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Abstract

We study the problem of learning a sparse linear regression vector under additional conditions

on the structure of its sparsity pattern. This problem is relevant in Machine Learning, Statistics

and Signal Processing. It is well known that a linear regression can benefit from knowledge that

the underlying regression vector is sparse. The combinatorial problem of selecting the nonzero

components of this vector can be “relaxed” by regularising the squared error with a convex

penalty function like theℓ1 norm. However, in many applications, additional conditions on

the structure of the regression vector and its sparsity pattern are available. Incorporating this

information into the learning method may lead to a significant decrease of the estimation error.

In this thesis, we present a family of convex penalty functions, which encode prior knowl-

edge on the structure of the vector formed by the absolute values of the regression coefficients.

This family subsumes theℓ1 norm and is flexible enough to include different models of spar-

sity patterns, which are of practical and theoretical importance. We establish several properties

of these penalty functions and discuss some examples where they can be computed explicitly.

Moreover, for solving the regularised least squares problem with these penalty functions, we

present a convergent optimisation algorithm and proximal method. Both algorithms are useful

numerical techniques taylored for different kinds of penalties.

Extensive numerical simulations highlight the benefit of structured sparsity and the advan-

tage offered by our approach over the Lasso method and other related methods, such as using

other convex optimisation penalties or greedy methods.
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Chapter 1

Introduction

Machine Learning provides a set of techniques used to automatically analyse huge amount of

data. Two of the most common goals for this analysis are description and prediction, for which

we distinguish between Unsupervised Learning and Supervised Learning.

In Unsupervised Learning, the aim is to highlight structures of the data. One common

method is to cluster together unlabelled points, so as to emphasise their similarity. Another

common method is the analisys of the principal components ofthe data, useful both for assess-

ing the main factors and for dimensionality reduction.

In Supervised Learning, the data is labelled and the aim is tobuild a model for the rela-

tionship between labels and data. Then, the model can be usedto predict the labels of new data.

As this thesis will focus on the supervised setting, we describe the objects of the analisys. The

observations forming the data will be elements in a setX , and each element will come with a

label belonging to a setY. The training set is the collection ofm pairs of observations and their

labels, or{(xi, yi)}mi=1 ⊆ X ×Y. We assume that the elements of this set are drawn randomly,

independently and identically distributed, from the spaceX × Y. This set will be used by the

algorithm tolearn the model.

As the input setX , we will consider the Euclidean spaceRn. This is already general

enough to include most of the common varieties of data, such as for instance time series, texts

and images. As the output setY, we will consider the real lineR, so that we are performing a

regressionof the data. This is opposed to aclassificationof the data, which is the case when

the set is finite (binary or multiple classes classification).

The object of the learning will be the determination of a predicting functionf : X → Y
belonging to a predefined class of functionsF (in our case, the class of real valued functions).

This function will have to encode the relationship between the input and the output: if the

complexity of the function, the dimensionality of the data and the number of training points

permit it, the functionf will map exactly all the observations in the training set with their
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respective labels. We refer to this situation as Interpolation.

Interpolation of data is not always possible nor desirable,because a function that interpo-

lates the points of the training set will often perform poorly for prediction. When the function

does not interpolate, there will be a difference between thepredictionf(x) and the actual value

y for at least some points in the training set. This differenceis usually measured with a loss

functionL : Y × Y → R, which can simply be the squared difference(y − f(x))2.
The Risk associated to any functionf depends on the loss function, which is a design

choice made using knowledge of the data, and on the joint distribution D of the data and the

labels. The risk is defined as

R(f) =

∫

X×Y
L(y, f(x))dD.

We want to find a function that minimises this quantity but, asD is unknown, this is usually

impossible. An approximation to the risk minimisation is given by the empirical risk

Remp(f) =
1

m

m
∑

i=1

L(yi, f(xi)),

which will be the object function of our minimisation problem.

If the data can be interpolated, there will be an infinite number of functions such that

Remp(f) = 0. To have a unique solution one common technique is Regularisation: we min-

imise the sum of the loss function and a penalty termP weighted with a coefficientρ > 0. The

learned function will be

f̂ = argmin
f∈F

{

Remp(f) + ρP (f)
}

.

The penalty term will treat different functions in different ways, so for instance it can be used

to penalise complex functions more: as a result, the solution function will tend to be simpler.

Moreover, ifP is strictly convex, the solution to the problem is unique.

We will apply regularisation to solve the problem of sparse estimation. This problem is

becoming increasingly important in machine learning, as well as in statistics and signal pro-

cessing, and consists in finding a sparse solution, that is one with few nonzero parameters. In

its simplest form, we consider linear functionsf(x) =
∑

i βixi, that are completely defined

by a coefficient vectorβ ∈ R
n (so we can consider bothL andP as functions ofβ). The

problem in this form consists in estimating the regression vectorβ∗ ∈ R
n from a set of linear

measurementsy ∈ R
m, obtained from the model

y = Xβ∗ + ξ,

whereX is anm× n matrix, which may be fixed or randomly chosen andξ ∈ R
m is a vector

which results from the presence of noise.
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An important rationale for sparse estimation comes from theobservation that in many

practical applications the number of parametersn is much larger than the data sizem, but

the vectorβ∗ is known to be sparse, that is, most of its components are equal to zero. Under

this sparsity assumption and certain conditions on the datamatrix X, it has been shown that

regularization with theℓ1 norm, commonly referred to as the Lasso method1 [49] , provides

an effective means to estimate the underlying regression vector, see for example [7, 11, 28, 52]

and references therein. Moreover, this method can reliablyselect the sparsity pattern ofβ∗ [28],

hence providing a valuable tool for feature selection.

In this thesis, we are interested in sparse estimation underadditional conditions on the

sparsity pattern of the vectorβ∗. In other words, not only do we expect this vector to be sparse

but also that it isstructured sparse, namely certain configurations of its nonzero components

are to be preferred to others. The motivation for favouring structured sparsity arises in several

applications, ranging from functional magnetic resonanceimaging [16, 54], to scene recogni-

tion in vision [17], to multi-task learning [1, 25, 37] and tobioinformatics [44], see [24] for a

discussion.

The prior knowledge that we consider in this thesis is that the vector|β∗|, whose com-

ponents are the absolute value of the corresponding components ofβ∗, should belong to some

prescribed convex subsetΛ of the positive orthant. For certain choices ofΛ this implies a con-

straint on the sparsity pattern as well. For example, the setΛ may include vectors with some

desired monotonicity constraints, or other constraints onthe “shape” of the regression vector.

Unfortunately, the constraint that|β∗| ∈ Λ is nonconvex and its implementation is computation-

ally challenging. To overcome this difficulty, we propose a family of penalty functions, which

are based on an extension of theℓ1 norm used by the Lasso method and involves the solution

of a smooth convex optimisation problem. These penalty functions favour regression vectorsβ

such that|β| ∈ Λ, thereby incorporating the structured sparsity constraints.

Precisely, we propose to estimateβ∗ as a solution of the convex optimization problem

min
{

‖Xβ − y‖22 + 2ρΩ(β|Λ) : β ∈ R
n
}

(1.0.1)

where‖·‖2 denotes the Euclidean norm,ρ is a positive parameter and the penalty function takes

the form

Ω(β|Λ) = inf

{

1

2

∑

i∈Nn

(

β2i
λi

+ λi

)

: λ ∈ Λ

}

.

As we shall see, a key property of the penalty function is thatit exceeds theℓ1 norm of

β when |β| /∈ Λ, and it coincides with theℓ1 norm otherwise. This observation suggests a

1P (β) =
∑

i |βi|, see Section 2.1.
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heuristic interpretation of the method (1.0.1): among all vectorsβ which have a fixed value

of the ℓ1 norm, the penalty functionΩ will encourage those for which|β| ∈ Λ. Moreover,

when |β| ∈ Λ the functionΩ reduces to theℓ1 norm and, so, the solution of problem (1.0.1)

is expected to be sparse. The penalty function therefore will encourage certain desired sparsity

patterns. Indeed, the sparsity pattern ofβ is contained in that of the auxiliary vectorλ at the

optimum: if the setΛ allows only for certain sparsity patterns ofλ, the same property will be

“transferred” to the regression vectorβ.

There has been some recent research interest on structured sparsity, see [20, 22, 24, 29,

34, 56, 57] and references therein. Closest to our approach are penalty methods built around

the idea of mixedℓ1-ℓ2 norms. In particular, the Group Lasso method [57] assumes that the

components of the underlying regression vectorβ∗ can be partitioned into prescribed groups,

such that the restriction ofβ∗ to a group is equal to zero for most of the groups. This idea has

been extended in [24, 58] by considering the possibility that the groups overlap according to

certain hierarchical or spatially related structures. Although these methods have proved valuable

in applications, they have the limitation that they can onlyhandle more restrictive classes of

sparsity, for example patterns forming only a single connected region. Our point of view is

different from theirs and provides a means to designing moreflexible penalty functions which

maintain convexity while modeling richer model structures. For example, we will demonstrate

that our family of penalty functions can model sparsity patterns forming multiple connected

regions of coefficients.

In many case of interest the penalty functionΩ(β|Λ) cannot be easily computed, and the

solution to the associated regularization problem (1.0.1)is difficult to compute. We propose two

methods for finding the solution. Firstly, a block coordinate descent algorithm inspired from [1],

which is efficient but feasible only for a limited choice of set Λ. Secondly, an efficient proximal

point method to solve regularised least squares with the penalty functionΩ(β|Λ) in the general

case of setΛ described above. The method combines a fast fixed point iterative scheme, which

is inspired by recent work by [33] with an accelerated first order method equivalent to FISTA

[5].

We present a numerical study of the statistical properties of the penalty terms, considering

several different sparsity patterns. The error of the estimate is compared to what can be achieved

with state of the art greedy methods that can handle similar structures, like StructOMP ([20]).

We also present efficiency experiments showing the performances of the proximal point

method in solving the optimisation problem: not only it is faster than existing toolboxes, but it

can handle much larger problems as well.
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The thesis is organised as follows. In Chapter 2 there is background information about

sparsity and structured sparsity, with a review of recent papers related to our work.

In Chapter 3 we present the technique, describing the properties of our penalty functions in

Section 3.2, examples of the setΛ of special interest in Section 3.3, the dual problem in Section

3.4 and special cases of our functions in Section 3.5.

Next, in Chapter 4, we present several ways to solve numerically the proposed penalised

problems. In Section 4.1 we present an alternating algorithm, and in Section 4.2 a proximal

method with subgradient approximated by a the fixed point of aparticular operator.

Part of this work, mostly from Chapter 3, appeared in the proceedings of the Twenty-Fourth

Annual Conference on Neural Information Processing Systems (NIPS 2010) [32] (in particular

Section 3.1,§3.2.2,§3.3.1,§3.3.2,§3.3.3, Section 4.1, and experiments from Section 5.1). An

extende version the same paper is to appear in Advances in Computational Mathematics.
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Chapter 2

Background

We consider the supervised problem of learning a linear model. We make two general assump-

tions on the model we wish to learn. The first one is of sparsity, that is the vast majority of the

regression coefficients are zero. This is a widely used assumption both because it is realistic in

many situations, and because it leads to computational advantages.

Secondly, we make the assumption that the nonzero components have a structure. The pur-

pose of this assumption is to improve the estimate of the model by exploiting prior information.

There are several different types of structures that can be formulated, leading to a very general

problem that can be specified in many useful manners.

To find the estimate of the linear model we will explore two broad approaches. The first

approach is to use greedy methods. These algorithms proceediteratively including in the model

a few components at a time, the ones that maximise the gain at the current step. Generally

speaking, this approach is very fast but has the drawback that it can produce a suboptimal

solution.

The second approach is to formulate the problem as a regularised convex problem, where

the estimate is found as the minimiser of a balance between a loss function and a penalty term

which promotes structured sparsity. Generally speaking, this approach is computational less

appealing, but has the theoretical guarantee of a unique minimum. For this reason, we will

follow this second approach in the thesis. This approach is also less intuitive, so we support it

with a geometrical and a probabilistic interpretation.

Our problem is closely related to the area of compressive sensing, which belongs to the

signal processing field of research. In compressive sensing, the signal of interest is sparse

or closely sparse (compressible). We will discuss briefly this perspective presenting a greedy

approach to it.

The chapter is organised as following. Section 2.1 containsan introduction to the linear

problem and to sparsity. In Section 2.2, we review the greedymethods approach used to pur-
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suit structured sparsity and in Section 2.3 we review the convex optimisation approach, with a

selection of recent algorithms.

2.1 Standard sparsity

We consider a linear model

y = Xβ∗ + ξ,

whereβ∗ ∈ R
n is a vector of regression coefficients,y ∈ R

m is the vector of observations

which depends linearly onX ∈ R
m×n, the data matrix, andξ ∈ R

m is a vector of Gaussian

noise. We address the problem of reconstructing the underlying vectorβ∗ given the data.

The elements of the vectorξ are independent GaussianN (0, σ2), where the variance of

the noiseσ2 is known. The noiseless version (ξ = 0) is treated similarly.

We consider the case when the matrixX is underdetermined: the number of observations

m is (much) smaller than the dimensionn. If we know, as it happens is many real situations, that

the vectorβ∗ has few nonzero components, then we can exploit this prior knowledge using some

techniques to reconstruct it from(X, y). In particular, we usually assume that the underlying

vector is at mosts-sparse, that is it has at mosts nonzero components. Usually,s is less than

m, so it is much less thann. Under some properties on the data, the reconstruction of the

underlying vector is possible.

We are interested in sparse models for several reasons. The sparsity assumption reduces the

complexity of the learned function, which in turn has computational and statistical advantages.

This assumption is also reasonable, as it appears naturallyin several contexts. A sparse solution

is also easier to interpret, because it is an implicit feature selection.

The problem is to find the vector̂β which solves

min
β∈Rn

{L(y,Xβ)} ,

whereL is an error function, a convex and differentiable function with respect to the second

variable. For simplicity, we can consider the error term‖y −Xβ‖22, but the logistic regression

or other functions are possible as well.

In the case of interpolation described above, the error termcan be zero. However, this can

be an undesirable feature, because the predictive power of the regression could be poor. More-

over, it can add variability to the results. Two ways are usually followed to address these issues:

either a greedy selection of variables or a regularisation of the problem. The next sections

describes these approaches and some specific examples of recent and popular techniques.

It should be pointed out that a greedy selection refers to an algorithm that solves a prob-

lem (including regularised objective functions), while regularisation is a slight modification to
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the original problem, which can be solved by different techniques (including greedy methods).

We acknowledge that the two concepts are distinct, but we contrast them because in the liter-

ature they usually form the focus of two different approaches to sparsity: greedy methods are

usually used to solve the noncovex problem of finding a sparsesolution, while the focus of

regularisation is to make a convex approximation to that problem.

Greedy algorithms can solve both convex and nonconvex problems, proceeding in an iter-

ative way. At each step the model is enriched by adding the variable or group of variables that

are more relevant, that is that best explain the output and minimise the residual.

The regularisation methods change the problem into

min
β∈Rn

{L(y,Xβ) + ρP (β)} ,

whereP is a convex penalty function which encourages the vectorβ to have some proper-

ties. The penalty term is weighted with a nonnegative constant ρ which changes the amount of

regularisation. As bothL andP are convex functions, the problem is convex, the minimiser is

unique and it is possible to find a solution numerically with standard techniques, see for instance

[10].

Lasso. In the sparsity assumption on the vectorβ∗ we are looking for a vector with at most

s nonzero components out ofn. This problem is combinatorial in nature, so computationally

hard to solve. Conceptually it is the same as regularise withP (β) = #{βi : |βi| > 0}, which

is a nonconvex problem.

A common technique for sparsity (Lasso, see e.g. [49]) is to consider insteadP = ‖β‖1.

This problem is well studied, convex, and its solution is an approximation to the exact noncon-

vex problem.

The standard sparsity is an assumption only on the support ofβ∗, but no relationships

between the nonzero variables are defined and exploited. In the Lasso, all components are

treated alike. In the next sections, we will see how a structure on the support ofβ∗ can be

defined in different ways. This structure will be used as information to better recover vectorβ∗.

While describing structures of nonzero sparsity, it is often useful to put components ofβ

into groups. A generic group of indices will beJ ⊆ Nn = {1, . . . , n}, and the vector containing

only the components of the vectorβ indexed by the elements of the groupJ will be βJ . The

set of all groups will beJ . In general,J needs not be a partition ofNn , as some groups may

overlap (i.e. some indices may belong to more than one group)or they may not exhaust the set

Nn (i.e. some indices may not belong to any group).
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2.2 Structured sparsity with greedy methods

Greedy methods for structured sparsity are iterative algorithms which estimate the model using

only the features belonging to an active set of indicesA ⊆ Nn, and keep adding elements toA

until a suitable stopping criterion is reached. At stept, the estimateβ(t) is |A|-sparse, and the

differencer(t) = y −Xβ(t) between the output and the prediction is called the residual.

In the language of sparse approximation, we say thatX is a dictionary ofn atomsX =

[x1, . . . , xn], and we assume thaty has ans-term representation over the dictionaryX. Also, it

is often assumed that columns ofX are normalised, so that each has1 as the value ofℓ2 norm.

The order in which components are chosen is set as to maximisethe improvement of the

estimate. Usually, an estimate is good if its residual is small.

These methods are usually fully deterministic, but the order in which they include com-

ponents depends heavily on the data matrixX, so their performance may be highly variable.

Moreover, the way to resolve ties may be random.

The simplest algorithm we consider is Orthogonal Matching Pursuit, OMP (see [50]),

which can be extended quite naturally to recover clusters ofnonzero components (Clustered

and Sparse Regression algorithm, CaSpaR [42]).

Then we describe StructOMP ([20]), another extension of OMPbased on information

theory. This algorithm tries to learn a model which is as lesscomplex as possible. For its

flexibility and its superior performances to others greedy methods, it will be the focus of the

experimental comparison with our convex optimisation approach.

Finally, we describe how the compressive sensing fits into the general sparsity discussion

we are making, and we present the Model-based version (see [35]) for structured sparsity of the

algorithm CoSaMP, similar to OMP.

The algorithms described in this chapter are summarised in Appendix C for easy reference.

In § 2.2.1 we present a simple greedy algorithm and a natural extension. In§ 2.2.2 we

describe the algorithm based on information theory. In§ 2.2.3 we review the compressive

sensing viewpoint on sparsity, presenting a greedy method solution to it.

2.2.1 OMP and CaSpaR

OMP. The algorithm Orthogonal Matching Pursuit (OMP), originally devised for sparse ap-

proximation, can be used for signal recovery as explained in[50]. The algorithm performss

iterations, repeatedly selecting the column ofX that has the largest correlation with the current

residual. OMP is equivalent to the statistical technique known as Forward Stepwise Regression

(see e.g. [19]).
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The algorithm will build a sequence of matricesX(0), X(1), . . ., X(s), adding columns

from X. Initially, we define the matrixX(0) as empty, and the residualr(0) asy: we have

not yet an estimate, so the whole signal is unexplained. At the generic stept, the algorithm

performs two operations: it selects the index of the featureto add to the model, and it produces

a new estimate. The index is selected as

j∗ = argmax
j=1,...,n

{

|〈r(t−1), xj〉|
}

, (2.2.1)

which corresponds to the column mostly correlated with the residual. A tie may be broken

deterministically by taking the lower index for which the maximum value is achieved. The

columnxj∗ is included in the active set, and is concatenated to the current matrix,X(t) =

[X(t−1), xj∗ ]. Then, the new estimate for the signal is computed setting

β(t) = argmin
β∈R|A|

{

‖X(t)β − y‖2
}

. (2.2.2)

Consequently, the new residual is nowr(t) = y − X(t)β(t). Note that the vectorβ(t) has one

component for each element in the active set, and that the estimateβ̂ for the full model in any

given stept will be produced by settinĝβj = β
(t)
j if j ∈ A, andβ̂j = 0 otherwise.

The algorithm has a greedy approach in the sense that, at eachstep, it tries to minimise the

residual as much as possible. If we consider the recurrence relation

r(t+1) = y −





∑

j∈A\{j∗}
xjβ

(t+1)
j + xj∗β

(t+1)
j∗



 = r(t) − xj∗β(t+1)
j∗ ,

then the length of the residual can be written as
〈

r(t+1), r(t+1)
〉

=
〈

r(t), r(t)
〉

+
(

β
(t+1)
j∗

)2
− 2β

(t+1)
j∗

〈

r(t), xj∗
〉

.

Using the assumption that〈xj∗, xj∗〉 = 1, this expression supports the selecting criterion for

j∗ of Equation (2.2.1). Moreover, note that the residual is orthogonal to all the elementsxj for

j ∈ A, so the new selected indexj∗ will not yet be inA, and no column will be selected twice.

This algorithm will run untils indices will be added to the model, so the numbers must

be known a priori. Alternatively, a tuning parameterτ can be used to stop the algorithm when

the contribution of the added column, measured as the decrease of the residual, is negligible.

The solution to problem(2.2.2) can be computed incrementally from the solution of the

previous step, and is thus very efficient. The computationalcost of the algorithm is dominated

by the first step, that is computing(2.2.1) (see [50]).

For the algorithm to achieve exact recovery, the output should come noiselessly from the

input. Moreover, the matrixX should be incoherent, that is that the quantity

µ(X) = max
1≤j,k≤n

|〈xj , xk〉|,
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which is called the coherence of matrixX and which is the maximum inner product between

different columns ofX, should be small. Otherwise, the algorithm could select indices not in

the support of the original vector.

The algorithm is very easy to implement, and can be fully analysed theoretically because

of its simplicity. It does not promote a particular structure in the sparsity pattern of the estimate:

we will focus on two of its many variants that indeed promote structure.

CaSpaR. In some applications, the underlying model is likely to be sparse and to consist of few

connected regions of nonzero components. In [42], as a particular example, they assume that in

a protein the mutations tend to cluster around “active sites”. This is sustained by the knowledge

of proteins’ structures: it is in the active sites that proteins bind and have interactions with

molecules. To exploit this assumption for prediction of mutations, they developed the algorithm

Clustered and Sparse Regression (CaSpaR), a variant of forward stepwise regression procedures

like OMP. Unlike the simplest original algorithm, each correlation
〈

r(t−1), xj
〉

is weighted with

a constantWj so as to favour the selection of indices near the active set.

Initially, all weights are set to1, so that no column is privileged. The two steps from

Equations (2.2.1) and (2.2.2) are initially performed unchanged. At the generic iteration t, just

before step(2.2.1), a new set of weights is computed:

Wj =
1

|A|
∑

i∈A
K(d(i, j)),

for all j ∈ Nn. The functiond is a generic distance between two indicesi andj, andK is a

kernel function (non-negative integrable function). The weight for indexj is the average of the

distances, transformed by the kernel function, betweenj and all elements inA. The step from

Equation (2.2.1) is now changed as

j∗ = argmax
j /∈A

{

Wj |〈r(t−1), xj〉|
}

, (2.2.3)

with the result that the selected index will be encouraged tobelong to one of the clusters, defined

by the distanced, of elements in setA.

The suggested choice for the kernel function is the mixture

K(x) = α+ (1− α)Ke(x),

whereKe is the Epanechnikov kernel, that isKe(x) =
3
4(1 − x2) for |x| ≤ 1 andKe(x) = 0

otherwise, although other mixtures are possible. The mixing parameterα ∈ [0, 1] controls the

effect that the distances between the index and the clustershas on the weights: whenα = 1, all

weights become equal and the algorithm reduces to the original OMP.
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The natural choice for the distance function isd(i, j) = |i − j|, but it could be modified

according to the situation. For instance, if the model is embedded in a graph, thend could

measure the length of the shortest path between nodesi andj.

The stopping criterion for the algorithm is|〈r(t−1), xj∗〉| < τ , that is when the improve-

ment of addingj∗ drops below a positive threshold.

The mixing parameterα gives the theoretical guarantee that CaSpaR cannot be outper-

formed by the standard OMP. However, the ideal value for the parameter must be tuned via

cross validation, and by the same means the thresholdτ must be tuned as well. The grid

search becomes a computational challenge, even if we stick with Ke: the use of a kernel with a

parametrised bandwidth introduces a third parameter and another degree of complexity.

Even if the algorithm is flexible, as it can be customised by changing the definition ofd,

it is still suitable only for a particular structure, namelyconnected regions. The next variant of

OMP is more general, and consequently less simple.

2.2.2 StructOMP

The algorithm StructOMP, proposed by [20], is a variant of standard OMP which is based on

information theory. It lies on a generalisation of the concept of sparsity: a sparse vector has a

low number of nonzero components, which means that it has a low content of information. The

algorithm hinges on how the information is encoded, so that supports with particular structures

may be easier to describe and hence are promoted. It is a variant of OMP in the sense that, at

each step, it includes one or more columns into the model, so as to both maximise the decrease

of the value of the loss function and minimise the increase ofthe complexity of the model.

Let F be a nonempty subset of the setNn of indices. By definition, the coding length is a

function cl(F ) such that
∑

F⊆Nn,F 6=∅
2−cl(F ) ≤ 1. (2.2.4)

We use the coding length to define the complexity of the setF as the function cs(F ) = |F | +
cl(F ), where|F | is the number of elements ofF . Finally, we can define the complexity of a

coefficient vectorβ ∈ R
n as the complexity of the simplest set containing the supportof β:

c(β) = min
F⊆Nn

{cs(F ) : supp(β) ⊆ F}. (2.2.5)

Block sparsity. A first useful type of structured sparsity arises by considering blocks of vari-

ables. A blockB is a set of indices, and the setB is the set of all blocks in which we are

interested: the algorithm will promote models with a support that can be constructed as the

union of few elements ofB.
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The block set consists of a subset of the power set (all possible subsets) ofNn, that isB ⊆
2Nn . To be well-formed, the sets must be an exhaustive collection of indices:∪B∈BB = Nn.

This condition follows trivially if all singletons belong to the block set, or{j} ∈ B, for all

j ∈ Nn. Moreover, this later assumption implies that anyF ⊆ Nn can be expressed as a union

of elements ofB, which does not follow from the first condition alone.

We assume that cl0 is a coding length function for elements of the block set. A generic

elementF ⊆ Nn can be written as the union of elements ofB, so its coding length can be

defined in terms of the function cl0:

cl(F ) = min

{

∑

B∈B
[cl0(B) + 1] : F = ∪B∈BB

}

. (2.2.6)

This coding length can be used to define a cost function c for sets of indicesF , using Equa-

tion (2.2.5).

For instance, we can consider the blocks of consecutive indices, that isB =

{{a, a+ 1, . . . , b} , 1 ≤ a < b ≤ n}, and assume that each set has the same code length. Then,

each of these blocks provides2 log2(n) bits of information,log2(n) to store the position of the

first index andlog2(n) to store the number of indices. Consequently, cl(B) = 2 log2(n) for any

B ∈ B. Since2−cl(B) = 1
n2 and there are|B| = n(n−1)

2 such blocks, then Equation(2.2.4) is

satisfied and cl is indeed a code length function. This block set can be used to promote models

where the support is made of connected regions of indices, like in the CaSpaR algorithm.

The algorithm. StructOMP solves the problem

β̂ = argmin
β∈Rn

{L(β) : c(β) ≤ s}, (2.2.7)

wheres is a parameter controlling the complexity of the learned vector. The focus is on the

quadratic lossL(β) = ‖Xβ − y‖22, as it allows for some formula simplification.

The supportF of the estimatêβ produced by Problem (2.2.7) is a union of blocks inB.

The blocks are chosen one per step, so at stept of the algorithm, a new blockB(t) is added to

the model: the support of the estimate at stept will be supp
(

β(t)
)

= F (t) = B(1) ∪ . . . ∪B(t).

Note that the algorithm ignores blocks that can be expressedas the union of blocks already

in the model. Moreover, it will automatically add all blocksfor which the complexity of the

support is not increased.

From stept−1 to stept, the new estimate is computed such that the loss function decreases

as much as possible, and at the same time the cost increases aslittle as possible (because of the
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information necessary to store blockB(t)). Then the goal is to maximise the gain ratio

λ(t) =
L
(

β(t−1)
)

− L
(

β(t)
)

c(β(t))− c(β(t−1))
. (2.2.8)

WhenL is the quadratic loss,λ(t) can be approximated by a functioñφ of the added blockB:

λ(t) ≈ φ̃(B) =
‖XT

B−F (t−1)(Xβ
(t−1) − y)‖22

c(B ∪ F (t−1))− c(F (t−1))
,

which is easy to compute by testing all blocks in the block set. The algorithm terminates when

the complexity of the current estimatêβ is larger than a threshold.

Other block sets. Grouping indices together in a single block creates a structure in the sparsity

pattern. We revert to standard sparsity when the indices arenot grouped, and each block is a

singleton, orB = {{j} : j ∈ J }. A single index providesn bits of information, to store

its position, so cl0({j}) = log2(n) for all j ∈ Nn. Since a setF is uniquely expressible as

the union of|F | singletons, by Equation(2.2.6) we have cl(F ) = |F | (log2(n) + 1), and its

complexity is c(F ) = |F | (log2(2n) + 1).

The most general setting considered in [20] is the graph sparsity. The model is embedded

into a graphG, so that each component is represented by a node (but the graph may contain other

nodes as well, for further generality). In this case, the coding length is defined as a function

of the neighbours of each node. The algorithm promotes structures of nonzero components

clustered together. In fact, a connected region is easier todescribe because its coding length is

computed using only the information about the boundary.

A grid graph has a lattice of nodes: each one represents a pixel of an image and it is

connected with its four adjacent pixels. Thanks to the specific topology of the grid, the clusters

promoted by the algorithm are regions that are visually connected. The application is called

denoising, and corresponds to the case whenX = I andy is the observed version, corrupted

with noise, of the original imageβ∗. If we have reasons to assume thatβ∗ has the property that

it consists of a foreground of connected regions over a blackbackground (zero values), then we

can use the algorithm to recover it.

A second specific example of graph sparsity is given by a tree graph, where the blocks

are all the connected subgraphs, including the single nodes. Again, a possible application is

in image manipulations. Any image can be decomposed using a wavelet basis, that is a set of

orthogonal functions that represent successive approximations, coarser to finer, of the data, and

the corresponding wavelet coefficients. By construction, these functions arrange themselves

hierarchically into a tree graph, where a wavelet is generated from the wavelet of the father
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node. Here the assumption is that the nonzero coefficients ofthe image are clustered in the

tree. The algorithm is performed in the wavelet space, and the estimated wavelet coefficients

are used to reconstruct the estimated image.

This algorithm represents a good compromise between easy touse and effectiveness. It is

conceptually simple, and it always involves just the selection of a block of variables at a time.

Yet, it is general enough to encompass several different structures, even nonconvex constraints

such as contiguous regions in a graph. Moreover, it can be easily adapted to other structures, as

only the block set and the coding length needs to be redefined.

One possible drawback of the algorithm is that it can be computationally expensive. In

fact, at each step all blocks must be evaluated for inclusion: the dimension of the block set is

n from the the starting point of the standard sparsity, and more and more blocks are added in

other cases. The coding length of the support, as per formula(2.2.6), depends on the best union

of blocks that describes it, which leads to several different configurations to try.

Finally, because it is a greedy algorithm, it suffers from the possibility to be stuck into a

local minimum. Consequently, it may happen that a block, which contains variables that do

not belong to the true model, is selected because it maximises the gain ratio (2.2.8). Subse-

quently, more wrong variables are likely to be selected fromthe algorithm, because of the low

information cost they carry. When this happens, the result estimate can be very poor.

2.2.3 Compressive Sensing

We review some concepts of compressive sensing following the exposition of [4]. The frame-

work of compressive sensing is that we observe a vectory = Φβ that is generated from a signal

β ∈ R
n via a measurement matrixΦ. Moreover, we assume that the signal can be represented

asβ = Ψα, where the square matrixΨ contains a predefined basis, while the vectorα contains

the coefficients of the representation.

The signalβ is said to be sparse if at mosts elements ofα are nonzero, wheres is much

smaller thann. This definition of sparsity is at the level of the representation of the signal, while

the signal itself may not be sparse. We can always assume for simplicity thatΨ is the identity

matrix, so that the signal has few nonzero components, andy = Φα.

The assumption of compressive sensing is that a signal (or its representation) is sparse.

This assumption can be relaxed by allowing the signal to be approximately sparse, or compress-

ible. This means that its sorted coefficients decay fast enough to be approximated satisfyingly

by ans-sparse vector.

More precisely, we consider a signalβ for which the elements are orderedβ(1), β(2), . . .

by decreasing absolute value, that is|β(i)| ≥ |β(j)| for i > j. Suppose that the signal decays in
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a power-law fashion, that is|β(i)| ≤ Gi−1/r for some constantsG andr. We approximateβ by

thes-sparse vectorβs which minimisese = ‖β−βs‖p, the error of the approximation computed

with theℓp norm. The vectorβ is calledq-compressible ifr < p ande ≤ (rq)−1/pGs−q, where

q = 1
r − 1

p : that is the error of the best approximation decays as a power-law whens increases.

Restricted Isometry Property. Compressive sensing theory relies on the definition of a key

property for matrices. We recall that an isometry is anm×nmatrixA such that‖Az‖22 = ‖z‖22
for all vectorsz ∈ R

n. That is, an isometry preserves the Euclidean length of any vector. This

property can be restricted to be true only fors-sparse vectors, and to allow the length of the

vector to be partially distorted. Precisely, a matrixA has the restricted isometry property if

(1− δ)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δ)‖z‖22

is true for alls-sparse vectors inRn. The positive constantδ controls the amount of relaxation.

This property is used to prove that the signal can be recovered. These results go beyond

the scope of this thesis, so we just give an intuition. If the matrixΨΦ has the restricted isometry

property (or justΨ if Φ = I), then eachm× s submatrices are close (up to a constant) to be an

isometry. This preserves distance and the information of a sparse or compressible signal, and

thus guarantees that the signal can be recovered.

To recover a sparse signal, we should solve the problemminβ {‖β‖0} such thaty =

Φβ. This problem is an NP-hard combinatorial problem, and the recovery is not stable when

the observation is noisy. A stable and feasible recovery canbe made either by relaxing the

problem using convex optimisation (see Section2.3), or using an iterative greedy algorithms.

Examples of greedy algorithms especially designed for compressive sensing include Iterative

Hard Thresholding, IHT ([8]) and Compressive Sampling Matching Pursuit, CoSaMP ([35]).

Model-based CoSaMP. An extension of compressive sensing to structured signalswas consid-

ered in [4], where the recovery algorithm CoSaMP is modified.We will not describe CoSaMP

as it is similar to OMP (see§ 2.2.1). The notion of compressible signal is extended to the

one of structured compressible signal, and the original algorithm is adapted to handle general

structures. In particular, tree sparsity and block sparsity are considered.

We define a structure by allowing only signals with supports belonging to the union of

predefined sets. IfΩm is one of the allowed supports, then we defineXm to be the subspace of

R
n containing all signalsβ such that supp(β) ⊆ Ωm. The structured sparsity model is defined

asM = ∪m≥1Xm. The restricted isometry property used in the analysis of this algorithm is

restricted to vectorsβ ∈ M.
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The algorithm depends on the computation of the best structured sparse approximation of

the signal:

M(β) = argmin
z∈M

{‖β − z‖2} ,

which is the projection of a signal on the sparsity modelM. The algorithm has been adapted

specifically for tree sparsity and block sparsity. In these two cases, known procedures compute

the projection efficiently.

At each step, the support of the current estimate is merged with the support ofM(XT r),

wherer is the current residual. The resulting set, let it beT , is used to form a new estimateb:

we set toΦ†
T y (the pseudo-inverse) the components ofb indexed byT , and to0 the components

indexed by its complementTC = Nn\T . The resulting vector is then pruned by projecting it

back onto the sparsity model, to produce the signal estimateβ̂(t) = M(b).

In model-based recovery, the class of structured compressible signals does not coincide (in

fact, it is much larger) with the class of sparse signals. Forthis reason the restricted isometry

property is not enough to assure recovery and other properties, we mention the nested approx-

imation property (NAP) and the restricted amplification property (RAmP), which involves the

residual subspaces of the model, must be used.

To define block sparsity as considered in [4], the signal mustbe regarded as a matrix,

where each column corresponds to a block. This design is lessgeneral than the one supported

by StructOMP, where blocks are not confined to particular positions and may overlap, leading

for instance to connected regions.

The algorithm computes the functionM twice at each step: first to extend the support of

the estimate (by projectingXT r ontoM), then by pruning the estimateb, again projecting a

vector ontoM. This can be expensive for a general structure, and a parallel can be drawn with

StructOMP’s step of computing(2.2.6). In the case of StructOMP, however, the estimate is

always within the current allowed support, and there is no need for pruning it.

2.3 Structured sparsity with convex optimisation

In the same way as the Lasso technique promotes sparsity, a convex penalty term can be used

to promote structured sparsity. The completely convex nature of the problem has two main

benefits. The first one is that the optimum always exists and isunique. The second benefit is

that there are general efficient algorithms that can be used to compute this optimum.

The minimisation of the loss function subject to a constraint on the number of nonzero

components of the support is a nonconvex problem. Even for standard sparsity, we approximate

such number with theℓ1 norm. Likewise, a structure in the support of the model is nonconvex,
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and must be approximated. It is evident, then, that the design of such a penalty term is not easy:

not only this function has to be convex, but it must be able to promote a specific structure.

A particularly elegant extension to theℓ1 norm regularisation is the Group Lasso penalty

([56]), which is a mixture ofℓ1 andℓ2. The components of the vector are grouped together

and the penalty term is the sum of theℓ2 norms for each group. The effect is that each group

will contain either zero or nonzero components. Apart from other variants ofℓ1/ℓ2 mixtures, or

substituting theℓ2 for a generalℓp norm, a key extension to the Group Lasso is the Composite

Absolute Penalty (CAP, [58]), which allows the groups to overlap. The effect is that certain

components, belonging to different groups, are more penalised than others. In this way we

can enforce a hierarchy among components, useful for important applications such as ANOVA

models.

Other extensions to the Group Lasso and to CAP focus on the design of the groups in such

a way as to promote one contiguous region in the model, both for 1D and 2D topologies. A

support as a union of groups can be promoted using a variational problem, and the hierarchy of

a two layered tree has been expressly studied.

Theℓ1 norm as a penalty term is successful in promoting sparsity because its unit ball has

nondifferentiable points along the axes. This geometricalintuition can be extended for group

sparsity, as the set of nondifferentiable points are only ona small subsets of axes. Even if we

cannot visualise in higher dimension, this idea, with its limits, can be helpful to gain some

insights about the problem.

Finally, we discuss the Bayesian interpretation of theℓ1 regularisation, where the estimate

of the Lasso model can be seen as the maximum a posteriori estimate of the model when we

adopt the hypothesis that its prior distribution is Laplace. This interpretation can be extended

to other penalty terms.

In § 2.3.1 we describe the Group Lasso and CAP. In§ 2.3.2 other variants of the Group

Lasso are described. The geometrical interpretation of thesparsity encouraging terms is de-

scribed in§ 2.3.3, while it Bayesian interpretation can be found in§ 2.3.4.

2.3.1 Group Lasso and CAP

Group Lasso. In the Group Lasso [56], the penalty term takes the form

P (β) =
∑

J∈J

√

|J |‖βJ‖2,

that is we have a mixedℓ1/ℓ2 norm. Group Lasso treats all the components in the same group

in the same way, so they are all selected or discarded at the same time.
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Each addend is multiplied by the coefficient
√

|J |, which is proportional to the dimension

of the group, but a more general weighting can be used. Moreover, theℓ2 norm can be replaced

by ‖βJ‖KJ
, where‖η‖K =

√

ηTKη is the vector norm defined by a positive definite matrix

K that can be different for each group.

CAP. The Composite Absolute Penalty family [58] extends the concept of group lasso in two

ways. In the case of non-overlapping groups, the penalty is

P (β) =
∑

J∈J
‖βJ‖ρJ γ0 ,

where, for generality, theℓγJ norm is used for groupJ , and theℓγ0 norm to theγ0-th power is

computed for these norms.

The CAP was developed to consider a hierarchical structure on the components ofβ,

defined by a Directed Acyclic Graph (DAG). Each nodev ∈ V of the DAG corresponds to a

variable. If one variable is not included in the final model, then all the variables corresponding

to descendants ofv, that is the variables of nodesD(v), are excluded from the model as well.

To achieve this, the penalty function is modified not in the shape, but in the definition of groups:

P (β) =
∑

J∈J
‖(βv , βD(v))‖γv .

This construction implies that, if‖(βv , βD(v))‖γv is zero, then‖βD(v)‖γv must be zero. The

enforced hierarchy is useful in many applications, noticeably in ANOVA, where if a main factor

is excluded from the model, its mixed factors should be excluded as well.

Sparse Group Lasso. The sparse Group Lasso criterion proposed in [14] is a GroupLasso

which encourages sparsity within each group, mixing the Group Lasso with anℓ1 norm penalty:

P (β) = γ1
∑

J∈J
‖βJ‖2 + γ2‖β‖1.

In the standard Group Lasso, the selected nonzero groups tend to be dense. Here, the

ℓ1 norm is added to help preventing this from happening. Parameters γ1 and γ2 should be

estimated via cross validation.

Huber. Another hybridℓ1/ℓ2 penalisation, suggested in [40] and useful for standard sparsity,

comes from the use of the inverse Huber function in the penalty term. We define

B(βi) =







|βi| |βi| ≤ 1

β2
i +1
2 |βi| > 1

,
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and set the penalty term as

P (β) =
∑

i

B
(

βi
τ

)

,

whereτ is a scale parameter.

The functionB is a scaledℓ1 norm for values smaller thanτ , and is quadratic for larger

values. The intention is to overcome two limitations of the lasso: that no more thanm nonzero

coefficients are selected (inconvenient in our case wheren > m) and that it has less accurate

prediction thanℓ2.

2.3.2 Group Lasso variants

Contiguous regions. The Group Lasso when groups overlap has been investigated in [24]. The

originality of the Structured Lasso lies in the selection ofgroups, while using theℓ2 norm within

groups:

P (β) =
∑

J∈J
‖βJ‖2.

If the components ofβ are thought to be aligned in a sequential order, then by considering

all groups of the type{1, . . . , k} and{k, . . . , n}, for k = 1, . . . , n, it is possible to encourage

the selection of a contiguous pattern of variables. The reason for this is that theℓ1 norm has

the effect of excluding from the model any initial or final setof variables, leading to a pattern

without holes.

In the same vein, if the components ofβ are thought to be on a grid, it is possible to

construct the groups corresponding to all halfplanes starting from the four sides. The resulting

nonzero pattern will be encouraged to be a rectangle. By adding more halfplanes with dif-

ferent orientation (e.g. all multiples ofπ4 ), the sparsity pattern can be approximately convex.

The approximation improves the more halfplanes are considered, though the complexity of the

algorithm increases.

A weighting system allows a weight for each component withineach group, so that a

particular elementβi can have different weights, one for each group it belongs to.This leads to

further generality, but no specific examples are suggested.

Overlapping groups. The goal in [22] is quite different: the support of the modelis a union of

K groups. This can be achieved by considering the Group Lasso with overlapping groups. In

particular

P (β) = inf
vJ1 ,...,vJK

{

∑

J∈J
‖vJ‖2 : ∀J ∈ J , vJ ∈ R

n, supp(vJ) ⊆ J,
∑

J∈J
vJ = β

}

.

If the groups do not overlap and form a partition ofNn, then the penalty is the same as the

Group Lasso, because there exists a unique decomposition ofβ into vectorsvJ such that for
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eachJ ∈ J , the components ofvJ indexed byJ are the same as the components ofβJ . In that

case, the penalty induces the estimation of a sparse vector,whose support is the complement of

a union of groups.

If groups overlap, then the support of the learned vector tends to be a union of groups. One

application is the Graph Lasso: in an undirected graph, eachvertex is a covariate. If overlapping

groups are all linear subgraphs of lengthk, the penalty tends to select covariates connected to

each other. Group Lasso with overlapping groups has been proved to be a norm, which can be

useful if, for numerical reasons, the dual problem is addressed.

Hierarchical penalisation. The structure of a two layered tree for coefficients ofβ has been

considered in [48]. The meaning of this graphical representation is that a node in the first layer

represents group of variables (groupJ has a weight so that any variableβi which belongs to

J will be weighted withσ1i) and a node in the second layer represents individual components,

each one with its own weightσ2i. The goal is to select a small number of groups and to shrink

variables within each group.

The proposed penalty is

P (β) =
∑

i

β2i√
σ1iσ2i

.

The weights must be normalised: at the group level, it must hold that
∑

i∈J σ1i =
1
|J | , for all

groupsJ and inside each group
∑

i∈Nn
σ2i = 1. Interestingly, even if not evident, this penalty

function is convex.

2.3.3 Geometric interpretation

In [18] we get a geometric argument as to why the regularisation using theℓ1 norm as penalty

term is an effective way to select few nonzero components. Weelaborate on it here showing

how the same intuition applies to others penalty terms.

We consider two dimensions, and focus for simplicity on the square loss function. In this

case, all the points with a fixed loss value lie on an ellipse centred aroundβ = X†y, whereX†

is the pseudoinverse ofX. On the other hand, the set of points with a fixed penalty valueis, in

the ℓ1 case, a diamond centred around the origin. This is the boundary of the scaled unit ball

B1 = {x : ‖x‖1 ≤ 1}. See Figure 2.1.

We can imagine to expand these two shapes trying to find a balance between the loss

function and the penalty term. The solution will be a single tangent point, because when the

shapes are secant we can move inside one of the two, thus reducing the objective function. As

a result of this process, it is clear that most of the time the solution will be a point on one axis.
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Figure 2.1: Geometrical intuition for the lasso.
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Figure 2.2: Unit balls ofℓ1, Ω and Group Lasso.

Indeed, the only case when this will not happen is when the ellipse is tilted exactly45 degrees

and faces directly a side of the diamond.

It is evident then that the shape of the unit ball of the penalty function plays a central role

in the determination of the set of points that are more likelyto be the solution. The key feature

of B1 is to have non-differentiable points along the axes. Moreover, we note that theℓ1 norm

promotes sparsity without structure, in the sense that neither axis is in a privileged position.

We consider now the unit ball of two structured sparsity penalties, the Group Lasso and

the functionΩ, which will be discussed in Chapter 3.

In Figure 2.2 we see how the two penalty functions are relatedto the ℓ1 norm. Both

functions can be defined in several ways. For the Group Lasso,we consider the hierarchically
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overlapping groupsJ1 = {x1, x2} andJ2 = {x2}, so that the unit ball is

BGL = {x : ‖x‖2 + |x2| ≤ 1}.

For functionΩ, we use the line graph penaltyΛ = {λ : λ1 ≥ λ2} (see Section (3.3.2) for

details). We can write the unit ball explicitly:

BΩ = {x : Ω(x|Λ) = 1} =







{x : |x1| ≥ |x2|, ‖x‖1 ≤ 1}
{

x : |x1| < |x2|, ‖x‖2 ≤
√
2
}

.

In both cases, the nondifferentiable points are on thex1 axis: a sparse solution of the form

(x̂, 0) will be far more likely than a sparse solution of the form(0, x̂).

In three dimensions, the square loss produces an ellipsoid.All the nondifferentiable points

of the unit ball of the penalty function are privileged candidates to be a solution. In three

dimensions these points can form a curve, see Figure 3.3 for some examples of unit balls in

three dimensions. Of course the intuition soon becomes useless as the number of dimensions

increases, but nevertheless it is an important vehicle for understand how sparsity can be recov-

ered with convex penalty functions.

2.3.4 Bayesian Lasso and MAP estimates

MAP estimates. The Maximum A Posteriori is an estimate of a parameterθ given an observed

samplex. For any fixed value of the parameter, we assume that the probability distribution of the

output is known, that isp(x|θ). Moreover, we assume to know the distribution of the parameter

θ, that isp(θ). The MAP estimatêθ is given by the argmax of the posterior probabilityp(θ|x),
which can be computed from the observationsx.

By applying Bayes’ theorem, we have that the posterior distribution of the parameter

given the observations is proportional to the likelihood ofobserving the data given a param-

eter,p(x|θ), times the prior distribution of that parameter,p(θ).

The MAP estimate is defined as

θ̂ = argmax{p(θ|x)} .

In an equivalent way, we minimise the negative log-posterior distribution, that is

θ̂ = argmin {−log(f(θ|x))} = argmin {−log(p(x|θ))− log(p(θ))} .

This second expression is easier to handle, and will lead to alink to regularisation.

MAP as regression. We consider the linear modely = Xβ∗ + ξ, where the noise is Gaussian:

ξ ∼ N (0, σ2Im). Then, the conditional distribution ofy given a modelβ, that is the likelihood

of the observation, is Gaussian:y|β ∼ N (Xβ, σ2Im).
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The corresponding negative log-likelihood ism
2 log(2πσ2) + 1

2σ2 ‖y −Xβ‖22, and is max-

imised for the vector̂β which is the solution of the ordinary least squares. This vector is also

the MAP estimate of the parameter when the unconditional distribution of β is assumed to be

uniform (improper prior), because in that case its probability is a constant and does not effect

the minimiser.

Making different assumptions on the prior distribution of the modelβ leads to MAP esti-

mates that are equivalent to minimising the quadratic loss function plus a penalty term.

MAP as Lasso. The estimate of the Lasso technique, where we addP (β) = ‖β‖1, can be

interpreted as the estimate which maximises the posterior distribution ofβ assuming thaty|β is

Gaussian and thatβi ∼ Laplace
(

0, τ√
2

)

. The Laplace distribution with parameters0 and τ√
2

is p(βi) = 1
τ
√
2
e−

|βi|

τ

√
2.

In this case, to the quadratic loss function, we need to add the negative log-prior for vector

β, which isn log
(

τ
√
2
)

+
√
2
τ ‖β‖1. We recognise the resulting problem as the Lasso.

Note that, after normalisation, theℓ1 norm is multiplied by the tuning parameterγ which

depends on the variancesσ2 andτ2. In particular,γ = 2σ2
√
2
τ .

Ridge regression. For ridge regression, whereP (β) = ‖β‖22, we have that the estimate can

be interpreted as the MAP ofβ assuming that bothy|β andβ are Gaussian. We assume that

β ∼ N
(

0, τ2In
)

, so that its negative log-prior isn
2

2 log
(

2πτ2
)

+
‖β‖22
2τ2

.

We recover ridge regression problem where theℓ2 norm has the coefficientγ = σ2

τ2
, that is

it depends on the variances of they andβ.

Bayesian Lasso. This variant of the Lasso was introduced in [41]. Here, the prior distribution of

βi given the value ofσ2 to be Laplacian, using a representation of Laplace distribution as mix-

ture of normals. Specifically, we assume thatβ|σ2, τ21 , . . . , τ2n ∼ N (0, σ2D), whereD is the

diagonal matrix collecting then auxiliary variablesτ representing the variances of each compo-

nent. Finally, we assume thatσ2 and the auxiliary variablesτ are normally distributed. This for-

mulation is useful for their approach to solve the problem based on Expectation-Maximisation

(EM) algorithm.

Bayesian Lasso coincides with the variational formulationfor theℓ1 norm. For anyβ, we

have‖β‖1 = 1
2 infλ

{

∑

i

(

β2
i

λ + λi

)

: λ ∈ R
n
++

}

, whereR++ is the open positive orthant. We

assume thaty|(β, λ) is Gaussian, and decompose the distribution of the vectorβ asp(β, λ) =

p(β|λ)p(λ).
The conditional distribution ofβ givenλ is Normal,β|λ ∼ N (0,diag(λ1, . . . , λn)), and
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its negative log-distribution is

n

2
log(2π) +

1

2
log

(

∏

i

λi

)

+
1

2

∑

i

β2i
λi
.

This term will be added to the negative log-prior ofλ, so we choose a distribution such that

the term 1
2 log (

∏

i λi) simplifies. This happens ifλi ∼ Γ
(

3
2 ,

1
2

)

, as the negative log-prior

distribution is
n

2
log(2π) − 1

2
log
(

∏

λi

)

+
1

2
‖λ‖1.

We conclude that the estimate

(β̂, λ̂) = argmin
β,λ

{

‖y −Xβ‖22 +
γ

2

∑

(

β2i
λi

+ λi

)}

,

for J(β) = γ‖β‖1, corresponds to a MAP estimate of parametersβ andλ assuming that the

likelihood of the observation is Gaussian,y|(β, λ) ∼ N (Xβ, σ2Im), that the conditional prior

of β givenλ is Gaussian,β|λ ∼ N (0,diag(λ1, . . . , λn)), and finally that the prior distribution

of λ is Gamma,λi ∼ Γ
(

3
2 ,

1
2

)

. After rescaling, we note thatγ = 2σ2. As we will see, this

formulation resembles our proposed penalty functionΩ, see Chapter 3.
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Modified ℓ1 approach

Our aim is to exploit the prior knowledge of a structured sparse model by means of a convex

regularization problem. The starting point is the Lasso technique, which promotes an unstruc-

tured solution by using theℓ1 norm as penalty term. It is well known that this norm can be

rewritten as the infimum of a sum of quadratic functions. Thisvariational formulation is con-

venient because the quadratic functions are smooth approximations from above of theℓ1 norm.

This formulation depends on free auxiliary variablesλ ∈ R
n
++, the open positive orthant.

As we shall see, when the auxiliary variables are unconstrained, that is they belong to the

positive orthant without further restrictions, we reduce to the Lasso technique. We propose

to constraint these auxiliary variables within a subsetΛ of the positive orthant. The result is

a richly parametrised family of penalty functionsΩ(·|Λ). By imposing a structure onλ, we

are indirectly imposing a similar structure onβ, but we have the advantage that the resulting

problem remains convex.

There are several convenient choices for the setΛ, some of them more general that others.

For instance, by introducing relational constraints between components, or between differences

of components, of vectorλ, we can model hierarchical order on its coefficients, or contiguous

regions of nonzero values. We analyse a selection of some of the many possibilities.

We also study functionΩ(·|Λ) in detail. Among the results, we derive the proximal op-

erator of the function; we prove a number of properties, showing the conditions for which the

function is a norm and deriving its dual; we show that other functions, such as the penalty terms

for the Group Lasso and for Dirty Models, are indeed special cases of our function.

We begin by defining in detail our proposed penalty function in Section 3.1. Many im-

portant properties of this function are discussed in Section 3.2, while various members of the

penalty family are proposed in Section 3.3. In Section 3.4 wepropose a duality viewpoint which

links the primal variablesβ of the model to the dual variablesλ. Finally, in Section 3.5, we

show some interesting special cases of the function Omega.
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3.1 Proposed penalty

The prior knowledge that we consider is that the vector|β∗|, whose components are the absolute

value of the corresponding components ofβ∗, should belong to some prescribed convex subset

Λ of the positive orthant. For certain choices ofΛ this implies a constraint on the sparsity

pattern as well. For example, the setΛ may include vectors with some desired monotonicity

constraints, or other constraints on the “shape” of the regression vector. Unfortunately, the

constraint that|β∗| ∈ Λ is nonconvex and its implementation is computational challenging.

To overcome this difficulty, we propose a family of penalty functions, which are based on an

extension of theℓ1 norm used by the Lasso method and involves the solution of a smooth convex

optimization problem. These penalty functions incorporate the structured sparsity constraints.

Precisely, we propose to estimateβ∗ as a solution of the convex optimization problem

min
{

‖Xβ − y‖2 + 2ρΩ(β|Λ) : β ∈ R
n
}

(3.1.1)

where‖ · ‖ denotes the Euclidean norm,ρ is a positive parameter and the penalty function takes

the form

Ω(β|Λ) = inf

{

1

2

∑

i∈Nn

(

β2i
λi

+ λi

)

: λ ∈ Λ

}

. (3.1.2)

As we shall see, a key property of the penalty function is thatit always exceeds theℓ1

norm ofβ unless|β| ∈ Λ and it is strictly greater than theℓ1 norm otherwise. This observation

suggests that the penalty function encourages the desired structured sparsity property.

Our approach also suggests that the parameterλi controls the degree of regularization on

the corresponding regression coefficientβi. The case that the setΛ consists of one pointλ is

instructive. In this case, the solution of the optimizationproblem (3.1.1) can be obtained explic-

itly as a solution to a Tikhonov regularization. It is important to realize that this optimization

problem requires that all the components ofλ are non-zero. However, the optimal solution,

which we callβ(λ), can be shown to be defined even if some of the components ofλ are zero.

Indeed, when some of the components of the vectorλ go to zero on some setJ ⊆ Nn, the same

components ofβ(λ) on this set go to zero as well. Moreover, the remaining components ofβ(λ)

on the complement ofJ provide a vector which solves the optimization problem restricted to

all vectors whose components onJ are zero. We will substantiate these observations in Section

3.4.

In this section, we provide some general comments on the penalty function. To this end,

we letRn
++ be the open positive orthant, we letNn be the set of positive integers up ton and
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Figure 3.1: (a): FunctionΓ(·, λ) for some values ofλ > 0; (b): FunctionΓ(β, ·) for some

values ofβ ∈ R.

define the functionΓ : Rn × R
n
++ → R by the formula

Γ(β, λ) =
1

2

∑

i∈Nn

(

β2i
λi

+ λi

)

.

We letΛ be a nonempty subset ofRn
++ and for everyβ ∈ R

n, we define the penalty function

Ω : Rn → R atβ as

Ω(β|Λ) = inf {Γ(β, λ) : λ ∈ Λ} . (3.1.3)

Note thatΓ is convex on its domain because each of its summands are likewise convex func-

tions. Hence, when the setΛ is convex it follows thatΩ(·|Λ) is a convex function and (3.1.1) is

a convex optimization problem.

An essential idea behind our construction of this function,is that, for everyλ ∈ R++, the

quadratic functionΓ(·, λ) provides a smooth approximation to|β| from above, which is exact

atβ = ±λ. We indicate this graphically in Figure 3.1-a. This fact follows immediately by the

arithmetic-geometric inequality, which states, for everya, b ≥ 0 that(a+ b)/2 ≥
√
ab.

A special case of the formulation (3.1.1) withΛ = R
n
++ is the Lasso method, which is

defined to be a solution of the optimization problem

min
{

‖y −Xβ‖2 + 2ρ‖β‖1 : β ∈ R
n
}

where theℓ1-norm of the vectorβ = (βi : i ∈ Nn) ∈ R
n is defined as‖β‖1 =

∑

i∈Nn
|βi|.

Indeed, using again the arithmetic-geometric inequality it follows thatΩ(β|Rn
++) = ‖β‖1.

Moreover, if for everyi ∈ Nn βi 6= 0, then the infimum is attained forλi = |βi|. This

important special case motivated us to consider the generalmethod described above. The utility

of (3.1.3) is that upon inserting it into (3.1.1) results in an optimization problem overλ andβ

with a continuously differentiable objective function. Hence, we have succeeded in expressing
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a nondifferentiable convex objective function by one whichis continuously differentiable on its

domain.

3.2 Function properties

We have already seen that the proposed penalty term is a generalisation of the Lasso. In this

section we explore many properties that belong to the functionΩ.

The first result is the computation of the derivative of the function. This derivative depends

on the value of the auxiliary vector at the minimum, so it cannot directly be used to solve the

problem, but it is of theoretical relevance.

Next, we show that, when the setΛ is a convex cone, the functionΩ is a norm. The

assumption is not unrealistic, as it encompasses a very generic example like the Graph penalty

(see§ 3.3.3). This property is desirable because it lets the function inherit the properties of the

norms.

We have a way to compose new penalties starting from a penaltysetΛ and mixing it with

a linear map. This rule was used for instance to design the Composite Wedge (see Section 5.1).

Writing explicitly the dual norm of the function, whenΛ is a cone, is helpful as it allows

to directly formulate the dual problem.

We show a necessary condition for the auxiliary variables vector to be the minimiser. This

gives us one more insight about the role of this vector, and can be used as an alternative way to

solve the problem.

Finally, functionΩ has some properties of quasi homogeneity, which will be usedin § 3.5.2

to define links with other algorithms.

In § 3.2.1 we present the derivative ofΩ. The conditions for the function to be a norm are

in § 3.2.2. In§ 3.2.3 we present a linear composition rule. In§ 3.2.4 we show what is the dual

norm. The necessary condition for the auxiliary variables are in § 3.2.6. Properties of quasi

homogeneity are in§ 3.2.7.

3.2.1 Derivative ofΩ

For any real numbersa < b, we define the parallelepiped[a, b]n = {x : x = (xi : i ∈ Nn), a ≤
xi ≤ b, i ∈ Nn}.

Definition 3.2.1. We say that the setΛ is admissible if it is convex and, for alla, b ∈ R with

0 < a < b, the setΛa,b := [a, b]n ∩ Λ is a nonempty, compact subset of the interior ofΛ.

Proposition 3.2.1. If β ∈ (R\{0})n andΛ is an admissible subset ofRn
++, then the infimum

above is uniquely achieved at a pointλ(β) ∈ Λ and the mappingβ 7→ λ(β) is continu-
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ous. Moreover, the functionΩ(·|Λ) is continuously differentiable and its partial derivatives are

given, for anyi ∈ Nn, by the formula

∂Ω(β|Λ)
∂βi

=
βi

λi(β)
. (3.2.1)

We postpone the proof of this proposition to Appendix B. We note that, sinceΩ(·|Λ) is

continuous, we may compute it at a vectorβ, some of which components are zero, as a limiting

process. Moreover, at such a vector the functionΩ(·|Λ) is in general not differentiable, for

example consider the caseΩ(β|Rn
++) = ‖β‖1.

3.2.2 Conditions for being a norm

The next proposition provides a justification of the penaltyfunction as a means to incorporate

structured sparsity and establish circumstances for whichthe penalty function is a norm. To

state our result, we denote byΛ the closure of the setΛ.

Proposition 3.2.2.For everyβ ∈ R
n, it holds that‖β‖1 ≤ Ω(β|Λ) and the equality holdsif and

only if |β| := (|βi| : i ∈ Nn) ∈ Λ. Moreover, ifΛ is a nonempty convex cone then the function

Ω(·|Λ) is a norm and we have thatΩ(β|Λ) ≤ ω‖β‖1, whereω := max{Ω(ek|Λ) : k ∈ Nn}
and{ek : k ∈ Nn} is the canonical basis ofRn.

Proof. By the arithmetic-geometric inequality we have that‖β‖1 ≤ Γ(β, λ), proving the first

assertion. If|β| ∈ Λ, there exists a sequence{λk : k ∈ N} in Λ, such thatlimk→∞ λk = |β|.
SinceΩ(β|Λ) ≤ Γ(β, λk) it readily follows thatΩ(β|Λ) ≤ ‖β‖1. Conversely, if|β| ∈ Λ, then

there is a sequence{λk : k ∈ N} in Λ, suchγ(β, λk) ≤ ‖β1‖ + 1/k. This inequality implies

that some subsequence of this sequence converges to aλ ∈ Λ. Using the arithmetic-geometric

we conclude thatλ = |β| and the result follows. To prove the second part, observe that if Λ

is a nonempty convex cone, namely, for anyλ ∈ Λ andt ≥ 0 it holds thattλ ∈ Λ, we have

that Ω is positive homogeneous. Indeed, making the change of variable λ′ = λ/|t| we see

thatΩ(tβ|Λ) = |t|Ω(β|Λ). Moreover, the above inequality,Ω(β|Λ) ≥ ‖β‖1, implies that if

Ω(β|Λ) = 0 thenβ = 0. The proof of the triangle inequality follows from the homogeneity

and convexity ofΩ, namelyΩ(α+ β|Λ) = 2Ω ((α+ β)/2|Λ) ≤ Ω(α|Λ) + Ω(β|Λ).
Finally, note thatΩ(β|Λ) ≤ ω‖β‖1 if and only if ω = max{Ω(β|Λ) : ‖β‖1 = 1}. Since

Ω is convex the maximum above is achieved at an extreme point oftheℓ1 unit ball.

This proposition indicates that the functionΩ(·|Λ) penalizes less vectorsβ which have the

property that|β| ∈ Λ, thereby encouraging structured sparsity. Specifically, any permutation of
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the coordinates of a vectorβ with the above property will incur in the same or a larger value

of the penalty function. Moreover, for certain choices of the setΛ, some of which we describe

below, the penalty function will encourage vectors which not only are sparse but also have

sparsity patterns(1{|βi|>0} : i ∈ Nn) ∈ Λ, where1{·} denotes the indicator function. Note also

that, the alternative formulation in which the constraint|β| ∈ Λ is added directly as a constraint

to the Lasso problem is not convex.

3.2.3 Composition of penalties

The next proposition presents a useful construction which may be applied to generate new

penalty functions from available ones. It is obtained by composing a setΘ ⊆ R
k
++ with a

linear transformation, modeling the sum of the components of a vector, across the elements

of a prescribed partitionP = {Pℓ : ℓ ∈ Nk} of Nn. To describe our result we introduce

the group average mapAP : Rn → R
k induced byP. It is defined, for eachβ ∈ R

n, as

AP(β) = (‖β|Pℓ
‖1 : ℓ ∈ Nk).

Proposition 3.2.3. If Θ ⊆ R
k
++, β ∈ R

n andP is a partition ofNn then

Ω(β|A−1
P (Θ)) = Ω(AP (β)|Θ).

Proof. The idea of the proof depends on two basic observations. The first uses the set theoretic

formula

A−1
J (Θ) =

⋃

θ∈Θ
A−1

J (θ).

From this decomposition we obtain that

Ω(β|A−1
J (Θ)) = inf

{

inf
{

Γ(β, λ) : λ ∈ A−1
J (θ)

}

: θ ∈ Θ
}

. (3.2.2)

Next, we writeθ = (θℓ : ℓ ∈ Nk) ∈ Θ and decompose the inner infimum as the sum

∑

ℓ∈Nk

inf







1

2

∑

j∈Jℓ

(

β2j
λj

+ λj

)

:
∑

j∈Jℓ
λj = θℓ, λj > 0, j ∈ Jℓ







.

Now, the second essential step in the proof evaluates the infima in the second sum by Cauchy-

Schwarz’s inequality to obtain that

inf
{

Γ(β|λ) : λ ∈ A−1
J (θ)

}

=
∑

ℓ∈Nk

1

2

(

‖β|Jℓ‖21
θℓ

+ θℓ

)

.

We now substitute this formula into the right hand side of equation (3.2.2) to finish the proof.
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3.2.4 Dual norm

When the setΛ is a nonempty convex cone, to emphasize that the functionΩ(·|Λ) is a norm we

denoted it by‖ · ‖Λ. We end this section with the identification of the dual norm of ‖ · ‖Λ when

Λ is a nonempty convex cone, which is defined as

‖β‖∗,Λ = max {β⊤u : u ∈ R
n, ‖u‖Λ = 1} .

Proposition 3.2.4. If Λ is a nonempty convex cone, then there holds the equation

‖β‖∗,Λ = sup

{
√

∑

i∈Nn
λiβ

2
i

∑

i∈Nn
λi

: λ ∈ Λ

}

.

Proof. By definition,ϕ = ‖β‖∗,Λ is the smallest constantϕ such that, for everyλ ∈ Λ and

u ∈ R
n, it holds that

ϕ

2

∑

i∈Nn

(

u2i
λi

+ λi

)

− β⊤u ≥ 0.

Minimising the left hand side of this inequality foru ∈ R
n yields the equivalent inequality

ϕ2 ≥
∑

i∈Nn
λiβ

2
i

∑

i∈Nn
λi

.

Since this inequality holds for everyλ ∈ Λ, the result follows by taking the supremum of the

right hand side of the above inequality over this set.

The formula for the dual norm suggests that we introduce the set Λ̃ = {λ : λ ∈
Λ,
∑

i∈Nn
λi = 1}. With this notation we see that the dual norm becomes

‖β‖∗,Λ = sup







√

∑

i∈Nn

λiβ2i : λ ∈ Λ̃







.

Moreover, a direct computation yields an alternate form forthe original norm given by the

equation

‖β‖Λ = inf







√

√

√

√

∑

i∈Nn

β2i
λi

: λ ∈ Λ̃







.

Extreme points. Let ext(Λ̃) be the set of extreme points ofΛ̃, that is all the points of̃Λ that

cannot be expressed as linear combination of other points inthe same set. Since the function
∑

i∈Nn
λiβ

2
i is linear inλ, by the Fundamental Theorem of linear programming (see, forex-

ample, [6, Prop. B.21, p. 705]), we know that the optimum is always attained at an element of

ext(Λ̃). This means that we can rewrite the expression for the dual norm as

‖β‖∗,Λ = max







√

∑

i∈Nn

λiβ
2
i : λ ∈ ext(Λ̃)







.
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The set of extreme points characterises the possible sparsity patterns allowed by the‖β‖∗,Λ
penalty. WhenΛ is a polyhedral convex cone, this set is finite, as is the case,for instance, of

the Wedge and Tree penalties (see Sections 3.3.2 and 3.3.3).This, however, can be extended to

cases when ext(Λ̃) is a countable infinite set.

Infimum convolution . We use the definition of dual norm to show how‖β‖Λ can be generalised

by an infimum convolution, as suggested in [30]. In that paper, the authors define the norm

‖β‖M = inf

{

∑

M∈M
‖vM‖ : vM ∈ H,

∑

M∈M
MvM = β

}

,

whereM is a finite or countably infinite set of linear operators andH is a real Hilbert space.

In our setting, we can takeM to be a set of matrices andH to beRn. They prove that the dual

of this norm is

‖β‖M∗ =
∑

M∈M
‖Mβ‖.

If we consider the set of diagonal matrices having as nonzerovalues the square roots of

the extreme sets of̃Λ, that is

M =
{

diag(
√
λ) : λ ∈ ext(Λ̃)

}

,

then we can see immediately that‖Mβ‖ becomes
√

∑

i∈Nn
λiβ2i . This implies that both‖·‖M

and‖·‖Λ share the same dual norm and are then equivalent.

For completeness, we prove that‖·‖M is a norm, adapting the proof of [30, Thm. 7, p. 10]

to our setting. We prove the following.

Proposition 3.2.5. LetM be a countably infinite set of realn × n symmetric matrices. We

assume that, for everyx ∈ R
n, with x 6= 0, we haveMx 6= 0 for someM ∈ M. Moreover,

we assume1 that supM∈M |||M ||| < ∞. We define the set of vectorsV(M) = {v : v =

(vM )M∈M, vM ∈ R
n}. Then

‖β‖M = inf

{

∑

M∈M
‖vM‖ : v ∈ V(M),

∑

M∈M
MvM = β

}

is a norm.

Proof. (Nonnegative and positivity)The function is clearly nonnegative, being a sum nonneg-

ative terms. It is also positive ifβ 6= 0. Suppose then that0 6= β =
∑

M∈MMvM . Using the

triangle inequality of theℓ2 norm, we can write

‖β‖ ≤
∑

M∈M
‖MvM‖ ≤

∑

M∈M
|||M |||‖vM‖ ≤ sup

M∈M
|||M |||

∑

M∈M
‖vM‖,

1With the notation|||A||| we refer to the operator norm, defined assup
{

‖Av‖
‖v‖

: v 6= 0
}

.
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where the middle inequality comes from the definition of operator norm. Now, taking the

infimum with respect tov, we get

0 < ‖β‖ ≤ sup
M∈M

|||M |||‖β‖M

and, assupM∈M |||M ||| <∞ by hypothesis, we can conclude that‖β‖M > 0.

(Homogeneous)Scalingβ by a constanta amounts to scaling allvM by the same constant,

which in turn, by homogeneity of theℓ2 norm, gives|a|‖β‖M.

(Triangle inequality)Let β, γ ∈ R
n andwβ ∈ V(M) be a set of auxiliary vectors such

that
∑

M∈MMwβ
M = β and, for allǫ > 0, ‖β‖M + ǫ ≥ ∑M∈M‖w

β
M‖. Letwγ be a similar

set of vectors forγ.

By definition,

‖β + γ‖M = inf

{

∑

M∈M
‖vM‖ : v ∈ V(M),

∑

M∈M
MvM = β + γ

}

.

Since bothwβ ∈ V(M) andwγ ∈ V(M), thenwβ + wγ ∈ V(M). Moreover, we have
∑

M∈MM(wβ
M + wγ

M ) =
∑

M∈MMwβ
m +

∑

M∈MMwγ
m = β + γ. Thenwβ + wγ is a

feasible set of auxiliary vectors forβ+ γ, which cannot yield a value smaller than the infimum.

That is

‖β + γ‖M ≤
∑

M∈M
‖wβ

M + wγ
M‖ ≤

∑

M∈M
‖wβ

M‖+
∑

M∈M
‖wγ

M‖ ≤ ‖β‖M + ‖γ‖M + 2ǫ.

where the second inequality is the triangle inequality for the ℓ2 norm and the third inequality

comes from the assumptions. Finally, sinceǫ is free to go to0, the triangle inequality for‖·‖M
follows.

3.2.5 Dual norm of Lagrangian formulation

Suppose thatω : Rn → R is a norm, and define the constraint setΛ = {λ : ω(λ) ≤ α}, for

a positive parameterα. The infimum in the definition ofΩ can be written in the equivalent

Lagrangian formulation

inf

{

1

2

∑

i∈Nn

(

β2i
λi

+ λi

)

+ γω(λ)

}

,

using the additional termγω(λ), whereγ is a positive Lagrangian variable. Here we will prove

that the Lagrangian formulation is a norm, and we derive its dual. Specifically, we have the

following proposition.

Proposition 3.2.6. If ω : Rn → R is a norm, then the function

‖β‖ω = inf
λ>0

{

1

2

∑

i∈Nn

(

β2i
λi

+ λi

)

+ γω(λ)

}

, (3.2.3)
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is a norm.

Proof. (Nonnegative and positivity)This function is clearly nonnegative, being a sum of non-

negative terms. It is also positive ifβ 6= 0. In fact, in order for‖β‖ω to be zero, it must be

ω(λ) = 0, which gives an infinite value whenβ 6= 0. Indeed, the function is bounded by the

value we obtain whenλ = |β|, that is‖β‖ω ≤ ‖β‖1 + γω(β).

(Homogeneous)Let a > 0 be a scalar. We can solve the problem

‖aβ‖ω = inf
λ>0

{

1

2

∑

i∈Nn

(

(aβi)
2

λi
+ λi

)

+ γω(λ)

}

,

by transforming the variablesλi 7→ |a|λi. That way we can collect a leading term|a| and get,

as desired,|a|‖β‖ω .

(Triangle inequality)The function
∑

i∈Nn

(

β2
i

λi
+ λi

)

is jointly convex inλ andβ, while

ω(λ), being a norm, is convex inλ. Overall, we are taking the infimum with respect toλ of

a function which is jointly convex, so the resulting function is convex (see, for instance, [10,

Section 4.2.4]). Finally, since‖β‖ω is convex and homogeneous, then it satisfies the triangle

inequality, because‖β + ξ‖ω = 2‖β+ξ
2 ‖ω ≤ ‖β‖ω + ‖ξ‖ω, as desired.

We can derive the dual norm of (3.2.3), in a similar way to whatwe did in§ 3.2.4.

Proposition 3.2.7. The dual norm of‖β‖ω is

‖β‖∗,ω = sup
λ>0

{
√

∑

i∈Nn
λiβ2i

∑

i∈Nn
λi + γω(λ)

}

.

Proof. By definition,ϕ = ‖β‖∗,ω is the smallest constantϕ such that for everyλ ∈ Λ and

u ∈ R
n, it holds that

ϕ

(

1

2

∑

i∈Nn

(

u2i
λi

+ λi

)

+ γω(λ)

)

−
∑

i∈Nn

βiui ≥ 0.

We minimise overu to obtain the condition

ϕ2 ≥
∑

i∈Nn
β2i λi

∑

i∈Nn
λi + γω(λ)

.

Since this inequality holds for everyλ > 0, the result follows by taking the supremum with

respect toλ.

3.2.6 Equilibrium condition for optimality

In this section we establish a relationship between the point λ̂, for which the infimum is attained,

and the value of functionΩ when the constraint setΛ is a cone.
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Proposition 3.2.8. Let Λ be a cone,β a vector in R
n, and let λ̂ ∈ Λ such that

∑

i∈Nn

(

β2
i

λ̂i
+ λ̂i

)

≤∑i∈Rn

(

β2
i

λi
+ λi

)

for all λ ∈ Λ. Then we have

Ω(β|Λ) = ‖λ̂‖1 =
∑

i∈Nn

β2i
λ̂i
. (3.2.4)

Proof. We begin by noting that, within any rayR belonging toΛ, the minimum of

1
2

∑

i∈Nn

(

β2
i

λi
+ λi

)

is attained for a pointλ ∈ R for which the equilibrium condition
∑

i∈Nn

β2
i

λi
=
∑

i∈Nn
λi is satisfied. Letv be any point inΛ, and rescale it to define the

rayRv = {λ : λ = kv, k ≥ 0} ⊆ Λ. Then it is easy to see thatk̂ =

√

∑

i∈Nn

β2
i

vi
/
√

∑

i∈Nn
vi

is the root of the derivative of12
∑

i∈Nn

(

β2
i

kvi
+ kvi

)

with respect tok, that isk̂v is the min-

imiser within the ray. Moreover,
∑

i∈Nn

β2
i

k̂vi
=

√

∑

i∈Nn

β2
i

vi

∑

i∈Nn
vi =

∑

i∈Nn
k̂vi, so k̂v

satisfies the equilibrium condition.

This is a necessary condition for optimality, so it must be satisfied by the point̂λ as well.

Then
∑

i∈Nn
β2
i

λ̂i
=
∑

i∈Nn λ̂i =
1
2

(

∑

i∈Nn
β2
i

λ̂i
+
∑

i∈Nn λ̂i
)

= Ω(β|Λ) as required.

The equilibrium condition is satisfied by exactly one point for each ray inΛ, so whenΛ

consists of a single ray, it becomes a sufficient condition for optimality. In § 3.5.1 this case is

explicitly considered.

The possibility of rescaling a vector suggests an alternative way of computing the value of

Ω by restricting the value of
∑

i∈Nn
β2
i

vi
and minimising‖v‖1; the sought value will ensue after

restoring the equilibrium condition by scaling. Precisely, we have the following result.

Proposition 3.2.9. If Λ is a cone, then

Ω(β|Λ) = min
v∈Λ

{

√

‖v‖1 :
∑

i∈Nn

β2i
vi

= 1

}

, (3.2.5)

and if v̂ is the point for which the minimum is attained, thenλ̂ = v̂/
√

‖v̂‖1 is the solution to

the original problem, that isΩ(β|Λ) = 1
2

∑

i∈Nn
(

β2
i

λ̂i
+ λ̂i

)

.

Proof. We call ϕ the value of the solution of (3.2.5) and prove thatΩ(β|Λ) = ϕ. Let v̂

be the minimiser of (3.2.5), so thatϕ =
√

‖v̂‖1. Then we rescale this vector byk =

1/
√

‖v̂‖1 so as to satisfy the equilibrium condition: for the scaled vector λ◦ = kv̂ we have

1
2

∑

i∈Nn
(

β2
i

λ◦
i
+ λ◦i

)

=
√

‖v̂‖1 = ϕ, concluding thatΩ(β|Λ) ≤ ϕ.

Let now λ̂ be the minimiser of12
∑

i∈Nn
(

β2
i

λi
+ λi

)

. We rescale this vector byk =
∑

i∈Nn
β2
i

λ̂i
, so that the new vectorv◦ = kλ̂ is a feasible point of (3.2.5), i.e.

∑

i∈Nn
β2
i

v◦i
= 1.

Then
√

‖v◦‖1 =

√

‖λ̂‖1
∑

i∈Nn
β2
i

λ̂i
= Ω(β|Λ), where the last equality follows from Proposi-

tion (3.2.8). We conclude that it isϕ ≤ Ω(β|Λ) as well, so consequentlyΩ(β|Λ) = ϕ.
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In a similar way it can be proved the related alternative way of computing the value of

Ω(β|Λ) by changing the roles of
∑

i∈Nn
β2
i

vi
and‖v‖1, that is

Ω(β|Λ) = inf
v∈Λ







√

√

√

√

∑

i∈Nn

β2i
vi

: ‖v‖1 = 1







. (3.2.6)

3.2.7 Two quasihomogeneous properties

Let a be a nonnegative constant andΛ a cone, so that ifλ ∈ Λ, thenλ̃ =
√
aλ ∈ Λ. Then

1

2
inf
λ∈Λ

{

∑

i∈Nn

(

β2i
λi

+ aλi

)

}

=
√
aΩ(β|Λ), (3.2.7)

because1λi
=
√
a 1
λ̃i

andaλi =
√
aλ̃i.

Something similar happens whena is the coefficient of the first term:

1

2
inf
λ∈Λ

{

∑

i∈Nn

(

β2i
aλi

+ λi

)

}

=
1√
a
Ω(β|Λ). (3.2.8)

For this second case, we are looking for a transformationλi 7→ hλi for some positive

coefficienth such that both1λi
andλi will have a common coefficient,c, that can be collected

outside the summation. Here we have1ahλi
= c 1

λi
andhλi = cλi. Since 1

ah = c = h, it readily

follows thath = 1√
a
, implying the change of variablesλi 7→ 1√

a
λi. Analogous considerations

lead to the first result.

WhenΛ is not a cone, then we can still bring the constanta outside the function. In that

case, though, the functionΩ will have a constraint set̃Λ containing allλ̃ =
√
aλ or λ̃ = 1√

a
λ

for all λ ∈ Λ.

3.3 Examples of setΛ

We discuss some specific instances of the setΛ and the associated penalty functions. These will

prove to be important cases both from a theoretical and from apractical point of view.

The Box penalty introduces the constraint that the absolutevalue of each individual com-

ponent of the vector is bound to be in an interval. This type oforacle information is hard to

exploit because it is not the actual value to be confined in an interval: the absolute value regards

as equal two possibilities of opposite signs, thus leading to a problem combinatorial in nature.

This penalty has a closed form which resembles the Huber loss[40].

The Wedge penalty models the very natural assumption that the absolute values of the

components of the model are sorted. We prove that this penalty has an analytical solution

related to the Group Lasso. The penalty can be extended modelling a polynomial silhouette for

the model: we constrain the differences ofk-th order to be nonnegative fork ≥ 1.
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A natural generalisation of the Wedge is the Graph penalty, where a hierarchy on the

absolute values are imposed from arbitrary topology. Specifically, we embed the model in a

graph, so that each component is a node, and each directed edge an ordering constraint between

components of these nodes. In general, this penalty has no closed form solution. However, we

present a closed form solution when the graph is a tree.

As we shall see, the Tree penalty shares a general form with the Grid-C penalty, in which

the sum of absolute values of the differences of arbitrary pairs of auxiliary variables is bounded,

in a fashion similar to the Fused Lasso.

In § 3.3.1 we present the Box and its closed form. In§ 3.3.2 we present the Wedge. In

§ 3.3.3 we present the Graph penalty. In§ 3.3.4 we present Tree-C and Grid-C.

3.3.1 Box penalty

We proceed to discuss some examples of the setΛ ⊆ R
n
++ which may be used in the design of

the penalty functionΩ(·|Λ).
The first example, which is presented in this section, corresponds to the prior knowledge

that the magnitude of the components of the regression vector should be in some prescribed

intervals. We choosea = (ai : i ∈ Nn), b = (bi : i ∈ Nn) ∈ R
n, 0 ≤ ai ≤ bi and define

the corresponding box asB[a, b] := {(λi : i ∈ Nn) : λi ∈ [ai, bi], i ∈ Nn}. The theorem

below establishes the form of the box penalty. To state our result, we define, for everyt ∈ R,

the function(t)+ = max(0, t).

Theorem 3.3.1.We have that

Ω(β|B[a, b]) = ‖β‖1 +
∑

i∈Nn

(

1

2ai
(ai − |βi|)2+ +

1

2bi
(|βi| − bi)2+

)

.

Moreover, the components of the vectorλ(β) := argmin{Γ(β, λ) : λ ∈ B[a, b]} are given by

the equationsλi(β) = |βi|+ (ai − |βi|)+ − (|βi| − bi)+, i ∈ Nn.

Proof. SinceΩ(β|B[a, b]) =
∑

i∈Nn
Ω(βi|[ai, bi]) it suffices to establish the result in the case

n = 1. We shall show that ifa, b, β ∈ R, a ≤ b then

Ω(β|[a, b]) = |β|+ 1

2a
(a− |β|)2+ +

1

2b
(|β| − b)2+. (3.3.1)

Since both sides of the above equation are continuous functions ofβ it suffices to prove this

equation forβ ∈ R\{0}. In this case, the functionΓ(β, ·) is strictly convex, and so, has a

unique minimum inR++ atλ = |β|, see also Figure 3.1-b. Moreover, if|β| ≤ a the minimum

occurs atλ = a, whereas if|β| ≥ b, it occurs atλ = b. This establishes the formula forλ(β).
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Consequently, we have that

Ω(β|[a, b]) =























|β|, if |β| ∈ [a, b]

1
2

(

β2

a + a
)

, if |β| < a

1
2

(

β2

b + b
)

, if |β| > b.

Equation (3.3.1) now follows by a direct computation.

We also refer to [21, 40] for related penalty functions. Notethat the function in equation

(3.3.1) is a concatenation of two quadratic functions, connected together with a linear function.

Thus, the box penalty will favor sparsity only fora = 0.

3.3.2 Wedge Penalty

In this section, we consider the case that the coordinates ofthe vectorλ ∈ Λ are ordered in a

nonincreasing fashion. As we shall see, the corresponding penalty function favors regression

vectors which are likewise nonincreasing.

We define the wedge

W = {λ : λ = (λi : i ∈ Nn) ∈ R
n
++, λi ≥ λi+1, i ∈ Nn−1}.

Our next result describes the form of the penaltyΩ in this case, for which we use the notation

‖·‖W . To explain this result we require some preparation. We say that a partitionJ = {Jℓ : ℓ ∈
Nk} of Nn is contiguousif for all i ∈ Jℓ, j ∈ Jℓ+1, ℓ ∈ Nk−1, it holds thati < j. For example,

if n = 3, partitions{{1, 2}, {3}} and{{1}, {2}, {3}} are contiguous but{{1, 3}, {2}} is not.

Definition 3.3.1. Given any two disjoint subsetsJ,K ⊆ Nn we define the region inRn

QJ,K =

{

β : β ∈ R
n,
‖β|J‖22
|J | >

‖β|K‖22
|K|

}

. (3.3.2)

Note that the boundary of this region is determined by the zero set of a homogeneous polyno-

mial of degree two. We also need the following construction.

Definition 3.3.2. For every subsetS ⊆ Nn−1 we setk = |S| + 1 and label the elements of

S in increasing order asS = {jℓ : ℓ ∈ Nk−1}. We associate with the subsetS a contiguous

partition ofNn, given byJ (S) = {Jℓ : ℓ ∈ Nk}, where we defineJℓ := [jℓ−1 + 1, jℓ] ∩ Nn,

ℓ ∈ Nk, and setj0 = 0 andjk = n.

A subsetS of Nn−1 also induces two regions inRn which play a central role in the iden-

tification of the wedge penalty. First, we describe the region which “crosses over” the induced

partitionJ (S). This is defined to be the set

OS :=
⋂

{

QJℓ,Jℓ+1
: ℓ ∈ Nk−1

}

. (3.3.3)
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J1 = {1} J3 = {6, 7}J2 = {2, 3, 4, 5}

Figure 3.2: Partition ofβ=(−1.477, 0.694,−0.173,−0.916,−1.126, 0.525,−0.957).

In other words,β ∈ OS if the average of the square of its components within each region

Jℓ strictly decreases withℓ. The next region which is essential in our analysis is the “stays

within” region, induced by the partitionJ (S). To identify this region we use the notation

Jℓ,q := {j : j ∈ Jℓ, j ≤ q} and is defined by the equation

IS :=
⋂

{

QJℓ,Jℓ,q
: q ∈ Jℓ, ℓ ∈ Nk

}

(3.3.4)

whereQ denotes the closure of the setQ. In other words, all vectorsβ within this region have

the property that, for every setJℓ ∈ J (S), the average of the square of a first segment of

components ofβ within this set is not greater than the average overJℓ. We note that ifS is the

empty set the above notation should be interpreted asOS = R
n and

IS =
⋂

{QNn,Nq
: q ∈ Nn}.

Figure 3.2 illustrates an example of a contiguous partition, along with the setJ (S), for

a vectorβ = (−1.477, 0.694,−0.173,−0.916,−1.126, 0.525,−0.957). We can check that,

for this vector, the partition{{1} , {2, 3, 4, 5} , {6, 7}} belongs both to regionsO andI. For

the crosses over region it must be thatβ21 >
β2
2+β2

3+β2
4+β2

5
4 >

β2
6+β2

7
2 , which is the case since

2.182 > 0.655 > 0.596. For the stays with region it must be thatβ2
2+β2

3+β2
4+β2

5
4 is larger

thanβ22 , β2
2+β2

3
2 and β2

2+β2
3+β2

4
3 , and moreoverβ

2
6+β2

7
2 ≥ β26 . This is the case because0.655 ≥

max(0.482, 0.256, 0.450) and0.596 ≥ 0.276.

From the cross-over and stay-within sets we define the region

PS = OS ∩ IS .

Alternatively, we shall describe below the setPS in terms of two vectors induced by a vector

β ∈ R
n and the setS ⊆ Nn−1. These vectors play the role of the Lagrange multiplier and the

minimizerλ for the wedge penalty in the theorem below.

Definition 3.3.3. For every vectorβ ∈ (R\{0})n and every subsetS ⊆ Nn−1 we letJ (S) be

the induced contiguous partition ofNn and define two vectorsζ(β, S) ∈ R
n+1
+ andδ(β, S) ∈
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R
n
++ by

ζq(β, S) =























0, if q ∈ S ∪ {0, n},

|Jℓ,q| − |Jℓ|
‖β|Jℓ,q

‖22
‖β|Jℓ

‖22
, if q ∈ Jℓ, ℓ ∈ Nk

and

δq(β, S) =
‖β|Jℓ‖2
√

|Jℓ|
, q ∈ Jℓ, ℓ ∈ Nk. (3.3.5)

Note that the components ofδ(β, S) are constant on each setJℓ, ℓ ∈ Nk.

Lemma 3.3.1. For everyβ ∈ (R\{0})n andS ⊆ Nk−1 we have that

(a) β ∈ PS if and only if ζ(β, S) ≥ 0 andδ(β, S) ∈ int(W );

(b) If δ(β, S1) = δ(β, S2) andβ ∈ OS1 ∩OS2 thenS1 = S2.

Proof. The first assertion follows directly from the definition of the requisite quantities. The

proof of the second assertion is a direct consequence of the fact that the vectorδ(β, S) is a

constant on any element of the partitionJ (S) and strictly decreasing from one element to the

next in that partition.

For the theorem below we introduce, for everyS ∈ Nn−1 the sets

US := PS ∩ (R\{0})n.

We shall establishes not only that the collection of setsU := {US : S ⊆ Nn−1} form apartition

of (R\{0})n, that is, their union is(R\{0})n and two distinct elements ofU are disjoint, but

also explicitly determine the wedge penalty on each elementof U .

Theorem 3.3.2.The collection of setsU := {US : S ⊆ Nn−1} form a partition of(R\{0})n.

For eachβ ∈ (R\{0})n there is a uniqueS ⊆ Nn−1 such thatβ ∈ US , and

‖β‖W =
∑

ℓ∈Nk

√

|Jℓ|‖β|Jℓ‖2, (3.3.6)

wherek = |S|+1. Moreover, the components of the vectorλ(β) := argmin{Γ(β, λ) : λ ∈W}
are given by the equationsλj(β) = µℓ, j ∈ Jℓ, ℓ ∈ Nk, where

µℓ =
‖β|Jℓ‖
√

|Jℓ|
. (3.3.7)

Proof. First, let us observe that there aren − 1 inequality constraints definingW . It readily

follows that all vectors in this constraint set areregular, in the sense of optimization theory, see

[6, p. 279]. Hence, we can appeal to [6, Prop. 3.3.4, p. 316 andProp. 3.3.6, p. 322], which
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state thatλ ∈ R
n
++ is a solution to the minimum problem determined by the wedge penalty, if

and only if there exists a vectorα = (αi : i ∈ Nn−1) with nonnegative components such that

−
β2j
λ2j

+ 1 + αj−1 − αj = 0, j ∈ Nn, (3.3.8)

where we setα0 = αn = 0. Furthermore, the following complementary slackness conditions

hold true

αj(λj+1 − λj) = 0, j ∈ Nn−1. (3.3.9)

To unravel these equations, we letŜ := {j : λj > λj+1, j ∈ Nn−1}, which is the subset of

indexes corresponding to the constraints that are not tight. Whenk ≥ 2, we express this set in

the form{jℓ : ℓ ∈ Nk−1}wherek = |Ŝ|+1. As explained in Definition 3.3.2, the setŜ induces

the partitionJ (Ŝ) = {Jℓ : ℓ ∈ Nk} of Nn. Whenk = 1 our notation should be interpreted to

mean that̂S is empty and the partitionJ (Ŝ) consists only ofNn. In this case, it is easy to solve

equations (3.3.8) and (3.3.9). In fact, all components of the vectorλ have a common value, say

µ > 0, and by summing both sides of equation (3.3.8) overj ∈ Nn we obtain that

µ2 =
‖β‖22
n

.

Moreover, summing both sides of the same equation overj ∈ Nq we obtain that

αq = −
∑

j∈Nq
β2j

µ2
+ q

and, sinceαq ≥ 0 we conclude thatβ ∈ IŜ = PŜ .

We now consider the case thatk ≥ 2. Hence, the vectorλ has equal components on each

subsetJℓ, which we denote byµℓ, ℓ ∈ Nk−1. The definition of the set̂S implies that the

sequence{µℓ : ℓ ∈ Nk} is strictly decreasing and equation (3.3.9) implies thatαj = 0, for

everyj ∈ Ŝ. Summing both sides of equation (3.3.8) overj ∈ Jℓ we obtain that

− 1

µ2ℓ

∑

j∈Jℓ
β2j + |Jℓ| = 0 (3.3.10)

from which equation (3.3.7) follows. Since theµℓ are strictly decreasing, we conclude that

β ∈ OŜ . Moreover, choosingq ∈ Jℓ and summing both sides of equations (3.3.8) overj ∈ Jℓ,q
we obtain that

0 ≤ αq = −
‖β|Jℓ,q‖22
µ2ℓ

+ |Jℓ,q|

which implies thatβ ∈ QJℓ,Jℓ,q
. Since this holds for everyq ∈ Jℓ andℓ ∈ Nk we conclude that

β ∈ IŜ and therefore, it follows thatβ ∈ US .

In summary, we have shown thatα = ζ(β, Ŝ), λ = δ(β, Ŝ), andβ ∈ UŜ . In particular,

this implies that the collection of setsU covers(R\{0})n. Next, we show that the elements of
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U are disjoint. To this end, we observe that, the computation described above can bereversed.

That is to say, conversely foranyŜ ⊆ Nn−1 andβ ∈ UŜ we conclude thatδ(β, Ŝ) andζ(β, Ŝ)

solve the equations (3.3.8) and (3.3.9). Since the wedge penalty function isstrictly convexwe

know that equations (3.3.8) and (3.3.9) have a unique solution. Now, ifβ ∈ US1 ∩ US2 then it

must follow thatδ(β, S1) = δ(β, S2). Consequently, by part (b) in Lemma 3.3.1 we conclude

thatS1 = S2.

Note that the setS and the associated partitionJ appearing in the theorem is identified

by examining the optimality conditions of the optimizationproblem (3.1.2) forΛ = W . There

are2n−1 possible partitions. Thus, for a givenβ ∈ (R\{0})n, determining the corresponding

partition is a challenging problem. We explain how to do thisin Section 4.1.

An interesting property of the Wedge penalty, which is indicated by Theorem 3.3.2, is that

it has the form of a Group Lasso penalty as in equation (3.5.4), with groups not fixeda-priori

but depending on the location of the vectorβ. The groups are the elements of the partitionJ
and are identified by certain convex constraints on the vector β. For example, forn = 2 we

obtain thatΩ(β|W ) = ‖β‖1 if |β1| > |β2| andΩ(β|W ) =
√
2‖β‖2 otherwise. Forn = 3, we

have that

Ω(β|W ) =



































































‖β‖1, if |β1| > |β2| > |β3| J = {{1}, {2}, {3}}

√

2(β21 + β22) + |β3|, if |β1| ≤ |β2| and β2
1+β2

2
2 > β23 J = {{1, 2}, {3}}

|β1|+
√

2(β22 + β23), if |β2| ≤ |β3| and β21 >
β2
2+β2

3
2 J = {{1}, {2, 3}}

√

3(β21 + β22 + β23), otherwise J = {{1, 2, 3}}

where we have also displayed the partitionJ involved in each case. We also present a graphical

representation of the corresponding unit ball in Figure 3.3-a. For comparison we also graph-

ically display the unit ball for the hierarchical Group Lasso with groups{1, 2, 3}, {2, 3}, {3}
and two Group Lasso in Figure 3.3-b,c,d, respectively.

The wedge may equivalently be expressed as the constraint that the difference vector

D1(λ) := (λj+1 − λj : j ∈ Nn−1) is less than or equal to zero. This alternative interpre-

tation suggests thek-th order difference operator, which is given by the formula

Dk(λ) =



λj+k +
∑

ℓ∈Nk

(−1)ℓ
(

k

ℓ

)

λj+k−ℓ : j ∈ Nn−k
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(a) (b) (c)

(d) (e)

Figure 3.3: Unit ball of different penalty functions: (a) Wedge penaltyΩ(·|W ); (b) hierarchi-

cal Group Lasso; (c) Group Lasso with groups{{1, 2}, {3}}; (d) Group Lasso with groups

{{1}, {2, 3}}; (e) the penaltyΩ(·|W 2).

and the correspondingk-th wedge

W k := {λ : λ ∈ R
n
++, D

k(λ) ≥ 0}. (3.3.11)

The associated penaltyΩ(·|W k) encourages vectors whose sparsity pattern is concentratedon

at mostk different contiguous regions. Note thatW 1 is not the wedgeW considered earlier.

Moreover, the2-wedge includes vectors which have a convex “profile” and whose sparsity

pattern is concentrated either on the first elements of the vector, on the last, or on both.

3.3.3 Graph penalty

In this section we present an extension of the wedge set whichis inspired by previous work

on the Group Lasso estimator with hierarchically overlapping groups [58]. It models vectors

whose magnitude is ordered according to a graphical structure.

Let G = (V,E) be a directed graph, whereV is the set ofn vertices in the graph and

E ⊆ V × V is the edge set, whose cardinality is denoted bym. If (v,w) ∈ E we say that there

is a directed edge from vertexv to vertexw. The graph is identified by them × n incidence
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matrix, which we define as

Ae,v =



























1, if e = (v,w) ∈ E, w ∈ V

−1, if e = (w, v) ∈ E, w ∈ V

0, otherwise.

We consider the penalty‖ · ‖ΛG
for the convex coneΛG = {λ : λ ∈ R

n
++, Aλ ≥ 0} and

assume, from now on, thatG is acyclic (DAG), that is,G has no directed loops. In particular,

this implies that, if(v,w) ∈ E then(w, v) /∈ E. The wedge penalty described above is a special

case of the graph penalty corresponding to a line graph. Let us now discuss some aspects of the

graph penalty for an arbitrary DAG. As we shall see, our remarks lead to an explicit form of the

graph penalty whenG is a tree.

If (v,w) ∈ E we say that vertexw is a child of vertexv andv is a parent ofw. For every

vertexv ∈ V , we letC(v) andP (v) be the set of children and parents ofv, respectively. When

G is a tree,P (v) is the empty set ifv is the root node and otherwiseP (v) consists of only one

element, the parent ofv, which we denote byp(v).

Let D(v) be the set of descendants ofv, that is, the set of vertices which are connected

to v by a directed path starting inv, and letA(v) be the set of ancestors ofv, that is, the set

of vertices from which a directed path leads tov. We use the convention thatv ∈ D(v) and

v /∈ A(v).
Every connected subsetV ′ ⊆ V induces a subgraph ofG which is also a DAG. IfV1 and

V2 are disjoint connected subsets ofV , we say that they are connected if there is at least one

edge connecting a pair of vertices inV1 andV2, in either one or the other direction. Moreover,

we say thatV2 is belowV1 — written V2 ⇓ V1 — if V1 andV2 are connected and every edge

connecting them departs from a node ofV1.

Definition 3.3.4. LetG be a DAG. We say thatC ⊆ E is a cut ofG if it induces a partition

V(C) = {Vℓ : ℓ ∈ Nk} of the vertex setV such that(v,w) ∈ C if and only if verticesv andw

belong to two different elements of the partition.

In other words, a cut separates a connected graph in two or more connected components

such that every pair of vertices corresponding to a disconnected edge, that is an element ofC,

are in two different components. We also denote byC(G) the set of cuts ofG, and byDℓ(v)

the set of descendants ofv within setVℓ, for everyv ∈ Vℓ andℓ ∈ Nk. Figure 3.3 illustrates an

example of a partition of a tree.

Next, for everyC ∈ C(G), we define the regions inRn by the equations

OC =
⋂

{QV1,V2 : V1, V2 ∈ V(C), V2 ⇓ V1} (3.3.12)
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and

IC =
⋂

{

QDℓ(v),Vℓ
: ℓ ∈ Nk, v ∈ Vℓ

}

. (3.3.13)

These sets are the graph equivalent of the sets defined by equations (3.3.3) and (3.3.4) in the

special case of the wedge penalty in Section 3.3.2. We also set PC = OC ∩ IC .

Moreover, for everyC ∈ C(G), we define the sets

UC := PC

⋂

(R\{0})n.

As of yet, we cannot extend Theorem 3.3.2 to the case of an arbitrary DAG, even if we suspect

it to be true. However, we can accomplish this whenG is a tree.

Lemma 3.3.2.LetG = (V,E) be a tree, letA be associated incidence matrix and letz = (zv :

v ∈ V ) ∈ R
n. The following facts are equivalent:

(a) For everyv ∈ V it holds that
∑

u∈D(v)

zu ≥ 0.

(b) The linear systemA⊤α = −z admits a non-negative solution forα = (αe : e ∈ E) ∈
R
m.

Proof. The incident matrix of a tree has the property that, for everyv ∈ V ande ∈ E,

∑

u∈D(v)

Aeu = −δe,(p(v),v) (3.3.14)

where, for everye, e′ ∈ E, δe,e′ = 1 if e = e′ and zero otherwise. The the linear system in (b)

can be written componentwise as

∑

e∈E
Aeuαe = −zu.

Summing both sides of this equation overu ∈ D(v) and using equation (3.3.14), we obtain the

equivalent equations

α(p(v),v) =
∑

u∈D(v)

zu.

The result follows.

Definition 3.3.5. LetG = (V,E) be a DAG. For every vectorβ ∈ (R\{0})n and every cut

C ∈ C(G) we letV(C) = {Vℓ : ℓ ∈ Nk}, k ∈ Nn be the partition ofV induced byC, and
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define two vectorsζ(β,C) ∈ R
n−1
+ andδ(β,C) ∈ R

n
++. The components ofζ(β,C) are given

as

ζe(β,C) =



















0, if e ∈ C,

|Vℓ|
‖β|Dℓ(u)

‖22
‖β|Vℓ

‖22
− |Dℓ(u)|, if e = (u, v), u ∈ Vℓ, v ∈ Dℓ(u), ℓ ∈ Nk

whereas the components ofδ(β,C) are given by

δv(β,C) =
‖β|Vℓ

‖2
√

|Vℓ|
, v ∈ Vℓ, ℓ ∈ Nk. (3.3.15)

Note that the notation we adopt in this definition differs from that used in the case of

line graph, given in Definition 3.3.3. However, Definition 3.3.5 leads to a more appropriate

presentation of our results for a tree.

Proposition 3.3.1. LetG = (V,E) be a tree andA the associated incidence matrix. For every

β ∈ (R\{0})n and every cutC ∈ C(G) we have that

(a) β ∈ PC if and only if ζ(β,C) ≥ 0, Aδ(β,C) ≥ 0 and δv(β,C) > δw(β,C), for all

v ∈ V1, w ∈ V2, (v,w) ∈ E, V1, V2 ∈ V(C);

(b) If δ(β,C1) = δ(β,C2) andβ ∈ OC1 ∩OC2 thenC1 = C2.

Proof. We immediately see thatβ ∈ OC if and only ifAδ(β,C) ≥ 0 andδv(β,C) > δw(β,C)

for all v ∈ V1, w ∈ V2, (v,w) ∈ E, V1, V2 ∈ V(C). Moreover, by applying Lemma 3.3.2 on

each elementVℓ of the partition induced byC and choosingz = (|Vℓ| β2
v

‖β|Vℓ
‖22
− 1 : v ∈ Vℓ), we

conclude thatζ(β,C) ≥ 0 if and only if β ∈ IC . This proves the first assertion.

The proof of the second assertion is a direct consequence of the fact that the vectorδ(β,C)

is a constant on any element of the partitionV(C) and strictly decreasing from one element to

the next in that partition.

Theorem 3.3.3.LetG = (V,E) be a tree. The collection of setsU := {UC : C ∈ C(G)} form

a partition of(R\{0})n. Moreover, for everyβ ∈ (R\{0})n there is a uniqueC ∈ C(G) such

that

‖β‖ΛG
=

∑

Vℓ∈V(C)

√

|Vℓ|‖β|Vℓ
‖2 (3.3.16)

and the vectorλ(β) = (λv(β) : v ∈ V ) has components given byλv(β) = µℓ, v ∈ Vℓ, ℓ ∈ Nk,

where

µℓ =

√

1

nℓ

∑

w∈Vℓ

β2w. (3.3.17)
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Proof. The proof of this theorem proceeds in a fashion similar to that of Theorem 3.3.2. In

this regard, Lemma 3.3.2 is crucial. By Karush-Kuhn-Tuckertheory (see e.g. [6, Theorems

3.3.4,3.3.7]),λ is an optimal solution of the graph penalty if and only if there existsα ≥ 0 such

that, for everyv ∈ V
−β

2
v

λ2v
+ 1−

∑

e∈E
αeAev = 0

and the following complementary conditions hold true

α(v,w)(λw − λv) = 0, v ∈ V,w ∈ C(v). (3.3.18)

We rewrite the first equation as

α(p(v),v) −
∑

w∈C(v)

α(v,w) =
β2v
λ2v
− 1. (3.3.19)

Now, if λ ∈ ΛG solves equations (3.3.18) and (3.3.19), then it induces a cut C ⊂ E and a

corresponding partitionV(C) = {Vℓ : ℓ ∈ Nk} of V such thatλv = µℓ for everyv ∈ Vℓ. That

is, λv = λw for everyv,w ∈ Vℓ, ℓ ∈ Nk, andαe = 0 for everye ∈ C. Therefore, summing

equations (3.3.19) forv ∈ Vℓ we get that

µℓ =
‖β|Vℓ

‖2
√

|Vℓ|
.

Moreover, sinceµℓ > µq, if Vq ⇓ Vℓ we see thatβ ∈ OC . Next, for everyℓ ∈ Nk andu ∈ Vℓ
we sum both sides of equation (3.3.19) forv ∈ Dℓ(u) to obtain that

α(p(u),u) =
‖β|Dℓ(u)‖22

µ2ℓ
− |Dℓ(u)|. (3.3.20)

We see thatβ ∈ IC and conclude thatβ ∈ UC .

In summary we have shown that the collection of setsU cover(R\{0})n. Next, we show

that the elements ofU are disjoint. To this end, we observe that, the computation described

above can bereversed. That is to say, conversely foranypartitionC = {V1, . . . , Vk} of V and

β ∈ UC we conclude by Proposition 3.3.1 that the vectorsδ(β,C) andζ(β,C) solves the KKT

optimality conditions. Since this solution is unique ifβ ∈ UC1 ∩ UC2 then it must follow that

δ(β,C1) = δ(β,C2), which implies thatC1 = C2.

Theorems 3.3.2 and 3.3.3 fall into the category of a setΛ ⊆ R
n chosen in the form of a

polyhedral cone, that is

Λ = {λ : λ ∈ R
n, Aλ ≥ 0}

whereA is anm × n matrix. Furthermore, in the line graph of Theorem 3.3.2 and also the

extension in Theorem 3.3.3 the matrixA only has elements which are−1, 1 or 0. These two
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examples that we considered led to explicit description of the norm‖ · ‖Λ. However, there are

seemingly simple cases of a matrixA of this type where the explicit computation of the norm

‖ · ‖Λ seem formidable, if not impossible. For example, ifm = 2, n = 4 and

A =





−1 −1 1 0

0 −1 −1 1





we are led by KKT to a system of equations that, in the case of two active constraints, that is,

Aλ = 0, are the common zeros of twofourth orderpolynomials in the vectorλ ∈ R
2.

3.3.4 Tree-C and Grid-C

We consider two more setsΛ of the form

Λ = {λ ∈ R
n
++ : Aλ ∈ S}

whereS is a convex set andA is ak × n matrix. Two main choices of interest are whenS is

a convex cone or the unit ball of a norm. We shall refer to the corresponding setΛ asconic

constraintor norm constraintset, respectively. We next discuss two specific examples, which

highlight the flexibility of our approach and help us understand the sparsity patterns favoured

by each choice.

Within the conic constraint sets, we may chooseS = R
k
++, so thatΛ = {λ ∈ R

n
++ :

Aλ ≥ 0}, which can be used to encourage hierarchical sparsity. In [32] they considered the

setΛ = {λ ∈ R
n
++ : λ1 ≥ · · · ≥ λn} and derived an explicit formula of the corresponding

regularizerΩ(β|Λ). Note that for a generic matrixA the penalty function cannot be computed

explicitly. In Chapter 4, we show how to overcome this difficulty.

Within the norm constraint sets, we may chooseS to be theℓ1-unit ball andA the edge

map of a graphG with edge setE, so thatΛ =
{

λ ∈ R
n
++ :

∑

(i,j)∈E |λi − λj| ≤ 1
}

. This set

can be used to encourage sparsity patterns consisting of fewconnected regions/subgraphs of the

graphG. For example ifG is a 1D-grid we have thatΛ = {λ ∈ R
n
++ :

∑n−1
i=1 |λi+1−λi| ≤ 1},

so the corresponding penalty will favour vectorsβ whose absolute values are constant.

3.4 Duality

In this section, we comment on the utility of our class of penalty functions, which is fundamen-

tally based on their construction as constrained infimum of quadratic functions. To emphasize

this point both theoretically and computationally, we discuss the conversion of the regulariza-

tion variational problem overβ ∈ R
n, namely

E(Λ) = inf {E(β, λ) : β ∈ R
n, λ ∈ Λ} (3.4.1)
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where

E(β, λ) := ‖y −Xβ‖2 + 2ρΓ(β, λ),

into a variational problem overλ ∈ Λ.

To explain what we have in mind, we introduce the following definition.

Definition 3.4.1. For everyλ ∈ R
n
+, we define the vectorβ(λ) ∈ R

n as

β(λ) = diag(λ)M(λ)X⊤y

whereM(λ) := (diag(λ)X⊤X + ρI)−1.

Note thatβ(λ) = argmin{E(β, λ) : β ∈ R
n}.

Theorem 3.4.1.For ρ > 0, y ∈ R
m, anym× n matrixX and any nonempty convex setΛ we

have that

E(Λ) = min
{

ρy⊤ (Xdiag(λ)X⊤ + ρI)
−1
y + ρtr(diag(λ)) : λ ∈ Λ ∩ R

n
+

}

(3.4.2)

Moreover, ifλ̂ is a solution to this problem, thenβ(λ̂) is a solution to problem(3.4.1).

Proof. We substitute the formula forΩ(β|Λ) into the right hand side of equation (3.4.1) to

obtain that

E(Λ) = inf {H(λ) : λ ∈ Λ} (3.4.3)

where we define

H(λ) = min {E(β, λ) : β ∈ R
n} .

A straightforward computation confirms that

H(λ) = ρy⊤ (Xdiag(λ)X⊤ + ρI)
−1
y + ρtr(diag(λ)).

SinceH(λ) ≥ ρtr(diag(λ)), we conclude that any minimising sequence for the optimization

problem on the right hand side of equation (3.4.3) must have asubsequence which converges.

These remarks confirm equation (3.4.2).

We now prove the second claim. Forλ ∈ R
n
++ a direct computation confirms that

Γ(β(λ), λ) =
1

2
(y⊤XM(λ)diag(λ)M(λ)X⊤y + tr(diag(λ))) .

Note that the right hand side of this equation provides a continuous extension of the left hand

side toλ ∈ R
n
+. For notational simplicity, we still use the left hand side to denote thiscontinu-

ous extension.
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By a limiting argument, we conclude, for everyλ ∈ Λ, that

Ω(β(λ)|Λ) ≤ Γ(β(λ), λ). (3.4.4)

We are now ready to complete the proof of the theorem. Letλ̂ be a solution for the optimization

problem (3.4.2). By definition, it holds, for anyβ ∈ R
n andλ ∈ Λ, that

‖y −Xβ(λ̂)‖2 + 2ρΓ(β(λ̂), λ̂) = H(λ̂) ≤ H(λ) ≤ ‖y −Xβ‖2 + 2ρΓ(β, λ).

Combining this inequality with inequality (3.4.4) evaluated atλ = λ̂, we conclude that

‖y −Xβ(λ̂)‖2 + 2ρΩ(β(λ̂)|Λ) ≤ ‖y −Xβ‖2 + 2ρΓ(β, λ)

from which the result follows.

An important consequence of the above theorem is a method to find a solutionβ̂ to the

optimization problem (3.4.1) from a solution to the optimization problem (3.4.2). We illustrate

this idea in the case thatX = I.

Corollary 3.4.1. It holds that

min
{

‖β − y‖22 + 2ρΩ(β|Λ) : β ∈ R
n
}

= ρmin

{

∑

i∈Nn

y2i
λi + ρ

+ λi : λ ∈ Λ

}

. (3.4.5)

Moreover, ifλ̂ is a solution of the right optimization problem then the vector β(λ̂) = (βi(λ̂) :

i ∈ Nn), defined as

βi(λ̂) =
λ̂iyi

λ̂i + ρ
(3.4.6)

is a solution of the right problem.

We further discuss some examples of the setΛ for which we are able to solve this problem

analytically. If Λ = R
n
++, for which Ω is the ℓ1 norm, the solution to problem (3.4.5) is

λ̂ = (|y| − ρ)+, and the corresponding regression vector is obtained by thewell-known “soft

thresholding” formulaβ(λ̂) = (|y| − ρ)+sign(y).

If Λ = [a, b], we solve the problem (3.4.5) by appealing to Theorem 3.3.1 and a change of

variables. We obtain that̂λi = |yi| − ρ+ (a− |yi|+ ρ)+ − (|yi| − ρ− b)+ for i ∈ Nn, and we

can computeβ(λ̂) accordingly.

For the Wedge and Tree penalties we find that the solution to the problem (3.4.5) is

λ̂ = (λ(y) − ρ)+,

whereλ(y) is given by Theorem 3.3.2 or Theorem 3.3.3 respectively. To see why this must be

true, we focus on the most general case of the Tree, and we follow the proof of Theorem 3.3.3.
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Note that the only difference from the problem solved in thattheorem is that now the vari-

ables corresponding to the leaves of the graph should be greater thanρ. For this reason, to the

slackness conditions of (3.3.18), we have the additional conditions

αv(ρ− λv) = 0,

for all leavesv of the tree graph.

Now let v be a generic leaf node of the graph. In order forλv to be a minimiser of the

unconditional version of problem (3.4.6), it should cancelthe derivative. It means that it should

beλv = |yv| − ρ. Two cases can follow.

If |yv| ≤ ρ, and because of the constraint thatλv ≥ 0, we have to conclude that̂λv = 0,

and consequentlyαv > 0. The problem is thus reduced by one dimension, as we can repeat our

reasoning for a different leaf without nodev.

If, on the other hand,|yv| > ρ, then the optimal value is achieved forλ̂n = |yn| − ρ > 0.

This implies that the corresponding slackness variable isαv = 0, and we can continue to follow

the original proof having assigned in either way a value to both the leaves nodes and the new

slackness variables.

Finally, we note that Corollary 3.4.1 and the examples following it extend to the case that

X⊤X = I by replacing throughout the vectory by the vectorX⊤y. In the statistical literature

this setting is referred to as orthogonal design.

3.5 Special cases

For particular choices of the constraints setΛ, the functionΩ reduces to known penalty terms.

We have already seen that this is true for theℓ1 norm.

For trivial sets like a ray or a point, the functionΩ reduces to theℓ2 norm or the squared

ℓ2 norm. For another simple structure, where all components ofλ are equal inside a group, the

Group Lasso penalty with no overlapping groups is recovered.

A dirty model (see [23]) splits the model into the sum of two vectors and penalises each of

them indepently using two different functions. For a particular setΛ, we obtain the dirty model

ℓ22/ℓ1, where theℓ1 norm penalises an auxiliary vector which is close to the model, the distance

being measured with the squaredℓ2 norm.

We also consider dirty models in which the distance is measured with the functionΩ itself.

Specifically, we prove that the dirty modelsΩ/ℓ1 andΩ/ℓ22, both corresponds to special cases

of the functionΩ.

The Overlapping groups technique (see [22]) discussed in§ 2.3.2 is not in general a spe-

cial case of theΩ function. However, it can be expressed in a related way and, under some
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assumptions on the grouping, can be recovered for some choice ofΛ.

In § 3.5.1 we present the special cases ofℓ2 norm and Group Lasso. The dirty modelℓ22/ℓ1

is presented in§ 3.5.2, while the dirty models involvingΩ, that isΩ/ℓ1 andΩ/ℓ22, appear in

§ 3.5.3 and§ 3.5.4 respectively. In§ 3.5.5, the Overlapping groups case is discussed.

3.5.1 Euclidean norm and Group Lasso

ℓ2 norm. The ℓ2 norm is obtained when the setΛ consists of a single ray. In general, let

Λ = {λ : λ = av, a > 0}, wherev is a given and fixed vector in the positive orthant. The value

of Ω will be

Ω(β|Λ) = 1

2
inf
a>0

{

1

a

∑

i∈Nn

β2i
vi

+ a
∑

i∈Nn

vi

}

=

√

√

√

√

∑

i∈Nn

β2i
vi

∑

i∈Nn

vi. (3.5.1)

In fact, the lower bound provided by the arithmetic-geometric inequality is achieved bŷa =
√

∑

i∈Nn

β2
i

vi
/
√

∑

i∈Nn
vi.

In the special case when vectorv has all components equal to a common positive valuek,

we find that the expressions
∑

i∈Nn

β2
i

vi
and

∑

i∈Nn
vi simplify to 1

k‖β‖22 andnk respectively.

Then we have

Ω(β|Λ) = √n‖β‖2, (3.5.2)

for Λ = {λ : λ = (a, . . . , a), a > 0}.
ℓ2 norm squared. We obtain the square of theℓ2 norm when the setΛ is a singleton. When the

only element ofΛ is a given vectorv in the positive orthant,Ω(β|Λ) = 1
2

∑

i∈Nn

β2
i

vi
+ 1

2‖v‖1.

The special case whenv = (k, . . . , k) for k > 0 is again of interest, leading to

Ω(β|Λ) = 1

2

(‖β‖22
k

+ nk

)

, (3.5.3)

for Λ = {(k, . . . , k)}.
Group Lasso. Finally, we note that a normalized version of the Group Lasso penalty [57] is

also included in our setting as a special case. If{Jℓ : ℓ ∈ Nk}, k ∈ Nn, form a partition of the

index setNn, the corresponding Group Lasso penalty is defined as

ΩGL(β) =
∑

ℓ∈Nk

√

|Jℓ| ‖β|Jℓ‖2, (3.5.4)

where, for everyJ ⊆ Nn, we use the notationβ|J = (βj : j ∈ J). It is an easy matter to verify

thatΩGL = Ω(·|Λ) for Λ = {λ : λ ∈ R
n
++, λj = θℓ, j ∈ Jℓ, ℓ ∈ Nk, θℓ > 0}.

3.5.2 Dirty model ℓ22/ℓ1

In this and in the following subsections we show how some particular examples ofdirty linear

models can be recast as special cases of functionΩ.
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The dirty model framework decomposes the underlying vectorβ as a sum of two terms,

β − α andα, which are penalised independently with different penaltyterms. The result is

in contrast with the correspondingcleanmodels, the ones obtained with just one of the two

penalties.

As an example, [23] propose to penalise the matrix model of a multiple regression problem

with two penalties2: ‖·‖1,∞, to encourage block sparsity, and‖·‖1,1, to encourage standard

sparsity. One claim of the paper is that under general conditions on the data matrices, the dirty

model outperforms both clean models.

We begin by considering the simple dirty setting forℓ22/ℓ1 norms (theℓ2 is squared):

min
α,β

{

‖y −Xβ‖22 + ‖β − α‖22 + ρ‖α‖1 : α ∈ R
n, β ∈ R

n
}

. (3.5.5)

In ridge regression we penalise the vectorβ with theℓ2 norm alone. Here, instead, we use the

ℓ2 norm to penalise thedistanceof β from an auxiliary vectorα, which in turn is encouraged

to be sparse by the presence of theℓ1 norm.

By noting that the loss function is independent from the vector α, we can write the penalty

term explicitly as

J(β) = min
α∈Rn

{

‖β − α‖22 + ρ‖α‖1
}

. (3.5.6)

This function is called the Moreau envelope, and its solution is the well-known soft-thresholding

operator. We will see that this penalty function has the sameform of the functionΩ for a

particular choice of the constraint setΛ. Note that just theℓ1 norm is multiplied with the

coefficientρ > 0: this is indeed sufficient, as a coefficient for theℓ2 norm could be easily

factored out of the minimisation problem.

Our first step is to use the variational formulation for theℓ1 norm, writing it as

‖α‖1 =
1

2
inf

µ∈Rn
++

{

αTM−1α+
∑

i∈Nn

µi

}

whereM−1 = diag(µ−1
1 , . . . , µ−1

n ). Since the term‖β − α‖22 is independent fromµ, we can

bring it inside the infimum and change the order of the optimisations, to obtain

J(β) = inf
µ∈Rn

++

{

min
α∈Rn

{

‖β − α‖22 +
ρ

2
αTM−1α

}

+
ρ

2

∑

i∈Nn

µi

}

. (3.5.7)

The inner minimisation problem is quadratic, and can be solved component-wise. For a

generic indexi (here omitted), we need to minimise(β − α)2 + ρ
2µα

2, which has derivative

2With the notation‖A‖a,b, we refer to the norm‖·‖a computed on the vector whosek-th component is the norm

‖·‖b of thek-th column of matrixA.
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−2(β −α) + ρ
µα, so we havêα = 2µ

2µ+ρβ and the value at the minimum isβ
2

2µ+ρρ. The penalty

term becomes

J(β) =
1

2
inf

µ∈Rn
++

{

∑

i∈Nn

(

β2i
2µi+ρ
2ρ

+ ρµi

)}

,

and after the change of variablesµ̃i =
µi

ρ + 1
2 we have

J(β) =
1

2
inf
µ̃> 1

2

{

∑

i∈Nn

(

β2i
µ̃i

+ ρ2µ̃i

)

}

− n

4
ρ2.

We can exploit the quasi-homogeneous property discussed in§ 3.2.7 to reduce this expression

to the form of functionΩ. Then, by the changing of variablesλi = ρµ̃i, we can write

J(β) = ρΩ(β|Λ)− n

4
ρ2,

whereΛ = {λ : 2λ > ρ}.
Indeed, the constraint setΛ produces the Box penalty defined in§ 3.3.1, where the con-

straint setB[a, b] has parametersa = ρ
2 and b → ∞. We use the closed formula for the

Box penalty with these parameters, so that we can finally rewrite the penalty term of Equation

Equation (3.5.6) as

J(β) = ρ‖β‖1 +
∑

i∈Nn

(ρ

2
− |βi|

)2

+
− n

4
ρ2.

We conclude by showing that this function is the same as the Moreau envelope. Since the

variables are clearly decomposable, it is sufficient to consider the casen = 1. Let J1(β) =

(β− α̂)2+ρ|α̂| be the envelope computed at the proximal operatorα̂ = (|β|− ρ
2 )+sgn(β), and

J2(β) = ρ|β| +
(ρ
2 − |β|

)2

+
− ρ2

4 be the Box penalty function. It is an easy matter to compute

J1(β) = J2(β) = ρ|β| − ρ2

4 when ρ
2 < |β|, andJ1(β) = J2(β) = β2 otherwise, obtaining the

Huber-like penalty induced by the Box constraint.

3.5.3 Dirty modelΩ/ℓ1

We consider now a more general dirty model. We assume that thevectorβ can be decomposed

into a vectorβ − α which has a structured support and a vectorα which is sparse. To exploit

this assumption, we penalise the first vector with the functionΩ(·|Λ), and the second one with

ℓ1. So, differently from what we did in§ 3.5.3, we are now providing a structure usingΩ, with

an appropriate and unspecified setΛ, instead of usingℓ2. We study the problem

min
α,β

{

‖y −Xβ‖22 +Ω(β − α|Λ) + ρ‖α‖1 : α ∈ R
n, β ∈ R

n
}

, (3.5.8)

and we want to show that it is a special case of regularisationwith Ω. We begin our manip-

ulations by expanding theℓ1 norm and rearranging the order of operations, thus rewriting the
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penalty term as

J(β) = inf
µ∈Rn

++

{

min
α∈Rn

{

Ω(β − α|Λ) + ρ

2
αTM−1α

}

+
ρ

2

∑

i∈Nn

µi

}

.

To carry out the computation of the inner minimisation with respect toα we expand the

functionΩ as well and rearrange to get the subproblem

1

2
inf
λ∈Λ

{

min
α∈Rn

{

(β − α)TD−1(β − α) + ραTM−1α
}

+ ρ
∑

i∈Nn

λi

}

,

where the diagonal matrix is defined asD−1 = diag(λ−1
1 , . . . , λ−1

n ).

Again, we solve component-wise the quadratic inner minimisation. Omitting the indices,

we want to minimise(β − α)2 1
λ + ρα2 1

µ . Its first derivative is−2(β − α) 1λ + 2ρα
µ , which is

zero forα̂ = µ
µ+ρλβ and has minimum value ρ

µ+ρλβ
2. Then we can rewrite the penalty term as

J(β) =
1

2
inf

µ∈Rn
inf
λ∈Λ

{

∑

i∈Nn

(

β2i
µi + ρλi

ρ+ ρµi + λi

)

}

. (3.5.9)

By the arithmetic-geometric mean inequality,12

(

β2

µ+ρλρ+ ρµ+ λ
)

≥ |β|
√

ρρµ+λ
µ+ρλ .

Moreover, if ρ ≤ 1, then ρµ+λ
µ+ρλ = ρ ρµ+λ

ρµ+ρ2λ
≥ ρ, so the generic element of the sum is no

smaller thanρ|βi|. Indeed, this lower bound is achieved forµi = |βi| andλi = 0, so

J(β) = ρ‖β‖1

for ρ ≤ 1 and anyΛ containing the origin.

We propose a second way to look at this result. We assume thatρ ≤ 1, and note that

J(β) = minα∈Rn {Ω(β − α|Λ) + ρ‖α‖1} can indeed beρ‖β‖1 for the valueα̂ = β. Now

we prove thatJ(β) cannot be less thanρ‖β‖1, completing the argument. By the properties

of Ω, we have thatΩ(β − α|Λ) + ρ‖α‖1 ≥ ‖β − α‖1 + ρ‖α‖1 ≥ |‖β‖1 − ‖α‖1| + ρ‖α‖1,

where the second inequality is a consequence of the triangleinequality. If‖β‖1 ≥ ‖α‖1, then

J(β) ≥ ‖β‖1 + ‖α‖1(ρ − 1) ≥ ‖β‖1 + ‖β‖1(ρ − 1) = ρ‖β‖1. Similarly, if ‖β‖1 ≤ ‖α‖1,

thenJ(β) ≥ ‖α‖1(1 + ρ)− ‖β‖1 ≥ ‖β‖1(1 + ρ)− ‖β‖1 = ρ‖β‖1.

3.5.4 Dirty modelΩ/ℓ22

We notice that the mixture ofΩ and the squaredℓ2 norm can be expressed once again as our

infimum problem. We want to solve

min
α,β

=
{

‖y −Xβ‖22 +Ω(β − α|Λ) + ρ

2
‖α‖22 : α ∈ R

n, β ∈ R
n
}

,
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so the explicit penalty term onβ is

J(β) = min
α∈Rn

{

Ω(β − α|Λ) + ρ

2
‖α‖22

}

=
1

2
inf
λ∈Λ

{

min
α∈Rn

{

∑

i∈Nn

(

(βi − αi)
2

λi
+ ρα2

i

)

}

+
∑

i∈Nn

λi

}

.

Again, the inner minimisation problem is quadratic: the first derivative of(β−α)2

λ + ρα2 is

− 2
λ(β − α) + 2ρα, which is zero forα̂ = β

1+ρλ . The value at the minimum isβ
2

1+ρλρ, so the

expression for the penalty term can be written as

J(β) =
1

2
inf
λ∈Λ

{

∑

i∈Nn

(

β2i
1
ρ + λi

+
1

ρ
+ λi

)}

− n

2ρ
,

which becomes inΩ form as

J(β) = Ω(β|Λ̃)− n

2ρ
,

for Λ̃ =
{

λ̃ : λ̃ = 1
ρ + λ, λ ∈ Λ

}

.

3.5.5 Overlapping groups

The regulariser in [22], discussed in§ 2.3.2, can be reformulated in a formsimilar to that ofΩ

function. We repeat here for reference the definition of the penalty term:

‖β‖J = inf
vJ1 ,...,vJK

{

∑

J∈J
‖vJ‖2 : ∀J ∈ J , vJ ∈ R

d, supp(vJ) ⊆ J,
∑

J∈J
vJ = β

}

, (3.5.10)

whereJ = {J1, . . . , JK} is a set of (possibly overlapping) groups of indices, where each group

Ji is a subset ofNn and each index belong to at least one group, that is∪iJi = Nn.

Then we have the following proposition.

Proposition 3.5.1.LetTj = {i : j ∈ Ji}, for j ∈ Nn, be the set of indices of groups containing

componentj. Then we can write function (3.5.10) with a variational formulation:

‖β‖J = inf
λ∈Λ

√

√

√

√

∑

j∈Nn

β2j
λj
, (3.5.11)

whereΛ =
{

λ : λ ∈ R
d, λj =

∑

i∈Tj
µi, j ∈ Nn, µ ∈ R

K
++

}

.

This Proposition can be proved by means of the following intermediate result.

Lemma 3.5.1. If µ ∈ R
n
++ andx ∈ R, then

inf
y∈Rn







∑

j∈Nn

y2j
µj

:
∑

j∈Nn

yj = x







=
x2

∑

j∈Nn
µj
. (3.5.12)
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Proof. The constraint is equivalent tox2 = (
∑

j∈Nn
yj)

2 =
(

∑

j∈Nn

yj√
µj

√
µj

)2
. As a conse-

quence of Cauchy-Schwarz inequality, this quantity is at most

(

∑

j∈Nn

y2j
µj

)

(

∑

j∈Nn
µj

)

, so

the value of the infimum cannot be smaller thanx2
∑

j∈Nn
µj

. Indeed, this lower bound is attained

for ŷj = x
µj∑

j∈Nn
µj

.

We are now able to prove Proposition 3.5.11.

Proof. To prove the proposition, we begin by making two preliminarysteps. Firstly we apply

the variational formulation to express the sum of terms
∑

J∈J ‖vJ‖2 in Equation (3.5.10) as the

result of an infimum problem on variableµ ∈ R
K
++. Secondly we expand each term(‖vJ‖2)2:

if (vJ)j is thej-th component of vectorvJ , then(‖vJ‖2)2 =
∑

j∈Nn
(vJ )j . The result of these

passages is

∑

J∈J
‖vJ‖2 =

1

2
inf

µ∈RK
++







∑

i∈NK





∑

j∈Nn

(

(vJi)
2
j

µi

)

+ µi











.

We use this formulation in the definition of problem (3.5.10), and proceed by inverting

the order of the summations. Now note that, because of the constraint supp(vJ) ⊆ J , we can

restrict the inner sum to only the groups that contain the particular indexj of the outer sum.

Moreover, for this reason we can rewrite the constraint
∑

J∈J vJ = β as then constraints
∑

i∈Tj
(vJi)j = βj , for all j ∈ Nn.

By further interchanging the order of the infimum operations, we will obtainn indipendent

inner subproblems that can be solved as a direct applicationof Lemma 3.5.12:

inf
{vJi}i∈Tj







∑

i∈Tj

(vJi)
2
j

µi
:
∑

i∈Tj

(vJi)j = βj







=
β2j

∑

i∈Tj
µi
.

So that the original problem is now

‖β‖J =
1

2
inf

µ∈RK
++







∑

j∈Nn

(

β2j
∑

i∈Tj
µi

)

+
∑

i∈NK

µi







. (3.5.13)

As a result of the arithmetic-geometric mean inequality, the quantity cannot be lower than
√

∑

j∈Nn

(

β2j /
∑

i∈Tj
µi

)

∑

i∈NK
µi, so we can change the expression inside the infimum.

After the change of variablesλj =
∑

i∈Tj
µi/
∑

i∈NK
µi, the claim of the Proposition follows.

Note that the setΛ is not restricted by considering elements with componentsλj =
∑

i∈Tj
µi

for nonnegative components ofµ, as they will be proportional to1/
∑

i∈NK
µi.

In general Equation (3.5.13) cannot be written in the same form of functionΩ. However,

it become possible to do so for a special case of the groupingJ . Specifically, we assume that

each componentj belongs to exactlym groups. This assumption is not artificial, as it fits for
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example the description of Graph Lasso [22] for particular graphs, i.e. when the graph is a

clique and there is a group of variables for each sub-clique.

We can use the property of§ 3.2.7 to multiply the sum of variables
∑

i∈NK
µi bym (and at

the same time to get rid of the1n coefficient). This restores the number of occurrences of each

variablesµi, so by the change of variablesλj =
∑

i∈Tj
µi we get precisely the expression for

functionΩ:

‖β‖J =

√

n

m
Ω(β|Λ) (3.5.14)

with Λ =
{

λ : λ ∈ R
n
++, λj =

∑

i∈Tj
µi, j ∈ Nn, µ ∈ R

K
++

}

.
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Numerical algorithms

In Chapter 3, we proposed the problem of penalising a loss function with the functionΩ, spe-

cially designed for structured sparsity. This problem is ingeneral hard to solve and all-purpose

toolboxes that rely on common techniques are slow and cannothandle a large number of di-

mensions. In this chapter we address the issue of implementing the learning method (3.1.1)

numerically for some particular cases. We present two algorithms that can be used for the

Wedge and Tree penalties described in§ 3.3.2 and§ 3.3.3 and for the norm and conic constraint

sets described in§ 3.3.4. Using these algorithms, our technique becomes feasible in practice.

A natural approach is an algorithm that minimises in an alternating way with respect to

the two blocks of variables,β andλ. As we focus on the square loss function, the minimisation

with respect toβ is trivial to compute. The minimisation with respect toλ is a subproblem

which is not in general easy. However, for the mentioned special cases of the Wedge and the

Tree penalties, we can use theoretical results from Chapter3 to solve it efficiently. For the

Wedge, the running time of the subproblem is linear in the number of dimensions. The overall

alternating algorithm has good performances.

Our second proposed algorithm, NEPIO, is a proximal method based on a numerical com-

putation of the proximity operator. As we will see, the proximity operator can be computed as

the fixed point of a particular linear operator. Convergenceto the fixed point can be stopped

earlier to allow for an efficient computation, which is approximate but sufficient for the whole

algorithm to converge. We apply this algorithm to the norm and conic constraint sets. The al-

ternating algorithm can handle only the Wedge and the Tree penalties, which are indeed special

cases of the conic constraint set. While this algorithm is faster for a small number of dimen-

sions, NEPIO scales better and can handle a larger number of dimensions. Moreover, NEPIO

can handle the norm constraint set.

We describe the alternating algorithm in Section 4.1, and NEPIO in Section 4.2.
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4.1 Alternating algorithm

In this section we describe a natural blockwise coordinate descent algorithm inspired from

[1]. This approach updates the minimiser by considering variablesλ andβ independently,

minimising alternatingly with respect to both vectors. This algorithm introduces the subproblem

of minimising with respect toλ, i.e. computing the value of functionΩ. In general this is not

easy, but for the cases of the Wedge and the Tree penalties we can appeal to Theorems 3.3.2 and

3.3.3 to do so. In order to apply these theorems, we need to be able to compute a partition of

vectorβ that satisfies some conditions, which are discussed in§ 3.3.3 and§ 3.3.2. We present

an efficient partitioning algorithm that can be used to solvethis task for the two cases.

In § 4.1.1, we describe completely the alternating algorithm and prove that it converges.

In § 4.1.2 we discuss the step which minimises with respect toβ. In § 4.1.3, we discuss the

algorithms for the subproblems of minimising with respect to λ.

4.1.1 Description and convergence

Since the penalty functionΩ(·|Λ) is constructed as the infimum of a family of quadratic reg-

ularisers, the optimisation problem (3.1.1) reduces to a simultaneous minimisation over the

vectorsβ andλ. For a fixedλ ∈ Λ, the minimum overβ ∈ R
n is a standard Tikhonov regulari-

sation and can be solved directly in terms of a matrix inversion. For a fixedβ, the minimisation

overλ ∈ Λ requires computing the penalty function (3.1.2). These observations naturally sug-

gests an alternating minimisation algorithm, which has already been considered in special cases

in [1]. To describe our algorithm we chooseǫ > 0 and introduce the mappingφǫ : Rn → R
n
++,

whosei-th coordinate atβ ∈ R
n is given by

φǫi(β) =
√

β2i + ǫ.

Forβ ∈ (R\{0})n, we also letλ(β) = argmin{Γ(β, λ) : λ ∈ Λ}.
The alternating minimisation algorithm is defined as follows: choose,λ0 ∈ Λ and, for

k ∈ N, define the iterates

βk = β(λk−1) (4.1.1)

λk = λ(φǫ(βk)). (4.1.2)

The following theorem establishes convergence of this algorithm.

Theorem 4.1.1. If the setΛ is admissible in the sense of Definition 3.2.1, then the iterations

(4.1.1)–(4.1.2) converges to a vectorγ(ǫ) such that

γ(ǫ) = argmin
{

‖y −Xβ‖22 + 2ρΩ(φǫ(β)|Λ) : β ∈ R
n
}

.
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Moreover, any convergent subsequence of the sequence{γ
(

1
ℓ

)

: ℓ ∈ N} converges to a solution

of the optimisation problem(3.1.1).

Proof. We divide the proof into several steps. To this end, we define

Eǫ(β, λ) := ‖y −Xβ‖2 + 2ρΓ(φǫ(β), λ)

and note thatβ(λ) = argmin{Eǫ(α, λ) : α ∈ R
n}.

Step 1.We define two sequences,θk = Eǫ(β
k, λk−1) andνk = Eǫ(β

k, λk) and observe,

for anyk ≥ 2, that

νk ≤ θk ≤ νk−1. (4.1.3)

These inequalities follow directly from the definition of the alternating algorithm, see equations

(4.1.1) and (4.1.2).

Step 2.We define the compact setB = {β : β ∈ R
n, ‖β‖1 ≤ θ1}. From the first inequality

in Proposition 3.2.2 and inequality (4.1.3) we conclude, for everyk ∈ N, thatβk ∈ B.

Step 3.We define the functiong : Rn → R atβ ∈ R
n as

g(β) = min {Eǫ(α, λ(φ
ǫ(β))) : α ∈ R

n} .

We claim thatg is continuous onB. In fact, there exists a constantκ > 0 such that, for every

γ1, γ2 ∈ B, it holds that

|g(γ1)− g(γ2)| ≤ κ‖λ(φǫ(γ1))− λ(φǫ(γ2))‖∞. (4.1.4)

The essential ingredient in the proof of this inequality is the fact that there exists constanta and

b such that, for allβ ∈ B, λ(φǫ(β)) ∈ [a, b]n. This follows from the inequalities developed in

the proof of Proposition 3.2.1.

Step 4.By step 2, there exists a subsequence{βkℓ : ℓ ∈ N} which converges tõβ ∈ B
and, for allβ ∈ R

n andλ ∈ Λ, it holds that

Eǫ(β̃, λ(φ
ǫ(β̃))) ≤ Eǫ(β, λ(φ

ǫ(β̃))), Eǫ(β̃, λ(φ
ǫ(β̃))) ≤ Eǫ(β̃, λ). (4.1.5)

Indeed, from step 1 we conclude that there existsψ ∈ R++ such that

lim
k→∞

θk = lim
k→∞

νk = ψ.

Since, by Proposition 3.2.1λ(β) is continuous forβ ∈ (R\{0})n, we obtain that

lim
ℓ→∞

λkℓ = λ(φǫ(β̃)).
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By the definition of the alternating algorithm, we have, for all β ∈ R
n andλ ∈ Λ, that

θk+1 = Eǫ(β
k+1, λk) ≤ Eǫ(β, λ

k), νk = Eǫ(β
k, λk) ≤ Eǫ(β

k, λ).

From this inequality we obtain, passing to limit, inequalities (4.1.5).

Step 5.The vector(β̃, λ(φǫ(β̃)) is a stationary point. Indeed, sinceΛ is admissible, by

step 3,λ(φǫ(β̃) ∈ int(Λ). Therefore, sinceEǫ is continuously differentiable this claim follows

from step 4.

Step 6. The alternating algorithm converges. This claim follows from the fact thatEǫ

is strictly convex. Hence,Eǫ has a unique global minimum inRn × Λ, which in virtue of

inequalities (4.1.5) is attained at(β̃, λ(φǫ(β̃))).

The last claim in the theorem follows from the fact that the set {γ(ǫ) : ǫ > 0} is bounded

and the functionλ(β) is continuous.

4.1.2 Solving the quadratic inβ

At each iteration of the alternating algorithm, we minimisethe objective function with respect

to β. We consider, as a function ofβ, the quadratic

1

m
‖y −Xβ‖22 + γβD−1β, (4.1.6)

whereD = diag(λ1, . . . , λn). The minimiser of (4.1.6) depends on the tuning parameterγ, and

it is easily found by setting its first derivative to zero:

β̂γ =

(

2

m
XTX + γD−1

)−1 2

m
XT y. (4.1.7)

We can compute explicitly the limit asγ → 0, that is the case of interpolation. By factoring

D−1 = D−1/2D−1/2 and applying the inverse property for a product, we can use the definition

of pseudoinverse1 of the matrixXD1/2. Finally we have

β̂0 = D1/2
(

XD1/2
)†
y. (4.1.8)

The repeated computation, for each iteration, of (4.1.7) or(4.1.8) is expensive. We can

apply a “Kernel trick” to improve performances (for background, see for instance [47]). We

begin by considering the problem of the ridge regression:

1

m
‖y −Xβ‖22 + γβTβ. (4.1.9)

The use of the termXβ in the loss function can be interpreted as the use of the trivial feature

mapφ(xi) = xi, for i = 1, . . . , n. Under this assumption, the representer theorem assures that

1For a matrixA, its pseudoinverse isA† = limγ→0(A
TA+ γI)−1AT .



4.1. Alternating algorithm 79

the solution to the problem will be of the formXT c for anm-dimensional vector of coefficients

c. The new function can be written as1m‖y −Gc‖22 + γcTGc, whereG = XXT is the Gram

matrix. The value ofc which minimises this function iŝc = (G+mγI)−1y, andβ̂ = XT ĉ.

When the additional term isβTD−1β, as in (4.1.6), we can repeat the simpler case with

the change of variablesX 7→ XD1/2 andβ 7→ D−1/2β. We then revert the solution̂β = XT ĉ

to the original variables to get finally

β̂γ = DXT
(

XDX +
m

2
γI
)−1

y. (4.1.10)

Note thatβ̂γ as computed in (4.1.8) requires the inversion of ann × n matrix, while

the same vector as computed with (4.1.10) requires the inversion of anm × m. This is very

appealing, as we are interested in the casem≪ n.

4.1.3 Computation of special penalties

The most challenging step in the alternating algorithm is the computation of the vectorλ. Fortu-

nately, ifΛ is a second order cone, problem (3.1.2) defining the penalty functionΩ(·|Λ) may be

reformulated as a second order cone program (SOCP), see e.g.[10]. To see this, we introduce

an additional variablet ∈ R
n and note that

Ω(β|Λ) = min

{

∑

i∈Nn

ti + λi : ‖(2βi, ti − λi)‖2 ≤ ti + λi, ti ≥ 0, i ∈ Nn, λ ∈ Λ

}

.

In particular, the examples discussed in Sections 3.3.2 and3.3.3, the setΛ is formed by lin-

ear constraints and, so, problem (3.1.2) is an SOCP. We may then use available toolboxes to

compute the solution of this problem. However, in special cases the computation of the penalty

function may be significantly facilitated by using available analytical formulae. Here, we de-

scribe how to do this in the case of the Wedge penalty, followed by the Tree penalty.

Wedge penalty. As described in Theorem 3.3.2, it is possible to compute thevectorλ(β) given

a partitionJ = {Jℓ : ℓ ∈ Nk} which satisfies two conditions presented in (3.3.3) and (3.3.4).

We repeat them here for reference. The “cross over” condition is satisfied if

‖β|Jℓ‖22
|Jℓ|

>
‖β|Jℓ+1

‖22
|Jℓ+1|

for each indexℓ < k, while the “stay within” condition is satisfied if

‖β|Jℓ‖22
|Jℓ|

≥
‖β|K‖22
|K| ,

whereK is each possible subset of the generic setJℓ formed by its first|K| < |Jℓ| components.
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Algorithm 4.1 Iterative algorithm to compute the wedge partition
Input: β ∈ R

n

Initialisation: k ← 0

for t = 1 to n do

Jk+1 ← {t}
k ← k + 1

while k > 1 and
‖β|Jk−1

‖2√
|Jk−1|

≤ ‖β|Jk
‖2√

|Jk|

Jk−1 ← Jk−1 ∪ Jk
k ← k − 1

end

end

Output: J1, . . . , Jk

Note that these conditions define a unique partitionJ which depends on the vectorβ.

Also, the number of groups in the partition is not known a priori, and its construction is not

obvious. To this end, we present an efficient algorithm, which is summarised in Algorithm 4.1.

For the purpose of describing the partitioning algorithm inthe case of the Wedge, we define

a vectorβ ∈ R
n to be admissible if, for everyk ∈ Nn, it holds that‖β|Nk

‖2/
√
k ≤ ‖β‖2/

√
n.

The proof of the next lemma is straightforward and we do not elaborate on the details.

Lemma 4.1.1. If β ∈ R
n andδ ∈ R

p are admissible and‖β‖2/
√
n ≤ ‖δ‖2/√p then(β, δ) is

admissible.

Algorithm 4.1 processes the components of vectorβ in a sequential manner. Initially, the

very first component forms the only set in the partition. After the generic iterationt− 1, where

the partition is composed ofk sets, the index of the next component,t, is put in a new setJk+1.

Two cases can occur: the means of the squares of the sets are instrict descending order, or this

order is violated by the last set. The latter is the only case that requires further action, so the

algorithm merges the last two sets and repeats until the setsin the partition are fully ordered.

Note that, since the only operation performed by the algorithm is the merge of admissible

sets, Lemma 4.1.1 ensures that after each stept the current partition satisfies the “stay within”

conditions. Moreover, thewhile loop ensures that after each step the current partition satisfies,

for every ℓ ∈ Nk−1, the “cross over” conditions. Thus, the output of the algorithm is the

partitionJ defined in Theorem 3.3.2. In the actual implementation of thealgorithm, the means

of squares of each set can be saved. This allows us to compute the mean of squares of a merged

set as a weighted mean, which is a constant time operation. Since there aren − 1 consecutive
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terms in total, this is also the maximum number of merges thatthe algorithm can perform.

Each merge requires exactly one additional test, so we can conclude that the running time of

the algorithm is linear. In the experimental section (see Figure 5.14 in§ 5.4), we will show an

empirical validation of this last remark.

Tree penalty. The case of the Tree penalty is similar because, as described in Theorem 3.3.3,

we can computeλ(β) from a certain partitionJ = {J1, . . . Jk} which depends onβ alone.

Summarised in Algorithm 4.2, we present an iterative algorithm to find this partition .

The two conditions satisfied by partitionJ are analogous to the “stay within” and “cross

over” conditions described earlier, see (3.3.12) and (3.3.13). These conditions are a generalisa-

tion of the ones for the line graph, taking into account the more complex topology of the tree

graph. For the “stay within” condition, for each groupJℓ, instead of considering the first few

components starting from the left, we now consider the first few components starting from the

root and reaching each node. For the “cross over” condition,instead of pairs of consecutive sets

Jℓ andJℓ+1, we now consider pairs of sets such that one is “under” the other,J1 ⇓ J2, meaning

that there is an arch from one node inJ1 directed to one node inJ2.

Here again, the algorithm processes the components of vector β in a sequential manner.

Initially, each leaf of the tree is a singleton of the partition J . All the other components are

considered following an order which can be precomputed, andwhich is such that all nodes

(except the leaves) will be traversed in inverse depth order, so that the root node will always

be the last node. This order is fundamental for the algorithm, as it ensures that, when a node

is considered, all the nodes and groups of nodes that are “under” it are stable. At the generic

iteration,S will be the set of elements in the current partitions that are“under” the current set

JNEW. This set is then tested against the element ofS with higher value, and a merge can then

occur.

The complexity of this algorithm depends on the topology of the tree, i.e. on its depth and

its branching factor. While, as we have seen, it can run in linear time for the Line graph, its

performances slow down as the tree becomes more complex. Thealgorithm is still competitive

in the case we have tested, where each node has four children.See Figure 5.14 in§ 5.4 for an

efficiency experiment.

Note that this algorithm can be parallelised easily by taking advantage of the structure of

the tree graph. In our example, the four trees having as root one child of the original root can

be partitioned simultaneously by four instances of the algorithm. Finally, the original root will

be added to the four results using the same procedure. We did not test this technique because
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Algorithm 4.2 Iterative algorithm to compute the tree partition
Input: β ∈ R

n, tree graphG

Initialisation: L← Leaves(G),k ← |L|; Ji ← {Li} for i = 1, . . . , k; order⊆ N
n−k (see text)

for t ∈ orderdo

stable← 0; JNEW← {t}
while not stable

S ← {J ∈ {J1, . . . , Jk} : J ⇓ JNEW}
if |S| = 0 then

stable← 1

end

JMAX ← argmax
J∈S

‖β|J‖2√
|J |

if
‖β|JNEW

‖2√
|JNEW| ≤

‖β|JMAX
‖2√

|JMAX | then

JNEW← JNEW ∪ JMAX

JMAX ← NULL

k ← k − 1

else

stable← 1

end

end

k ← k + 1

Jk ← JNEW

end

Output: J1, . . . , Jk

the proposed sequential one was fast enough for our purposes.

4.2 Proximal methods

In this section, we discuss how to solve problem (3.1.1) using an accelerated first-order method

that scales linearly with respect to the problem size, as we will show in the experiments in

Chapter 5.

Proximal methods rely on the computation of the proximity operator of the functionΓ

restricted toRn × Λ. In some cases, like the Wedge and Tree penalties, this operator can be

computed exactly. In general, though, this computation is not possible or too expensive.

We consider the constraints setΛ defined in§ 3.3.4. We argue that in this case the proxim-
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ity operator corresponds to the fixed point of a linear map, and show that this fixed point can be

computed efficiently, hence recovering the proximity operator to be used in the main algorithm.

In § 4.2.1 we describe the computation of the proximity operatoras fixed point of a lin-

ear map. In§ 4.2.2 we describe how to incorporate this proximity operator to an accelerated

proximal method.

4.2.1 Computation of the Proximity Operator

We want to solve the optimisation problem

inf

{

1

2
‖Xβ − y‖22 + ρΓ(β, λ) : β ∈ R

n, λ ∈ Λ

}

(4.2.1)

under the general assumption thatΛ = {λ ∈ R
n
++ : Aλ ∈ S}. Note that the loss function

is here divided by2 while in (4.1.6) it was divided by the sample sizem. This is done just to

simplify the exposition: it has no effects on the solution because a positive coefficient applied

to the loss function is absorbed by the tuning of parameterρ.

The proximity operator for a functionω : Rd → R, and computed at a pointx ∈ R
d, is

defined as

proxω(x) = argmin

{

1

2
‖y − x‖22 + ω(y) : y ∈ R

d

}

.

According to this definition, the proximity operator ofΓ at (α, µ) ∈ R
n ×R

n is the solution of

the problem

min

{

1

2
‖(β, λ) − (α, µ)‖22 + ρΓ(β, λ) : β ∈ R

n, λ ∈ Λ

}

. (4.2.2)

For any fixedλ, a direct computation yields that the objective function in(4.2.2) attains its

minimum at

βi(λ) =
αiλi
λi + ρ

, (4.2.3)

which can be used to rewrite (4.2.2) into the simplified problem

min

{

1

2
‖λ− µ‖2 + ρ

2

n
∑

i=1

(

α2
i

λi + ρ
+ λi

)

: λ ∈ Λ

}

. (4.2.4)

This problem can still be interpreted as a proximity map computation, and we discuss how to

solve it with a fixed-point algorithm.

In addition to our general assumption thatΛ = {λ ∈ R
n
++ : Aλ ∈ S}, we assume that

the projection of the setS can be easily computed. This latter assumption holds for thecases of

Tree-C and Grid-C constraints.

The key step to compute the proximity operator is to rewrite it as a composition of func-

tions. To this end, we define the(n+ k)× n matrix

B =





I

A
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and the functionϕ(s, t) = ϕ1(s) + ϕ2(t), for (s, t) ∈ R
n × R

k, where

ϕ1(s) =
ρ

2

∑

i∈Nn

(

α2
i

si + ρ
+ si + δR++(si)

)

,

andϕ2(t) = δS(t). With the notationδS(·) we refer to the indicator function: ifC ⊆ R
n, then

δC : Rn → R is the function which is0 if x ∈ C and+∞ otherwise. Note that the solution of

problem (4.2.4) is the same as the proximity map of the linearly composite functionϕ ◦B atµ,

which solves the problem

min

{

1

2
‖λ− µ‖2 + ϕ(Bλ) : λ ∈ R

n

}

.

Variableλ now must not satisfy any constraint, because they have been logically trans-

ferred inside the indicator functions. Nevertheless, thisnew problem does not seem easier to

solve. It turns out, however, that if the proximity map of thefunctionϕ has a simple form, the

following theorem adapted from [33, Theorem 3.1] can be usedto accomplish this task. For

ease of notation we setd = n+ k.

Theorem 4.2.1.Letϕ be a convex function onRd,B a d×nmatrix,µ ∈ R
n, c > 0, and define

the mappingH : Rd → R
d at v ∈ R

d as

H(v) = (I − proxϕ
c
)((I − cBB⊤)v +Bµ).

Then, for any fixed point̂v ofH, it holds that

proxϕ◦B(µ) = µ− cB⊤v̂. (4.2.5)

ThePicard iterates{vs : s ∈ N} ⊆ R
d, starting atv0 ∈ R

d, are defined by the recursive

equationvs = H(vs−1). Since the operatorI−proxϕ is nonexpansive2 (see e.g. [12]), the map

H is nonexpansive ifc ∈
[

0, 2
||B||2

]

. Because of this, the Picard iterates are not guaranteed to

converge to a fixed point ofH. However, a simple modification with an averaging scheme can

be used to compute the fixed point.

Theorem 4.2.2. [38] Let H : Rd → R
d be a nonexpansive mapping which has at least one

fixed point and letHκ := κI + (1− κ)H. Then, for everyκ ∈ (0, 1), the Picard iterates ofHκ

converge to a fixed point ofH.

2A mappingT : Rd → R
d is called nonexpansive if‖T (v)− T (v′)‖2 ≤ ‖v − v′‖2, for everyv, v′ ∈ R

d.
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The required proximity operator ofϕ is directly given, for every(s, t) ∈ R
n × R

k, by

proxϕ(s, t) =
(

proxϕ1
(s),proxϕ2

(t)
)

.

Both proxϕ1
and proxϕ2

can be easily computed. The latter requires computing the projection

on the setS. The former requires, for each component of the vectors ∈ R
n, the solution of a

cubic equation as stated in the next lemma.

Lemma 4.2.1. For everyµ, α ∈ R and r, ρ > 0, the functionh : R+ → R defined ats as

h(s) := (s − µ)2 + r
(

α2

s+ρ + s
)

has a unique minimum on its domain, which is attained at

(x0 − ρ)+, wherex0 is the largest real root of the polynomial2x3 + (r − 2(µ+ ρ))x2 − rα2.

Proof. Setting the derivative ofh equal to zero and making the change of variablex = s + ρ

yields the polynomial stated in the lemma. Letx0 be the largest root of this polynomial. Since

the functionh is strictly convex on its domain and grows at infinity, its minimum can be attained

only at one point, which isx0 − ρ, if x0 > ρ, and zero otherwise.

4.2.2 Accelerated Proximal Method

Theorem 4.2.1 motivates a proximal numerical approach to solving problem (4.2.1). Let

E(β) = 1
2‖Xβ − y‖22 and assume that an upper boundL of ‖X⊤X‖ is known3. Proximal

first-order methods – see [12, 5, 36, 51] and references therein – can be used for nonsmooth

optimisation, where the objective consists of a strongly smooth term, plus a nonsmooth part,

in our caseE andΓ + δΛ, respectively. The idea is to replaceE with its linear approximation

around a pointwt specific to iterationt. This leads to the computation of a proximity operator,

and specifically in our case to

ut := (βt, λt)←argmin

{

L

2

∥

∥

∥

∥

(β, λ)−
(

wt −
1

L
∇E(wt)

)∥

∥

∥

∥

2

2

+ ρΓ(β, λ) : β ∈ R
n, λ ∈ Λ

}

.

Subsequently, the pointwt is updated, based on the current and previous estimates of the solu-

tion ut, ut−1, . . . and the process repeats.

The simplest update rule, which is also a commonly used one, iswt = ut. By contrast,

accelerated proximal methodsproposed by [36] use a carefully chosenw update with two levels

of memory,ut, ut−1. If the proximity map can be exactly computed, such schemes exhibit a

fast quadratic decay in terms of the iteration count, that is, the distance of the objective from the

minimal value isO
(

1
T 2

)

afterT iterations. In the case that the proximity operator is computed

numerically, it has been shown only very recently [53, 46] that, under some circumstances, the

accelerated method still converges with the rateO
(

1
T 2

)

. The main advantages of accelerated

3For variants of such algorithms which adaptively learnL, see the following references.
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methods are their low cost per iteration and their scalability to large problem sizes. Moreover,

in applications where a thresholding operation is involved– as in Lemma 4.2.1 – the zeros in

the solution are exact.

Algorithm 4.3 NEsterov PIcard-Opial algorithm (NEPIO)
Input: u1, w1 ← arbitrary feasible values

for t← 1, 2, . . .

Compute a fixed point̂v(t) of Ht by Picard-Opial

ut+1 ← wt − 1
L∇E(wt)− c

LB
⊤v̂(t)

wt+1 ← πt+1ut+1 − (πt+1 − 1)ut

end

Output: w

For our purposes, we use a version of accelerated methods influenced by [51]. Our final

algorithm is calledNEPIOand is summarised in Algorithm 4.3. According to Nesterov [36],

the optimal update is

wt+1 ← ut+1 + θt+1

(

1

θt
− 1

)

(ut+1 − ut),

where the sequenceθt is defined byθ1 = 1 and the recursion

1− θt+1

θ2t+1

=
1

θ2t
. (4.2.6)

We have adapted [51, Algorithm 2] (equivalent to FISTA [5]) by computing the proximity

operator ofϕL ◦ B using the Picard-Opial process described in Section 4.2.1.We rephrased the

algorithm using the sequenceπt := 1− θt +
√
1− θt = 1− θt + θt

θt−1
for numerical stability.

At each iteration, the mapHt is defined by

Ht(v) :=
(

I − proxφ
c

)

(

(

I − c

L
BB⊤

)

v − 1

L
B
(

∇E(wt)− Lwt

)

)

.

We also apply an Opial averaging so that the update at stages of the proximity computation is

vs+1 = κvs + (1 − κ)Ht(vs). By Theorem 4.2.1, the fixed point process combined with the

assignment ofu are equivalent tout+1 ← proxϕ
L
◦B
(

wt − 1
L∇E(wt)

)

.

The reason for resorting to Picard-Opial is that exact computation of the proximity operator

(4.2.4) is possible only in simple special cases for the setΛ. By contrast, our approach can

be applied to a wide variety of constraints. Moreover, we arenot aware of another proximal

method for solving problems (4.2.1) or (3.1.1) and alternatives like interior point methods do

not scale well with problem size. In Chapter 5, we will demonstrate empirically the scalability
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of Algorithm 4.3, as well as the efficiency of both the proximity map computation and the

overall method.

As noted in Section 3.4, we can compute exactly and efficiently the proximity operator in

the case of the Wedge and the Tree penalties by performing thethresholdλ̂ = (λ(y) − ρ)+,

whereλ(y) is computed using Algorithms 4.1 or 4.2. As can be seen in Chapter 5, Figure 5.15,

the running time scales better in the number of dimensions.
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Chapter 5

Numerical experiments

The goal of this chapter is threefold. The first one is to understand the usefulness of the many

examples of penalties showed in Section 3.3. To this end, we designed several different sparse

and structured models, so that the advantage of some of the penalties over other convex tech-

niques (e.g. many Group Lasso variants) become apparent.

The second one is to test the algorithms to solve the problem proposed in Chapter 4. This,

in particular for algorithm NEPIO (Section 4.2), is done by comparison with an all-purpose

toolbox. We show that our algorithm scales well, and that it can be used for problems much

larger than those handled by a generic toolbox, or by other existing techniques.

Finally, the last goal is compare the performances of our technique to greedy algorithms.

Specifically, we focused on StructOMP ([20]) because, thanks to its flexibility, it can be used in

situations where no other greedy algorithm can be usefully applied. In these situations, it can

exploit prior knowledge comparable to that available to convex techniques.

The experiments in Section 5.1 appeared in [32], while otherexperiments have been in-

cluded in other submitted work.

5.1 Experiments for different setsΛ

In this section we present some numerical simulations with the proposed method. For sim-

plicity, we consider data generated noiselessly fromy = Xβ∗, whereβ∗ ∈ R
100 is the true

underlying regression vector, andX is anm× 100 input matrix,m being the sample size. The

elements ofX are generated i.i.d. from the standard normal distribution, and the columns ofX

are then normalized such that theirℓ2 norm is1. Since we consider the noiseless case, we solve

the interpolation problemmin{Ω(β) : y = Xβ}, for different choices of the penalty function

Ω. In practice, (3.1.1) is solved for a tiny value of the parameter, for example,ρ = 10−8, which

we found to be sufficient to ensure that the error term in (3.1.1) is negligible at the minimum.

All experiments were repeated50 times, generating each time a new matrixX. In the figures
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Figure 5.1: Comparison between different penalty methods:(a) Box vs. Lasso; (b,c) Wedge vs.

Hierarchical group Lasso; (d) Composite wedge. See text formore information

we report the average of the model error of the vectorβ̂ learned by each method, as a function

of the sample sizem. The former is defined as ME(β̂) = E[‖β̂ − β∗‖22]. In the following,

we discuss a series of experiments, corresponding to different choices for the model vectorβ∗

and its sparsity pattern. In all experiments, we solved the optimization problem (3.1.1) with the

alternating algorithm presented in Section 4.1. Whenever possible we solved step (4.1.2) using

analytical formulas and resorted to the solver CVX (http://cvxr.com/cvx/) in the other cases.

For example, in the case of the wedge penalty, we found that the computational time of the

algorithm in Figure 4.1 is495, 603, 665, 869, 1175 times faster than that of the solver CVX for

n = 100, 500, 1000, 2500, 5000, respectively.

Box. In the first experiment the model is10-sparse (it has10 nonzero components), where

each nonzero component, in a random position, is an integer uniformly sampled in the interval

[−10, 10]. We wish to show that the more accurate the prior informationabout the model is,

the more precise the estimate will be. We use a box penalty (see Theorem 3.3.1) constructed

“around” the model, imagining that an oracle tells us that each component|β∗i | is bounded

within an interval. We consider three boxesB[a, b] of different sizes, namelyai = (r − |β∗i |)+
andbi = (|β∗i |− r)+ and radiir = 5, 1 and0.1, which we denote as Box-A, Box-B and Box-C,
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respectively. We compare these methods with the Lasso – see Figure 5.1-a. As expected, the

three box penalties perform better. Moreover, as the radiusof a box diminishes, the amount of

information about the true model increases, and the performance improves.

Wedge. In the second experiment, we consider a regression vector,whose components are

nonincreasing in absolute value and only a few are nonzero. Specifically, we choose a10-

sparse vector:β∗j = 11 − j, if j ∈ N10 and zero otherwise. We compare the Lasso, which

makes no use of such ordering information, with the wedge penalty Ω(β|W ) (see Theorem

3.3.2) and the hierarchical group Lasso in [58], which both make use of such information. For

the group Lasso we chooseΩ(β) =
∑

ℓ∈N100
||β|Jℓ ||, with Jℓ = {ℓ, ℓ + 1, . . . , 100}, ℓ ∈ N100.

These two methods are referred to as “Wedge” and “GL-lin” in Figure 5.1-b, respectively. As

expected both methods improve over the Lasso, with “GL-lin”being the best of the two. We

further tested the robustness of the methods, by adding two additional nonzero components with

value of10 to the vectorβ∗ in a random position between20 and100. This result, reported in

Figure 5.1-c, indicates that “GL-lin” is more sensitive to such a perturbation.

Composite wedge. Next we consider a more complex experiment, where the regression vec-

tor is sparse within different contiguous regionsP1, . . . , P10, and theℓ1 norm on one region

is larger than theℓ1 norm on the next region. We choose setsPi = {10(i − 1) + 1, . . . , 10i},
i ∈ N10 and generate a6-sparse vectorβ∗ whosei-th nonzero element has value31−i (decreas-

ing) and is in a random position inPi, for i ∈ N6. We encode this prior knowledge by choosing

Ω(β|Λ) with Λ =
{

λ ∈ R
100 : ||λPi

||1 ≥ ‖λPi+1 ||1, i ∈ N9

}

. This method constraints the sum

of the sets to be nonincreasing and may be interpreted as the composition of the wedge set with

an average operation across the setsPi, which may be computed using Proposition 3.2.3 . This

method, which is referred to as “C-Wedge” in Figure 5.1-d, iscompared to the Lasso and to

three other versions of the group Lasso. The first is a standard group Lasso with the nonover-

lapping groupsJi = Pi, i ∈ N10, thus encouraging the presence of sets of zero elements, which

is useful because there are4 such sets. The second is a variation of the hierarchical group Lasso

discussed above withJi = ∪10j=iPj , i ∈ N10. A problem with these approaches is that theℓ2

norm is applied at the level of the individual setsPi, which does not promote sparsity within

these sets. To counter this effect we can enforce contiguousnonzero patterns within each of the

Pi, as proposed by [24]. That is, we consider as the groups the sets formed by all sequences

of q ∈ N9 consecutive elements at the beginning or at the end of each ofthe setsPi, for a

total of 180 groups. These three groupings will be referred to as “GL-ind”, “GL-hie’‘, “GL-

con” in Figure 5.1-d, respectively. This result indicates the advantage of “C-Wedge” over the

other methods considered. In particular, the group Lasso methods fall behind our method and
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Figure 5.2: PenaltyΩ(β|W k), k = 1, . . . , 4, used for several polynomial models:(a) degree1,

(b) degree2, (c) degree3; (d) degree4.

the Lasso, with “GL-con” being slight better than “GL-ind” and “GL-hie”. Notice also that

all group Lasso methods gradually diminish the model error until they have a point for each

dimension, while our method and the Lasso have a steeper descent, reaching zero at a number

of points which is less than half the number of dimensions.

Polynomials. The constraints on the finite differences (see equation (3.3.11)) impose a struc-

ture on the sparsity of the model. To further investigate this possibility we now consider some

models whose absolute value belong to the sets of constraints W k, wherek = 1, . . . , 4.

Specifically, we evaluate the polynomialsp1(t) = −(t + 5), p2(t) = (t + 6)(t − 2),

p3(t) = −(t+6.5)t(t− 1.5) andp4(t) = (t+6.5)(t− 2.5)(t+1)t at100 equally spaced (0.1)

points starting from−7. We take the positive part of each component and scale it to10, so that

the results can be seen in Figure 5.3. The roots of the polynomials has been chosen so that the

sparsity of the models is either18 or 19.

We solve the interpolation problem using our method with thepenaltyΩ(β|W k), k =

1, . . . , 4, with the objective of testing the robustness of our method:the constraint setW k

should be a more meaningful choice when|β∗| is in it, but the exact knowledge of the degree is

not necessary. We see in Figures 5.2 that this is indeed the case: “W-k” outperform the Lasso
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for everyk, but among these methods the best one knows the degree of|β∗|.
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Figure 5.3: Silhouette of the polynomials by number of degree: (a) k = 1, (b) k = 2, (c)

k = 3, (d) k = 4.

One important feature of these sparsity pattern is the number of contiguous regions:1,

2, 2 and3 respectively. As a way of testing the methods on a less artificial setting, we repeat

the experiment using the same sparsity patterns, but replacing each nonzero component with a

uniformly sampled random number between1 and2. In Figure 5.4 we can see that, even if now

the models manifestly don’t belong toW k, we still have an advantage because the constraints

look for a limited number of contiguous regions.

Finally, Figure 5.5 displays the regression vector found bythe Lasso and the vector learned

by “W-2” (left) and by the Lasso and “W-3” (right), in a singlerun with sample size of20 and

35, respectively. The estimated vectors (green) are superposed to the true vector (black). Our

method provides a better estimate than the Lasso in both cases.

5.2 Efficiency experiments for NEPIO

In this section, we present experiments with method (4.2.1). The goal of the experiments is

to both study the computational and the statistical estimation properties of this method. One

important aim of the experiments is to demonstrate that the method is statistically competitive

or superior to state-of-the-art methods while being computationally efficient. The methods

employed are the Lasso, StructOMP [20] and method (4.2.1) with the following choices for the

constraint setΛ: Grid-C, Λα = {λ : ‖Aλ‖1 ≤ α}, whereA is the edge map of a 1D or 2D grid

andα > 0, andTree-C, Λ = {λ : Aλ ≥ 0}, whereA is the edge map of a tree graph.
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Figure 5.4: PenaltyΩ(β|W k), k = 1, . . . , 4, used for several polynomial models with random

values between the roots:(a) degree1, (b) degree2, (c) degree3; (d) degree4.

We solved the optimization problem (4.2.1) either with the toolbox CVX or with the proxi-

mal method presented in Section 4.2. When using the proximalmethod, we chose the parameter

from Opial’s Theoremκ = 0.2 and we stopped the iterations when the relative decrease in the

objective value is less than10−8. For the computation of the proximity operator, we stopped

the iterations of the Picard-Opial method when the relativedifference between two consecutive

iterates is smaller than10−2. We studied the effect of varying this tolerance in the next exper-

iments. We used the square loss and computed the Lipschitz constantL using singular value

decomposition. (Where not possible, a Frobenius estimate could be used.)

First, we investigated the computational properties of theproximal method. Our aim in

these experiments was to show that our algorithm has a time complexity that scales linearly

with the number of variables, while the sparsity and relative number of training examples is

kept constant. We considered both the Grid and the Tree constraints and compared our algo-

rithm to the toolbox CVX, which is an interior-point method solver. As is commonly known,

interior-point methods are very fast for small problems, but do not scale well with the prob-

lem size. In the case of the Tree constraint, we also comparedwith a modified version of the

alternating algorithm of [32]. For each problem size, we repeated the experiments10 times
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Figure 5.5: Lasso (top) vs. penaltyΩ(·|Λ) (bottom) for Convex (left) and Cubic (right); see text

for more information.
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Figure 5.6: Computation time vs problem size for Grid-C (top-left) and Tree-C (top-right).

Difference with the solution obtained via CVX vs Picard-Opial tolerance (bottom).

and we report the average computation time in Figure 5.6-Top-leftand Figure 5.6-Top-right for

Grid-C and Tree-C, respectively. This result indicates that our method is suitable for large scale

experiments.

We also studied the importance of the Picard-Opial tolerance for converging to a good

solution. In Figure 5.6-Bottom, we report the average relative distance to the solution obtained

via CVX for different values of the Picard-Opial tolerance.We considered a problem with100

variables and repeated the experiment10 times with different sampling of training examples,
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considering both the Grid and the Tree constraint. It is clear that decreasing the tolerance did not

bring any advantage in terms of converging to a better solution, while it remarkably increased

the computational overhead, passing from an average of5s for a tolerance of10−2 to 40s for

10−8 in the case of the Grid constraint.

Finally, we considered the 2D Grid-C case and observed that the number of Picard-Opial

iterations needed to reach a tolerance of10−2, scales well with the number of variablesn. For

example whenn varies between200 and6400, the average number of iterations varied between

20 and40.

5.3 Tree-C and Grid-C

This section shares the same experimental protocol of Section 5.2.

One dimensional contiguous regions. In this experiment, we chose a model vectorβ∗ ∈
R
200 with 20 nonzero elements, whose values are random±1. We considered sparsity patterns

forming one, two, three or four non-overlapping contiguousregions, which have lengths of20,

10, 7 or 5, respectively. We generated a noiseless output from a matrix X whose elements have

a standard Gaussian distribution. The estimatesβ̂ for several models are then compared with the

original. Figure 5.7 shows the model error‖ β̂−β∗‖2
‖ β∗‖2 as the sample size changes from22 (barely

above the sparsity) up to100 (half the dimensionality). This is the average over50 runs, each

with a differentβ∗ andX. We observe that Grid-C outperforms both Lasso and StructOMP,

whose performance deteriorates as the number of regions is increased. For one particular run

with a sample size which is twice the model sparsity, Figure 5.8 shows the original vector and

the estimates for different methods.

Two dimensional contiguous regions. We repeated the experiment in the case that the sparsity

pattern ofβ∗ ∈ R
20×20 consists of2D rectangular regions. We considered either a single5× 5

region, two regions (4×4 and3×3), three3×3 regions and four3×2 regions. Figure 5.9 shows

the model error versus the sample size in this case. Figure 5.10 shows the original image and the

images estimated by different methods for a sample size which is twice the model sparsity. Note

that Grid-C is superior to both the Lasso and StructOMP and that StructOMP is outperformed

by Lasso when the number of regions is more than two. This behavior is consistently confirmed

by experiments in higher dimensions, not shown here for brevity.

Background subtraction. We replicated the experiment from [20, Sec. 7.3] with our method.

Briefly, the underlying modelβ∗ corresponds to the pixels of the foreground of a CCTV image,

that is the portion of the image representing two standing persons. We measured the output

as a random projection plus Gaussian noise. Figure 5.11-Left shows that, while the Grid-C
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Figure 5.7:1D contiguous regions: comparison between different methodsfor one (top-left),

two (top-right), three (bottom-left) and four (bottom-right) regions.
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Figure 5.8: Two1D contiguous regions: regression vector estimated by different models:β∗

(top-left), Lasso (top-right), StructOMP (bottom-left),Grid-C (bottom-right).
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Figure 5.9:2D contiguous regions: comparison between different methodsfor one (top-left),

two (top-right), three (bottom-left) and four (bottom-right) regions.

Figure 5.10:2D-contiguous regions: model vector (left) and vectors estimated by the Lasso,

StructOMP and Grid-C (left to right), for one region (top group) and two regions (bottom

group).
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outperforms the Lasso, it is not as good as StructOMP. We speculate that this result is due to

the non uniformity of the values of the image, which makes it harder for Grid-C to estimate the

model.

Image Compressive Sensing. In this experiment, we compared the performance of Tree-C

on an instance of 2D image compressive sensing, following the experimental protocol of [20].

Natural images can be well represented with a wavelet basis and their wavelet coefficients,

besides being sparse, are also structured as a hierarchicaltree. We computed the Haar-wavelet

coefficients of a widely usedcameramanimage. We measured the output as a random projection

plus Gaussian noise. StructOMP and Tree-C, both exploitingthe tree structure, were used to

recover the wavelet coefficients from the measurements and compared to the Lasso. The inverse

wavelet transform was used to reconstruct the images with the estimated coefficients. The

recovery performances of the methods are reported in Figure5.11-Right, which highlights the

good performance of Tree-C.
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Figure 5.11: Model error for the background subtraction (left) andcameraman(right) experi-

ments.

5.4 Tree-C and exact proxy

We explore the statistical properties of the tree penalty Tree-C by means of two experiments.

In the first synthetic experiment, we embed the true vectorβ∗ ∈ R
85 into a tree structure where

each node has exactly four children. Trees with the same branching factor can be used to order

the wavelet coefficients of real images, as we will do in the second experiment. We want to show

that our method, which is called Tree-C in the plots labels, is well suited to recover underlying

vectors with a hierarchy of components given by the tree.

We compare Tree-C with other methods that should perform well in this case. The first one

is StructOMP [20], a greedy method based on information theory. When applied to trees, this

method prefers models whose components are connected through the tree graph. The second

method is the hierarchical Group Lasso [58], GL-Hie. Given acareful choice of overlapping
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Figure 5.12: Model error for the synthetic tree experiment for the three sparsity patterns de-

scribed in the text.

groups, this method favours models that respect the hierarchy. As a benchmark, we also include

the solution of the Lasso. For each model, except StructOMP,we tried the valuesρ = 10i,

i = 3, 2, . . . ,−10,−11 for the regularisation parameter, and selected the one which achieves

the minimum model error. For StructOMP we used the complexity parameter of the model.

The sparsity of the model is10% of the number of variables, and nonzeros elements have

value1. We consider three different sparsity patterns: in the firstone, all nonzero elements are

clustered at the root of the tree; in the second, half of the nonzero components are connected

to the root, and half are at a middle depth; finally, in the third patterns all nonzero components

are at a middle depth. As a measure of statistical performance we use the model error, which

is defined as‖β̂ − β∗‖2/‖β∗‖2 for each estimated vector̂β. This quantity, averaged over10

replicates, is shown in Figure 5.12.

As expected, the performance of the Lasso is not affected by the different sparsity patterns.

For the first pattern (Figure 5.12-Top-left), which is entirely consistent with the tree structure,

the method GL-Hie has a strong advantage. However, the results show that its performance

is consistent with StructOMP and Tree-C. The results for thesecond pattern, (Figure 5.12-

Top-right), which is an intermediate situation, show that Tree-C is more robust than the other

methods. For the third pattern, which is completely inconsistent with the tree structure, we see

that all methods are negatively affected.



5.4. Tree-C and exact proxy 101

118 141 165 188 212 235 259
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Sample size

M
od

el
 e

rr
or

 

 

Lasso

StructOMP

GL−Hie

Tree−C

374 449 523 598 673 748 822
0

0.05

0.1

0.15

0.2

0.25

Sample size

M
od

el
 e

rr
or

 

 

Lasso

StructOMP

GL−Hie

Tree−C

Figure 5.13: Model error for the wavelet tree experiment,16× 16 (left) and32× 32 (right).

For the second experiment, we consider an instance of a 2D image compressive sensing

problem. Natural images can be well represented with a wavelet basis and their wavelet coef-

ficients, besides being sparse, are also structured as a hierarchical tree, like the synthetic one

we used in the first experiment. We follow the experimental protocol of [20] to compare the

performance of Tree-C against the other methods. We computed the Haar-wavelet coefficients

of the widely usedcameramanimage, scaled to16× 16 and32 × 32 pixels. Despite being or-

ganized in a tree structure, only42% and47%, respectively, of the wavelet coefficients respect

the hierarchy. We measured the output as a random projectionplus Gaussian noise with zero

mean andσ = 0.01. The inverse wavelet transform was used to reconstruct the images from the

estimated coefficients. The recovery performances of the methods against the sample size are

reported in Figure 5.13. For model selection, we restrictedthe values ofρ to 10−i, i = 1, 3, 5, 7,

as this proved to be enough.

We observe that for this problem all methods perform very similarly, with Tree-C and GL-

Hie being slightly better. This result indicates that, evenwhen the tree hierarchy is not strictly

respected by the true regression vector, estimation with the proposed Tree-C penalty can still be

used effectively.

We performed a simulation to empirically analyze the efficiency of algorithms 4.2 and 4.1.

In Figure 5.14, we present the average time needed for the algorithm to compute the partition

for random vector embedded in a tree of up to25600 variables. The trees where generated with

four children for each node. From the partition, it is possible to compute the proximity operator

as per Equation (3.4.6).

The same experiment has been repeated for the line graph, again up to 25600 variables,

and the results are shown in Figure 5.14-right. In this case the amount of time increases linearly

in the number of dimension.

The exact computation of the proximity operator is used in the statistical experiments as the
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Figure 5.14: Average running time against dimensions for Algorithm 4.2 and Algorithm 4.1.
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Figure 5.15: Average running time (top) and number of iterations (bottom) against dimensions

for alternating algorithm (AA) and Fista.

inner step of the Fista-like algorithm, see [5]. The partition of the tree gives the minimization of

the original problem, i.e. Problem (4.2.1), with respect tothe variablesλ. It can be used in the

alternating algorithm described in 4.1. As an empirical comparison between the two algorithms,

Figure 5.15-top shows their average running time and Figure 5.15-bottomtheir average number

of iterations.
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Conclusions

We proposed a family of penalty functions that can be used to model structured sparsity in

linear regression. We provided theoretical, algorithmic and computational information about

this new class of penalty functions. Our theoretical observations highlight the generality of this

framework to model structured sparsity. An important feature of our approach is that it can

deal with richer model structures than current approaches while maintaining convexity of the

penalty function. Our practical experience indicates thatthese penalties perform well numeri-

cally, improving over state of the art penalty methods for structure sparsity, suggesting that our

framework is promising for applications.

The methods developed here can be extended in different directions. We mention here

several possibilities. For example, for anyr > 0, it readily follows that

‖β‖pp = inf

{

r

r + 1

∑

i∈Nn

β2i
λi

+
1

r
λri : λ ∈ R

n
++

}

(6.0.1)

wherep = 2r/(r + 1) and‖β‖p is the usualℓp-norm onRn. This formula leads us to consider

the same optimization problem over a constraint setΛ. Note that ifp→ 0 the left hand side of

the above equation converges to the cardinality of the support of the vectorβ.

Problems associated with multi-task learning [1, 2] demandmatrix analogs of the results

discussed here. In this regard, we propose the following family of unitarily invariant norms on

d × n matrices. Letk = min(d, n) andσ(B) ∈ R
k
+ be the vector formed from the singular

values ofB. WhenΛ is a nonempty convex set which is invariant under permutations our point

of view in this thesis suggests the penalty

‖B‖Λ = Ω(σ(B)|Λ).

The fact that this is a norm, follows from the von Neumann characterization of unitarily invari-

ant norms. WhenΛ = R
k
++ this norm reduces to the trace norm [2].

Finally, the ideas discussed in this thesis can be used in thecontext of kernel learning, see

[3, 26, 27, 31, 43] and references therein. LetKℓ, ℓ ∈ Nn be prescribed reproducing kernels
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on a setX , andHℓ the corresponding reproducing kernel Hilbert spaces with norms‖ · ‖ℓ. We

consider the problem

min







∑

i∈Nm



yi −
∑

ℓ∈Nn

fℓ(xi)





2

+ ρΩ2
(

(‖fℓ‖ℓ : ℓ ∈ Nn)|Λ
)

: fℓ ∈ Hℓ, ℓ ∈ Nn







and note that the choiceΛ = R
n
++ corresponds to multiple kernel learning.

All the above examples deserve a detailed analysis and we hope to provide such in future

work.

We proposed new families of penalties and presented a new algorithm and results on the

class of structured sparsity penalty functions proposed by[32]. These penalties can be used,

among else, to learn regression vectors whose sparsity pattern is formed by few contiguous

regions. We presented a proximal method for solving this class of penalty functions and de-

rived an efficient fixed-point method for computing the proximity operator of our penalty. We

reported encouraging experimental results, which highlight the advantages of the proposed

penalty function over a state-of-the-art greedy method [20]. At the same time, our numeri-

cal simulations indicate that the proximal method is computationally efficient, scaling linearly

with the problem size. An important problem which we wish to address in the future is to

study the convergence rate of the method and determine whether the optimal rateO( 1
T 2 ) can

be attained. Finally, it would be important to derive sparseoracle inequalities for the estimators

studied here.



Appendix A

Notations

β is the vector of coefficients of the model.

β∗ is the underlying model, unknown and object to our research.

β̂ is the estimate.

n is the dimensionality of the data. That is,β ∈ R
n.

y is the observed vector.

m is the sample size, number of points in the training set.

X is them× d matrix.

x a feature, column of the matrix.

L is the loss function.

P penalty function.

γ is the regularization parameter

J is a group of variables.

J is a set of groups.

AT is the transpose ofA.

A† is the Moore-Penrose pseudoinverse ofA.

δC it the indicator function of the setC, that isδC(x) = 0 if x ∈ C, δC(x) = +∞ otherwise.

supp(β) is the support of vectorβ, that is the set{i ∈ Nn : βi 6= 0}.

R
n
++ is the positive orthant, that is the set{x ∈ R

n : xi > 0, i ∈ Nn}.
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Appendix B

Proofs

In this appendix we describe in detail a result due to J.M. Danskin, which we use in the proof

of Proposition 3.2.1.

Definition B.0.1. Let f be a real-valued function defined on an open subsetX of Rn and

u ∈ R
n. The directional derivative off at x ∈ X in the “direction” u is denoted by(Duf)(x)

and is defined as

(Duf)(x) := lim
t→0

f(x+ tu)− f(x)
t

if the limit exists. When the limit is taken through nonnegative values oft, we denote the

corresponding right directional derivative byD+
u .

Let Y be a compact metric space,F : X × Y → R a continuous function on its domain

and define the functionf : X → R atx ∈ X as

f(x) = min {F (x, y) : y ∈ Y } .

We say thatF is Danskin function if, for everyu ∈ R
n, the functionF ′

u : X × Y → R defined

at (x, y) ∈ X × Y asF ′
u(x, y) = (DuF (·, y))(x) is continuous onX × Y . Our notation is

meant to convey the fact that the directional derivative is taken relative to the first variable ofF .

Theorem B.0.1. If X is an open subset ofRn, Y a is compact metric space,F : X × Y is a

Danskin function,u ∈ R
n andx ∈ X, then

(D+
u f)(x) = min

{

F ′
u(x, y) : y ∈ Yx

}

whereYx := {y : y ∈ Y, F (x, y) = f(x)}.

Proof. If x ∈ X, y ∈ Yx andu ∈ R
n then, for all positivet, sufficiently small, we have that

f(x+ tu)− f(x)
t

≤ F (x+ tu, y)− F (x, y)
t

.
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Letting t→ 0+, we get that

lim sup
t→0+

f(x+ tu)− f(x)
t

≤ min
{

F ′
u(x, y) : y ∈ Yx

}

. (B.0.1)

Next, we choose a sequence{tk : k ∈ N} of positive numbers such thatlimk→∞ tk = 0 and

lim
k→∞

f(x+ tku)− f(x)
tk

= lim inf
t→0+

f(x+ tu)− f(x)
t

.

From the definition of the functionf , there exists ayk ∈ Y such thatf(x + tku) = F (x +

tku, yk). SinceY is a compact metric space, there is a subsequence{ykℓ : ℓ ∈ N} which

converges to somey∞ ∈ Y . It readily follows from our hypothesis that the functionf is

continuous onX. Indeed, we have, for everyx1, x2 ∈ X, that

|f(x1)− f(x2)| ≤ max {|F (x1, y)− F (x2, y)| : y ∈ Y } .

Hence we conclude thaty∞ ∈ Yx. Moreover, we have that

f(x+ tku)− f(x)
tk

≥ F (x+ tku, yk)− F (x, yk)
tk

.

By the mean value theorem, we conclude that there is positivenumberσk < tk such that the

f(x+ tku)− f(x)
tk

≥ F ′
u(x+ σku, yk).

We letℓ→∞ and use the hypothesis thatF is a Danskin function to conclude that

lim inf
t→0+

f(x+ tu)− f(x)
t

≥ F ′
u(x, y∞) ≥ min

{

F ′
u(x, y) : y ∈ Yx

}

.

Combining this inequality with (B.0.1) proves the result.

We note that [6, p. 737] describes a result which is attributed to Danskin without refer-

ence. This result differs from the result presented above. The result in [6, p. 737] requires the

hypothesis of convexity on the functionF . The theorem above and its proof is an adaptation of

Theorem 1 in [13].

We are now ready to present the proof of Proposition 3.2.1.

Proof of Proposition 3.2.1The essential part of the proof is an application of Theorem B.0.1.

To apply this result, we start with aβ ∈ (R\{0})n and introduce a neighborhood of this vector

defined as

X(β) =

{

α : α ∈ Λ, ‖α − β‖∞ <
βmin

2

}

,

whereβmin = min{|βi| : i ∈ Nn}. Theorem B.0.1 also requires us to specify a compact subset

Y (β) of Rn. We construct this set in the following way. We choose a fixedλ ∈ Λ and a positive
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ǫ > 0. From these constants we define the constants

c(β) =
∑

i∈Nn

(

(|βi|+ βmin/2)
2

λi
+ λi

)

,

a(β) =
β2min

4(c(β) + ǫ)
,

b(β) = max(a(β), c(β) + ǫ).

With these definitions, we choose our compact setY (β) to beY (β) = Λa(β),b(β). To apply

Theorem B.0.1, we use the fact, for anyα ∈ X(β), that

Ω(α|Λ) = min{Γ(α, λ) : λ ∈ Y (β)}. (B.0.2)

Let us, for the moment, assume the validity of this equation and proceed with the remainaing

details of the proof. As a consequence of this equation, we conclude that there exists a vector

λ(β) such thatΩ(β|Λ) = Γ(β, λ(β)). Moreover, whenβ ∈ (R\{0})n the functionΓβ :

R
n
++ → R, defined forλ ∈ R

n
++, asΓβ(λ) = Γ(β, λ) is strictly convex on its domain and so,

λ(β) is unique.

By construction, we know, for everyα ∈ X(β), that

max

{∣

∣

∣

∣

λi(α)−
a(β) + b(β)

2

∣

∣

∣

∣

: i ∈ Nn

}

≤ a(β) + b(β)

2
.

From this inequality we shall establish thatλ(β) depends continuously onβ. To this end, we

choose any sequence{βk : k ∈ N} which converges toβ and from the above inequality we

conclude that the sequence of vectorsλ(βk) is bounded. However this sequence can only have

one cluster point, namelyλ(β), becauseΓ is continuous. Specifically, iflimk→∞ λ(βk) = λ̃,

then, for everyλ ∈ Λ, it holds thatΓ(βk, λ(βk)) ≤ Γ(βk, λ) and, passing to the limitΓ(β, λ̃) ≤
Γ(β, λ), implying thatλ̃ = λ(β).

Likewise, equation (B.0.2) yields the formula for the partial derivatives ofΩ(·|Λ). Specif-

ically, we identifyF andf in Theorem B.0.1 withΓ andΩ(·|Λ), respectively, and note that

∂Ω

∂βi
(β|Λ) = min

{

∂Γ

∂βi
(β, λ) : λ ∈ Λ, Γ(β, λ) = Ω(β|Λ)

}

=
∂Γ

∂βi
(β, λ(β)) = 2

βi
λi(β)

.

Therefore, the proof will be completed after we have established equation (B.0.2). To this

end, we note that ifλ = (λi : i ∈ Nn) ∈ Λ\Y (β) then there existsj ∈ Nn such that either

λj < a(β) or λj > b(β). Thus, we have, for everyα ∈ X(β), that

Γ(α, λ) ≥ 1

2

(

α2
j

λj
+ λj

)

≥ 1

2
min

(

β2min

4a(β)
, b(β)

)

=
c(β) + ǫ

2
≥ Ω(α|Λ) + ǫ

2
.
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This inequality yields equation (B.0.2).

We end this appendix by extracting the essential features ofthe convergence of the alter-

nating algorithm as described in Section 4.1. We start with two compact sets,X ⊆ R
n and

Y ⊆ R
m, and a strictly convex functionF : X × Y → R. Corresponding toF we introduce

two additional functions,f : X → R andg : Y → R defined, for everyx ∈ X, y ∈ Y as

f(x) = min{F (x, y′) : y′ ∈ Y }, g(y) = min{F (x′, y) : x′ ∈ X}.

Moreover, we introduce the mappingsφ1 : Y → X andφ2 : X → Y , defined, for every

x ∈ X, y ∈ Y , as

φ1(y) = argmin{F (x, y) : x ∈ X}, φ2(x) = argmin{F (x, y) : y ∈ Y }.

Lemma B.0.1. The mappingsφ1 andφ2 are continuous on their respective domain.

Proof. We prove thatφ1 is continuous. The same argument applies toφ2. Suppose that{yk :

k ∈ N} is a sequence inY which converges to some pointy ∈ Y . Then, sinceF is jointly

strictly convex, the sequence{φ1(yk) : k ∈ N} has only one cluster point inX, namelyφ1(y).

Indeed, if there is a subsequence{φ1(ykℓ); ℓ ∈ N} which converges tõx, then by definition,

we have, for everyx ∈ X, ℓ ∈ N, thatF (φ1(ykℓ), ykℓ) ≤ F (x, ykℓ). From this inequality it

follows thatF (x̃, y) ≤ F (x, y). Consequently, we conclude thatx̃ = φ1(y). Finally, sinceX

is compact, we conclude that thelimk→∞ φ1(y
k) = φ1(y).

As an immediate consequence of the lemma, we see thatf andg are continuous on their

respective domains, because, for everyx ∈ X, y ∈ Y , we have thatf(x) = F (x, φ2(x)) and

g(y) = F (φ1(y), y).

We are now ready to define the alternating algorithm.

Definition B.0.2. Choose anyy0 ∈ int(Y ) and, for everyk ∈ N, define the iterates

xk = φ1(y
k−1)

and

yk = φ2(x
k).

Theorem B.0.2. If F : X × Y → R satisfies the above hypotheses and it is differentiable on

the interior of its domain, and there are compact subsetsX0 ⊂ int(X), Y0 ⊆ int(Y ) such that,

for all k ∈ N, (xk, yk) ∈ X0 × Y0, then the sequence{(xk, yk) : k ∈ N} converges to the

unique minimum ofF on its domain.
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Proof. First, we define, for everyk ∈ N, the real numbersθk = F (xk, yk−1) and νk =

F (xk, yk). We observe, for allk ≥ 2, that

νk ≤ θk ≤ νk−1.

Therefore, there exists a constantψ such thatlimk→∞ θk = limk→∞ νk = ψ. Suppose, there is

a subsequence{xkℓ : ℓ ∈ N} such thatlimℓ→∞ xkℓ = x. Thenlimℓ→∞ φ2(x
kℓ) = φ2(x) =: y.

Observe thatνk = f(xk) andθk+1 = g(yk). Hence we conclude that

f(x) = g(y) = ψ.

SinceF is differentiable,(x, y) is a stationary point ofF in int(X)× int(Y ). Moreover, since

F is strictly convex, it has a unique stationary point which occurs at its global minimum.
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Appendix C

Algorithms

The algorithms summarised in this appendix are the ones described in Chapter 2: Ortogonal

Matching Pursuit, model-based Cosamp as described by Baraniuk, StructOMP by Tong Zhang

and Caspar by Wasserman.

Algorithm C.1 OMP, Orthogonal Matching Pursuit (adapted from [50])
Input: X, y, sparsity levels.

Initialisation: Active setA = ∅, initial residuer(0) = y, iteration countert = 1. X(0) is the

empty matrix.

1. Find the index of the most correlated factor:j⋆ = argmax
j=1,...,n

|〈r(t−1), xj〉|.

2. Include the index into the active set:A = A∪j⋆, and include the new factor in the matrix

X(t) = [X(t−1), xj⋆ ].

3. Solve the least squares problem:β(t) = argmin
β
‖X(t)β − y‖22.

4. Calculate the new residual:r(t) = y −X(t)β(t).

5. Incrementt, and go to step 1 ift < s.

Output: Estimateβ̂j = β
(s)
j for j ∈ A, 0 otherwise.
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Algorithm C.2 CaSpaR, Clustered and Sparse Regression (from [42])
Input: X, y, distance functiond, kernel functionK, α ∈ (0, 1), τ > 0

Initialisation: Active setA = ∅.

1. Fit the linear model̂β = argmin
β∈Rn

{

‖Xβ − y‖22
}

, such that supp(β) ⊆ A.

2. ComputeWj = 1
|A|
∑

{i∈A}Kh(d(i, j)), for all j /∈ A. If this is the first iteration, then

Wj = 1 for all j.

3. Setj⋆ = argmax
j /∈A

{Wj|〈Xβ − y, xj〉|}.

4. If |〈Xβ − y, xj⋆〉| < τ , then stop, else setA = A ∪ j⋆ and go to Step 1.

Output: Estimateβ̂.
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Algorithm C.3 StructOMP (from [20])

Input: X, y, B ⊂ 2J , s > 0

Initialisation: LetF (0) = ∅ andβ(0) = 0. Iteration countedt = 1.

1. SelectB(t) ∈ B to maximise the gain ratio

‖XT
B−F (t−1)(Xβ

(t−1) − y)‖22
c(B ∪ F (t−1))− c(F (t−1))

.

2. LetF (t) = B(t) ∪ F (t−1).

3. Letβ(t) = argmin
β
{L(β) : supp(β) ⊂ F (t)}.

4. If c(β(t)) > s stop, else incrementt and go to Step 1.

Output: Estimateβ̂ = β(t).
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Algorithm C.4 Model-based CoSaMP (from [4])
Input: X, y, structured sparse approximation algorithmM, s > 0

Initialisation: β̂0 = 0, r = y, t = 0.

1. Incrementt.

2. Lete = XT r be the residual estimate.

3. Compute the support of the bests-sparse approximation:Ω = supp(M(e)).

4. Merge the new support:T = Ω ∪ supp
(

β̂(t−1)
)

.

5. Form new signal estimate:b|T = X†
T y, b|TC = 0.

6. Prune according to structure:β̂(t) = M(b).

7. Calculate the new residual:r = y −Xβ̂(t).

8. If halting critarion is true, stop, else go to Step 1.

Output: Estimateβ̂(t).



Appendix D

Specialised Bregman iteration

In this appendix we present an alternative algorithm to compute the Grid-C penalty. We did not

compare the efficiency of this algorithm but describe it hereas a reference.

The Bregman iteration is a technique proposed by [15] to solve general optimisation prob-

lems where the penalty part contains a composition of theℓ1 norm. As this is the framework of

the Grid-C penalty function in its Lagrangian form, we can adapt that algorithm to our case.

The implementation of the algorithm to compute our penalty requires the solution of a

particular subproblem. We show how this can be found using the theory of [33], which relies

on the computation of a composition of proximity map. This isapproximated via a fixed point

algorithm in a similar manner done for NEPIO (see Section 4.2).

In Section D.1 we revise the Bregman iteration technique andin Section D.2 we explain

the implementation for the Grid-C penalty.

D.1 Generalities of Bregman iteration

The Split Bregman method, as proposed by [15], can be used to solve problems with a compo-

sition of ℓ1 norms as regularisation part. The most general definition ofthe problem is

min
u
{‖Φ(u)‖1 +H(u)} , (D.1.1)

where bothΦ andH are convex functions.

To begin with, we consider the problem of finding the minimum of a single functionE(u),

potentially non-differentiable, with a quadratic penaltyterm, that is

min
u

{

E(u) +
λ

2
‖Au− b‖22

}

. (D.1.2)

The minimisation ofE(u) subject to the system of linear equationsAu = b can be obtained

recursively using a series of increasing values for the parameterλ. This procedure, however, is

not numerically stable.
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In the case thatA is a matrix (instead of a more general linear operator), thenthe solution

to (D.1.2) can be found with the Bregman iteration:

uk+1 = argmin
u

{

E(u) +
λ

2
‖Au− bk‖22

}

, (D.1.3)

bk+1 = bk + b−Auk. (D.1.4)

The vectorbk, at iterationk, represents the error of the linear system. This simple casefrom

[39] and [55] hides a more complex iterations based on Bregman Distance and subgradients,

which arises whenA is not a matrix.

The splitting technique modifies the problem (D.1.1) introducing a new variable, allowing

to cast the problem in a form similar to (D.1.2), so that the Bregman iteration can be used.

Specifically, we will constraint the new variabled to take the values ofΦ(u). The Lagrangian

form of the new minimisation problem will be

min
u,d

{

‖d‖1 +H(u) +
λ

2
‖d− Φ(u)‖22

}

. (D.1.5)

This problem has a form very similar to that of (D.1.2), and can be solved in a similar way:

(uk+1, dk+1) = argmin
u,d

{

‖d‖1 +H(u) +
λ

2
‖d− Φ(u)− bk‖22

}

, (D.1.6)

bk+1 = bk + (Φ(uk+1)− dk+1). (D.1.7)

Furthermore, we note that this problem computes theℓ1 norm and the functionH on different

variables. One of the difficulties of the original problem (D.1.1) is precisely the fact that this is

not the case: both functions are computed for the same variable.

We can perform step (D.1.6) minimising alternatively with respect tou and tod. The

minimisation with respect tou is

uk+1 = argmin
u

{

H(u) +
λ

2
‖dk − Φ(u)− bk‖22

}

,

and so its difficulty depends on functionH. The second step is

dk+1 = argmin
d

{

‖d‖1 +
λ

2
‖d− Φ(uk+1)− bk‖22

}

,

and has the closed formula

dk+1
j = shrink

(

Φ(uk+1)j + bkj ,
1

λ

)

where shrink(·) is the soft thresholding operator, i.e. sgn(x)(|x| − λ)+.

To summarise, Algorithm D.1 will provide a solution to the problem in (D.1.1). The

authors of [15] suggest to set the parameterN = 1. No suggestions are given for the starting

points ofu, d andb, nor for the valueλ.
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Algorithm D.1 Generalised split Bregman algorithm (adapted from Osher)
Input: H, Φ, τ > 0, λ > 0, integerN

Initialisation: u, d, b

while ‖uk − uk−1‖ > τ

for n = 1 toN

uk+1 = argmin
u

{

H(u) + λ
2 ‖dk − Φ(u)− bk‖22

}

dk+1
j = shrink

(

Φ(uk+1)j + bkj ,
1
λ

)

end

bk+1 = bk + (Φ(uk+1)− dk+1)

end

Output: solution(û, d̂).

D.2 Special case of Grid-C Constraints

We will use AlgorithmD.1 to find the value of the functionΩ for the Grid-C case (see§ 3.3.4).

The constraints set isΛα = {λ : ‖Lλ‖1 ≤ α}, whereα is a positive parameter andL is the

incidence matrix of a DAG. In the1D case, matrixLwill be then×(n−1) matrix with1 on the

main diagonal,−1 on the superdiagonal and0 otherwise. This corresponds to the constraints

setΛα = {λ :
∑

i |λi − λi+1| ≤ α}.
Our goal is to find the infimum of12

∑

i

(

β2
i +ǫ
ui

+ ui

)

≡ H(u) + ‖u‖1
2 , where the com-

ponents of the vectorβ are perturbed by a slight positive amountǫ for numerical stability.

Moreover, the components ofu are constrained to be nonnegative and to satisfy‖Lu‖1 ≤ α.

We can rewrite our problem as

min
u≻0

{

H(u) +
‖u‖1
2

+ λ(‖Lu‖1 − α)
}

, (D.2.1)

for a positive Lagrangian multiplierλ.

We apply the splitting technique by introducing two new variablesd ande, and by enforc-

ing the constraintsd = u ande = Lu via quadratic error terms. This allow us to compute

functionH and theℓ1 norm on different vectors. The new form of the problem is

min
u≻0
d,e

{

H(u) +
‖d‖1
2

+ λ(‖e‖1 − α) +
µ

2
‖d− u‖22 +

µ

2
‖e− Lu‖22

}

, (D.2.2)

for a positive weightµ. No real benefit is gained from weighing the two quadratic terms with

different parameters. This problem is equivalent to the original problem (D.2.1), and is similar

to (D.1.5), so that Algorithm D.1 can be applied.

The efficiency of the algorithm depends on how fast we can solve the step of minimisation
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with respect tou, that is

uk+1 = argmin
u≻0

{

H(u) +
µ

2

(

‖dk − u− bkd‖22 + ‖ek − Lu− bke‖22
)}

. (D.2.3)

We added two further vector variablesbd and be to absorb the error for the new constraints,

where in step (D.1.3) we only needed one variable. If we letv = dk − bkd andw = ek − bke ,

then the solution to (D.2.3) will be a function fpnt(u, v, w). We will see later that this function

can be computed using a fixed point technique. Note that this function also depends onH, that

is onβ, but this will be omitted for simplicity.

The minimisation with respect tod is made again using the shrink operator. In this case

the step is

dk+1
j = shrink

(

(uk+1)j + (bkd)j ,
1

2µ

)

. (D.2.4)

Finally, the updates of the error variables are

bk+1
d = bkd + (uk+1 − dk+1) (D.2.5)

bk+1
e = bke + (uk+1 − ek+1). (D.2.6)

Using all the updating steps together, we can now show Algorithm D.2 which provides a

solution to the problem (D.2.1).

Algorithm D.2 Bregman method for functionΩ
Input: β, τ > 0, µ > 0, integerN

Initialisation: u, d, be, bd

while ‖uk − uk−1‖ > τ

for n = 1 toN

uk+1 = fpnt
(

uk, dk − bkd, ek − bke
)

dk+1
j = shrink

(

(uk+1)j + (bkd)j ,
1
2µ

)

end

bk+1
d = bkd + (uk+1 − dk+1)

bk+1
e = bke + (uk+1 − ek+1)

end

Output: solutionû.

We now describe how to solve (D.2.3) using the fixed point theory that can be found in

[33]. Consider the problem

min
u≻0

{

1

2

∑

i

zi
ui

+ c‖v − u‖22 + c‖w − Lu‖22

}

, (D.2.7)



D.2. Special case of Grid-C Constraints 121

wherezi = β2i , c = µ
2 for all i.

By considering the first two terms, we have the problem

min

{

1

2
‖u− v‖22 +

1

4c

∑

i

zi
ui

+ δ{u≥0}

}

= min

{

1

2
‖u− v‖22 + h1(u)

}

, (D.2.8)

that is the proximity operator of the functionh1(u) = ω1(Bu), with B = I, the identity. By

the theory of the fixed point,h1 can be computed if we know the proximity operator ofω1
λ , with

λ a positive constant. That is, we need

proxω1
λ
(t) = argmin

φ

{

1

2
‖t− φ‖22 + k

∑

i

β2i
φi

+ δ{φ≥0}

}

.

with k = 1
4λc . Since the variables are decomposable, we can solve the problem componentwise,

which involves taking the positive root of a cubic polynomial1.

Considering now the second two terms of (D.2.7) we have the problem

min

{

1

2
‖u− v‖22 +

1

2
‖w − Lu‖22 + δ{u≥0}

}

= min

{

1

2
‖u− v‖22 + h2(u)

}

.

Again, this is the composition of a proximity operator, in this caseh2(u) = ω2(Bu), B = I,

so we need

proxω2
λ
(t) = argmin

φ

{

1

2
‖t− φ‖22 +

1

2λ
‖w − Lφ‖22

}

=

(

I +
LTL

λ

)−1(

t+
LTw

λ

)

,

computed finding the minimum of the quadratic form.

We define a functionH which is a composition of the proximity operators we have found

so far and an affine mapA:

H(t) = I − proxω1+ω2
λ

(A(t)).

The solution to the original problem is the fixed point ofH, that isH(r) = r. This is

obtained by applying the Picard iteration using Opial’s theorem

r → 1

2
I +

1

2
H(r)

until convergence. This is usually very fast.

In the fixed point theory, the proximity operator of the composed functionω ◦ B at the

pointx can be found as the fixed point ofH where

A(z) = (I − λBBT )z +Bx,

1For completeness, it iŝφi = r+ ti
3

, with r = 3
√
α+ β+ 3

√
α− β, α =

t3
i

27
+ kzi

2
, β =

√

α2 + p3

27
, p = − t3

i

3
.
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For a pointt ∈ R
n, we have computedω1(Bt) andω2(Bt). So

H(t) = (I − proxω1
λ
(A(t))− proxω2

λ
(A(t)).

Finally, our two proximity functions are computed on different vectors that are bound together

by settingt = (t1, t2), B = [I; I]T .

With this algorithm we considered just the functionΩ. If we are interested in minimising

the regularised loss with this function, we have to introduce a further step when we minimise

with respect toβ:

β̂ =

(

2

n
XTX + γdiag(u−1

1 , . . . , u−1
n )

)−1 2

n
XT y.



Appendix E

Dual Problem and QCQP Formulation

The content of this section is not used in the thesis, but we include it here for completeness.

We derive the dual of problem (4.2.1) whenΛ = {λ : λ ∈ R
n
++, Aλ ∈ S}, whereA 6= 0 is a

prescribedk × n matrix andS is a convex set. We are particularly interested in either thecase

thatS is a convex cone orS = {‖ · ‖ ≤ 1}, where‖ · ‖ is anarbitrary norm. These cases are

described in§ 3.3.4. We will show that the dual formulation, in the sense ofthe Fenchel duality,

is, in many cases of interest, aa quadratically constrained quadratic program(QCQP).

E.1 Norm Constraints

We first study problem (3.1.1) in the case that

Λ = ΛA,‖·‖ := {λ : λ ∈ R
n
++, ‖Aλ‖ ≤ 1}.

Definef : R× R→ R, g : Rm × R
k → R as

f(b, ξ) =











b2

ξ + ξ if ξ > 0

+∞ if ξ ≤ 0

andg(ζ, η) = 1
2‖ζ − y‖22 + δB(η), whereB is the unit ball of‖ · ‖.

Note that the convex conjugate ofg equals

g∗(p, q) =
1

2
‖p‖22 + 〈p, y〉+ ‖q‖∗

where‖ · ‖∗ denotes the dual norm of‖ · ‖.

Lemma E.1.1. The conjugate off equalsf∗ = δC , whereC is the parabolic region

C = {(γ, θ) ∈ R× R : γ2 + 4θ ≤ 4} . (E.1.1)

Moreover,(b, ξ) ∈ ∂(f∗)(γ, θ) if and only if










γ = 2b
ξ , ξ > 0 and γ2 + 4θ = 4 or

b = ξ = 0 and γ2 + 4θ ≤ 4 .

(E.1.2)
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We can now obtain a dual problem of (4.2.1). Let us usexi, ai to denote thei-th columns

of X,A, respectively.

Proposition E.1.1. If Λ = ΛA,‖·‖, then problem(4.2.1)is equivalent to

min

{

1

2
‖p − y‖22 + ‖q‖∗ : p ∈ R

m, q ∈ R
k,

〈xi, p〉2 + 2ρ 〈ai, q〉 ≤ ρ2 , ∀i = 1, . . . , n

}

. (E.1.3)

Moreover, if(p̂, q̂) is a solution of(E.1.3), then(β̂, λ̂) is a solution of(4.2.1) if and only ifthe

following equations hold











β̂i =
1
ρ〈xi, p̂〉λ̂i if 〈xi, p̂〉2 + 2ρ 〈ai, q̂〉 = ρ2

β̂i = λ̂i = 0 if 〈xi, p̂〉2 + 2ρ 〈ai, q̂〉 < ρ2
, (E.1.4)

for all i = 1, . . . , n,

Xβ̂ = y − p̂ , (E.1.5)

Aλ̂ ∈ argmax{〈 − q̂, η〉 : ‖η‖ ≤ 1} (E.1.6)

λ̂ ∈ R
n
+ . (E.1.7)

Proof. We apply Fenchel’s duality theorem [9, Thm. 3.3.5], noting that the Slater condition

0 ∈ int(Rm × B −R(X) ×ARn
++) holds. Recalling the formula(ρ2f)

∗(·) = ρ
2f

∗
(

2
ρ (·)
)

, we

obtain the problem

sup
{

−1

2
‖p‖22 + 〈p, y〉 − ‖q‖∗ : p ∈ R

m, q ∈ R
k,
(

2
ρ〈xi, p〉, 2ρ〈ai, q〉

)

∈ C , ∀i = 1, . . . , n
}

,

which is equivalent to (E.1.3), and that the supremum is attained.

The primal-dual pair of solutions should satisfy the conditions

(β̂i, λ̂i) ∈ ∂(f∗)
(

2
ρ〈xi, p̂〉, 2ρ〈ai, q̂〉

)

,

and

−(p̂, q̂) ∈ ∂g(Xβ̂,Aλ̂).

These, combined with (E.1.2) and norm duality, yield conditions (E.1.4), (E.1.6) and (E.1.5).



E.2. Conic Constraints 125

We remark that in many cases of interest, dual problem (E.1.3) is a quadratically con-

strained quadratic program(QCQP) [10]. These include the case that‖ · ‖ is a polyhedral

norm, such as theℓ1 norm.

Recovering primal solutions from dual ones requires solving yet another optimisation

problem. Thus, if̂q = 0, the solutions satisfy‖Aλ̂‖ ≤ 1, equations (E.1.4), (E.1.5) and (E.1.7).

If q̂ 6= 0, λ̂ can be obtained by solving the problem

min
{

‖Aλ‖ : 〈A⊤q̂, λ〉 = −‖q̂‖∗ , λ ∈ R
n
+,
∑

i∈J

1
ρλi〈xi, p̂〉xi = y − p̂

}

, (E.1.8)

whereJ denotes the set ofactive constraints, that is, the indices for which〈xi, p̂〉2+2ρ 〈ai, q̂〉 =
ρ2. In learning problems exhibiting sparsity, the setJ has small cardinality and program (E.1.8)

has a small number of variables. Moreover, in the case of polyhedral norms, (E.1.8) is alinear

program.

E.2 Conic Constraints

Another case of interest imposes alternative constraints of a different character onλ. Namely,

we consider the optimisation problem (4.2.1) when

Λ = ΛA,K := {λ : λ ∈ R
n
++, Aλ ∈ K},

whereK is aconvex cone. As mentioned in [32], such cases correspond to the penalty function

Ω in equation (3.1.2) being a norm.

To derive the corresponding dual problem we work as in Section E.1. In this case, however,

the Slater condition is not automatically satisfied and we need an assumption onA andK. If

a weaker Slater condition involving therelative interior of K, denoted byri(K), holds then

[45, Cor. 31.2.1] can be employed. To this end, we recall the concept of apolar cone– see, for

example, [9, Sec. 3.3]. The polar cone of a setK is the setK− = {φ : 〈φ, x〉 ≤ 0, ∀x ∈ K}. It

is easy to see thatδ∗K = δK− and thatφ ∈ ∂δK(x), x ∈ K, if and only if φ ∈ K−, 〈φ, x〉 = 0.

Proposition E.2.1. If Λ = ΛA,K and there existsλ ∈ R
n
++ such thatAλ ∈ ri(K), then problem

(4.2.1)is equivalent to

min

{

1

2
‖p − y‖22 : p ∈ R

m, q ∈ −K−,

〈xi, p〉2 + 2ρ 〈ai, q〉 ≤ ρ2 , ∀i = 1, . . . , n

}

. (E.2.1)

Moreover, if(p̂, q̂) is a solution of problem(E.2.1), then(β̂, λ̂) is a solution of problem(4.2.1)

if and only if equations(E.1.4), (E.1.5), (E.1.7)andAλ̂ ∈ K, 〈λ̂, A⊤q̂〉 = 0 hold.
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In most cases of interest, the Slater condition can be easilyverified andK− is known. For

example, ifK = R
n
+, corresponding to the constraintAλ ≥ 0, the cone is self-dual, meaning

that−K− = R
n
+. In this case, (E.2.1) is a QCQP and the set of solutionsλ̂ is the polytope

{λ : λ ∈ R
n
+, Aλ ∈ R

k
+, 〈λ,A⊤q̂〉 = 0,

∑

i∈J

1
ρλi〈xi, p̂〉xi = y − p̂}.
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