental conditions, are estimated for each selected economic 

activity (Deloitte 2018). These estimates are produced considering tangible savings 

provided by relevant information on current and future environmental conditions to 

specific human activities. This information is partly based on observations originating 

from Arctic observing systems. The percentage of observing system impacts on savings 

is estimated for each specific case on the basis of the available literature describing 

similar studies, interviews with stakeholders and expert opinions. Given the overall 

economic turnover of the activity, the percentage reduction in economic losses 

attributable to observing systems is then translated into net monetary benefits. As an 

example, in the case of sea ice monitoring, the OSs provide a tangible benefit by allowing 

a better optimisation of ship’s travel time across the Arctic. Such a benefit is evaluated in 

terms of overall cost savings under the previously cited hypotheses. This approach is 

similar to methodologies applied in other studies on economic benefits arising from 

environmental information (e.g. Booz & co 2011; PWC 2016; PWC 2017).  

In the specific case of permafrost thawing, a different approach is used where regional 

estimates of the costs to the community of adapting and not adapting to permafrost loss 
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in one area (for example Alaska) are extrapolated to the entire Arctic by estimating the 

proportion of the economic value of infrastructure in that area with respect to the whole 

Arctic. The same approach is used for the forest management case study which is based 

on a case study made for Sweden (EARSC and The Green Land BV., 2016). Average 

annual estimates of possible economic savings are produced for the period from 2018 to 

2028. 

It is clear that this methodology provides estimates of avoided losses where decisions on 

performing economic activities in the Arctic have already been made. This approach leads 

to a structural underestimation of the actual benefits of the existing observing systems: 

In reality, even the decision to perform economic activities in the Arctic often implicitly 

assumes the availability of environmental observations. The existence of observing 

systems is, therefore, crucial for making decisions on performing many economic 

activities. By limiting the economic impact of observing systems only to a percentage of 

economic savings in existing activities in the Arctic, the study underestimates monetary 

benefits.  

Finally, it is also worth underlining that the estimates contained in this report only 

concern the human activities taking place in the Arctic and do not involve in any respect 

the contribution from observing systems to the preservation of the Artic environment per 

se. Several methods are available in the literature for associating monetary values to 

environmental goods and ecosystems (Costanza et al, 2014). In principle, it could be 

possible to extend the analysis to include a quantitative estimate of the monetary value 

of the degradation of the Arctic environment and eventually quantify the role of 

observations in reducing environmental degradation. Such an analysis is out of the scope 

of the IMOBAR study, but it would certainly further increase the value of the actual 

benefits provided by observing systems.  

Some of the benefits are nevertheless not possible to evaluate in quantitative terms for 

various reasons ranging from the lack of reliable data to their intrinsic non-monetary 

nature. For some of these, indicative estimates of benefits are possible by making a 

series of additional assumptions, which make them much more uncertain. While these 

are discussed in chapter 5, they are not included in the final evaluation of economic 

benefits.  

A part of the study (Section 5.11) includes social research engaging actors relevant for 

observation systems in Lapland. The main objective is to understand how people living in 

the Arctic access and use different sources of environmental information to create 

strategies for adaptation to environmental change and how scientific information is 

interwoven with traditional knowledge (Romero Manrique et al. 2018).  
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3 Case studies: challenges, needs and objectives 

As discussed in Section 2.2 within the five observational domains 10 case studies, each 

addressing one or more key objectives from the value tree analysis, were selected by 

experts and stakeholders at the November 2017 workshop (Everis, 2018). According to 

these criteria five broad topics/domains relevant for the Arctic were selected: 

Permafrost and freezing/thawing of frozen ground; Biodiversity; Sea level rise; 

Sea ice; and Human dimension to sea ice. Examples of value trees for the five 

selected domains were developed by expert and stakeholders. For each domain, four to 

six KPSOs were identified finding several direct links to the 12 high-level SBAs (Everis, 

2018). Among all the cases identified during the workshop a reduced number of case 

studies was selected and they are summarised in the following sections. 

3.1 Permafrost and freezing/thawing of frozen ground 

Permafrost is ground and bedrock both onshore and offshore that remains permanently 

frozen for at least two years (e.g. US Geological Survey, 1993). Climate-change induced 

thawing of permafrost initially creates settling and subsequently subsidence. Entire layers 

of ground can detach from the underlying permafrost provoking land-slumps, slides, 

holes, slope failures and coastal erosion. 

— Case study: Impact on infrastructure of thawing permafrost 

The resulting geomorphic and land-use products highlight areas at risk of permafrost 

thaw and over what timeframe. Infrastructure at risk includes buildings and their 

foundations, drainage systems, roads, railways and airstrips, and pipelines. It is 

necessary to support the strategic planning and location of future infrastructures in 

remaining permafrost areas, strategic planning of future infrastructures in non-

permafrost conditions and the identification of adequate and timely adaptation or 

remediation strategies for existing infrastructures. 

— Case study: Forest management and logging 

The definition of Arctic region used in this study includes large areas of the northernmost 

Boreal forests. Today, these forests have lower growth rates than more southerly Boreal 

forests, but under nearly all climate change scenarios, they become comparable to the 

currently more productive southern Boreal regions, within a century. One issue is the 

fraction of the year that the forest ground remains frozen and can support mechanical 

logging equipment. This represents a significant opportunity for the economic 

development of Arctic communities, which needs to be planned and managed carefully. 

3.2 Biodiversity 

Biodiversity is a unique asset in the Arctic, both in terms of culture, aesthetics, and 

spirituality, but also in terms of science, ecology and economy. Biodiversity is at the 

centre of local communities’ traditions and livelihoods since thousands of years, while it is 

also leveraged in both local and global economies, notably in the tourism industry as well 

as in fisheries (CAFF 2018). More than 21 thousand cold-adapted species living in the 

Arctic are key actors in the marine and terrestrial ecosystems, in which the functional 

significance of different groups is not well understood (CAFF 2013). 

— Case study: Fisheries management 

Marine fish are exploited commercially and represent a key element for many local 

economies. The wider Arctic is one of the world’s larger marine fish sources with over 

10% of global catches (CAFF 2013). With the sea ice reduction the region is becoming 

more accessible, with increasing primary production over large areas. In 2017 nine 

nations and the European Union agreed on a moratorium on commercial fishing in the 

Central Arctic Ocean for the next 16 years, giving scientists time to develop an evidence-

based sustainable fishery plan. Climate change and economic activities represent an 

important stressor of the aquatic ecosystems. Consequences include the northward shift 
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of fish stocks, introduction of new species and ecosystem damage due to new fishing 

practices (European Parliament 2015). This requires the development of effective 

ecosystem-based management and planning strategies for Arctic fisheries underpinning 

the precautionary approach of sustainable fisheries management. 

3.3 Sea Level Rise 

The rate of temperature increase in the Arctic has been about twice as high as the global 

increase rate (AMAP 2017). One of the most serious consequences is the melting of 

Arctic land ice and its contribution to sea level rise. In the Arctic, the Greenland Ice Sheet 

and other frozen land areas—mountain glaciers and ice caps—in places like Iceland, the 

Canadian and Russian Arctic, Alaska and Norway’s Svalbard Islands, pose the greatest 

risk for ocean levels because melting land ice is one of the main cause of rising sea levels 

and most of the Arctic’s land ice is still locked up. In addition to simply adding water to 

the ocean, thawing Arctic land ice can raise sea levels even more via a mechanism called 

thermal expansion6 (IPCC AR5, 2013). 

— Case study: Port management 

It is very important for port authorities to be able to assess and predict potential impacts 

from sea level rise and develop procedures to incorporate the financial and other risks 

into their investment decision making processes. Globally higher sea levels are expected 

to cause more frequent and severe flooding of port facilities and restrict the passage of 

ships under bridges. In the coastal areas of the Arctic region, any improvements and 

building of new infrastructure, such as port facilities and support stations should consider 

the future change of sea level. 

— Case study: Property Insurance 

Sea-level rise is the main determinant of the frequency and severity of coastal flooding 

events. Property insurance is considered one important factor that could alleviate 

economic hardships and the loss of livelihoods. Without observing systems, insurance 

companies may not have accurate enough information to calculate risks and assess 

damages. Although no insurance company commented on the exact use of data 

generated by observing systems, it is safe to assume that incomplete information could 

result in insurance costs that do not reflect actual risks. 

3.4 Sea Ice 

The reduction of the sea-ice coverage in the Arctic during the last two decades provides 

more favourable conditions for shipping and development of offshore installations in the 

region.  In recent summers, as much as 40% of the Central Arctic Ocean has been open 

water, mostly north of Alaska and Russia, over the Chukchi Plateau (Hoag, 2017). An 

integrated or interoperable Arctic marine monitoring system would bring benefits to the 

shipping and offshore installation industry, while improved data collection will upgrade 

the assessment and prediction capacity and the cost-effectiveness of data collection.  

— Case study Ship Routing and Navigation 

Observations provide information improving safety and reducing environmental impacts 

of navigation. Estimated economic savings in the ship routing and navigation depend on 

fuel costs, navigation fees, navigation periods and take-up of high-technological 

developments. 

— Case study: Search and Rescue of vessels 

The success of search and rescue operations on the sea with the presence of sea ice 

strongly depends on analysis and predictions of weather and ocean conditions based on 

                                           
6 As the ocean warms, the density decreases and thus even at constant mass the volume of the ocean 

increases and is one of the major contributors to sea level changes during the 20th and 21st centuries. 
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observations. Several factors influence economic savings, which further depend on the 

point in time considered as well as the scenario used. 

— Case study: Offshore installations 

Oil and gas offshore installations represent an important economic sector in the Arctic. 

Benefits are obtained during exploration, transportation and distribution of extracted 

resources and decommissioning of platforms in the harsh Arctic environment, by 

providing important information for safe and sustainable activities. 

— Case study: Oil Spills 

It is assumed that observing systems can significantly improve the reaction to oil spills, 

as they can help improve the response time and mitigation efficiency, for example by 

supporting the identification and location of spill and predicting its spread.  

Addition benefits from avoided oil spills due reduced risks of accidents during 

transportation of oil. 

3.5 Human Dimension to sea ice 

The following example of observing systems provides direct benefits to individuals and 

communities in the Arctic. The sea ice loss observed in recent decades in the Coastal 

Zones of the Arctic Ocean makes it more difficult for local communities to predict ice 

thickness and distribution by traditional methods, making ice travelling, mainly for food 

provision and collecting fuel for heating, more dangerous. Today, hunters and fisherman 

are faced with unreliable ice conditions and need to find new, sometimes more expensive 

ways such as drones, to monitor the ice thickness. In turn, reindeer herders have 

difficulties to feed their animals because of challenging food provision and navigation. 

Routes traditionally known as safe are becoming less reliable, particularly in periods of 

ice freeze-up in autumn and break-up in spring.  

— Case study: SmartICE application 

SmartICE Sea Ice Monitoring and Information Inc, a spin-off of the Memorial University 

of Newfoundland (Canada) has been working on the SmartICE App since 2013, with the 

support of academia, industry, government and community7. It is built on three pillars 

comprising Inuit knowledge, sea-ice observations and production of sea-ice maps. Key 

observed variables are ice thickness, concentration and roughness.  

The system relies on two main types of observing systems to record data: in-situ sensors 

(stationary and mobile carried on sledges) and Synthetic Aperture Radar (SAR) satellite 

imaginary systems. SmartICE improves the predictability of sea-ice in the Arctic, thereby 

safeguarding traditional livelihoods and improving the safety of on-ice travel and tourism. 

                                           
7 https://www.smartice.org/technology/ 

https://www.smartice.org/technology/
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4 Observing systems: Inputs, outputs and costs 

Detailed lists of in-situ observing stations and systems can be found for example in NRC 

(2006) that provides a list of satellite missions observing the most important Arctic 

variables. EU-PolarNet (2016) provides an inventory of more than 500 observing systems 

in the Arctic classified by observing theme into Atmosphere, Cryosphere, Marine, 

Freshwater, Land and Soil, Ecosystem and Human dimension. 

There are two main types of OS: 

 Remote sensing. OS collecting data through a satellite. This means that they 

usually collect data from different world regions and are not exclusively 

monitoring the Arctic. Remote sensing includes both global and polar satellites, 

as well as airborne (aircrafts and unmanned aerial vehicles, UAVs) and marine 

coastal radar measurements. 

 In-situ. OS collecting data through devices, sensors and other monitoring tools 

on terrestrial ground, sea and air. It usually involves land stations, sensors, 

vessels or other data collection mechanisms directly located in the place where 

the data is produced. This OS type may include research icebreakers, and 

instruments on ships, underwater observations with buoys or gliders, 

atmospheric observations for meteorological parameters and atmospheric 

composition, or direct measurements over land like drill holes.     

Due to difficult environmental conditions in the Arctic, in-situ observational networks of 

physical and biogeochemical variables are sparse in comparison to nearby geographical 

areas and long-term monitoring is less frequent. Remote sensing by satellites is therefore 

necessary for continuously monitoring the whole Arctic. On the other hand, in-situ 

observations are essential for obtaining accurate unbiased observations. Satellite 

observations are also limited to atmosphere, ice, snow, land and ocean surface, while the 

ocean interior or deeper soil layers may be observed only by in-situ observations. 

Table 2. OS types needed for each case study as described in Deloitte (2018) 
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Domains Case studies 

Permafrost 
Forest Management ● ● ●     ● 

Infrastructures on frozen ground ● ●     ● ● 

Biodiversity Species maps ●   ● ● ●   

Sea Level Rise 
Port Management ● ● ● ●  ● ●  

Property Insurance ●  ● ●  ● ●  

Sea Ice 

Shipping ● ● ● ● ● ● ● ● 

Offshore ● ● ● ● ● ● ● ● 

Search and Rescue (S&R) ● ● ● ● ● ● ● ● 

Oil spills ● ● ● ● ● ● ● ● 

Human Dimension SmartICE  ● ●    ●  ● 
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One OS can generate products and services relevant to several topics and eventually 

SBAs depending on its capacity to measure several parameters or variables that are 

transversal to more than one topic (Everis, 2018). In this section we focus only on those 

OSs which contribute to the KPSOs identified during the case study selection (Sections 

2.2 and 3). Table 2 summarises the type of OSs which contribute to each case study, 

showing the need for a large number of different types of observations to obtain a group 

of KPSOs needed for a specific objective and SBA in the Arctic (Deloitte, 2018). Some 

examples of KPSOs obtained from the OS indicated in Table 2 for each case study are 

listed below: 

Forest management: Vegetation maps; Wildlife habitat and migration maps; Depth of 

frozen ground; Projections of forest evolution.  

Infrastructures on frozen ground: Ground temperature; Depth of frozen ground and 

distribution of layers; Changes in land cover; Land use maps; Fauna and flora 

composition and characteristics; 

Species maps: Evolutive fisheries maps; Taxonomic inventories; Fish stock models. 

Port Management: Improved maps of the ocean floor; Real-time reports, Short term 

forecasts and longer-term predictions of ice conditions and weather; Maps and real-time 

monitoring ocean currents; 

Property Insurance: Flood maps; Coastline changes; Database on coastal vulnerability 

and exposure; Improved climate models. 

Shipping: Improved maps of the ocean floor; Real-time reports, short term forecasts and 

longer-term predictions of ice conditions and weather; Maps and real-time monitoring 

ocean currents; Navigation charts. 

Offshore installations: Seabed, seawater and sea ice observations (exploration phase); 

Weather forecasts. 

Search and Rescue: Real-time information on the weather condition; Ice thickness maps; 

Icebergs in the area; Near-real-time wind, currents or waves. 

Oil spills: Icebergs and sea ice real-time and forecast; Canada's Integrated Satellite 

Tracking of Pollution (ISTOP); Maritime Patrol Aircraft (MPA); Oil trajectory modelling. 

SmartICE: Monitoring of ice in near real time.  

Structured interviews with representatives of local communities confirmed that observing 

systems include also traditional observations of environmental change impacts on 

peoples’ livelihoods including fishing, agriculture, forestry and reindeer herding. 

Traditional observational capacity is used to augment data and information from the 

technological tools through the creation of local observer networks (Okey and Brubaker, 

2017). With environmental changes being rapid and unpredictable, local people are 

increasingly combining the uses of their traditional knowledge and technological 

observational systems.  

The full list of OS for each group type included in the analysis of the costs is given in 

Table 3. As explained in Section 2.3.1, we used a top-down approach. The main efforts 

were made to gather data on the capital expenditure (CAPEX), operational expenditure 

(OPEX), and life expectancy of the OS. Overall, the availability of data on observing 

system costs is limited and variable. Information on CAPEX and OPEX of some global 

satellites used in the Arctic, like Landsat 5 and 8, Sentinel 2 and SMOS, was not found, 

while information for NovaSAR-S and RCM is based on planned estimates. For many 

observing systems, information has only been identified either on their one-off set up 

costs or annual operating costs (Table 41 in Deloitte, 2018). In a nutshell, the study 

identified 41 systems (Table 3). For 21 systems both CAPEX and OPEX could be 

identified, for 9 systems only CAPEX and for 8 systems only OPEX were identified, while 

for the remaining systems only the annual costs, implicitly including OPEX and CAPEX, 

were available.  
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Table 3. List of OS identified during the case studies selection. 

OS types Observing Systems 

Global Satellite 

TerraSAR-X; RADARSAT Constellation Mission (RCM); 

TanDEM-X; Envisat; Twin Sentinel 1 (Sentinel 1A and 1B); 

Sentinel 3; AISSat-1; Metop-A, Metop-B, Metop-C; NOAA 

15-19; NovaSAR-S; EOS-Aqua; EOS-Terra; Suomi; DMSP-

F16. 

Polar Satellite CryoSat-2 

Airborne 

Aircraft and helicopters (surveillance/photography); Light 

Detection and Ranging (LIDAR); Radio sensor; Infrared 

(IR); Ground Penetrating Radar (GPR); Unmanned Aerial 

Vehicle (UAV) 

Marine Marine Radar (open array); Shore-Based Marine Radar. 

Icebreakers 
Sikuliaq (US); Kronprins Haakon (Norway); Polarstern 

(Germany); MV Xue Long (China). 

Underwater 

Moored buoys; Drifting Buoys; Autonomous Underwater 

Vehicles (AUVs)/ Submarines; Fixed Moorings; Wave 

Gliders for Arctic MIZ Surface Observations and Navigation 

Support; Argo floats; Instruments on ships. 

Atmospheric (non-satellite) SYNOP-SHIP-METAR; EMEP; AERONET; ICOS. 

Direct measurements 
Drill holes; Satellite Tracked Drifting Buoys; SmartICE 

devices. 

In order to make a comprehensive cost-and-benefit analysis of Arctic observing systems, 

the fraction of the costs of observing systems that relate to the Arctic area and, 

ideally, that refer specifically to information that is used for the purpose of the human 

activities that are carried out as part of each of the cases examined would need to be 

determined. 

As a single OS in Table 3 may contribute to different case studies and SBAs, we present 

the results of the cost analysis as the overall costs of the OS in the Arctic. The following 

table gives a summary overview of the data that have been identified in relation to the 

different types of observing systems studied. It includes ranges and median of CAPEX 

and OPEX costs for each type / group of systems. The median CAPEX and OPEX costs are 

used to estimate the Arctic annualised costs taking into account life span and 

estimated minimum and maximum Arctic coverage of the systems.  

These estimates have limitations: it was not possible to identify robust data in relation to 

all types of observing systems and data points needed, which is why it was necessary to 

work with estimates and median costs. In addition, the figure does not provide a 

complete picture; it was not possible to include data on costs in relation to all relevant 

systems. As it is even more difficult to allocate cost fractions to specific SBAs linked to 

observing systems, this evaluation has not been performed in the study.  

The study did not evaluate the possible production of environmental information from 

activities that were not intended for observations. For example, in situ observations of 

temperature and winds, Global Navigation Satellite System (GNSS) observations of drifts 

of aircrafts and ships, like observations by the Galileo programme with the global 

coverage (reference), may provide in situ information on atmospheric and oceanographic 

parameters, while GNSS radio occultation may indirectly produce observations of 

atmospheric temperature profiles. As these systems are implemented for very different 

purposes than providing environmental observations for general purposes, it was difficult 

to estimate the fraction of their costs related to environmental observations. 
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The estimated overall costs per year (excluding airborne sensors and drones as well as 

direct measurements) associated to the OS contributing to KPSOs in the selected 10 case 

studies ranges between 70 and 135 MEUR/yr. The main contributions to the total costs 

derive from global satellite observation, 23-54 MEUR/yr, and icebreakers 

(research vessels), 22-39 MEUR/yr. 

Table 4. Estimates of overall annualised costs from all relevant observing systems relating to the 
Arctic for ten selected case studies. 

Type of observing system 

Annualised 

costs 

(global in 

MEUR) 

Assumed 

share of the 

observations 

that refer to 

the Arctic 

Annualised costs 

(Arctic, for all 

systems identified) 

(in MEUR) 

Min. Max. Min. Max. 

Global satellite (e.g. 

Envisat, Sentinel 1) 
770 3% 7% 23 54 

Polar satellite (CryoSat) 19 50% 70% 9 13 

Airborne (aircraft and 

helicopters) 
13 20% 70% 3 9 

Marine (coastal radars) 2 25% 45% 1 1 

Atmospheric observation 

systems (non-satellite) / 

atmospheric composition 

(e.g. SYNOP-SHIP-METAR, 

EMEP) 

3.5-108 100%9  3.5  10 

Icebreakers (research 

vessels) 
88 25% 45% 22 39 

Underwater (coastal buoys, 

drifting buoys, wave gliders, 

Argo, instruments installed on 

vessels) 

9 100%8 9 9 

Estimated overall Arctic costs per year  70 135 

                                           
8 The uncertainty range depends on the definition of the Arctic geographic area. 
9 Only stations/systems located in the Arctic (Latitude above 60°N) are considered (Deloitte, 2018) 
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5 Societal Benefit analysis 

Scientific experts and stakeholders in the Arctic selected five domains and a large 

number of observing systems and key products, services and outcomes that could be 

linked to a considerable number of key objectives, covering all the societal benefit areas 

of the VTA (Everis, 2018). Ten selected cases from this first pool of observing system and 

key products are analysed in more detail through the VTA and IL (see Annex 1 and 

Deloitte, 2018). We present a summary of the main benefits of the observing systems 

that have been identified in relation to each of the selected case studies. Table 5 shows 

the SBAs found for each case study, either for quantified (highlighted in red) or non-

quantified economic benefits. Explanations of how we came to the individual estimates of 

the monetary benefits as well as presentations of the non-quantified benefits are 

presented in the next sections (Deloitte 2018). In Section 5.12 we present a summary 

table of the quantified economic benefits. 

Table 5. Contribution to the SBAs associated to the selected case studies relevant to the Arctic. 

Black dots indicate non-quantified SBAs, red dots quantified SBAs. 
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5.1 Infrastructures ● ● ● ● ● ●   ●    1 7 

5.2 Forest Management  ● ● ●  ●  ● ● ● ● ● 2 9 

5.3 Fisheries Management  ● ● ● ●  ●  ●  ●  - 7 

5.4 Port Management ●  ● ●  ●   ●   ● 2 6 

5.5 Property Insurance ●     ●   ●    2 3 

5.6 Shipping ● ● ●  ● ● ● ●     3 7 

5.7 Offshore ● ●    ●       2 3 

5.8 Search and Rescue ●    ●        1 2 

5.9 Oil spills ● ● ●  ●  ●      1 5 

5.10 SmartICE ●  ●  ●    ● ●   - 5 

5.1 Benefits from systematic observations of permafrost for 
infrastructure 

Quantifiable benefits of observing systems under the infrastructure and operations SBA 

can be determined by estimating the fraction of costs from damage to infrastructure that 

can be expected to be avoided by timely adaptation in the Arctic infrastructure sector 

(Figure 3 in Annex 1). A 2017 study of the costs of damage, reconstruction and repair of 

public infrastructure in Alaska between now and the end of the century estimated 
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cumulative cost of between 3.6-4.2 BEUR10 without adaptation measures and 1.9-2.4 

BEUR with adaptation measures depending on the climate scenario (Melvin et al., 2017).  

Savings are estimated by taking the difference between cases with and without 

adaptation cases, extrapolating these figures to the entire Arctic (Section 2.3.2) and 

assuming that costs increase exponentially between 2015 and 2099. Average savings in 

annual infrastructure damage, reconstruction and repair costs for the whole of the Arctic 

due to successful adaptation measures for the period 2015-2030 appear to be between 

39-76 MEUR/yr. Adaptation strategies to avoid damage and repair costs or to propose 

reconstruction, necessitate a thorough understanding of the local permafrost and its 

evolution, for which observation products are essential. The potential impact of 

observation systems on avoiding costs is thus significant and our analysis assumes 60-

80%11 of the annual benefits can be attributed to using observation products, giving an 

average annual benefit of 23—61 MEUR/yr (Deloitte, 2018). 

Additional societal benefits that are not quantified arise under the Human Health 

(avoided loss of life), Resilient Communities (continuity, wellbeing, avoided relocation), 

Environmental quality (species migration), Disaster preparedness (landslides and coastal 

erosion), Fundamental understanding of the Arctic System, and Food Security SBAs. 

5.2 Benefits from systematic observations for forest management 
and logging 

Quantifiable benefits of observing systems for forest management and logging also fall 

under the infrastructure and operations SBA, as well as natural resources and terrestrial 

and freshwater ecosystems and services SBAs (Figure 4 in Annex 1). In Sweden, the 

Swedish Forest Agency (SFA) is responsible for ensuring the effective implementation of 

forest management policy (SFA, 2015). Using satellite derived maps, the SFA monitors 

whether logging is performed as authorised and whether landowners are compliant with 

land management practices. While the SFA spends approximately 0.5 MEUR/yr to 

purchase and use the imagery, this forest management system has registered large 

direct and indirect benefits, quantified between 16-21.6 MEUR/yr. Such benefits include 

higher timber productivity, reduced organisational costs for the agency, increased 

compliance, re-use of data produced (published as open data) and better intra-agency 

cooperation (Persson ,2016; EARSC and The Green Land BV., 2016). 

This analysis covers all Sweden, by interpolating from all Sweden to the boreal forests of 

the Swedish Arctic, as defined in the study and then extrapolating from the Swedish 

Arctic forests to all Arctic forests (Sweden was responsible for just over 5% of Arctic 

wood production in 2002, Deloitte, 2018) and further taking into account that Arctic 

boreal forests are under-exploited relative to the sub-Arctic southern boreal forests we 

estimate annual benefit from forest observations of 20-40 MEUR/yr for the Arctic as a 

whole. These benefits do not include those of predicting when a forest is waterlogged and 

cannot support mechanical operations and are thus an underestimate of the true 

infrastructure and operations benefits. 

The additional societal benefits that are not quantified arise under the Environmental 

Quality, Fundamental understanding of the Arctic System, Resilient Communities, 

Sociocultural Services, Weather and Climate and Food Security SBAs. 

                                           
10 Discounted to 2015 assuming 3% inflation. 
11 The estimates of percentages of benefits attributable to the observing systems in this and other case studies 

are based on assumptions about the expected contributions of the observing systems, taking into account 
the findings from the desk research and stakeholder consultations (Section 2.3.2 and Deloitte 2018). 
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5.3 Benefits from systematic observations for fisheries 
management  

We did not find examples of the quantification of benefits of observations underpinning 

fisheries management on which to base an assessment for the Arctic. Nevertheless, 

observations bring non-quantified benefits to the Food Security, Marine and coastal 

ecosystems and processes, Terrestrial and freshwater ecosystems and processes and 

environmental quality SBAs (Figure 5 in Annex 1). 

5.4 Benefits from systematic observations for Port management 

Benefits for port management from observations fall primarily under the infrastructure 

and operations SBA and are predominantly costs avoided by adaptive measures (Figure 6 

in Annex 1). No direct estimates could be made either for the Arctic or for the role of 

observations due to a lack of suitable base cases. For example, the FP7 project Climate 

Cost on the economics of climate change and adaptation excluded ports from 

consideration of sea level rise (Brown et al., 2011). Another study looked at the costs of 

adapting US ports for future sea level rise (53-75 BEUR), but not the costs of taking no 

action (Hippe et al., 2015).  

If benefits are restricted to the Arctic, indicative benefits from improved observations can 

be estimated by assuming that the infrastructure of the port sector is no more than five 

times the combined airport and railway sectors in the Alaskan study referred to in 

Section 5.1 (Deloitte, 2018). Together these two sectors are responsible for 1.5% of 

infrastructure damage, reconstruction and repair costs with and without adaptation, 

which would imply annual average benefits for the entire Arctic of the order of 3-5 MEUR 

for the period 2015-30.   

In addition to the infrastructure and operations SBA, observations for port management 

also generate additional non-quantified benefits under the fundamental understanding of 

Arctic systems, weather and climate, food security and disaster preparedness SBAs. 

5.5 Benefits from systematic observations for property insurance 

In addition to the sea level rise observational products described in Section 4, products 

describing flood risk in coastal areas, as well as the projected evolution of this risk with 

rising sea levels are required to inform insurers of current and future risks so that 

premiums may be set accordingly.  

Benefits for property insurance from observations fall primarily under the infrastructure 

and operations and resilient communities SBAs (Figure 7 in Annex 1). If benefits are 

restricted to the Arctic, indicative benefits from improved observations are inevitably a 

very small fraction of the global total and of the order of 1-2 MEUR/yr averaged over the 

period 2015-2028, taking into account the coastal Arctic building stock at risk, the overall 

market penetration for flood insurance in Arctic states is between 20-40% (OECD 2016), 

and an indicative saving for insurers of 10-20 euro per policy per year.  

As sea level rise is a global issue and approximately 40% of global sea level rise to 2100 

is estimated to be attributable to melting Arctic land ice (AMAP 2017), it makes sense to 

also evaluate the global impact. A recent study for Europe (Mokretch et al. 2015) suggest 

that for the business as usual case and no flood protection in excess of 18 million 

Europeans are at risk of coastal floods at least once by 2100, but that with flood 

protection measure these numbers can be reduced by half. As the losses in the no flood 

protection case for Europe could total 236 BEUR by 2100, the benefits for the insurance 

industry, will be commensurately larger than those in the Arctic. A more recent study 

(Vousdoukas et al. 2018) suggests that without increased investment in coastal 

adaptation, the expected annual damage caused by coastal floods in Europe could 

increase from €1.25 billion today to between €93 billion and €961 billion by the end of 

the century. 
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In addition to the infrastructure and operations SBA, observations for property insurance 

also generate additional non-quantified benefits under the fundamental understanding of 

Arctic systems, weather and climate and disaster preparedness SBAs. 

5.6 Benefits from systematic observations on ship routing and 
navigation 

Currently, the Arctic navigation season is too short, and sea ice conditions are difficult to 

predict. Challenges include high operational costs, limited infrastructure, navigation 

safety and the environmental impact of shipping. Nevertheless, the loss of Arctic sea ice 

is making new trade routes increasingly feasible, fostering the possibility of economical 

trans-Arctic shipping, as well as greater access to regional resources. This may also 

stimulate the local shipping industry, both for natural resource extraction and cruising as 

part of tourism (Figure 8 in Annex 1).  

Observations are conservatively assumed to be responsible for 15-20% of the cost 

savings (Deloitte, 2018) calculated for three scenarios for the evolution of commercial 

traffic in the Arctic based on current shipping recorded in the Arctic growth rates for the 

shipping industry worldwide assuming variously a 50% lower (conservative), current 

(central) and 25% faster (speculative) growth rates for Arctic shipping. Total annual 

savings by 2028 are of the order of 920 – 1168 MEUR, consequently the benefits form 

observations are between 138 and 234 MEUR/yr by 2028 (Deloitte, 2018). 

Ship routing has a strong connection with the Natural Resources SBA, as well as the 

Disaster preparedness, Weather and climate, Marine and coastal ecosystems and 

processes, Environmental quality and Food security SBAs, but these additional benefits 

are not quantified. 

5.7 Benefits from systematic observations for Offshore 
installations 

The main impacts for offshore installations are safer operations and transport, including 

the prevention of accidents with the loss of lives and harmful impacts of the environment 

respecting natural ecosystems and the presence of local communities (Figure 9 in Annex 

1).  

Economic benefits due to the prevention of accidents account for the reduction of 

economic losses in equipment and reduced activity. Depending on the price of oil and 

gas, there is a strong uncertainty on the evolution of offshore installations in the Arctic in 

the next decade. Assuming different scenarios, the study finds that annually 8-14 MEUR 

may be saved by avoiding accidents (Deloitte, 2018). It is assumed that only a fraction 

of this saving may be attributed to observations and the savings do not contribute 

significantly to overall economic benefits from observing systems in the Arctic. The study 

does not account for the value of eventually saving human lives that in the Arctic may 

reach 11 MEUR annually (Deloitte, 2018). It also does not account for the impact of 

observations on the sustainable exploration and use of natural resources in the Arctic.  In 

addition, observations with respect to activities on offshore installations contribute to 

SBA Maintenance of Environmental quality. 

5.8 Benefits from systematic observations for Search and Rescue 

of vessels 

Improvements and innovations in observing and communication systems, leading to 

better navigation charts and accurate information on meteorological and oceanographic 

conditions, can lead to more efficient and therefore less costly S&R operations (Figure 10 

in Annex 1). We consider three scenarios to estimate the economic benefits associated to 

observations use in S&R operations: Conservative (no efficiency gain); Central (limited 

efficiency gain); Speculative (greater efficiency gain). Common assumptions for the three 

scenarios are:  
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 the number of incidents requiring S&R operations is expected to increase by about 

16% during the decade, 2018-2029, which reflects the expected increase in 

human activity in the Arctic;  

 The costs for S&R operations are considered to range from EUR 70,000 (for ‘small’ 

operations) to EUR 500,000 (for ‘medium-sized’ operations) to EUR 850,000 (for 

‘large’ operations);  

 The average annual cost of S&R operations is estimated as a weighted average of 

small, medium and large S&R operations, representing respectively 50%, 40% 

and 10% of the total S&R operations carried out in one year (Deloitte, 2018).   

In the conservative scenario, costs are expected to increase in line with the increase in 

human activity, i.e. by about 16%. The central and speculative scenarios are expected to 

lead to a 5.3% and 17.6% decrease in the costs of S&R operations compared to the 

conservative scenario. On this basis, the estimated annual monetary benefits from 

observing systems are in the EUR 0.5-1 million range for the speculative scenario in 

2028, possibly in the 20-25% range (Deloitte, 2018). We note that these estimates are 

very conservative. It is also possible e.g. that the location of a lost ship or airplane might 

only be found due to observing systems. In such cases, the benefits could thus be 

significantly higher. The economic benefits in terms of saved human lives are not 

quantified. The synergies between environmental and GNSS observations (e.g. UN 2018) 

provided in S&R activities, such as Galileo S&R12, are also not evaluated.   

5.9 Benefits from systematic observations for Oil Spills 

Oil spills may strongly harm marine ecosystems requiring long recovery. They may 

impact human physical health by direct contact with crude oil, inhalation of vapours or 

consumption of contaminated seafood. Local economies like the fisheries, aquaculture, 

and tourism may suffer for long time after the oil spill. The reduction of oil spill accidents 

and the increased efficiency of cleaning the pollution after the accident may, therefore, 

strongly reduce negative impacts on the society. The response to an oil spill in a remote 

area like the Arctic is complex and costly (Figure 11 in Annex 1).  

Improving the efficiency of the oil spill response creates savings that can be measured by 

economic terms. In the next decade, assuming an accident similar to Exxon Valdez13, the 

study estimates that savings due to improved efficiency of oil spill response activities are 

between 110 and 420 MEUR.  It is further estimated that 10% of these savings are due 

to better use of observations. Assuming one accident per decade, the study estimates 

that 1 to 4 MEUR are saved annually by the presence of observing systems in the Arctic. 

This a very conservative estimate, because the study does not monetarize impacts on the 

ecosystems and human health, and it does not account for the reduced probability of oil 

spill accidents due to the presence of observations in the Arctic (Deloitte, 2018).       

Non-quantified social benefits of reduced number of oil spills and improved oil spill 

response belong to SBAs: Environmental quality; Food security; and Human Health. 

5.10 Benefits from systematic observations for SmartICE  

The main direct benefit of SmartICE is enhanced safety on sea ice routes reducing the 

number of accidents due to ice-related hazards and collisions. This leads to a series of 

other positive impacts for local communities and all Arctic stakeholders. Optimisation of 

operations on sea ice allows for informed decision-making across a wide area. Emergency 

rescue services can be optimised increasing public safety. In addition SmartICE, as a 

                                           
12 https://www.gsa.europa.eu/european-gnss/galileo/services/galileo-search-and-rescue-sar-service  
13 On 4 March 1989, oil tanker Exxon Valdez was en route to Long Beach, California (US), when it struck the 

Bligh Reef in the Prince William Sound region of Alaska. It was carrying about 204 million litres of oil. The 
accident caused the rupture of 8 of its 11 cargo tanks, releasing 42 million litres of crude oil into the waters 
of Prince William Sound in the following days, contaminating over 2,000 km of coastline. The Exxon Valdez 
is the largest oil spill ever to have occurred in the Arctic region. 

https://www.gsa.europa.eu/european-gnss/galileo/services/galileo-search-and-rescue-sar-service
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community activity, safeguards traditional livelihoods, uses and knowledge of sea ice, 

and expands local employment and training opportunities (Figure 12 in Annex 1). 

All these impacts link to societal benefits covered by SBAs: Enhanced infrastructure and 

operations; Fundamental understanding of Arctic systems; Increased disaster 

preparedness; Monitoring of impacts on environmental quality; Sociocultural Services; 

and Resilient communities. Assuming that the main impact of the study is to 

safeguarding the traditional lifestyle of local communities, benefits were not quantified. 

5.11 Benefits for local communities  

Structured interviews performed in a separate JRC study in Lapland (Romero Manrique 

2018) provided a dynamic picture of the Arctic communities and of their relationships 

with environmental data. Arctic people are experiencing and observing an increasing 

variability and unpredictability of the weather and seasonal climatic patterns, as well as 

changes in the sea ice and the health of wildlife. Interviews suggest that observing 

system benefits for local communities are closely linked and translated into main 

traditional activities that depend on environmental conditions. They see "food security" 

as a secured access to fishing activities and the smooth continuation of reindeer and 

caribou herding. With environmental changes being rapid and unpredictable, local people 

are increasingly combining the uses of their traditional knowledge and technological 

observational systems, such as satellite data, and mappings resulting from GIS 

elaboration, becoming more and more involved in active use of scientific data. Moreover, 

they are more and more making use of other scientific or technological data, where they 

increasingly play an active role: for instance, hunters, herders or gatherers, support their 

activities actively monitoring herd movement through unmanned aerial vehicles (drones). 

5.12 Summary of the quantified economic benefits 

Quantifiable benefits were estimated for several case studies in a conservative way 

(Section 2.3.2). In the first approach, the study included benefits that may be directly 

quantified starting from economic values of savings for each activity (Section 2.3.2). This 

was done in case studies on Oil spill, Search and rescue, and Offshore activities. In the 

second approach, benefits were estimated starting from economic estimates made 

globally, for other similar geographical regions or Arctic sub-regions (Section 2.3.2). This 

approach was applied in estimating benefits for Infrastructures and Forest management. 

The third approach combined the first two approaches. It was used in estimating benefits 

for Shipping.  

Table 6 summarizes economic benefits of observing systems providing the overall 

estimate of annual economic savings between 183 and 341 MEUR (for more details see 

also Tables 42 and 43 in Deloitte, 2018). These numbers may account for only a fraction 

of all economic benefits. For example, in the Oil spill case study the evaluation assumes 

that observations contribute only to additional savings in the future and have no impact 

on savings in current cleaning activities. Economic impacts can be further assessed, for 

example, on improving predictions of global sea level rise due to the ice sheet melting in 

the Arctic, or on more accurately and timely forecasting severe cold weather intrusions 

into the mid-latitudes. The assessment for a limited number of activities in the Arctic 

indicates an average of 250 MEUR of economic benefits, while the inclusion of other 

economic activities and global impacts may result in several times larger numbers.  
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Table 6. Economic benefits for each case study. 

Case Unit of analysis 

Overall 
monetary 
effects in 

MEUR  

Estimated 
share of 
effects 
relating to 
observing 
systems 

Annual 
monetary 
benefits 

from 
observing 
systems in 
MEUR  

Min.  Max.  Min.  Max.  Min.  Max.  

Sea ice 

Ship routing 
Expected cost savings 
relating to shipping in the 
Arctic 

919 1,168 15% 20% 138 234 

Search and 
rescue 

Benefits of observing 
systems relate to a 
potential reduction of the 
costs for S&R activities 

2 5 20% 25% 0.5 1 

Oil spills 

Savings relating to the 

clean-up savings for a 
fictive oil spill similar to 
that of the Exxon Valdez 
every 10 years 

100 330 10-15% 1 4 

Sea level rise 

Property 
insurance 

Estimated benefit of data 
from the Copernicus 
program for intermediate 
users in the insurance 
and (re)insurance 
industry in 2016, with the 
potential to grow by 64% 
per year 

0.5 1 100% 0.5 1 

Permafrost 

Infrastructure 
Costs savings due to 
timely infrastructure 
adaptation measures 

39 76 60% 80% 23 61 

Forest 
management 

Estimated revenue 
generated based on data 
generated by observing 
systems in relation to 
forest management in 
2020 

20 40 100% 20 40 

Estimated overall savings relating to the data points identified 183 341 
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6 Conclusions and recommendations 

Observing systems in the Arctic may provide essential information to a number of 

societal benefit areas in the Arctic and at the global scale. On the other hand, observing 

in the Arctic may require high investment costs due to difficult environmental conditions. 

This study applied Value Tree Analysis (VTA) and Intervention Logic (IL) methodologies 

to link observing systems in the Arctic to societal benefits. VTA links observing systems 

to societal benefit areas through a value tree that includes key products and objectives, 

while IL adds the logical part of the policy development corresponding to societal 

challenges, needs and objectives anticipating a policy.  

By using analytical structured methodologies for the first time the study estimated costs 

of Arctic observing systems and partly quantified their societal benefits.  

The total cost of maintaining observing systems identified in the study ranges between 

70 and 135 million Euros per year. This is probably an underestimate of the total cost, 

but as most of observing systems are included in the study, costs of additional systems 

should not significantly increase this estimate.  

The evaluation of benefits using expert opinions was based on the assessment of case 

studies covering a large number of activities and environmental processes in the Arctic. 

In the ten case studies, observing systems are linked to all twelve societal benefit areas 

identified previously for the Arctic, demonstrating a large span of societal benefits 

originating from information provided by observing systems. 

When identifying societal benefits the study assumed fast and efficient use of all available 

information originating from observing systems. Many case studies contained applications 

that require either continuous information flow or emergency response situations. The 

most successful achievement of societal benefits requires collaboration at the regional 

and global level including the participation by local communities. This effort should 

increasingly lead to continuous and reliable implementation of observing systems with 

standardized quality and communication methods and rapidly accessible data.    

In several case studies, it was possible to assess parts of economic benefits that can be 

directly linked to observations. The total amount of identified economic benefits due to 

the use of information originating from observing systems amounts to a range of 183 to 

341 million of Euros per year. Most likely, by conservatively applying the economic 

analysis only to the most accessible economic estimates, the study identified only a 

fraction of total economic benefits that can be several times larger than the maximum 

identified value here. 

By comparing the lowest identified total benefits with highest identified total costs and 

considering the range of uncertainties and underestimates, it can be concluded that 

annual economic benefits exceed by at least 50% annual investments in Arctic observing 

systems. The results of this study show for the first time that costs associated to Arctic 

observing systems are widely compensated by their economic benefits and this 

represents a key finding towards the "business case" for sustaining Arctic observations. 

Rapid environmental changes in the Arctic will likely lead to a strong increase of human 

activities and pressures to Arctic communities and environment that were not assumed in 

the study. Responding to these challenges may also require increased investments in 

observing systems. On the other hand, we may expect that benefits in environmentally 

changed conditions in the Arctic will become even increasingly more significant and 

future studies using the same or similar structured approaches may demonstrate even 

higher rates of return from larger investments in observing systems. 

A full justification of long-term investments in Arctic observing systems is still necessary 

and further resources should be devoted to complete the cost-benefits analysis and to 

reduce uncertainties. The structured approach applied here provides means for a 

reproducible and expandable evolution of the study to other activities and observing 

systems. For example, it can evaluate the impacts of the future evolvement of sustained 
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observing systems in the Arctic including the assessment of synergies with GNSS. It can 

also be expanded to quantify benefits in other case studies covering additional branches 

of the full value tree in the Arctic. Moreover, this study focused mainly on benefits in the 

Arctic region. The proposed analytical framework should also be further developed to 

estimate the economic benefits of Arctic observing systems at global scale. 
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Figure 4. Value Tree Analysis and Intervention logic for forest management  
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Figure 5. Value Tree Analysis and Intervention logic for fisheries 
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Figure 6. Value Tree Analysis and Intervention logic for Port Management. 
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Figure 7. Value Tree Analysis and Intervention logic for Property insurance. 
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Figure 8. Value Tree Analysis and Intervention logic for shipping. 
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Figure 9. Value Tree Analysis and Intervention logic for Offshore installations. 
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Figure 10. Value Tree Analysis and Intervention logic for Search and Rescue. 
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Figure 11. Value Tree Analysis and Intervention logic for Oil spills. 
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Figure 12. Value Tree Analysis and Intervention logic for SmartICE. 
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