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Abstract 

This report investigates the impact of corporate research and development (R&D) on 

firm performance in the food-processing industry. The agro-food industry is usually 

considered to be a low-tech sector (the share of total output that is attributable to R&D 

is around 0.27% in the EU). However, the agro-food industry is very heterogeneous. On 

the one hand, there are many highly innovative food-processing firms with intensive 

R&D activity and, on the other hand, many food-processing firms derive and adopt 

innovations from other sectors such as machinery, packaging and other manufacturing 

suppliers. We perform data envelopment analysis (DEA) with two-step bootstrapping, 

which allows us to correct the bias in (in)efficiency and generate unbiased estimates for 

(in)efficiencies. We use a corporate dataset of 307 companies from agriculture and food-

processing industries from the EU, the USA, Canada and Japan for the period 1991–

2009. The estimates suggest that R&D has a positive effect on firms’ performance, with 

marginal gains decreasing at the R&D level, and performance differences detected across 

regions and food sectors. General public expenditure in R&D is also associated with a 

positive impact on firm performance. As a result, policy support for this type of non-

high-tech innovative sector is expected to generate growth. However, results that 

suggest heterogeneity in R&D effects across EU Member States may point to differences 

in the implications of innovation policies across EU regions. 

 

 

 

Keywords: Research and development, corporate R&D, productivity, technical 

efficiency, stochastic frontier analysis, DEA, double bootstrapping, agro-food, food-

processing industry 
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Executive summary 

This report was produced as part of the Impact of Research on EU Agriculture 

(IMPRESA) project. The aim of the IMPRESA project is to measure, assess and 

comprehend the impact of all forms of European scientific research on agriculture (SRA) 

on key agricultural policy goals, including farm-level productivity, environmental 

enhancement and the efficiency of agro-food supply chains.1 

In the framework of the IMPRESA project, this report investigates the impact of 

corporate research and development (R&D) on firm performance in the food-processing 

industry. Productivity growth in agriculture and the food industry is a key element in 

responding to the challenges of global food security. As such, investment in R&D and 

innovation is critical to promoting productivity gains in the agro-food sector. 

Both the theoretical and empirical literature has established that R&D is critical for firm 

productivity growth in general. For example, according to the empirical literature, 

between 1% and 25% of variance in productivity across firms can be explained by 

differences in R&D investment (Hall et al., 2010). However, there is considerably less 

agreement on the size of the impact of R&D on firms’ productivity (e.g. diminishing vs. 

increasing returns). A case in point is the magnitude of the estimated marginal impact of 

R&D, which ranges from highly negative to highly positive, while many studies do no not 

find any statistically significant results. 

Existing analyses of the implications of R&D mainly focus on knowledge-intensive 

businesses; there are fewer studies covering R&D and innovation in low- or medium-tech 

sectors such as food processing. Studies on R&D in primary agricultural production (e.g. 

genetically modified organisms (GMOs), yield productivity) are more common. 

The literature in the field is highly scattered, from conceptual analysis and system-

oriented analysis (e.g. Jongen and Meulenberg, 2005; OECD, 2012, 2013) to public R&D 

in the agro-food sector (Alston, 2010). Analyses of public R&D are more numerous given 

that the relevant data are more accessible (e.g. Eurostat, Organisation for Economic Co-

operation and Development (OECD) Structural Analysis Database (STAN), Agricultural 

Science and Technology Indicators (ASTI)). However, much less effort has poured into 

private R&D, even though it probably represents the largest share of the sector’s overall 

R&D (e.g. 59% in Japan and 51% in the USA, according to Alston et al., 2010). 

Firm-level studies seldom focus on specific aspects of R&D (e.g. adoption, product 

variety); most are case studies with a limited regional or sectoral coverage (e.g. one 

country, part of the sector). Broader quantitative analyses are limited by data 

measurement and availability constraints. 

The food industry is usually considered to be an industry with medium- to low-intensity 

R&D: the share of total output that is attributable to R&D is around 0.27% in the EU 

(FoodDrinkEurope, 2015), which is significantly lower than in other industries such as 

the automobile (5.5%), software (10.6%) or pharmaceutical (13.1%) industries 

(European Commission, 2015). This is understood to be related to the fact that research 

activities in many food companies play a minor role or are simply not carried out at all. 

Many innovations are derived from other input sectors and thus are incorporated in 

machinery, packaging and other manufacturing supplies (e.g. Menrad, 2004). In 

addition, the agro-food sector is dominated by small and medium-sized enterprises 

(SMEs), which do little research. 

Small (marginal) innovations are prevalent among agro-food firms (as opposed to the 

‘radical’ new technological developments in high-tech industries). Moreover, most food 

products are rather easy to imitate, with significant R&D spillovers, which reduces firms’ 

                                           

1 http://www.impresa-project.eu/objectives.html 
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incentive to invest in R&D – innovators have difficulties internalizing (capturing) returns 

from investments (Gopinath and Vasavada, 1999). 

That said, the agro-food industry is very heterogeneous (Avermaete et al., 2003; Winger 

and Wall, 2006; Feigl and Menrad, 2008; Capitanio et al., 2010). There is geographical 

heterogeneity, for example firms in the Netherlands or Finland spend a significantly 

higher percentage of output on R&D than their Italian or French counterparts (OECD 

STAN; FoodDrinkEurope, 2015 (2012 data)). In turn, some firms in the sector are simply 

innovative and active in R&D. There is also heterogeneity in terms of the type of 

innovation: process, product or organizational innovation. Finally, it is important to 

mention that firms may invest in R&D either externally or internally. 

Testing the impact of R&D on the performance of agro-food-processing firms involves 

several methodological challenges. The first, a recurrent challenge, concerns data: there 

are issues associated with availability, short time series, changing definitions of R&D, 

breakdowns by type of R&D and disclosure of sensitive firm-level R&D information. 

Agreement on basic measurements of R&D and the consistency of data sources remain a 

challenge. 

A second challenge is linked to the difficulties in successfully capturing the time 

dynamics (i.e. lag effects) of R&D. The time lag between R&D activity and 

commercialization is particularly problematic for firm-level R&D: usually only short 

temporal resolution is available for firm-level data. This contrasts with the 35- to 50-year 

lag for public R&D in the USA (Alston et al., 2010). 

A crucial challenge is that of attributing firm performance to R&D. Identifying the share 

of a firm’s performance that is attributable to its own R&D, to other firms’ R&D (spillover 

effect) or to public R&D is problematic. Moreover, the analysis needs to identify the 

type/component of R&D that has affected firm performance (e.g. process vs. product vs. 

organizational innovation). 

Analysts also need to account for spatial and spillover effects of R&D (e.g. intra-/inter-

country and firm spillover effects). 

In this context, and using a unique corporate dataset of 307 companies from agriculture 

and food-processing industries from the EU, the USA, Canada and Japan for the period 

1991–2009, we analyse the magnitude of inefficiency and explore the determinants of 

inefficiency for each firm against the frontier production function, which defines the 

maximum output achievable. We apply data envelopment analysis (DEA) with two-step 

bootstrapping, which allows us to correct the bias in (in)efficiency and generate unbiased 

estimates for (in)efficiencies. 

Our sample, although mainly consisting of large firms, suggests that segments of the 

food-processing industry can be considered to be sectors with medium- to high-intensity 

R&D, in contrast with the generally held perception that the food-processing industry is a 

low-intensity industry for R&D. 

Data show that EU firms tend to be slightly smaller in terms of revenue, sales and 

number of employees than their North American competitors. However, they have a 

similar ratio of net income/revenue and R&D expenditure as firms from the USA/Canada. 

In contrast, Japanese firms appear smaller, less profitable and more inclined to carry out 

corporate R&D but, on average, with less financial investment. 

Our main results confirm the hypothesis that investment in R&D influences firm 

performance: food-processing firms that invest in R&D tend to be closer to the efficiency 

frontier than those that do not (i.e. private R&D has a negative effect on inefficiency). At 

firm level, the results also point to decreasing marginal returns to private R&D. 

Furthermore, the results show that general public expenditure in R&D is also associated 

with a positive impact on firm performance. 

When looking at the drivers included in the analysis, country/region dummies capture 

differences and similarities in knowledge systems and the nature of sectors. Similarities 
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can be detected between the US and Japanese contexts. A less favourable eastern 

European context is identifiable from the exercise. Compared with western EU Member 

States, food-processing firms in new EU Member States underperform. However, 

additional R&D investment in new Member States would produce greater firm efficiency 

gains than in the other countries of the sample. 

Data availability, as also highlighted by the literature, remains a main constraint, 

preventing in-depth and more nuanced analysis of the implications of R&D on firm 

performance. 

The results of this exercise provide only an overview of the links between R&D and 

performance. Such exercise precludes decomposing the impact of the structure and type 

of R&D on firm performance (e.g. process vs. product vs. organizational innovation; 

external vs. internal research). 

The deviations or inefficiencies that the model is expected to capture are key to the 

analysis because this is the indicator of performance causally linked to R&D investments. 

With DEA and the estimation of the production frontier, all deviations from the frontier 

are attributed to the inefficiency term, whereas some of them could also be due to noise, 

which is difficult to distinguish from the prime effect under scrutiny. 

Going into greater detail entails greater heterogeneity (type of R&D, inputs–outputs) 

coupled with scarcer data. In turn, additional details make the analysis more complex 

and, in particular, less adapted to quantitative approaches such as sector-wide DEA. If 

greater detail and focus are required, narrower industry and/or case study approaches 

are more suitable than broad quantitative approaches. 

From a policy perspective, the results suggest that growth opportunities could be 

expected and encouraged from this type of non-high-tech innovative sector. However, 

results that suggest heterogeneity in R&D effects across EU Member States may point to 

differences in the implications of innovation policies across EU regions.  
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Introduction 

Productivity growth in the agro-food industry is a key element in responding to the 

challenge of global food security. As such, investment in research and development 

(R&D) and innovation is critical to productivity in the agro-food sector. This is being 

pursued through innovation policy with initiatives such as the Business and Industry 

Advisory Committee (BIAC) of the Organisation for Economic Co-operation and 

Development (OECD), which, following a study on innovation and food security (OECD, 

2009), concluded that innovation to address global food security challenges needs to be 

prominent in the OECD Innovation Strategy. Moreover, the OECD Agriculture Committee 

is encouraged to consider fostering innovation in the agro-food sector as a long-term 

issue to be reflected in any future work programme, and to help governments, 

portraying an objective picture of the various challenges and opportunities that exist in 

this area (see OECD, 2009, p.6). In 2010, the EU launched the Europe 2020 Strategy to 

create conditions for smart, sustainable and inclusive growth (European Commission, 

2010). The ‘smart’ component of the strategy aims at effective investments in education, 

research and innovation. The priorities in such investments are particularly shaped by 

budgetary austerity, which also affects private investments. 

Investments in R&D, financed by both public and private funds, are at the core of the 

innovation process. However, while the theoretical links between inputs and outputs of 

the innovation process are quite clear, the causal relationships between investments and 

broader measures of technological change – encompassing frontier technologies 

affecting industry dynamics, growth, productivity and competitiveness of companies and 

entire sectors – are rather complex in practice.2 

The Impact of Research on EU Agriculture (IMPRESA) project aims to measure, 

assess and comprehend the impact of all forms of European scientific research on 

agriculture (SRA) on key agricultural policy goals, including farm-level productivity, 

environmental enhancement and the efficiency of agro-food supply chains.3 

In the framework of the IMPRESA project, this report sheds light on the role and impact 

of R&D on company performance in the food-processing industry. 

The food-processing sector can hardly be labelled ‘high-tech’ or ‘emerging’ in the sense 

of being characterized by outstanding growth patterns. However, there is evidence of its 

moderate growth track. Setting aside high-tech emerging technologies, Europe relies 

economically on more established, ‘traditional’ sectors. The food-processing industry, 

though already partly in transition, is one of these traditional sectors. 

In this light, the relationship between R&D activities in the agricultural and food-

processing industries and firm performance is investigated. This report is designed to 

provide answers to the following two main research questions: 

• Is corporate R&D a driver of firm performance in sectors commonly characterized 

as medium- or low-tech, such as food processing? 

• Regarding food-processing firms, is there a significant difference in corporate R&D 

investment between the EU, the USA/Canada and Japan? 

In other words: can this be a basis for R&D policy-making? If so, where (e.g. low-, 

medium- or high-intensity R&D food-processing firms; small-, medium- or large-scale 

firms) can the highest marginal effects of investing in R&D be found (i.e. where does 

corporate R&D pay off the most)? By answering these questions, we attempt to identify 

a potential target group for R&D/industry policy within the food-processing industries. 

                                           

2  The need for a better understanding of these relationships is particularly reinforced in the context of the Europe 2020 
strategy, with a strong emphasis on leveraging productivity and innovativeness. 

3  http://www.impresa-project.eu/objectives.html 
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This report is organized as follows. The next section, Section 2, presents a synthesis of 

the existing literature on R&D (and corporate innovation activities)4 in agriculture and 

food-processing industries and the available empirical evidence. Section 3 develops an 

empirical model and the results estimated using corporate data on 307 companies from 

agriculture and food-processing industries in the EU, the USA, Canada and Japan for the 

period 1991–2009. Section 4 concludes with a discussion of the results and policy 

implications. Section 5 focuses on the methodological lessons learned from the exercise, 

including its limitations and the challenges in interpreting the results. 

 

R&D in the agro-food industry: a review 

1.1. R&D and the performance of firms 

Theoretical relationships between investments in R&D and the output of the innovation 

process are fairly well understood. However, the empirical connections between R&D 

inputs and their effects on the productivity, growth and competitiveness of firms (and 

sectors) are complex and difficult to apprehend. 

Griliches (1958) paved the way for a remarkably large body of literature dealing with 

such links. Private R&D investment as a primary source of firm productivity growth is 

well established in the literature.5 However, there is considerably less agreement on the 

marginal impact of R&D on a firm’s productivity. Both diminishing returns to R&D 

(Corsino et al., 2011) and increasing returns to R&D (Cohen and Klepper, 1996a,b) have 

been reported in the literature. The estimated marginal impact of R&D ranges from 

highly negative to highly positive and many studies do not find any statistically 

significant results. Reviews on the issue point to the underlying theoretical framework as 

a key source of variation in these results (Hall et al., 2010; Hall and Rosenberg, 2010).6 

The traditionally used knowledge capital model of Griliches (1979) has several important 

drawbacks (as outlined by Griliches (1995, 2000)). Of particular concern are two of the 

model’s assumption: (i) a linear accumulation of knowledge in proportion to R&D 

expenditures, which is, moreover, often combined with the assumption of linear 

depreciation when constructing the stock of knowledge capital (Hall, 2007); and (ii) 

homogenous firms with the same R&D expenditure should have the same productivity. 

Both assumptions are questionable given the uncertain outcomes of individual research 

efforts (e.g. the non-linear relation between spending on R&D and outcomes). 

Most literature focuses on knowledge-intensive businesses. Relatively low-tech sectors, 

such as agriculture or agro-food, have attracted less attention, especially when looking 

at the specific role and impact of R&D and innovation on agriculture and food processing 

                                           

4  Note that in the literature R&D and innovation are sometimes used synonymously but sometimes denote different types 
of activities. R&D without a direct link to product/process innovation (e.g. investigating biochemical processes in 
organisms, decoding DNA of certain parasites relevant for plant or animal production) is fundamental rather than 
applied research. Although arguably relevant for agriculture and/or the food-processing sector, such activities are not 
commonly associated with these sectors, at least not in terms of innovation. Hence, they are not considered here. 
Moreover, since the focus of this study is corporate R&D activities, innovation without R&D is not captured here either 
(except where stated otherwise). 

5  See the exemplary Hall and Mairesse (1995). Note that this understanding corresponds to the widely applied knowledge 
capital model (Griliches, 1979), which has since developed in many directions (see Griliches (1995) for a comprehensive 
overview). For instance, Pakes and Schankerman (1986) modelled the creation of knowledge by specifying a production 
function in terms of R&D capital and R&D labour. Jaffe (1986) initiated ways of accounting for the appropriability of 
the external flows of knowledge or spillovers. For more recent examples see Griffith et al. (2004, 2006). 

6  For the current understanding of and some of the open debates about the role of R&D and innovation in economic 
growth, see Fagerberg et al. (2004). 
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and – in particular – on related business sector R&D activities. In fact, in this regard, the 

literature appears to be somewhat scattered.7 

 

1.2. Nature and magnitude of the sector 

The agro-food industry is usually considered to be an industry with relatively low-

intensity R&D: the share of output that is attributable to R&D investment is estimated to 

be 0.27% in the EU (FoodDrinkEurope, 2015), which is significantly lower than in other 

industries such as the automobile (5.5%), software (10.6%) and pharmaceutical 

(13.1%) industries (Hernández et al., 2015). These figures support the ‘traditional’ 

perception of the food industry as a low-tech sector (e.g. Christensen et al., 1996; 

Grunert et al., 1997; Garcia-Martinez and Burns, 1999; Garcia-Martinez and Briz, 2000; 

Christensen, 2008).8 

However, for several years this economic sector has, on the one hand, been undergoing 

technical and economic changes in the production and processing of food and, on the 

other hand, increasingly responded to consumers’ demand for improved environmental 

protection, animal welfare, food quality and safety standards. Examples include new 

scientific and technical approaches in food processing, responses to food scares or 

scandals and socio-demographic developments (Menrad, 2004). Thus, innovation as an 

element of competition between companies in the food industry is growing in importance 

(Grunert et al., 1997) as it becomes increasingly important for companies to stand out 

from competitors and fulfil consumer expectations (Menrad, 2004). Hence, figures on 

innovation activities and/or R&D spending at aggregated sector level and company level, 

benchmarking of innovative activities and some empirical analyses of R&D in food 

processing have become increasingly available in the literature.9 

Corresponding evidence suggests that the impact of R&D and innovation as performed 

by food-processing firms goes well beyond the sector. For instance, Ghazalian and 

Furtan (2007) investigated the effect of innovation (and implicitly R&D) on primary 

agricultural and processed food product exports among the OECD countries. 10  R&D 

capital stock was thus employed as a tangible way of measuring innovation.11 Empirical 

results suggest that R&D has different effects across sectors. In particular, the authors 

found that R&D has a net positive market expansion effect on exports of primary 

agricultural products because a 10% increase in R&D capital induces a 7.9% increase in 

exports. However, the authors highlighted that in the food-processing sector, in contrast, 

the market expansion effect of R&D appears to be more than offset by the market power 

                                           

7  Admittedly, hundreds of studies have been published reporting measures of agricultural productivity, the effects of R&D 
on agricultural innovation and productivity patterns – for example, the resulting social payoffs for investments in 
agricultural R&D. However, in comparison with corresponding studies investigating other economic sectors, the body of 
literature on agro-food businesses still appears comparably small and thematically non-exhaustive. 

8  For an overview of thresholds and a brief discussion, see: www.oecd.org/dataoecd/32/17/41419823.ppt. 

9  For comprehensive empirical data (at aggregate level), see, for example, OECD online data sources: Innovation in 
science, technology and industry – Research and Development Statistics (RDS) (<link>); or the corresponding tables 
available from Eurostat: Science and Technology – Research and Development (<link>). Company-level data can be 
obtained, for instance, from Standard & Poor’s Capital IQ Compustat database (<link>), Bureau van Dijk's Amadeus 
<link> or – to a limited extent – the EU Industrial R&D Investment Scoreboard provided by the European Commission 
(<link>). A further source frequently used for innovation studies is the European Community Innovation Survey (CIS) 
(several waves) (<link>). See the exemplary Batterink et al. (2006) for a study of the agro-food sector based on CIS data. 

10  Most agricultural R&D studies have focused on estimating the domestic effects of agricultural R&D (e.g. Alston et al., 
1995; Huffman and Evenson, 2006a). In contrast, Ghazalian and Furtan (2007) investigated the benefits of agricultural 
R&D at international level (both directly through primary agricultural exports and indirectly through enhancements of 
agro-food exports). 

11  The empirical exercise uses panel datasets covering 21 OECD countries for the period 1990–2003. A theoretical gravity 
equation that accounts for innovation is derived. 

http://www.oecd.org/dataoecd/32/17/41419823.ppt
http://www.oecd.org/science/inno/researchanddevelopmentstatisticsrds.htm
http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics/search_database
https://www.capitaliq.com/home/what-we-offer/information-you-need/financials-valuation/compustat-financials.aspx
https://amadeus.bvdinfo.com/version-201492/home.serv?product=amadeusneo
http://iri.jrc.ec.europa.eu/scoreboard.html
http://epp.eurostat.ec.europa.eu/portal/page/portal/microdata/cis
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effect (i.e. R&D in the food-processing sector induces firms to increase their mark-ups), 

resulting in an overall decrease in export volumes. However, in the same study, 

evidence of a positive vertical channelling effect was found, through which R&D in the 

primary agricultural sector tends to increase exports of related processed food products. 

In other words, the role and ultimate economic impact of R&D and innovation at sector 

level is non-trivial, especially regarding the interplay with downstream and closely 

related and/or vertically integrated businesses. 

General information and empirical studies on the sectoral trends of food-processing 

industries and the corresponding role of R&D are presented by, for instance, 

FoodDrinkEurope (2015). 12  Accordingly, global trends in R&D investment in food 

processing suggest recently sustained levels. The world’s top 61 leading food and drink 

companies collectively invested €8.7 billion in R&D in 2012. Out of these 61 companies, 

17 are based in the EU and invested €2.3 billion in 2012.13 FoodDrinkEurope suggests 

that the EU food and drink industry, compared at aggregate level, has a lower R&D 

investment level than other food and drink industries worldwide. 14  Furthermore, R&D 

investment levels also vary within the EU, with higher expenditures in northern European 

countries following the general pattern of R&D investments in the respective countries 

(with the exception of the UK). The 2015 EU Industrial R&D Investment Scoreboard 

(Hernández et al., 2015) shows that Germany, the Netherlands and the Scandinavian 

countries have a total R&D intensity of around 4%, whereas Italy’s is below 2% and 

France’s is around the EU average at just below 3%. These data could be influenced by 

the importance of a few sizeable but low-intensity sectors such as oil and gas production 

and banking (e.g. in the UK). 

 

1.3. Drivers and types of R&D in the sector 

The literature offers avenues to understand, on the one hand, the low R&D spending in 

the food industry15 and, on the other, the drivers that can act as incentives for R&D and 

particular types of R&D. 

Research activities still play a minor role in most food-processing companies and in some 

cases are not carried out at all. Furthermore, as argued above, many innovations are 

derived from other input sectors and are incorporated in machinery, packaging and other 

manufacturing supplies. The same applies to the producers of food ingredients, which 

often belong to the chemical industry (see, for example, Menrad, 2004). For the same 

reasons, the number of innovations (in terms of new products) in the food industry is 

comparatively high considering the low R&D spending. 

Arguably, another potential explanation for the low R&D expenditure is that small and 

medium-sized enterprises (SMEs), which constitute the majority of enterprises in the 

                                           

12  Brussels-based international sector association: http://www.fooddrinkeurope.eu/about-us/role-and-mission/ 

13  Distribution of the 17 EU food and drink companies: NL, 5; UK, 4; DE, 3; FR, DK, FI, BE and IE, 1. 

14  According to the World Bank's World Development Report 2008, developing countries invest only a ninth of what 
industrial countries put into agricultural R&D as a share of agricultural GDP (World Bank, 2008, p.34). It is further 
noted that investments in agricultural R&D have turned much of developing-world agriculture into a dynamic sector, 
with rapid technological innovation accelerating growth and reducing poverty (World Bank, 2008, p.179ff). 

15  For instance, Wilkinson (1998) presented an early study concerning R&D priorities of leading food-processing firms and 
analysed a range of literature dealing with the issue of innovation in agro-food, focusing in particular on the dynamics of 
R&D. He discussed the view that low levels of internal R&D among the sector's leading firms, when compared with 
chemicals or pharmaceuticals, are consistent with strategies devoted primarily to superficial product innovation. Against 
such an interpretation, the author presented arguments that point to a systematic long-term effort towards increasing 
control over the biological processes that lie at the heart of the food industry on the basis of intersectoral technology 
flows. In the light of these considerations and the emergence of significant in-house research activity by leading agro-
food firms, the article concludes with an appreciation of the way in which the industry is responding to the challenges 
and opportunities of advances in biotechnology. 

http://www.fooddrinkeurope.eu/about-us/role-and-mission/
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food industry, often do not allocate adequate personnel and financial resources to R&D 

activities (Schmalen, 2004). This is remarkable given that, as outlined by Avermaete et 

al. (2003), R&D and innovation in food processing is particularly relevant, especially for 

small firms in the sector.16 In fact, although the agro-food sector is perceived to be a 

rather low-intensity R&D sector overall, this perception is not accurate for all businesses 

operating in the sector and also ignores stark regional differences, as illustrated in Table 

1. In fact, the corresponding evidence suggests that the relevance of R&D and 

innovation activities for food processing differs across countries and regions, and 

especially if compared firm by firm (Dutta and Lanvin, 2013). This is highlighted by Feigl 

and Menrad (2008) in a TRUEFOOD17 project report, which presents the results of a 

study on innovation activities in food-processing industries in selected European 

countries. The authors investigated R&D and innovation in food-processing industries in 

Italy, Germany and the UK and, in particular, the types of companies that invest in R&D 

and innovation (how much/with what R&D intensity) differentiated by country and size 

(SMEs vs. larger enterprises). 

 

Table 1 Corporate R&D investment in the food and drink industry: companies in 

the EU Industrial R&D Investment Scoreboard (2013) listed among the world's 

top 2,000 companies, 2012 

 

 
R&D investment  
(€ billion) 

Share of R&D investment 
by world regions (%) 

Number of 
companies listed 

USA 2.9 33.1 15 

EU 2.3 26.7 17 

Japan 1.8 20.8 23 

Switzerland 1.4 16.1 2 

New Zealand 0.2 1.9 1 

South Korea 0.1 1.4 3 

Total 8.7 100 61 

Source: European Commission (2013) 

 

However, several drivers are also pushing for more R&D in this industry. The main 

objectives of R&D emerge as either product innovation or process innovation (to raise 

the productivity of inputs). Furthermore, organizational innovation leads to 

organizational changes to firms’ business and marketing practices and market and 

organizational strategies. Although there is no systematic record of the actual focus of 

R&D investments, existing analysis suggests that most investments are allocated to 

product innovation rather than cost-saving processes or organizational innovations 

(Fuglie et al., 2011). 

                                           

16  Weindlmaier (2001) underlined the decisive role of R&D spending in SMEs for their future competitiveness. See also 
Baregheh et al. (2012) who analysed innovation in food sector SMEs in the UK by means of a questionnaire-based 
survey, exploring specifically the degree and types of innovation employed, specific activities concerning the general 
focus of innovative activities and organizational innovativeness. 

17  TRUEFOOD (traditional united Europe food) was a project funded by the Sixth Framework Programme (FP6) of the 
European Commission. The project aimed to introduce an innovation perspective into the traditional European food 
production systems. See: https://cordis.europa.eu/project/rcn/79816_es.html 
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Fortuin and Omta (2009) investigated the main drivers of and barriers to innovation in 

agro-food and the extent to which the food-processing industry can rely on the principles 

of innovation management developed in high-tech industries. Based on data obtained 

from questionnaires (completed by Dutch multinational food producers at CEO level), it 

appears that the general lessons and principles of innovation management do apply and 

that, more specifically, the uneven power distribution in value-added chains and retail 

chains (especially high pressure from buyers) acts as a strong driver of innovation in 

agro-food businesses. For most of the companies, the authors observed remarkable 

room for improvement in the communication between marketing and R&D divisions in 

order to enhance customer orientation, identified as one of the main drivers of the 

sector’s innovation success. 

In light of such a demand-driven pull for food product innovations, Winger and Wall 

(2006) analysed R&D and the character of food product innovations. The authors 

describe the food industry as being one in which there are a large number of new 

products offered to retailers each year, and the inclusion of a new product almost always 

leads to the discontinuation of another product. However, the authors point out that only 

a very small proportion of new products appear to result in radical changes. The majority 

reflect incremental changes (i.e. they reflect the ‘D’ of R&D).18 In addition, about 75% of 

new products were considered to be failures. 19  In the USA, 21,000 or so new food 

products are introduced each year and 90% are not classified as innovative (USDA/ERS, 

2010) and have a short effective market life. It was noted by the authors that in 

comparison with other industries (e.g. electronics, biotechnology) there is a low level of 

R&D in the food-processing sector given the relevance of technology and machinery and 

the constant pressure to develop new products and product innovations. 

Patents and formal protection of intellectual property does not significantly influence 

innovation in the food sector in the USA, as highlighted by Gopinath and Vasavada 

(1999). The short market life of most food-industry innovations and the pervasiveness of 

product imitation deter patent registration. Moreover, the spillover effects of process 

innovation contribute to the underinvestment in this innovation opportunity by food-

processing firms reinforcing the importance of product innovation over process 

innovation investment in this sector (Gopinath et al., 2003). 

Capitanio et al. (2010) looked at product and process innovation exclusively in the 

Italian food industry. The authors pointed out that innovation – whether process, product 

or organizational – is perceived as a strategic factor for firms and for the entire sector.20 

The authors base this conclusion on the observation that R&D and innovation allow a 

reduction in production costs and/or an improved response to the needs of consumers, 

who increasingly require ‘enhanced’ food products with service components and 

technological processing characteristics such as quality, safety, ease of use and 

storability. 

Beckeman et al. (2013) investigated how food-producing companies in Sweden perceive 

R&D and innovations, how they view their role and those of other actors regarding 

innovation activities in the food supply/value chain and what this implies for their 

                                           

18  There are several systems for classifying food products by innovation. The innovation spectrum is described using terms 
such as ‘new to the world’, ‘product improvements’ and ‘cost reductions’. Innovations can also be described as leading to 
incremental, major and radical changes. See Winger and Wall (2006) for a discussion and further details. 

19  Similar figures are confirmed by Loizou et al. (2013) who investigated variables that influence the adoption of food 
product innovations and modelled the corresponding consumer behaviour. In particular, a two-step cluster analysis was 
employed to explore various levels of differentiated product adoption and a categorical regression model was estimated 
to explain this variation. The study relied on a survey of 500 consumers, conducted in 2009 in a Greek urban area. 

20  In another study of the Italian food sector, Capitanio et al. (2009) highlighted that the adoption of innovations apparently 
follows different patterns for product and process innovation. The probability of introducing product innovation is 
influenced by the quality of human capital, the geographical context and, to a lesser extent, the age of the firm. 

http://www.emeraldinsight.com/action/doSearch?target=emerald&logicalOpe0=AND&text1=Capitanio,%20F&field1=Contrib
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interaction and collaboration.21 The authors confirmed that few (if any) innovations in 

the Swedish food sector are considered radical. Many are ‘insufficient’ to meet demands 

for lower costs, shorter orders and sustainability. The authors highlighted that Swedish 

food producers generally tend not to adopt an ‘open innovation’ mindset: they develop 

products mainly in isolation or in collaboration with partners internal or external to the 

supply chain rather than involving and explicitly addressing consumers’ needs. By 

drawing on a range of further case studies, Bayona-Sáez et al. (2013) reflected on ‘open 

innovation’ in the Spanish food and beverage industry. Openness is understood as 

breadth and depth of information sources, breadth of co-operation agreements and 

external R&D expenditure. Breadth of information sources and co-operation agreements 

are associated with radical innovations but not with incremental innovations, which seem 

rather to depend on firms’ internal capabilities. 

 

1.4. Beyond technological invention: organisational innovation 

Beyond technological innovation, organizational innovation within the food-processing 

industry has increasing implications for the competitiveness of firms and the sector as a 

whole. Although innovation is generally associated with R&D for technological change, 

the marketing literature has shown that for innovation to be successful (i.e. to improve 

performance) R&D is not enough on its own. Firms need to combine R&D with market 

and organizational strategies (Gupta et al, 1986, in Grunert et al., 1997). 

Moreover, Camisón and Villar-López’s 2014 review of manufacturing in Spain shows that 

organizational innovation favours the development of technological innovation 

capabilities and that both organizational innovation and technological capabilities for 

products and processes can lead to superior firm performance. Similar relationships are 

expected for the food-processing industry specifically. 

As a key player in the process of agro-industrialization, food-processing firms are 

engaging in tighter vertical co-ordination and networking with participants in their supply 

chains, particularly agricultural producers. There is a gradual replacement of spot-

market exchange by sophisticated forms of intermediation and co-ordination (e.g. 

complex contractual arrangements, labelling, certification) (Cook et al., 2008; Biénabe et 

al., 2013). 

As quality requirements (not only for products but for processes) and the nature of 

products change through R&D, specific investments and tighter co-ordination are needed 

among transactors to define standards, production processes and mechanisms and thus 

guarantee conformity (Ménard and Valceschini, 2005). 

In turn, organizational innovation could be seen as one of the catalysts connecting R&D 

in technological innovation and performance, as new products or new quality 

characteristics may not imply improved performance without a corresponding 

organizational innovation. Moreover, more vertically integrated environments are also 

expected to shape both the appetite and the orientation of R&D. Fortuin and Omta 

(2009) identified the structure of the sector as a driver for investing in R&D in the 

Netherlands (see Section 2.3). 

 

                                           

21  See also Nyström and Edvardsson (1982) for an earlier study. The authors analysed product innovations in the Swedish 
food-processing industry. Product development strategies were described and evaluated from both a company and a 
consumer point of view. Three types of company outcomes were focused on: technological, market and commercial 
success. Variables related to company success appeared to be firm size, ownership and research intensity. Strategic 
variables analysed in relation to success were use of technology, R&D co-operation and marketing. 

http://www.emeraldinsight.com/action/doSearch?startPage=0&target=emerald&text1=bayona%5C-saez%2C+c&field1=Contrib
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1.5. Innovation–R&D–performance linkages 

Alarcón and Sánchez (2013) investigated empirically the effects of spending on external 

or internal R&D activities and how this may affect the business performance of Spanish 

agro-food companies. Based on the Encuesta de Estrategias Empresariales en España (a 

comprehensive survey of business strategies in Spain) and an overall sample including 

more than 400 firms over the period 2000–2008, the study used econometric analyses, 

specifically quantile regression, to address the vast asymmetry among the variables and 

to identify non-linear relationships. As a general finding, the analysis confirmed positive 

effects of both internal and external R&D on business performance. Internal R&D was 

found to be especially important for enhancing the productivity of SMEs.22 However, the 

hypothesis that the most profitable firms are those that spend the most on R&D (i.e. 

their success was driven by R&D) was rejected and no significant evidence of 

complementarity between external and internal R&D was found. The authors therefore 

concluded that the vast majority of (Spanish) agro-food firms have at most the capacity 

for only one type of R&D, either internal or external. This may point to the fact that 

innovating companies increasingly rely (or need to rely) on outsourcing their research 

activities to extramural contract research providers or research organizations (public 

and/or private). Flipse et al. (2013) studied this with a particular view on food 

technology contract research, thus identifying context-specific key performance 

indicators (based on a modified version of the Wageningen Innovation Assessment Tool 

and data on 72 individual innovation projects). 

Another aspect arguably relevant to the link between R&D and productivity is the rate of 

general technological progress in a sector and its adoption at firm level, which is 

generally recognized as probably the most important source of improvement in the 

productivity and competitiveness of firms in any industry. While progress is arguably an 

essential prerequisite for the transfer of technology, Bradley et al. (1995) and others 

focused on the process of technology transfer within the food-processing industry, which 

was (at least in the case of Northern Ireland) prompted by a lack of research in this 

area. The analysis investigated innovation and identified a diffusion pattern for the 

uptake of innovations. It also obtained a measure for the rate of technology transfer and 

identified the principal factors influencing the process. The results indicated factors that 

could be used to accelerate the diffusion of new technologies: the education levels of 

managers, R&D expenditure and the economic return to innovation activities. 

In this light, it is worth mentioning that innovating agricultural and food-processing firms 

– like innovating firms from any other sector – face the challenge of knowing when they 

will be able to appropriate the rents accruing from their innovations. In fact, only the 

future value of the rents creates an incentive to perform R&D and to innovate, and all 

innovations that are either imitated or improved upon by competitors prevent the 

innovating firms from capturing their rents. Arguably, agricultural and food products are 

rather easy to imitate and the enforcement of intellectual property rights (IPR) does not 
appear to be trivial in many cases. 23  In a conceptual paper, Ferreira et al. (2013) 

discussed cases such as when the innovator fails to capture rents from innovation. The 

authors observed boundary conditions under which protection guarantees appropriation. 

                                           

22  See also Avermaete et al. (2004). The authors examined the determinants of product and process innovation in small 
food-processing firms and based their research on an in-depth survey of 177 firms located in six rural areas in the EU. 
Multiple logistic regression was applied to identify the drivers of product and process innovation in the firms. The results 
highlighted the key role of the skills of the workforce (and also, implicitly, the role of internal R&D for generating and 
accumulating tacit knowledge of the workforce), the firm's general investment in know-how and the use of external 
sources of information. However, it is remarkable that there was no evidence of a significant relationship between the 
characteristics of the entrepreneur and the firm's innovation performance. 

23  Pardey and Alston (2011) point out that many companies in the sector draw on the more basic agricultural research 
conducted by public agencies and universities, much of which is not patentable (see p.3). Moreover, the outcomes of 
corporate R&D, owing to its very nature, often do not allow the creation of enforceable IPR of any kind.  

http://www.emeraldinsight.com/action/doSearch?startPage=0&target=emerald&text1=alarcon%2C+s&field1=Contrib


 

18 

 

A paradox emerges in that innovators benefit from networking and the ‘bandwagon 
effect’,24 but not from total diffusion of the knowledge. While networks are excellent 

vehicles for innovation, the business and social ties connecting firms deepen the hazards 

associated with the appropriation of rents (the dilemma of ‘open innovation’/jointly 

undertaken innovation activities). Although the study was not focused on agro-food 

businesses, the findings seem to have particular relevance for this industry, which has 

been widely confirmed (e.g. by Alston, 2010). A further key finding of Ferreira et al. 

(2013) is that the social rate of return to investments in agricultural R&D has been 

relatively high. Given the comparably low spending on R&D in agro-food businesses (as 

argued above), the question arises as to whether or not certain market failures 

particularly impede investments in R&D and innovation activities in this industry. The 

available literature does not provide an ultimate answer to this question, which points to 

the need for further investigation. 

In summary, key aspects in the emergence of R&D and innovation activities in food 

processing seem to be intersectoral linkages, knowledge creation and technological flows 

along the value-added chain, common company structures (i.e. sector concentration and 

particularly company size distribution) and, overall, the existence and performance of a 

functioning sectoral innovation system.25 For instance, according to the Italian National 

Statistics Institute (ISTAT), the country’s food-processing sector is remarkably 

fragmented, with an average of 6–7 employees per firm and approximately 95% of all 

food-processing firms in the class with less than 10 employees (ISTAT, 2008). This 

obviously complicates the emergence of a well-functioning sector innovation system, as 

most of the companies simply do not reach the minimum capacity (and/or critical mass) 

to establish relationships at the system level and/or to carry out their own research 

activities. 26  The studies concerning SMEs and the relevance of R&D for their 

competitiveness, as discussed above, point in the same direction. 

Beyond the characteristics of the corresponding sectoral innovation system, the quality 

of the regional innovation system (RIS) in which a given firm operates also matters, 

regardless of whether the business is high- or low-tech, small or large, etc. The 

literature suggests that traditional sectors are often only weakly integrated in high-tech 

socio-institutional environments, mainly owing to the incompatibility of the specific 

innovation modes of low- and high-tech industries. This aspect is tackled by Trippl 

                                           

24  The bandwagon effect is a phenomenon whereby the rate of uptake of beliefs, ideas, fads and trends increases the more 
that they have already been adopted by others. In other words, the bandwagon effect is characterized by the probability 
of individual adoption increasing with respect to the proportion of those who have already done so. As more 
individuals/firms come to believe in something, others also ‘hop on the bandwagon’ regardless of the underlying 
evidence. 

25  Innovation systems can be defined in a variety of ways: they can be national, regional, sectoral or technological. They all 
involve the creation, diffusion and use of knowledge. Systems consist of components, relationships among these, and 
their characteristics or attributes. National innovation systems are considered most commonly (see Freeman, 1988; 
Lundvall, 1988, 1992; Nelson, 1988, 1993; and many others). For sectoral innovation systems see, for example, Breschi 
and Malerba (1997), Malerba and Orsenigo (1990, 1993, 1995) and Malerba (2004). As in Porter's ‘diamond’ (Porter, 
1990), the system definition here is based on ‘industry’ or ‘sector’, but, rather than focusing on interdependence within 
clusters of industries, sectoral innovation systems are based on the idea that different sectors or industries operate under 
different technological regimes that are characterized by particular combinations of opportunity and appropriability 
conditions, degrees of cumulativeness of technological knowledge and characteristics of the relevant knowledge base. 
These regimes may change over time, making the analysis inherently dynamic, focusing on the competitive relationships 
among firms by explicitly considering the role of the selection environment. With regard to specifics and facilitating 
agricultural innovation systems see, for instance, OECD (2012), World Bank (2007, 2012), Koutsouris (2012), Rajalahti et 
al. (2008) or EU SCAR Collaborative Working Group AKIS (2012). A general discussion of the agricultural innovation 
process is provided, for instance, by Sunding and Zilberman (2000), and Loebenstein and Thottappilly (2007) discuss 
agricultural research management issues. 

26  See, for example, World Bank (2006, 2012) for comprehensive material on agricultural innovation systems and the 
corresponding role of R&D. Regarding specific country or regional dimensions, see Bokelmann et al. (2012) for a study 
of the agricultural innovation system in Germany, or Fraunhofer IVV and TU München (2010) for an inventory of R&D 
in the agro-food sector, challenges and possible solutions. 

http://en.wikipedia.org/wiki/Fads_and_trends
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(2010) in a study focusing on the empirical case of the food industry located in the 

Vienna metropolitan region. The author provides evidence that the link between 

traditional industries and their high-tech contexts may be more complex than commonly 

understood and discussed in the literature. As a result of the study, it is highlighted that 

strong and weak forms of integration in the RIS co-exist, depending on the specific RIS 

dimension under consideration. Innovative companies in the local food sector embed 

themselves in a selective way in their regional institutional context; they make use of 

the scientific competences available within the RIS while at the same time tending to 

‘bypass’ the RIS and tap into knowledge sources located outside the region. 

Overall, when reviewing the available empirical investigations of R&D (and innovation) in 

agro-food industries it appears that most studies address only very specific aspects 

and/or rely on data or samples of rather limited scope. In fact, most consider only a 

certain country or a small part of the sector or certain firm types and, in essence, tend 

to be case studies. This is partly due to the lack of comprehensive data as outlined 

above. Nevertheless, there is an obvious need for further research to substantiate and 

generalize the findings of the available studies and by that means to close the 

corresponding gap in the empirical literature. 

 

1.6. Measuring R&D and performance 

Agricultural economists have used commodity market models (e.g. interaction between 

demand and supply) to represent the impact of agricultural research, beginning with 

Schultz (1953) and Griliches (1958) and with important subsequent contributions from 

Petersen (1967), Duncan and Tisdell (1971), Duncan (1972), Akino and Hayami (1975) 

and Scobie (1976) among others. The same implicit modelling approach is assumed in 

studies that infer a rate of return to R&D-based econometrically estimated productivity 

gains (e.g. Evenson, 1967) or use reduced-form approximations to measure gains from 

R&D (e.g. Griliches, 1958). 

In the standard model of research benefits, as outlined in, for example, Alston et al. 

(1995), research causes a rightward (vertical) shift of the commodity supply curve 

against a stationary demand curve, leading to an increase in quantity produced and 

consumed and a lower price. The benefits are assessed using Marshallian measures of 

research-induced changes in research-induced consumers’ and producers’ surplus 

adjusted by expenditures on research. The total gross annual research benefits (GARB) 

depend primarily on the size of the (time-varying) research-induced supply shift and the 

scale of the industry to which it applies. Indeed, a common measure to approximate the 

gains from research as introduced by Griliches (1958) is GARB = kPQ, where k is the 

relative rate of vertical shift of the supply curve, P is the commodity price and Q is the 

annual quantity to which the supply shift applies. Other aspects of the analysis typically 

have second-order effects on the measures of total benefits but may have important 

implications for the distribution of the benefits between producers, consumers and other 

agents.27
 

Some issues in the literature relate to the methods used for measuring the primary 

determinant of total measured benefits: the research-induced reduction in the industry-

wide unit cost of production as represented by the observed supply shift based on 

adoption rates combined with changes in experimental yields or commercial yields or on 

                                           

27  The distribution of the benefits between producers and consumers depends on the relative elasticities and functional 
forms of supply and demand curves and the nature of the research-induced supply shift (Alston et al., 1995, review these 
points). The nature of the research-induced supply shift has been a controversial issue in the literature because it is a key 
determinant of the distribution of benefits but it cannot be easily observed empirically. A critical issue in this context is 
the distributional effects among producers. In fact, even if producers as a whole benefit from research, those who do not 
adopt the new technology will not be likely to gain and may even end up worse off if the adoption by others leads to 
price reductions. 
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changes in total factor productivity (TFP). This aspect is often governed by the general 

nature of the analysis (e.g. evaluation of the benefits from the development of a 

particular varietal improvement compared with evaluation of a national agricultural 

research system, whether conducted ex ante or ex post) and the availability of data and 

other information. 

Measures of the size and distribution of research benefits will be affected by various 

complications that can be introduced to extend the basic model. The introduction of 

international trade is a straightforward elaboration of the basic model, from which 

measures of welfare impacts for different spatial or market aggregates can be obtained. 

The model can be further extended by controlling for technological spillovers. More 

elaborate and complex multimarket models are applied if the market structure is to be 

vertically disaggregated, for instance to represent different stages of the marketing 

chain, or horizontally disaggregated, for instance to represent different geopolitical or 

spatial markets for a given product, or disaggregated by product (including different 

qualities of the same product). Alston et al. (1995) laid out the basic theory for these 

approaches and a number of studies have reported specific applications. Examples 

include Mullen et al. (1989), Freebairn (1992), Frisvold (1997), Wohglenant (1997), 

Davis and Espinoza (1998) and Zhao et al. (2000). 

A further dimension for extensions to the basic model is to allow for departures from the 

case of publicly provided R&D and otherwise undistorted markets. The basic model 

assumes that the results from research are provided for free. Models that allow for 

proprietary technology (e.g. Moschini and Lapan, 1997) have not been used much in the 

applied work to date, and very little evidence is available on the distribution of benefits 

from private research between technology developers and providers and others, 

including farmers, consumers and agribusinesses. 

Finally, it needs to be highlighted that the basic model, as a general notion, assumes 

competition in the market for the commodity and the absence of any other market 

distortions. Accordingly, some models that are set up to approximate research benefits 

have been extended to incorporate various types of market distortions, including those 

resulting from (i) the introduction of distortions associated with government policies, 

such as farm commodity programmes or trade barriers (e.g. Alston et al., 1988), and 

the failure to impose optimal trade taxes in the large-country case (e.g. Alston and 

Martin, 1995); (ii) the exercise of market power by middlemen (e.g. Huang and Sexton, 

1996); and (iii) environmental externalities (e.g. Antle and Pingali, 1994). A general 

finding is that the main effect of a market distortion in this context is to change the 

distribution of research benefits, with comparatively small effects on the total benefits. 

Similar results apply to other types of extensions to the basic model that may be 

introduced to allow, for instance, for multiple markets or proprietary technology. As 

shown in the meta-analysis by Alston et al. (2000a,b), most of the studies reporting 

rates of return to agricultural R&D have used relatively simple concepts of benefits and 

have not dealt formally with any of the complications that can influence the total benefits 

but are more important as determinants of the distribution of benefits.28 

 

1.7. Attribution 

The existing literature points to the difficulties in capturing and correctly attributing R&D 

in models investigating the economic impacts of research in agriculture and/or food 

processing. This is comprehensively discussed by Alston and Pardey (2001), who argue 

that attribution problems in particular have bedevilled studies of the effects of research 

on agricultural productivity. The two principal areas of difficulty are (i) identifying the 

                                           

28  Note that this summary of relevant concepts, measurement of R&D in agribusinesses and corresponding measurement 
issues is, to a large extent, taken from Alston (2010), Chapter 2. 
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component of productivity growth that is attributable to research-induced changes in 

knowledge and then further attributing responsibility among alternative public and 

private providers of R&D (the authors called it the ‘spatial and institutional-cum-sectoral 

attribution problem’) and (ii) identifying the research lag structure (the temporal 

attribution problem). 

Similar problems arise when the analysis is focused on a particular innovation or is 

applied to all research undertaken by a national system, but the specifics differ as does 

the potential severity of the problems. Many studies assume implicitly or explicitly that 

all measured agricultural productivity growth is attributable to R&D (or perhaps even a 

particular source of R&D such as public R&D within a country). Increasingly, questions 

arise as to how much productivity growth might be attributable to factors other than 

organized R&D, including evolving weather patterns, institutional changes and 

economies of size and scope associated with the changing structure of the agro-food 

sector. As above, these questions remain wide open and require further research. 

However, Alston (2010) argued that it is likely that, in many cases, organized research 

has been the primary contributor to the productivity growth observed and the important 

issue is attribution among R&D sources. He explicitly distinguished between spatial and 

temporal aspects of the R&D attribution problem, which are discussed in brief below. 

1.7.1. Spatial 

Spatial attribution matters as we seek to match streams of benefits to streams of costs, 

and also because a large part of agricultural research is funded by public-sector entities 

that are defined geopolitically. The common statistical concepts, such as gross domestic 

expenditure on R&D (GERD), government budget appropriations for R&D (GBARD) and 

business expenditures on R&D (BERD), are of the same notion (see Eurostat website for 

corresponding definitions29). In turn, when it comes to information concerning business 

sector expenditures on R&D, especially those at company level, spending figures are 

aggregated at the company/parent company level but not necessarily following a 

territorial concept. In other words, in the case of corporations operating multinationally, 

it remains widely unclear where/in which country or region and what share of the total 

declared R&D has been carried out (i.e. to where the R&D expenditure should ultimately 

be attributed). 

Whether or not they were concerned with spillovers, many empirical studies have 

imposed implicit or explicit assumptions about the spatial spillover effects of agro-food 

research based on geopolitical boundaries. More recently, agricultural economists have 

shown increasing interest in accounting for the fact that knowledge created within a 

particular geopolitical entity can have an impact on technology elsewhere, with 

implications that may matter to both the creators of the spillouts and the recipients of 

the spill-ins (see Alston (2002) for a review of this literature and Alston et al. (2010) for 

more recent discussion focused on the USA). 

Admittedly, many studies have simply ignored spillovers. Nevertheless, beginning with 

Griliches (1957), some studies of adoption of individual technologies allowed for spatial 

spillovers among states and regions within a country. Some other studies have used 

regression-based methods to assess the overall effects of (agricultural) research on 

productivity using more aggregate (region- or state-specific as well as national) 

measures of R&D. Some of these have allowed for the impacts of spillover and those that 

did commonly found that these impacts were important. For example, Huffman and 

Evenson (1993) found that a sizeable share (45% or more) of the benefits from research 

conducted in US state agricultural experiment stations was earned as interstate 

spillovers. This measure was based on spatial proximity. Alston et al. (2010) found that 

                                           

29 Eurostat website: https://ec.europa.eu/eurostat 
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a similarly large share of total productivity growth in any US state was attributable to 

R&D conducted in other states or by the federal government. 

In general, the analytical/conceptual decisions made in the relevant studies have been at 

least to some extent driven by the limitations of available data and the requirements for 

parsimonious models. Most analyses of national systems, irrespective of the method 

used, have implicitly assumed spatial spillovers. However, in their meta-analysis, Alston 

et al. (2000a) identified that less than 20% of studies were designed to allow for any 

spillovers. Alston (2010) argued that studies that do not allow for spillovers most likely 

suffer from some kind of specification bias. 

1.7.2. Temporal 

It takes a long time for research to affect production, and it may then affect production 

for a long time. Accordingly, one element of the attribution problem is identifying the 

specifics of the dynamic structure linking the spending on R&D, knowledge stocks and 

productivity change. A large number of previous studies have regressed a measure of 

agro-food production or productivity against variables representing corresponding 

research in some way, often with a view to estimating the rate of return to research or 

the leverage for productivity. 30
 The specification of the determinants of the lag 

relationship between research investments and production, which involves the dynamics 

of knowledge creation, depreciation and utilization, is crucial. Nevertheless, only a few 

studies have presented much in the way of formal theoretical justification for the 

particular lag models they have employed in modelling returns to agricultural research. 

Until quite recently, it was common to restrict the (public) R&D lag length to less than 20 

years. In the earliest studies, available time series were short and lag lengths were often 

very short. More recent studies have tended to use longer lags (wherever data allowed). 

Most studies have restricted the lag distribution to be represented by a small number of 

parameters, because both the time span of the dataset is usually not much longer than 

the assumed maximum lag length and the individual lag parameter estimates are 

unstable and imprecise given the high degree of collinearity between multiple series of 

lagged research expenditures.31 

In their application using long-run state-level data on US agriculture, Alston et al. (2010) 

argued in favour of a gamma lag distribution model with a much longer research lag 

than most previous studies had found – for both theoretical and empirical reasons.32 

Their empirical work supported a research lag of at least 35 years and up to 50 years for 

US agricultural research, with a peak lag in year 24.33 This comparatively long lag has 

implications for both econometric estimates of the effects of research on productivity and 

the implied rate of return to research. However, it has to be recalled that the research 

lag lengths reported here mostly correspond to public, and thus essentially fundamental, 

research, which arguably takes longer to translate into productivity changes than 

applied/close-to-the-market research as mainly carried out by private businesses. 

                                           

30  A comprehensive reporting and evaluation of this literature is provided by Alston et al. (2000a); see also Schuh and 
Tollini (1978), Evenson (2002) and Alston et al. (2010). 

31  As documented by Alston et al. (2000a), common types of lag structures used to construct a research stock include the 
de Leeuw or inverted-V (e.g. Evenson, 1967), polynomial (e.g. Davis, 1980; Leiby and Adams, 2002; Thirtle and 
Bottomley, 1988) and trapezoidal (e.g. Huffman and Evenson, 1989, 1992, 1993, 2006a,b; Evenson, 1996). A small 
number of studies have used freeform lags (e.g. Ravenscraft and Scherer, 1982; Pardey and Craig, 1989; Chavas and Cox, 
1992). 

32  The detailed arguments are laid out in Alston et al. (1995) and some earlier evidence is presented by Pardey and Craig 
(1989) and Alston et al. (1998). See also Huffman and Evenson (1989). Alston et al. (1998) discussed the issue of 
knowledge depreciation, drawing on the previous literature, and these arguments are restated and refined by Alston et al. 
(2008, 2010). 

33  Alston et al. (2008) documented the adoption lags for particular agricultural technologies and their results are consistent 
with relatively long overall lags. 
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Nevertheless, the meta-analysis presented demonstrates that the average lag length 

tends to go well beyond the empirical horizon of most of the available time series data 

considered to be appropriate for investigating the R&D–productivity link in agro-food 

businesses. Hence, other concepts such as capturing R&D spending as a stock variable 

rather than as flows may serve. This turns attention from the question concerning the 

real time lag between spending on R&D and the corresponding impact on productivity. In 

turn, this puts emphasis on aspects such as accumulating knowledge through research 

activities (learning), tacit knowledge within firms/farms (fluctuation), amortization and 

‘depreciation’ of research activities (i.e. knowledge becoming obsolete over time), which 

ultimately suggests the application of some kind of perpetual inventory approach for 

approximating the effective R&D input in a certain period. 

1.8. Documented contribution of R&D on performance of food-

processing businesses 

There is a persuasive body of evidence demonstrating that the world as a whole and also 

individual nations have benefited enormously from productivity growth in agro-food 

businesses, a substantial amount of which has been enabled by technological change 

resulting from public and private investments in R&D. The evidence suggests that the 

benefits have been worth many times more than the costs. Alton (2010) argued that this 

is still so, even if we heavily discount the estimates because we suspect that they may 

have been upwardly biased, perhaps inadvertently through unfortunate choices of 

methods or limitations in the available data of the types discussed above. 

In a nutshell, since the marginal benefit–cost ratios were much greater than 1.0, it 

would have been profitable to have invested (much) more in agro-food R&D. An 

implication is that, substantial government intervention notwithstanding, the world has 

systematically underinvested in agro-food R&D, and it is probably continuing to do so.34 

This is to some extent a paradox, since the importance of R&D (both publicly financed 

and business-sector activities) is thoroughly underlined in the literature and supported 

by statements from individual businesses and business associations. In fact, product 

innovation, on the one hand, and general technological progress in agriculture and food 

processing, on the other, are together highlighted as vital for addressing consumers’ 

needs in terms of quality and diversity of foodstuffs and ultimately in ensuring global 

food security and sufficient nutrition for an increasing world population.35 However, there 

still seems to be an insufficient number of (empirically based) studies that investigate 

and correspondingly underline the role of R&D (especially corporate R&D and innovation 

activities) in the trajectory of the agro-food sector and, especially, of R&D-investing 

firms compared with others. 

In this context, the following quantitative exercise seeks to contribute to the literature 

by testing the economic impact of R&D spending for food producers, empirically 

investigating the differences in company performance attributable to the volume of R&D 

activities, thus studying corresponding time lags, trends and spatial aspects.  

                                           

34  In essence, the World Bank (2008) arrives at the same conclusion (p.186), discussing why agricultural R&D is 
underfunded (pp.186ff) and possible ways to increase investments (pp.188ff). 

35  See, for example, Huffman (2009). 
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Empirical exercise 

1.9. Objective 

This quantitative exercise investigates the role and impact of corporate R&D on firm 

performance in the food-processing industry in Japan, North America and the EU. We 

analyse the magnitude of inefficiency and explore the determinants of inefficiency for 

each firm against the frontier production function, which defines the maximum output 

achievable within the industry. 

1.10. Approach and methodology 

There is a rich literature attempting to conceptualize and define an efficient frontier 

function against which to measure the current performance of firms. Different 

approaches have been applied to identify efficient frontiers using both parametric and 

non-parametric methods. Both have strengths and limitations and choosing the most 

appropriate for a certain research question therefore appears to be a judgement call. 

For instance, the parametric approach makes it possible to test hypotheses, takes 

account of statistical noise and provides parameter estimates of production factors, 

elasticities, etc., for possible further interpretation. 36  However, it imposes on a 

somewhat ad hoc basis on the functional form of the frontier to be estimated (although it 

can be flexible) and depends on assumptions concerning the distribution of the 

composed error term. In contrast, the non-parametric approach (a mathematical 

programming technique), which has been traditionally assimilated into data envelopment 

analysis (DEA), does not require such assumptions and is comparably easy to calculate. 

However, in general, some limitations remain regarding time series, slacks, relating 

inefficiencies to exploratory variables, etc.37 

Looking at firm performance trends, we generally separate gains in efficiency from 

quality improvements by estimating a production frontier that distinguishes between 

virtual moves towards or away from the frontier (efficiency gains/losses) and shifts in 

the production possibility set – in other words, technical change (shift of the frontier or 

change in its shape) or catch-up. Regarding our main research questions and the length 

of our time series, we focus on whether or not, to what extent and how investments in 

R&D activities and/or capital stocks affect company performance in the food-processing 

industry. In fact, we are more interested in the magnitude of the corresponding effects 

and general trajectories than in firm-specific estimates. 

Furthermore, the impact of the somewhat ad hoc selection of explanatory variables 

(such as capital accumulation, spending on R&D, persisting R&D intensity, main activity) 

on firm efficiency is tested. It is therefore necessary to control for time and eventually 

also for industry-specific effects. Taking the strengths and limitations of the method into 

account, this study applies the DEA technique. In fact, the results of the DEA frontier 

analysis can provide valuable insight into the role of corporate R&D for the agro-food 

industries and arguably also for policy-making, especially with respect to welfare 

implications. For instance, among efficient companies, productivity differentials can be 

reduced by improving the input mix/input qualities or by encouraging faster adoption of 

innovative technologies. By contrast, companies operating inefficiently could seek to 

improve the efficiency of the machinery they use and attempt to overcome the 

(external) restrictions that limit their individual businesses compared with their 

                                           

36  The stochastic frontier approach was introduced jointly by Aigner et al. (1977) and Meeusen and van den Broeck (1977) 
based on the seminal work by Farrell (1957). Comprehensive reviews of frontier approaches can be found, for instance, 
in Kumbhakar and Lovell (2000). 

37  See, for example, Coelli et al. (1998) for a fairly general introduction to efficiency and productivity analysis. 
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competitors (concerning, for instance, the institutional and financial framework, the 

infrastructure networks or the role of corporate R&D). 

This approach, which benchmarks individual firms against the production frontier, is 

illustrated in the simple diagram of Figure 1. The frontier of the industry is constructed 

on the more performant firm given production factors Y1 and Y2 with firms A and B 

having inefficiencies with respect to the frontier. 

 

Figure 1 Production frontier of the sector and inefficiencies from individual firms A and B. 

Source: own diagram 

Methodologically, however, the assumption of a common frontier across countries and 

sectors is a sensitive issue. In general, the business framework and the technology 

appear to differ from industry to industry and country to country, especially if the 

companies under investigation are heterogeneous. Nevertheless, many studies do 

assume such a common frontier. In practice, estimating a common production function 

may lead to biased estimates of labour and capital elasticities. Some previous studies 

have tried to account for this bias by controlling for the quality of inputs (Koop et al., 

2000; Limam and Miller, 2004). Others have explored the possibility of more than one 

frontier to explain ‘excessively’ different economies (see Orea and Kumbhakar (2004) for 

criticisms of using a single frontier). 

This study avoids assuming a common technology across sectors by estimating at 

industry-specific technology level. The model used for the empirical analyses is outlined 

below. 

1.10.1. The model 

A frontier production function, in general, defines the maximum output achievable, given 

the current production technology and available inputs. If all industries produce on the 

upper boundary of the common production function (i.e. the frontier) with three inputs 

(x) – total cost of goods sold (COGS), physical capital (C) and labour (E) – the output of 

firm i in (sub)sector s at time t can be expressed as: 

𝑌𝑖𝑠𝑡
∗ = 𝑓(𝐾𝑖𝑠𝑡, 𝐸𝑖𝑠𝑡 , 𝐶𝑂𝐺𝑆𝑖𝑠𝑡) i = 1…N; s = food processing; t = 1991…2009 (5) 

where *

istY  is the frontier (maximum) level of output of firm i in industry s at time t. The 

output variable (Y) is the revenue at the firm level. The production technology is 

expressed by function f(.) and technically approximated by DEA. No assumptions 

regarding the error term will be made. 

The frontier defined in equation (5) represents the maximum possible output given the 

inputs. The idea of the DEA approach is to estimate the frontier as well as inefficiency 
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(δ). An implicit but non-trivial assumption in this literature is that the leading industry 

itself is the frontier and the single benchmark for all other industries. 

Basically, DEA consists of two steps. In the first step the maximum (max) output (Y*) 

using the available data are calculated, e.g. max (Y| data). This can be achieved by a 

linear programming model: 

 

1 2 3
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The restriction 
1 2 3 1      for the consideration of variable returns to scale. Other 

production structures require a different set-up of the restriction.38 The optimal solutions

1 2 3, , 0     will provide an inner approximation of the production possibilities. 

The second step consists of efficiency estimation. The inefficiency is defined by 
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or, after the definition of Y* has been plugged in, 
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. (6’) 

This constitutes the DEA model in the formulation output distance function. Basically, it 

is the search for the proportionally factor (θ) that shifts Y2 to the frontier. 

In the literature, plenty of variations on the theme exist. Many of them have been 

described in the first part of the report. 

a) Production, distance function (technical efficiency) 

 Cost, profit, revenue function (allocative efficiency) 

b) Input oriented, output oriented 

c) Radial, nonradial measurement 

d) Slacks, superefficiency 

 Slacks: consideration of input waste for efficient companies 

 Superefficiency (ranking among efficient enterprises) 

e) Multiple inputs and outputs. 

                                           

38 See first part of the report for more details. 
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In comparison with stochastic frontier analysis (SFA), the DEA approach pursued here 

has the following advantages: DEA needs no (strong) assumptions regarding the 

functional relationships (especially regarding the production function) and it is more 

flexible than SFA because no restrictions are required regarding the number of 

parameters. Thus, it is easy to deal with a whole range of inputs and outputs. However, 

the basic problems are that DEA is outlier sensitive and it is extremely data intensive to 

incorporate (non-parametric) statistical inference. Non-parametric approaches require 

far more observation until ‘large number’ theorems can be applied to conduct meaningful 

statistical tests. The required number of observations increases more than proportionally 

with the number of parameters (the ‘curse of dimensionality’). 

An additional step consists in incorporating the determinants of inefficiency (z) (8) into a 

regression model. Examples of these z variables are R&D intensity, capital intensity and 

country dummies (capturing different institutional settings). 

This leads to a typical two-stage approach. The first consists of a conventional DEA: 

  ˆ ( | ) max 0 | , , 1i i T        
i i

X,Y y Yλ x Xλ i'λ , (6”) 

followed by a second-stage regression: 

 1i í   iz β , where i is an independent and identically distributed (i.i.d.) 

random variable, independent of zi. (7) 

For estimation, i has to be replaced by ˆ
i  (the estimated efficiency scores from the first 

stage): 

 ˆ 1i í   
i

z β . (7’) 

Usually a Tobit regression is applied to estimate the parameters of  This procedure 

become necessary because the error term i is truncated and not symmetrically 

distributed with mean 0. Examples of the z variables – also used in this study – are R&D 

intensity, capital intensity, time and country dummies (capturing different institutional 

settings). Note that, regarding the notations in equation (6), the output variable (Y) is 

the revenue at firm level. These z variables can be viewed as determinants of 

inefficiency. These observation-specific marginal effects allow detailed investigation of 

the impact of external factors on inefficiency. 

Simar and Wilson (2007) point to several problems with this approach, concerning both 

stages of the procedure, and advocate the use of truncated regression: 

1. Second-stage bias 

The ˆ
i  are serially correlated in an unknown way since each ˆ

i  depends on all 

observation in T. Thus the δi are not independent of each other, which induces biased 

estimates in the second step since the usual assumption regarding the error term does 

not hold. 

Moreover, since xi and yi are correlated with zi (otherwise the second step would make 

no sense), zi is correlated with ξi. The correlation disappears asymptotically, however, at 

a very slow rate. 

As a solution to this second-stage bias, they suggest a bootstrap algorithm (see [6]). In 

addition to the second stage, the first stage is also biased: 

 ˆ ˆ( )i i iE u   . 

Define the bias via 

 ˆ ˆ( ) ( )i i iBIAS E u   . 
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This gives: 

 ˆ ˆ( ) 1i i i i iBIAS u        
i

z β . (8) 

Usually the bias as well as the u are ignored when conducting the second stage. This 

leads to biased estimates for the second stage. 

2. First-stage bias 

The bootstrap bias estimate equals the true bias plus a residual: 

 ˆ ˆ ˆ( ) ( )i i iBIAS BIAS v   . (9) 

This can be used to construct a bias corrected estimator of δ: 

 
ˆ̂ ˆ ˆ ˆ( )i i iBIAS    . (10) 

Substituting (10) in (9) and the result in (8) provides: 

 
ˆ̂

1i i i iv u       
i

z β . 

Since v and u become negligible asymptotically the maximum likelihood (ML) estimation 

on 

 
ˆ̂

1i i   
i

z β  (7”) 

provides consistent estimates. As a solution to first-stage bias, Simar and Wilson (2007) 

proposed an alternative bootstrap algorithm (see [3]). 

3. Double bootstrap algorithm 

The steps of the double bootstrap procedure are as follows: 

[1] Use the original data and compute ˆ
i  using (1) 

[2] Use ML to obtain an estimate β̂ as well as ˆ
  of (10) using the m < n observations 

ˆ
i > 1 

[3] Loop over the next four steps ([3.1]–[3.4]) L1 times to obtain n sets of bootstrap 

estimates  
1*

1

ˆ
L

ib
b




l  

[3.1] For each i = 1,...,n draw i from the 2ˆ(0, )N   distribution with left truncation 

at  1 iz β  

[3.2] Again for each i = 1,...,n compute * ˆ
i i  

i
z β  

[3.3] Set x*
i = xi and 𝑦𝑖

∗ = 𝑦𝑖𝛿�̂� 𝛿𝑖
∗⁄  for all i = 1,...,n 

[3.4] Compute *ˆ ( , | *)i i i T  x y  for all i = 1,...,n. Here T* denotes the set 

containing the transformed matrixes X* and Y* (see [3.3]). 

[4] For each i = 1,...,n compute the bias-corrected estimator 
ˆ̂
i  defined by (a) using the 

bootstrap estimates in l  obtained in step [3.4] and the original estimate ˆ
i  

[5] Use ML to estimate the truncated regression of 
ˆ̂
i  on zi, yielding estimates 

ˆ ˆˆ ˆ, 
 
 
β  
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[6] Loop over the next three steps ([6.1]–[6.3]) L2 times to obtain a set of bootstrap 

estimates   
2

* *

1

ˆ ˆ,
L

b b




βh  

[6.1] For each i = 1,...,n draw i from the 
2ˆ̂(0, )N   distribution with left truncation 

at 
ˆ̂

1  
 

i
z β  

[6.2] Again for each i = 1,...,n compute ** ˆ̂
i i  

i
z β  

[6.3] Use ML to estimate the truncated regression of **

i  on zi, yielding estimates 

* *ˆ ˆˆ ˆ, 
 
 
β . 

[7] Use the bootstrap values in h  and the original estimates 
ˆ ˆˆ ˆ,β  to construct 

estimated confidence intervals for each element of β  and  . 

  
















   1aβ
ˆ̂

β
ˆ̂

bPr j

*

j

. 

Step [3] and [4] employ a parametric bootstrap at the first stage (to get rid of the bias 

in δ). Step [6] employs a parametric bootstrap in the second stage. 

1.11. Data 

To appropriately answer the outlined research questions and test corresponding 

hypotheses, the empirical analyses should rely on company-level data, ideally covering a 

wide geographical cross-section (EU-27, America, Asia, etc.) and allowing investigation 

of firm/sector trajectories (i.e. time series information are required as well). Few 

databases allow for this. Considering the strengths and limitations of several potential 

sources of data, 39  it has been decided to draw upon Standard & Poor’s (S&P’s) 

Compustat dataset, 40  which contains data at firm level stemming from companies’ 

audited annual/quarterly reports. Alternative data sources are discussed in the Appendix. 

1.11.1. Representativeness 

Compared with the overall population of companies, Compustat data tend to be biased 

towards large-scale businesses and to firms listed at stock markets (no ‘private 

companies’) since these firms are – in contrast with many others – required to publish 

annual reports (which is the main source of data for S&P’s Compustat). Moreover, 

evidence from previous work with the same dataset suggests that there might be a 

geographical bias towards North American companies – in other words, EU and Asian 

(particularly non-Japanese) companies may be under-represented in the selected 

sample. 

From the population of companies included in the Compustat database, all firms 

belonging to the agriculture sector and/or the food industry were selected, as a first 

                                           

39  For instance, the Amadeus database may contain sufficient cross-section and time series firm-level data but provides 
information on R&D only for very recent years (if at all). The presumed emergence of the food-processing sector as 
medium-tech, evolving from formerly low-tech, could not be investigated based on such data. Another possible source of 
data could be the EU Industrial R&D Scoreboard (released by JRC-B3 Unit). This database contains fully consolidated 
firm-level data of top R&D investors in Europe and elsewhere (year of last audited report + 3 previous years). However, 
among the listed companies, there are too few belonging to the food industry.  

40  For details see: www.compustat.com 

http://www.compustat.com/
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step, covering the period 1991–2009 (geographical coverage: entire world). The 

resulting sample consisted of unbalanced longitudinal data comprising 189 companies 

assigned to the agriculture sector (industry code: 0xxx) and 1,118 companies assigned 

to the food-processing industry (industry code: 2xxx), and included information on 

revenue, sales, net income, capital and R&D expenditures (if any), number of employees 

and/or wage sum, industry code and region/country (i.e. info on the location of the 

company’s headquarters/where it is registered). 

At this stage, firms assigned to the agriculture and food-industry sectors have been 

retrieved from Compustat because there is reason to believe that companies that were 

formerly purely agricultural businesses tend to agglomerate to an industrial production of 

commodities that are classified arbitrarily as food, food intermediates, renewable 

resources or traditional agricultural commodities. Moreover, a rising number of 

agribusiness companies have refocused their business towards the production of 

renewable resources meant to be used as fuel rather than as food (food input), such as 

oil seeds. 

To double check for these tendencies, data from both industries have been screened 

(number of companies, number of employees, amount of capital expenditure, R&D 

expenditure). Further, the sector assignment in 2008 was matched to any ‘historical’ 

data (if available) to check whether or not there is indeed a tendency for some 

(presumably large-scale) companies to shift from the agriculture sector (agribusiness in 

general) to food-processing industries or vice versa. Comprehensive data screenings 

have been performed to search for such changes of sector assignment. However, 

although there is indeed some evidence in this regard, from the available data it cannot 

be reliably determined whether a company is better assigned to food processing or to 

agriculture. Hence, for reasons of consistency, it has been decided to proceed with the 

original industry assignment as given by Compustat, but to keep this subject in mind for 

the interpretation of results and for discussing potential biases. 

Given the relatively scattered empirical coverage of companies belonging to agriculture 

(much fewer companies in the dataset belonged to agriculture than food processing) 

and, moreover, the fact that almost none of the companies from agriculture reported 

R&D expenditures, companies assigned to agriculture (industry code: 0xxx) were 

excluded. The remaining sample consisted of 1,118 firms (all assigned to the food-

processing sector) with 6,670 observation points in total over time (entire world). These 

raw data had to be processed further. 

The dataset does not distinguish between R&D conducted domestically and abroad. All 

companies’ R&D expenditure was assigned to the country the company is registered to. 

However, since most of the R&D is in-house R&D expenditure, it is expected that the 

representativeness of the data is negligibly affected. 

1.11.2. Currency conversion and price deflation 

All variables in monetary units were converted to Euro using the 2007 end-of-year 

exchange rate. 41  In cases where no direct exchange rate to Euro was provided by 

Compustat, the corresponding currency was converted first to USD and then to Euro. 

1.11.3. Missing values 

To estimate the performance of companies in the food-processing sector (considering 

input–output relations at every observation point, e.g. for a certain firm in a given year), 

information is required on revenue or sales as a proxy for output and, moreover, on the 

                                           

41  Preference was given to end-of-year exchange rates because the period the annual reports refer to for most of the 
companies corresponds to the calendar year. Hence, end-of-year exchange rates are the closest to the reporting date and 
arguably may introduce the least bias. 
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relevant inputs (i.e. number of employees and expenditure42 on capital and R&D). It 

appears that in many countries it was not compulsory to report number of employees or 

cost of employment in company annual reports. In fact, the withdrawn datasheet 

contained many blanks (‘n.a.’), especially for Asian companies. However, labour input 

appears to be essential for considering firm performance. It was therefore decided to 

proceed as follows: where number of employees was missing but labour expenditure was 

available, number of employees was approximated using average wage levels taken 

from the International Labour Organization (ILO). Where information on the number of 

employees was available but missing on labour expenditure, labour expenditure was 

approximated using average wage levels taken from the ILO data. Where information on 

neither the number of employees nor total costs of employment (aggregated wages) was 

available, the corresponding observation (data line, not company) was excluded. Where 

revenue and/or capital expenditure data were missing, the corresponding observation 

had to be excluded as well. The sample was reduced significantly: out of 5,924 

observation points in total (corresponding to the entire world), 2,491 reported 

expenditures on R&D different from zero. 

1.11.4. Consistency and outliers 

The methodological approach to be applied in this study (identifying production frontier 

functions), owing to its very nature, is very sensitive to outliers.43 Moreover, presuming 

a common production frontier for companies across countries implicitly assumes that all 

companies have access to the same technology and produce under virtually the same 

technological restrictions. 44  Hence, reducing the sample to a subsample comprising 

rather homogeneous countries/companies appeared advisable to ensure largely unbiased 

empirical results. Outlier observations may, however, still need to be excluded from the 

sample. 

In this light, it has been decided to restrict the scope of the analysis to observations of 

companies registered in one of the following country groups: the EU (557 observations 

remaining), North America (the USA and Canada; 1,050 observations remaining) and 

Japan (1,341 observations remaining). The relatively even distribution of observations 

among these three macro-regions allows for a comparative analysis. Moreover, the 

remaining ~3,000 observations (307 companies) comprise an unbalanced dataset with 

an average of 10 observations per firm (length of time series), while company data from 

other world regions (to be disregarded) appeared far more scattered. Therefore, the 

resulting sample of these three macro-regions is assumed to be suitable for performing 

panel data analyses. 

In about 50% of all observations (firm/year) in this sample, expenditure on corporate 

R&D was different from zero, which is comparable with the share of firms performing 

R&D worldwide (see above). Admittedly, in many of those cases where R&D expenditure 

was reported as different from zero, observations suggested fairly low/medium-low R&D 

intensity. However, some companies reported expenditure on R&D above 5% of 

revenues, which would allow them to be classified as high-intensity R&D companies (i.e. 

high-tech firms, according to the commonly applied classification). 45 Accordingly, the 

sample may serve for an analysis of the impact of R&D (intensity) on firm performance, 

with a significant control group of companies carrying out no R&D. 

                                           

42  Capital expenditure will be used to calculate R&D (knowledge) stocks, applying the perpetual inventory method. 
43  For a discussion of the sensitivity, strengths and limitations of the SFA see, for example, Kumbhakar and Lovell (2000) 

or Coelli et al. (1998). 
44  However, country differences are likely to exist and – to some extent – can be captured by country dummies. 
45  Note that in a comprehensive study on sector classification, Hatzichronoglou (1997) confirmed food-processing 

industries to be a low-tech industry. For an overview of the thresholds and a brief discussion see: 
www.oecd.org/dataoecd/32/17/41419823.ppt 

http://www.ilo.org/global/lang--en/index.htm
http://www.oecd.org/dataoecd/32/17/41419823.ppt
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After carrying out a final outlier check (checking for consistency and order of magnitude 

across observations as well as along the time series) some further firms/observations 

had to be excluded. Outliers were excluded according to the results of Grubbs’ tests 

centred on the sectoral average growth rates of firms’ R&D stock intensity (K/revenue) 

over the period of investigation.46 Moreover, some further observations were excluded 

for reasons related to the computation of the R&D and capital stocks.47 

Table 2 summarizes the final sample used in the report. After cleaning and processing 

the data, European companies are less represented than their Japanese and North 

American counterparts. There is no information on Japanese firms prior to 1999 and 

most regions are less represented for this period. However, the period starting in 2000 

remains more balanced, including for European firms, easing comparison between 

macro-regions. To control for these data structures, we used dummy variables in our 

estimations, distinguishing between these two periods. 

Table 2 Sample composition – observations per year and region 

 

Year EU USA/Canada Japan Total sample 

1991 2 30 0 32 

1992 8 50 0 58 

1993 10 49 0 59 

1994 12 51 0 63 

1995 13 51 0 64 

1996 17 52 0 69 

1997 25 53 0 78 

1998 24 58 0 82 

1999 26 55 91 172 

2000 27 60 127 214 

2001 30 59 134 223 

2002 32 59 134 225 

2003 35 61 136 232 

2004 34 63 138 235 

2005 35 67 143 245 

2006 71 70 143 284 

2007 74 72 142 288 

2008 71 70 142 283 

2009 11 20 11 42 

Number of observations 557 1,050 1,341 2,948 

Number of firms 85 79 143 307 

Source: own compilation 

                                           

46  See Section 3.3.5. for a definition of K. Notice that Grubbs' test – also known as a maximum normalised residual test – 
assumes normality (which is a desirable property anyway). Accordingly, we ran normality tests on the relevant variables 
(the assumption was never rejected). Results from both Grubbs’ and normality tests are available upon request.  

47  See equations (1) to (4); in the rare cases a negative g turns out to be larger in absolute value than the depreciation rate δ, 
the perpetual inventory method generates an unacceptable negative initial stock at time zero. The same happened (in a 
few cases) when in the initial year negative capital expenditures were reported (Capex was then set to zero). 
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It has to be stressed that the final sample of 307 firms is biased towards large 

companies (listed in the stock markets). This bias is due to the nature of the data source 

and has two important consequences. First, results cannot be easily generalized, as 

small private companies operating in the food-processing sector are not captured, but 

should be considered pertinent to large firms, which, in fact, are inclined to be more 

active in terms of R&D. Second, this ‘pick the winner’ effect might be particularly severe 

in medium- and low-tech sectors (like food processing) where the overall company 

population tends to be dominated by smaller firms that, moreover, are scarcely or not 

engaged in R&D investment (Becker and Pain, 2002). Both consequences need to be 

kept in mind in the interpretation of the empirical results. 

In terms of sectoral representation, observations from beverage companies are the most 

present, followed by mixed-activity or generalist food-processing firms and prepared-

foods firms, accounting for 53% of the total sample. The rest of the subsectors account 

for between 4% and 9% (Table 3). 

 

Table 3 Sample composition – observations per subsector 

 

Subsector Codes Number of observations 

Beverages, including alcohol 2080–2087 561 

Mixed/generalist 2000 490 

Prepared foods 2090–2099 491 

Meat and poultry packing 2010–2015 272 

Sugar and confectionery 2060–2068 252 

Canned fruits and vegetables 2030–2038 225 

Grain 2040–2048 226 

Bakery 2050–2053 197 

Dairy 2020–2026 18 

Oils 2070–2079 116 

Total  2,948 
 

Source: own compilation 

 

1.11.5. Further data processing: stock variables 

In accordance with related literature (see Jorgenson, 1990; Hulten, 1991; Hall and 

Mairesse, 1995; Bönte, 2003; Parisi et al., 2006), stock indicators (rather than flows) 

were used as impact variables. It is thus implicitly assumed that a firm’s productivity is 

affected by the cumulated stocks of capital and R&D expenditure and not only by current 

or lagged flows.48 Accordingly, our pivotal impact variable is a firm’s R&D stock (K) and 

our second impact variable is capital expenditure (C) captured as capital stocks.49 Thus, 

considering per capita values (i.e. per number of employees) permits both the 

standardization of data and the elimination of firm size effects (see, for example, Crépon 

et al., 1998). 

                                           

48  Using cumulated R&D and capital stocks – as in previous literature – overcomes a potential endogeneity problem that 
can arise if flows are used. See Section 2 for a comprehensive discussion of R&D time lags, dynamic lag structures and 
corresponding data and measurement issues. 

49  Other explanatory variables like organizational innovation and skills (although not in the scope of this contribution) are 
surely important in explaining firm productivity growth (see, for example, Piva et al. 2005). Unfortunately, given data 
limitations, it was not possible to control for the important role of human capital.  
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In this framework, knowledge (R&D) and physical capital stocks were computed using 

the perpetual inventory method based on the following formulas: 
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where R&D = R&D expenditure and I = gross investment (capital expenditure). 

The OECD Analytical Business Enterprise Research and Development (ANBERD) database 

and the OECD STAN database were used to provide growth rates g(K) and g(C) for K and 

C, respectively. We computed the compounded average rates of change in R&D and 

fixed capital expenditures in the relevant sector (food processing; s) and per country (c). 

For some European countries, these databases did not report or allow for the calculation 

of specific growth rates for R&D and capital stocks. The corresponding European 

averages were assumed in these cases instead. For the USA, Canada and Japan, 

however, the growth rates were taken from the literature.50 

In general, different depreciation rates (δ) and () for K and C should be assumed for 

high-, medium- to high-, medium-to low-/low-intensity R&D industries (sectoral groups 

(j)). In fact, technologically advanced sectors are characterized (on average) by shorter 

product life cycles and faster technological progress, which together accelerates the 

obsolescence of current knowledge and physical capital.51 In this light, Ortega-Arquiles 

et al. (2009) suggested sectoral depreciation rates of 20%, 15% and 12% to the 

knowledge capital and 8%, 6% and 4% to the physical capital, respectively, for the high-

, medium- to high- and medium- to low-/low-tech sectors,52 with the latter (δ = 12%, 

 = 4%) to be applied here to the food-processing industry. 

1.11.6. Descriptive statistics 

Table 4 presents some descriptive statistics of the final restricted sample. From this, 

some generalizations can be made. For instance, the heterogeneity among the observed 

companies within and across the macro-regions is notably high (see standard deviations 

and minimum/maximum of each variable). The assumed over-representation of large-

scale companies seems to be confirmed; for example, the mean number of employees is 

2,211 in Japan and 15,293 in the EU. Nevertheless, in each macro-region, there are also 

a number of small and even micro-companies (see minimum of employment variable). 

The mean R&D intensity (R&D/sales) in all macro-regions is above 1%, with the EU 

reporting the highest (~6%). This allows the classification of the companies/sectors as 

                                           

50  For capital growth from OECD (Capital Services, total; mean percentage change 1985–2009) see: 
http://stats.oecd.org/Index.aspx; for R&D growth rates, the average from 1980–1998 was taken from: 
http://www.ulb.ac.be/cours/solvay/vanpottelsberghe/resources/DGBVP_OES.pdf. 

51  Physical capital also embodies technology, and rapid technological progress makes scrapping more frequent. 
52  The resulting weighted averages (across sectors) were 15.6% for the R&D stock and 6.0% for the capital stock 

respectively; these values are very close or identical to the 15% and 6% commonly used in the literature (see Musgrave, 
1986; Bischoff and Kokkelenberg, 1987; and Nadiri and Prucha, 1996, for physical capital; Pakes and Schankerman, 
1986; Hall and Mairesse, 1995, and Hall, 2007, for knowledge capital). 

http://stats.oecd.org/Index.aspx
http://www.ulb.ac.be/cours/solvay/vanpottelsberghe/resources/DGBVP_OES.pdf
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medium-tech (or even medium- to high-tech).53 Considering the median R&D intensity 

rather than the mean, the R&D/sales ratios do not change significantly in number in 

Europe and the USA/Canada, but they drop below 1% in Japan. However, regarding the 

number of companies actually performing R&D (number of observations with R&D 

expenditures different from zero), evidence suggests that the perception of whether or 

not R&D is important for the food-processing business differs between the macro-

regions. In fact, in the EU and the USA/Canada few companies perform R&D at all (but 

those that do have significant spending), while in Japan the share of companies engaged 

in R&D activities is much higher (~90% but with lower individual expenditures). 

In general, according to the descriptive statistics, the companies active in the food-

processing sector in the EU and in the USA/Canada seem to be fairly similar: EU 

companies are, on average, a little smaller in terms of revenue (sales) and number of 

employees but have almost exactly the same ratio of net income/revenue as those from 

the USA/Canada and comparable figures in terms of spending on R&D and capital 

(including their accumulated stocks). In contrast, Japanese firms appear smaller, less 

profitable and more inclined to do corporate R&D, but, on average, with a lower financial 

commitment. This needs to be recalled when interpreting the frontier estimations and 

doing cross-country comparisons. 

 

                                           

53  Note that the average of R&D intensity of food-processing firms across EU was estimated to be at about 0.27. For an 
overview of thresholds and a brief discussion see: www.oecd.org/dataoecd/32/17/41419823.ppt  

http://www.oecd.org/dataoecd/32/17/41419823.ppt
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Table 4 Final restricted sample – descriptive statistics of main variables 

Variable Mean Standard deviation Minimum Maximum Observations 

Total sample     2,948 

Revenue 2,308.3 5,192.3 0.4 51,514.0  

COGS costs 1,443.5 3,295.6 0.4 47,137.0  

R&D expenditure 89.7 451.7 0.0 7,290.3  

Capital expenditure 1,286.4 2,996.3 0.0 25,846.0  

Employees 10,610 31,443 2 486,000  

EU     557 

Revenue 2,705.8 6,602.6 0.4 51,514.0  

COGS costs 1,561.2 3,323.9 0.4 22,873.0  

R&D expenditure 175.6 926.9 0.0 7,290.31  

Capital expenditure 1,768.9 4,020.4 0.0 25,846.0  

Employees 15,292.7 36,441.3 2.0 269,000.0  

USA and Canada     1,050 

Revenue 3,684.8 6,607.0 1.7 50,659.0  

COGS costs 2,309.5 4,578.3 1.0 47,137.0  

R&D expenditure 72.5 266.4 0.0 2,476.0  

Capital expenditure 1,839.9 3,584.2 0.0 24,759.0  

Employees 18,054 43,375 2 486,000  

Japan*     1,341 

Revenue 1,065.3 1,983.5 5.0 15,913.0  

COGS costs 716.6 1,330.7 2.0 9,785.7  

R&D expenditure 67.5 181.5 0.0. 1,642.2  

Capital expenditure 652.6 1,497.7 0.0 13,127.0  

Employees 2,211 4,203 16 36,554  

*1999–2009 only 

Source: own compilation 

 

1.12. Results 

1.12.1. The magnitude of inefficiency 

We ran an output-oriented efficiency model – variable returns to scale (VRS) – with a 

simple specification consisting of one output and three inputs. Inputs are capital stock 

(C), labour (number of employees, E) and total cost of goods sold (COGS). The output is 

the value of total revenues (assumed to be total food-related sales), although firms may 

have sales revenue from other lines of activity and streams of income such as asset 

management (Fuglie et al., 2011). 

The distribution of efficiency scores by frequency is displayed in Figure 2. In general, the 

figure shows that the inefficiency distribution is skewed to the left (panels (b) and (c), 

indicating that most of the companies operate relatively close to their frontier. Very high 

inefficiencies were found for only a few companies. Moreover, panel (a) presents an 

estimate of the bias of the inefficiency estimate. The distribution reveals that the bias is 

considerable. Thus, conducting an analysis without bootstrapping would have led to 

largely biased parameters in the second step. Panel (b) presents the inefficiencies 
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calculated with the adjusted technology T* (see [3.3]). Finally, panel (c) presents the 

unbiased estimator (distribution) of the inefficiency. 

 

 (a) (b) (c) 

  

     Inefficiency units Inefficiency units Inefficiency units 
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Figure 2 Different inefficiency estimates and estimated bias, frequencies. 

 

1.12.2. The determinants of inefficiency 

The basic hypothesis of the second stage is that R&D has a positive impact on firm 

performance. The determinants of inefficiency will be captured by the knowledge base of 

a company, for example: 

 δ = f(knowledge base) 

The knowledge base depends on (i) own R&D and (ii) knowledge created elsewhere 

(universities, research institutes, companies) and that diffuses into the public domain 

There is only one variable that measures companies’ own R&D expenditure (z), whether 

the research expenditures are intra- or extramural. The information is usually available 

when companies are required to publish their investments. Although it can be safely 

assumed that large companies in all countries perform some R&D, they have no 

spontaneous incentive to report it since this would reveal information about the firm’s 

strategy and threaten the firm’s competitive position. 

This lack of data will bias the results. However, total lack of information on R&D is less 

severe than expected. Given the basic hypotheses, the impact of R&D on performance 

might be less significant because firms that do not report but conduct research should be 

more efficient than expected. 

The hypothesis can also be stated as follows: (i) 

*

0
Y

z z

 
  

  . 

Regarding knowledge created elsewhere (technological opportunities), a firm’s own R&D 

has an impact not only on revenues directly but, in addition, affects the technological 

opportunities of the firm. This relation is captured by Cohen and Levinthal (1989): 

 ( , )i i j

j i

k z z T  


 
  

 
 .  

Here the firm’s technological opportunities consist of two parts: knowledge external to 

the sector (T) (universities, public research institutes) and existing knowledge of 

competitors, which diffuses to some extent into the public domain (μ). The degree of 
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openness (μ) depends on institutional regulations protecting firm-specific knowledge and 

also the type of technology. 

Public knowledge can be used by the firm according to a coefficient of absorption (Ѳ). 

This coefficient depends on the height of the R&D expenditure, z, as well as the 

characteristics of the scientific and technological foundations. In addition, it is 

determined by the ease with which this knowledge can be absorbed. The coefficient β 

reflects the interference in a firm’s own R&D expenditures from knowledge external to 

the firm. It is defined in such a way that a higher value of β increases the productivity of 

a firm’s own research expenditure ( 1 0
z 

  ). 

In order to make this effect operational, we include regional dummy variables in the 

estimation: 

(ii) 
𝜕𝛿

𝑑𝑢𝑚_𝐽𝐴𝑃
< 0 (iii) 

𝜕𝛿

𝑑𝑢𝑚_𝑈𝑆
< 0 

(iv) 
𝜕𝛿

𝑑𝑢𝑚_𝐸𝑈15
< 0 (v) 

𝜕𝛿

𝑑𝑢𝑚_𝑁𝑀𝑆
> 0. 

We expect that the USA and Japan have a favourable knowledge base to conduct R&D 

and that this knowledge base finds its expression in better firm performance (ii and iii). 

Some indication of this can be seen in Table 4, which shows that Japan and the USA 

have the highest research expenditure compared with outputs. The same effect can be 

expected for the old EU Member States (EU15) (iv). Similar to Japan and the USA, they 

belong to the group of countries with a highly developed research infrastructure. Given 

the structural difficulties of new EU Member States (NMS) from eastern Europe in 

particular, related to their history of planned economies, the research systems in these 

countries are likely to be less developed and thus attain lower productivity levels (v). 

The reference region for these regional dummy variables is Canada. Note that some 

studies find that Canada reports lower performance of food-processing firms than their 

peers from other developed countries such as the USA (Chan-Kang et al., 1999; in Fuglie 

et al., 2011). 

To control for the R&D environment of firms other than with regional dummies, the 

contemporaneous general public R&D investment per capita is also introduced 

(government sector GERD, Euro equivalent, 2007 constant prices). The time lags and 

dynamic effects (e.g. see Andersen and Song, 2013) are not controlled for in the 

analysis, given that the availability of data in the sample for different years varies 

strongly across firms and regions. However, to account for the differences in the sample 

structure over time, dummy variables are used for the 1990s and the period after 2004, 

with the 2000–2004 period serving as reference. 

 

1.12.3. Estimated results 

The estimated results of the pooled truncated regression are reported in Table 5. We 

estimated several alternative and complementary model specifications to avoid potential 

collinearity between explanatory variables. Model 1A starts with a simple specification of 

the estimated equation, which includes private R&D (perpetual inventory), public R&D 

(GERD/per capita) time dummies and regional dummies (USA, Japan, EU, etc.) with 

Canada serving as the reference country. For comparison purposes, we also report the 

results obtained with the biased estimators for the first model (1A biased). The 

remaining models are presented with their unbiased estimators only. The extended first 

model (1B) also considers squared values of private R&D to capture the change in 

marginal gains from additional investment in private R&D. 
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The second set of models (2A and 2B) considers sectoral dummies instead of regional 

dummies, with firms specialized in grain processing used as the reference subgroup. 

Model 2B expands 2A by adding squared values of private R&D. The third set of models 

(3A and 3B) adds both regional and sectoral dummies in the estimated equation. Again, 

model 3B expands 3A by adding squared values of private R&D. 

The remaining model sets (4 and 5) consider interaction variables between private R&D 

and regional and sectoral dummy variables – alongside the variables considered in the 

first three model sets – to capture whether or not the impact of private R&D varies 

depending on region and sectoral circumstances, respectively. That is, the fourth set of 

models (4A and 4B) includes interaction variables between private R&D and regional 

dummies, while the fifth set of models (5A and 5B) includes interaction variables 

between private R&D and sectoral dummies. 

The estimates largely confirm the hypothesis that private R&D has a positive effect on 

the performance of food-processing firms (i.e. it reduces inefficiency). However, the 

variable controlling for marginal gain of additional investment does systematically 

capture decreasing marginal returns of R&D investments on performance at firm level. 

Public R&D also makes a statistically significant contribution to performance. These 

results are consistent across all estimated models. 

Private R&D investing seems to affect performance more positively in Canada (the 

reference country) than in the USA, Japan or EU15 countries (4A and 4B). The estimated 

coefficient for NMS is not significant in both models where the interaction variables 

between private R&D and regional dummies are considered (4A and 4B). These results 

suggest that additional R&D investment in Canada and NMS would produce greater firm 

efficiency gains than in the USA, Japan or EU15. Regarding subsectoral sensitivity to 

R&D investment on firm performance (5A and 5B), some subsectors (dairy, meat 

processing, oils and sugar) seem to be more responsive to R&D investment and more 

statistically significant than the reference sector (grain). In contrast, processed-food 

sectors are less sensitive to R&D investment, whereas the remaining subsectors were 

found to be statistically insignificant relative to the reference sector. 

The performance of food-processing firms during the period after 2004 is significantly 

lower than during the 1990s. In terms of regional variation of firm performance, the 

estimates suggest that Japanese, US and EU15 firms are more efficient than Canadian 

firms, which corroborates with previous studies comparing US and Canadian firms 

(Chan-Kang et al., 1999; Fuglie et al., 2011). The food-processing firms from the NMS 

tend to underperform relative to Canadian peers and hence firms from other countries. 

Firms operating as generalists in the food-processing sector tend not to show a 

statistically significant difference from the reference group (grains). In most models, this 

is also the case for dairy and sugar-related firms, with some insignificance for oil and 

canned producers. However, firms specializing in meats, bakery and prepared foods tend 

to be less efficient that those involved in grains. 
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Table 5 Truncated regression estimates of the determinants of efficiency 
Independent variables 1A (biased) 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 

Constant   2.2880 5.7321* 5.7437* 4.9921* 5.0246* 5.9101* 5.7705* 5.7044* 5.8331* 5.9844* 6.0773* 

R&D, perpetual inventory –0.8243 –0.7931* –1.0606* –0.8684* –1.1703* –0.6639* –09157* –107639* –108921* –09767* –11729* 

(R&D, perpetual inventory)² 
  

0.0447* 
 

0.0532* 
 

00386* 
 

01176* 
 

00810* 

Government sector GERD/capita –0.0023 –0.0026* –0.0028* –0.0040* –0.0041* –0.0062* -00054* –0,0052* –0,0057* –0,0063* –0,0066* 

Japan –0.7098 –0.9469* –0.9248* 
  

–1.2181* –1,1465* –1,1878* –1,2033* –1,2020* –1,2328* 

USA –0.7378 –1.0090* –1.0082* 
  

–1.0157* –1,0204* –1,0542* –1,0579* –1,1013* –1,1263* 

EU12, NMS  0.9666 1.6572* 1.6479* 
  

1.4837* 1.5142* 1.4666* 1.4820* 1.5267* 1.6351* 

EU15 –0.2256 –0.2823* –0.3052 
  

–0.5035* –0.4022* –0.4321* –0.3465* –0.4832* –0.5173* 

1990s’ dummies 0.1187 0.1938* 0.1852* 0.2708* 0.2827* 0.0904 0.1029 0.0904 0.0768 0.0861 0.0790 

Post-2004 dummies 0.2399 0.2815* 0.2763* 0.3897* 0.3990* 0.1697* 0.1843* 0.1781* 0.1808* 0.1950* 0.1965* 

Dairy 
   

0.3069* 0.3273* –0.0636 –0.0556 –0.0901 –0.1270 0.1876 0.2057 

Canned 
   

0.1105 0.1026 0.2952* 0.2545* 0.2593* 0.2313* 0.2500* 0.2280 

Beverages 
   

–0.5804* –0.5828* –0.7585* –0.7190* –0.7069* –0.7598* –0.7698* –0.7936* 

General 
 

  
0.1760 0.1583 0.1551 0.1461 0.1676* 0.1292 0.1108 0.1826 

Meats 
 

  
0.3146* 0.2854* 0.4265* 0.3832* 0.4036* 0.3487* 0.6228* 0.6248* 

Oils 
 

  
–0.5020* –0.5396* –0.3130* –0.3251* –0.2887* –0.3198* –0.0022 –0.0199 

Bakery 
 

  
0.3042* 0.2958* 0.4644* 0.4124* 0.3915* 0.3527* 0.4686* 0.4696* 

Prepared foods 
   

0.3893* 0.3919* 0.4236* 0.4049* 0.3870* 0.3786* 0.3461* 0.3603* 

Sugar 
   

–0.1587 –0.1696 –0.0466 –0.0952 –0.0758 –0.0792 0.0155 –0.0030 

Japan  R&D 

       
10.2002* 9.9897* 

  USA  R&D 

       
10.1015* 9.8361* 

  (EU12, NMS)  R&D  

       
–0.2317 –0.5675 

  EU15  R&D 

       
9.9956* 8.7063* 

  Dairy  R&D 

         
–1.5265* –1.5851* 

Canned  R&D 

         
–0.1390 –0.0883 

Beverages  R&D 

         
0.2183 0.1948 

General  R&D 

         
0.1830 –0.4624 

Meats  R&D 

         
–9.0025* –9.1332* 

Oils  R&D 

         
–4.4689* –4.5715* 

Bakery  R&D 

         
–0,8573 –0,8754 

Prepared foods  R&D 

         
0,5644* 0,4738* 

Sugar  R&D 

         
–1,2186* –1,1682* 

*Statistical significance at 5% 

Source: own calculations using R v2.14 with FEAR package



 

Lessons from the empirical exercise 

1.13. Approach/theoretical and methodological lessons 

DEA is a widely applied approach in the literature to estimate firm productivity. One of 

its advantages is the fact that it allows the analysis to be performed without imposing 

assumptions about the form of the production technology or its functional form. It is a 

non-parametric technique and the approach does not impose restrictions on the 

number of parameters required. Moreover, it is flexible as it allows multiple inputs and 

outputs. 

However, using DEA implies treating observations as non-stochastic. DEA is sensitive 

to outliers; therefore, it requires an in-depth preparation of the data, with implications 

for the structure of the sample. 

The estimation of the common production frontier implicitly assumes that all 

companies have access to the same technology and produce under virtually the same 

technological restrictions. Although we have attempted to capture some aspects, such 

as regional and subsector variations, with regional and sectoral dummies, it is likely 

that some of the firm heterogeneities were not fully controlled for and thus potentially 

affect the estimated results. 

The bootstrapping procedure applied in the report may have a twofold effect: it may 

both correct the bias in (in)efficiency estimates from the DEA and generate unbiased 

estimates for (in)efficiencies in the truncated regression. The procedure makes it 

possible to bias-adjust the coefficient estimates and calculate proper confidence 

intervals for statistical inference. However, bootstrapping tends to affect the structure 

of the data, potentially generating other forms of bias through overmanipulation of the 

data. A possible alternative is to develop an instrumental variable to control for the 

bias. However, this alternative was not seen as operational considering the available 

data. 

1.14. Data issues 

Data availability, as highlighted in the literature, remains a primary constraint, 

preventing in-depth and more nuanced analysis of the implications of R&D for firm 

performance. In this case, consistent reporting of R&D by firms in given countries is 

still elusive and prevents a reliable estimation of the magnitude of inefficiencies. The 

nature of data is also challenging as firms may operate in multiple sectors, blurring 

the boundaries between the sectors and their associated resources. The available data 

aggregate R&D investments for the company as a whole and do not specify the 

sectors or activities to which they were allocated. 

The lack of data on small and medium-sized firms in the available database prevents 

the extrapolation of results to the whole sector. 

Regarding the determinants of inefficiencies, the analysis falls short of capturing 

institutional and market structure implications for R&D effects (e.g. vertical 

integration), meaning that it is not possible to identify more nuanced effects of R&D. 

The analysis of the role of consumer-driven R&D (e.g. through demand for high-value 

food, environmental goods) and its implications for firm performance could not be 

addressed in this report owing to the lack of comparable data. 

The results from this exercise provide only an overview of the links between R&D and 

the overall performance of food-processing firms. Such exercise precludes 
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decomposing the impact of the structure and type of R&D on firm performance (e.g. 

process vs. product vs. organizational innovation; external vs. internal research). 

1.15. The challenges of interpretation and causal relationships 

The deviations from the production frontier that DEA generates are key to the analysis 

in this report, as this is the performance indicator potentially linked to the level of R&D 

investment. The estimated deviations of efficiency from the frontier are attributed to 

the inefficiency term, some of which are due to the low level of R&D investments (as 

our estimates suggest), some of which could be caused by other drivers that have not 

been fully accounted for in this study, while some could be due to noise, which is 

difficult to differentiate from the prime effect under scrutiny. 

Achieving a higher level of detail on how R&D affects firm performance requires better 

data or a different approach. In some cases, increasing the detail of the analysis may 

restrict the use of quantitative approaches (such as DEA). Instead, a more focused, in-

depth qualitative analysis of a narrowly defined industry and/or a case study approach 

might be more relevant or informative. 

Conclusions and policy implications 

Our firm-level data show that EU firms tend to be slightly smaller in terms of revenue, 

sales and number of employees than their North American competitors. However, they 

have similar ratios of net income/revenue and R&D expenditure to those from the 

USA/Canada. In contrast, Japanese firms appear smaller than EU firms, less profitable 

and more inclined to carry out corporate R&D but, on average, with less financial 

commitment. 

Our econometric estimates confirm the hypothesis that investment in R&D influences 

firm performance: food-processing firms that invest in R&D tend to be closer to the 

efficiency frontier than those that do not invest in R&D (i.e. private R&D has a 

negative effect on inefficiency). The estimates also point to decreasing marginal 

returns in reducing inefficiency (increasing efficiency) through private R&D. Our 

results also suggest that general public R&D is also positively associated with the 

efficiency of food-processing firms. 

When looking at the drivers of firm performance, country/region dummies capture 

differences and similarities in knowledge systems and the nature of sectors. 

Similarities can be detected in US and Japanese contexts. Furthermore, a less 

favourable eastern European (NMS) context relative to the performance of firms from 

old EU Member States is identifiable from the exercise. However, the results suggest 

that gains from additional investment in R&D could be greater in NMS than in old EU 

Member States or in the USA. 

Despite the comprehensiveness of the analyses, the findings of this report have to be 

considered with some caution on account of the data limitations. The persistent lack of 

R&D reporting in certain countries in the EU may create biases in the estimated 

effects. Furthermore, the sample contains many large firms from the food-processing 

industry and small firms are under-represented. These data limitations do not allow 

full extrapolation of the results to the whole food-processing industry. 

Overall, the results of this report show that R&D in the food-processing industry is 

associated with higher firm performance. At the same time, the sample used in this 

report includes medium-/high-tech (and large) food-processing firms, challenging the 

generally held view that the sector is a low-tech sector. Hence, growth opportunities 

could also be expected from this type of non-high-tech innovative sector. However, 

results that suggest heterogeneity in R&D effects across EU Member States may point 

to differences in the implications of innovation policies across EU regions. 
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Appendix: data annexes 

An alternative data source for our analysis in this report could have been the EU-

EFIGE/Bruegel-UniCredit dataset. The EFIGE (European firms in a global economy) 

project, supported by the Directorate-General for Research of the European Commission 

through its Seventh Framework Programme (FP7), aims to explore firm dynamics in 

these areas: 

 firm structure (company ownership, domestic and foreign control, management) 

 workforce (skills, type of contracts, domestic vs. migrant workers, training) 

 investment, technological innovation, R&D (and related financing) 

 export and internationalization processes, market structure and competition 

 financial structure and bank–firm relationship. 

A survey of SMEs was conducted to get meaningful information about companies in 

seven EU Member States (Austria, France, Germany, Hungary, Italy, Spain and the UK). 

The information collected concerns the year 2008 and changes that occurred in the 

preceding years. However, the dataset is not a panel as only one year is considered. The 

data are extraordinarily rich because comparable information about innovative activities 

are included. However, the usefulness of the data for our analysis is rather limited 

because they mostly contain only qualitative assessments of innovative activities and not 

information about the intensity of these activities (e.g. research expenditure).The same 

holds true for information such as revenue, capital input and labour use. Moreover, 

because the information is confidential it is not possible to identify firms. Even a firm’s 

affiliation to a specific sector is hidden. It is possible to identify that a firm belongs in 

country j to sector i. However, it not clear which NACE (Statistical Classification of 

Economic Activities in the European Community) Revision 2 sector i relates to. Only 

guesses are possible. Because the EFIGE dataset is structured in this way, we did not 

consider the dataset for further analysis. 

Another alternative could have been to rely on the Community Innovation Survey (CIS) 

for the analysis. Since the 1980s, a series of individual innovation surveys has been 

conducted based on the decision of the EU Member States to pool their efforts and 

create a methodology consistent with the Oslo Manual (OECD/Eurostat, 2005). However, 

on the one hand, there were inadequate methodological standards; on the other hand, 

the time frame was very tight. Nevertheless, it represented a significant step towards 

standardizing the process and was therefore an important contribution to the 

comparability of collected international data, with surveys outside the EU. The first 

survey had a very broad definition of ‘innovative companies’ so that a relatively large 

number of companies was included. In subsequent surveys, service innovations were 

also taken into consideration. In the latest survey, design innovations were included 

such as organizational changes or marketing.The survey is carried out in each country by 

appropriately authorized organizations based on EU-wide policies and the Oslo Manual 

(OECD/Eurostat, 2005). Typically, a sample of enterprises is taken, which is to be 

representative of industry, company size and region. In terms of company size, a 

number of companies with less than a certain number of employees are selected, and an 

attempt is made, at least in most countries, to include all the largest companies. The 

survey is conducted at the level of individual companies and each selected company will 

receive a questionnaire. Companies that organize their activities in separate legal 

business units could be interviewed more than once. 

Micro-economic data can be obtained via the Safe Centre at the premises of Eurostat in 

Luxembourg or consulted anonymously via CD-ROM. Eurostat also offers access to an 

EU-wide dataset for selected countries. Some non-EU member countries carry out similar 

surveys with a comparable method. These include Canada, Australia, New Zealand and 

South Africa. However, for our analysis we had no access to the CIS database, so we 

had to rely on the information obtained from the Compustat dataset. 
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