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Abstract

Compartmentalisation is a fundamental feature of biological systems. The organism as

a whole can be seen as a single compartment of the wider ecosystem. At lower scales,

we observe biological processes compartmentalised into organs, cells, cell subtypes and

organelles. In the highly complex discipline of immunology, compartmentalisation is key

in order to respond efficiently to foreign antigens and to maintain the balance between

immunity and tolerance. Recent studies have raised questions about the role of com-

partmentalisation in lipid membranes, from the relatively well described immunological

synapse, to the smaller, more transient lipid raft or microdomain. This thesis asks whether,

and how, microdomains could influence the formation of small receptor complexes.

Specifically, we approach what appears to be a simple surface reaction-diffusion prob-

lem from multiple viewpoints: explicitly simulating particle diffusion using a probabilistic

pixel-based model, and deriving a deterministic relation between spatial parameters and

the timecourse of chemical concentrations throughout the model space. We also show the

equivalence between the predictions of these two models, further supporting the validity

of our approach.

We also embed the results of our model output in an existing model of the immuno-

logical response in order to determine the downstream consequences of enhanced receptor

organisation. The study gives a broader understanding of the mechanisms involved in

microdomain-mediated protein sorting, highlights the degree of interdependence on mul-

tiple spatial and chemical parameters and suggests numerous avenues for future research.
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Chapter 1

Introduction

The mammalian immune system is in a constant battle to maintain a balance between

tolerance and response. Many microorganisms have a neutral or beneficial relationship

with the host and, as such, to mount a response would be counterproductive. But the

host immune system cannot learn through evolution every single peptide sequence that

indicates the presence of a harmful microorganism: microorganisms evolve at a much

faster rate than the host and are so diverse that host organisms lack the genetic resources

to code for receptors to recognise any potential threat that they encounter. As such, an

appropriate immune response relies on a decentralised network of specialised cells which

share information and constantly readjust their behaviour based on previous experience

[76, 55].

As well as generating a response to the huge range of potential pathogens, the immune

system must also actively maintain tolerance to host tissues, which it comes into contact

with much more frequently, raising the likelihood of autoimmune reactions.

The key player controlling the progress from pattern recognition to immune response

in the adaptive immune system is the T cell and the primary signalling molecule driving

T cell proliferation in the immune response is the cytokine interleukin 2 (IL-2). Appro-

priate responses to immune challenge require a high degree of sensitivity and specificity

to the extracellular ligand. In the antigen recognition phase, this involves specialised

spatial organisation of T cell surface components into a structure termed the immunolog-
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CHAPTER 1. INTRODUCTION

ical synapse[46]. Other immune signalling mechanisms, however, may also be facilitated

by the organisation of specialised signalling platforms in the form of lipid rafts or mi-

crodomains[104, 48, 49].

The involvement of spatial organisation as a fundamental component to biological

signalling pathways represents an additional layer of complexity on many of the popular

models of immunological function. As Kholodenko et al. note:

Signal transduction was once viewed as a collection of linear information trans-

porting pipelines that related extracellular cues to specific genes [58].

However, our increasing understanding of the spatial and temporal dynamics of signalling

reinforce the importance of immunological signals being in the right place at the right time.

These developments mitigate the preeminence of gene regulatory networks as determiners

of cell fate and assign instead significance to cell geometries and subcellular structures in

organising proteins into signalling complexes.

The small and transient nature of membrane microdomains [62] make them a slippery

object of study, which has led to a diverse range of hypotheses about their properties and

function in cell biology [16, 57]. In such a situation, computational modelling approaches

allow us to systematically test existing hypotheses across a wide range of parameters, and

mathematical modelling allows us to determine causal relationships in the fundamental

mechanisms of the system under study.

In this thesis, we develop computational, mathematical and hybrid models of microdomain-

mediated protein complex formation in order to investigate the potential for regions of low

diffusion rate to act as ‘entropic traps’ which facilitate protein complex formation.

The primary hypothesis of the thesis is: ‘The presence of multiple finite regions of low

diffusion in a space enhance the formation of modelled heterotrimeric protein complexes

in a reaction-diffusion system’.

The secondary hypothesis of the thesis is: ‘There exist optimal geometric properties

of microdomains which maximise modelled protein formation in the above system’.
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1.1 Objectives

The objectives of this thesis are:

1. To investigate the influence of spatial heterogeneity in diffusion rates on the organi-

sation of modelled membrane protein complexes using simple numerical simulations

2. To create and analyse simulations to determine the interplay of a range of diffusion

schemes, combining the effects of spatially varying diffusion rates and affinity for

defined regions

3. To rigorously determine the underlying diffusion dynamics by finding novel analytical

solutions to reaction-diffusion problems on a heterogeneous space

4. To test the hypothesis using the above two approaches that microdomains have

‘optimal’ spatial characteristics

5. To explore and characterise the space of solutions to the analytical model

6. To combine the novel solutions with existing immunological signalling models and

determine the overall impact of heterogeneity on signalling

7. To quantify the interdependence of any heterogeneity-mediated effects on trimer

organisation and other determining physical and chemical parameters

1.2 Thesis overview

Chapter 2 contains a review of the experimental research which provides a background

and a motivation to this thesis. We will describe the development, diversity and function

of the T cell and the role in which IL-2 plays in the immune response. We also provide

a history of the relatively recent experimental literature on membrane microdomains (or

‘rafts’), explain why it is a field that still has many unanswered questions and synthesise

the current understanding of membrane heterogeneity. Finally we describe how modelling

plays an important role in many fields in biology, including immunology. We review key
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papers in immunological modelling and modelling of membrane diffusion processes and

describe our stance in this thesis in relation to the existing literature.

In Chapter 3 we construct a new probabilistic model of a cell membrane reaction-

diffusion system in order to readily test several key hypotheses on the role of membrane

compartmentalisation on the organisation of immune signalling receptors. The models

explore physical mechanisms (the retardation of diffusion proteins within fixed membrane

regions) as well as chemical mechanisms (selectivity within fixed membrane regions for

particular membrane proteins) for sequestering diffusing proteins in order to facilitate

the organisation of a trimeric receptor, which models the heterotrimeric receptor for the

cytokine IL-2. This chapter addresses objectives 1, 2 and 4 of the thesis.

The results of the model in Chapter 3 give an interesting insight into the role of

membrane heterogeneity in protein complex formation. The probabilistic nature of the

model, however, makes it difficult to draw clear causal relationships between modelled

membrane structure and the diffusional behaviour of the embedded proteins over time.

In Chapter 4, we re-approach the problem from a deterministic angle and derive novel

solutions to the diffusion equation in heterogeneous spaces representative of membrane

microdomains. We also validate this analytical model against a simplified version of the

probabilistic model developed in Chapter 3 and find good agreement. The analytical

solution provides a better understanding of the evolution of the system in long timescales

(running the probabilistic model on very long timescales is computationally intensive)

and the greater ease of computation also allows us to investigate a wide range of chemical

parameters more readily. Objectives 1, 3, 4 and 5 are addressed in this chapter.

In order to better understand the fundamental properties of the theoretical system

under study, Chapters 3 and 4 deliberately simplified parameters and ignored the place of

receptor formation in the wider context of T cell signalling. For that reason, Chapter 5

combines the new models derived in this study with an existing T cell proliferation model

to elucidate the significance of greater receptor expression on downstream signalling and

T cell population growth. This chapter addresses objectives 1, 4, 5, 6 and 7, exploring the

parameter space of the model with greater emphasis on biologically relevant values for the
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parameters used.

1.3 Publications

Part of the work in this thesis has been published in:

• E. Long, B. Henderson, and A. Zaikin. In silico analysis of microdomain-mediated

trimer formation in the T cell membrane. The European Physical Journal - Special

Topics, 187(1):21–30, 2010
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Chapter 2

Literature review

The immune systems of animals are incredibly complex systems, having evolved over time

to recognise harmful elements and, within the lifetime of an organism, developing further

via ongoing selective mechanisms. This system faces a number of challenges in terms of

balance: it must respond to as wide a variety of pathogens as possible while minimising the

risk of attacking the self and it must generate a sufficiently intensive response to remove

harmful material without causing excessive damage to surrounding tissues. This balance

requires constraining the action of effector cells in both magnitude and duration.

One of the challenges faced by the immune system is to be able to respond appropriately

to a huge variety of stimuli with only limited resources in terms of cell phenotypes and

signalling molecules. In order to increase the logical complexity of the system processing

the stimulus, the immune system leverages heterogeneity between cell types so that the

response depends on a synergistic or antagonistic combination of signals from different

cells. Over the last decade or so, there is also increasing evidence that heterogeneity within

cell structures allows combinatorial expansion of the possible responses to an external

stimulus [58].

There are a number of barriers which must be passed sequentially in order for a

pathogen to become established within the host. The first of these is the skin and mucosa

which provide a physical barrier to invasion by foreign agents. Once inside, physiological

conditions may also prevent survival of the pathogen, for example unfavourable tempera-
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ture or pH. The final two barriers are the innate and adaptive components of the immune

system – where the adaptive immune system shows a much higher degree of specificity but

takes longer to react to novel stimuli. Importantly, the organism is only aware of invasion

once the pathogen engages either the innate or adaptive immune system and it is at the

cell membrane of the immune system’s detector cells where first contact takes place. It is

here that the intelligence operation begins and the immune system begins a programme of

computation and communication which identifies the attacker and triggers an appropriate

response.

2.1 T cell immunology

The T cell is a central actor in the adaptive immune response, although it plays diverse

and sometimes contradictory roles; both initiating, amplifying and carrying out the host

immune response to potential threats as well as suppressing autoimmune responses and

preventing an overaggressive mobilisation of effector cells to less acute challenges or to

host cells.

T cells derive their name from their place of maturation – the thymus – and act in

concert with B cells, another lymphocyte, that is formed in the bone marrow in mammals.

The B cell name, however, is derived from the organ where they are formed in birds – the

bursa of Fabricius[93].

Naive conventional T cells are activated via the T cell receptor (TCR). The TCR

itself is a membrane-bound heterodimer consisting of α and β subunits, whose ligand is

a complex formed of the major histocompatibility complex (MHC) molecule, bound to

an antigen peptide. Soon after ligation, however, the T cell rapidly organises a more

complex molecular assembly in the immediate region of the receptor, forming a structure

termed the immunological synapse[46, 33]. A second, much smaller, population of T cells

expresses a different form of the TCR – the γδ TCR which appears to bind a wider range

of ligands, not restricted to MHC-bound peptides. These may include heat shock proteins

or bacterial lipid antigens[55]. T cells expressing this form of receptor belong to a class of

‘innate-like’ lymphocytes, which behave more like the innate components of the immune
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system in recognising predetermined antigen patterns, rather than learned patterns[76].

MHC molecules occur in two main classes: class I and class II. Broadly speaking, MHC

class II is involved in the identification of potential immune challenges and MHC class I is

involved in the effector stage of an immune response. MHC class II molecules are primarily

expressed on a family of cells which specialise in processing and presenting foreign antigen

peptides. These are termed antigen presenting cells (APCs) and include dendritic cells,

macrophages and B cells, though dendritic cells are the most effective for stimulating IL-2

production[35].

When an organism is challenged by a pathogen, antigen presenting cells process foreign

peptides in the infected region and migrate to lymph nodes[77]; a space where interaction

with T cells is greatly enhanced by the tightly packed reticular network. The T cell receptor

is highly specific, generally recognising an exact peptide sequence, which is around 8–10

amino acids in length when bound to the MHC class I molecule, or 13–17 amino acids in

length when bound to an MHC class II molecule[23]. Because of this specificity, efficient

recognition of novel pathogen epitopes must be effected by creating a highly diverse set of

T cell cells and ensuring that the interaction between T cells and APCs is optimised.

On successful binding between a TCR and MHC complex, the cell begins to organise

the immunological synapse. During this process, other TCRs on the cell’s surface migrate

towards the synapse area, which covers 10–20% of the cell’s surface area[46]. The binding

between the TCR and MHC itself is fairly low affinity [99], so the connection to the

APC surface must be stabilised by accessory proteins CD4 or CD8. These are both

transmembrane glycoproteins. CD4 binds to the MHC class II molecule and CD8 binds to

the MHC class I molecule. The expression of one or the other of these accessory proteins

determines the role that T cells will play in the adaptive immune system as either helper

or regulatory lymphocytes (CD4+ T cells) or cytotoxic effector lymphocytes (CD8+ T

cells).

Transmembrane signalling is effected with the aid of a collection of signalling proteins:

four proteins collectively referred to as CD3 and a mostly intracellular homodimer con-

sisting of two ζ chains. These signalling molecules contain amino acid sequences called
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immunoreceptor tyrosine-based activation motifs (ITAMs) which are phosphorylated by

the tyrosine kinases Fyn and Lck, allowing the cytoplasmic protein ZAP-70 to bind to the

ζ chains, initiating downstream signalling that leads to T cell activation. After activation
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Figure 2.1: A cartoon of several of the membrane-bound elements comprising the TCR
complex.

of an individual TCR, the TCR complex is internalised [1] and other TCRs within the

immunological synapse may then be activated by the same peptide-MHC ligand on the

antigen presenting cell.

T cell activation also depends on the amplitude of the stimulation, that is, the number

of peptide-MHC complexes successfully binding to TCRs on its surface. A 2002 paper by

Irvine et al. suggested that the threshold number needed for activation is in the range of

20–30 for activation of a CD8+ T cell, and up to 500 for activation of a CD4+ T cell[53].

Later work by Manz et al. also examined threshold signalling behaviour of clustered T cell

receptors in the immunological synapse in CD4+ murine T cell blasts. They argue that,

rather than thresholds determined at a whole-cell level, T cell clusters control calcium

signalling, with downstream effects being triggered when around four pMHC molecules

bind within a single TCR cluster[72].

In addition to transient clustering, TCR complexes also form more stable oligomeric

structures. Kumar et al. [61] study the prevalence of TCR oligomer formation in multi-

ple T cell subtypes and showed that memory T cells and other T cells which have been

previously stimulated form larger oligomers. They also show that these cells have a larger
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proportion of TCR complexes organised into oligomers than näıve cells. They also show

that oligomer size correlates with antigen sensitivity, and suggest that the formation of

these structures is the mechanism by which T cells acquire increased sensitivity to subse-

quent stimulation.

Although all T cells express the TCR complex and elements of the signalling behaviour

of the lymphocytes is uniform across all T cell subtypes, other surface molecules expressed

by T cells determine the exact role that they play in the immune response. This is

determined by their development and differentiation, summarised in the next section.

2.1.1 T cell differentiation

Like B cells, mammalian T cells also originate in the bone marrow as haematopoietic stem

cells, which are precursors to all blood cells, including red blood cells. These differentiate

to lymphoid progenitor cells, some of which migrate to the thymus where the commit to

the T cell lineage in response to the Notch signal[131].

In the thymus, immature thymocytes proliferate rapidly. Few leave the thymus, how-

ever: around 98% undergo death by neglect (apoptosis) as they fail to receive the positive

selection signals necessary to fully develop and leave the thymus. Selection is dependent

on a pseudorandom process in which frequent gene rearrangements produce a wide num-

ber of varieties of the two proteins making up the TCR. The cell is then subjected to a

three-stage test in which, depending on the protein structure of the TCR and pre-TCR,

it receives either the necessary signals to survive and differentiate or is removed from the

pool in response to apoptotic signalling or neglect.[55]

The first test stage is the ability of the cell to form a functional β component of the

pre-TCR. Only these cells generate the signal to differentiate from cells expressing neither

CD4 or CD8 on their surfaces (double negative – DN – thymocytes) to expressing both

CD4 and CD8 on their surfaces (double positive – DP – thymocytes)[54]. Once cells

express a functioning β component of the receptor, they begin to generate the diverse

varieties of α protein needed to bind the repertoire of peptide-MHC ligands that it might

possibly encounter in the periphery. Since the potential repertoire of TCR structures is
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so large, it is not pre-encoded in the genome, but rather generated by a mechanism which

rearranges a vocabulary of genes to produce the necessary diversity of combinations.

The second two tests within the thymus are a positive selection stage – in which those

cells which interact at low avidity with MHC complexes on stromal cells and dendritic

cells in the thymus receive a survival signal – and a negative selection stage, in which

high avidity interactions with host-specific antigen peptides trigger an apoptotic signal.

Those cells which are positively selected differentiate to become single positive (SP) thy-

mocytes, expressing only CD4 or CD8. Negative selection ensures that cells leaving the

thymus do not trigger immunological responses to host tissues; thereby establishing central

tolerance[112].

After a period of around 12 days [112], SP thymocytes mature, beginning to express

CD62 ligand (L-selectin) and CD69 - an important cell surface glycoprotein involved in

later proliferative responses. These mature, but naive, T cells then exit the thymus and

enter the circulation.

In circulation, T cells play a number of roles and are classified into subsets based,

in part, on the expression profiles of their surface molecules. The subset of CD4+ cells

includes T helper cells (TH cells) and regulatory T cells (Treg cells), where Treg cells

express the α chain of the IL-2 receptor (IL-2Rα) and forkhead box p3 protein (FoxP3),

and TH cells express neither.

Treg cells are a relatively recently taxonomised subset of CD4+ T lymphocytes and

are responsible for maintaing tolerance and controlling immune responses by inhibiting

the magnitude of the TH cell response. Signalling via the IL-2 receptor is fundamental to

maintaining this balance [70, 130], as described below.

2.1.2 T cell proliferation and interleukin 2

Although T cells proliferate in response to a number of growth factors, the first to be

identified was interleukin 2 (IL-2). Smith et al. demonstrated its role in promoting both

proliferation and survival in T cells in vitro[107].

Notably, however, T cells are not dependent on IL-2 for proliferation: IL-2−/− mice
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display a lower degree of T cell proliferation, but it it is not prevented entirely, suggesting

some degree of redundancy in the signalling mechanism responsible for mounting immune

responses. In vitro studies of IL-2−/− T cells also show a similar behaviour [100]. In

addition to a slight impairment of T cell proliferation, mice lacking IL-2 also developed

autoimmune disorders which led to death between 12 and 25 weeks [18].

This evidence led to the conclusion that IL-2 is a vital signalling molecule in the

development of Treg cell subsets and so mice that lack IL-2 are destabilised towards an

elevated immune response state rather than a tolerance. This interpretation was supported

by evidence that transferring Treg cells into mice lacking IL-2 prevented the development

of autoimmune disease[98]. This evidence has contributed to the view that, although IL-2

is a potent cell proliferation signal for all cell types, it is tolerance, rather than immunity

that depends on the IL-2 signalling process [70, 130, 71].

Other interleukin molecules implicated in T cell proliferation and homeostasis include

IL-7 and IL-15. IL-15, in particular, shares components of the IL-2 receptor: the trans-

membrane β and γ chains also form part of the IL-15 receptor complex when combined

with the IL-15Rα subunit [68]. Knockout mouse models examining the role of IL-15 re-

vealed that IL-15−/− mice are deficient in CD8+ memory T cells, natural killer cells and

intra-epithelial lymphocytes [56]. IL-7−/− mice have severe deficiencies in both B and T

cell populations, implying that the cytokine is functionally significant in development and

homeostasis in these cell types[121].

Despite their reliance on IL-2 for proliferation and homeostasis, regulatory T cells do

not produce IL-2 themselves [88]. Instead they consume IL-2 produced by nearby TH

cells. This relationship establishes a negative feedback loop between two subpopulations

of CD4+ T cells: the helper cells producing IL-2, which stimulates proliferation in both

cell subtypes; and the regulatory cells consuming the IL-2, thereby limiting further TH

cell expansion. Some experiments also suggest that regulatory cells even directly inhibit

the production of IL-2 by TH cells [115].

We have reviewed signalling via the IL-2 receptor as a single unit. In the next section,

we examine the structure of the IL-2 receptor and its downstream signalling pathways.
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2.1.3 The IL-2 Receptor

The IL-2 receptor is a heterotrimeric receptor, made up of three transmembrane protein

subunits: IL-2Rα (CD25), IL-2Rβ (CD122) and IL-2Rγ (CD132). The combination of all

three subunits is commonly termed the high-affinity IL-2 receptor, and binds its ligand

with a Kd around 10pM. IL-2 can also signal via the dimer composed only of the β and γ

subunits, though binding is at an intermediate affinity of around 1nM. Thus, the α subunit

stabilises binding of the IL-2 ligand and facilitates transmembrane signalling [123].

There was, for some time, a lack of clarity on the extent to which the trimeric receptor

is pre-formed before the binding of ligand. Fluorescence resonance energy transfer studies

by Damjanovich et al. [26] showed that there was strong colocalisation between the three

subunits. The authors argued that the intermediate-affinity receptor (the βγ dimer) was

most likely a pre-formed dimer, whereas the αβγ dimer was in a ‘dynamic equilibrium’

that was strengthened by the binding of IL-2 ligand.

The crystal structure of the full quaternary (ligand/trimeric receptor) signalling com-

plex was described by Wang et al. in 2005 at a 2.3Å resolution[126]. They showed that the

transmembrane tails of the β and γ subunits are closely positioned, while the IL-2 ligand

binds in the ‘fork’ between the globular heads. IL2-Rα, on the other hand is positioned

apart from the βγ dimer at the membrane, and the head of the protein binds, via a long,

connecting peptide, to a dorsally located site on the IL-2 ligand (see Fig. 2.2).

Figure 2.2: A model of the structure of the IL-2/IL-2R signalling complex. Reproduced
from [126], with permission from Prof. K Christopher Garcia.
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The authors state that the complex is held together via four binding sites: the ligand

binds to the α, β and γ subunits independently; and the β and γ subunits bind to each

other.

Later studies by Stauber et al. [109] provide further detail on the particular subunit

interactions of the receptor. Of the interactions with the ligand and the various subunits,

the largest buried surface area is between IL-2 and the α subunit, with around 1640Å2

of total buried surface area. The contact between IL-2 and the β subunit is the second

largest surface interaction at around 1155Å2, and the smallest area of surface interaction

is with the γ subunit at around 975Å2. There are no covalent interactions between any

of the constituent proteins. Instead, subunits are bound by van dar Waals contacts and

hydrogen bonds, with the ligand forming 6 hydrogen bonds with the α subunit, 10 with

the β subunit and 2 with the γ subunit.

The interaction between the β and γ receptor subunits, although again not covalently

linked, is strong. The authors found around 1625Å2 of total buried surface area; 14

hydrogen bonds and 90-97 van der Waals contacts binding the two components[109].

On the formation of the signalling complex, downstream signalling is initiated via

tyrosine kinases Jak1 and Jak3[80, 71, 70]. Jak1 is associated with the cytoplasmic domain

of the β subunit and Jak3 is associated with the γ chain. The transmembrane domain

of the α subunit is very short and is not involved in transmembrane signalling [18]; the

subunit serves only to localise diffusing IL-2 ligand at the cell surface and to increase the

affinity of the ligand-receptor binding.

When ligand binds the high-affinity receptor, the Jak kinases phosphorylate tyrosine

residues in three distinct regions of the intracellular tail of the β subunit, inducing the

recruitment of the SHC adaptor protein (SRC-homology-2-domain-containing transform-

ing protein C)[113, 18]. Phosphorylation of sites in the carboxy-terminal region of the β

chain recruits STAT5 (signal transducer and activator of transcription 5). STAT5 is sub-

sequently phosophorylated, leading to formation of homodimers, in which form it migrates

to the cell nucleus, where it regulates genes involved in Treg development[18, 70].

The SHC adaptor protein binds Grb2 and Gab2 (growth-factor receptor-related adap-
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tor proteins), initiating the mitogen-activated protein kinase (MAPK) signalling cascade

and the AKT (protein kinase B) signalling cascade, see Fig. 2.3. The signalling mecha-
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Figure 2.3: A diagram of the high-affinity IL-2 receptor with the associated recruited
downstream molecules involved in signalling following ligation. Based on a figure from
[70] by Malek et al.

nism described above contributes to growth, differentiation and survival of regulatory T

cells.

IL-2 usually binds receptors on the T cell surface as a soluble factor. Recent studies by

Wuest et al. [128], however, have identified alternative mechanisms for signalling by the

IL-2 receptor, in which mature dendritic cells (mDCs) ‘present’ IL-2 to T cells tethered

to IL-2Rα proteins on the mDC surface. They posit that this trans presentation of IL-2

mDCs to stimulate high-affinity-like signalling via the intermediate-affinity IL-2 receptor.

We have seen that specialised structures organised in the cell membrane (the immuno-

logical synapse) are necessary for effective T cell responses to foreign antigen signalling via

the TCR. We now review studies examining the structure of the cell membrane and evalu-

ate whether similar, smaller structures could be a more general feature of membrane-based

signalling events.
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2.2 The cell membrane

Cell membranes are made up chiefly of phospholipids, sphingolipids and cholesterol as well

as a multitude of embedded proteins. They form an outer covering around the entire cell as

well as compartments separating intracellular organelles. Phospholipids and sphingolipids

have a hydrophilic head (usually positively charged or zwitterionic) and a hydrophobic tail

and, when in solution, self-organise in order to form structures which minimise interaction

between the hydrophobic tail segments and the water. These structures include micelles:

small spheres with the phospholipid heads outermost and the tails innermost; vesicles:

spheres with a bilayer surface with water both inside and outside; and bilayer sheets. The

two halves of the bilayer are termed leaflets.

Phospholipid membrane bilayers are impermeable to water, allowing the cell to control

molecular and ionic concentrations within the cytoplasm independently of the extracel-

lular conditions and also to maintain diverse compartments within the cell with different

functions. At the same time, they are flexible enough for the cell to deform its shape,

either for migration, uptake of particles or other cells or mitosis. Parts of the membrane

can bud off to form vesicles for trafficking molecules between organelles or delivering them

to the extracellular membrane. The membrane also forms a support for proteins which

may be embedded in a single leaflet, often via a lipid anchor covalently attached to the

protein, or spanning the whole bilayer (transmembrane proteins).

This structural model in which protein species are embedded in the membrane but dis-

tributed essentially randomly has been termed the fluid mosaic model after a 1972 paper

by Singer and Nicholson[106]. Recent evidence, however, points to a degree of lateral het-

erogeneity in the distribution of both proteins and lipids whereby patches of the membrane

are enriched in particular molecular species. A term to describe this phenomenon which

has become popular is the lipid raft : describing small, mobile patches of membrane with

particular lipid compositions and associated protein content. While the lipid raft concept

is useful in illustrating the spatial segregation believed to exist in membrane systems, the

term has been used in the literature to describe a number of distinct phenomena in both

cells and model membranes which has led to a degree of confusion in the field since its
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inception.

2.2.1 Lipid rafts

The term lipid raft was coined in a 1997 paper in Nature by Kai Simons and Elina

Ikonen[104]. Prior to this paper it had been noted that cells contained glycolipid-rich

membrane complexes which were resistant to solubilisation by detergents (often termed

DRMs or DIGs). DRMs are complexes which float to a low density during sucrose gra-

dient centrifugation, typically after treatment with the detergent Triton X-100 at 4◦C.

Early studies observed that DRMs were enriched particularly in the lipids sphingomyelin

(SM) and cholesterol and contained above-average proportions of certain proteins. Pro-

teins found to be associated with these membranes included glycosylphosphatidylinositol

(GPI)-anchored proteins and a number of palmitoylated and myristoylated proteins such

as Src-family kinases[75]. At the outset, however, it is important to note that the particu-

lar location of DRMs within the cell – whether in the external plasma membrane or part of

the intracellular organelles – was not clear and, furthermore, the presence of two proteins

within the detergent-insoluble fraction is not necessarily indicative that they would inter-

act, since they could have originated from two different locations within the cell. It was

also known that sorting mechanisms for lipids existed within cells since studies of polarised

Madin Darby Canine Kidney (MDCK) epithelial cells showed that a glycosphingolipid –

glucosylceramide – was preferentially trafficked to the apical membrane of the cell rather

than the basolateral membrane. Simons and Ikonen suggested that these lipid sorting

mechanisms were used in cells of all types to facilitate lateral organisation within the cell

membrane and that – in non-polarised cells – this lateral organisation would take the form

of small, mobile patches, or rafts, of sphingolipids and cholesterol along with associated,

embedded membrane proteins.

Additional evidence for the existence of specialised domains characterised by their

particular lipid and protein content subsequently grew. Bagnat & Simon showed that

rafts played a role in yeast polarisation during mating [7, 8]. Researchers investigated

whether membrane rafts concentrated all diffusing species or whether particular membrane
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proteins showed an affinity for raft regions. Glycosyl phosphatidylinositol (GPI)-anchored

proteins were identified early as being preferentially associated with lipid rafts [17] as well

as palmitoylated or myristoylated proteins [16].

2.2.2 Experimental methods

The use of cold Triton X-100 extraction as an investigation of membrane composition has

been subject to criticism. An obvious argument is that the extraction is at 4◦C: this is

much colder than physiological temperatures and could artificially induce the formation

of domains which would not be present in in vivo conditions. One study[50] has also used

a combination of NMR and calorimetry to show that, in certain cases, the Triton X-100

treatment itself induced domain formation rather than simply separating existing domains

from the remaining membrane.

Since the publication the paper by Simons and Ikonen, a degree of controversy has

surrounded the raft hypothesis. This is mainly due to the blurring of distinctions between

entities commonly associated with the raft hypothesis. In model bilayers formed from a

mixture of phosphatidylserine (PS), SM and cholesterol (a somewhat simplified model of

the lipid composition of mammalian cell membranes), the lipids naturally self-organise into

distinct phases, especially at low temperatures. The SM – with relatively straight chain

tails – and cholesterol forms liquid ordered regions where the lipid molecules are tightly

packed and the phase is liquid crystalline in nature. This phase is often denoted lo. The

PS, on the other hand, has unsaturated lipid chain tails which contain kinks preventing

tight packing of the molecules. This leads to a liquid disordered phase, denoted ld, where

lipid molecules have more freedom of diffusional, rotational and conformational motion.

A third phase seen in lipid membranes is the gel phase, in which the degree of lateral

order is even higher than in the lo phase. Increasing the temperature of the system leads

to phase transitions from gel to liquid phase, passing through lo only in certain molar

combinations of lipid components. When there is heterogeneity in the lipid composition

of the membrane then certain ranges of temperature allow a coexistence of both gel and

liquid phases or of lo and ld phases and equimolar amounts of SM and cholesterol seem to
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favour this coexistence[39].

Liquid ordered domains also show resistance to detergent solubilisation which has led

to the identification of DRMs with lo membrane patches and with lipid rafts. A number

of papers strongly advise against this automatic association: Lichtenberg et al.[66] stress

that we must keep three separate categories distinct:

1. DRMs: the product of incomplete solubilisation of membranes, either in vivo or in

model membranes

2. Liquid-ordered domains: a local discontinuity of phase formed by sterol-rich patches

which facilitate an ordered conformation of lipid chain tails

3. Rafts: functional microdomains in an in vivo system which are enriched in sphin-

golipids and cholesterol

Specifically, the authors note that there is no evidence that rafts are necessarily all resistant

to detergent extraction – even though this seems to be a property of complexes of that

composition – and that detergent resistant fractions obtained from cells do not necessarily

relate to rafts.

It should be noted that extraction of raft lipids by detergents other than Triton X-100,

or by detergent-free methods yields different typical compositions. These differences are

reviewed by Pike[89] who notes that the product of extraction by detergents Tween 20, Brij

58 or Lubrol WX does not show elevated levels of cholesterol or sphingolipid and that the

use of Brij 96 and Brij 98 showed slight elevation of these components, but still much lower

than the Triton extraction. Explanations for the discrepancy in composition could be that

certain detergents have a higher selectivity for rafts (i.e. some also remove elements of the

surrounding membrane) or that, in some extraction processes, only a fraction of the raft is

obtained. A useful comparison is with detergent-free extraction methods. These methods

include lysis by sonication or shearing through a syringe prior to gradient centrifugation.

A version of the latter method outlined by Macdonald and Pike [69], is claimed to produce

more consistent results across different cell lines than previous detergent or detergent-free

extraction methods and also remove only plasma membrane rafts without contamination
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from membranes in intracellular organelles such as the Golgi or ER.

Mukherjee and Maxfield[79] review research on intracellular lipid sorting mechanisms

and how they may be involved in determining membrane composition. They challenge

the assumption that the liquid ordered regions of a cell membrane (if these are taken to

be synonymous with the detergent-insoluble fraction) form the minority of the membrane

surface as detergent extraction with Triton X-100 at physiological temperature yields

less than half of the plasma membrane. This would indicate that the ‘raft’ part of the

membrane in fact formed the majority, leaving only small areas of higher fluidity.

The authors review evidence of lipid sorting mechanisms at a number of sites in the

cell. Aside from sorting within the plasma membrane, they reviewed results detailing

the trafficking of different lipid species within the sorting endosome. Whereas lipids with

short, unsaturated tails and cholesterol were rapidly processed and recycled to the plasma

membrane, other lipids with longer, saturated tails were transferred to the late endoso-

mal/lysosomal pathway.

They hypothesise that it is preference for regions of different fluidity and curvature

which facilitates the sorting of lipids at different locations. The sorting endosome itself has

a structure with a central vesicle, sometimes with invaginations, and a number of long,

branching tubules which detach to deliver lipids elsewhere. The authors propose three

possible scenarios by which this sorting may take place:

1. That the tubules have a higher degree of fluidity than the central vesicle and hence

shorter chain, unsaturated lipids migrate preferentially to those regions

2. That only the neck where the tubules attach to the vesicle has higher fluidity, creating

a bottleneck allowing only the short-chain lipids to pass

3. That the invaginations on the central vesicle become enriched in the longer-chain

lipids because of curvature properties

Many studies suggest that there are multiple types of membrane microdomain in living

cells. A study on murine sperm membrane composition used a non-detergent method to

separate membrane fractions and identified three subtypes of raft, each of which had a
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reproducible signature of lipid and protein content [5].

2.2.3 Imaging of rafts

Pralle et al.[91] conducted one of the first studies investigating size and dynamics of

lipid raft patches in cell membranes. They used a laser trap to measure the rate of

diffusion of a fluorescent bead attached via antibodies to a single membrane GPI-anchored

protein (placental alkaline phophatase – PLAP) in both Baby Hamster Kidney (BHK)-21

fibroblasts and male rat kangaroo kidney epithelial cells (PtK2). GPI-anchored proteins

are known to be associated with DRMs and hence are potential markers for lipid rafts.

Using a model of lateral Brownian diffusion in a bilayer due to Saffman and Delbruck [97],

the authors estimated the size of lipid rafts within the membrane as between 13 and 39 nm.

It was observed that the lateral viscous drag of the fluorescent bead, denoted γ in the study,

increased at two points in time, which the authors took to represent the bead first coming

into contact with the plasma membrane and secondly binding to a membrane protein.

The viscous drag was measured for a series of bead-attachment experiments both both

before and after cholesterol depletion of the membrane using methyl-β-cyclodextrin. It was

observed that viscous drag was decreased roughly threefold after the cholesterol depletion,

indicating that the protein was bound in a cholesterol-dependent complex, increasing its

effective area and hence viscous drag. Using the Saffman-Delbruck model of viscous drag

for a cylindrical particle in a membrane:

γ =
4πηmh

ln
(
ηmh
ηwr

)
− ε

(2.1)

where the subscripts m and w denote, respectively, the viscosity of the lipid bilayer and

the surrounding fluid; ε is Euler’s constant (0.5772) and h and r are the thickness of

the bilayer and the radius of the cylindrical particle. Using this model gives an estimate

of the raft radius as 26±13nm. The authors also investigated attachment of a bead to

a non raft-associated protein: YFP-GT46, finding that it had a low viscous drag which

was unaffected by cholesterol depletion. This indicates that the increase in drag is linked
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to raft-association rather than an overall change in membrane viscosity determined by

cholesterol content.

Various fluorescence microscopy techniques have also been employed to study mem-

brane heterogeneity. Although microdomains are typically on the lower limit of optical

resolution, using two-photon microscopy on giant unilamellar vesicles (GUVs), researchers

were able to successfully label coexisting lo and ld domains, and to examine the dependence

of membrane curvature on domain composition [9]. An example of the fluorescence mi-

croscopy study from this paper is shown in Figure 2.4. Hao et al.[47] examined the effect of

cholesterol depletion on the size and dynamics of domains formed in Chinese hamster ovary

(CHO) cells. They used fluorescent lipid analogs with a known preference for either lipid

ordered or disordered phase to discern the existence of membrane microdomains. While

clustering was not observed in untreated cells, cells that had been depleted of cholesterol

showed micrometer-scale patches of increased concentration of markers associated with

lipid ordered phases, indicating that cholesterol plays a role in preventing domains from

reaching this size in vivo. Replenishment of the system with cholesterol led to the dis-

appearance of these domains over a time scale of around 10 minutes. The authors also

used fluorescence recovery after photobleaching (FRAP) to investigate the dynamics of

lipids involved in these micron-sized domains. While fluorescence recovery using the lo-

associated markers was slower in the patched areas of the cholesterol depleted cells than

in the untreated cell, the difference was not great (mean half-life increase from 28 seconds

to 68 seconds), indicating that the raft marker lipid was present in both the ordered and

non-ordered region of the cholesterol-depleted cell membrane and that there was fairly

unrestricted diffusion of molecules between the two regions.

Electron microscopy gives a much higher resolution image of a cell membrane. Because

the process of preparing a sample for electron microscopy involves fixing the membrane in

formaldehyde, this can interfere with sensitive systems such as microdomain formation and

early studies were inconclusive. A paper by Hullin-Matsuda and Kobayashi[52], however,

successfully observed spatial heterogeneity of SM domains in Jurkat T cells using gold

particles attached via antibodies to a novel raft marker: lysenin. The domains were of the
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Figure 2.4: Two-photon microscopy images of lo/ld phase separation in giant unilamellar
vesicles (GUVs). Reproduced with permission of Prof. Watt W Webb[9].
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order of 60–80nm in radius.

2.2.4 Alternative models and terms in membrane heterogeneity

The increased focus on membrane compartmentalisation has led to other models in addi-

tion to the raft hypothesis on the exact structures which could compartmentalise cellular

processes.

Many single particle tracking studies focus on the anomalous ‘hop’ diffusion which is

observed in many membrane-bound proteins. This phenomenon describes an apparent

paradox in which proteins are observed to diffuse at a relatively fast rate on short length

scales, but at a slower rate on long length scales. Kusumi, Suzuki et al. showed that

protein diffusion appeared to be slowed over longer length scales because proteins were

temporarily confined to cellular compartments and took on the order of a millisecond to

a second to hop to an adjacent zone [62, 111].

The authors propose that protein diffusion is mediated by a two-level system of com-

partmentalisation, with regular cytoskeleton-based ‘fences’ or cytoskeleton-bound protein

‘pickets’ creating a regular lattice driving hop diffusion of membrane-bound components

by steric hindrance. They also propose a second, lipid-mediated system of transient con-

finement zones (TCZs), which slow short length scale diffusion and are embedded within

the larger cytoskeleton-based compartments.

The TCZs of Kusumi et al. and the lipid raft model of Simons et al. are essentially two

terms describing the same hypothesised structure. The difference in terminology stems

from the experimental methods used to study them: TCZs are defined by retardation

of protein diffusion in single-particle tracking studies and lipid rafts are defined by resis-

tance to detergent solubilisation. Several studies combine the two approaches: Sheets et

al. [102] showed that molecules with higher raft affinity displayed transient confinement

diffusional behaviour more than molecules with low raft affinity. In addition, Dietrich et

al. [32] showed that transient confinement behaviour was markedly reduced by cholesterol

extraction.
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This figure has been removed as the copyright holder did not respond to a 
permission request

Figure 2.5: An illustration of the actin cytoskeleton ‘fence’ model and the cytoskeleton-
bound protein ‘picket’ model of membrane compartmentalisation. Original appears in
[62].

2.2.5 Membrane organisation in signalling and disease

Membranes play diverse roles in cell function: as barriers maintaining different concen-

trations of ions and signalling molecules in different cell compartments; as structures in

which proteins are embedded and trafficked and as a medium for the formation of tubules

and vesicles which detach and deliver cellular components to other areas. Certain lipid

components of cell membranes such as phosphatidylinositol (PI) also participate in sig-

nalling pathways: various phosphorylated species of PI are involved in the regulation of

actin polymerisation in chemotaxis and phagocytosis.

The influence of membrane organisation and cholesterol metabolism on health and dis-

ease is reviewed by Simons and Ehehalt[103]; and Maxfield and Tabas[75]. One signalling

system mentioned in the review that has been studied in some detail is the triggering of

allergic reactions via IgE receptor interactions in mast cells. After crosslinking, the IgE

receptor is found to be increased in detergent-resistant fractions along with the Src-family

kinase Lyn. Lyn is ordinarily inactivated by a transmembrane phosphatase. Since trans-

membrane proteins ordinarily show preference for liquid-disordered domains, researchers

hypothesise that lateral lipid organisation prevents Lyn inactivation, resulting in an in-

crease of IgE phosphorylation. Depletion of cholesterol has been shown to inhibit signalling

via this pathway[51].
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As altering cholesterol content has a marked effect on plasma membrane structural

properties and function, levels within the cell must be kept within an acceptable range.

Maxfield and Tabas state that cholesterol levels are relatively high in the plasma mem-

brane, endocytic recycling compartment (ECR) and trans-Golgi and that these areas show

higher degrees of lipid order. On the other hand, a lower cholesterol level is maintained

in the endoplasmic reticulum (ER).

The source of cholesterol is primarily from dietary intake and a number of mecha-

nisms exist to buffer cellular levels including esterification by acyl CoA:cholesterol acyl-

transferase (ACAT), leading to storage of cholesterol within the cytoplasm in droplet form.

At the systemic level, excess cholesterol is delivered via high-density lipoprotein (HDL)

metabolism into the circulation, then to the liver where it is excreted into the bile.

The main disease linked to defects in cholesterol metabolism is atherosclerosis. This

is an inflammatory process involving large-scale recruitment of macrophages and T-cells

(although not neutrophils) in response to the formation of lipoprotein aggregates within

the arteries. Uptake of the lipoproteins – oxidised low-density lipoprotein (LDL) is believed

to be chiefly responsible – leads to phenotypic changes in the macrophages: increased

rates of cholesterol uptake due to upregulated actin-dependent membrane protrusions and

deposition of large quantities of cholesterol ester droplets within the cells. In this state,

the macrophages are termed foam cells and, although in some cases they pass through the

circulation and contribute to excretion of cholesterol, they also risk adhering within the

arterial lumen, eventually occluding blood flow and increasing the risk of stroke, angina

or myocardial infarction.

Simons and Ehehalt also describe the involvement of raft lipids in viral infection, prion

diseases and Alzheimer disease (AD). A number of viruses, including influenza virus and

HIV, interact with the apical membrane of polarised epithelial cells, either during the

budding phase of the virus’s life cycle or during transcytosis in order to cross through the

host’s mucosa.

In the case of AD, senile plaques are formed by aggregates of amyloid-β-peptide (Aβ).

This peptide is formed by a process termed β-cleavage of amyloid precursor protein (APP)
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– a transmembrane protein. There is a competing process (α-cleavage) which produces

a different fragment, which does not lead to the formation of plaques. There is evidence

that these processes are spatially segregated, with β-cleavage hypothesised to take place

within lipid rafts and α-cleavage outside of them. Cholesterol depletion has further been

shown to inhibit the β-cleavage process and formation of Aβ fragments in neurons [25].

Prion diseases also involve the formation of abnormal protein forms (PrPsc) of a host

protein (PrPc). Both of these proteins are associated with DRMs unless the cell is choles-

terol depleted. Depletion also downregulates the formation of the abnormal PrPsc protein.

The epithelial growth factor receptor (EGFR) is a molecule that has been found to

be associated with lipid rafts and it has been demonstrated that manipulating membrane

cholesterol content alters cell signalling behaviour via this pathway. Orr et al.[84] investi-

gated the diffusional dynamics of EGFR and its dimerisation partner, HER2, using single-

molecule fluorescence imaging. They found that, in the wild type cell, both molecules

demonstrated periods of transient confinement during otherwise free diffusion. They also

noted that cholesterol depletion almost completely prevented free diffusion of both types

of receptor, whereas cholesterol enrichment increased the radius of the confinement zones.

It has been proposed that lipid rafts play a role in the recognition of bacterial LPS since

a number of the membrane proteins involved in the LPS-stimulated MAPK activation

pathway are found, either constitutively or following stimulation, in the ‘raft fraction’

obtained from lysed cells having undergone sucrose gradient centrifugation.

Triantafilou et al.[117] investigated the presence of a number of membrane proteins

in the raft fraction both before and after stimulation by LPS in a human monocyte cell

line (Monomac-6) as well as Chinese hamster ovary cells. They found that CD14 is con-

stitutively present in the raft fraction and is excluded from the non-raft fraction. The

centrifugation assay also showed that small quantities of the heat shock proteins Hsp70

and Hsp90 were found in the raft fraction with no stimulation, but that the majority were

found in non-raft phases. After LPS stimulation, the distribution of CD14 was unchanged,

whereas there was an increase in the levels of Hsp70 and Hsp90 within the raft fraction

and TLR4, CXCR4 and GDF5 were also detected in the raft fraction where they had pre-
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viously been excluded. This result was verified by recording FRET measurements between

the membrane proteins in question and GM1 ganglioside – a protein which had previously

been found in rafts and which was also constitutively present in the raft fraction in this

study. The FRET measurements agreed with the centrifugation assay in that the distribu-

tion of CD14 was unchanged; levels of raft-associated heat shock proteins were increased

after stimulation and TLR4, CXCR4 and GDF5 were not found before stimulation but

migrated to the raft phase after stimulation.

The researchers also investigated the effect of disrupting raft formation by treating cells

with nystatin or methyl-β-cyclodextrin (MβCD). They found that this treatment inhibited

the association of all of the above proteins with lipid rafts and also that production of

TNF-α was reduced after treatment with either substance.

Microdomain association is also implicated in the clustering of the ζ chain as a prelude

to TCR complex organisation. Gosse et al. [45] modified transmembrane sequences in

order to influence crosslink-dependent partitioning into microdomains and found that

subsequent cellular signalling responses were highly dependent on such transmembrane

sequences.

More recent studies by Cho et al. [24] suggest a central role for lipid microdomains

in maintaining CD8+ T cell sensitivity to interleukin signalling. In response to low-level

self signalling via the TCR, naive CD8+ cells upregulated the expression of GM1, which is

associated with lipid rafts and became hypersensitive to IL-2, IL-7 and IL-15. In order to

establish the dependence on microdomain organisation, the researchers pre-treated cells

with MβCD and found that cells did not become hypersensitive.

De Mello Coelho et al. [30] also found that microdomains appeared to be linked to

T cell differentiation as microdomain-associated GM1 expression differed between murine

CD4+ and CD8+ thymocyte and T cell subsets. They also noted that GM1 expression

was relatively constant on thymic thymocytes and peripheral CD4+ T cells as the mice

aged, but that it was increased on CD8+ T cells in the periphery.

As can be seen, hypotheses relating to the exact physical and chemical function of

membrane microdomains or rafts are highly diverse and experimentally complex to answer
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comprehensively. For this reason, modelling approaches help to clarify the exact physical

nature of the mechanism under discussion and test predictions which are hard to explore

experimentally. We review several such approaches below.

2.3 Modelling membrane diffusion and immunological sig-

nalling

Mathematical and computational modelling is a tool that is increasingly being employed

to clarify the complex dynamics underlying biological signalling processes. Callard &

Yates [20] review the arguments for further integration between mathematical and biolog-

ical research groups arguing that the non-intuitive behaviour which arises from systems

composed of multiple components require a modelling approach to adequately and system-

atically probe mechanistic hypotheses. They assert that the general shift from a taxonomic

to a systems understanding of biology necessitates a more comprehensively quantitative

statement of biological hypotheses and that the ‘interdisciplinary approach combining ex-

perimental immunology with mathematics is rapidly becoming the norm rather than the

exception.’

Below, we summarise the basic mathematical and computational approaches used in

this thesis. We also review several studies which use mathematical and computational

methods to investigate possible mechanisms and ramifications of domain formation in the

plasma membrane, as well as some general models of immune function. Some of these

approach the problem from the perspective of the raft formation mechanisms and some

model the interactions between pre-formed rafts and embedded proteins.

2.3.1 Microdomain formation

Almeida et al. [3] review thermodynamic principles governing the self-organisation of lipid

membranes based on a parameter called the unlike nearest-neighbour interaction Gibbs

free energy, usually denoted ωAB. This parameter is sufficient to design a lattice-based

simulation with two lipid types, which segregates according to the value or ωAB. High

values of ωAB leads to complete separation into domains of lipid A and lipid B; a value
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of zero allows random mixing whereas a negative value penalises self-association and the

two species tend to alternate in position, forming a checkerboard arrangement.

Yethiraj and Weisshaar [132] use a similar modelling approach to propose reasons

for the lack of micron-scale domains in living cells. They include immobile structures

representing membrane proteins in the Monte Carlo simulation that have no energetic

interaction with the surrounding lipid. They show that including obstacles significantly

disrupts the tendency of the mixture to phase separate, with the boundary of the two

phases tending to coincide with the obstacles. Of course it is unrealistic to assume that

the energetic interaction of membrane proteins with the membrane is a neutral one, but

the simulation demonstrates that these interactions should be taken into account, and

goes some way to explain why different behaviour is seen in model membranes and live

cells.

Turner et al.[118] take a different approach to explaining limited domain sizes in live

cells. They consider a system where domains are formed by constant fusion and scission

processes and where there is membrane recycling, i.e. removal and replenishment of rafts

in the system. This analytical approach shows that, under biologically plausible parameter

values, removal of rafts from the membrane prevents domains from coalescing to microme-

ter sized patches and that average domain radius would be in the range 10–70nm: a result

which agrees well with the estimate of Pralle et al.

Richardson et al.[94] also consider an analytical model of domains undergoing fusion

and scission processes, deriving a two-parameter distribution of domain sizes at equilib-

rium. They then show that this distribution can be fitted well with experimental measure-

ments of microdomain sizes, which the authors measure in artificial membranes composed

of various compositions of phosphatidylcholine (PC) and cholesterol. Domains were mea-

sured using fluorescence microscopy and atomic force microscopy was also used to probe

the membrane topography.

A reaction-diffusion simulation modelling particle trajectories in the cell membrane

reproduced diffusional behaviour similar to raft-associated proteins simply as a result of

protein clustering effects. The cross-linking of other proteins in the membrane corralled
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proteins in small domains of around 0.2 µm in diameter. This study was not dependent on

lipid heterogeneity, rather on the spontaneous formation of protein clusters which trapped

other membrane components for short periods of time[6].

Various research groups have also created computationally intensive molecular dy-

namics (MD) simulations to study spontaneous microdomain formation in membranes

composed of multiple lipid types. Pandit et al. managed to demonstrate spontaneous

phase separation in a MD model of binary and ternary mixtures [87]. Berkowitz et al. [11]

created a molecular dynamics model of both binary mixtures (phospholipids with choles-

terol) and ternary mixtures (two phospholipid species with cholesterol), but failed to find

a ‘clear molecular picture’ explaining microdomain formation. Risselada & Marrink were

more successful [95], creating an MD model that featured spontaneous separation of a

ternary saturated phosphatidylcholine/unsaturated phosphatidylcholine/cholesterol mix-

ture into both lo and ld domains with similar properties to experimental data.

2.3.2 Immunological signalling

Given the complexity of the many cellular and molecular interactions in the immune

system, the field has long been explored using mathematical and computational models

to test, generate and clarify hypotheses.

Kleinstein [60] illustrates the contributions made to immunology through computa-

tional models examining affinity maturation in B cells and notes the tendency for mod-

elling papers to be published more and more in leading immunology journals, rather than

more specialist computation biology publications.

Andersen et al. [4] took a mass action approach to fit T cell response to determine a

mathematical relationship between T cell activation and ligand affinity, calibrated using

immobilised ligand attached to fixed plastic surfaces.

Given the complex networks on which biological processes depend, many modelling

approaches analyse the structural and logical properties of the networks themselves. Beyer

et al. [12] merged logical models of the TCR signalling network and the IL-2 signalling

network, leading to a better understanding of crosstalk between the two systems and the
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dependence of ERK and STAT activation on the various upstream enzymes.

An ordinary differential equation (ODE) model of T cell proliferation in response to

extracellular IL-2 stimulation was developed by Fallon & Lauffenburger [36]. This model

was motivated by the desire to elucidate the mechanism by which an IL-2 variant (2D1) re-

sulted in increased proliferation in KIT-225 T cells. The model suggests that, although the

variant ligand has similar binding affinities to the IL-2 receptor, the difference in behaviour

can be explained by an enhanced rate of receptor recycling from the endosome[37].

This model was later adapted by Bidot et al. [13] in order to increase the scope

and incorporate upstream signalling events: the link between ligation of the TCR and

subsequent expression of IL-2 and IL-2 receptor.

Several models also approach T cell proliferation at the cellular, rather than protein,

scale. Deenick et al. [31] model the temporal regulation of cell proliferation and death

rates over successive cell divisions in response to varying levels of IL-2 stimulation. This

stochastic model assigned a Gaussian distribution to cells determining the time they take

to enter the first division and the proportion that die with each division. Fitting the model

to experimental data, the authors found that IL-2 contributed strongly to the proportion

of cells entering the first division stage, but not the time to the first division. This model

was later reformulated by de Boer et al. [29], in order to explore data on cell proliferation

studies using the dye carboxyfluorescin diacetate succinimidyl ester (CFSE). By making

the death rate of cells dependent on the number of divisions through which they have

passed, they improve on the descriptive power of Deenick’s model.

Another model examining the T cell proliferation response at the cellular level is the

crossregulation model developed by Carneiro et al. [22, 41]. This model describes the

balance between regulatory and helper T cells in competition for extracellular ligand, as

described above in Section 2.1.2.

Busse et al. [19] also examine the competition between Treg and TH cells for IL-2 in

the extracellular space. Their model supports the role of a feedback loop between IL-2

secretion by T cells, and the expression of high-affinity (αβγ) IL-2 receptors to produce

switch-like behaviour in the proliferation of helper T cells, but also to increase the rate
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at which regulatory cells consume the ligand. They note that Treg cells must be within a

range of a few tens of micrometers to TH cells in order to regulate effector expansion.

This model is further developed by Feinerman et al. [38] who challenge some of the

results of Busse et al. In particular, they argue that paracrine, rather than autocrine

signalling loops are important in regulating TH cell activation. They also argued with the

model’s prediction of a ‘digital’ secretion of IL-2α components, noting that this behaviour

was observed at relatively long timescales, but that more varied levels of expression could

be observed in the early phases of the model.

2.3.3 Microdomains in immunological signalling

Models have also been developed to investigate the interplay of raft dynamics and protein

interactions. Rather than model raft formation from the bottom up, Nicolau et al.[81] took

a ‘designed dynamics’ approach in order to investigate what the effect of changing raft size

would be on protein-protein collision rates. The parameter space was explored based on

three key system properties: the total area covered by rafts; the size of individual rafts (all

rafts in the system are taken to be the same size) and a quantitity ρ which represented the

ratio of the step size per timestep within a raft area to that in a nonraft area. Rafts were

mobile and diffused according to the Saffman-Delbruck equation and proteins could move

in and out of rafts freely. An interesting result was that, for all degrees of raft coverage,

the rate of protein-protein collisions was maximised at around ρ = 0.5, but for different

raft sizes. With 10% coverage, collisions were maximised in the case of 6nm rafts, whereas

with 50% coverage the collision rate was greatest when rafts were 14nm in diameter. This

result suggests that, for rafts to play a role in signalling via mediating protein-protein

interaction, the effect is fairly sensitive to both size and total membrane coverage, and

that the domain size which yields the greatest effect is extremely small: far smaller than

can typically be observed experimentally.

Several authors also address the importance of spatiotemporal effects in binding ki-

netics. For example, Aleksic et al. [2] model the influence of spatial confinement to

improve the predictive power of models of TCR interactions with major histocompatibil-

48



CHAPTER 2. LITERATURE REVIEW

ity complex (pMHC). They find that considering the immobilisation of the receptor and

ligand increases the effective half life of the interaction, and results in greater agreement

with in-vivo behaviour than models based on kinetic measurements in solution. These

results motivate further study of spatiotemporal factors in understanding and modelling

cell surface signalling mechanisms.

2.4 Thesis stance

Given the complex debate around the exact structure, role and significance of lipid mi-

crodomain in cellular function, and the dependence of many of the central tenets on the

hypothesis on the experimental techniques involved, we aim to take an agnostic position on

the question of whether or not specialised microdomains exist in living cell membranes or

their exact size or prevalence. Instead we concentrate on two physical properties associated

with microdomains:

• The reduction in diffusion rate within microdomains

• The affinity of particular protein species for microdomains

Using a purely mathematical and computational approach, we investigate whether or not

the simple presence of microdomains enhances protein complex formation in a simplified

model membrane. We use IL-2 receptor formation as an example mechanism integrated

into the diffusion model on a heterogenous space. Because of the many simplifications

made, however, this work does not seek to create a realistic simulation of the IL-2 re-

ceptor organisation; rather to use this mechanism as a model in order to understand the

fundamental properties of systems of monomers diffusing and interacting in a space with

heterogeneous diffusion rates.

In addition to seeking evidence for the positive role of microdomains in facilitating

receptor complex organisation, we will also investigate the interdependence of several

physical and chemical parameters in order to determine which molecular mechanisms

would be enhanced by the presence of microdomains of a particular scale, and which

would not.

49



CHAPTER 2. LITERATURE REVIEW

We will employ both purely computational and purely mathematical modelling tech-

niques and show, where possible, the agreement between the two approaches.
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Chapter 3

Trimeric receptor formation in a

heterogeneous medium: a

probabilistic modelling approach

3.1 Introduction

Compartmentalisation is central to biology. Multicellular organisms delegate key processes

to specialised organs, themselves composed of various distinct tissues. These are, in turn,

composed of cells, each adapted to fulfil its own function. At the subcellular level, lipid

membranes partition the cell into distinct organelles, controlling the passage of functional

molecules from organelle to organelle, and from the inside of the cell to the outside.

Since 1997, compartmentalisation in the lipid membranes themselves has also come

under scrutiny. This was in response to a review paper in Nature by Simons & Ikonen

[104] suggesting that small areas in the cell membrane enriched in cholesterol and saturated

lipids (membrane microdomains or rafts) might act as protein sorting platforms regulating

cell signalling and trafficking.

Membrane protein organisation is critical in signalling by cells involved in the im-

mune response. In the formation of the T cell receptor (TCR), for example, lipid and

protein species are coordinated to a single area where the T cell comes into contact with
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an antigen-presenting cell (APC)[129, 46, 133]. The TCR is an example of membrane

compartmentalisation on a fairly large scale, but smaller microdomain-mediated sorting

of component proteins in order to form larger receptor complexes could be important in

optimising the sensitivity of cells to low-concentration immunostimulatory signals in order

to effect a timely and proportionate response.

We are interested here in the organisation of the trimeric membrane receptor for the

short-range cell signalling molecule (cytokine) interleukin 2 (IL-2). IL-2 is an autocrine

signalling molecule expressed by T cells in response to TCR binding and is involved in

the activation and proliferation of cytotoxic T cells as well as the maintenance of popula-

tions of regulatory T cells (Treg cells)[18]. This system is of interest because there exists

relatively little modelling of multi-component membrane receptor organisation involving

microdomains and because controlling sensitivity of T cells to IL-2 ligand is of interest in

therapies for immune deficiency and leukaemia.

3.1.1 Compartmentalisation in lipid membranes

The model in which protein species are distributed essentially randomly in the membrane

was termed the fluid mosaic model after a 1972 paper by Singer and Nicholson[105].

Recent evidence, however, points to a degree of lateral heterogeneity in the distribution

of both proteins and lipids whereby patches of the membrane are enriched in certain

species and, rather than migrating freely throughout the membrane, protein diffusion may

be constrained by interaction with the lipid environment, other membrane proteins or

cytoskeletal components.

Studies in cholesterol-enriched model membranes show phase separation into liquid-

ordered and liquid-disordered domains on the scale of several micrometers[44]. In vivo,

domains of this scale are not ordinarily observed, but evidence for lateral segregation of

lipid and protein species on a smaller scale (around 10–100nm) exists based on methods

such as fluorescence resonance energy transfer (FRET), fluorescence recovery after photo-

bleaching (FRAP), atomic force microscopy (AFM) and single-particle tracking (SPT)[63].

Computational approaches have shed light on the role of lateral segregation in protein
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sorting. Pandit[87] and, more recently, Risselada & Marrink [95] have shown spontaneous

phase separation into distinct domains in near-atomic scale simulations of ternary lipid

mixtures; the latter are working on models of diffusion of the membrane-integrated syn-

taxin proteins. Nudelman et al. created a Monte Carlo simulation to probe the influence

of lipid microdomains on B cell receptor interactions with multivalent ligands [83].

Nicolau et al. [81] constructed a stochastic model to determine ‘optimal’ characteristics

of membrane microdomains in terms of their individual size and total membrane coverage.

The authors measured the number of collisions within a population of diffusing ‘protein’

particles and the proportion of proteins which were sorted into microdomains. They

found the proportion of proteins sorted into microdomains was highest when the ratio

of the diffusion rate inside microdomains relative to the rate outside the microdomains

was low and when the total microdomain coverage was high. Furthermore, the protein-

protein collision rate was almost unaffected by the presence of microdomains unless the

microdomains were mobile but, when mobile microdomains were present, there existed an

‘optimal’ microdomain radius which maximised the collision rate.

In this study, we examine a system where three distinct diffusing proteins species inter-

act to form a trimeric complex. We determine the influence of microdomain characteristics

and affinities between microdomains and diffusing proteins on the equilibrium state of the

system.

3.1.2 Formation of the IL-2 receptor

The IL-2 receptor (IL-2R) is a complex made up of three subunits termed α, β, and γ.

The subunits of the receptor are involved in diverse signalling pathways: the γ subunit is

also involved in transducing signals initiated by the binding of at least six other cytokines:

IL-4, IL-7, IL-9, IL-15 and IL-21[14]. In the case of IL-15, the β subunit is also part of the

receptor complex and there is a distinct IL-15Rα component which makes up the trimer.

Molecular models of the individual components of the IL-2 receptor are shown in Figure

3.1 and a representative diagram of the receptor embedded in a microdomain region of the

membrane is depicted in Figure 3.2. Although both IL-2 and IL-15 can signal through
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(a) The α subunit (b) The β subunit (c) The γ subunit

Figure 3.1: The three subunits of the IL-2 receptor. (PyMOL renderings of protein
database structures, courtesy of Wikimedia user Emw).

Figure 3.2: A cross section of the membrane, showing a microdomain region containing
mainly saturated chain lipid molecules and cholesterol with a bound trimeric IL-2 receptor.
The α subunit is inserted only into the outer leaflet of the membrane, whereas the β and
γ subunits contain long, transmembrane domains.
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the partially formed βγ complex, the addition of the α subunit increases the affinity of the

ligand binding[113]. Thus there is competition between the two cytokines at two levels:

both compete to bind to the βγ receptor and the IL-2Rα and IL1-5Rα subunits compete

to form a complete heterotrimer in order to bind their ligand with high affinity. In this

type of system, the sorting of component proteins in the membrane could be crucial in

determining whether the cell responds to an IL-2 or IL-15 signal as each cytokine has the

potential to act as an antagonist for the other.

There is evidence that sorting of membrane proteins is involved in receptor formation:

subunits have been found associated with membrane microdomains both by detergent

extraction methods and FRET co-localisation measurements. Exactly which subunits are

microdomain-associated, however, varies in different investigations.

Matkó et al. found all three subunits of the IL-2 receptor in the detergent-resistant

(microdomain) fraction, both in the presence and absence of IL-2 ligand. FRET effi-

ciency measurements also indicated co-localisation between all subunits and microdomain-

associated proteins including CD48[74, 120]. An independent study by Goebel et al., how-

ever, examined the distribution of the subunits of the IL-2R and IL-15R and found only

the β subunit expressed in the detergent-resistant fraction[43]. On ligation, there was par-

tial translocation of the β subunit into the membrane fraction. A third investigation by

Marmor & Julius found only the IL-2Rα subunit enriched in the microdomain fraction[73].

Vámosi et al. combined fluorescence cross-correlation microscopy with FRET mea-

surements to determine that all the subunits of the IL-2 receptor form clusters in lipid

microdomains, along with the IL-15Rα subunit, which shares the β and γ chains in form-

ing the trimeric IL-15 receptor, and the MHC class I and II glycoproteins. The domains

were also rich in the lipid raft marker protein GM1[119].

Studies by Bene et al. [10] examined the clustering behaviour of the IL-2Rα chain

in the cell surface by measuring homotransfer of fluorescence between membrane-bound

proteins, including IL-2Rα and MHC molecules. They found evidence for clustering of

IL-2Rα subunits in the membrane, and also for colocalisation of the α subunit with MHC

molecules, supporting the earlier evidence by Vereb et al. [120] for microdomains to
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influence the clustering of IL-2 receptor components.

De Bakker et al. [28] also examined clustering of α chains in the surface of FT7.10

cells, using near-field scanning optical microscopy (NSOM), finding that both IL-2Rα and

the related IL-15Rα formed clusters on the spatial order of 350-450nm in diameter.

More recent work combining FRET analysis with centrifugation of cell membrane com-

ponents by Pillet et al. [90] confirms the localisation of bound IL-2 receptor complexes to

membrane domains in which diffusion is slowed, and also finds them present in the lipid raft

fraction following centrifugation. The authors find a similar mechanism for the IL-7 recep-

tor, where bound, preformed receptors are localised to membrane microdomains enriched

in cholesterol and reduced diffusion speeds, which promote downstream signalling[96].

The balance between the two downstream pathways initiated by binding IL-2 or IL-15

ligand is a system of some complexity and the involvement of protein sorting would add

further detail. As such, predicting the behaviour of a cell in response to competing IL-2

and IL-15 stimuli is not at all straightforward. Constructing models of the dynamics of

the component proteins provides a tool quantitatively to assess how a cell responds to its

environment in this situation.

Based on in vitro assays, IL-2 was assumed to be essential to T cell proliferation in

response to TCR binding. Later studies with both IL-2 and IL-2Rα double knockouts,

however, did not result in the expected impairment of the proliferative response in a murine

model. This result led to the hypothesis that there were redundant growth factors active in

vivo which could replace the IL-2 signalling pathway. IL-2 does play a role in managing the

function of immune cells, however: mice unable to express IL-2 later develop autoimmune

problems and an accumulation of activated CD4+ cells[68]. Thus, the function of IL-2 is

twofold: as well as inducing proliferation in activated T cells, it also sensitises them for

activation-induced cell death in order to self-limit the scale of the immune response.

Regulatory T cells (Treg cells) are a particular subset of the T cell population that

are influenced by IL-2 and related cytokines. In mice which do not make IL-2 or the

IL-2Rα subunit, Treg cells disappear after 8 weeks of age. Those which lack IL-2Rβ also

have severely reduced Treg counts and those lacking the γ-chain produce no Treg cells at
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all[18].

IL-2 receptors are being considered as a possible therapeutic target to stimulate T

cell populations in patients who are immunodeficient due to HIV/AIDS[59], or to block

overproliferation of T cells in leukaemia[124]. An important consideration is that IL-2

has a high rate of systemic depletion and affects a large number of cell types. For that

reason, high doses are currently required in therapy which can be toxic or lethal. Fallon &

Lauffenburger used a computational model to identify parameters which increased T cell

sensitivity to IL-2 ligand and thus design a mutant which could be used at a lower dose[36].

The model, however, assumed that the receptors for IL-2 were pre-formed. Optimising

the formation of the receptor could lead to higher sensitivity to ligand and enable lower

therapeutic doses.

3.2 Method

We construct a computational framework to examine the effect of varying quantitative

and qualitative characteristics of the membrane environment on a ternary protein-protein

interaction system. The reaction-diffusion system models the formation of IL-2 receptors

in two stages. First, the β and γ subunits form a dimer (the medium-affinity receptor),

subsequently the dimer binds to the α subunit to form the high-affinity αβγ receptor. The

membrane is represented by a rectangular grid and the proteins and complexes follow a

random walk trajectory.

In the following subsections we define four qualitatively distinct diffusion schemes, each

of which is based on hypotheses raised in the experimental literature (see Figure 3.3).

3.2.1 Reduction in rate of diffusion within microdomains

In Scheme 1, a discretised membrane is uniformly seeded with subunit monomers and

they are allowed to diffuse based on the values of the diffusion rate, D at their location

(see Figure 3.3a). The value of D is lower within microdomains than in the remaining

membrane. This is represented by the smaller size of the arrows in Figure 3.3a. If two

subunits which can bind together to form a complex are positioned on the same grid point
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(a) Scheme 1: diffusion rate of
all species is reduced inside the
microdomain.

(b) Scheme 2 & 3: exiting the
microdomain is limited either
for certain species (Scheme 2)
or all species (Scheme 3).

(c) Scheme 4: a boundary
zone defines a region in which
microdomain-associated and
membrane-associated species
can interact.

Figure 3.3: The four diffusion schemes investigated in this paper: solid black discs denote
α subunits and striped and clear discs denote, respectively, β and γ subunits. The dashed
line represents the boundary of the microdomain.

(voxel) then they may react together at a fixed rate. We vary the microdomain radii and

total microdomain coverage and measure the number of monomers and complexes over

time. We ran simulations until the number of protein complexes reached an approximate

equilibrium and tested total microdomain coverage of 0%, 10%, 25% and 50% of the

membrane and microdomain radii of 1, 2, 3, 4, 5 and 6 voxels.

3.2.2 Protein species with affinity to microdomain

Experimental studies indicate that membrane-bound proteins may have different affinities

to microdomains, in that some species cluster together with saturated-chain lipids while

others do not. We model this by defining probability values which dictate whether, on an

attempt to move from a microdomain region to a membrane region, the move is permitted.

Thus, a value of 0 means that the protein cannot cross the boundary, whereas a value of

1 means that there is no constraint on diffusion.

Ellery and Nicholls [34] hypothesise a mechanism whereby the α subunit segregates

preferentially to the microdomain region. They propose that when subunits are segregated

into microdomains, the microdomain radius is key in allowing or preventing formation of

58



CHAPTER 3. TRIMERIC RECEPTOR FORMATION IN A HETEROGENEOUS
MEDIUM: A PROBABILISTIC MODELLING APPROACH

α β γ βγ αβγ

Scheme 2: in 1 1 1 1 1
Scheme 2: out p 1 1 1 p

Scheme 3: in 1 1 1 1 1
Scheme 3: out p p p p p

Scheme 4: in 1 p p p p
Scheme 4: out p 1 1 1 p

Table 3.1: The probability, under diffusion schemes 2, 3 and 4, that a diffusing protein
or protein complex will be allowed into or out of a microdomain. A value of 1 shows
that the protein may diffuse freely across the boundary. The probability p, 0 ≤ p ≤ 1
denotes the strength of affinity for a microdomain or for the membrane. For the case
p = 0, a protein or complex is irreversibly trapped in its current compartment (membrane
or microdomain).

the trimeric receptor complex: small microdomains mean that α subunits can more easily

interact with β and γ subunits at the boundary, but trimer formation would be inhibited

by large microdomains. The sorting of α subunits to microdomains is also supported by

the experimental results of Marmor et al.[73]

We investigated two diffusion schemes (see Figure 3.3b): in Scheme 2 we define an

affinity of the α subunit (and any complexes which include it) for the microdomain, but

no affinity for the remaining subunits (see Table 3.1). In Scheme 3 we apply an affinity

for microdomain regions to all diffusing species. In these two schemes all diffusing species

are free to enter the microdomains but, on an attempt to move out of the microdomain

region, the move is only allowed with a probability p. Hence, a lower value of p describes a

higher affinity for a particular species for the microdomain. We maintained microdomain

coverage at 50%, and instead tested affinity values of p = 0, 0.2, 0.5, 0.8 and 1, and varied

microdomain radii as in the previous case.

3.2.3 Proteins interact in boundary zone

To simulate the case where protein species are segregated into microdomain and membrane

regions we modified the simulation to include a boundary zone of 1 voxel beyond the edge

of the microdomain (Scheme 4). Both microdomain-associated and membrane-associated

proteins can diffuse freely into this zone, but if proteins attempt to diffuse further into

or further out of the microdomain area they can only do so with a fixed probability as
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before. The probabilities for each protein species are shown in Table 3.1. This scheme more

closely matches the hypothesis of Ellery and Nicholls[34], in which constituent components

of the signalling receptor are segregated by the microdomains and can only interact in a

boundary region.

In these simulations, we again maintained a constant microdomain fraction of 50% and

varied the microdomain or radii, and the conditions on the boundary.

3.2.4 Simulation method

The simulation uses an implementation of the Gillespie algorithm to select which event

will occur next and the waiting time between each event. Protein and complex locations

are encoded by a rectangular matrix Xn;Xn(i) ∈ N, where the value of n encodes the

particular species of protein or protein complex and the vector i gives the position. The

value of each element Xn(i) is the number of proteins or complexes at that position.

A second matrix D;D(i) ∈ R determines the relative diffusion rates at different spatial

locations i, representing the location of microdomains. The rate of diffusion of all species

is reduced inside microdomains.

The membrane grid is initially seeded with proteins of different species distributed

randomly. More than one protein of any species may occupy the same voxel. The radius,

r of the microdomain is specified for each simulation. In placing the microdomains, a centre

point (x0, y0) is chosen uniformly at random in two dimensions and then the surrounding

voxels (xi, yi) are marked as within a microdomain if (xi − x0)2 + (yi − y0)2 ≤ r2.

The model uses the Gillespie algorithm direct method to calculate the order and time

at which events take place, following the methodology in Gibson & Bruck[42]. All events

have an associated rate and at each ‘Gillespie step’ one event is chosen at random according

to the relative value of its rate. The time increment is dependent on the sum of all event

rates.

The model is composed of five diffusing entities: three monomers representing the α,

β and γ subunits of the IL-2 receptor, as well as the βγ dimer and the αβγ trimer. In

the model formation of the trimer is always in two stages, first by forming the dimer and
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then by the α subunit binding to the dimer.

Events in the model can either be a movement event, a complexation event (either

dimer or trimer formation) or a degradation event (the dissociation of a dimer or trimer).

For each diffusing entity, the movement rate is equal to the diffusion coefficient at its

location. Hence the total sum of of movement rates is the sum of the occupancy of all grid

points by each species multiplied by the diffusion coefficient at that point. We express

this as:

Smov =
∑
pD

∑
i

XpD(i) ·D(i) (3.1)

Here pD represents the different diffusing species.

At each time step, dimers and trimers may form if subunits occupy the same grid

point. Hence the rate of complexation at a single grid point is equal to the product of the

number of subunits at that point that could potentially combine to form a larger complex,

multiplied by the on-rate for the reaction. Hence the total rate is equal to the sum of

these products over the whole grid. We express this as:

Sc =
∑

pm1,m2

∑
i

kcXpm1
(i) ·Xpm2

(i) (3.2)

where pm1 and pm2 are two species that have the potential to form a complex.

Finally, degradation occurs at a rate equal to the off rate multiplied by the total

number of protein complexes in the whole system. This is:

Sd =
∑
pC

∑
i

kdXpC (i) (3.3)

The elapsed time between calculated steps in the system is calculated depending on the

total sum of all event rates in the model. We first calculate a real value R1 in the interval

[0,1]. Then let the sum S of all event rates be:

S =
∑
pD

∑
i

XpD(i) ·D(i) +
∑

pm1,m2

∑
i

kcXpm1
(i) ·Xpm2

(i) +
∑
pC

∑
i

kdXpC (i) (3.4)

Where pD are the protein species diffusing in the membrane, kc is the rate of complex

61



CHAPTER 3. TRIMERIC RECEPTOR FORMATION IN A HETEROGENEOUS
MEDIUM: A PROBABILISTIC MODELLING APPROACH

formation for each pair of complex components pm1 and pm2 occupying the same grid

point, pC are the protein complexes and kd is the rate of complex decay. From this we

calculate the timestep ∆t = − log(R1)
S .

After incrementing the timestep, the we choose an event to occur by choosing a second

uniform random number, R2 in the interval [0,1]. Then, if s(i) is the rate at which event

i occurs such that
∑

i s(i) = S, we choose event n to occur if:

n−1∑
i=1

s(i) < R2S ≤
n∑
i=1

s(i), n ≥ 2

0 < R2S ≤ s(1), n = 1

(3.5)

Events in the simulations include: movement of proteins and complexes to adjacent grid

points; formation of a complex from subunits situated on the same voxel; and decay of a

complex to its constituent subunits. Movement to an adjacent voxel is chosen uniformly at

random from the four neighbouring voxels and the space has periodic boundary conditions.

In Schemes 2–4 a move is proposed but only accepted with probability p determined by

the affinity of the protein species. If the move is rejected then the time is incremented but

the protein remains on the same voxel.

For the results shown, simulations were run on a square grid with 2500 voxels, with

600 of each of the monomeric subunits α, β, and γ. The rate of diffusion of all species

(proteins and complexes) was set to 4 diffusion steps per time-unit in the membrane and

1 diffusion step per time-unit in the microdomains. The values for kc and kd were 1 and

0.5 respectively. Simulations were run until the timepoint t = 20 and repeated 100 times

for each parameter set.

3.3 Results

We constructed stochastic simulations of a ternary protein reaction-diffusion system and

evaluated the influence of small microdomains in which diffusion was slowed. We also

tested the effect of defining degrees of affinity between diffusing species and microdomains;

either having affinity for a single protein species, all protein species or segregating protein
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species so that protein-protein interactions are confined to a boundary zone.
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1: 50% microdomain coverage, radius 2
2: No microdomains

(a) The number of trimeric receptors formed plot-
ted against time, averaged over 100 runs with pro-
tein diffusion slowed inside the microdomains.
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2: uniformly reduced diffusion rate

(b) The number of receptors formed over time for
the case where either there are no microdomains
or the entire membrane has a reduced diffusion
rate.

Figure 3.4: Plots of simulation ouput for Scheme 1 comparing reduced diffusion rate in
microdomains with uniformly reduced diffusion rate. Error bars show standard error of
the mean.

3.3.1 Presence of microdomains increases equilibrium number of trimers

Figure 3.4a shows the average time evolution of the Scheme 1 simulation for microdomains

of radius 2. The presence of microdomains in which diffusion is slowed increases both the

rate of αβγ trimer formation and the equilibrium number of trimers. For comparison, Fig-

ure 3.4b shows the time evolution where the diffusion rate is reduced to the microdomain

diffusion rate across the entire membrane. In this case, the equilibrium outcome is unaf-

fected but the rate of trimer formation is slowed.

We ran the same scheme for a range of microdomain radii and microdomain fraction

values. The effect of varying these parameters on the equilibrium number of trimeric com-

plexes is shown in Figure 3.5a. For all values that we tested, the presence of microdomains

increased the number of trimers formed at t = 20. For microdomain coverage of 10% or

25%, the increase in trimer formation was highest for the smallest microdomain radii.

At 50% microdomain coverage, smaller microdomains were also favoured, but the results

indicate an ‘optimum’ microdomain radius of 2 voxels.
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Although in most of the simulations we incremented the microdomain radius in whole

voxels, we re-ran this simulation with fractional radii to check the value for the radius of

1 voxel and 50% microdomain fraction was not an anomaly. Although the radius is a non-

integer, the microdomains are still discrete since voxels are included based on satisfaction

of the inequality (xi − x0)2 + (yi − y0)2 ≤ r2 as in Section 3.2.4. The greatest number

of trimers formed at equilibrium was obtained when the membrane microdomain fraction

was at 25% and the microdomain radius was 1.5 voxels.

3.3.2 Microdomain affinity amplifies increase in equilibrium state

For 50% microdomain coverage, we tested five values of microdomain affinity by imposing

a probability that a diffusion step will be accepted or rejected when a diffusing species

attempts to move out of a microdomain region into the membrane. Figure 3.5b shows the

equilibrium number of trimers formed in Scheme 2, where only the α component and the

αβγ trimer have affinity for the microdomains. As in the results for Scheme 1, it implies

an optimal microdomain radius of 2 voxels for all affinity values. As microdomain affinity

is increased, the equilibrium number of trimeric complexes also increases dramatically. In

Figure 3.5c the results for Scheme 3 – where all component proteins and protein complexes

have a microdomain affinity – are similar to those for Scheme 2, but the increase in the

number of trimers is amplified to an even greater extent. See appendix 3.6.1 for further

results.

3.3.3 Confinement of protein-protein interaction to microdomain bound-

ary inhibits receptor formation

Figure 3.5d shows the results for Scheme 4, where proteins and complexes can diffuse

uninhibited into a boundary zone 1 voxel thick around the microdomains but diffusion

from the boundary zone either into microdomains or out of microdomains is subject to

affinity constraints. In the results shown, α proteins and αβγ trimers have affinity for

microdomains given by the value of p, whereas the remaining species have affinity for the

membrane and are prevented from entering the microdomains.
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(a) Average number of trimers in the sim-
ulation at t = 20 plotted against mi-
crodomain radius, for four different values
of microdomain coverage (Scheme 1).
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(b) Average number of trimers in the sim-
ulation at t = 20 plotted against mi-
crodomain radius where α subunits had
affinity for microdomains (Scheme 2).
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(c) Average number of trimers in the simula-
tion at t = 20 plotted against microdomain
radius where all subunits had affinity for mi-
crodomains (Scheme 3).
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(d) Average number of trimers in the
simulation at t = 20 plotted against
microdomain radius where protein inter-
actions were localised to microdomain
boundaries (Scheme 4).

Figure 3.5: Plots showing the average number of trimers formed in equilibrium for all four
diffusion schemes. Values are averaged over 100 simulations runs and error bars show the
standard error of the mean.

65



CHAPTER 3. TRIMERIC RECEPTOR FORMATION IN A HETEROGENEOUS
MEDIUM: A PROBABILISTIC MODELLING APPROACH

In this case, as would be expected, stronger affinity values segregate the components

of the receptor more severely and lead to lower numbers of trimers formed in equilibrium.

For the strongest affinity values p = 0 and p = 0.2, the number of receptors formed is

lower than the system with no microdomains. The effect of varying the microdomain

radius depends on the strength of microdomain affinity. For strong affinity (p = 0), the

results suggest that microdomain radii of 3 voxels lead to the strongest segregating effect

and the lowest number of trimeric complexes in equilibrium. For weak affinity (p ≥ 0.5),

however, microdomain radii of 2 or 3 voxels results in a comparatively high number of

trimers formed in equilibrium. See appendix 3.6.1 for further results.

Figure 3.6 shows the spatial distribution of trimers, averaged over 100 runs of the sim-

ulation for Scheme 4 with the microdomain coverage at 25%, strong microdomain affinity

(p = 0) and the microdomain radius set at 4 voxels. The evolution from a low concentra-

tion and broad spatial distribution, to concentrated clustering of trimers on the boundaries

of the microdomain can be clearly seen. Figure 3.7 shows the distribution of three of the

diffusing species from the simulations: the γ subunit, the βγ dimer and the trimer at

time point t = 20. The varied spatial distribution of the different components is clear: γ

subunits and dimers are sequestered to the non-microdomain regions of the membrane in

the simulation, whereas trimers form only on the boundaries of the microdomains, where

dimers are able to come into contact with the α subunit, which has strong affinity for the

microdomain region.

3.4 Discussion

In this study, we have created an in-silico model of a cell membrane, incorporating

compartmentalised diffusion processes, protein-protein interactions and membrane-protein

affinity terms. Using this model, we investigated four qualitatively distinct hypotheses for

the role of microdomain-mediated protein sorting on the formation of trimeric protein

receptor complexes.

The simulation results show that the presence of microdomains with a reduced diffu-

sion rate can increase the equilibrium number of trimeric receptor complexes in the cell
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Figure 3.6: Heatmap plots showing the average number of trimers formed at subsequent
time points in Scheme 4 with p = 0 and microdomain radius 4 voxels. Total microdomain
coverage is 25%.
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Figure 3.7: Heatmap plots showing the average spatial distribution of various species in
the simulation, with p = 0 at time t = 20. The microdomain radius is 4 voxels.
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membrane. In the model, small microdomains maximise receptor formation. For relatively

high (50%) membrane microdomain coverage, the results indicate the existence of an ‘op-

timal’ microdomain radius of around 2 voxels. As observed microdomains are indeed small

(10–100nm), it could be explored whether there is an evolutionary mechanism selecting for

microdomain size. The existence of optimal microdomain radii to facilitate protein-protein

interactions is in agreement with the results of Nicolau et al.[81], but we saw this property

for static rather than mobile microdomains. The reason for a difference in outcomes for

a model based on binding and dissociation rather than protein-protein collision could be

the number of distinct components needed to form the complex, meaning concentrating

the subunits in a small area is more important.

An increase in the number of receptors when there was a high affinity for all protein

species was unsurprising, but receptor numbers also increased when only the α subunit had

increased affinity for the microdomains. This result could suggest that modifying protein

subunits, by creating analogs or posttranslational modification, could be used to augment

receptor complex formation. Also, since IL-2 and IL-15 share the βγ complex, modifying

one of the α subunits to increase its affinity for microdomains could be a potential tool to

alter T cell fate by promoting the IL-2 signalling pathway over the IL-15 pathway or vice

versa.

Finally the results from the Scheme 4 simulations show a role for the segregating effect

of microdomains. Ellery & Nicholls[34] suggest that larger microdomains would inhibit

receptor formation and small microdomains would promote it. Our results indicate that

the strength of the segregating effect (microdomain affinity) is key in determining the

number of receptors formed and that microdomain sizes that promote the greatest number

of receptors when proteins have a low microdomain affinity can result in the lowest number

of receptors when they have a high microdomain affinity.

Several limitations of the model should be addressed. First, the size of the simulated

membrane is relatively small in order to generate a sufficient range of results in a short

amount of time. The results of larger simulations (with 4× 104 voxels) of Scheme 1 were

similar to results shown here. Secondly, parameters were chosen for simplicity rather than
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biological accuracy so results should be interpreted as a proof of principle rather than

predictive of in vivo behaviour of the IL-2 receptor. The diffusion rate, particularly, was

set equal for all proteins and protein complexes. In future work, we plan to make more

biologically relevant predictions by using experimentally determined diffusion rates for all

species. The model also did not limit the occupancy of each voxel; in later models we

intend to investigate the limitations imposed by crowding inside microdomains. Finally,

we have considered the formation of the IL-2 receptor in this model, but no ligand-receptor

binding dynamics. We hope to address this mechanism and its influence on the proliferative

response in future work.

In conclusion, we have discussed a model of IL-2 receptor formation in the T cell

membrane in relation to the presence of microdomains in which diffusion is slowed and for

which the diffusing species may have a particular affinity. While remaining agnostic to the

mechanisms contributing to the formation of microdomains and indeed their prevalence

in vivo, we have demonstrated that the presence of small membrane compartments with

these characteristics can promote the formation of receptors relevant to signalling and

suggested ways in which this could be therapeutically exploited. In light of these results,

we think that spatial heterogeneity in the membrane is an important factor to consider in

constructing larger models which incorporate transmembrane signalling components.

3.5 Further work

In future work, we plan to further explore the outcome of the above simulation using

different parameter sets, and to address some of the limitations mentioned in the discussion

section.

In particular, the model previously assumed that all species diffuse at the same rate. As

mentioned in the introduction, there exists a predictive model from Saffman & Delbrück

[97] for the diffusion rates of a cylinder diffusing in a lipid bilayer. In a more recent

paper by Gambin et al., however, comparison with measured diffusion rates of a range of

transmembrane peptides showed that diffusion rates are described better by a 1/R law

than by Saffman & Delbrück’s logarithmic relation. This was true both for single proteins
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Symbol Description Proposed range of values
r Microdomain radius 1–6
φ Total microdomain coverage 0.0–1.0
p Rejection probability at boundary 0.0–1.0
L Size of simulation space 50px–500px

kβγ , χβγ Formation/decay rate of dimer
kαβγ , χαβγ Formation/decay rate of trimer
DZ,1 Diffusion rate of species Z within microdomains
DZ,2 Diffusion rate of species Z in membrane

Table 3.2: Summary of all parameters in the simulation described in this chapter.

of various sizes and multimeric complexes of increasing size [40, 65].

In order to test the effect of this result, we re-ran the simulation with an adjustment

to the diffusion rate for the dimeric and trimeric complexes, where the diffusion rate was

reduced by a factor of
√

2 for the dimer and a factor of
√

3 for the trimer. The results

of this simulation are shown in Figure 3.8. Comparing them with Figure 3.5a shows

no dramatic change in outcome. This is not unexpected, since one would expect the

diffusional behaviour of the constituent subunits to affect the simulation outcome more

than the diffusion of the formed complexes.

Further scenarios we aim to explore are: varying the ratio of the diffusion rate inside

microdomains to the diffusion rate outside the domains; increasing the size of the space;

imposing a restriction on microdomains to prevent them from overlapping and including

more biologically realistic on and off rates for the formation of the protein complexes. An

overview of all the parameters which can be varied in this model is displayed in Table 3.2.

71



CHAPTER 3. TRIMERIC RECEPTOR FORMATION IN A HETEROGENEOUS
MEDIUM: A PROBABILISTIC MODELLING APPROACH

1 2 3 4 5 6
radius

60

65

70

75

80

85

αβ
γ

No microdomains
10% microdomain fraction
25% microdomain fraction
50% microdomain fraction

Figure 3.8: Average number of trimers in the simulation at t = 20 plotted against mi-
crodomain radius for Scheme 1, but with larger complexes diffusing more slowly according
to a 1/R law.

3.6 Appendix A

3.6.1 Supplementary results

Simulations of Schemes 3 and 4 were also run with intermediate microdomain coverage

values. The output of these simulations is shown in Figure 3.9.
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(a) Average number of trimers in the sim-
ulation at t = 20 plotted against mi-
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microdomain coverage.
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(b) Average number of trimers in the sim-
ulation at t = 20 plotted against mi-
crodomain radius, for Scheme 3 with 25%
microdomain coverage.
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(c) Average number of trimers in the simula-
tion at t = 20 plotted against microdomain
radius, for Scheme 4 with 10% microdomain
coverage.
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Figure 3.9: Plots showing the average number of trimers formed in equilibrium for diffusion
schemes 3 and 4 with microdomain coverage at 10% and 25%. Values are averaged over
100 simulations runs and error bars show the standard error of the mean.
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Chapter 4

Reaction-diffusion processes with

locally varying diffusion

coefficients

4.1 Introduction

The simulation results in Chapter 2 suggest a mechanism by which small microdomains

promote the formation of trimeric species from diffusing subunits in the membrane. Fur-

thermore, smaller domain sizes have a greater effect in promoting trimer formation for the

same degree of microdomain coverage. To gain greater insight into the diffusion behaviour

promoting this effect, and its dependence on the key parameters of microdomain size and

total area coverage, we re-implemented the model as a stochastic particle diffusion system

in a one-dimensional space.

4.2 Numerical simulation in one dimension

4.2.1 Method

We simplified the numerical model in the previous chapter in order to examine the be-

haviour in a one-dimensional system and examine more closely the concentration profile of
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monomers and complexes inside and outside the defined microdomain regions. Although

we saw that microdomains were enriched with monomers in the previous chapter, we did

not examine the local concentration profiles in order to determine the local distribution

of particle.

Here we consider systems in which only monomers diffuse on a heterogeneous space

and later examine dimerisation and trimerisation reactions.

We consider three numerical schemes in this section, which are illustrated in Figure

4.1. They are the following:

1. Monomers diffuse on a fixed one-dimensional space with no flux at the boundaries

and one discontinuity (a step function) in the diffusion coefficient

2. As above but with two discontinuities (a square function) in the diffusion coefficient

3. Monomers diffuse on a periodic space with a square function discontinuity in the

diffusion coefficient

We also consider the formation of dimers and trimers in the above three schemes. The

D

x
50 100

(a) Scheme 1

D

x
50 10025

(b) Scheme 2

D

x
10025

(c) Scheme 3

Figure 4.1: The three numerical schemes investigated in this section. The parallel arrows
in Scheme 3 denote periodic boundary conditions, the other schemes have no-flux boundary
conditions

simulation method is analagous to that used in the previous chapter, using an implemen-

tation of the Gillespie algorithm [42] to select events (either diffusion, complex formation

or complex decay) at random; incrementing the timestep and then recalculating rates of

all possible events. In this section, however, species instead diffuse independently on a

1× 100 voxel grid.
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In Scheme 1, we set the diffusion rate D(i) to 1 diffusion step per time unit in the

range [0 − 50) and 4 diffusion steps per time unit otherwise. We implement the no-flux

boundary condition by reflecting any diffusion steps beyond the edge of the space so that

attempts to diffuse to the position X(n+ 1) are reset to the position X(n), where n is the

grid size.

In Scheme 2 we use the same no-flux boundary conditions but instead define our

microdomain region of lower diffusion speed in the range [25− 50).

In Scheme 3 we define the microdomain region in the range [0−25) and define periodic

boundary conditions such that diffusion to the position X(n+1) is reset to position X(1).

As there is a degree of stochasticity in the model and the grid size is not particularly

large, the results plotted in the next subsection are the mean curves over 100 individual

simulations.

4.2.2 Results

Examining the simulation profiles here gives us a better spatial understanding of the

dynamics underlying the results of the previous chapter. Although we saw previously that

areas of low diffusivity were relatively enriched in monomers, the exact spatial patterning

was not evident.

We see the spatial pattern formed by diffusing monomers under scheme 1 in Figure

4.2. This shows that there is a sharp discontinuity in monomer numbers either side of

the discontinuity in diffusion rate (at x = 50). Monomers are enriched immediately inside

the low-diffusion region and depleted immediately outside it. With increasing time, the

area which is enriched spreads further into the low-diffusion region and the depleted area

spreads further into the high-diffusion region. The maxima and minima of the monomer

profile appear to be relatively steady, increasing only slightly with time.

Including reaction-diffusion processes in the system, we see (Figure 4.3) that a similar

profile is formed by the dimers in the system (under scheme 2) and the trimers (in scheme

3). For the purposes of this simulation, the forward and backward rates of the dimerisation

and trimerisation steps were held at kc = 1 and kd = 10 respectively.
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Figure 4.2: Evolution of the diffusion scheme 1 at subsequent time points. The space is
initially seeded randomly with 2000 monomers over 100 grid points.
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Figures 4.4 and 4.6 show the time evolution of the monomer profile under diffusion
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Figure 4.3: A profile of the dimer and trimer numers under diffusion schemes 2 and 3 at
time t = 5. The space is seeded randomly with 2000 of each species involved: the left
hand system contains only β and γ components and the right hand system contains α, β
and γ components.

schemes 2 and 3. Scheme 2 illustrates diffusion in and out of a single microdomain of

finite size. As might be expected, we see similar discontinuities in monomer number with

enrichment inside the microdomain area and depletion outside it. Scheme 3 has periodic

boundary conditions and so more accurately models a larger space with a series of square

function discontinuities in diffusion rate. In Figures 4.5 and 4.7 we also see that this

profile develops in the distribution of dimer and trimer complexes.

4.3 Analytical approach to heterogeneous diffusion

The numerical simulations detailed in the previous section show a slightly surprising form,

with a sharp step in concentration at the microdomain boundary rather than a smooth

variation as is usually found in diffusion problems.
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Figure 4.4: Evolution of the diffusion scheme 2 at subsequent time points. The space is
initially seeded randomly with 2000 monomers over 100 grid points.
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Figure 4.5: Profiles of the number of dimer and trimer complexes formed under diffusion
scheme 2 at time t = 5.

This strange behaviour is addressed in van Milligen et al. [78], in which the authors

note that, whereas in most cases it is sufficient to apply Fick’s Law to diffusion systems:

Γ(x, t) = −D∂n(x, t)
∂x

(4.1)

(where Γ(x, t) denotes the particle flux), this rule assumes that the value of D is constant

for the medium in which particles diffuse. For the general case, however, it is necessary

to solve the Fokker-Planck diffusivity law[64]:

Γ(x, t) = − ∂

∂x
[D(x)n(x, t)] (4.2)

The authors show that analytical solutions of the Fokker-Planck diffusivity law approxi-

mate well the generalised master equation describing particle dynamics in their system of

interest and reproduce the phenomenon in a series of physical experiments involving the

diffusion of dye in a gelatine medium that had been set in two separate connected blocks,
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Figure 4.6: Evolution of the diffusion scheme 3 at subsequent time points. The space is
initially seeded randomly with 2000 monomers over 100 grid points.
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Figure 4.7: Profiles of the number of dimer and trimer complexes formed under diffusion
scheme 3 at time t = 5.

one of which had a greater ratio of gelatine to water and hence a higher viscosity.

Just as in the numerical and analytical solutions, the authors found that a sharp

boundary in colour intensity formed in time as the discontinuity in diffusion rate formed

an effective flux in dye particles from the low viscosity region into the high viscosity region.

The results of the experiments are shown in Figure 4.8. Notably, the analytical solution

derived in the paper has a very similar form to our numerical simulation shown in Figure

4.2.

The analytical solution to the Fokker-Planck diffusivity law listed in [78] is:

nL(x, t) = n0

√
DR√
DL

+
(
n0

√
DR√
DL
− n0

)
· erf

(
x

2
√
DLt

)
(4.3)

nR(x, t) = n0

√
DL√
DR
−
(
n0

√
DL√
DR
− n0

)
· erf

(
x

2
√
DRt

)
(4.4)

As the derivation is not listed in the paper, we re-derive the solution step by step in

Appendix B. A plot of our derived solution to the system is shown in Figure 4.9 which,

again, matches well with the concentration profiles simulated in diffusion scheme 1 shown

in Figure 4.2. Note that there is no stationary distribution for this system. Rather,
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(a) Dye particles diffusing in gelatine (b) Analytical solution fitted to colour intensity mea-
surements

Figure 4.8: The formation of a boundary in colour intensity in an experiment involving dye
particles diffusing in a heterogeneous gelatine medium and an analytical solution to the
Fokker-Planck diffusivity law fitted to measurements of the colour intensity. Reproduced
from [78] with permission of Boudewijn van Milligen.
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Figure 4.9: Solutions of n with respect to x for the values n0 = 20, DL = 1, DR = 4 and
t = 0.1, 0.2, . . . 1.0.
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particles continue to diffuse from the positive half-line into the negative half-line. In the

plotted example above, all values of n tend towards 40 for x < 0 and towards 10 for x > 0.

In this section, we re-derived and calculated several individual solutions of Equation

4.7 as demonstrated in [78]. This system, however is of limited value for rafts of finite size

as the space extends to ±∞. The limiting behaviour of the system in general is for the

concentration to tend to:

n(x) =


n0
√
DR√
DL

x < 0

n0
√
DL√
DR

x < 0
(4.5)

To more realistically model microdomains of a finite size, we require more than a single

discontinuity in the diffusion coefficient. In the next section, we derive a novel solution

for diffusion of monomers on a space with a diffusion coefficient with the form of a square

function in x.

4.3.1 Two-boundary system

In this section we use a similar approach to the previous in order to model diffusion in

and out of a single microdomain on an infinite one-dimensional space.

We examine a system where the diffusion coefficient differs on a finite length in the

range (0, a) where a > 0. So we have:

D(x) =


DR x < 0

DL 0 ≤ x ≤ a

DR x > a

(4.6)

A diagram illustrating the initial distribution of particles together with the spatial varia-

tion of the diffusion coefficient is shown in Figure 4.10. Analogously to the mathematical

approach taken in appendix B, we will concern ourselves with solving the Fokker-Planck

diffusivity law on the quantity Dn(x, t), for the two separate systems: D = DL and

D = DR and then applying constraints to ensure that a combination of the two solutions

is still smooth and continuous at the point of discontinuity.
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n0

DR DL DR

0 a

Figure 4.10: The system begins with a uniform distribution of particles at concentration
n0. The diffusion coefficient is DR for x < 0, DL for 0 < x < a and DR for x > a.

As such, we consider now the evolution of Dn, with initial conditions:

Dn(x, 0) =


DRn0 x < 0

DLn0 0 ≤ x ≤ a

DRn0 x > a

(4.7)

the fundamental solution of the heat equation gives us a solution to this system of the

form:

Dn(x, t) = B ·
(

erf
(
x− a
2
√
Dt

)
− erf

(
x

2
√
Dt

))
+ C (4.8)

with ∂B
∂x and ∂C

∂x equal to zero. Here the values of B and C are different within and without

the area of lower diffusion. i.e. B = BL for 0 ≤ x ≤ a and BR otherwise. Similarly for CL

and CR. B and C may be functions of time, but not of x.

Now, we require that ∂Dn
∂x is continuous. Taking derivatives and comparing values to

the left and right of x = 0, we have:

BL

2
√
DLt

{
erf′
(
−a

2
√
DLt

)
− erf′(0)

}
=

BR

2
√
DRt

{
erf′
(
−a

2
√
DRt

)
− erf′(0)

}
(4.9)

and so:

BR = BL

√
DR√
DL

erf′
(

a
2
√
DLt

)
− erf′(0)

erf′
(

a
2
√
DRt

)
− erf′(0)

 (4.10)

since the derivative of erf(x) with respect to x is even.
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Now consider Dn for 0 < x < a and for t = 0. As t→ 0, we have Dn→ DLn0 and so:

CL − 2BL = DLn0 at t = 0 (4.11)

Finally consider C for x < 0 and x > a. At t = 0, we have Dn = DRn0 and we know that

Dn → DRn0 as x → ±∞. Hence we have CR = DRn0 outside the interval [0, a]. Then,

requiring continuity at x = 0 we have:

CL = DRn0 +BL

erf
(

a

2
√
DLt

)
−
√
DR√
DL

erf′
(

a
2
√
DLt

)
− erf′(0)

erf′
(

a
2
√
DRt

)
− erf′(0)

 erf
(

a

2
√
DRt

)
(4.12)

Now we simply need to determine BL. Evaluating CL at t = 0 gives:

CL(0) = DRn0 +BL

(
1−
√
DR√
DL

)
(4.13)

and hence

BL

(
1 +
√
DR√
DL

)
= DRn0 −DLn0 (4.14)

BL =
DRn0 −DLn0

1 +
√
DR√
DL

(4.15)

Example solutions to the system Dn(x, t) are shown in Figure 4.11. Here we set a value of

a = 20, and DL and DR as before at 1 and 4 units per timestep. This plot demonstrates

how the solutions obtained above satisfy the conditions for smoothness and continuity

between the solutions DLn and DRn at the points x = 0 and x = a. The plots show how

the sharp, square-function initial condition decays into a smooth function, with the solu-

tions of the higher diffusion system and the lower diffusion system eventually converging

as t→∞. In Figure 4.12 we plot example solutions of n(x, t) using the same parameters

as above. This models how the spatial profile of monomers diffusing on an infinite plane

with a finite region of lower diffusivity evolve over time. In a similar result to the single

discontinuity case in the previous example, we see a sharp increase in concentration im-
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Figure 4.11: Six snapshots of the two solutions DLn(x, t) and DRn(x, t) at logarithmically
increasing values of t.
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mediately inside the microdomain (lower diffusivity) region. The maxima and minima of

the spike are also the same values as in the previous example.

We see different behaviour once the perturbation on both sides of the microdomain

meets. Whereas, in the last example, the values of n at 0 ∓ ε remained fixed at n0
√
DR√
DL

and n0
√
DL√
DR

respectively, here we see that there is considerable variation in the value of n

over time in the immediate neighbourhood of the discontinuities. For example, at t = 100

we see the within-microdomain concentration fall back to the initial concentration, before

eventually climbing again as t becomes very large.

To make sense of this, we recall that the solution is derived from a solution of the heat

equation where the initial condition is a uniform distribution with a finite section of lower

temperature. As the uniform temperature extends to an infinite space to both sides of the

discontinuity, the system will eventually tend to a uniform temperature distribution equal

to the outside temperature.

In the case of our diffusion problem, the within-microdomain concentration will tend

to DRn0
DL

as t→∞ and the concentration in the rest of the space will tend to n0. Although

this seems to violate mass conservation when viewed in a narrow spatial window, the in-

creased mass in the entire system is zero because there is only a finite increase spread over

an infinite space. We can observe this change in the within- and without-microdomain

concentration profile by plotting the local value of two points of interest over time. Tak-

ing the value of DLn in the centre of the microdomain at x = 10 and the value of DRn

in a point some distance outside the microdomain at x = 50, we see the time evolution

in Figure 4.13. Note that, in the centre of the microdomain (the dashed line in the fig-

ure), the value initially increases by a small amount, falls again to its initial value before

steadily increasing up to the initial value of the exterior system. At the point outside

the microdomain we see the solution hold its initial value for a short period of time, then

a single wave passes in which it decreases in value before finally returning to its initial

magnitude. The novel solution to this particular example of interest displays interest-

ing properties, particularly the non-monotonic behaviour in time whereby concentration

within microdomains increases transiently, then falls before finally increasing to a high
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Figure 4.12: Six snapshots of the solution n(x, t) at logarithmically increasing values of t.
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Figure 4.13: The behaviour in the limit of large time values. Here, the dashed line shows
the value of DLn(x, t) at the point x = 10 and the solid line shows the value of DRn(x, t)
at the point x = 50. The horizontal axis is in ln(t).

and constant level.

The example is still lacking, however, if we wish to model multiple such domains, since

the behaviour of the system considered is so dependent on the infinite extension of space

to both sides of the area of interest.

A more appropriate approach would be to consider a system with periodic boundary

conditions, which would more accurately describe a series of such microdomains.

4.3.2 Periodic boundary conditions case

In this section, we consider a repeating pattern of regions of different diffusion coefficients

such that a length 0 < x < a has a diffusion coefficient of DL followed by a length

a < x < b with a diffusion coefficient of DR. We consider just a finite space of length b

with the conditions:

DLn(0, t) = DRn(b, t) (4.16)

∂

∂x
(DLn)(0, t) =

∂

∂x
(DRn)(b, t) (4.17)

A diagram of the initial distribution of monomers and the variation in diffusion rate is

depicted in Figure 4.14. Note, however, that the space does not extend to ±∞ on the x

axis, but is periodic between the range [0 − b). This system is analogous to the problem
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n0

DL DR DL

0 a b

Figure 4.14: Solutions of Dn with respect to x for the values n0 = 20, DL = 1, DR = 4,
a = 10 and t = 0.1, 0.2, . . . 1.0. The blue plots show the solution of the system for D = DR,
valid for x < 0 and x > a the purple plots show the solution of the system for D = DR,
valid for 0 < x < a.

of heat flow in a circular ring. For such a system, solutions have the form of the series:

Dn(θ, t) =
1
2
c0 +

∞∑
i=1

e−Di
2t[ci cos(iθ) + di sin(iθ)] (4.18)

where the system considered is the interval 0 < θ < 2π and the coefficients ci and di are

given by the integrals:

ci =
1
π

∫ 2π

0
g(θ) cos(iθ)dθ (4.19)

di =
1
π

∫ 2π

0
g(θ) sin(iθ)dθ (4.20)

where the function g(θ) is the initial condition Dn(θ, 0).

Since our approach multiplies the system of interest by a factor of D to solve the two

systems, and we are interested in conservation of mass in the solution of n(θ, t) rather

than Dn(θ, t), let us assume that the function g varies in both space and time such that:

gL(x, t) =


AL(t)n0, 0 < θ < α

BL(t)n0, α < θ < 2π
(4.21)
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for the system DLn(θ, t) and

gR(x, t) =


AR(t)n0, 0 < θ < α

BR(t)n0, α < θ < 2π
(4.22)

having mapped the interval (0, b) onto (0, 2π) and where ∆L and ∆R are the rescaled

diffusion coefficients in the interval (0, 2π) and α is 2πa
b .

This means we can derive:

ci,L =
1
π

(∫ α

0
ALn0 cos(iθ)dθ +

∫ 2π

α
BLn0 cos(iθ)dθ

)
(4.23)

=
n0

iπ
sin (iα) (AL −BL) (4.24)

Similarly:

di,L =
n0

iπ
{1− cos (iα)} (AL −BL) (4.25)

In an analagous manner in the higher diffusion system, we derive:

ci,R =
n0

iπ
sin (iα) (AR −BR) (4.26)

di,R =
n0

iπ
{1− cos (iα)} (AR −BR) (4.27)

To find the coefficient c0, we evaluate:

1
π

∫ 2π

0
g(θ)dθ =

1
π

([
θg(θ)

]α
0

+
[
θg(θ)

]2π

α

)
(4.28)

which gives us:

c0,L = 2BLn0 +
αn0

π
(AL −BL) (4.29)

c0,R = 2BRn0 +
αn0

π
(AR −BR) (4.30)
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Combining these expressions, we see that the solution of the system can be expressed as:

nX(x, t) =
1
DX

{
BXn0+

αn0
2π

(AX−BX)+
n0
π

(AX−BX)
∞∑
i=1

(
e−∆X i

2t

i
(sin(iα−iθ)+sin(iθ))

}
(4.31)

where X is either L or R for the two respective systems.

We know that our initial conditions require that AL(0) is ∆L and that BR(0) is ∆R.

Let us further assume that AL(t) = ∆L for all t.

This leaves us with three functions in t to determine: AR, BLandBR. These can be

determined by applying three conditions:

1. Conservation of mass:
∫ α

0 nL(θ, t)dθ +
∫ 2π
α nR(θ, t)dθ = 2πn0 for all t

2. Smoothness: ∂∆LnL
∂dθ = ∂∆RnR

∂dθ at θ = α for all t

3. Continuity: ∆Ln(α, t) = ∆Rn(α, t) for all t

First, addressing the smoothness condition and taking derivatives with respect to θ, we

obtain the relation:

(AL −BL)
∞∑
i=1

e−∆Li
2t(cos iθ − 1) = (AR −BR)

∞∑
i=1

e−∆Ri
2t(cos iθ − 1) (4.32)

and so

BL = ∆L −
∑∞

i=1 e
−∆Ri

2t(cos iα− 1)∑∞
i=1 e

−∆Li2t(cos iα− 1)
(AR −BR) (4.33)

Note, however that
∞∑
i=1

e−∆Li
2t(cos iθ − 1) = −

√
π

4Dt
(4.34)

for all θ. And so:

BL = ∆L −
√

∆L

∆R
(AR −BR) (4.35)

For the sake of brevity, let Sα,D =
∑∞

i=1
e−Di2t

iπ sin(iα).
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The continuity condition (dividing by n0) requires:

BL = BR+
α

2π
(AR−BR)+(AR−BR)Sα,∆R

− α

2π
(AR−BR)

√
∆L

∆R
−(AR−BR)

√
∆L

∆R
Sα,∆L

(4.36)

Finally, taking the conservation of mass condition and multiplying through by ∆L∆R
n0 we

arrive at the relation:

∆L(2π − α)(∆R −BR) =(AR −BR)
{√

∆L∆R
α2

2π
+

2
π

√
∆L∆R

∞∑
i=1

e−∆Li
2t

i2
(1− cos(iα))

(4.37)

+ ∆Lα−
2
π

∆L

∞∑
i=1

e−∆Ri
2t

i2
(1− cos(iα))− α2

2π
∆L −

√
∆L∆Rα

}
(4.38)

Combining the conditions for smoothness and continuity, we derive an expression for AR

in terms of BR:

AR =
∆L −BR√

∆L
∆R

(
1− α

2π − Sα,∆L

)
+ α

2π + Sα,∆R

+BR (4.39)

Recombining this with the condition for mass conservation, we finally derive the function

BR(t) as:

BR(t) =
∆LF1(t)−∆L∆R(2 ∗ π − α)F2(t)

F2(t)(F1(t)−∆L(2π − α)) + F1(t)(1− F2(t))
(4.40)

where

F1(t) =
√

∆L∆R
α2

2π
+

2
π

√
∆L∆R

∞∑
i=1

e−∆Li
2t

i2
(1− cos(iα)) (4.41)

+ ∆Lα−
2
π

∆L

∞∑
i=1

e−∆Ri
2t

i2
(1− cos(iα))− α2

2π
∆L −

√
∆L∆Rα (4.42)

and

F2(t) =
√

∆L

∆R

(
1− α

2π
− Sα,∆L

)
+

α

2π
+ Sα,∆R

(4.43)
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4.3.3 Results

In section 4.3.1 we saw that quantities that would be treated as constants in a homogeneous

system become time dependent when we solve the system with inhomogeneous diffusion

rates. In the previous subsection, we also saw that the key to fulfilling all three dynamical

conditions was to determine the evolution of the functions AL, BL, AR and BR over time.

These values depend on time, and also the diffusion coefficients inside and outside the

microdomain, but are independent of n0 and the spatial coordinate x (or θ in the scaled

system). The evolution of these four values in the scaled system are shown in Figure

4.15. Recall that AL is set as a constant ∆L. We see that these parameters do indeed

behave as constants for very small and very large values of t, but that there is considerable

variation in the range −2 < ln(t) < 2. Applying these parameters to generate solutions to
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Figure 4.15: Values of the time-dependent parameters AL,R and BL,R. In the above figure,
AL is shown by the solid line, BL, by the dashed line, AR by the dotted line, and BR by
the dashed and dotted line.

Equation 4.3.2 we may derive the evolution of the periodic system. Figure 4.16 shows one

such solution for six individual timepoints. Because the solution involves infinite sums,

these are numerical approximations to the analytical solution, using sums of the first 1000
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terms in order to calculate F1(t) and F2(t) as well as the solutions to Equation 4.3.2. The

solution profiles were generated using an R script[114]. This particular solution uses a

value of a = 5, with 25% microdomain coverage.

Comparing these numerical results with those of the previous two examples, we see

that the initial concentration increase just within the microdomain is less than in the

infinite system with a single discontinuity. We also see a monotonic increase of monomer

concentration within the microdomain as t increases, in contrast to the non-monotonic

behaviour seen in Section 4.3.1. The within-microdomain concentration appears to be
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Figure 4.16: Solutions of n(θ, t) for six timepoints: t = 0.0001, 0.001, 0.01, 0.1, 1 and 10.
Parameters are DL = 1, DR = 4, a = 5 and b = 20 with ∆L and ∆R scaled accordingly.

increasing to a level higher than seen in Appendix B, but less than that seen in Section

4.3.1. The latter observation is to be expected as the pool of monomers outside of the

microdomain region cannot be depleted in the example where the microdomain exists on
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an infinite space.

In Figure 4.17 we plot the concentration at two points of interest: the centre of the

microdomain region and the centre of the non-microdomain region. We see that, in this

case, and in contrast to Section 4.3.1, the concentration profile increases monotonically

to a steady level within the microdomain and decreases monotonically to a steady level

outside the microdomain.

This behaviour differs clearly from the single diffusion discontinuity on an infinite

space. Although, in that system, the concentration of any particular point tended towards

a steady value as t− >∞, one could also find a point sufficiently far from the origin where

the concentration was still at its initial value, for any given value of t. We can also examine
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15
20

25
30

35
40

ln(t)

n(
x,
t)

Figure 4.17: The concentration within the microdomain region at the point x = 2.5 (solid
line) and the concentration in the non-microdomain region at the point x = 12.5 shown
with a logarithmic time scale on the horizontal axis.

the dependence on the microdomain length, a, in the sequestering of monomers into the

microdomain region. Figure 4.18 depicts the ratio of the mean monomer concentration

within the microdomain region to the mean monomer concentration at t = 0. As can

be seen, at early time points the within-microdomain concentration is increase in smaller

microdomains, and the ratio decreases monotonically as microdomain length increases.

Note that the ratio of the lengths of the alternating microdomain/nonmicrodomain regions

is kept constant so the total fraction of the space occupied by the low-diffusion region is
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constant.

The increase in monomer concentration is relatively small at early time points, but

reaches over 2.5 times the original concentration in microdomains of length 30 at time

t = 10.

At longer timescales, however, we note that the relationship between the concentra-

tion increase and microdomain length is no longer monotonic. Instead we see a clear

peak at around the length a = 30. This suggests that the existence of ‘optimal’ sizes for

microdomains in their ability to concentrate diffusing proteins is dependent on time; if mi-

crodomain existence is transitory then the existence of an optimal length scale may depend

on their having a lifetime of a certain length also. We have seen that analytical solutions
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Figure 4.18: The ratio of the mean monomer concentration within the microdomain re-
gion to the initial concentration for six timepoints: t = 0.0001, 0.001, 0.01, 0.1, 1 and 10.
Parameters are DL = 1, DR = 4, and b = 4a with ∆L and ∆R scaled accordingly.

of the diffusion equation with particular constraints suggest a role for low-diffusion regions

in sequestering diffusing monomers and increasing their local concentration in comparison

to the surrounding space. In the following section, we introduce reaction schemes to deter-

mine whether concentrating components in a finite space can enable increased organisation

98



CHAPTER 4. REACTION-DIFFUSION PROCESSES WITH LOCALLY VARYING
DIFFUSION COEFFICIENTS

of dimeric or trimeric complexes over the whole space.

4.4 Application to reaction-diffusion

In the previous section we determined an analytical solution to the problem of a monomer

diffusing in a one-dimensional space with heterogeneous diffusion coefficients, which took

the form of a variety of step functions. In this section, we combine the results from

the previous section with reaction dynamics in order to determine how heterogeneity in a

model membrane might influence the formation of dimeric and trimeric protein complexes.

4.4.1 Dimer reaction

Consider now a system of proteins diffusing on the membrane. If protein-protein reaction is

fast compared to diffusion then the system will reach equilibrium locally before components

diffuse away. We consider such a case.

Considering a local neighbourhood in which proteins are close enough to interact. We

will first consider a heterodimerisation reaction, which proceeds as follows:

A+B 
 AB (4.44)

This system is governed by the system of differential equations:

∂[AB]
∂t

= kc[A][B] (4.45)

∂[A]
∂t

= kd[AB] (4.46)

Assuming that both [A] and [B] start at a concentration of n0 and that there are no dimers

initially, we see that the system reaches equilibrium when:

kd(n0 − [A]) = kc[A]2 (4.47)

i.e. kc[A]2 + kd[A]− kdn0 = 0 (4.48)
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this is at the point:

[A] =
−kd +

√
k2
d + 4kckdn0

2kc
(4.49)

We combined this with the diffusion model in Section 4.3.2 in order to model whether

the increase in concentration within the microdomain region led to an overall increase in

dimer organisation, despite the decreased concentration of monomers in the larger region

outside the microdomain.

Figure 4.19 shows a plot of the mean concentration of dimers over the whole space

for systems with microdomain lengths in the range 1–250. The behaviour is remarkably

similar to the increase in monomer concentration within the microdomain, plotted in

Figure 4.18. We see that, indeed, dimer formation is increased compared to a system

with no microdomains and that, for sufficient timescales, there is a clearly defined optimal

length which maximises dimer organisation.

Notably, however, the increase in dimer formation is very small when compared to the

increase in within-microdomain monomer concentration: only around a 2–3% increase.

This would be unlikely to have any significant biological effect in vivo. We have demon-

strated that simple analytical models for reaction and diffusion support a mechanism for

an increased rate of dimer formation in the presence of small microdomains with lowered

diffusion rates. Although the increases were relatively small, this mathematical result

supports conclusions of the purely computational model in Chapter 3.

The previous chapter modelled trimer, rather than dimer, formation. In the next

section we derive a model for determining trimer formation in the same heterogeneous

system.

4.4.2 Trimer reaction

In the case of the formation of a heterotrimer, as considered in the previous chapter, we

begin with the two-step reaction:

A+B + C 
 AB + C 
 ABC (4.50)
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Figure 4.19: This plot shows the mean concentration of dimers with increasing mi-
crodomain size on the a axis. The various plots are taken at subsequent time points
t = 0.0001, 0.001, 0.01, 0.1, 1 and 10 with the lowest line in the plot being the earliest time
point and the highest line the latest.

For simplicity, let us assume that both forward reactions proceed at a rate kc and the

backward reactions at the rate kd. In differential equation form, we have:

∂[ABC]
∂t

= kc[AB][C]− kd[ABC] (4.51)

∂[AB]
∂t

= kc[A][B] + kd[ABC]− kc[AB][C]− kd[AB] (4.52)

∂[A]
∂t

= kd[AB]− kc[A][B] (4.53)

by symmetry, ∂[B]
∂t = ∂[A]

∂t and ∂[C]
∂t = −∂[ABC]

∂t .

Making the further simplifying assumption that all monomers are unbound at t0 and

exist at an equal initial concentration n0, we also see that [C] = n0 − [ABC] and that

[A] = [B] = n0 − [ABC]− [AB]. This means that, at equilibrium:

kc[AB][C]− kd (n0− [C]) = 0 (4.54)

kd[AB]− kc ([C]− [AB])2 = 0 (4.55)
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Combining the above two relations and simplifying, we derive the following quartic equa-

tion for the equilibrium concentration of species C:

k2
c [C]4 + 2kckd[C]3 + 2(k2

d − kcddn0)[C]2 − 3k2
dn0[C] + k2

dn
2
0 = 0 (4.56)

We solved the above equation using equation solving software [127]. Two solutions of

the quartic exist in the complex plane for positive values of kc and kd and so can be

discarded. The other two solutions return real values. By inspection of the modelled

equilibrium concentrations of the species A, AB and ABC when kd is fixed, we can see

that only the first solution is appropriate, as the second returns negative concentrations

of the monomer A. Two possible real solutions to this equation are shown in Figure

4.20. We model the formation of heterotrimers from equal numbers of diffusing monomers

by modelling monomer diffusion for each of the constituent monomers, solving Equation

4.56 to determine the local concentration of species C (here representing the IL2-Rα

component), and then applying the relation:

[ABC](x, t) = n(x, t)− [C](x, t) (4.57)

at each point in space.

The results are shown in the following section.

4.4.3 Results

Optimal sizes exist for microdomains in transient time

In general, smaller microdomain lengths led to a greater increase in the monomer concen-

tration within the raft region, dimer formation and trimer formation. Figure 4.21 shows

the mean system concentration of trimers for microdomain lengths in the range 1–250.

The various series shown in the plot show the mean concentration at subsequent time

points and we see that there is a clear maximum in trimer organisation around the value

a = 30 at the point t = 10. As in the case with the within-microdomain monomer con-

centration and the systemic dimer concentration, the optimal length scale only exists at
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(a) Modelled equilibrium concentrations of A (solid), AB (dot-
ted) and ABC (dashed) with kd=0.1
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(b) A second solution of the equilibrium concentrations

Figure 4.20: Modelled concentrations of A, AB and ABC, based on two real solutions of
Equation 4.56.
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the later time point t = 10.

Again, the relative increase in trimer organisation is small, though the maximum in

the figure represents an increase of around 3.5%: slightly greater than the enhancement

of dimer organisation. This is heuristically plausible as the increase in local concentra-

tion affects all three of the trimer’s constituent components, rather than two. Notably,

though, increases on this scale do not support the argument that sequestering proteins

with diffusion traps play a key role in facilitating immunological signalling.
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Figure 4.21: This plot shows the mean concentration of trimers with increasing mi-
crodomain size on the a axis. The various plots are taken at subsequent time points
t = 0.0001, 0.001, 0.01, 0.1, 1 and 10 with the lowest line in the plot being the earliest time
point and the highest line the latest.

Low affinity reactions are more sensitive to spatial effects

So far we have mostly examined the dependence of protein complex formation on spa-

tiotemporal parameters: microdomain length, total membrane coverage and the time in

which microdomains exist in the system. We also varied chemical parameters: the forward

and backward rates of the dimerisation and trimerisation processes, in order to quantify

whether microdomain-mediated effects depended on such chemical properties.

For the dimer formation and trimer formation systems described above, we varied the
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backward rate of the reaction, kd in the range 0.01–100, keeping the forward rate of the

reaction constant at kc = 1.

Figure 4.22 shows the results of varying kd on the mean systemic concentration of

dimer complexes at t = 10. Higher backward reaction rates led to a greater increase

in dimer organisation, both in absolute terms and in relative terms with respect to the

‘control system’ with no microdomains present. This value is depicted by the faint line in

the figure.

Of course, a high backwards rate means that fewer complexes are organised in the first

place, so these results imply that there could be a more important role for microdomains

to play in facilitating low affinity complex formation. The situation is similar in the
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Figure 4.22: The first five plots depict the mean concentration of dimers organised at the
point t = 10 plotted against increasing microdomain size. Each plot shows a different
value for the off rate of the reaction, kd. The faint line shows the ‘control’ mean dimer
concentration if no microdomains were present. The final plot shows the ratio of the mean
concentration in the system with microdomains to the control system. The higher values
of kd are shown by the higher lines.

case of trimer formation. Here, however, the absolute increase in trimer formation at the
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optimal microdomain length is greatest at a moderate kd value (10). The relative increase,

however, is still greatest for the highest value of kd, leading to a roughly 60% increase in

trimer organisation in the entire model space.

This is a considerable increase – the respective value in the dimer system was only

around 16%, and provides stronger evidence for a role for microdomains in aiding complex

formation, but only for low-affinity complexes over relatively long timescales.
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Figure 4.23: Mean concentration of trimers at t = 10 plotted against increasing mi-
crodomain size for five values of kd.

Low microdomain coverage enhances complex formation for small microdomains

We also examined the effect, as in Chapter 3, of varying total membrane coverage; testing

four different values of 50%, 25%, 10% and 5%.

We found that monomer concentration was maximised in microdomains at 5% mem-

brane coverage and that increasing coverage led to a monotonic decrease in monomer

concentration at t = 10. At 50% coverage, there was barely any increase in monomer con-

centration within the microdomain region. This relationship, as well as the model results
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for dimer and trimer formation are depicted in Figure 4.24.

Interestingly, the relationship between microdomain length and total membrane cov-

erage is more complex when protein-protein reaction is taken into account: in both cases,

high membrane coverage leads to the fewest complexes being organised when microdomains

are small. At higher microdomain lengths, however, more complexes are organised in the

50% coverage system than in systems with a lesser microdomain fraction.

In both dimer formation and trimer formation, the peak was almost indistinguishable at

the optimal length between the 5% and 10% coverage cases. The results in this section are

interesting in that they support the two dimensional simulation results in Chapter 3, Figure

3.5, in which the 10% and 25% coverage system lead to a greater number of receptors being

formed at low microdomain radii, but the 50% microdomain fraction system organises

more receptors at higher microdomain radii. The result also raises important questions

about whether upregulating raft formation in cell membranes would facilitate increased

signalling, if the number of complexes organised in fact occurs at a lower microdomain

fraction.

Larger microdomains favour complex formation in long time scales

The results in Figure 4.21 suggest that complex formation is optimised for a particular

microdomain length at a particular timescale. Specifically, at longer timescales, eventual

complex organisation is maximised in systems with microdomains of greater length. The

behaviour of the system on extreme timescales is shown in Figure 4.25. Here we see,

despite the clear advantage of small microdomains at short timescales, as t → ∞, the

equilibrium number of trimers formed in the system is maximised in models with larger

microdomains. This result suggests that our, and other authors’ previous modelling work

may not have fully explored the evolution of the system on long enough timescales to

determine the equilibrium outcome, since our results in Chapter 3 as well as results from

Nicolau et al. [81] and other papers suggest that small microdomains maximise protein-

protein interactions.

Of course, the plot also shows that small microdomains organise trimers at a faster
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(b) Mean dimer concentration over whole space
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(c) Mean trimer concentration over whole space

Figure 4.24: This plot shows the dependence of monomer, dimer and trimer concentration
on microdomain size. Monomer concentration is measured within the microdomain area
and normalised by the initial level. Dimer and trimer concentrations are the mean over
the whole space. The various plots show total microdomain coverage of 50% (solid line),
25% (dashed line), 10% (dotted line), and 5% (dashed and dotted line).
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Figure 4.25: The limiting behaviour in large values of t for microdomain sizes of 1 (solid),
5 (dashed), 25 (dotted) and 125 (dashed and dotted).

rate initially, despite reaching a plateau relatively early. And if microdomains are only

transient, rather than stable, structures then the ability to facilitate receptor complexes

quickly before they dissipate may be a greater advantage than reaching a higher equilib-

rium concentration over a great period of time.

We have seen some agreement in the results of the analytical modelling in this chapter

with the simulation results of Chapter 3; in the next section we test our analytical model

by comparing it with the numerical simulations generated at the beginning of this chapter.

4.5 Model verification

We may use the numerical simulation generated at the beginning of this chapter in order to

verify the analytical model just derived. Plotting both sets of data on the same axis we see

that the analytical solution provides a good model of the related stochastic system. Figure

4.26 shows the two systems plotted over one another at four subsequent time points. The

fit is particularly good for small values of t, though there appears to be a slight discrepancy

within the microdomain region at t = 50. Figures 4.27 and 4.28 compare the analytical

model with the scheme 3 reaction-diffusion systems in which dimers and trimers form from

109



CHAPTER 4. REACTION-DIFFUSION PROCESSES WITH LOCALLY VARYING
DIFFUSION COEFFICIENTS

0 20 40 60 80 100

0
10

20
30

40

x, t = 50

M
on
om
er
s

0 20 40 60 80 100
0

10
20

30
40

x, t = 5

M
on
om
er
s

0 20 40 60 80 100

0
10

20
30

40

x, t = 10

M
on
om
er
s

0 20 40 60 80 100

0
10

20
30

40

x, t = 50

M
on
om
er
s

Figure 4.26: A numerical approximation to the analytical solution for monomer diffusion
in the periodic case, plotted over the numerical simulations generated at the start of this
chapter. The analytical model solution is plotted as a solid line and the numerical solutions
are plotted as a dashed line.
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the pool of diffusing monomers. In addition to verifying the diffusion behaviour of the

analytical model, the good fit of these two systems supports the simplifying assumptions

that we made regarding the formation of the multimeric complexes: that the system would

be treated as though it had reached an equilibrium at each individual point in the one

dimensional space.
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Figure 4.27: A numerical approximation to the analytical solution for dimer formation in
the periodic system, plotted over the numerical simulation. The analytical model solution
is plotted as a solid line and the numerical solutions are plotted as a dashed line.
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Figure 4.28: A numerical approximation to the analytical solution for trimer formation
in the periodic, plotted over the numerical simulations. The analytical model solution is
plotted as a solid line and the numerical solutions are plotted as a dashed line.
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4.6 Further work

We have further clarified the nature of protein sorting found in the simulations in Chapter

3; first by focusing in greater spatial detail on numerical simulations in a slice across the two

dimensional space and then by building increasingly complex analytical reaction-diffusion

models to mimic the systems of interest.

A limitation of the work in this chapter is, of course, that we have confined ourselves

to a single dimension. While this makes solution of the analytical system more amenable,

it makes the results harder to compare to the results of the previous chapter and also to

a biological system. Because a space comprising circular microdomains embedded in a

plane has distinct topological properties from finite lengths embedded in a straight line,

there could yet be non-trivial qualitative differences in the behaviour of the system. For

example, migrating proteins can traverse the plane without ever entering an embedded

microdomain, whereas proteins in the ‘membrane’ region are confined between the sur-

rounding microdomain regions. In further work, we would look to extend the analytical

approach to two dimensions and determine what, if any, qualitative differences in the

system were.

A more generalised approach to particle diffusion in inhomogeneous media is taken in

Bringuier [15], in which the author derives diffusion behaviours as particles diffuse in a

three dimensional volume with diffusivity varying either geometrically, defined by specific

structures as in our case, or depending on the local temperature of the medium (thermal

inhomogeneity). Further development of microdomain-mediated diffusion models could

build on the results in the above paper.

A second simplifying assumption in this chapter was that all monomer species were

seeded at the same initial concentration and that all complexation and degradation events

took place at the same rate. It would not be difficult to explore more realistic complexation

rates, which differ for the dimerisation step and the trimer formation; or to seed the

space with different numbers of constituent monomers. Expression of the IL2-α subunit,

especially, varies considerably in relation to the β and γ subunits [36]. In future work,

we would explore how one variation in the initial expression of one subunit affected the
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evolution of the system in time.
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4.7 Appendix B

In the paper by van Milligen et al. [78] the authors present an analytic solution to the

problem of particles diffusing on an infinite one-dimensional space with a discontinuity in

the diffusion coefficient at x = 0. As the method is not included in the paper, we re-derive

the solution below.

Particles diffuse on an infinite 1 dimensional space such that the diffusion rate for

x < 0 is DL and the diffusion rate for x > 0 is DR.

Diffusion governed by the equation:

∂n

∂t
=

∂2

∂x2
(Dn) (4.58)

Where n(x, t) is the concentration of particles. Also assume that ∂n
∂x = 0 at ±∞.

n0

DL DR

0

Figure 4.29: The system begins with a uniform distribution of particles at concentration
n0. The diffusion coefficient is DL for x < 0 and DR for x > 0.

This system has a smooth, uniform initial distribution of particles, but simulations

show that the distribution immediately becomes discontinuous at x = 0.

Consider the derivative of Dn with respect to t:

∂(Dn)
∂t

= D
∂n

∂t
+ n

∂D

∂t
(4.59)

Since D is constant in time, we have:

∂(Dn)
∂t

= D
∂n

∂t
= D

∂2

∂x2
(Dn) (4.60)
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The initial conditions for this system are: Dn = DLn0 for x < 0 and Dn = DRn0 for

x > 0.

Now, from the fundamental solution of the heat equation, solutions to systems of this

type have the form:

Dn(x, t) = B · erf
(

x

2
√
Dt

)
+ C (4.61)

where

erf(x) =
2√
π

∫ x

0
e−s

2
ds (4.62)

Note that erf(−∞) = -1; erf(−∞) = -1 and erf(0) = 0.

Now, allowing D to be discontinuous in x, we seek values of B and C such that both

Dn and ∂(Dn)
∂x are continuous.

At x = −∞, for all t > 0 we have:

DLn0 = C −B (4.63)

and so B = C −DLn0.

Then, taking the derivative of Dn:

∂DLnL
∂x

=
C −DLn0

2
√
DLt

· erf′
(

x

2
√
DLt

)
(4.64)

∂DRnR
∂x

=
C −DRn0

2
√
DRt

· erf′
(

x

2
√
DRt

)
(4.65)

since the derivative is continuous, we have:

C −DLn0√
DL

· erf′
(

x

2
√
DLt

)
=
C −DRn0√

DR
· erf′

(
x

2
√
DRt

)
(4.66)

at x = 0. i.e.
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C(
√
DR −

√
DL) = n0(DL

√
DR −DR

√
DL) (4.67)

C = n0

√
DRDL (4.68)
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Figure 4.30: Solutions of Dn with respect to x for the values n0 = 20, DL = 1, DR = 4
and t = 0.1, 0.2, . . . 1.0. The blue plots show the solution of the system for D = DL, valid
for x < 0 and the purple plots show the solution of the system for D = DR, valid for
x > 0.

Hence, dividing these solutions by D on each side of the boundary, we derive:

nL(x, t) = n0

√
DR√
DL

+
(
n0

√
DR√
DL
− n0

)
· erf

(
x

2
√
DLt

)
(4.69)

nR(x, t) = n0

√
DL√
DR
−
(
n0

√
DL√
DR
− n0

)
· erf

(
x

2
√
DRt

)
(4.70)

as in van Milligen et al. [78].
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Chapter 5

T cell proliferation responses to

microdomain-mediated signalling

5.1 Introduction

In the preceding chapters, we have investigated the formation of a simplified trimeric

IL-2 receptor, depending on the structure and properties of the membrane in which its

constituent monomers are diffusing. The formation of such a receptor, however, is only a

single piece in an immune response of considerable complexity.

As discussed in Chapter 2, IL-2 is a potent autocrine signalling molecule for T cell

proliferation in lymph nodes and in the periphery. Signalling is in response to a threshold

level of signalling via the TCR. In this chapter, we combine the model of the previous

chapter with existing, tested models of T cell proliferation in order to quantify the degree to

which receptor organisation can determine cell population expansion, and how membrane

microdomains could influence this mechanism.

The threshold-mediated response to stimulatory signals is a common feature of im-

munological signalling networks. As we discussed in the Literature Review, T cell stimula-

tion by the TCR is determined by threshold numbers of pMHC bound in the TCR clusters

in the immunological synapse[72]. Likewise, Smith et al. postulated a threshold-mediated

proliferative response in T cells to IL-2 signalling [21, 108], whereby cell population growth
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is negligible below a certain number of bound receptors per cell, and increases sharply to

a constant growth rate above that threshold. This behaviour is also seen in studies of

epidermal growth factor stimulation [92] and IL-7 signalling [86, 85] and fits well with the

observed proliferative response of T cell populations in in vitro studies[37].

Busse et al. combined mathematical modelling with experimental work to confirm that

TH cells also react to stimulation by IL-2 with a threshold-type behaviour and suggest

that the secretion of IL-2 receptors above a certain level of exposure to extracellular ligand

controls this phenomenon [19]. They also note that the presence of Treg cells shifts the

value of the threshold at which TH cells are activated.

Threshold activation behaviour may also occur at the cell population level. Feinerman

et al. [38] modelled how the density of TH cells affected the ability to produce the sustained

levels of STAT5 needed for immune response and also found that a threshold density of cells

controlled whether or not immunostimulatory signalling was sustained in the population.

The ligation of the IL-2 receptor is the first step in the T cell proliferative response.

Depending on the concentration of extracellular IL-2 the subsequent size of the T cell

population can vary greatly. As well as the rate of cell division, IL-2 signalling strength

can affect the rate of cell death after the first division[31].

5.2 Cell proliferation models

There exist several models of T cell proliferation in response to extracellular IL-2. One such

is that by Fallon & Lauffenburger [36], which uses a system of coupled ODEs, combined

with an empirically derived function relating the proliferation rate to the number of bound

membrane complexes.

The model describes the time evolution of unbound IL-2 receptors, bound receptors

and free IL-2 in a two-compartment system: both on the cell surface (or the extracellular

space in the case of IL-2 ligand) and in the endosome. The components and parameters

making up the model are described in Table 5.1, where internalised quantities are denoted

with the subscript i. The model dynamics are described visually in Figure 5.1, which
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Notation Definition Value unit
Rs Unbound surface receptors 1500 receptors per cell
Ri Unbound internalised receptors 300 receptors per cell
Cs Bound surface receptors 0 receptors per cell
Ci Bound internalised receptors 0 receptors per cell
L System concentration of IL-2 10 pM
Li Endosomal concentration of IL-2 0 pM
Y Number of cells 2.5× 108 cells
kr Surface dissociation rate constant 0.0138 min−1

kf Surface association rate constant kr/11.1 pM−1 min−1

kre Endosomal dissociation rate constant 8kr min−1

kfe Endosomal association rate constant kre/1000 pM−1 min−1

kt Receptor internalisation rate 0.007 min−1

ksyn Induced receptor synthesis rate 0.0011 min−1

ke Bound receptor internalisation rate 0.04 min−1

kx Recycling rate constant 0.15 min−1

kh Degradation rate constant 0.035 min−1

Vs Constitutive receptor synthesis rate 11 min−1

Ve Total endosomal volume 10−14 L/cell
NA One picomole 6.022×1011 -

Table 5.1: Model variables and parameters in the Fallon model

represents the following system of coupled equations:

∂Rs
∂t

= −ktLRs + (kr + ksyn)Cs − ktRs + Vs (5.1)

∂Cs
∂t

= kfLRs − (kr + ke)Cs (5.2)

∂Ri
∂t

= −kfeLiRi + kreCi + ktRs − khRi (5.3)

∂Ci
∂t

= kfeLiRi − (kre + kh)Ci + keCs (5.4)

∂L

∂t
=
(
−kfLRs + krCs + kxLiVeNA

NA

)
Y (5.5)

∂Li
∂t

=
kreCi − kfeLiRi

VeNA
− kxLi (5.6)

∂Y

∂t
= max

(
600Cs

250 + Cs
− 200, 0

)
× 103 (5.7)

The model describes the eventual population expansion of T cells, in response to the

binding and internalisation of IL-2 ligand to pre-formed IL-2 receptors. The cell population

growth rate is described by the final equation and is based on a phenomenological fitting

of a growth curve to experimental data generated by the authors in an earlier paper [37].
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Figure 5.1: A cartoon of the dynamics described by the Fallon model.

The equation results in a threshold behaviour where cell growth is zero when the number

of bound surface receptors (Cs) is below 125, and rapidly plateaus as the number of bound

surface receptors increases.

The change in concentration of the extracellular ligand, L, is determined by the balance

between ligand binding to cell surface receptors (Rs), the disassociation of ligand from

bound receptor complexes (Cs) and the recycling of internalised ligand from the endosome

(Li). This is modelled as the net change in concentration (measured in picomoles) per

cell, multiplied by the total number of cells in the population Y .

We re-implemented the ODE model above as a numerical system solved using an R

script (listed in Appendix C), employing the Euler method to calculate the updated values

of all the variables involved. We solved the system using a fixed timestep of 0.2 minutes;

larger timesteps led to numerically unstable solutions.

Running the simulation with the initial values listed in Table 5.1 we see the profile over

time of the cell receptor states, the systemic concentration of IL2, and the proliferation of

T cells in response to the IL2 signal. This output is shown in Figure 5.2. Starting from an

extracellular concentration of 10pM free IL-2 ligand, the extracellular signalling molecule
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is consumed in around 8000 minutes as it is taken up by surface receptors, internalised

and lysed. Note that a small fraction of the IL-2 is recycled into the extracellular space

at a rate determined by the parameter kx. The model is initiated with 1500 free receptors

expressed on the cell surface and 300 in the endosome. The number of free receptors per

cell rapidly drops in the first few hundred minutes as they bind the IL-2 ligand, and then

returns slowly to its initial level as the signalling molecule is depleted. Cell density also

rises steeply in the first 2000 minutes, but only to around 15% higher than its starting

value. These numerical solutions to the ODEs above match well with the figures published
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Figure 5.2: The first 8000 minutes of the T cell proliferation model, with an initial cell
count of 2.5×108 and an initial IL2 concentration of 10pM.

by Fallon & Lauffenburger.

Several other theoretical approaches to T cell proliferation signalling are also worthy

of note.
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Deenick et al. [31] created an event-based stochastic model of T cell proliferation and

measured T cell numbers in timed harvests for a range of IL-2 concentrations in order

to determine the dependence of the time-evolution of T cell population size on ligand

concentration. They found that increased IL-2 signalling strength did not affect the time

to the first cell division, but that it decreased the time between subsequent divisions and

also increased the survival probability of T cells from one generation to the next.

Bidot et al. [13] adapted the model of Fallon & Lauffenburger to include earlier up-

stream events, including the ligation, activation and internalisation of the TCR; the spatial

effects dependent on the organisation of the immunological synapse; the cellular expres-

sion of CD69 and IL-2 in response to TCR activation; and feedback loops between IL-2,

IL-2 receptor, and CD69 expression. This model however considered only a single cell

embedded in a small extracellular space and did not model increases in cell population

density.

In the following section, we take the model of Fallon & Lauffenburger and perturb key

parameters in order to quantify the significance of surface receptor expression on system

behaviour.

5.3 Sensitivity to surface receptor number

The earlier modelling chapters monitored the increased propensity of a reaction-diffusion

system to organise trimers on the cell surface. In the Fallon model, trimeric IL-2 surface

receptors are represented by the quantity Rs. These are constitutively expressed at a rate

Vs and internalised at a rate kt.

For the purpose of this chapter, we will interpret the surface expression of new receptors

as a two step process in which the components of the receptor are first expressed as

monomers and then the receptor subsequently organises on a timescale significantly less

than the length of the simulation. We will take the maximum time period for a receptor

to organise to be 1 minute.

In this way, any increased level of trimer formation can be expressed within the model

as a coefficient of the constitutive receptor synthesis rate. We will name this quantity the
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perturbation coefficient and represent it with the symbol Cp.

In this section, the equation modelling the change in surface receptor numbers is now:

∂Rs
∂t

= −ktLRs + (kr + ksyn)Cs − ktRs + CpVs (5.8)

We tested the sensitivity of the system to variations in Cp over 5 values: 0.25, 0.5, 1, 2

and 4. We also ran the simulation at a high initial IL-2 concentration of 100pM as in the

original paper[36].

The results of these experiments are shown in Figures 5.3 and 5.4.

In the low initial concentration simulation, lowering the rate of constitutive receptor

expression lowered the consumption rate of ligand and decreased the degree of prolifera-

tion to almost nothing. The balance between receptor internalisation and expression was

disturbed so both bound and unbound surface receptors fell to very low levels, where they

remained for the duration of the simulation.

Increasing Vs had the opposite effect: IL-2 ligand was depleted rapidly – within 2000

minutes when expression was increased fourfold – and the increase in cell density was

much higher for both twofold and fourfold increases in receptor expression rate. The cell

population increased by roughly another 70% of its starting density.

With a fourfold increase in surface receptor expression, the number of unbound surface

receptors climbed to over 4 times the original level and, after peaking early, the number of

bound receptors fell to zero at around 2000 minutes as the extracellular ligand was fully

depleted. The behaviour of the system responding a high initial concentration of IL-2 was

slightly different. Again, the cell population with the highest rate of constitutive receptor

expression consumed the extracellular ligand in the shortest time. Even though the initial

concentration of ligand was increased tenfold from the previous set of simulations, it was

all depleted in less than twice the time for the highest rate (Cp = 4) of receptor expression.

Notably, in this set of experiments the cell density increased to the highest value for

intermediate receptor expression rates. Whereas, in the low initial concentration simula-

tions, increasing Cp above 1 led to a higher eventual cell density; in this set of simulations,

the faster rate of receptor expression meant that the cell density increased more quickly,
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Figure 5.3: T cell proliferation in response to IL2 with the receptor synthesis rate mul-
tiplied by a factor of 0.25 (solid line), 0.5 (dashed line), 1 (dotted line), 2 (dashed and
dotted line) and 4 (long dashed line). The initial IL2 concentration was 10 pM.
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but then plateaued at an earlier point. The control system (Cp = 1) was still increasing in

cell density at the end of the simulation and had already surpassed the highest expression

rate (Cp = 4) at that point. These initial results show the scope for optimising membrane
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Figure 5.4: T cell proliferation in response to a raised initial IL2 concentration of 100 pM.
The receptor synthesis rate was multiplied by a factor of 0.25 (solid line), 0.5 (dashed
line), 1 (dotted line), 2 (dashed and dotted line) and 4 (long dashed line).

receptor complex organisation in influencing the degree of cell proliferation. Importantly,

there appears to be a non-monotonic relationship: when initial ligand concentrations are

high then there exists an optimal rate of receptor expression to maximise eventual cell

population density. For lower initial concentrations, increasing receptor expression rates

appears always to increase the eventual population density, though more exhaustive pa-

rameter testing would be needed to verify this.
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5.4 Parameter exploration

5.4.1 Method

In the previous section, we saw that perturbations to the constitutive expression of IL-2

receptor in the Fallon model led to wide variation in the rate of cell proliferation and

eventual population size. In this section, we explore which range of biologically plausible

parameters may lead to a sufficiently large perturbation in IL-2 receptor expression.

We return to the analytical model in Chapter 4 in order to calculate how the surface

microdomain structure might affect IL-2 receptor formation. Recall, however, that the

model generated a complex relationship between microdomain size and trimer formation

over time in that larger microdomains tended to form trimers more slowly, but eventually

reached a higher equilibrium value.

In order to take this behaviour into account within the dynamics of the second model,

we will make the further assumption that microdomains have a fixed lifetime, τ , and that

they decay after that timepoint. In this way, we can calculate the number of trimers organ-

ised within a single microdomain lifetime and return this as the value for the constitutive

receptor expression at each timestep of the model.

Using Fallon’s model as a control system, we require an extra calculation step to

determine the effect of membrane heterogeneity on system behaviour. If we interpret

Vs as the number of trimers organised under control conditions, then we must calculate

the number of monomer species necessary to form that number of trimers under control

conditions. We determine this relationship by solving Equation 4.56 for n0 instead of [C].

We re-ran the R script to solve the analytical model of the previous chapter, varying

six model parameters: a (the microdomain length), τ (the microdomain lifetime), φ (the

membrane coverage), kd (the complex dissociation rate), ρ (the ratio of the high-speed

diffusion constant to the low-speed diffusion constant), and Vs (the number of trimers

organised in the control system). The complex association rate, kc was fixed at 1 and the

high-speed diffusion rate was fixed at 0.05µm2s−1 (see Section 5.4.2).

With each run of the model, we inferred the necessary number of monomers nmono(vs)

at time t0 to organise the specified number of trimers given by Vs. We then recalculated
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the modelled number of trimers formed in the presence of microdomain regions in the

same time frame. From this we calculated the perturbation constant:

Cp =
T̄ (a, τ, φ, kd, ρ, nmono(vs))

vs
(5.9)

where T̄ denotes a function returning the mean number of trimers organised by unit length.

5.4.2 Choice of parameter range

The choice of parameters tested in this section is informed by the values taken from the

various studies reviewed in Chapter 2.

• Length, a: Nicolau et al. [81] modelled microdomains in the range 6–50nm; Pralle

et al. estimated microdomain size as 26±13nm using single particle tracking; Veatch

et al. detected lo domains in multilamellar vesicles of diameter 80nm; microdomains

in a ternary lipid model by de Almeida et al. [27] existed in two forms: 20–75nm in

binary lipid mixtures and 75–100nm in ternary mixtures.

• Lifetime, τ : Kusumi et al. [62] review several studies estimating raft lifetimes in-

cluding Subczynski et al. [110], which posits the existence of multiple types of

microdomain with lifetimes varying from 100ns to several minutes.

• Microdomain coverage, φ: the fractions tested follow the values used in Nicolau et

al. [81]; studies by Hao et al. indicate that in some cases, ‘raft’ fractions could make

up 30–50% of the total membrane area; Prior et al. found that raft fractions covered

around 35% of the cell membrane in a BHK model.

• Difference in diffusion rate, ρ: Pralle et al. determined that local viscous drag was

between one twice and five times as great inside lipid rafts as in the membrane.

• Baseline receptor expression, Vs: Fallon et al. use a value of 11 receptors per minute.

The above ranges form the basis of the parameter ranges investigated in the following

section. The exact values tested are shown in Table 5.2.
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Notation Definition Unit Range of values
a Microdomain length µm 0.001, 0.005, 0.025, . . . , 3.125
τ Microdomain lifetime min 10−5, 10−4 . . . , 10−1, 1
φ Microdomain coverage - 50%, 25%, 10%, 5%
kd Dissociation rate min−1 10−3, 10−2, . . . , 103

ρ Retardation constant (DR
DL

) - 2, 4, 8, 16
Vs Baseline trimer concentration pM 1.25, 2.5, 5, 10, 20, 40, 80

Table 5.2: Parameters varied from Chapter 4 model. DR is fixed at 0.05µm s−1.

5.4.3 Coarse-grained parametric analysis

We calculated multiple solutions to the analytical model in Chapter 4, based on the

parameter sets specified in Table 5.2. For each instance of the model, we calculated the

perturbation coefficient Cp. This generated an array of 28224 values for Cp. The maximum

of the array was Cp = 7.873 and the minimum was Cp = 0.995. This shows that in the

parameter range explored, the presence of microdomains does not significantly impede the

formation of trimers, and that certain parameter sets see an almost eightfold increase in

receptor expression compared to a system with no microdomains.

The set of parameters which lead to a large increase in receptor organisation, however,

is relatively narrow. Figure 5.5 shows a logarithmic plot of the number of parameter sets

of all those tested that result in perturbation constants in the range 1.0–8.0. From the

figure, one can see that the vast majority of parameter sets tested result in only a negligible

increase in trimer formation, which implies that microdomain mediated complex formation

may be highly dependent on the interplay between the parameters of the system. Of the

entire set of parameters tested, 43 sets led to a greater than twofold increase in trimer

formation and 9 sets led to a greater than fourfold increase.

Of the 9 parameter sets which resulted in a greater than fourfold increase in trimer

organisation, the length of the microdomains in each case was 0.125µm and the lifetime

of the microdomains was at the upper end of the scale at 1 minute. They also all had

a high dissociation rate of 1000 min−1. The remainder of the parameter values in this

subset are shown in Table 5.3. Figure 5.6 shows contour plots of the dependence of Cp

on both microdomain length and baseline receptor expression rate. The three subfigures

128



CHAPTER 5. T CELL PROLIFERATION RESPONSES TO
MICRODOMAIN-MEDIATED SIGNALLING

φ ρ Vs Cp

10% 16 1.25 5.849
10% 16 2.5 4.995
10% 16 5.0 4.195
5% 8 1.25 5.321
5% 8 2.5 4.450
5% 16 1.25 7.873
5% 16 2.5 6.365
5% 16 5.0 5.079
5% 16 10.0 4.023

Table 5.3: Parameter sets resulting in over fourfold increase in trimer formation.
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Figure 5.5: The base 10 logarithm of the number of parameter sets explored in Section
5.4.3 resulting in a perturbation constant of magnitude Cp.
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depict solutions to the model for three different values of ρ. As can be seen in the figure,

the receptor organisation is optimised around the approximate 0.125µm range, which is

invariant for all values of ρ. The value of Cp is maximised for high ρ values and low

Vs values, i.e. protein diffusion is greatly slowed within microdomains and receptors are

expressed sparsely in the control system. The contour plot for the case ρ = 2 is not shown

as all Cp values were in the range 1–2. The membrane coverage, φ was held constant at

5% for the plots in this figure. Figure 5.7 shows a similar plot where ρ is held constant

at 16 and the membrane coverage, φ, is increased over four values. Here, again, we see

that low microdomain coverage increases the amplifying effect of microdomain-mediated

complex organisation. For the two lowest coverage values (5–10%) we see that the optimal

length scale again appears to be around 0.125µm. When coverage increases to the 25–50%

range, however, it appears that the optimal length scale also increases. This suggests

that the existence of optimal length scales in enhancing complex formation is dependent

on total membrane coverage as well as the lifetime of the microdomains. In Figure 5.8,

we see a similar plot with a more detailed depiction of the change in Cp with respect to

microdomain length. Again, this is at a relatively long timescale (τ = 1 min) and the

values of φ and ρ are 5% and 16 respectively. The previous figures all depict the state

of the model at the longest timescale of 1 minute. It was only at this timescale that Cp

values greater than 4 were observed. Figure 5.9 shows the evolution of the system up to

that point at the two prior timescales tested: 0.01 min and 0.1 min. Note that the first

two subfigures are plotted on an axis with a range of 1.0–1.8 and the third subfigure is

plotted on an axis with a range of 1.0–8.0.

Notably, there is little increase in Cp at short timescales, even up to six seconds; all

of the enhancement of trimer formation depends on microdomains existing for between 6

and 60 seconds, or possibly longer.

5.5 Finer-grained parameter exploration

In the previous section we identified sets of parameters that maximised the amplifying

effect of microdomain presence on trimer formation, within a predetermined range of
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Figure 5.6: Increased trimer formation for increased values of ρ with other parameter
values set at: τ=1min, φ = 5% and kd=1000. Microdomain length is shown on the
horizontal axis on a log5 scale and Vs is on the vertical axis on a log2 scale. The increase
in trimer formation for ρ = 2 is less than twofold for all values of a and Vs.
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Figure 5.7: Increased trimer formation for increasing values of φ with other parameter val-
ues set at: τ=1min, ρ = 16 and kd=1000. Microdomain length is shown on the horizontal
axis on a log5 scale and Vs is on the vertical axis on a log2 scale.
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Figure 5.8: Increased rate of trimer formation (Cp) plotted against a (log5 scale) for four
different values of microdomain coverage. The various series show different values of Vs
where the uppermost solid line shows a Vs value of 1.25pM µm−2 and the lower series
show higher values of Vs.
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Figure 5.9: Increased rate of trimer formation (Cp) plotted against a (log5 scale) at three
subsequent time points. The various series show different values of ρ where the lowest,
solid line depicts ρ = 2 and the higher series show higher values of ρ.

Notation Definition Unit Range of values
a Microdomain length µm 0.05, 0.075, 0.1, 0.125, 0.0.15, 0.175, 0.2
φ Microdomain coverage - 1%, 2%, . . . , 10%
Vs Baseline trimer concentration pM 1, 2, . . . , 10

Table 5.4: Parameter variation for Section 5.5 results. Other parameter values are held
fixed at τ = 1 min, kd = 1000 s−1 and ρ = 16.

biologically plausible values. In this section, we examine the model output in greater

detail around the parameter space previously identified, fixing parameter values that were

highly invariant and varying others linearly rather than exponentially.

Although the microdomain length was a highly invariant parameter in terms of pro-

ducing an optimised increase in trimer formation, we will still explore length dependence

in this section, but at a finer resolution than in Section 5.4.3. The parameter sets tested in

this section are listed in Table 5.4. This range of parameters returned the model output as

a 700 element array. Of these, 658 parameter sets generated an increase in trimer forma-

tion of greater than twofold; 325 generated an increase in trimer formation of greater than

fourfold; and 27 generated an increase of greater than eightfold. The maximum Cp value

was 15.057 and the minimum was 1.435, indicating that trimer formation was enhanced

in all of the experimental setups tested in this section.

A logarithmic plot of the number of parameter sets resulting in an increase of the

value of Cp is shown in Figure 5.10. As can be seen, the mode of the distribution is
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around a fourfold increase in receptor formation, and many sets result in increases up to

8 or 9 times the baseline expression rate. The interplay between microdomain length and
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Figure 5.10: The base 10 logarithm of the number of parameter sets explored in Section
5.5 resulting in a perturbation constant of magnitude Cp.

baseline expression rate is depicted in the contour plots in Figure 5.11. As shown in the

figure, when total membrane coverage is very low (1%), only very small microdomains

and very low baseline receptor expression result in an increase in complex formation. The

‘optimal length scale’ seems to exist at higher membrane coverage values: at around 0.1

µm for 5% coverage and around 0.14 µm at 10% coverage.

5.6 Discussion and further work

The results in this chapter give the strongest evidence yet for a significant role for mi-

crodomains to play in facilitating receptor organisation, although the wide distribution in

values for the quantity Cp suggests that mechanisms depending on spontaneous protein

sorting into low-diffusion regions are highly dependent on the lifetime of those regions, the

chemical kinetics of the proteins involved and the relative diffusion rates in and out of the

microdomains.

In this chapter we have modelled how the presence and geometric properties of mi-
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Figure 5.11: Increased trimer formation for increasing values of φ with other parame-
ter values set at: τ=1min, ρ = 16 and kd=1000. Microdomain length is shown on the
horizontal axis on a log5 scale and Vs is on the vertical axis on a log2 scale.
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three increasing values of Vs. The various series show different values of φ with the solid
series depicting φ = 1%, the dashed series depicting φ = 5% and the dotted series depicting
φ = 10%.
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Figure 5.13: Increased rate of trimer formation (Cp) plotted against φ (linear scale) for
three increasing values of Vs. The various series show different values of a with the solid
series depicting a = 0.05%, the dashed series depicting a = 0.125% and the dotted series
depicting a = 0.2.
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crodomains might influence the proliferative behaviour of a population of T cells. This

was based on the assumption that proliferation is determined by a threshold number of

high-affinity (trimeric) receptors being bound at the cell surface.

As our model for cell proliferation, we adapted an earlier model by Fallon & Lauffen-

burger [36], and investigated the influence of the rate of high-affinity receptor expression,

Vs, on subsequent cell density and extracellular IL-2 consumption.

We defined a factor, Cp, which acted as a coefficient modulating the magnitude of Vs,

which was dependent on our model from the previous chapter. In the absence of membrane

microdomains Cp is equal to 1.

By solving a system of mass-action reaction equations, we determined the appropriate

initial conditions for our earlier reaction-diffusion model, in order to calculate values of Cp

for a wide range of parameter values and then examined the results to determine which

combinations of parameter values resulted in sufficiently large increases in trimer formation

to have a significant effect on the system behaviour, when coupled with the proliferation

model by Fallon et al.

Although we have tried where possibly to use biologically plausible parameter ranges

as input into the model, the simplifications made in order to solve the analytical formu-

lation of the reaction-diffusion processes considered mean that the model output is not

necessarily as plausible. For example: by a process of identifying regions of parameter

space that maximised complex formation we identified parameter sets which engendered

increases of trimer formation fifteen fold. This effect was dependent on selecting spa-

tial and chemical parameters which led to a great increase in the within-microdomain

monomer concentration. In our system, the only constraint preventing large increases in

within-microdomain concentration is the concomitant concentration-dependent increase

in flux out of the microdomain. In a real system, however, spatial crowding effects would

constrain the total concentration of any protein species within the microdomain to a fixed

upper limit. This would likely rule out dramatic increases in trimer organisation rate to

fifteen times the control case.

In future work, we would seek to clarify the constraints on spatial crowding in cell

138



CHAPTER 5. T CELL PROLIFERATION RESPONSES TO
MICRODOMAIN-MEDIATED SIGNALLING

membranes. These constraints could readily be added to the probabilistic model described

in Chapter 3, but we would also seek to integrate this consideration into our analytical

model to generate a more realistic range of outcomes.

We would also seek to validate the model against in vitro experiments: our modelling

results from the simple perturbation of the rate of surface receptor expression suggests a

means of further verifying the Fallon model against an experimental system. We would

also seek to better understand the dependence of receptor formation on an individual

monomer level, rather than treating the receptor as a pre-formed unit as in [36].

We would expand the scope of the model to include broader cell population dynamics

including cell death processes. This approach would be informed by the results of Deenick

et al. [31].

It is not clear to what extent the membrane composition changes over successive gener-

ations of daughter cells. In a first approximation we would assume that the microdomain

fraction of the membrane and microdomain characteristics are unchanged over successive

generations. We plan to search the experimental literature to investigate whether, for

example, cholesterol content in the membrane is decreased after cell division and whether

this might affect the formation of membrane microdomains of daughter cells. If there is

evidence that microdomain structure evolves over successive generations of T cells then

we would also incorporate this change into the proliferation model.

Finally, we would also seek to incorporate the microdomain model on populations of

multiple cell types. This would be informed by the work on the crossregulation model

of immunity developed by Carneiro, León et al. [22] and further developed by Garćıa

Mart́ınez and León [41]. The model describes the balance between tolerance and immunity

determined by the relative cell population growth of Treg and TH cells as the cells compete

for extracellular IL-2. Incorporating a dependence on the level of IL-2 membrane receptors

into the model would help in understanding additional variables in designing effective IL-2

modulation therapies.
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5.7 Appendix C

This appendix lists the code for the implementation of the model by Fallon & Lauffenburger

tPoints=seq(1:80000)

#Kinetic constants (from Lauffenburger)

kf = 0.0138/11.1 #on rate for ligand binding

kr = 0.0138 #off rate for ligand binding

kre = 8*kr #off rate in endosome

kfe = kre/1000 #on rate in endsome

kt = 0.007 #constitutive internalisation const

vs = 11 #Constitutive receptor synthesis

ksyn = 0.0011 #induced receptor synthesis

ke = 0.04 #internalisation const

kx = 0.15 #recycling rate constant

kh = 0.035 #degradation rate const

ve = 10^(-14) #volume of cell in litres

#Other constants

area = 4*pi*(3.5*10^(-6))^2 #Sphere with radius 3.5micrometres

picomolar = 10^(-11)

avo = 6.022*10^23 #Avogadro’s constant

na = avo/(10^12)

#Parameter

vsvals = c(0.125,0.25,0.5,1,2,4,8)

#Quantities

IL2=array(10,c(length(tPoints),length(vsvals)))

receptor=array(1500,c(length(tPoints),length(vsvals)))

bound=array(0,c(length(tPoints),length(vsvals)))
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intIL2=array(0,c(length(tPoints),length(vsvals)))

intreceptor=array(300,c(length(tPoints),length(vsvals)))

intbound=array(0,c(length(tPoints),length(vsvals)))

numcells=array(2.5*10^8,c(length(tPoints),length(vsvals)))

#This is assuming that timepoints are equal to 1 minute

timeshift=0.1

for(val in 1:length(vsvals)) {

for(t in 2:length(tPoints)) {

delIL2 = (kr*bound[t-1, val] - kf*IL2[t-1, val]*receptor[t-1, val]

+kx*intIL2[t-1, val]*ve*na)*numcells[t-1, val]/na

delreceptor = (kr+ksyn)*bound[t-1, val] - kf*IL2[t-1, val]*receptor[t-1, val]

- kt*receptor[t-1, val] + vsvals[val]*vs

delbound = kf*IL2[t-1, val]*receptor[t-1, val] - (kr+ke)*bound[t-1, val]

delintIL2 = (kre*intbound[t-1, val]

- kfe*intIL2[t-1, val]*intreceptor[t-1, val])/(na*ve)

- kx*intIL2[t-1, val]

delintreceptor = kre*bound[t-1, val]

- kfe*intIL2[t-1, val]*intreceptor[t-1, val] + kt*receptor[t-1, val]

- kh*intreceptor[t-1, val]

delintbound = kfe*intIL2[t-1, val]*intreceptor[t-1, val]

- (kre+kh)*intbound[t-1, val] + ke*bound[t-1, val]

delnumcells = max((600*bound[t-1, val])/(250+bound[t-1, val])-200, 0)*1000

IL2[t, val]=max(IL2[t-1, val]+delIL2*timeshift,0)

receptor[t, val]=max(receptor[t-1, val]+delreceptor*timeshift)

bound[t, val]=max(bound[t-1, val]+delbound*timeshift)
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intIL2[t, val]=max(intIL2[t-1, val]+delintIL2*timeshift)

intreceptor[t, val]=max(intreceptor[t-1, val]+delintreceptor*timeshift)

intbound[t, val]=max(intbound[t-1, val]+delintbound*timeshift)

numcells[t, val]=numcells[t-1, val]+delnumcells*timeshift

}

}
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Chapter 6

Discussion and evaluation

6.1 Thesis summary

We summarised the biological context for the studies undertaken in this thesis in Chapter

2. This provided an overview of the current state of research in microdomain-mediated

signalling, protein sorting, membrane imaging and analysis of the composition of distinct

membrane fractions. We examined the evidence in favour and against the significance of

transient microdomains in organising signalling complexes and saw how studies suggest the

existence of multiple types of microdomain as well as ‘picket fence’ structures influencing

the long-range diffusion of membrane-bound proteins.

Because of this diversity of evidence, we decided to focus mainly on the reduction in dif-

fusion rate as a mechanism for concentrating proteins in a confined area. In Chapter 3 we

created a probabilistic model describing reaction-diffusion processes in a two-dimensional

space and tested how varying spatial parameters – the radius and total microdomain cov-

erage of the membrane – influenced formation of a heterotrimer. We also tested alternative

schemes involving an affinity term for one or all of the monomers comprising the complex.

These alternative schemes influenced entry and exit probabilities for the diffusing proteins

and were based on specific mechanistic hypotheses from the literature.

The model in Chapter 3 supported the existence of a mechanism by which microdomain

formation assisted the organisation of trimeric signalling receptors, although not by a great
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degree. The parameter sets tested suggested the existence of optimal length scales for

the microdomains, although these length scales were in turn dependent on the total mi-

crodomain area fraction covering the membrane surface. In order to support the results of

the simulation, we returned to the fundamental reaction and diffusion equations governing

trimer organisation in a space filled with diffusing monomers. For the sake of simplicity,

we solved these equations for a one-dimensional space in Chapter 4 and again found that

the solution to the equations supported a microdomain-mediated mechanism for receptor

organisation. To verify the relationship between the analytical solution and the approach

taken in Chapter 3, we re-ran a one-dimensional analogue of the probabilistic model to

generate concentration profiles in a small neighbour hood of an individual microdomain

and found a good fit between the analytical and simulated solutions both for the diffusion

and the reaction-diffusion systems.

In Chapter 5, we reimplemented an existing model of T cell proliferation as a numerical

simulation and adapted the model in order to determine the significance of the rate of

surface receptor organisation on T cell-ligand interactions and cell population growth. We

found that, according to the model, an increased rate of receptor expression led to greater

population growth when the cells were exposed to a low concentration stimulus. When the

stimulus was at a greater concentration, we found that a higher rate of receptor expression

led to a faster initial population growth, but that intermediate expression rates led to a

greater overall population density.

In the same chapter, we ran a more thorough exploration of the parameter space in the

model from Chapter 4, informed by plausible parameter ranges taken from data encoun-

tered in the literature. This exploration identified approximate combinations of parameter

values that resulted in a significant increase in the rate of receptor organisation and, sub-

sequently, cell population growth. Using the approximate parameter values as a guide, we

ran a second, finer-grained exploration of parameter space to determine sensitivity of the

solution to microdomain length, coverage, and initial monomer levels. This exploration

identified parameter combinations leading to much greater increases in trimer organisation

than seen in Chapter 4 – up to 15 times – although the lack of accounting for crowding
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effects means that increases of this level would be unlikely in a physical system.

6.2 Context, criticism and further work

In this work we have sought to find a compromise between creating simple models from

which fundamental relations can be inferred and relevance to a real biological system. The

‘raft debate’ rages on [101] and much of the recent work suggests that any microdomain

organisation is driven by clustered proteins rather than by spontaneous lipid organisation.

For this reason, we sought to sidestep the question of how microdomains are formed and

which molecular interactions drive their organisation and instead to focus on hypothesised

physical properties of microdomains, namely the retardation of freely diffusing membrane

proteins.

The most similar study in the literature is that by Nicolau et al. [81, 82]. In addition

to the decreased diffusion in small membrane patches, the authors study the influence of

modelled picket-fence structures on protein-protein interaction. We find agreement with

their results in many cases: the appearance of small optimal length scales and the prefer-

ence for low total membrane coverage. Nicolau et al. also consider mobile microdomains,

finding that protein concentrating effects are increased in this case. We chose not to in-

vestigate mobile microdomains and instead have considered static domains. Despite this,

we have found clear evidence for a protein sequestering mechanism. The analytical work

in Chapter 4 would also have been extremely difficult to derive in the case of a moving

boundary.

We have laid the mechanism contributing to microdomain-mediated protein sorting

on a stronger foundation than in [81] by deriving analytical solutions to the fundamental

diffusion equations and demonstrating the correspondence between these solutions and

the simulated system.

There are a several features of this study that deserve criticism and should be addressed

in future work.

Firstly, the results of Chapter 4 are based on solving a one-dimensional system. These

are then integrated into a model based on a two-dimensional surface interaction in Chapter
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5. This is clearly an oversimplification and so the results should be treated as illustrative

of the mechanism, rather than as concrete predictions.

Other simplifications to make the system amenable to analysis include using fixed

diffusion rates across all the constituent protein species and fixed association and dissoci-

ation constants for all of the steps involved in the formation and degradation of dimeric

and trimeric complexes. Although we have concerned ourselves with the context of IL-2

receptor signalling, much of the work in this thesis applies to the formation of a generic

heterotrimeric membrane complex and more work is necessary to source realistic forward

and backward reaction rates for the formation of the IL-2 receptor in the membrane in

order to increase the relevance of our results to the target system.

As discussed in Chapter 4 we would also aim to take into account steric hindrance

between diffusing proteins in any future modelling work, ruling out unrealistic increases in

concentration over very small areas. This addition to the model would improve our ability

to test the plausibility of simple entropic traps being able to facilitate protein-protein

interactions in the absence of any other contributing factor.

We would also like to further investigate microdomain lifetime effects on systemic

receptor formation. Although we approached this in Chapter 5 by setting a fixed time in

which complex formation was allowed to take place, we think that this feature would be

well suited to testing with a stochastic model with a distribution of microdomain lifetimes

in order to examine how more dynamic microdomain recycling affects the equilibrium

behaviour of the system. Computational modelling approaches have examined similar

systems to this in examining the function of Ras nanoclusters under rapid organisation

and degradation [116], finding that this system provides a higher-fidelity transduction of

extracellular signalling than more static membrane structures.

An important aspect to successful studies employing biological modelling is validation

against experimental data. Although we have here aimed to test hypotheses about model

systems (i.e. hypotheses in the literature) rather than microdomains in vivo, we would

seek to more closely test predictions made by our model against real behaviours. In

any future work we would be interested in collaborating with groups undertaking high-
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frequency single-particle tracking experiments of the protein subunits of interest in order

to better parameterise the model. The computational model could be easily adapted to

output single particle trajectories rather than local concentrations and in that way we

could directly compare reaction-diffusion behaviours with experimental results.

Although this research is relatively theoretical, the medical implications of better un-

derstanding interleukin signalling should not be ignored. Various therapies targeting IL-2

and IL-15 receptors in order to treat autoimmune disorders among other diseases[124].

Monoclonal antibody therapy directed towards the α subunit of the IL-2 receptor has

been approved by the FDA to treat allograft rejection and has also been demonstrated

to be partially effective in treating multiple sclerosis [125]. Understanding proliferative

signals is also important in treating T cell leukaemias: the IL-2Rα subunit is overex-

pressed on malignant cells in patients with T cell leukaemia, cutaneous T cell lymphoma,

hairy cell B-cell leukaemia, Hodgkin’s disease and granulocytic leukaemia [122]. Thomas

Waldmann, the lead researcher in this field, writes:

[T]ranslation of basic insights concerning the IL-2/IL-2 receptor system ob-

tained using the monoclonal antibody daclizumab provided a useful strategy

for the prevention of organ allograft rejection and the treatment of patients

with select autoimmune diseases or T-cell leukemia/lymphoma [125].

This success motivates the further study of the detailed spatiotemporal organisation of

cell membrane receptors and receptor components as an important developmental step in

designing novel therapies for life threatening conditions.
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Summary and conclusions

We have developed a range of novel modelling approaches to answer fundamental questions

about the subtle diffusional dynamics associated with membrane microdomains. This di-

versity of approach has allowed us to attempt to address specific biological hypotheses

while also probing the general behaviour of the model system and inferring more general

dynamical principles. Although we made improvements to our understanding of the un-

derlying diffusion mechanism in Chapter 4, the example model output did not appear to

generate behaviour that would be highly significant in a biological system. Through a

systematic exploration of the model parameters, combined with a focus on ranges more

relevant to experimental data, we identified small parameter spaces that produces much

larger amplifying effects on complex organisation. These results were then discussed in

the context of other modelling and experimental work in Chapter 6 and ways in which it

could be improved and extended were suggested.

In this chapter, we appraise the contributions made by this thesis in the context of its

original objectives and state our conclusions.

7.1 Summary

The objectives of this thesis (Section 1.1) have all been fulfilled as follows:

1. Satisfied in Chapters 3–4. The diffusion Scheme 1 of Chapter 3 explored variation in

diffusion rate in two dimensions and the numerical simulations in Chapter 4 repeated
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this in a one dimensional space.

2. Satisfied in Chapter 3. Schemes 2 and 3 introduced affinity effects by controlling the

entry and exit of microdomain areas for particular protein species.

3. Satisfied in Chapter 4. The novel analytical solution to monomer species undergoing

reaction-diffusion on a periodic space with heterogeneous diffusion rates matched well

with numerical solutions.

4. Satisfied in Chapters 3–5. Numerical and analytical results all indicate the existance

of optimal length scales, although these are dependent on time scales among other

parameters.

5. Satisfied in Chapters 4–5. Chapter 4 explored the model space in the ranges tested

in numerical simulations and Chapter 5 explored the model space in ranges with

biologically relevant magnitudes.

6. Satisfied in Chapter 5. The trimer formation model was combined with an existing

T cell signalling and proliferation model.

7. Satisfied in Chapter 5. In addition to the dependence on length scale, parameter

testing identified diffusion rates, total microdomain coverage, surface concentrations

and dissociation constants that optimised microdomain effects.

7.1.1 Specific contributions

The primary contribution of this thesis is in further clarifying the plausibility of the mech-

anisms proposed for the formation of functional signalling platforms in the lipid raft hy-

pothesis. Through simple reaction-diffusion models we have explored hypotheses in the

literature on the role of microdomains in facilitating immunological receptor formation,

specifically the trimeric IL-2 receptor.

A list of specific contributions follows:

• Reviewed the literature relating to microdomain-mediated immunological signalling,

including both experimental and modelling approaches
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• Created a novel model simulating protein diffusion in the cell membrane and the

formation of trimeric receptor complexes

• Simulated specific reaction-diffusion schema in order to test existing hypotheses on

possible roles for membrane microdomains

• Predicted the lateral concentration profile of diffusing proteins in the vicinity of

microdomains based on one-dimensional numerical simulations

• Derived novel analytical solutions to Fokker-Planck diffusion law subject to specific

distributions of diffusion coefficient and spatial periodicity

• Combined analytical solutions with reaction equations to predict spatial distribution

of dimeric and trimeric complexes

• Validated analytical model and numerical model against each other

• Embedded receptor formation model in existing T cell proliferation model to generate

new hypotheses on cell population responses to IL-2 signalling

• Demonstrated that fundamental reaction-diffusion equations support a role for static

microdomains in facilitating multimeric receptor organisation

• Supported the hypothesis that optimal length scales exist for such microdomains

• Demonstrated that such length scales are highly dependent on microdomain lifetime

as well as other physical and chemical parameters

• Identified parameter spaces which maximise the enhancing effect of microdomain

presence

7.2 Conclusions

Researchers engaging in biological modelling are faced with a perennial choice: whether to

draw inspiration from biology only as a starting point to a beautiful problem or to employ

the rigour of mathematical and computational frameworks to bring added precision or
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comprehensiveness to the dialogue among experimental biologists. If modelling is to make

greater inroads into high-profile biological research then more of the latter approach than

the former is necessary, despite mathematicians often aspiring to G.H. Hardy’s pride in

uselessness, and the difficulty of researchers communicating across disciplines unused to

working together.

In this thesis we have travelled a little of the way down both paths: aiming to apply

our simplified models as closely as possible to real biological systems in Chapters 3 and 5

and indulging in the purer mathematical formulation of the problem in Chapter 4. This

combined approach helped us to maintain a more rigorous dynamical, rather than purely

phenomenological, design to the models while always keeping the complexity of the real

biological system in mind.

We conclude that, in the model formalisms developed in this thesis, microdomain pres-

ence has an amplifying effect on modelled receptor complex formation. This is supported

both by probabilistic models of particle diffusion as well as deterministic models govern-

ing the spatial distribution of particle ensembles over time, developed from particular

solutions of the heat equation. We note the simplifications made in order to make this

modelling approach feasible and have highlighted the parameter values and model out-

put that seems biologically implausible. We suggest that adding steric hindrance effects,

adapting the analytical work to a two-dimensional space and refining parameters such

as relative monomer numbers and kinetic constants to those of our target system, while

adding a layer of complexity to the model formulation, would allow us to make experimen-

tally testable predictions, rather than to infer more general features of the model system

described.

Although we attempted to take as agnostic an attitude as possible to the existence

question of microdomains, the results of the modelling offer evidence both in favour and

against the role of microdomains in the original formulation by Simons & Ikonen [104]. We

did find deterministic mechanisms supporting lipid microdomains playing a role in protein

sorting and complex organisation. The parameter space in which this enhancement of

receptor organisation took place, however, was so narrow that it seems unlikely to be
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a general rule. Further study to validate the model against experimental results and

identify the exact dynamic and kinetic parameters governing receptor formation is needed

in order to further clarify the answer to this question. If signalling platforms based on lipid

heterogeneity are significant in biological signalling processes, it seems likely, as stressed in

[62] that further stabilisation of the structures is needed on medium to long-term timescales

in order to have a discernible effect on downstream mechanisms.

We are, however, further convinced that spatiotemporal organisation in the cell in

general needs further attention among the modelling and experimental community and

that the improved understanding of the spatial and temporal organisation of cellular sig-

nalling processes will provide new insight into the function of combinatorial modules in

the complex cell signalling landscape.
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