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Abstract 

 

The invasion of erythrocytes by merozoites is driven by an actomyosin motor 

assembled below the parasite’s plasma membrane, with the myosin anchored on the 

inner membrane complex (IMC). The myosin (MyoA) is within a protein complex 

that is comprised of several proteins including myosin tail domain interacting protein 

(MTIP) and glideosome associated proteins (GAP) 45 and 50. A ternary complex of 

MyoA, MTIP and GAP45 is formed and later associates with GAP50. GAP45 is 

acylated by both myristoyl- and palmitoyl-fatty acids and is phosphorylated. This 

study has highlighted the GAP45 phosphorylation by calcium dependent protein 

kinase 1 (CDPK1) in vitro and its possible roles in schizogony. By site directed 

mutagenesis, substitution of S31, S89, S103 and S156 to alanine decreased the level 

of GAP45 phosphorylation, with S103A exhibiting a major decrease in 
32

P 

incorporation. Phosphorylation on S89 and S103 was studied further in parasites as 

both residues were among the phospho-sites in phosphopeptides identified in vivo. 

This study also showed that full length GAP45 labelled internally with GFP (FL-

GAP45) is assembled into the motor complex, phosphorylated and transported to the 

developing IMC in early schizogony, where it accumulates during intracellular 

development until merozoite release. The C-terminal truncated GFP-GAP45 (N-

GAP45; residues 1-29) localised at the plasma membrane instead of the IMC and 

was not assembled into the motor complex. The N-terminal truncated GFP-GAP45 

(C-GAP45; residues 30-205) behaved like FL-GAP45. Modifying serine residues, 

S89 and S103, in GAP45 with alanine or aspartate had no apparent effect on its 

assembly into the protein complex or its intracellular location during schizont 

development and merozoite maturation. A second highly phosphorylated component 

of the complex (GAP40) was also identified. The early assembly of the motor 

complex suggests that it has functions in addition to its role in erythrocyte invasion. 
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Chapter 1 

Introduction 

 

1.1 Malaria: History, global distribution and control 

Malaria is an ancient disease; its existence is recorded in Chinese documents (~2700 

BC), clay tablets from Mesopotamia (2000 BC), Egyptian papyri (1570 BC) and 

Hindu text from the sixth century BC. It was also well known in Greece around 850 

BC where it was recognised by the characteristics of poor health, malarial fevers and 

enlarged spleens seen in people living in swampy areas. At that time, they believed 

that this disease was caused by miasmas rising from swamps hence contributing to 

the name of the disease, mal’aria meaning bad air in Italian (Cox, 2010).  Now, 

malaria is recognised as a disease caused by apicomplexan parasites of the genus 

Plasmodium. The mammalian Plasmodium parasites are primarily transmitted by the 

female Anopheles mosquito but infections also occasionally occur through exposure 

to infected blood products (transfusion malaria) and by congenital transmission 

(Trampuz et al., 2003).  The disease is best known for its intermittent fevers and 

chills, whose periodicity reflects the nature of the asexual blood stage infection, 

described in detail in section 1.2.    

 By the 1940s, malaria had spread to almost two thirds of the world including 

temperate and tropical zones. However, in the middle of the 20
th

 century, malaria 

cases were concentrated in tropical areas due to successful disease control and 

eradication in temperate zones (Sachs and Malaney, 2002). There are several factors 

that contribute to the malaria transmission pattern. One of them is seasonality and 

temperature which can affect the reproduction and the growth cycle of malaria 

parasites. When the temperature falls below 16 to 18
o
C, the life cycle of the malaria 

parasite will be disrupted because of the impairment of biting activity for most 
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mosquito vectors. These conditions have helped control and eradication of malaria 

disease programmes to be more successful in temperate countries (Sachs and 

Malaney, 2002). On the other hand, tropical regions offer ideal conditions that favour 

the mosquito and parasite development. Other climatic features that favour malaria 

distribution are rainfall and humidity (Sachs and Malaney, 2002).   

 Globally, it was estimated that 3.3 billion people were at risk of malaria. Out 

of 216 million cases, about 655 000 persons died of malaria in 2010. 86 % of the 

victims were children under 5 years old and 91 % of malaria deaths occurred in 

African region (WHO, 2011). In contrast, a different study by Murray et al. (2012) 

has estimated twice the number of malaria mortality cases in 2010 as reported by 

WHO (2011).  The fluctuation of malaria mortality cases has also been addressed by 

Murray et al. (2012). Briefly, starting in 1980, malaria mortality cases increased from 

995,000 to 1,817,000 in 2004 and decreased to 1,238,000 in 2010. The majority of 

malaria mortality cases were reported in Africa, where figures increased from 

493,000 in 1980 to 1,613,000 in 2004 and decreased to 1,133,000 cases in 2010. 

Outside Africa, malaria mortality cases steadily decreased from 502,000 in 1980 to 

104,000 in 2010 (Murray et al., 2012).  The decrease in mortality cases starting from 

2004 to 2010 was the result of a scale up of control activities supported by 

international donors (Murray et al., 2012; WHO, 2011). 

  Malaria vector control programmes focus on the anopheline mosquito vector, 

through removal of breeding sites, use of insecticides, and prevention of contact with 

humans by the use of screens or bed nets impregnated with insecticides (Phillips, 

2001). Since an effective vaccine is still unavailable, the treatment of clinical cases 

relies on the use of antimalarial drugs. All of the first line antimalarial drugs, 

particularly chloroquine, mefloquine, pyrimethamine and atovaquone are no longer 

effective due to the emergence of drug resistant malaria parasites (Carter and 

Mendis, 2002; Phillips, 2001). Even the most effective antimalarial drug to date, 

artemisinin, has been reported to have reduced  efficacy in parasite clearance in some 

areas, including the existence of artemisinin resistant P. falciparum on the Thailand-

Myanmar border (Phyo et al., 2012).  The emergence of drug resistant parasites is 

caused by the increased selection pressures on P. falciparum in particular, due to 
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indiscriminate and incomplete drug use for self-treatment especially using the long 

half-life drugs such as chloroquine and pyrimethamine. The only cost effective and 

potent treatment remaining is by combination treatment with both long and short 

half-life antimalarial drugs. For example, treatment with artemisinins (short half-life 

but potent) will help to reduce the parasite load, allowing other long half-life drugs 

such as mefloquine to fully clear the parasite. These conditions reduce the chances 

that drug-resistant mutants will be selected (Phillips, 2001). However, resistance to 

existing anti-malarials, and the heavy reliance on just a single drug such as 

artemisinin and its derivatives to treat malaria means new drugs are desperately 

needed. Unravelling the biology of malaria parasites such as the invasion mechanism 

and signalling pathways involving kinases may elucidate new drug targets.  

 

1.1.1 The symptoms and clinical features of malaria 

The signs and symptoms of malaria infection in humans are caused by the asexual 

blood stage of the parasite, specifically when the parasites mature and  rupture their 

host red blood cell (Trampuz et al., 2003). Most of the symptoms start to appear at an 

average of 12 days after the inoculation of sporozoites from the mosquito saliva into 

the bloodstream. Malaria infections are broadly divided into mild and severe cases 

(Weatherall et al., 2002). Mild malaria symptoms often include headache, myalgia, 

malaise, coughing, shaking, chills, fever, and intermittent sweating. These may also 

be accompanied with nausea, vomiting, diarrhoea, and abdominal pain. Other 

obvious signs are the enlargement of the spleen and liver and mild jaundice 

(Trampuz et al., 2003; Weatherall et al., 2002). 

 In severe malaria, patients may exhibit a number of serious syndromes such 

as coma caused by cerebral malaria, respiratory distress, anemia, and hypoglycemia 

(Weatherall et al., 2002). Cerebral malaria results in reduced consciousness and 

coma. It is caused by the sequestration of parasitized red blood cells in cerebral 

capillaries. (Weatherall et al., 2002). Anemia may be caused by the cyclical invasion 

and destruction of blood cells by the parasite.  Infected red blood cells may also be 

phagocytosed by macrophages following opsonisation by immunoglobulin and/or 
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complement components. Not only that, the non-infected red blood cells may also be 

phagocytosed due to an increase in signal for recognition of uninfected red blood 

cells by macrophages (Weatherall et al., 2002). In addition, the survival of non-

infected red blood cells may also be shortened due to dyserythropoiesis, the 

abnormal development of erythroid precursors in bone marrow. There is no clear 

evidence of what causes the dyserythropoiesis in severe malaria, although the 

inhibitory effect of parasite hemozoin (haemoglobin digestion product) to 

erythropoiesis has been reported (Casals-Pascual et al., 2006; Giribaldi et al., 2004; 

Lamikanra et al., 2009; Skorokhod et al., 2010). Respiratory distress is a common 

symptom in severe malaria. It is defined by tachypnea (rapid breathing), gasping 

breathing and usually represents metabolic acidosis. Acidosis is caused by the 

excessive lactate (Weatherall et al., 2002) due to tissue hypoxia secondary to 

microvascular obstruction (Clark and Cowden, 2003). Hypoglycaemia is most 

common in children with severe malaria. It happens because of hepatic 

gluconeogenesis failure and increased consumption of glucose in peripheral tissues 

and by parasites (Dekker et al., 1997).  

 

1.1.2 The human Plasmodium parasites 

There are 5 species of malaria parasites infecting humans. These parasites are 

Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium 

ovale and Plasmodium knowlesi (Antinori et al., 2012). The parasites have been 

characterized from ancient times by the periodicity of their reproduction in the blood. 

For example, ‘tertian’ and ‘quartian’ refers to their characteristic feature of an acute 

febrile episode, or paroxysm, that returns respectively every third and fourth day 

(Carter and Mendis, 2002; Garnham, 1966).  The latest recognised human malaria 

parasites species, P. knowlesi (quotidian or daily cycle) was originally known to be a 

simian malaria parasite particularly in the long tailed and pig tailed macaques, 

Macaca fascicularis and Macaca nemestrina respectively. It has been defined as the 

fifth human malaria species following the discovery of human P. knowlesi infection 

cases in Malaysia Borneo (Cox-Singh et al., 2008; Singh and Daneshvar, 2010) and 

other Asian countries such as Thailand (Jongwutiwes et al., 2011; Jongwutiwes et al., 



 

25 

 

2004), Philipines (Luchavez et al., 2008), Singapore (Ng et al., 2008) and Vietnam 

(Van den Eede et al., 2009).  

P. falciparum is highly pathogenic and the most deadly parasite causing 

malaria in human as it often leads to severe malaria. In 2010, 91% of the estimated 

malaria cases were due to P. falciparum infection (WHO, 2011). It has 48 hours of 

asexual blood stage (tertian) and invades both reticulocyte and mature red blood 

cells. The liver stage (exoerythrocytic schizogony) of this parasite takes 5-6 days to 

mature without hypnozoites, a dormant form causing relapse of the infection 

(Antinori et al., 2012).  

Similar to P. falciparum, P. vivax has 48 hours of asexual blood stage 

(tertian) and often lead to severe malaria cases. However, it only invades young red 

blood cell (reticulocytes). The liver stage of this parasite takes 6-8 days to mature 

and it can also form hypnozoites. Another malaria parasite that has similar 

characteristics of infection is P. ovale which only develops in young red blood cells 

for 48 hours. It takes 9 days to develop in liver cells and has the ability to form 

hypnozoites. In contrast, P. ovale infection will not lead to severe malaria (Antinori 

et al., 2012).   

P. malariae is responsible of the quartan malaria. It has a slow development 

in human (15 to 16 days in the liver, 72 hours in the blood). It only invades mature 

red blood cells. Different to P. vivax and P. ovale, it will not form hypnozoite. The 

malaria patients infected with this parasite will not develop severe malaria (Antinori 

et al., 2012). 

P. knowlesi has 24 hours of asexual blood stage (quotidian) and it is not 

restricted to young or mature red blood cells. It takes 9 to 12 days to develop within 

the liver cells. It does have the ability to form hypnozoites. This parasite is often 

mistakenly diagnosed as P. malariae because of the similarity of the red blood cell 

forms between these parasites (Antinori et al., 2012). The patients infected with P. 

knowlesi have been reported to develop severe malaria resembling that of P. 

falciparum (Cox-Singh et al., 2008; William et al., 2011). 
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1.2 The life-cycle of Plasmodium  

The life cycle of Plasmodium is completed by its motile forms which are specialized 

to invade different types of cell in different stages of the life cycle. The motile forms 

are known as sporozoite, ookinete and merozoite. Sporozoites and merozoites invade 

and develop in the liver cell (liver stage), and red blood cell (blood stage) 

respectively, and ookinetes cross the mosquito midgut (mosquito stage) (Figure 1.1). 

These parasite forms possess apical organelles such as micronemes, rhoptries, dense 

granules and exonemes (Figure 1.1). These apical organelles are secretory organelles 

and function in secreting the proteins involved during and after host cell invasion. 

The different composition of organelles in each zoite relates to their specialized 

behaviour. For example, the merozoites with fewer micronemes and large rhoptries 

do not traverse but rapidly invade red blood cell once; ookinetes do not need 

rhoptries as they only traverse the mosquito midgut epithelium; and sporozoites have 

abundant of micronemes and rhoptries as they have to traverse, glide and infect cells 

(Baum et al., 2008a).  

 

1.2.1 Liver stage 

The infection begins when a Plasmodium-infected mosquito bites the vertebrate host 

for a blood meal, releasing saliva containing sporozoites into the skin and the blood 

stream (Figure 1.2). The sporozoites move in the skin by a form of motility known as 

‘gliding’ in order to reach a blood vessel where they breach the endothelial barrier to 

enter blood circulation (Garnham, 1966). During gliding motility, the contents of the 

micronemes are externalised onto the sporozoite surface by mechanisms that are 

poorly understood. These proteins are thrombospondin-related anonymous protein 

(TRAP), a micronemal protein that mediates gliding motility and invasion both in 

mosquito vector salivary gland and in mammalian host (Sultan, 1999; Sultan et al., 

1997), and sporozoite microneme protein essential traversal 1 and 2 (SPECT1 and 

SPECT2) that are needed to traverse through host cells by membrane disruption, 

allowing for parasite movement in and out of skin, blood endothelium and liver cells 

(Amino et al., 2008; Ishino et al., 2005; Ishino et al., 2004; Vaughan et al., 2008). 
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 Sporozoites are carried to the liver where they glide along the sinusoidal 

epithelium and invade Kupffer cells, the resident macrophage, traverse them, and 

cross into the space of Disse, the location in the liver between the sinusoid and 

hepatocytes (Frevert et al., 2005). The sporozoite then traverses through several liver 

cells before invading a hepatocyte and at the same time forming a parasitophorous 

vacuole (PV) in which it will finally reside (Frevert et al., 2005). The ability of 

sporozoites to switch from traversal state to invasive state is dependant on interaction 

between the sporozoite surface protein, circumsporozoite protein (CSP) and host 

heparin sulphate proteoglycan (HSPG) surface protein (Frevert et al., 1993). After 

the formation of the PV, the sporozoite differentiates into a liver trophozoite, a 

feeding stage. The liver trophozoite then continues to grow by harvesting all the 

nutrients from the host cell and then undergoes DNA replication and a form of 

cytokinesis termed schizogony, developing  into the liver schizont stage (Frevert, 

2004). Upon merozoite release, parasites induce the death and detachment of their 

host cells followed by the budding of merozoite-filled vesicles 

(extrusome/merosomes) into the sinuisoidal lumen (Sturm et al., 2006). It has also 

been reported that the merosome packaging protects hepatic merozoites from 

phagocytic attack by sinusoidal Kupffer cells. The extrusome/merosome containing 

100 to 200 merozoites is released into the blood stream and resides in the capillary 

organs such as lungs prior to being released into the blood circulation (Baer et al., 

2007; Sturm et al., 2006). 

 

1.2.2 Blood stage  

After the liver stage development, the merozoites invade red blood cells (RBCs) to 

begin the asexual blood-stage cycle (Garnham, 1966) (Figure 1.2). The invasion of a 

red blood cell requires the attachment of parasite to red cell receptors accompanied 

by the release of several parasite proteins and activation of the actin-myosin motor 

complex as described in detail in section 1.3.  In the red blood cell, the parasite 

develops through ring, trophozoite and schizont stages within the membranous sac of 

the parasitophorous vacuole produced during invasion (Lingelbach and Joiner, 1998; 

Preiser et al., 2000). The ring stage parasites form a biconcave disc and begin to feed 

http://en.wikipedia.org/wiki/Liver
http://en.wikipedia.org/wiki/Hepatocyte
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on the haemoglobin through a cytostome or cell mouth (part of the cell specialized to 

phagocytose food). The ring grows to a more rounded or irregular trophozoite 

(Bannister and Mitchell, 2003; Bannister et al., 2000a).  

The trophozoites also form a single large food vacuole in which the 

degradation products of haemoglobin (haemozoin) accumulate (Figure 1.2). At this 

stage, the parasite is actively feeding, growing and inducing host red blood cell 

modification through the export of parasite proteins to the surface of the host cell. 

These modifications involve the formation of Maurer’s clefts - flat membranous sacs 

seen in the red blood cell cytoplasm (Aikawa et al., 1986; Atkinson and Aikawa, 

1990) and the formation of knobs on the red blood cell surface that contain proteins 

such as P. falciparum erythrocyte membrane protein 1 (PfEMP1) (Crabb et al., 

1997). The presence of knobs is correlated with binding of infected red blood cells to 

endothelium of blood vessels, thereby preventing the parasite’s clearance in the 

spleen (Cooke et al., 2000). In addition, the export of proteins by the trophozoite 

results in an increase of infected red blood cell permeability to essential nutrients 

such as sugars, amino acids, vitamins, choline and calcium (Kirk, 2001). At this 

stage, the toxic product of haemoglobin digestion by parasite proteases, haem, is 

coverted to haemozoin, a dark pigment accumulated in the food vacuole (Bannister 

and Mitchell, 2003; Francis et al., 1997). To form individual merozoites DNA 

replication occurs (which generates about 16 to 20 nuclei), the assembly of merozoite 

components must also occur, beginning with the formation of apical organelles such 

as rhoptries, micronemes and dense granules followed by the formation of 

cytoskeletal components such as microtubules and polar rings present beneath the 

merozoite surface. The cleavage furrow forms on each nascent merozoite, the first 

stage of cytokinesis (Bannister et al., 2000a).  Once cytokinesis is complete at the 

end of the schizont stage, the red blood cell membrane and PVM lyse by a protease-

dependent process, releasing free merozoites into the blood circulation.  The 

merozoites then invade further red blood cells and begin another asexual blood stage 

cycle (Bannister and Mitchell, 2003)  (Figure 1.2).  

 Some parasites will develop into male or female gametocytes in the 

bloodstream, which are the initial sexual stages of the parasite (Figure 1.2). 
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Nevertheless, it is still unclear how, when, and why the parasites decide to form into 

this sexual stage. It may be triggered by a number of environmental and genetic 

factors, including host immunity, drug treatment and population density (Dixon et 

al., 2008). There are five morphologically recognisable stages (I-V) in gametocyte 

development which takes about 9-23 days post invasion (Figure 1.3A). Stage I and II 

gametocytes are difficult to distinguish from young trophozoites. However, as a 

result of developing sub-pellicular membrane and microtubules, they appear 

roundish with a pointed end (Sinden, 1982) and show a distinctive pigment pattern in 

Giemsa staining (Dixon et al., 2008) (Figure 1.3B). The expansion of the sub-

pellicular membrane and microtubules produces a stage III gametocyte with a ‘D’ 

shape. In stage IV, they form an elongated crescent shape (due to complete formation 

of sub-pellicular membrane and microtubules) and sexual dimorphism is most 

apparent (Sinden, 1982). The female gametocyte (macrogametocyte) has a small 

nucleus with a nucleolus and a concentrated pigment pattern. In contrast, the male 

gametocyte (microgametocyte) has a bigger nucleus without nucleolus (Sinden, 

1982) (Figure 1.3A). The mature gametocyte (stage V), which is the most 

distinguishable stage and the only form found in the circulation, has rounded ends 

due to the breakdown of sub-pellicular microtubules forming sausage or crescent-

shaped structures (Sinden, 1982) (Figure 1.3A and B). Due to a higher density of 

ribosomes in female gametocytes, they can be easily identified by their blue 

appearance on a Giemsa stained blood film; by contrast male gametocytes are pink in 

Giemsa stain (Sinden, 1982) (Figure 1.3B). In addition, the female gametocytes can 

also be characterized by the centralized condensed hemozoin pigment, while the 

hemozoin pigment of the male gametocyte is dispersed throughout the infected red 

blood cell (Dixon et al., 2008) (Figure 1.3B).  

 

1.2.3 Mosquito stage 

Gametocyte stage parasites are taken up by a mosquito during feeding. 

Gametogenesis is induced in the mosquito gut resulting in gamete formation 

(Garnham, 1966) (Figure 1.2). Briefly, the male gametocytes undergo mitosis 

involving three rounds of DNA replication followed by cytokinesis forming eight 
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slender, flagellar-shaped and highly motile male gametes (Garnham, 1966; Kooij and 

Matuschewski, 2007). This process is triggered by a sudden drop in temperature 

from the warm-blooded mammalian environment to the ambient temperature in the 

mosquito midgut (approximately 5
o
C cooler), a change in pH (from 7.2 to about 8), 

and mosquito factors for example xanthurenic acid, a by-product of eye pigment 

synthesis (Billker et al., 1998; Billker et al., 1997).  

The male and female gametes undergo fertilization to form a diploid zygote 

(Figure 1.2). Within 24 hours, the zygote develops into a motile form called an 

ookinete. The ookinete grows in size and male and female nuclei fuse (Garnham, 

1966). The motile ookinete traverses the basal lamina of the mosquito midgut 

(Garnham et al., 1962) and transforms into an oocyst (Garnham et al., 1969). Here it 

secretes a thin cyst wall and grows in a sphere. The cyst projects outwards into the 

haemocoelumina cavity from which it is separated by the remnants of the intestinal 

coat. The diploid nucleus undergoes a meiotic division followed by mitotic divisions 

producing a multinucleated oocyst (Garnham et al., 1969). The multinucleated oocyst 

then matures and differentiates by invagination of the parasite membrane to form 

sporozoites (Garnham, 1966; Sinden and Strong, 1978). The mature oocyst bursts 

and thousands of haploid sporozoites are released into the haemocoel, which then 

migrate to the salivary glands ready for the next infection of a human host (Garnham, 

1966)  (Figure 1.2). 

 

1.3 Invasion of red blood cell by merozoites 

The merozoite is a unicellular, egg shaped cell approximately 1.5 μm in length. This 

makes it the smallest invasive stage of Plasmodium; smaller than the ookinete (10-13 

μm), sporozoite (12-15 μm) and the Toxoplasma invasive form, the tachyzoite 

(around 7.5 μm) (Baum et al., 2008a) (Figure 1.1). The narrow pointed end of the 

merozoite contains the apical complex formed by secretory organelles as mentioned 

earlier (Section 1.2) (Figure 1.1). It also contains the apical polar ring which acts as a 

microtubule organising centre (Morrissette and Sibley, 2002). Behind the apical 

complex towards the posterior end, lie the nucleus, apicoplast and a mitochondrion. 
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Beneath the plasma membrane of the merozoite there is a continuous double 

membrane structure called the inner membrane complex (IMC) (Bannister et al., 

2000a). The parasite cytoskeleton consists of two or three microtubules situated on 

the inner surface of the IMC  (Figure 1.1) (Morrissette and Sibley, 2002).  The 

merozoite invades the red blood cell in a number of steps including attachment, 

reorientation and penetration (Figure 1.4) (Cowman and Crabb, 2006). These 

processes involve receptor recognition and protein secretion from secretory 

organelles accompanied by shedding of the parasite’s surface coat digested by 

intramembrane proteases called rhomboid proteases which are located at the 

posterior surface of the parasites (Baker et al., 2006). A study in Toxoplasma has 

demonstrated that the cleavage activity on adhesins occurs within their 

transmembrane domains in tachyzoites (Brossier et al., 2005; Dowse et al., 2005; 

Opitz et al., 2002). In addition, the second protease that might be involved in parallel 

with rhomboids is PfSUB2, an integral membrane subtilisin-like protease (Harris et 

al., 2005). PfSUB2 is a micronemal protein released onto the parasite surface and 

localised at the parasite’s posterior pole before invasion (Harris et al., 2005).  

Invasion is completed within seconds, with the junction moving at 1-10 µm/s to the 

posterior pole of the parasite (Dvorak et al., 1975; Holder and Veigel, 2009). 

 

1.3.1 Attachment to red blood cell surface 

The initial attachment of the merozoite involves specific molecular interactions 

(Gaur et al., 2004). Host cell receptor recognition is thought to depend largely on 

merozoite surface proteins containing a glycosylphosphatidylinositol (GPI) anchor. 

The GPI anchored proteins are the most abundant proteins that coat the surface of the 

merozoite via attachment of the C-terminus to the plasma membrane. These proteins 

are the merozoite surface protein family (MSP-1, 2, 4, 5, 8 and 10) (Black et al., 

2003; Black et al., 2001; Gerold et al., 1996; Marshall et al., 1997; Marshall et al., 

1998), and Pf12, Pf38 and Pf92 (Sanders et al., 2005). In addition, all of the GPI 

anchored merozoite surface proteins (except MSP-2) possess an epidermal growth 

factor (EGF)-like domain or a six-cysteine domain at their C terminus, which might 

have a role in protein-protein interactions including receptor-binding functions (Gaur 
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et al., 2004; Sanders et al., 2005). Other merozoite surface proteins such as MSP-3, 

MSP-6, MSP-7 and MSP-9 (acidic basic repeat antigen, ABRA) are peripheral 

membrane proteins, associated with the merozoite surface by virtue of an interaction 

with directly anchored membrane proteins (McColl and Anders, 1997; Pachebat et 

al., 2001; Stahl et al., 1986; Trucco et al., 2001; Weber et al., 1988).  

 The most extensively studied protein in this group that may mediate initial 

binding to the red blood cell is MSP-1 (Holder et al., 1985). Studies in P. falciparum 

have shown that MSP-1 undergoes extensive proteolytic processing (Blackman et al., 

1996; Blackman et al., 1991; Holder et al., 1987) by SUB1 (Koussis et al., 2009) and 

SUB2 (Harris et al., 2005) during late schizogony and after merozoite release. In P. 

falciparum, MSP-1 is cleaved into 4 fragments with masses: 83 kDa (N-terminus), 

30 and 38 kDa (central regions), and 42 kDa (C terminus) (Holder et al., 1987).  The 

42 kDa C-terminal fragment which is attached to the parasite’s plasma membrane 

(Gerold et al., 1996) is further cleaved into a 33 kDa fragment that is shed during 

invasion and a 19 kDa membrane bound fragment that remains attached to the 

merozoite surface after invasion (Blackman et al., 1996; Blackman et al., 1991). 

Antibodies directed to MSP-142 (Singh et al., 2003) and MSP-119 (Daly and Long, 

1993; Kumar et al., 1995; Ling et al., 1994) have been shown to protect against 

parasite challenge.  These findings highlighted the crucial role of MSP-1 in red blood 

cell invasion. In addition, the full length MSP-1 was found to bind erythrocytes in a 

sialic acid-dependent manner, while the processed MSP-142 together with MSP-9 

(ABRA) form a co-ligand complex that binds to band 3, the anion transport 

glycoprotein present on the red blood cell surface (Goel et al., 2003; Kariuki et al., 

2005; Li et al., 2004).  

 

1.3.2 Tight or moving junction formation 

From electron microscopy analysis, during invasion the moving junction between the 

parasite and host cell travels from the anterior to the posterior end of the merozoite 

(Aikawa et al., 1978). This movement is driven by the actin-myosin motor complex 

that lies between the plasma membrane and inner membrane complex of the 
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merozoite (Figure 1.6). Invasion is activated by direct binding of ligands at the apical 

end of the parasite with red blood cell surface receptors (Gaur and Chitnis, 2011). 

Duffy binding-like (DBL) proteins such as EBA-175, EBA-140, EBA-181 and EBL1 

are thought to mediate the interaction with red blood cell receptors. EBA-175 and 

EBA-140 bind to glycophorin A and C, respectively (Lobo et al., 2003; Maier et al., 

2003; Sim et al., 1994). Another parasite ligand EBL1 has been shown to bind red 

blood cell receptor, glycophorin B (Mayer et al., 2009). The P. falciparum 

reticulocyte binding proteins (PfRh1, PfRh2a, PfRh2b, PfRh4 and PfRh5) also play 

their part in red blood cell binding at this stage (Baum et al., 2009; Triglia et al., 

2011; Triglia et al., 2009). PfRh4 and PfRh5 have been demonstrated to bind red 

blood cell receptors known as complement receptor 1 (CR1) (Tham et al., 2010) and 

Basigin (Crosnier et al., 2011), respectively.   The differential expression of PfRh 

proteins has been implicated in multiple pathways of invasion (Baum et al., 2005). 

For example, some strains of P. falciparum were able to switch their red blood cell 

receptor preference by expression of PfRh4 (Stubbs et al., 2005). The possible 

involvement of DBL and PfRh proteins in mediating the tight junction formation 

could not be excluded because these proteins are located at the tight junction during 

merozoite invasion (Baum et al., 2009; Triglia et al., 2011; Triglia et al., 2009) and 

most of them can be cleaved by P. falciparum rhomboids (Baker et al., 2006).  

However, any direct association of DBL or PfRh with the actin myosin motor 

remains to be established.  

There are two proteins that are proposed to mediate the interaction between 

the red blood cell surface receptors and the parasite actin myosin motor complex. 

One of them is merozoite thrombospondin-related anonymous protein (MTRAP) 

(Baum et al., 2006b). This protein plays a similar role to sporozoite TRAP in liver 

cell infection (Kappe et al., 1999; Sultan et al., 1997). Both proteins are type I 

membrane proteins, with a single membrane spanning helix, a large external domain 

and a relatively short cytoplasmic region (Morahan et al., 2009). Both proteins can 

bind to aldolase through an interaction involving a crucial tryptophan residue in their 

C terminal cytoplasmic tails (Baum et al., 2006b; Bosch et al., 2007a; Buscaglia et 

al., 2003; Jewett and Sibley, 2003). Aldolase is a glycolytic enzyme that is associated 

with actin in the actin-myosin motor complex of apicomplexan parasites (Buscaglia 
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et al., 2003; Jewett and Sibley, 2003) (Figure 1.6). MTRAP has been reported to bind 

the red blood cell through its thrombospondin repeat domain (TSR) (Uchime et al., 

2012). Another merozoite protein that has been shown to interact with aldolase is 

apical membrane antigen-1 (AMA-1) (Srinivasan et al., 2011). Similar to PfRh 

proteins, MTRAP is cleaved by P. falciparum rhomboids (Baker et al., 2006) and 

AMA-1 is cleaved by both rhomboids (Baker et al., 2006) and SUB2 (Harris et al., 

2005). 

 AMA-1 is translocated from the micronemes to the merozoite surface and 

concentrated at the apical pole before the invasion. Antibodies specific to AMA-1 

blocked the reorientation of the merozoite (Mitchell et al., 2004) and hence abolished 

apical attachment. AMA-1 is also a type I integral membrane protein that is 

expressed in the late schizont stage of the asexual life cycle of the parasite (Hodder et 

al., 1996). The P. falciparum AMA-1 molecule is expressed as an 83 kDa precursor 

from which an N terminal prodomain (Narum and Thomas, 1994) is cleaved 

resulting in a mature 66 kDa form that is located in the micronemes (Bannister et al., 

2003; Healer et al., 2002). AMA-1 is further proteolytically processed during its 

translocation to the merozoite surface resulting in a 44-48 kDa fragment (Dutta et al., 

2003; Howell et al., 2001). Expression of the rodent-restricted P. chabaudi AMA-1 

in P. falciparum led to an increase in the parasite’s ability to invade mouse red blood 

cells (Triglia et al., 2000). These results indicate an important role for AMA-1 in the 

invasion of red blood cells, specifically in initial apical attachment of the merozoites 

to specific (as yet unidentified) red blood cell proteins. The AMA-1 binding partners, 

rhoptry neck protein 2 and 4 (RON 2 and RON 4) are secreted prior to junction 

formation (Riglar et al., 2011; Srinivasan et al., 2011). RON 2 and RON 4 have been 

localised to the outer and inner red blood cell surface respectively, before forming a 

complex with AMA-1 that acts as a “molecular seal” of the tight junction (Riglar et 

al., 2011) .  Other RONs such as RON 5 and RON 8 (restricted to the coccidia) have 

also been proposed to participate in this complex formation and were found to be 

localised to the moving junction (Richard et al., 2010; Straub et al., 2009).   
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1.4 Biogenesis of the inner membrane complex and actin-myosin 

motor complex assembly in apicomplexan parasites  

The assembly of motor complex protein components starts during cytokinesis in the 

parasite. In general, cytokinesis occurs as a final step during cell division right after 

DNA replication. In animal cells, this process relies on the formation of an 

actin/myosin based contractile ring that forms in the middle of the anaphase spindle 

which serves as a plane for the cell to divide (D'Avino et al., 2006; D'Avino et al., 

2005). The situation is different for apicomplexan parasites, where the production of 

daughter cells or new parasite cells involves the internal budding from inside the 

mother cell. In Toxoplasma, the plasma membrane of the mother cell invaginates 

around the daughter cells to form the pellicle of the mature daughter cell in a process 

termed endodyogeny (Figure 1.5). In the case of Plasmodium, the nuclei move to the 

periphery of the mother cell prior to daughter cell formation through the appearance 

of IMC adjacent to the mother cell plasma membrane. This process is termed 

schizogony, where the daughter cell growth is associated with budding from the 

surface of the mother cell that generates the daughters with an intact pellicle (Figure 

1.5) (Striepen et al., 2007).  

The appearance of IMC may serve as a scaffold for the assembly of the 

daughter parasites. During maturation of daughter cells, the complete set of 

organelles is transported or organized by de novo synthesis (micronemes, rhoptries) 

or replication (ER, Golgi, mitochondria and apicoplast) (Hu, 2008; Nishi et al., 

2008). Once the daughter cell has completed its maturation process, the parasites will 

initiate a budding processes or egress, leaving the unwanted material behind in a 

residual body (Nishi et al., 2008). The apicomplexan IMC is generated by fusion of 

Golgi-IMC transport vesicles mediated by the specific GTPase Rab11B. The 

overexpression of a dominant-negative Rab11B caused the ablation of IMC 

formation hence affecting T. gondii daughter cell formation and polarity (Agop-

Nersesian et al., 2010). Several proteins residing within the IMC have been 

identified. IMC1 is a member of the alveolin family, which provide mechanical 

stability and gliding motility for T. gondii (Mann and Beckers, 2001) and  P. berghei 

ookinetes and sporozoites (Khater et al., 2004; Tremp and Dessens, 2011; Tremp et 
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al., 2008). The other new IMC proteins such as glideosome associated proteins with 

multiple membrane spans (GAPMs) and IMC sub-compartment proteins (ISP1, 2 and 

3) have been well characterized in P. falciparum (Bullen et al., 2009) and T. gondii 

tachyzoite (Beck et al., 2010) respectively. The latter proteins were also found in the 

P. falciparum genome (Beck et al., 2010).    

Another group of proteins that is known to be associated with the outer face 

of the IMC is the glideosome, the motor complex required for gliding motility and 

invasion. The actin-myosin motor complex proteins consist of glideosome associated 

proteins GAP50, GAP45 and myosin tail domain-interacting protein (MTIP) 

anchoring the myosin A (MyoA) (Baum et al., 2006b; Gaskins et al., 2004; Jones et 

al., 2006) (Figure 1.6). It has been proposed that the parasite receptor is linked to the 

actin-myosin motor via aldolase which directly binds to filamentous actin (F actin). 

When the moving junction is established, MyoA will pull the complex of actin-

aldolase-parasite-host receptor rearward and thereby moving the parasite forward 

into the red blood cell (Figure 1.6) (Baum et al., 2008a).  

Glideosome assembly has been studied extensively in T. gondii, and has been 

shown to occur in two stages. The integral membrane protein, GAP50, localises to 

the IMC first and acts as an anchor for assembly of the remaining motor complex 

proteins (MyoA, MTIP/MLC and GAP45) (Gaskins et al., 2004). The tetrameric 

protein complex is only associated with the IMC of the daughter cells at the final 

stage of parasite replication when the mother cell plasma membrane envelops the 

two daughter tachyzoites (Agop-Nersesian et al., 2009).  

 Rab11A has a role in transporting certain plasma membrane receptors via 

recycling endosomes in eukaryotes (Saraste and Goud, 2007). It has been shown to 

deliver plasma membrane to the cleavage furrow in animal cells (Fielding et al., 

2005; Wilson et al., 2005) and has been localised to the division plane of plant cells 

(Chow et al., 2008). The apicomplexan Rab11A was first described in P. falciparum 

and is highly expressed in asexual blood stage parasites (Langsley and Chakrabarti, 

1996; Quevillon et al., 2003). Further studies of Rab11A have been conducted using 

Toxoplasma where it was found to be associated with rhoptries (Bradley et al., 2005) 

and the dominant negative version of Rab11A expression reduced parasite growth 
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(Herm-Gotz et al., 2007). Agop-Nersesian et al. (2009) demonstrated that TgRab11A 

interacts with MLC and transports vesicles derived from the secretary pathway from 

Golgi to the plasma membrane of the daughter cells. The authors suggest that the 

Rab11A-motor complex is disassembled when the vesicle fuses to the daughter 

plasma membrane, upon which the trimeric glideosome motor complex associates 

with GAP50 at the IMC (Agop-Nersesian et al., 2009).  

 

1.5 Actin-myosin motor complex of P. falciparum 

The actin-myosin motor complex, an essential component for the invasion machinery 

is conserved across apicomplexan zoites such as Plasmodium ookinetes, sporozoites, 

merozoites and Toxoplasma tachyzoites (Baum et al., 2006b; Bergman et al., 2003; 

Buscaglia et al., 2003; Gaskins et al., 2004; Herm-Gotz et al., 2002; Jewett and 

Sibley, 2003; Johnson et al., 2007; Jones et al., 2006; Keeley and Soldati, 2004; 

Meissner et al., 2002; Pinder et al., 2000; Pinder et al., 1998). 

 

1.5.1 Inter-relationship between myosin A and actin 

Myosin is a motor protein that binds to actin filaments. As a functional protein, 

myosin “walks” along the actin filaments towards the barbed end using energy 

derived from the actin-activated hydrolysis of myosin-bound ATP. Myosin is made 

of three structural regions: the head, the neck, which are conserved, and the tail 

which confers the specific function of different myosin classes (Pinder et al., 2000). 

To date, myosin has been grouped into 24 classes based on comparisons and 

phylogenetic analysis of the conserved motor domain. The conventional myosins, 

which are involved in the contraction and relaxation of skeletal and smooth muscle 

belong to class II (Foth et al., 2006). In P. falciparum, myosin proteins were grouped 

into class XIV (MyoA, MyoB and MyoE), XXII (MyoF, previously known as 

MyoC) and VI (MyoJ and MyoK, previously known as MyoD and MyoF 

respectively) (Foth et al., 2006). The type XIV myosins are very small in size (~90 

kDa), without a recognizable neck region, single headed and have a very short C-
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terminal tail (Farrow et al., 2011). So far, there are 4 different myosin reported to be 

expressed in P. falciparum blood stages, MyoA, MyoB, MyoF (previously known as 

MyoC) (Pinder et al., 2000) and MyoJ (previously known as MyoD) (Chaparro-

Olaya et al., 2005).  

Plasmodium myosin A is essential for gliding motility in ookinetes (Siden-

Kiamos et al., 2011; Siden-Kiamos et al., 2006b), sporozoites (Bergman et al., 2003; 

Matuschewski et al., 2001) and red blood cell invasion by merozoites (Pinder et al., 

1998).  It was found to be localised between the parasite inner membrane complex 

(IMC) and parasite membrane, predominantly towards the apex (Pinder et al., 2000; 

Pinder et al., 1998). PfMyoA binds to actin to generate force and movement into the 

red blood cell, supported by the moving junction complex. By in vitro motility assay, 

PfMyoA moves actin filaments at speeds of 3.51 μm/s, a speed similar to TgMyoA 

and actin skeletal muscle myosin II (Green et al., 2006). Based on mechanical studies 

as demonstrated using single molecule optical tweezers, PfMyoA produces a short-

lived working stroke of 5 nm (again similar to TgMyoA and skeletal muscle myosin 

II) (Farrow et al., 2011) suggesting several molecules must be coupled together in 

order to keep hold of an individual actin filament.  

 Pfactin is known to form short filaments in vitro (~100 nm) (Schmitz et al., 

2005). Pfactin polymerisation is tightly regulated by depolymerizing binding partners 

such as profilin, cofilin and CAP. Given the short actin filament produced, it might 

be localised around or close to the moving junction, rather than running the length of 

the parasite (Holder and Veigel, 2009). This was further supported by a recent 3D 

immunofluorescent microscopy study (3D SIM) conducted using the antibody with 

high preferential binding to the apicomplexan polymerized actin (anti-Act239-253) 

(Angrisano et al., 2012). This experiment has demonstrated the localisation of 

Plasmodium filamentous actin at the tight junction (the ring like formation) during 

merozoite invasion. The breakdown of the ring like formation pattern of polymerized 

actin upon treatment with a high concentration of the marine sponge 

cyclodepsipeptide Jasplakinolide (JAS) (agent that binds and stabilizes the actin 

filament) suggests that the actin polymerisation is dependent on filament turnover 

(Angrisano et al., 2012). In Plasmodium, the major proteins responsible for 
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nucleation of actin polymerization, such as the ARP2/3 complex, are absent (Gordon 

and Sibley, 2005).  Instead, this process is controlled by polymerizing factor called 

PfFormin-1(Baum et al., 2008b). Formin-1 localises beneath the cell membrane with 

a concentration at the apical region of the merozoites prior to invasion (Baum et al., 

2008b). Apicomplexan formin, together with capping protein, directs actin 

polymerization at the barbed end. The filamentous actin (Factin) will form the 

templates for moving junction formation especially by bridging the aldolase, an 

abundant glycolytic enzyme and MyoA which indirectly interacts with the parasite-

host cell receptor (Baum et al., 2006a).   

 

1.5.2 Myosin tail domain-interacting protein  

P. falciparum myosin tail domain-interacting protein (MTIP) was first found to be 

expressed and interact with PfMyoA in the sporozoite stage (Bergman et al., 2003). 

It was also found to be located at the merozoite’s periphery (Green et al., 2006; 

Green et al., 2008). The linkage between the PfMyoA and MTIP has been proposed 

to provide a stable anchor for myosin and also to contribute to the so-called lever arm 

of the motor (Green et al., 2006). An orthologue of MTIP, myosin light chain (MLC) 

was found in T. gondii together with other motor complex proteins, TgMyoA, 

TgGAP45 and TgGAP50 forming a protein complex (Gaskins et al., 2004). MTIP 

has been shown to interact with PfMyoA tail via its C-terminal region (Bosch et al., 

2006; Bosch et al., 2007b; Green et al., 2006; Thomas et al., 2010) and form a 

complex with glideosome associated proteins (GAP45 and GAP50) (Jones et al., 

2006) to anchor and immobilize the MyoA at the IMC. The N-terminus of the MTIP 

homologue, TgMLC1, has been shown to be involved in GAP45 interaction (Frenal 

et al., 2010). 
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1.5.3 Glideosome-associated proteins (GAPs)  

GAP45 was firstly identified as a 45 kDa protein in T. gondii where it was detected 

at the parasite periphery specifically between the parasite plasma membrane and 

inner membrane complex, and was shown to be part of the glideosome (MyoA and 

MLC1 [equivalent to MTIP in Plasmodium]) complex (Gaskins et al., 2004). This 

protein is conserved throughout apicomplexan parasites including P. falciparum 

(Figure 1.7). In addition, it is associated with GAP50, a 50 kDa integral membrane 

protein that anchors and immobilizes the motor complex or glideosome in the IMC 

(Johnson et al., 2007). It was demonstrated that GAP45 and GAP50 assemble into 

the motor complex at different stages. By pulse chase experiment, the complex of 

MyoA, MLC1, and GAP45 is formed first in a soluble form which associates later 

with GAP50 at the IMC. These results showed that TgGAP45, TgMLC1, and 

TgMyoA are synthesized on cytoplasmic ribosomes and associate co-translationally. 

On the other hand, GAP50 is targeted for the secretory pathway by insertion into the 

parasite endoplasmic reticulum and is transported to the IMC (Gaskins et al., 2004).  

 In Plasmodium, GAP45 was also found to be in a similar location as in 

Toxoplasma, localized to the IMC (Baum et al., 2006b). PfGAP45 also forms a 

complex with MyoA, MTIP, and PfGAP50 and is highly expressed at late schizont 

stage (Jones et al., 2006). PfGAP45 was suspected to undergo post translational 

modification as it appeared as multiple bands on SDS-PAGE (Jones et al., 2006). 

Studies by Rees-Channer and co-workers showed that PfGAP45 can be 

myristoylated in vitro and in vivo. In addition palmitoylation of PfGAP45 in parasite 

cultures was coincident with the binding of the protein to GAP50. The dual acylation 

of PfGAP45 may be needed for a strong binding to GAP50 and also to the membrane 

compartment of the IMC (Rees-Channer et al., 2006). GAP45 was also found to be a 

phosphorylated protein in both P. falciparum and T. gondii (Gilk et al., 2009; Green 

et al., 2008; Solyakov et al., 2011; Treeck et al., 2011). The amount of PfGAP45 in a 

phosphorylated form was increased from early to late schizont stages of P. 

falciparum, which paralleled the increase in the level of calcium dependent protein 

kinase 1 (CDPK1) and protein kinase B (PKB) expression. Both CDPK1 and PKB 
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are enzymes implicated in GAP45 phosphorylation (Green et al., 2008; Thomas et 

al., 2012; Vaid et al., 2008).  

In addition, there is another relatively recently identified GAP protein in 

T.gondii, GAP40, which is also found to be expressed in P. falciparum (Frenal et al., 

2010). This protein was demonstrated to co-precipitate with other motor complex 

proteins in T. gondii. However, the function of this protein remains to be elucidated. 

 

1.6 Protein phosphorylation in human health and disease 

Protein phosphorylation and dephosphorylation is a biochemical process catalysed by 

protein kinases and protein phosphatases through respectively adding or removing a 

phosphate group to a serine, threonine or tyrosine using ATP as a phosphoryl donor. 

Protein phosphorylation was firstly found to be important in eukaryotic cells in the 

1950s. It started with the discovery of metabolic enzyme phosphorylase which is 

responsible for the conversion of glycogen to glucose-1-phosphate (Krebs and 

Fischer, 1955). Phosphorylase is activated by phosphorylase kinase, the protein 

kinase that catalyses the attachment of phosphate to phosphorylase (Fischer and 

Krebs, 1955), which itself is sequentially activated by protein kinase A (PKA), a 

cyclic AMP-dependent protein kinase (Hayes and Mayer, 1981). Since then protein 

phosphorylation has been implicated in most physiological processes such as the 

cardiovascular system, gastrointestinal action, neurologic mechanism and behaviour, 

immune response regulation, endocrine action and musculoskeletal regulation 

(Tarrant and Cole, 2009). Protein phosphorylation is important in controlling protein 

function such as by modulating its biological activity, by affecting the protein’s 

stability, by regulating movement between subcellular compartments, or by initiating 

or disrupting protein-protein interactions (Cohen, 2002).  

 Here are a few examples showing the importance of protein phosphorylation 

which demonstrates the above functions. The phosphorylation of retinoblastoma (Rb) 

is important in regulating the progression of the cell cycle. Retinoblastoma which is 

one of the tumour suppressor proteins, functions to arrest the cell cycle at early G1 
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phase by associating with the transcription factor complex, E2F, inhibiting gene 

expression required for the transition from the G1 into the S phase. Once the cell is 

ready for the next cell cycle progression, Rb will be phosphorylated by cyclin 

dependent kinase/cyclin complexes hence dissociating the Rb from E2F and 

activating the cell cycle progression into S phase and G2/M (Knudsen and Knudsen, 

2006).  

 The kinase enzyme can be activated by phosphorylation by another kinase. 

This has been shown by the cascade activation of mitogen-activated protein kinase 

(MAPK) which is important in regulating cell proliferation and differentiation. The 

cascade activation is started by the extracellular signal that mediates the activation of 

Raf kinase. Raf kinase then phosphorylates MAP kinase kinase (MAPKK). Activated 

MAPKK then phosphorylates MAPK. This will lead to the activation of MAPK 

which then phosphorylates a number of substrates that are important in regulation of 

gene expression for cell proliferation (Avruch et al., 2001; Seger and Krebs, 1995).  

 Protein phosphorylation is important in targeting the phosphorylated protein 

for proteasome degradation. One good example is the Wnt signalling mechanism. 

This pathway is important in embryogenesis and adults' cell proliferation. It is 

regulated by the protein called β-catenin. In the absence of Wnt signal, β-catenin is 

bound to the destruction complex that contains adenomatous polyposis coli protein 

(APC)-axin-glycogen synthase kinase-3 (GSK3). This will lead to the 

phosphorylation of β-catenin by GSK-3. The phosphorylated β-catenin is targeted for 

degradation by ubiquitin mediated proteolytic destruction. In the presence of Wnt, 

destruction complex is destroyed hence allowing the β-catenin to accumulate and 

localise to the nucleus (Peifer and Polakis, 2000).     

 About 30% of human proteins are phosphorylated. There are 500 protein 

kinases and a third of that number of protein phosphatases encoded by the human 

genome (Cohen, 2001, 2002). Abnormal phosphorylation has been implicated in 

major human diseases such as cancer and diabetes resulting from the mutation of 

particular protein kinases and phosphatases. A good example for this is a chronic 

myelogenous leukemia (CML). It is a blood cancer caused by Philadelphia 

chromosome, a chromosomal abnormality causing the fusion of Abelson (Abl) 
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tyrosine kinase gene and break point cluster region (Bcr), to produce the 

constitutively active Bcr-Abl tyrosine kinase (Faderl et al., 1999). One of the effects 

of the constitutively active Bcr-Abl tyrosine kinase is the down regulation of the 

tumour suppressor gene (CCN3) (McCallum et al., 2006) which will lead to the rapid 

growth of abnormal white blood cells in bone marrow. The tyrosine phosphorylation 

is needed in insulin signalling pathway to store the excessive glucose in glycogen 

form (Chang et al., 2004). Deletion of the tyrosine kinase domain of the insulin 

receptor is one of the causes of insulin resistance in diabetes Mellitus type 2 patients 

(Taira et al., 1989). 

 Thus several kinase and phosphatase inhibitors have been developed to be 

used in the treatment of the affected diseases. The first therapeutic protein kinase and 

phosphatase inhibitors were developed in the 1990s. They were first used as 

immunosuppressive drugs. Cyclosporine and FK506, indirectly cause a reduction in 

activity of the protein phosphatase calcineurin, and rapamycin inhibits the protein 

kinase mTOR (mammalian target of rapamycin), hence affecting interleukin-2-

dependent T cell proliferation (Liu et al., 1991). These drugs have been widely used 

in organ transplantation. In addition, another drug, the Abl tyrosine kinase inhibitor 

imatinib (Gleevec), was developed for treatment of patients with chronic 

myelogenous leukemia (CML) (Capdeville et al., 2002).  

 Naturally occurring toxins and pathogens can also exert their effects by 

altering the phosphorylation states of proteins. The natural occurring toxin okadaic 

acid, a potent inhibitor of Type 1 and 2A protein phosphatases (serine/threonine 

protein phosphatases) is produced by shellfish and can cause diarrhetic seafood 

poisoning (Cohen, 2001; Cohen et al., 1990). Another Type 1and 2A protein 

phosphatase inhibitor is cyclic heptapeptide microcyctin, a powerful hepatoxin and 

neurotoxin that is produced by blue-green algae (MacKintosh et al., 1990). At much 

lower concentrations microcyctin can cause liver cancer which has been reported in 

certain parts of China due to microcyctin water pollution (Carmichael, 1994; Cohen, 

2001). 

 In Yersinia pestis bacterial infections (the pathogen that causes bubonic 

plague), host cell protein signal transduction mechanisms are broken down by the 
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activity of a bacterial phosphatase. This affects many cell types, and results in serious 

disease (Guan and Dixon, 1990). Other than that, common diseases such as diarrhoea 

caused by enteropathogenic Escherichia coli (EPEC) infection involve the 

dysregulation of host cell kinases. During EPEC infection, an attachment/effacement 

(A/E) lesion on the intestinal surface is created. The EPEC protein, Tir was secreted 

by the bacteria into the host cell plasma membrane to act as a receptor for an EPEC 

outer membrane protein, intimin. Delivery of Tir into the host cell results in its 

phosphorylation by the host tyrosine kinase and protein kinase A, followed by Tir–

intimin binding. This will initiate actin nucleation at the binding site hence induce 

lesion formation. The lesion formation results in a loss of absorption surface of the 

intestine causing diarrhoea (Goosney et al., 2000; Reis and Horn, 2010). 

     

1.7 The importance of protein phosphorylation in the Plasmodium 

life cycle 

The human genome encodes more than 500 protein kinases (Kostich et al., 2002; 

Manning et al., 2002). Most protein kinases show conserved amino acid sequence 

elements and a common structural fold of their catalytic domain consisting of amino-

terminal (for ATP-binding) and carboxy-terminal (for peptide binding and 

phosphotransfer) lobes connected with the hinge region (Hanks, 2003). The 

eukaryotic protein kinases are distributed in seven major groups : CK1 (casein kinase 

1), CMGC (CDK [cyclin-dependent protein kinase], GSK3 [glycogen synthase 

kinase 3] and CLK [CDK-like kinase]), TKL (tyrosine kinase-like), AGC (PKA 

[cyclic adenosine monophosphate dependent protein kinase], PKG [protein kinase 

G], PKC [protein kinase C] and related proteins), CamK (calcium/calmodulin-

dependent protein kinase), STE (protein kinases acting as regulators of MAPKs), Tyr 

K (tyrosine kinase) and OPK (other protein kinase) (Doerig et al., 2008; Hanks, 

2003).  

 Smaller eukaryotes such as Plasmodium falciparum also share a similar 

phylogenetic tree of metazoan protein kinases, with some divergences. With 86 to 99 

eukaryotic protein kinase related enzymes (depending on the stringency applied to 
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include borderline sequences) some of the kinases show quite distinct behaviour in 

terms of kinase regulation, in addition the absence of certain kinases emphasises the 

existence of novel pathways that could be manipulated for drug targeted intervention. 

The differences are the apparent lack of Tyr K and STE families, the presence of a 

family of calcium-dependent protein kinases (CDPKs) that carry a kinase domain 

fused to a calmodulin-like domain, and the presence of protein kinases with a lack of 

clear mammalian eukaryotic protein kinase orthologues (Doerig et al., 2008). The 

identification of many protein kinases and also protein phosphatases (27 phosphatase 

genes have been identified in the P. falciparum genome) shows the importance of 

protein phosphorylation in the Plasmodium life cycle including cell cycle, cell 

proliferation and differentiation, parasite egress, invasion and host-parasite 

interaction (Chung et al., 2009). This is clear, with the identification of over 5000 

protein phosphorylation sites, including tyrosine residues, on P. falciparum proteins 

made in recent studies (Solyakov et al., 2011; Treeck et al., 2011).  

 Studies involving genetic manipulation of Plasmodium parasites have 

demonstrated the importance of kinases throughout the Plasmodium life cycle in 

processes such as gamete formation, ookinete gliding, sporozoite behaviour and 

schizogony (Figure 1.9). In gamete formation, PbCDPK4 was identified to be 

essential for male gamete maturation (Billker et al., 2004) (Figure 1.9). Another 

kinase that is responsible for male gamete formation is PfMap2 (atypical mitogen 

activated protein kinase) which can be activated by PfCDPK4 phosphorylation in 

vitro (Tewari et al., 2005) (Figure 1.9). Other than calcium dependent signalling, the 

role of cGMP (cyclic GMP) in mediating gamete formation has been highlighted 

suggesting the involvement of PKG (protein kinase G) upstream of this process, 

particularly in inducing the differentiation of gametocytes to become spherical 

(“rounding up”) (McRobert et al., 2008). The “rounding up” of gametocytes is a part 

of the process of gamete formation that happens upon entering the mosquito midgut.  

CDPK3 (Ishino et al., 2006; Siden-Kiamos et al., 2006a) and PKG (Moon et 

al., 2009) have also been found to be essential in ookinete motility (Figure 1.9). Both 

P. berghei CDPK6 (Coppi et al., 2007) and PKG (Falae et al., 2010)  have also been 

reported to be involved in sporozoite infectivity and merosome release at the liver 
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stage respectively. In addition, deletion of a membrane bound adenylyl cyclase, 

(PbACα) perturbs sporozoite motility (Ono et al., 2008) (Figure 1.9) suggesting the 

involvement of a cAMP (cyclic AMP) dependent pathway which may involve PKA 

in switching to the cell invasion mode of the sporozoite.   

In asexual blood stage parasite development, PfPKA (Leykauf et al., 2010),  

PfCDPK1 (Green et al., 2008) and PKB (protein kinase B) (Vaid et al., 2008)  have 

been shown to likely be involved in merozoite invasion, as these kinases are able to 

phosphorylate AMA1 (by PKA) and motor complex protein (MTIP and GAP45 by 

CDPK1; GAP45 by PKB). Further development of blood stages or schizogony was 

interrupted by the inhibition or degradation of PfPKG (Taylor et al., 2010)  and 

PfCDPK5 (Dvorin et al., 2010) respectively. Other kinases such as P. falciparum 

protein kinase 2 (PfPK2), a human homolog of calcium calmodulin dependent 

protein kinase, has been reported to be expressed in merozoites. The invasion of 

merozoites was inhibited by the PfPK2 inhibitor, a calmodulin antagonist called W-7 

(Kato et al., 2008a).     

 Of all the Plasmodium protein kinases, CDPKs as well as PKG have been 

well studied to date. The CDPKs are promising drug target candidates as there is no 

mammalian homologue.  The studies on CDPKs  are  also  influenced  by their 

regulator, calcium, which is known to play an important role in several stages of the 

apicomplexan  life cycle such as gamete maturation, secretion of adhesins from the 

micronemes, gliding motility, cell invasion and egress (Moreno and Docampo, 

2003). 

 

1.8 Calcium-dependent protein kinases 

Calcium is a molecule that acts as a messenger in signal transduction processes in 

both animal and plant cells. These processes often lead to activation or inactivation 

of certain protein functions, especially kinases such as the calcium-dependent protein 

kinase family (CDPKs), which control many aspects of living organisms. CDPKs 

form an unusual protein kinase family that so far has only been found in plants and 

alveolates including the apicomplexan parasites such as Plasmodium and 
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Toxoplasma (Billker et al., 2009; Harper and Harmon, 2005).  Generally, CDPK is 

an enzyme that consists of an N-terminal kinase domain that is fused with a 

calmodulin like domain (CaM-LD). The CaM-LD contains 4 EF hands that bind 

calcium ions (Harper et al., 1991). A study by Wernimont and colleagues on 

TgCDPK1 has demonstrated that CaM-LD was integrated with an autoinhibitory 

region containing pseudosubstrate sequence known as a CDPK-activating domain 

(CAD) (Figure 1.8) (Wernimont et al., 2010). In the absence of calcium, CAD 

interacts with the kinase domain preventing the access of substrate to the active site. 

Upon calcium-CAD binding, the CAD domain moves to a different position on the 

kinase domain, opposite the catalytic pocket (ATP binding site), hence exposing the 

kinase active site for substrate binding (Figure 1.8) (Wernimont et al., 2010).  

In plants, CDPK is an abundant protein kinase family that has been estimated 

to have 27 and 34 isoforms in Oryza sativa and Arabidopsis, respectively (Harper 

and Harmon, 2005). It was found to be a multifunctional enzyme family as members 

phosphorylate more than one substrate for different cellular processes. It plays an 

important function in carbon, nitrogen and sulphur metabolism, secondary 

metabolism and defence responses, ethylene synthesis, phospholipid metabolism, ion 

and water transport, cytoskeleton regulation, transcription, proteosome regulation 

and fertilization regulation (Harper and Harmon, 2005).  

 There are five major classes of apicomplexan CDPK, based on their different 

domain structures (Billker et al., 2009). The first group of CDPK is similar to the 

plant CDPKs and consists of an N-terminal kinase domain and 4 EF hands. The short 

N terminal region of some members of this group has been reported to be acylated, 

as shown for PfCDPK1 (Moskes et al., 2004) and PfCDPK4 (Ranjan et al., 2009). 

There are other apicomplexan CDPKs, including orthologues in T. gondii and C. 

parvum: TgCDPK1 and TgCDPK3, and CpCDPK1 and CpCDPK3, respectively 

(Billker et al., 2009). The second group of CDPKs have a long N-terminal extension 

(PfCDPK3 and PfCDPK5 together with their orthologues from C. parvum and T. 

gondii) (Billker et al., 2009). A third group of these kinases are only found in T. 

gondii and C. parvum where the kinases, TgCDPK4A, TgCDPK4, TGCDPK8 and 

CpCDPK4 only contain three C-terminal EF hands. The fourth group contains two or 
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three EF hands but they are situated at the N-terminal end and connected to the 

kinase domain via a plekstrin homology domain (PH), referred as CDPK7 which 

only exist in T. gondii and P. falciparum. Finally, there is also a CDPK group that 

has one or more EF hands at their N- and C-termini, such as PfCDPK6 (Billker et al., 

2009).  

The function of CDPKs has been highlighted in regulating the growth of 

apicomplexan parasites such as Plasmodium and Toxoplasma.  As in plants, these 

CDPKs seem to phosphorylate quite a number of substrates in vitro (Green et al., 

2008; Kato et al., 2008b; Kugelstadt et al., 2007). In Plasmodium, CDPKs have been 

reported to play an important role in merozoite invasion (CDPK1) (Green et al., 

2008) and egress (CDPK5) (Dvorin et al., 2010) in the blood stage, male 

gametogenesis (CDPK4) (Billker et al., 2004), and ookinete (CDPK3) (Ishino et al., 

2006; Siden-Kiamos et al., 2006a) differentiation in the mosquito stage, and 

sporozoite infectivity in the liver stage (CDPK6) (Coppi et al., 2007) (Figure 1.9). In 

Toxoplasma, there are only two CDPKs that are well studied. The TgCDPK1, an 

orthologue of PfCDPK4, was found to be important in Toxoplasma tachyzoite 

motility. Treatment with KT5926, a general CDPK inhibitor (although the selectivity 

of this inhibitor towards TgCDPK1 is uncertain), inhibited TgCDPK1 activity and 

blocked parasite attachment to host cells (Kieschnick et al., 2001). Further study on 

TgCDPK1 by conditional knockout and analysis of gatekeeper mutants revealed the 

essentiality of this enzyme in regulating exocytosis through microneme secretion 

(Lourido et al., 2010). TgCDPK3, the orthologue of PfCDPK1, was found to be 

localised at the apical end of tachyzoites. It was shown to phosphorylate T. gondii 

aldolase 1 (TgALD1) in vitro and was found to be in a complex with TgALD1 by a 

co-immunoprecipitation assay, suggesting the involvement of TgCDPK3 in the 

motility of T. gondii through the phosphorylation of the glideosome complex (Sugi et 

al., 2009).    
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1.9 The relevance of GAP45 phosphorylation by CDPK1 

The mechanism of motor complex regulation is still not clearly defined. A previous 

study found that GAP45 was phosphorylated in vivo (Green et al., 2008). GAP45 has 

also been reported to be a substrate for calcium-dependent protein kinase 1 (CDPK1) 

and protein kinase B (PKB) in vitro thus highlighting the potential importance of 

phosphorylation in regulating the parasite motor complex machinery (Green et al., 

2008; Vaid et al., 2008). These observations are further supported by the 

involvement of calcium regulation during Plasmodium growth and invasion (Billker 

et al., 2009) as both of the kinases, CDPK1 and PKB, are dependent on calcium for 

their activity. The importance of GAP45 phosphorylation was further supported by 

studies on its orthologue in the T. gondii tachyzoite. Expression of a form of 

TgGAP45 with phosphomimetic residues affected MyoA-MLC1-GAP45 association 

with GAP50 without perturbing parasite growth and invasion, or the localisation of 

GAP45 protein (Gilk et al., 2009). The expression of CDPK1 peaks at the late 

schizont stage when the merozoite is ready to be released and reinvade red blood 

cells. Co-localisation of CDPK1 with MTIP, the IMC marker (Green et al., 2008), is 

consistent with the potential of CDPK1 as a kinase that closely localizes with and 

phosphorylates parasite motor complex proteins, such as GAP45.  

 Furthermore, invasion of red blood cells by the merozoite was inhibited by a 

known CDPK1 inhibitor, Bisindolocarbazole K252a (Green et al., 2008). This 

compound is related to the KT926 inhibitor that reduced the TgCDPK1 activity in 

vitro (Kieschnick et al., 2001). However, the selectivity and specificity of K252a 

inhibitor towards PfCDPK1 is doubtful. The P. falciparum GAP45 phosphopeptides 

(peptide 81-96 [DYATQENKSFEEKHLE], 97-112 [DLERSNSDIYSESQKF] and 

141-155 [LSEPAHEESIYFTYR]) were detected by MALDI-TOF MS analysis, and 

are conserved across the Plasmodium genus (Figure 1.10). The phosphopeptides 

contain either one threonine and one to four serine residues than could potentially be 

phosphorylated. Threonine is probably not to be phosphorylated as the 

phosphorylated GAP45 did not react with a phosphothreonine specific antibody 

(Green, J. unpublished). Moreover, the GAP45 peptide 81-96, which is 

phosphorylated by CDPK1 in vitro was also detected in extracts of cultured parasites 
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(Green et al., 2008). It is likely that S89 in GAP45 peptide 81-96 

(DYATQENKSFEEKHLE) is the target site for CDPK1 as it is the only 

phosphorylatable residue excluding the threonine. The inability to identify the 

specific phosphorylated residues by mass spectrometry, due to the multiple serine 

residues in peptides 97-112 and 141-155 of GAP45 has led this study to concentrate 

on modified recombinant proteins in order to identify specific target residues of 

CDPK1 in GAP45.  

 

1.10 Aims and hypothesis 

GAP45 has been shown to be a substrate for CDPK1 in vitro while it was also found 

to be phosphorylated in vivo. These findings suggest the importance of GAP45 

phosphorylation, although this is yet to be demonstrated.  As it is crucial to 

demonstrate this event in vivo, this study will investigate the role of GAP45 

phosphorylation in P. falciparum starting from determination of the CDPK1 

phosphorylation site(s) leading on to the consequences of its phosphorylation in the 

parasite. 

What is the role of GAP45 phosphorylation in the parasite? There are several 

possible consequences of GAP45 phosphorylation. It may increase or decrease the 

affinity of this protein in binding to other motor complex proteins. TgGAP45 

phosphorylation was demonstrated to prevent binding of the trimeric motor complex 

protein, GAP45-MTIP-MyoA, to GAP50 (Gilk et al., 2009).  Whether or not the 

same phenomenon could be happening in P. falciparum will be discussed further in 

this study. Phosphorylation-dephosphorylation of GAP45 might be important in 

GAP45 localisation to the IMC. As the phosphorylation of this protein begins at 

early schizont stage, it is possible that phosphorylation might promote the specific 

localisation of GAP45 protein to the IMC together with other post-translational 

modifications mentioned earlier such as palmitoylation and myristoylation. Further 

effects of GAP45 phosphorylation on parasite growth or merozoite invasion will also 

be monitored. 
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In order to determine the actual role of GAP45 phosphorylation specifically 

by CDPK1, it is proposed to carry out experiments that will give a clear picture of 

GAP45 function. The specific objectives of this study are: 

i. To identify the CDPK1 phosphorylation sites on GAP45. These in 

vitro experiments can be done by performing site-directed 

mutagenesis by substituting the serine or threonine residues with 

alanine. The mutants produced will be further analysed by a CDPK1 

kinase assay to determine which mutants exhibit any change in 

GAP45 phosphorylation. The results will also be further analysed to 

obtain useful information for further studies.   

ii. To study the role of GAP45 phosphorylation in regulating the actin-

myosin motor complex during merozoite invasion and other potential 

roles in parasite development. The in vivo experiments will be carried 

out using P. falciparum 3D7 culture. GAP45 protein and its variants 

(identified from the first objective) will be tagged with GFP and 

transfected into P. falciparum, with expression of the protein from an 

episomal plasmid. The GFP-tagged GAP45 expressing P. falciparum 

parasites will be isolated and maintained in the culture.  The 

localisation of GFP-tagged GAP45 will be observed and 

characterized. This will also include a protein-protein interaction 

study between the motor complex proteins and GFP-tagged GAP45.  
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            (Baum et al., 2008a) 

         

Figure 1.1: Morphology and conserved organelles of the P. falciparum 

merozoite, ookinete, sporozoite (a) and T. gondii tachyzoite (b). Organelles such 

as rhoptries, exonemes, micronemes and dense granules are important in motility and 

invasion. Rhoptries secrete proteins involved in host-cell invasion and 

parasitophorous vacuole formation. Micronemes releases proteins onto the parasite 

and host surface during parasite invasion. Dense granules released their contents 

after parasite invasion to establish the parasitophorous vacuole (PV) within the 

infected host cells. Exonemes contain proteases that are released into the 

parasitophorous vacuole prior to microneme release, responsible for parasite egress 

from the host cell. Other structures are nucleus (NUC), sub-pellicular microtubules 

(MT), inner membrane complex (IMC) and tubulin-rich apical polar rings (APR) 

with collar (ookinete only) or conoid (tachyzoite only) (Baum et al., 2008a). 
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       (Bannister and Mitchell, 2003) 

 

Figure 1.2: Life cycle of P. falciparum in the human host and the Anopheles 

mosquito vector. The infection begins when the Plasmodium-infected mosquito 

bites the host for a blood meal releasing saliva containing sporozoites into the blood 

stream. Sporozoites are carried to the liver where they invade hepatocytes and 

multiply into liver merozoites. These merozoites are released into the bloodstream 

and invade red blood cells to begin the asexual blood-stage of the life cycle. In the 
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red blood cell, the parasite develops through ring, trophozoite and schizont stages. At 

the end of the schizont stage, daughter merozoites egress from the red cell. These 

free merozoites then invade new red blood cells and perpetuate the asexual-blood life 

cycle. Some parasites will develop into male or female gametocytes in the 

bloodstream, which are the initial sexual stages of the parasite. These parasites are 

taken up by a mosquito during feeding and gametogenesis in the mosquito gut results 

in gamete formation followed by fertilization to form zygotes. Zygotes develop into a 

motile form called an ookinete, which crosses the midgut wall and transforms into an 

oocyst. Mature oocysts release sporozoites which then migrate to salivary glands 

ready for the next infection of a human host.  
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                (Dixon et al., 2008) 

 

Figure 1.3: Developmental stages of the P. falciparum gametocyte in red blood 

cell. (A) The morphology of stage I and II is indistinguishable from ring stage 

asexual parasites. The differences between the gametocyte and the asexual parasite 

start to become obvious in stage II and III where the gametocyte appears more 

elongated as a result of subpellicular microtubule network formation. The change in 

morphology will progress to late stage III and IV when it appears as a crescent shape 

gametocyte. When it reached stage V (mature stage), the P. falciparum gametocyte 

crescent shape will form a sausage shape as it loses the characteristic of pointed ends 

due to the depletion of the microtubule network. After the mosquito bloodmeal, the 

male and female gametocytes will differentiate into micro- and macrogametocytes 

respectively. (B) The P. falciparum gametocyte morphology changes from stage I to 

V (mature stage) shown in thin blood film stained with Giemsa. The differences 

between male and female gametocytes can be distinguished at mature stage by the 

intensity of the stains. The female gametocytes can be identified by the blue 

appearance in Giemsa stained blood film; by contrast male gametocytes are pink in 

Giemsa stain. The hemozoin pigment of the female gametocyte is more centralized 

within the gametocyte, while the hemozoin pigment of the male gametocyte is 

dispersed throughout the infected red blood cell. 
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             (Cowman and Crabb, 2006) 

 

Figure 1.4: The steps of red blood cell invasion by P. falciparum merozoites. A 

merozoite invades the red blood cell by recognition of surface receptors (A), 

reorientation and formation of an apical end tight junction contact (B), movement of 

the tight junction from the apical to posterior pole driven by the actin-myosin motor 

complex (C and D). During invasion, the surface coat is removed by proteases (E). In 

the red blood cell, the parasite resides in a special compartment called the 

parasitophorous vacuole formed during the invasion process (Cowman and Crabb, 

2006). 
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Figure 1.5: The endodyogeny and schizogony of Toxoplasma and Plasmodium 

respectively. Toxoplasma parasite completes its lifecyle after each round of DNA 

replication producing 2 daughter cells, the tachyzoites. In contrast Plasmodium 

replicates its DNA (blue) for multiple times (~4 times) to produce 8 to 16 daughter 

cells, the merozoites. In Toxoplasma, the daughter cells are produced within the 

parasite cytoplasm (pink). The DNA replication proceeds together with the IMC 

development surrounding daughter cells. The invagination of plasma membrane 

(brown) from the mother cell occurs later probably with the help or fusion of newly 

synthesized plasma membrane of daughter cells. In Plasmodium, the nuclei move to 

the periphery of the parasite. The IMC development in the daughter cell of 

Plasmodium occurs together with the plasma membrane invagination. As suggested 

by Agop-Nersesian et al. for Toxoplasma, both plasma membrane generation (grey 

arrow) and IMC biogenesis (yellow arrow) require components transported by 
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vesicle and mediated by the proteins, Rab11A and Rab11B respectively. Both vesicle 

mediated proteins have their orthologues in Plasmodium which suggests a similar 

kind of IMC and plasma membrane generation could happen in this parasite (Agop-

Nersesian et al., 2010; Agop-Nersesian et al., 2009; Striepen et al., 2007). Other 

organelles in this diagram are apical tips (black), golgi apparatus (cyan), rhoptries 

(red) and endosome-like compartment (grey circle).       
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        (Baum et al., 2008a) 

 

Figure 1.6: Actin-myosin motor complex components of motile apicomplexan 

parasites. (1) The tetrameric complex of MyoA-MTIP-GAP45-GAP50 was 

hypothesised to be immobilized in the IMC which could be mediated by proteins 

such as GAPM (Bullen et al., 2009). (2) The MyoA heavy chain is supported by the 

association of its light chain (MTIP) and two other glideosome associated proteins 

(GAP45 and GAP50). The initiation of invasion or motility involves several steps 

upon tight junction formation which lead to intracellular signalling activation 

through messenger molecules such as calcium: (3) It starts with the polymerization 
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of actin governed by formin 1 and profilin. (4) The polymerized actin serves as a 

binding platform for MyoA creating a directed force bringing the polymerized actin 

rearward through myosin movement, powered by ATP hydrolysis. (5) As the 

complex of host cell receptor-TRAP like adhesin indirectly binds to polymerized 

actin through aldolase, the force generated by MyoA propels this protein complex 

rearward hence moving the parasite forward into the host. (6) The adhesin complex 

is dissociated by intramembrane proteases of the rhomboid family. (7-8) This 

machinery also includes the depolymerisation and recycling of actin governed by 

cofilin and cyclase-associated protein (CAP) (Baum et al., 2008a).                 
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Figure 1.7: GAP45 protein sequence alignment from different species of apicomplexan parasite: Plasmodium falciparum, 

Plasmodium yoelii, Toxoplasma gondii, Babesia bovis, Theileria parva and Cryptosporidium parvum sequences are shown. Amino 

acid residues identical in at least four of the six sequences are highlighted in black; similar residues in gray. 
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              (Doerig and Billker, 2010) 

Figure 1.8: The distinct activation mechanism for CDPKs and CaMKs. The 

CDPK is structurally different from CaMK as CDPKs have the CaM-like domain 

covalently bound to the enzyme. The autoinhibitory region containing 

pseudosubstrate motif of mammalian CaMKs is located adjacent to the kinase 

domain. The autoinhibitory region of CDPKs is integrated with the CaM-like domain 

which all together form a new domain called CDPK-activating domain (CAD) 

blocking the enzyme active site. In CaMKs, calcium-calmodulin (CaM) interacts 

directly with the autoinhibitory domain and activates the kinase by exposing the 

substrate binding site. The mechanism of activation in CDPKs is quite complex as it 

involves a different set of comformational changes that reflect with the different 

domain composition. The calcium-bound CAD remains bound to the kinase domain 

but translocates to a new position (about 135
o
 clockwise away from its inactivated 

position) hence allowing substrates access to the active site. The green line represents 

the CH1 helix of the autoinhibitory region (Doerig and Billker, 2010; Wernimont et 

al., 2010).   
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                                                                                                      (Billker et al., 2009) 

 

Figure 1.9: The role of CDPKs and other cyclic nucleotide dependent kinases in 

the Plasmodium life cycle.  The studies on these kinases or their messenger 

molecules are summarized from both human (P. falciparum infected red blood cell in 

vitro culture) and a mouse model (P. berghei). The findings are discussed further in 

the text. Abbreviations: CDPK, calcium dependent protein kinase; PKB, protein 

kinase B; PKG, protein kinase G; PfPDEδ, P. falciparum phosphodiesterase delta; 

PbGCβ, P. berghei guanylyl cyclase β; PbMap2, P. berghei mitogen activated 

protein kinase 2; PbACα, P. berghei adenylyl cyclase α (Billker et al., 2009).    
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 Figure 1.10: Plasmodium GAP45 protein alignment. The GAP45 protein is conserved across the genus. The identical amino acid 

 residues are highlighted in black; similar residues in gray.  
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Chapter 2 

Materials and methods 

 

2.1 General DNA manipulation and transformation  

2.1.1 Buffer and reagents 

Solutions for used were 1 X TAE (45 mM Tris-acetate pH 8.0, 1 mM 

ethylenediaminetetraacetic acid [EDTA]),  Luria-Bertani (LB) broth (1% (w/v) 

Bacto-tryptone, 0.5% (w/v) Bacto-yeast extract, 1% (w/v) NaCl in distilled water pH 

7.0),  LB agar (LB broth supplemented with 1.5% (w/v) Bacto- agar), SOC (2% 

(w/v) Bacto-tryptone, 0.5% (w/v) Bacto-yeast extract, 0.5% (w/v) NaCl in distilled 

water, pH 7.5). Reagents used were ethidium bromide, AccuPrime Pfx DNA 

polymerase kit (Invitrogen), restriction endonuclease enzyme, T4 DNA ligase 

(Promega), oligonucleotides,  gel extraction kit (Qiagen), PCR purification kit 

(Qiagen),  ampicillin, QIAprep Spin Miniprep, QIAGEN Plasmid Maxi kits (Qiagen) 

and glycerol. The chemical competent cells used were E. coli Novablue Gigasingles 

(Novagen), BL21-CodonPlus-RIL (Stratagene) and XL1-Blue (Stratagene). 

2.1.2 Methods 

2.1.2.1 DNA concentration determination 

DNA was quantified using UV absorbance spectrometry. Appropriate dilutions were 

made and absorbance at 260 nm recorded using a UNICAM UV1 spectrophotometer. 

An absorbance of 1 corresponds to approximately 50 g/ml
 
dsDNA. 
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2.1.2.2 Agarose gel electrophoresis 

Gels were prepared by melting agarose (Roche) in 1 X TAE to a final concentration 

of 0.8-1% (w/v) depending on the resolution required. For UV detection of DNA, 0.5 

g ml
-1

 ethidium bromide was added to melted agarose prior to casting gels in 

horizontal plates (Anachem Ltd, Luton, UK). Once cooled, gels were immersed in 1 

X TAE and DNA samples were supplemented with 1 X DNA loading dye (Qiagen) 

before loading into wells. Separation was conducted at 110V
 
using an EPS 500/400 

DC Power Supply (Pharmacia). 

 2.1.2.3 Polymerase Chain Reaction (PCR) 

DNA was amplified from plasmid DNA using high fidelity AccuPrime Pfx DNA 

polymerase (Invitrogen). Reactions contained 10 pg-200 ng template DNA, 0.3 M 

each oligonucleotide and 1-2.5 U enzyme in supplied reaction buffer. Reaction buffer 

(10X) contained 10 mM MgSO4, 3 mM dNTPs and thermostable proteins that 

enhance template-primer hybridization. 

 2.1.2.4 Restriction endonuclease digestion 

For a typical reaction, 1 g DNA was digested for 2 h at 37C, in reaction buffer 

supplied with the specific enzyme being used. All enzymes were purchased from 

New England Biolabs, 1 Unit being defined as the amount of enzyme required to 

digest 1 g DNA in 1 h at 37C, in a 50 l reaction. Where more than one enzyme 

was used in any given reaction, buffers were chosen in order to retain optimal 

activity of both enzymes. 

2.1.2.5 Ligation of DNA fragments 

Where restriction digestion was used in cloning, the resulting cohesive ends were 

ligated using T4 DNA ligase (Promega). Reactions contained 200 U enzyme, 50 ng 

vector DNA and a 3:1 molar excess of insert to vector DNA. Samples were incubated 

at 16C overnight, in the supplied buffer. 
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2.1.2.6 Purification of DNA 

Digested plasmid DNA and PCR amplicants were separated by agarose gel 

electrophoresis and the resulting bands were excised from gels. The DNA was 

subsequently purified from gel pieces using a gel extraction kit (Qiagen). The PCR 

product was also directly purified using PCR purification kit (Qiagen).  DNA was 

eluted from the spin columns using 30 l of the provided elution buffer and 

quantified. 

2.1.2.7 The propagation and transformation of plasmid DNA by E. coli 

Chemical competent E. coli strains were thawed on ice prior to the addition of 50 ng 

purified plasmid DNA or 2 l ligation reaction. The cells were then heated at 42C in 

a water bath for 30 seconds and immediately incubated on ice for 5 minutes. Pre-

warmed SOC was then added to the cells and incubated for 1 hr at 37C with 

agitation at 250 rpm. Transformed cells were then plated onto agar plates containing 

antibiotic for selection (100 g/ml ampicillin) and incubated at 37C overnight prior 

to positive colony picking. The colony was picked and grown in LB culture 

containing 100 g/ml ampicillin at 37C with agitation at 250 rpm. 

2.1.2.8 Isolation of plasmid DNA 

Plasmid DNA was isolated from E. coli overnight cultures using either the QIAprep 

Spin Miniprep or QIAGEN Plasmid Maxi kits (Qiagen) following the protocols 

provided in the QIAGEN plasmid purification handbook. If the resulting DNA was 

to be used for transformation or sequencing, 2-5 ml culture was sufficient and DNA 

was extracted using the Miniprep kit. For electroporation of P. falciparum, larger 

quantites of DNA were required and thus 250 ml cultures were grown and DNA 

extracted using the QIAGEN-tip 500 from the Maxiprep kit. All DNA was eluted 

and stored in elution buffer EB (10 mM Tris HCL, pH 8.5). 

2.1.2.9 Sequencing of DNA 

All DNA for sequencing was sent to the Source BioScience LifeSciences UK 

Limited, Cambridge. The samples sent comprised of 100 ng/µl plasmid DNA 
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extracted and purified by miniprep kit and 3.2 pmol/µl of each oligonucleotide in 10 

l de-ionised distilled water. ABI chromatogram files were viewed and manipulated 

using BioEdit sequence alignment editor. 

2.1.2.10 Bacterial cell storage 

Glycerol stocks of bacterial and yeast strains were made for long term storage of 

cells. Overnight cultures were grown and 800 l cells added to 200 l 100% glycerol 

in cryogenic vials (Nalgene). The mixture was mixed by vortex and stored at -80C. 

To grow the bacterial glycerol stock, frozen bacteria were scraped using a 100 µl tip 

and mixed with 5 ml LB media containing 100 µg/ml ampicillin prior to overnight 

incubation at 37
o
C with agitation at 250 rpm. 

 2.1.2.11 Oligonucleotides 

Oligonucleotides were purchased from Sigma-Aldrich Company Ltd and used for 

plasmid construction and site-directed mutagenesis (Sections 2.3 and 2.6.2.1).  

 

2.2 Expression and purification of recombinant GAP45 protein 

2.2.1 Buffers and reagents 

Solutions used for this experiment were LB media, LB agar, SOC as stated in 2.1.1 

and Laemmli sample buffer (100 mM Tris HCl pH 6.8, 200 mM dithiothreitol 

(DTT), 4% sodium dodecyl sulphate (SDS), 20% glycerol, 0.2% bromophenol blue). 

The reagents used were ampicillin, bugbuster protein extraction reagent (Novagen), 

benzonase nuclease (Novagen), isopropyl--D-thiogalactopyranoside (IPTG), 

protease inhibitor cocktail without EDTA (Roche), rabbit anti-His tag antibody 

(Santa Cruz Biotechnology) and anti-rabbit IgG-HRP conjugate (Biorad). The 

chemical competent cell used was E. coli BL21-CodonPlus-RIL (Stratagene). 
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2.2.2 Methods 

The GAP45 gene was inserted into pET 46 Ek/LIC expression vector (Novagen) 

which created a hexa-His tag at the protein N-terminus (provided by Dr. Judith L. 

Green, National Institute for Medical Research), and transformed  into Codon Plus 

BL21 (DE3) RIL competent cells (Stratagene) as mentioned (Section 2.1.2.7).  For 

expression, the competent cells were grown overnight in 10 ml LB medium 

containing 100 µg/ml of ampicillin at 37
o
C, with shaking at 250 rpm. Then the 

overnight cultures were grown in 100 ml LB medium containing 100 µg/ml of 

ampicillin at 37
o
C, with shaking at 250 rpm till the OD at 280 nm was 0.6-0.8. The 

expression of His-tagged GAP45 was induced with 0.1 mM or 1 mM of IPTG for 3 

hours at 27
o
C or 37

o
C, with shaking at 250 rpm. The culture was centrifuged and the 

supernatant was discarded. The bacterial cell pellet was kept at -20
o
C or processed as 

follows. The pellet was lysed and extracted with 10 ml Bugbuster (Novagen) solution 

containing 1x protease inhibitor cocktail without EDTA (Roche) and 25 U/ml 

benzonase (Novagen) for 20 minutes at room temperature with shaking. The lysate 

was centrifuged and both pellet and supernatant were subjected to SDS-PAGE and 

western blotting analysis. For solubility test, the protein from both pellet and 

supernatant were mixed 1:1 with 2X Laemmli sample buffer and separated with 12% 

NuPAGE gel (Invitrogen). The separated proteins were transferred onto 

nitrocellulose membrane (Whatman) by western blotting. The primary rabbit anti-His 

tag antibody (1:5000) was used for detection of expressed recombinant His-tagged 

GAP45 protein. The secondary antibody, anti-rabbit IgG-HRP conjugate (1:5000) 

was used for the ECL detection process.  

Following protein extraction, the lysate supernatant was collected and added 

to 4 ml 50% Nickel-Nitrilotriacetic acid (Ni-NTA) agarose (Qiagen). The mixture of 

Ni-NTA agarose and supernatant was mixed for 30 minutes at room temperature to 

initiate His tagged protein-Ni-NTA agarose binding. The mixture was loaded into a 

column and the supernatant flow-through was collected. The resin was washed with 

50 ml of washing buffer (250 mM NaCl, 20 mM NaPO4, 10 mM Imidazole pH 6.5), 

then the bound GAP45 protein was eluted with 6 ml elution buffer (250 mM NaCl, 

20 mM NaPO4, 250 mM Imidazole pH 6.5). 5 µl of the purified GAP45 was loaded 
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onto SDS-PAGE and stained with coomassie brilliant blue solution. The eluted 

recombinant GAP45 was concentrated by using Vivaspin concentrator 10K MWCO 

(Sartorius), and buffer exchanged into PBS using a PD-10 column containing 

Sephadex G-25 (GE Healthcare). The protein concentration was determined by 

Bradford assay (Biorad). 

 

2.3 Site-directed mutagenesis of GAP45 gene 

2.3.1 Buffers and reagents 

The site-directed mutagenesis was carried out using the QuikChange® II Site-

Directed Mutagenesis kit by Stratagene. The kit contained PfuUltra® High-Fidelity 

DNA Polymerase (2.5U/ul), 10X reaction buffer, Dpn I restriction enzyme (10U/ul), 

dNTP mix and XL1-Blue supercompetent cells. Primers used for mutagenesis are 

listed in Table 2.1. The underlined sequences indicate the codon substitution from 

serine/threonine to alanine. The bold nucleotide is the one that has been substituted 

for coding alanine. 

2.3.2 Methods 

Mutations resulting in the substitution of serine/threonine by alanine in GAP45 were 

performed using QuikChange II Site-Directed Mutagenesis kit according to the 

manufacturer’s instructions (Stratagene). Two complementary oligonucleotides 

containing S/T to alanine codons were synthesized by Sigma company and provided 

at HPLC purified grade. The 50 µl sample reactions contained 1X reaction buffer, 10 

ng of plasmid DNA containing the GAP45 gene, 125 ng of each primer, 1 ul dNTP 

mix and 2.5U of PfuUltra HF DNA polymerase. The mutagenesis process was 

started using a thermal cycler with recommended cycling parameters. Dpn I (10U) 

was added directly to each amplification reaction to digest the parental DNA and 

incubated at 37
o
C for 1 hour. 

 Dpn I-treated DNA was transformed into the XL1-Blue supercompetent cells 

and grown overnight on agar plate at 37
o
C. The positive colonies were picked and 
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grew overnight in 10 ml LB medium containing 100 ug/ml of ampicillin prior to 

plasmid DNA extraction using a miniprep kit (Qiagen). The purified plasmid DNA 

was then transformed into expression host, BL21 (DE3) RIL competent cells 

(Stratagene) prior to expression induction and protein purification as mentioned in 

section 2.1.2.7 and 2.2. 

 

2.4 CDPK1 kinase assay and analysis 

2.4.1 Buffers and reagent  

Recombinant CDPK1 was provided by Dr. Judith Green (National Institute for 

Medical Research). The radiolabelled agent used was adenosine 5`-triphosphate, [γ-

32
P]-, 250 µCi (9.25 MBq), specific activity: 30Ci (1.11 TBq)/mMole, 10 mM 

Tricine (pH 7.6) (Perkin Elmer). The CDPK1 kinase assay reaction was performed in 

a solution containing final concentrations of 20 mM Tris HCl pH 8, 20 mM MgCl2, 1 

mM CaCl2, 0.1 mM ATP, 658 nM or 100 nM CDPK1 and 8 µM GAP45 at 30
o
C for 

10 minutes or otherwise stated. All steps involving the [γ
32

P] ATP
 
was conducted in 

a radioactivity restricted area and shielded with Perspex glass. 

2.4.2 Methods 

2.4.2.1  Autoradiography 

The assay conditions were as described above (Section 2.4.1). The ATP was spiked 

with 0.1 MBq of [γ
32

P] ATP (Perkin Elmer)
 
and this mixture was used to start the 

kinase reaction. The kinase assay was stopped by adding 1:1 (v/v) Laemmli sample 

buffer and incubation at 90
o
C for 5 minutes. The sample was subjected to SDS-

PAGE, and the gel was fixed with fixing solution (30% methanol, 5% glycerol) for 

30 minutes at room temperature with some agitation. The fixed gel was dried and 

exposed to Kodak Biomax MR film to visualize the radiolabelled protein band. The 

intensity of the band was measured and analysed by ImageJ software 

(www.rsbweb.nih.gov/ij/). 

http://www.rsbweb.nih.gov/ij/
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2.4.2.2 Scintillation counting 

The assay conditions were as described above (Section 2.4.1) and the reactions were 

started at 5 to 10 minutes intervals to ensure that incubation times were identical. The 

sample was spotted onto a P81 phosphocellulose disc (Whatman) and immersed into 

75 mM phosphoric acid for 5 minutes with stirring. The paper was rinsed with 

acetone and dried at room temperature. The dried discs were transferred into 

scintillation vials and the radioactivity was measured by Cherenkov counting using a 

scintillation counter (Hastie et al., 2006). 

2.4.2.3 Electrospray mass spectrometry analysis (ES-MS) 

For ES-MS, the assay conditions were as described above (Section 2.4.1) with some 

modifications. To ensure a high amount of GAP45 phosphorylation, three times more 

GAP45 (24 µM), 658 nM CDPK1 and 1 mM ATP were used. The reaction was 

incubated for 90 minutes at 30
o
C. The phosphorylated GAP45 was subjected to ES-

MS by Dr. Steven Howell, National Institute for Medical Research. A total of 200 

pmol phosphorylated GAP45 or non-phosphorylated GAP45 (incubated in the 

reaction buffer without Ca
2+

) was subjected to ES-MS using a microTOFQ 

electrospray mass spectrometer (Bruker Daltonics, Coventry, UK) to determine the 

molecular mass. Protein was desalted using a 2 mm x 10 mm guard column 

(Upchurch Scientific, Oak Harbor WA) packed with Poros R2 resin (Perseptive 

Biosystems, Framingham), injected onto the column in 10% acetonitrile, 0.10% 

acetic acid, washed with the same solvent and eluted in 60% acetonitrile, 0.1% acetic 

acid. Desalted protein was then infused into the mass spectrometer at 3 µl/min using 

an electrospray voltage of 4.5 kV. Mass spectra were deconvoluted using maximum 

entropy software (Bruker Daltonics, Coventry, UK).  The spectrum was selected on 

the desired range and presented in deconvoluted form. 

 

2.5 Far UV circular dichroism (CD) spectroscopy 

The WT and variant GAP45 proteins were phosphorylated under similar conditions 

as the ES-MS preparation (Section 2.4.2.3). The negative control was done with the 
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reaction buffer without Ca
2+

. The sample (0.15 mg/ml in 250 µl PBS) was subjected 

to CD analysis by Dr. Steve Martin (National Institute for Medical Research). 

Briefly, CD measurements were made using a Jasco J-715 spectropolarimeter 

equipped with a PTC-348WI Peltier temperature control system. CD spectra were 

recorded at 20C in PBS, using 1 mm QS cuvettes (Hellma GmbH & Co. KG). The 

secondary structure of recombinant proteins was determined by monitoring CD in the 

far-UV region (190-260 nm). Multiple scans were averaged and the appropriate 

buffer baseline was subtracted. Far UV CD intensities are presented on a mean 

residue weight (MRW) basis. Secondary structure contents were estimated from far-

UV CD spectra using the methods described by Sreerama and Woody (Sreerama and 

Woody, 2000).  

 

2.6 Parasite culture and synchronisation  

2.6.1 Buffers and reagents 

The media used was Roswell Park Memorial Institute 1640 (RPMI) supplemented 

with 25 mM
 
HEPES, 27 mM NaHCO3, 2 mM L-glutamine, 25 g/ml gentamycin, 50 

g/ml hypoxanthine and 2 mg/ml glucose and with or without 0.5% (w/v) AlbuMAX 

II. Other reagents used were 70% Percoll (70% isotonic Percoll [90% percoll, 10% 

10X phosphate buffered saline], 30% RPMI 1640 without albumax) and 5% sorbitol. 

2.6.2 Methods 

The parasites were grown in RPMI medium containing AlbuMAX II pH 7.5 at 3% 

haematocrit. Cultures were gassed with a mixture of 5% O2, 7% CO2, 88% N2 and 

incubated at 37C. To examine cultures, thin blood smears were made on glass slides 

and cells stained using 1:1 Giemsa's stain:distilled water for 10 min. Slides were then 

viewed using a light microscope.  At 10% parasitemia, the parasite-infected red 

blood cells were pelleted by centrifugation and washed with the RPMI medium 

without AlbuMAX II. The pellet was layered on top of 70% Percoll and centrifuged 

at 1,000 x g for 11 minutes at room temperature. The concentrated schizont layer was 
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harvested and washed with RPMI medium prior to reinvasion. For reinvasion, 

purified schizonts were added to the new culture containing fresh non infected red 

blood cell and incubated with agitation at 37
o
C for 3 hours. The newly ring-infected 

red blood cells were collected by sorbitol treatment to eliminate the schizonts 

(Lambros and Vanderberg, 1979). The synchronized parasites were grown till they 

reached 10% parasitemia and harvested at schizont stage by using 70% Percoll as 

mentioned. The schizont pellets were washed with RPMI without AlbuMAX II and 

kept in -80
o
C prior to use. 

 

2.7 The parasite DNA manipulation and transfection  

2.7.1 Buffers and reagents 

For this experiment, solutions such as cytomix (120 mM potassium chloride (KCl), 

0.15 mM calcium chloride (CaCl2), 2 mM ethylene glycol bis(2-aminoethyl ether)-

N,N,N'N'-tetraacetic acid (EGTA), 5 mM magnesium chloride (MgCl), 10 mM 

potassium phosphate (K2HPO4/KH2PO4), 25 mM 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid HEPES, pH 7.6), freezing solution (0.324g NaCl, 

1.512g D-sorbitol, 14 ml glycerol in 50 ml volume) and thawing solution (3.5% 

NaCl) were used. The parasite used was Plasmodium falciparum 3D7 line. The 

transfection vector, phh3bsdGFPnG45, was provided by Dr. Ellen Knuepfer, 

National Institute for Medical Research, London. The vector contains the MSP3 

promoter, the codon for the N terminal part of GAP45 and the GFP sequence at the C 

terminus (phh3bsdGFPnG45). For drug selection, the vector also contains the 

blastocidin resistant gene. Reagents that were used include plasmid DNA extraction 

maxiprep kit (Qiagen), Blastocidin (Merck), 70% Percoll (Amersham) and 5% 

sorbitol (Section 2.6.1). The medium used for parasite culture was RPMI 1640 with 

AlbuMAX II (Section 2.6.1). 
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2.7.2 Methods 

The transfection vector (phh3bsdGFPnG45) was reconstructed by inserting the C 

terminal part of GAP45 which places the GFP tag in the middle of the GAP45 non-

homologous region. The complete transfection vector was then cloned in E. coli. The 

plasmid DNA was extracted and purified by maxiprep kits prior to transfection. 

2.7.2.1 Tranfection vector construct 

The plasmid phh3bsdGFPnG45 was designed to episomally express the N-terminal 

29 residues of GAP45 fused to GFP. DNA sequence coding for the  N-terminal 29 

amino acids of GAP45 was fused in front of sequence coding for GFP as follows: 

Two overlapping primer pairs (Gap45for  

[TTCACCTAGGATGGGAAATAAGTGTAGTAGGTCAAAGGTAAAAGAACC

AAAGAGAAAAGATATTGACGAGTTAGCAGAAAGGGAG] /Gap45rev 

[GACAACTCCAGTGAAAAGTTCTTCTCCTTTACTTTTCTTCAAGTTCTCCCT

TTCTGCTAACTCGTCAATATC]) were fused to generate a long forward primer 

encoding the N-terminal 29 amino acids of  GAP45. Following this the long fusion-

primer was used in combination with GFPrev primer 

(ATTTCTCCGCGGTTATTTGTATAGTTCATCCATGAAATGTGTAATCCC) to 

produce the GAP45-GFP fusion gene which was subsequently inserted via 

AvrII/SacII restriction enzyme cleavage (sites underlined above) between the MSP3 

promoter and the hrp2 3’UTR sequences in the pHH3 vector and cloned (Knuepfer 

and Holder, unpublished). 

A second plasmid (phh3bsdGFPGAP45) was constructed to add an internal 

GFP tag to the GAP45 sequence, located between residues 29 and 30. The sequence 

encoding the N-terminal part of GAP45 fused with GFP was amplified by PCR 

eliminating the terminal stop codon using primers 5’ 

GCGCGCCCTAGGATGGGAAATAAATGTTCAAG 3’ and 5’ 

GCGCGCCCGCGGTTTGTATAGTTCATCCATGC 3’. The PCR product was 

reinserted into the pHH3 vector via AvrII/SacII restriction enzyme cleavage (sites 

underlined above) after the MSP3 promoter. The sequence encoding the C-terminal 

portion of GAP45 from residue 30 to the stop codon was amplified by PCR using 
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primers 5’ GCGCGCCCGCGGCAATCTGAAGAAATAATTGAAG 3’ and 

5’GCGCGCCCGCGGTTAGCTCAATAAAGGTGTATCG 3’ and inserted into the 

transfection vector via SacII restriction enzyme cleavage (sites underlined above) 

after the GFP tag sequence. A series of additional constructs to express the full 

length GAP45 tagged with GFP and with amino acid substitutions were also made as 

mentioned in section 2.3. The same procedure also applies to the rest of the GAP45 

variants (S89A, S103A, S89A/S103A, S89D, S103D, S89D/S103D). 

A third plasmid (phh3bsdGFPcG45) to express the N-terminal truncated GFP-

tagged GAP45 (C-GAP45) was also constructed by a similar approach by 

reconstructing the second plasmid phh3bsdGFPGAP45. The DNA coding the N-

terminal 29 amino acids of GAP45 fused to GFP sequence in plasmid 

phh3bsdGFPGAP45 was cut out and replaced with the GFP sequence only (without 

stop codon) via AvrII/SacII restriction enzyme cleavage after the MSP3 promoter. 

The sequence encoding the C-terminal portion of GAP45 from residue 30 to the stop 

codon was inserted via SacII restriction enzyme cleavage after the GFP tag sequence. 

This plasmid will express the GFP-tagged GAP45 that only contains residues 30-204 

(lacking the first 29 amino acid N-terminus residues) (C-GAP45). The expression 

component of this plasmid, the MSP3 promoter and the GFP-tagged GAP45 gene 

were reconfirmed by plasmid digestion using double digestion enzymes, EcoRI/AvrII 

and AvrII/SacII respectively. 

  The sequence and alignment of the insert was confirmed by DNA sequencing. 

The confirmed vector was cloned in Novablue Gigasingles E. coli cells (Novagen) 

and grown overnight at 37
o
C prior to plasmid DNA extraction using maxiprep kits 

(Qiagen).  

2.7.2.2 DNA precipitation 

The plasmid DNA (100 μg) was purified by ethanol precipitation and mixed with TE 

buffer (10 mM Tris HCL, 1 mM EDTA, pH 8.0) and kept at –30
o
C. Briefly, 1/10 

volume of 3 M sodium acetate was added to the DNA sample, followed by 2 

volumes of 100% ethanol. DNA was left to precipitate overnight at -20C and 
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pelleted by centrifugation (20000 x g, 20 min). The pellet was washed in 70% (v/v) 

ethanol and spun again prior to air-drying and re-suspension in 30 µl of TE buffer. 

2.7.2.3 Transfection processes 

Prior to transfection, P. falciparum 3D7 was synchronised by Percoll separation and 

sorbitol treatment to get 10% red blood cell infected with ring stage parasite (Section 

2.6). The plasmid DNA in TE buffer was mixed with 385 µl cytomix solution by 

pipeting up and down till the DNA dissolved (Fidock and Wellems, 1997; Wu et al., 

1995). The mixture was then mixed with 150 µl of 10% ring-infected blood culture 

by using a Pasteur pipet and immediately transferred into the Gene Pulser cuvette. 

The elecroporations were done one at a time at 0.310 kV/950 uF with Ohms set to 

infinity. The electroporated samples were transferred into petri dishes containing 10 

ml culture volume of 3% hematocrit of non-infected red blood cells. The petri dish 

was gassed with a mixture of 5% O2, 7% CO2, 88% N2 and placed in an incubator at 

37
o
C. The RPMI medium (2.6.1) was replaced and maintained with new RPMI 

medium containing 2.5 µg/ml Blastocidin. 

2.7.2.4 Freezing and thawing of P. falciparum 

The parasites were kept in liquid nitrogen by using a freezing solution. The ring 

infected red blood cells (5% parasitemia) were pelleted at 1000 x g for 5 minutes. 

The supernatants were discarded. Warm freezing solution was added drop wise to the 

pellets (7:3 v/v). The mixtures were transferred to cryopreservation vials and stored 

in liquid nitrogen prior to use.  

 The parasites were thawed using 3.5% NaCl thawing solution. The 

cryopreserved samples were thawed in a 37
o
C water bath and transferred to a 15 ml 

conical tube. The original volume of thawing solution was added drop wise and 

centrifuged at 250 x g for 5 minutes. This step was repeated twice prior to culture 

preparation. The pellet was mixed with warm RPMI plus albumax medium and the 

culture was incubated at 37
o
C prior to use.    
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2.8 Parasite protein subcellular fractionation 

2.8.1 Buffers and reagents 

The buffers or solutions used were hypotonic lysis buffer (10 mM Tris HCl pH 8.0, 5 

mM ethylenediaminetetraacetic acid (EDTA), 1X protease inhibitor cocktail), high 

salt buffer (50 mM Tris HCl pH 8.0, 5 mM EDTA, 500 mM NaCl, 1X protease 

inhibitor cocktail) and carbonate buffer (0.1 M sodium carbonate, pH 11.0). Other 

buffers used include 2X Laemmli sample buffer (Section 2.2.1).    

2.8.2 Methods 

The parasite was synchronized and harvested as mentioned (Section 2.6). For crude 

protein extraction, the frozen parasites were thawed and lysed with hypotonic lysis 

solution (1:10 v/v) for 1 hour at 4
o
C. The mixture was centrifuged at 20,000 x g for 

10 minutes at 4
o
C. The pellet was mixed with 2X Laemmli sample buffer and kept at 

-20
o
C prior to use. 

For subcellular fractionation, the schizont pellet was lysed with hypotonic 

lysis buffer (1:10 v/v) for 1 hour at 4
o
C with mixing up and down using syringes 

every 10 minutes. The mixture was centrifuged at 100,000 x g using an 

ultracentrifuge for 10 minutes at 4
o
C. The supernatant was kept (Hypotonic lysis 

soluble) and the pellet was washed once with the hypotonic lysis buffer with mixing 

up and down using syringes at 4
o
C. Then the insoluble materials were pelleted down 

at 100,000 x g using the ultracentrifuge for 10 minutes at 4
o
C. The pellet was mixed 

with high salt buffer (1:10 v/v) and incubated for 1 hour at 4
o
C with mixing up and 

down using syringes at 10 minutes interval. The supernatant was kept (High salt 

soluble) and the pellet was washed once with the high salt buffer again by mixing up 

and down using syringes at 4
o
C. The similar process was done sequentially as above 

for the carbonate buffer. All the fractions were collected and mixed with 2X 

Laemmli buffer at 1:1 and heated at 95
o
C for 10 minutes. The sample was kept at -

20
o
C prior to use or analysis by the western blotting technique where the appropriate 

primary antibodies used include anti GFP (Roche), anti GAP45 (1:5000), anti MTIP 

(1:5000), anti SERA5 (1:20000) and anti MSP7 (1:10000). 
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2.9 SDS-PAGE and western blotting technique 

2.9.1 Buffers and reagents 

The reagents used were Precision Plus Protein standards (Bio-Rad), Enhanced 

chemiluminescence substrate, ECL (Amersham), primary antibody (anti GFP 

[1:1000], anti GAP45 [1:5000], anti MTIP [1:5000], anti MSP7 [1:10000], anti 

CDPK1 [1:5000] and anti SERA5 [1:20000]) and secondary antibody (goat anti 

rabbit IgG or goat anti mouse IgG conjugated with horse radish peroxidase [1:5000]) 

(Biorad). Solutions used in this experiment were Coomassie blue stain (0.1% [w/v] 

Coomassie Brilliant Blue R-250, 45% [v/v] methanol, 10% [v/v] acetic acid), Nu-

PAGE 3-(N-morpholino)-propanesulphonic acid (MOPS) buffer, destaining 

solution (45% [v/v] methanol, 10% [v/v] acetic acid), phosphate buffered saline 

containing 0.2% Tween 20 (PBST) and blocking buffer (1% bovine serum albumin 

in PBST). 

2.9.2 Methods 

All protein samples were separated using 12% Nu-PAGE pre-cast Bis-Tris gels 

and Xcell II Mini Cell gel cassette (Invitrogen). The Precision Plus Protein 

standards (Bio-Rad) were used as protein markers. The MOPS buffer was used as a 

running buffer by applying a constant 200 Volts (V) using an EPS 500/400 DC 

Power Supply (Pharmacia). The separated proteins were visualised by staining gels 

with coomassie blue stains, gels were immersed in coomassie blue stain for 2 hours, 

destaining solution was used to remove the staining background.  

 In western blotting, the separated proteins from the gel were transfered onto 

nitrocellulose membrane overnight at 12 V or 3 hours at 30V at room temperature. 

The nitrocellulose membranes were incubated in blocking solution for 1 hour at 

room temperature or overnight at 4
o
C. Then, the membranes were incubated in the 

appropriate primary antibody (Table 2.2) for 1 hour and washed with PBST 3 times 

at 10 minutes intervals. The membranes were again incubated with appropriate 

secondary antibody prior to the washing step as mentioned. The membranes were 

immersed in enhanced chemiluminescene substrate solution (ECL, GE Healthcare)  
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for 1 minute and the protein band signal was detected by exposing the blot to Biomax 

MR film (Kodak) for between 10 sec and 1 minute and developed using a FujiFilm 

FPM-3800 AD developer. 

 

2.10 Live and indirect-immunofluorescence microscopy assay (IFA) 

2.10.1 Buffers and reagents 

The chemicals used were PBS, 4% paraformaldehyde (PFA) in PBS, 

permeabilisation solution (0.2% Triton X-100 in PBS), GFP-Booster (1:200) (a 

specific GFP-binding protein coupled to the fluorescent dye ATTO 488) 

(Chromotek), Hoechst 33342 DNA stain reagent (Invitrogen) and Prolong® Gold 

antifade reagent with DAPI (Invitrogen). The primary antibodies used were anti 

GAP45 (1:1000), anti MTIP (1:1000), anti GAP50 (1:200), anti RON10 (1:2000) and 

anti MSP1 (1:1000). The secondary antibodies used were IgG-specific second 

antibody coupled with Alexafluor 594/488 (1:5000) (Sigma). 

2.10.2 Methods 

The parasites were synchronized and purified as mentioned (Section 2.6) and then 

diluted 1:10 with the RPMI 1640 containing albumax. DNA staining was done by 

adding  0.1 µg/ml Hoechst reagent (Invitrogen) and incubated for 30 minutes at room 

temperature. About 2 μl of the stained schizont-infected red blood cells were dropped 

onto the slide and overlaid with a Vaseline-rimmed coverslip.  

 For IFA, smears of purified schizonts were made. The slides were fixed with 

4% PFA for 10 minutes at room temperature. The fixed slides were washed 3 times 

with PBS and permeabilised with PBS containing 0.5% Triton X-100 for 5 minutes 

at room temperature. Then the slides were washed 2 times with PBS and blocked 

overnight with 4% BSA in PBS at 4
o
C. After blocking, the slides were incubated 

with GFP-Booster (Chromotek) (Table 2.2) for 1 hour at room temperature. The 

GFP-Booster is a specific GFP-binding protein (derived from Camelidae heavy chain 

antibodies) coupled to the fluorescent dye ATTO 488 to reactivate, boost and 
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stabilize the GFP signal. The slides were washed 3 times with PBS prior to an 

incubation step with protein marker antibodies (GAP45, MTIP, GAP50, MSP1 and 

RON10 antibodies) (Table 2.2).  The slides were then incubated with IgG-specific 

second antibody coupled with Alexafluor 594/488 (Sigma) (Table 2.2) for 1 hr at 

room temperature and washed 3 times with PBS. The slides were mounted with 

Prolong® Gold antifade reagent with DAPI (Invitrogen) overnight. Then the slides 

were sealed with a coverslip and nail polish prior to imaging by epifluorescence 

microscopy on an Axio Imager M1 microscope (Zeiss). For Z-stack analysis, the 

images were acquired on a DeltaVision Core system (Applied Precision Inc., USA) 

based on an Olympus IX71 inverted microscope, using an Olympus 100X objective 

lens and images captured using a QuantEM 512SC EMCCD (Cascade 512x512) 

camera (Photometrics Ltd) using a Xenon light source. Images were deconvoluted 

using DeltaVision SoftWorx software suite 5.0 and edited using Adobe Photoshop.  

 

2.11 Co-immunoprecipitation or pull-down assay 

2.11.1 Buffers and reagents 

The buffers used were lysis buffer (10 mM Tris HCl pH 7.5, 150 mM NaCl, 0.5 mM 

EDTA, 1% NP40, 1 mM PMSF and 1X protease inhibitor cocktail) (Roche), dilution 

buffer (10 mM Tris HCl pH 7.5, 150 mM NaCl, 0.5 mM EDTA, 1 mM PMSF and 

1X protease inhibitor cocktail) (Roche), washing buffer (10 mM Tris HCl pH 7.5, 

300 mM NaCl, 0.5 mM EDTA, 1 mM PMSF and 1X protease inhibitor cocktail) 

(Roche) and 2X Laemmli sample buffer. The reagent used was GFP-Trap® beads 

(Chromotek). 

2.11.2 Methods 

The purified schizonts were resuspended in 200 μl lysis buffer (1:10 v/v). The 

mixture was placed on ice for 30 minutes with extensively pipetting every 10 

minutes. The cell lysates were spun at 20,000 x g for 10 minutes at 4
o
C. The 

supernatant was transferred to a precooled tube and the volume was adjusted to 1000 
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μl with dilution buffer. The GFP-Trap® beads (Chromotek) were washed with 

dilution buffer by resuspending 30 μl beads slurry (Table 2.2) in 500 ul ice cold 

dilution buffer and spun down at 2700 x g for 2 minutes at 4
o
C. The supernatant was 

discarded and the washing step was repeated for another 2 times. The cell lysate was 

incubated with non-coated agarose beads (bab-20, Chromotek) for 30 minutes at 4
o
C 

with gentle mixing using rotator, to preclear the unspecific protein binding. The 

mixture was spun down at 2000 x g for 2 minutes at 4
o
C. The supernatant (cell 

lysate) was added to the GFP-Trap® beads and incubated with gentle mixing for 1 to 

2 hours at 4
o
C. The mixture was spun down at 2000 x g for 2 minutes at 4

o
C. The 

supernatant (non-bound materials) was kept for western blotting analysis. The 

remaining supernatant was discarded and the pellet was washed 2 times with dilution 

buffer and washing buffer respectively. The GFP-Trap® beads were resuspended in 

100 μl of 2X Laemmli sample buffer. The resuspended beads were heated for 10 

minutes at 95
o
C to dissociate the immunocomplexes from the beads. The beads were 

collected by centrifugation at 2700 x g for 2 minutes at 4
o
C and SDS-PAGE was 

performed with the supernatant (referred to as bound materials). 

 Protein samples were fractionated by SDS-PAGE as mentioned in section 

2.9, using Precision Plus Protein standards (Bio-Rad) as markers.  Following 

protein transfer to nitrocellulose membrane, the membrane was incubated in blocking 

solution and then incubated in primary antibody specific for GFP (1:1000) (Roche), 

GAP45 (1:5000), MTIP (1:5000), SERA5 (1:20000) and MSP7 (1:10000) (Table 

2.2). Then, the membranes were incubated with appropriate secondary antibody (goat 

anti rabbit IgG or goat anti mouse IgG conjugated with HRP) and the 

immunoreactive protein bands were detected by enhanced chemiluminescence 

reagent (ECL, GE Healthcare) and exposure to Biomax MR film (Kodak) as 

mentioned (Section 2.9). 
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2.12 Protein phosphatase treatment 

2.12.1 Buffers and reagents 

The solutions used were hypotonic lysis buffer (10 mM Tris HCL pH 8.0 and 1X 

protease inhibitor), extraction buffer (7 M urea, 2 M thiourea, 4% CHAPS and 1% 

DTT) and phosphatase reaction buffer (5 mM, Tris HCL pH 8.0, 10 mM NaCl, 1 

mM MgCl2, 0.1 mM DTT and 1X protease inhibitor). The reagents used were bovine 

intestinal alkaline phosphatase (Sigma), phosphatase inhibitor cocktail (Sigma) and 

protease inhibitor cocktail EDTA-free (Roche).  

 2.12.2 Methods  

Purified schizonts were lysed in hypotonic lysis buffer for 30 minutes on ice by 

pipetting up and down every 10 minutes and centrifuged at 20000 x g for 10 minutes 

at 4
o
C. The pellet which consisted of membranous parasite materials was then 

extracted in extraction buffer on ice for 30 minutes with shearing using fine needle 

syringes. The lysates were centrifuged at 20000 X g for 10 minutes at 4
o
C. The 

protein concentration of the supernatant was determined using the Bradford assay 

prior to phosphatase treatment. 

 About 100 µg of protein was used in the phosphatase reaction. The 

phosphatase reaction mixtures contained phosphatase reaction buffer and 50 Unit of 

bovine intestinal alkaline phosphatase enzyme (Sigma). The reaction was also done 

in the presence of phosphatase inhibitor cocktail (Sigma). The reaction was 

performed at 37
o
C for 4 hours to ensure a large amount of protein dephosphorylation. 

The reaction was stopped by the addition of 1:1 Laemmli sample buffer and heated at 

95
o
C for 10 minutes prior to SDS-PAGE protein separation and western blotting 

analysis as mentioned (Section 2.9).  
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2.13 
32

P-phosphate metabolic labelling of P. falciparum schizont 

 2.13.1 Buffers and reagents 

The solutions used were phosphate free RPMI 1640 medium and human serum. The 

reagent used was phosphorus-32 radionuclide, 2 mCi (74 MBq), specific activity: 

900-1100 mCi (33.3-40.7 GBq)/mMole, disodium phosphate in 1 ml water (Perkin 

Elmer). All steps involving the 
32

P-phosphate was conducted in a radioactivity 

restricted area using shielding with Perspex glass.   

 2.13.1 Methods 

The parasites were synchronized as mentioned (Section 2.6). The schizonts (~39 

hours post invasion) were enriched by 70% Percoll as above and washed twice with 

phosphate free RPMI medium. The schizonts (100 µl) were resuspended in 10 ml 

phosphate free RPMI containing 10% human serum and incubated at 37
o
C for 30 

minutes.  Then, 25 MBq of 
32

P-phosphate was added to the culture and the 

incubation was continued for 2 hours. After 2 hours incubation, the ~42 hours post 

invasion schizonts were pelleted at 200 x g for 5 minutes. The pelleted schizonts 

were washed twice with serum free RPMI and centrifuged at 200 x g for 5 minutes. 

Then, the 
32

P-phosphate labelled schizont pellets were used for immunoprecipitation 

using the GFP-Trap® system as mentioned in section 2.11.2. The 

immunoprecipitated GFP-GAP45 proteins were separated by SDS-PAGE and the gel 

fixed and dried as mentioned in section 2.4.2.1. The corresponding phosphorylated 

protein bands were detected by film exposure for 2 weeks at -80
o
C.  

 

2.14 Parasite protein identification by liquid chromatography- mass 

spectrometry (LC-MS/MS) 

 2.14.1 Buffers and reagents 

The solutions used were destaining solution (200 mM ammonium bicarbonate, 50% 

acetonitrile), reducing solution (20 mM DTT, 200 mM ammonium bicarbonate, 50% 
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acetonitrile), alkylation solution (5 mM iodoacetamide, 200 mM ammonium 

bicarbonate, 50% acetonitrile), washing solution (20 mM ammonium bicarbonate, 

50% acetonitrile), gel fixing solution (50% methanol, 10% acetic acid) and gel 

destaining solution (10% methanol, 7% acetic acid). The reagents used were SYPRO 

Ruby gel stain (Invitrogen) and sequencing grade modified trypsin (Promega). 

 2.14.2 Methods 

The parasite proteins or immunoprecipitation products were resolved by SDS-PAGE. 

The protein was either stained with coomassie blue or SYPRO Ruby (Invitrogen). 

For SYPRO Ruby staining, the gel was fixed with gel fixing solution for 15 minutes 

with shaking prior to staining overnight. The stained gel was destained with gel 

destaining solution for 30 minutes with shaking. The destaining solution was 

removed and this step was repeated once prior to washing with ultrapure water twice 

at 5 minutes interval. The protein bands were visualized using Pharos FX™ Plus 

Molecular Imager (Biorad). The protein bands were excised by EXQuest™ Spot 

Cutter (Biorad).  

 The gel pieces were placed in a non-coloured 0.5ml Eppendorf tube. The 

SDS and stains were extracted by incubating in 500 μl of destaining solution for 30 

minutes at room temperature and this step was repeated twice. The protein band was 

reduced by incubating in 200 μl reducing solution for 1 hour at room temperature. 

The DTT was removed by washing with 500 μl destaining solution. The cysteine of 

the protein was then alkylated by incubating in 100 μl of freshly made alkylation 

solution for 20 minutes in dark at room temperature. The alkylation solution was 

removed and the gel washed twice with 500 μl washing solution. The washed gel 

piece was incubated in 500 μl of neat acetonitrile for 15 minutes till it turned white. 

The acetonitrile was removed and the gel piece was left to dry in a laminar hood for 

about an hour. The dried gel containing protein band can be stored at room 

temperature prior to the trypsinization step. The dried gel was incubated in 12 μl of 

trypsin solution (1 μg/ml of trypsin in 5 mM ammonium bicarbonate) at 37
o
C 

overnight. The trypsin solution was added so that it covered the gel piece. The 

trypsinized protein band was subjected to protein identification by LC-MS/MS using 
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LTQ Orbitrap Velos mass spectrometer (Thermo Scientific) which was run and 

analysed by Dr. Steven Howell, National Institute for Medical Research.        
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 Table 2.1: The primers used for substitution of GAP45 serine or threonine to alanine in site-directed mutagenesis. Two 

 complementary oligonucleotides containing a S/T to alanine codon mutation were used in the sample reactions containing reaction 

 buffer, plasmid DNA containing GAP45 gene, dNTP mix and PfuUltra HF DNA polymerase. The mutagenesis process was started 

 using a thermal cycler with recommended cycling parameters. Dpn I was added directly to each amplification reaction to digest the 

 parental DNA prior to DNA transformation into the XL1-Blue supercompetent cells and grown overnight on agar plate containing 100 

 μg/ml of ampicillin at 37
o
C. The positive colonies were picked and grown overnight in LB media prior to plasmid DNA extraction 

 using a miniprep kit (Qiagen). The purified plasmid DNA was then transferred into the expression host, BL21 (DE3) RIL competent 

 cells (Stratagene) prior to expression induction and protein purification. (specific changes are in bold and the codon underlined: T84A, 

 5’- -3’). 
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GAP45 protein Primer used in mutagenesis 

S6A ATGGGAAATAAATGTGCAAGAAGCAAAGTAAAGG 

S8A ATGGGAAATAAATGTTCAAGAGCAAAAGTAAAGGAACCCAAACG 

S31A GAAAATTTAAAAAAACAAGCTGAAGAAATAATTGAAG 

S89A CAAGAAAATAAAGCATTTGAAGAAAAACAT 

S101A GATTTAGAAAGAGCTAATGCAGATATTTAT 

S103A GAAAGATCTAATGCAGATATTTATTCAGAA 

S107A TCAGATATTTATGCAGAATCTCAAAAATTT 
S109A ATTTATTCAGAAGCTCAAAAATTTGATAAT 

S116A GATATTTATTCAGAATCTCAAAAATTTGATAATGCTGCTGATAAATTAGAAACAGGAACTCAATT 

S128A AAACAGGAACTCAATTAACCTTAGCTACTGAAGCCACTGG 

S142A AAATAACTAAATTAGCTGAACCCGCCCATG 

S149A CCGCCCATGAAGAAGCTATATATTTTACTTA 

S156A CCCATGAAGAAAGTATATATTTTACTTATAGAGCTGTAACACCTTGTGATATGAATAAA 

S173A GAAACCGCTAAAGTTTTTGCAAGAAGATGTGGATG 

S198A TGAAAATGCATGTAAAATTTGTAGAAAAATTGATTTAGCCGATACACCTTTATTGAG 

S204A GATTTATCCGATACACCTTTATTGGCATAACCGGGCTTCTCCTCAAATCTCGAG 

T84A GAAATAGATTATGCAGCTCAAGAAAATAAA 
S89A/S103A GAAAGATCTAATGCAGATATTTATTCAGAA on sample S89A 

S89A/S103A/S142A AAATAACTAAATTAGCTGAACCCGCCCATG on sample S89A/S103A 

S89A/S103A/S149A CCGCCCATGAAGAAGCTATATATTTTACTTA on sample S89A/S103A 

S89D GAAGAAATAGATTATGCAACTCAAGAAAATAAAGATTTTGAAGAAAAACATTTAGAAGATTTAGAA 

S103D ACATTTAGAAGATTTAGAAAGATCTAATGATGATATTTATTCAGAATCTCAAAAATTTGATAATGC 

S89D/S103D ACATTTAGAAGATTTAGAAAGATCTAATGATGATATTTATTCAGAATCTCAAAAATTTGATAATGC  on sample  89D 
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 Table 2.2: The list of antibodies used in this experiment. a: Antibody affinity-purified; b: A VHH domain binding protein derived 

 from camelid heavy chain-only antibodies is coupled to agarose beads for immunoprecipitation; c: A VHH domain binding protein 

 derived from camelid heavy chain-only antibodies is coupled to a strong fluorescent dye-488) to both stabilize GFP and enhance its 

 fluorescence signals; d: Antibody not used in or was un-suitable for the marked procedure; e: 1 μl resin can efficiently bind 1-3 μg 

 proteins.

Name Species Type 
Dilutions/Quantity Source 

WB IFA IP  

Primary:       
α-GAP45 Rabbit Polyclonal AP

a
 1:5000 1:1000 N/A

d
 Raised by Harlan 

α-MTIP Rabbit Polyclonal AP
a
 1:5000 1:1000 N/A

d
 Dr JL Green 

α-MyoA Rabbit Polyclonal AP
a
 1:10000 N/A

d
 N/A

d
 Dr JC Fordham 

α-GAP50 Rabbit Polyclonal AP
a
 N/A

d
 1:200 N/A

d
 Raised in house 

α-RON10 Rabbit Polyclonal AP
a
 1:5000 1:2000 N/A

d
 Dr E Knuepfer 

α-MSP1 Mouse Monoclonal 1:5000 1:1000 N/A
d
 Dr E Knuepfer 

α-MSP7 Rabbit Polyclonal AP
a
 1:10000 N/A

d
 N/A

d
 Dr M Kadekoppala 

α-SERA5 Rabbit Polyclonal AP
a
 1:20000 N/A

d
 N/A

d
 Dr R Stallmach 

α-CDPK1 Rabbit Polyclonal AP
a
 1:5000 N/A

d
 N/A

d
 Dr JL Green 

α-GFP Mouse Monoclonal 1:1000 N/A
d
 N/A

d
 Roche 

α-His Rabbit Polyclonal AP
a
 1:2000 N/A

d
 N/A

d
 Santa Cruz 

GFP-Trap® Beads Camel Monoclonal (heavy chain only-agarose)
b
 N/A

d
 N/A

d
 30 μl

e
 Chromotek 

GFP-Booster Camel Monoclonal (heavy chain only-fluor 488)
c
 N/A

d
 1:200 N/A

d
 Chromotek 

 
Secondary:       
α-Mouse IgG HRP Goat Polyclonal AP

a
 1:5000 1:1000 N/A

d
 Biorad 

α-Rabbit IgG HRP Goat Polyclonal AP
a
 1:5000 1:1000 N/A

d
 Biorad 

α-Rabbit Alexa fluor® 488 Goat Polyclonal AP
a
 N/A

d
 1:5000 N/A

d
 Invitrogen 

α-Mouse Alexa fluor® 594 Goat Polyclonal AP
a
 N/A

d
 1:5000 N/A

d
 Invitrogen 

α-Rabbit Alexa fluor® 594 Goat Polyclonal AP
a
 N/A

d
 1:5000 N/A

d
 Invitrogen 



 

90 

 

 

Chapter 3 

In vitro phosphorylation of GAP45 protein by 

CDPK1 

 

3.1 Introduction 

Both the glideosome associated protein 45 (GAP45) and myosin tail domain-

interacting protein (MTIP) have been shown to be phosphorylated by CDPK1 in 

vitro. Doublet protein bands of GAP45 as observed by SDS-PAGE analysis have 

been characterized as phosphorylated and unphosphorylated forms (Green et al., 

2008). Based on several studies, GAP45 is a substrate protein for several post-

translation modification processes. In addition to the myristoylation and 

palmitoylation  that take place at its N-terminus (Rees-Channer et al., 2006), it was 

shown to be a substrate for two calcium activated kinases:  PKB (Vaid et al., 2008) 

and CDPK1 (Green et al., 2008). A previous study has shown that GAP45 

phosphopeptides from free merozoites could be detected by MALDI-TOF analysis 

(Green et al., 2008). Furthermore, several GAP45 phosphopeptides have been 

identified by phosphoproteomic studies on schizont stage parasites (Solyakov et al., 

2011; Treeck et al., 2011). One of the phosphopeptides (DYATQENKSFEEKHLE) 

detected following phosphorylation by CDPK1 in vitro, was also found in the in 

vivo–derived parasite protein, hence strengthening the argument that GAP45 protein 

is a substrate for CDPK1 (Green et al., 2008). However, information from the 

previous analysis was limited as it was unable to show precisely the phosphorylated 

residues. In this study, the specific sites for CDPK1 phosphorylation of GAP45 were 

determined using an exhaustive site directed mutagenesis approach where all of the 

serine residues and selected threonine residues were converted to alanine. This 
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approach has successfully identified the major CDPK1 phosphorylation sites of 

GAP45 in vitro.  

 

3.2 Extraction and purification of recombinant GAP45 protein 

The GAP45 gene was cloned into the pET-46 Ek/LIC expression vector, which 

created a 6X His tag on the N-terminus of GAP45. The resultant pET-46-GAP45 

plasmid was transformed into BL21 (DE3) RIL competent cells for expression. The 

expression of recombinant GAP45 protein was induced by IPTG which resulted in 

~35-37 kDa protein as judged by SDS-PAGE. The expression of GAP45 was 

optimized using different culture conditions and induction temperatures until the 

protein was highly expressed and soluble (i.e. present in the lysate supernatant). The 

best conditions for expression were performing induction at 27ºC for 3 hours with 1 

mM IPTG (Figure 3.1).  

Since recombinant GAP45 was tagged with 6X His on its N-terminus, the 

isolation of this protein was achieved using affinity purification through the binding 

of His-tagged GAP45 protein between histidine and the metal ion nickel of Ni-NTA 

agarose.  The washing and elution were done through a column with phosphate 

buffer pH 8.0 containing 20 mM and 250 mM imidazole respectively. Elution of the 

His-tagged GAP45 gave a high yield of a ~37 kDa protein with small amounts of 

impurities or protein breakdown products which it was not possible to eliminate 

(Figure 3.2). All recombinant GAP45 protein variants (substitution of serine (S) to 

alanine (A)) were also expressed and purified at similar amounts as wild type (WT) 

recombinant GAP45 protein. 

 The predicted molecular mass of recombinant GAP45 is 25.2 kDa; 

considerably smaller than the ~37 kDa band detected by SDS-PAGE. Similar to 

GAP45, merozoite surface protein 2 (MSP-2) has been characterized as a highly 

hydrophilic protein showing a relative molecular mass of 45 to 55 kDa, which is 

twice the molecular mass calculated from the sequence (Ishino et al., 2005). The 

possible anomalous migration behaviour may be due to an elongated structure or the 
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high content of charged residues in the protein that are likely to affect SDS binding 

(Baum et al., 2006b; Gaskins et al., 2004; Matagne et al., 1991). 

 

3.3 In vitro CDPK1 kinase assay  

As a previous study had found evidence of phosphorylated GAP45 in vitro and in 

vivo (Green et al. 2008), the present study has made an effort to further determine the 

specific amino acid residue(s) phosphorylated by CDPK1. This attempt was made by 

using GAP45 variants, substituting serine or threonine with alanine, in a CDPK1 

kinase assay. The CDPK1 kinase assay was performed using several methods: with 

or without 
32

P-ATP radiolabel, and was analysed by autoradiography, scintillation 

counting and the electrospray-mass spectrometry (ESi-MS) technique (without 

radiolabel).  

 Following phosphorylation catalysed by CDPK1 in vitro, 
32

P-ATP 

autoradiography has showed that the level of 
32

P incorporation into GAP45 variant 

protein bands except S103A is similar to that of WT GAP45 (Figure 3.3), indicating 

comparable levels of phosphorylation by CDPK1. The S103A protein band showed 

less incorporation of label as compared to the others. After densitometry analysis 

from three different experiments, the S103A variant showed a significant decrease 

(p<0.05) in its phosphorylation level of about 60% as compared to WT GAP45 

(Figure 3.3). In addition, GAP45 that contained the S89A substitution showed a 

slight decrease in its phosphorylation of about 12% as compared to WT GAP45 

(Figure 3.3). Following the above findings, a double mutation of GAP45 containing 

both S89A and S103A was produced.  As expected, the phosphorylation of the 

S89A/S103A GAP45 decreased when compared to WT GAP45. However, the 

S89A/S103A GAP45 variant showed only 5% less 
32

P incorporation compared to 

S103A (Figure 3.3). These results suggest that there are more CDPK1 

phosphorylation sites on GAP45 that remain undiscovered. S103 is the major 

CDPK1 phosphorylation site on GAP45, as substitution of serine with alanine at this 

site contributes to more than 50% reduction of GAP45 phosphorylation.  
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The T84A GAP45 variant was included in the assay as it might have been the 

remaining CDPK1 phosphorylation site contributes to the low level of 

phosphorylation of S89A/S103A GAP45 (Figure 3.3). However, the T84A GAP45 

variant was phosphorylated at the same level as WT GAP45 confirming that T84 is 

not a phosphorylation site for CDPK1 in vitro.  

 A CDPK1 kinase assay was also performed as a time course and analysed by 

scintillation counting (Figure 3.4). The results from this assay showed clearly that 

S89 of GAP45 is phosphorylated by CDPK1 as the S89A variant has decreased 
32

P 

incorporation. However, this is not evident at t=10 min, when incorporation of 
32

P 

into S89A GAP45 is indistinguishable from that of WT GAP45. The reduced 

incorporation of 
32

P is only apparent in the later time points of the assay (from 15 

min onwards) (Figure 3.4A). During the early period of the reaction, both WT and 

S89A proteins were phosphorylated at similar levels, presumably at S103, which is 

the major phosphorylation site for CDPK1 (Figure 3.4A). After 10 minutes of 

reaction, the level of phosphorylated WT GAP45 was still increasing, in contrast to 

S89A, where incorporation starts to slow down and remains unchanged after 40 

minutes of reaction (Figure 3.4A). As shown by the S103A GAP45 variant, the 

incorporation of 
32

P starts to slow down and remains unchanged after 5 minutes of 

reaction (Figure 3.4A). This result is similar with the double mutant protein, 

S89A/S103A (Figure 3.4A).  This latter result also explains the insignificant decrease 

of GAP45 phosphorylation between S103A and S89A/S103A variants using the 

autoradiography technique (Figure 3.3). For further kinetic analysis, the CDPK1 

kinase assay was also performed on a different concentration of GAP45 starting from 

0.06 to 32 μM and analysed by scintillation counting. As we thought, the Vmax 

values for each GAP45 variants were decreasing starting from WT (9495 cpm), 

S89A (7278 cpm), S103A (3770 cpm) and S89A/S103A (2730 cpm) (Figure 3.4B).  

 

3.4 Other possible CDPK1 phosphorylation sites on GAP45 

In addition to the ‘DYATQENKSFEEKHLE’ GAP45 phosphopeptide, previous 

studies have also shown the existence of a second in vivo phosphorylated GAP45 
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peptide detected by MS-MALDI TOF analysis and this peptide, 

‘LSEPAHEESIYFTYR’, contains two phosphorylatable serine amino acids, S142 

and S149 (Green et al., 2008). Both S142A and S149A GAP45 variants were 

subjected to a CDPK1 kinase assay, as previously described in section 2.4 and 

analysed by autoradiography, scintillation counting and ES-MS. By autoradiography, 

neither S142A nor S149A variants show any decrease in GAP45 phosphorylation as 

compared to WT GAP45 (Figure 3.5). In contrast, S142A and S149A variants 

showed an increased in phosphorylation level of GAP45 to about 1.5 to 2.5 fold that 

of WT GAP45 (Figure 3.5). Triple substitutions, S89A/S103A/S142A and 

S89A/S103A/S142A, showed decreased phosphorylation of GAP45 to about 26 and 

30 percent of wild type levels, respectively (Figure 3.5). Scintillation analysis shows 

higher levels of phosphorylation of the S142A and S149A GAP45 variants compared 

to WT over time (Figure 3.6). As found in the autoradiography analysis, triple 

GAP45 variants, S89A/S103A/S142A and S89A/S103A/S142A, show decreased 

GAP45 phosphorylation (Figure 3.6). These findings suggest that substitution of 

S142 or S149 with alanine increases the amount of either S89 or S103 

phosphorylation by CDPK1.  

 Neither the S103A nor the S89A/S103A substitutions were able to ablate 

phosphorylation of GAP45 completely (Figure 3.3). Similar results were also shown 

by triple GAP45 variants, S89A/S103A/S142A and S89A/S103A/S142A where there 

was still approximately 20% to 30% phosphorylation compared to the wild type 

protein (Figure 3.5). Since additional CDPK1 phosphorylation sites on GAP45 were 

suspected, all the serine residues were substituted to alanine. By autoradiography, all 

of the GAP45 variants except S103A, S89A/S103A, S142A and S149A had no 

significant effect compared to the WT GAP45 protein (Table 3.1; Appendix A). The 

other phosphorylated residues are likely to be S31 and S156, identified as possible 

CDPK1 targets in the analysis of individual serine substitution of GAP45, which 

showed a similar phosphorylation level as S89 (Table 3.1; Appendix A). 
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3.5 Electrospray mass spectrometry analysis of unphosphorylated 

and phosphorylated recombinant GAP45 protein 

To further confirm the presence of other CDPK1 phosphorylation sites on GAP45, 

WT-GAP45 and all the GAP45 mutants were subjected to ES-MS analysis. ES-MS 

can measure the mass of a recombinant protein using either intact molecules or 

proteolytically digested molecules (Mann and Wilm, 1995). The proteins are 

protonated, fragmented and detected by the mass spectrometer according to their 

mass/charge ratio (m/z). The resulting mass spectrum is characterized by a series of 

peaks caused by multiple charges on the protein molecules which then can be 

deconvoluted into a single peak of protein mass with an accuracy typically within 1 

Da in every 10 kDa (Mann & Wilm 1995). So, it is possible to detect the different 

forms of GAP45, unphosphorylated and phosphorylated.  The electrospray mass 

spectrometry will detect any addition of a ~80 Dalton phosphate moiety on intact 

GAP45 hence showing the number of phosphate molecules being added by CDPK1.  

 For the purpose of this analysis, a large amount of highly phosphorylated 

GAP45 was required and some modification to assay conditions was needed. The 

CDPK1 kinase assay was done without radiolabelling and using a high concentration 

of CDPK1 (0.04 µg/µl or 658 nM) and 1 mM ATP (10X higher than the previous 

assay). The reaction time was also prolonged to 90 minutes. As a negative control, 

the assay was performed in the absence of Ca
2+.

 From the deconvoluted MS 

spectrum, the unphosphorylated GAP45 shows a primary peak sized 25212.357 Da 

(Figure 3.7, i). The peak size corresponded to the recombinant GAP45 size that was 

estimated by ExPASy ProtParam tool as 25213.4 Da. As expected, a reduction of 

molecular mass is detected in the spectrum of GAP45 mutants, 16 Da for a serine to 

alanine single mutation and 32 Da for the double mutation, due to the molecular 

weight differences between serine and alanine (Figure 3.7).   

Phosphorylated WT GAP45 shows 4 forms, with additional 80, 160, 240 and 

320 Da increases in size corresponding to one, two, three and four phosphate 

incorporations respectively (Figure 3.7, ii). No unphosphorylated peak was detected 

showing that all of the WT GAP45 was phosphorylated on at least one site under 



 

96 

 

these conditions. The S89A GAP45 variant spectrum showed the disappearance of 

the four-phosphate GAP45 peak and similar results were also shown by the S103A 

GAP45 variant but with an additional peak corresponding to unphosphorylated 

GAP45 (Figure 3.7, iii & iv). As shown by previous autoradiography results, the 

S103A GAP45 variant has largely reduced the level of phosphorylation when  

compared to the S89A GAP45 variant (Figure 3.3). However, the amount of 

phosphorylated GAP45 detected for S103A GAP45 variant in this experiment was 

similar to that of the S89A GAP45 variant (Figure 3.7, iii & iv). This is because of 

the different conditions used in the two experiments, such as the high concentration 

of CDPK1 and prolonged reaction time adopted for the ES-MS analysis. 

 For the double substitutions, the S89A/S103A GAP45 spectrum only showed 

the first and second phosphate incorporated GAP45 with an additional 

unphosphorylated peak (Figure 3.7, v). Again, mass spectrometry shows the 

importance of S89 and S103 amino acid residues for CDPK1 phosphorylation of 

GAP45 with the latter residue most important as it reduced GAP45 phosphorylation, 

as demonstrated by the appearance of an unphosphorylated peak (Figure 3.7, v). 

However, even the double substitutions of GAP45 still show 2 forms of 

phosphorylated GAP45 which correspond to one and two phosphate additions by 

CDPK1. 

 A maximum of four phosphate groups can also be seen to be incorporated 

into both S142A and S149A GAP45, similar to WT GAP45 (Figure 3.7, vi & vii). In 

contrast, in the assay with S142A or S149A GAP45 a minimum of two phosphates 

were added (Figure 3.7, vi & vii). Thus, substitution of S142 or S149 with alanine 

increases the phosphorylation of GAP45, with the majority of the protein containing 

three phosphorylated residues (Figure 3.7, vi & vii). The reason for this phenomenon 

could be that substitution of serine 142 or serine 149 of GAP45 with alanine 

contributes to changes in protein structure or folding hence increasing the 

accessibility of a major CDPK1 phosphorylation site such as S103 or S89. To test 

this hypothesis, S142A and S149A GAP45 together with other GAP45 variants were 

subjected to far UV circular dichroism analysis (CD), to detect any secondary 

structural changes to these proteins upon phosphorylation. 



 

97 

 

3.6 Secondary structure of phosphorylated GAP45  

Circular dichrosim (CD) is a method for determining the conformation of a 

macromolecule in solution (Martin and Schilstra, 2008). With only a small amount of 

sample needed, it can monitor any secondary, tertiary and quarternary structural 

changes that might result from changes in environmental conditions, such as, pH, 

temperature, and ionic strength (Martin and Schilstra, 2008). In addition it is also 

used in structural analysis of recombinant protein and their variants (Martin and 

Schilstra, 2008). However it is not as powerful as nuclear magnetic resonance 

(NMR) and X-ray crystallography, which provide information about specific 

residues (Martin and Schilstra, 2008).  The near UV spectral bands of proteins (310-

255 nm) reflect the tertiary and quarternary structure of protein while far-UV spectral 

bands of proteins (below 250 nm) reflect the secondary structure of protein (Martin 

and Schilstra, 2008). After generating variant proteins, it is good practice to test for 

any significant effect of the substitution on the general conformation of a protein as 

compared to native or wild type protein. A difference between the far-UV CD 

spectra of the wild type and variant proteins can be an  indication that the mutation 

has produced some change in secondary structure (Martin and Schilstra, 2008). 

The GAP45 protein had previously being analysed by far UV CD 

(unpublished data) and it was recognised as a disordered or unstructured protein as 

also shown by this study (Figure 3.8). However, the protein is not fully disordered. 

After further analysis from the average of 60 readings, the spectrum was consistent 

with a protein containing 4% alpha helix, 22% beta sheet, 10% turn and 64% 

unstructured region (Sreerama and Woody, 2000).   None of the GAP45 variants 

including S142A and S149A, which showed the high phosphorylation levels had any 

secondary structure changes as compared to the WT GAP45 revealed by the CD 

spectrum (Figure 3.8).  To further analyse the potential of protein structure changes 

after phosphorylation, S142A and WT GAP45 mutants were phosphorylated and 

subjected to CD analysis. The CDPK1 kinase phosphorylation conditions were based 

on the condition used for ES-MS where the GAP45 was maximally phosphorylated, 

with at least one phosphate incorporation on all WT GAP45 molecules (Figure 3.7). 
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From these data, neither unphosphorylated nor phosphorylated GAP45 showed any 

changes in the secondary structure (Figure 3.8 & Figure 3.9).  

The phosphorylation of GAP45 by CDPK1 might not result in any major 

structural changes; i.e. the phosphorylation of GAP45 might only result in 

electrostatic modification, addition of charge that might be important for its function. 

A further possible explanation for the increased phosphorylation in S142A and 

S149A GAP45 could be small changes in protein folding that could not be detected 

by CD analysis.  

 

3.7 Discussion  

Serine 103 of GAP45 is the major phosphorylation site in GAP45 for CDPK1 in 

vitro. There is a secondary phosphorylation site, serine 89, which is not so obvious in 

the autoradiography analysis but this site was shown to be phosphorylated at later 

time points of the assay by scintillation counting. However, there are still other 

unknown phosphorylation sites on GAP45 which we have been unable to determine 

by this study.  

 Since this work was performed, GAP45 was reported to be phosphorylated in 

vitro by CDPK1 at 9 residues (Ser31, Ser89, Ser103, Ser109, Ser121, Ser149, 

Ser156, Thr158, and Ser173) as detected by nano-ultra performance liquid 

chromatography-electrospray ionization-tandem mass spectrometry (UPLC–ESI–

MS/MS) (Winter et al., 2009). This study also showed that protease digestion sites 

(such as trypsin) were interfered with by phosphorylation, leading to protease-

resistant GAP45, particularly when the phosphorylation site is located in close 

proximity (-/+ 2) to the protease digestion site. This might also explain why MALDI-

TOF analysis in a previous study (Green et al., 2008)  was unable to detect all 

GAP45 phosphopeptides. Another study of the P. falciparum phosphoproteome 

revealed multiple phosphorylated residues of GAP45, including S89, S103 (Solyakov 

et al., 2011; Treeck et al., 2011) and also S156, identified here as a minor CDPK1 

site (Treeck et al., 2011). 
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Phosphorylation of S89 and S103 has different kinetics, with S103 being 

faster than S89. This suggests the possibility of hierarchical phosphorylation of 

GAP45, where phosphorylation on S103 is needed for further phosphorylation on 

other sites. This phenomenon may also be explained by the preferred linear motif for 

CDPK1. Studies on plant CDPK1 have shown that most CDPK1 substrates have a 

consensus K/R-3-x-x-S/T0 (x, any residue) in vitro (Harper and Harmon, 2005; 

Hernandez Sebastia et al., 2004; Loog et al., 2000). This motif has been designated a 

“simple 1 motif” according to the nomenclature established by Harper and Harmon 

(2005) with the basic residue located at position -3 upstream of the phosphorylated 

residue (Table 3.2). As detected in this study, the sequence upstream of S103 is 

LER
100

SNS
103

, which fits with the more preferable simple 1 motif (Table 3.2). 

Another motif called “simple 2” has been identified, with a basic residue at position 

+2. This motif fits with S109 in GAP45 (Table 3.2). In the case of S89, the sequence 

surrounding it does not fit to the simple 1 or simple 2 consensus motifs. Noting that 

CDPKs have more than one consensus motif (Harper and Harmon, 2005; Hernandez 

Sebastia et al., 2004), the S89 is a novel CDPK1 specific site on GAP45 of P. 

falciparum, where the basic residue is located at position -1 in the so called motif 

simple 3 (Table 3.2) (Winter et al., 2009).  

Other possible sites for CDPK1 phosphorylation are serine 142 and serine 

149 modifications which were previously detected in GAP45 purified from the 

merozoite (Green et al., 2008). Suprisingly, substitution of these sites with alanine 

increased the phosphorylation level of GAP45 by CDPK1 in vitro. It is possible that 

phosphorylation or dephosphorylation on these sites might play a role in regulating 

the ability of CDPK1 to access other sites such as S89 and S103 which could be 

hidden when S142 and/or S149 are phosphorylated. This possibility is supported by 

this study where substitution of either of these sites, S142 and S149, increased the 

phosphate incorporation on GAP45. However, substitution of S142 or S149 together 

with S89 and S103 to alanine decreased the enhancement effect on GAP45 

phosphorylation (Figure 3.5 and Figure 3.6). The findings have suggested that the 

GAP45 phosphorylation may be allosterically regulated. A similar phenomenon has 

also been reported by other investigators specifically on S149 phosphorylation 

(Thomas et al., 2012). In addition, the position of S149 meets the sequence 
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requirements of an unusual CDPK1 motif, motif simple 3 (Winter et al., 2009). This 

motif is similar to the conventional motif simple 1 except the basic residue, histidine 

(H-3-x-x-S/T0) carries a partial positive charge at neutral pH (Table 3.2) (Winter et 

al., 2009). In order to investigate more the enhancement effect on GAP45 

phosphorylation, a different combination of S142 or S149 GAP45 variants with other 

serine (S/A) variants will give more information on the specific residues affected. 

For example, generating the serine to alanine double substitution of S142A/S89A or 

S142A/S103A might elucidate the specific residues (either S89 or S103) affected by 

the S142A and S149A variants.     

 Proteins that contain large segments of disordered structure under 

physiological conditions or in which the entire protein is disordered are known as 

instrinsically unstructured proteins. Intrinsically unstructured proteins are often 

involved in key biological processes, such as transcriptional or translational 

regulation, membrane fusion and transport, cell signal transduction and protein 

phosphorylation. The unstructured region will create larger intermolecular interfaces 

that enhance the interaction with potential binding partners without relying on tight 

binding, and provide a flexibility for the protein to bind diverse ligands (Feng et al., 

2006). Functionally, GAP45 protein probably needs these characteristics in order to 

be flexible in interacting with other proteins.   

 Protein phosphorylation can cause structured or unstructured transition of the 

target protein (Johnson and Lewis, 2001). However, by CD analysis, phosphorylation 

did not cause any changes to the overall disordered structure of GAP45. It may be 

that some changes to specific regions could not be detected by CD analysis. For 

example, the inactivation gate of a K
+
 channel is regulated by phosphorylation on its 

inactivation domain (ID), which comprises 1-30 residues that block the pore on the 

cytoplasmic side. As analysed by nuclear magnetic resonance (NMR),  

phosphorylation of serine 8, or 15 and 21 of the ID causes the residues around the 

phosphorylation area to form an ordered structure while the rest of the region (N and 

C terminus) remains disordered hence increasing the rate of dissociation from the 

receptor (Johnson and Lewis, 2001). Of course, it is possible that phosphorylation by 

CDPK1 per se might not be enough to trigger any major structural changes. 
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 After analysing the GAP45 protein sequence using the ExPasy ProtParam 

tool (www.expasy.org/cgi-bin/protparam), the amino acid composition showed the 

characteristics of intrinsic unstructured proteins that are prone to phosphorylation. 

The GAP45 protein is depleted in rigid, buried and  neutral amino acids (0% W, 

2.8% C, 1.8% F, 4.6% I, 1.8% Y, 4.1% V and 6.9% L) and enriched in flexible 

surface exposed serine, proline, glutamic acid and lysine (7.4% S, 3.7% P, 19.4% E, 

9.2% K) (Dunker et al., 2001; Iakoucheva et al., 2004). Thus, with the composition 

and characteristics of an unstructured protein, it is well suited for the GAP45 protein 

to be a flexible linker that mediates the interaction with other motor complex proteins 

in the IMC. 

 There are other P. falciparum proteins containing unstructured regions. For 

example, the P. falciparum protein, apical membrane antigen 1 (AMA1) has one or 

two unstructured and flexible regions that may protect a hydrophobic ligand-binding 

cleft from antibody binding. Erythrocyte membrane protein 1 (PfEMP1), the var 

gene product, has been reported to have this kind of flexible region that facilitates 

protein-protein interactions between Duffy binding-like (DBL) domains and host 

protein that lead  to cytoadherence. Merozoite surface protein 3 (MSP-3) also has an 

unstructured region that extends from a highly ordered region. The unstructured 

region of MSP-3 is highly acidic and may be important for providing a negative 

charge to a cell surface that lacks sialoglycoproteins (all described in (Feng et al., 

2006)). This group also includes the MSP-2 protein, which is largely disordered and 

one of the most abundant P. falciparum merozoite surface proteins. MSP-2 is likely 

to have a role in merozoite attachment to host red blood cells, and this binding may 

initiate the transition to a more ordered structure (Feng et al., 2006). In detail, the 

MSP-2 monomer has been characterized by the low complexity of its sequences and 

biased amino acid composition with highly hydrophilic residues, and it is also 

deficient in hydrophobic residues. These characteristics are consistent with it being 

instrinsically unstructured. This protein then polymerizes to form oligomers by 

intermolecular β-strand interactions that may contribute to the fibrillar surface coat 

on P. falciparum merozoites (Ishino et al., 2005).  

http://www.expasy.org/cgi-bin/protparam
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 In addition, most of the instrinsically unstructured proteins of the P. 

falciparum proteome are antigens. These include MSP2, Ag332, MESA, CS, and 

glutamate-rich protein which are highly immunogenic regarding their reactivity with 

antibodies. However, instrinsically unstructured regions of proteins have the ability 

to adopt more ordered structures when interacting with different target ligands. So, 

the antibodies induced by this region may recognize a variety of antigen conformers 

which may cause a poor reactivity to the actual functional protein (Feng et al., 2006). 

These interesting findings have led this study on GAP45 protein to 

investigate further its functional role during P. falciparum growth. As an 

unstructured protein, it is interesting to find the possible phenotype or any upset of its 

function upon the removal of the phosphorylation sites, since this may influence 

GAP45 interactions with the motor complex or the subcellular localisation of GAP45 

itself. From what has been discovered from the in vitro CDPK1 kinase assay, the 

next chapter will address the importance of CDPK1 phosphorylation of GAP45 on 

sites S89 and S103 in vivo and the effects of substitutions at these sites on parasite 

growth.   
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Figure 3.1: Recombinant PfGAP45 protein extraction. Protein expression was 

induced using (1) 1 mM or (2) 0.1 mM IPTG at 27
o
C (A) or 37

o
C (B). The lysate, 

pellet and supernatant fraction for each condition were separated by SDS-PAGE and 

analysed by western blotting using anti-His antibody and visualized by film exposure 

using the ECL system. The total protein profile (coomassie blue) was from the 

culture induce using 1mM IPTG at 27
o
C. This was the optimized expression 

condition for the recombinant His-tagged GAP45 protein where it was totally 

produced in soluble form (Anti-His tag A) without any breakdown products (Anti-

His tag B) as shown in western blots. 
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Figure 3.2: Purification of recombinant Plasmodium falciparum GAP45. The 

bacterial cell lysate supernatant was mixed with Ni-NTA agarose (batch method). 

The mixture was packed into a column and the unbound material (lane 1) was 

removed. The column was washed with phosphate buffer pH 6.5 containing 20 mM 

imidazole (lane 2) and eluted with the same buffer containing 250 mM imidazole 

(lane 3). Proteins were analysed by SDS-PAGE and coomassie blue staining; the 

migration of standard marker proteins (kDa) is shown on the left side of the figure 

and the location of His-tagged GAP45 is shown on the right side. 
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Figure 3.3: In vitro CDPK1 phosphorylation of recombinant PfGAP45 and 

variants at 30
o
C, 10 minutes using 100 nM CDPK1. The intensity of the bands 

(autoradiography) were standardized against the protein concentration profile 

(coomassie) and analysed by ImageJ software. MTIP is a positive control for 

phosphorylation by CDPK1. The data are presented as a mean ± standard error of 

mean (S.E.M) from 5 different experiments. * denotes a significant difference 

(p<0.05). 
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Figure 3.4: CDPK1-dependent phosphorylation of recombinant GAP45 proteins 

in vitro by incorporation of 
32

P at 30
o
C, using 100 nM CDPK1 and 0.1 mM 

[
32

P]ATP and detection by scintillation counting. The CDPK1 kinase assay was 

performed as a time dependent phosphorylation of GAP45 (8 μM) (A) and at 

different concentrations of GAP45 (10 minutes reaction time) (B). The data are 

presented as a mean from duplicate reactions for the unmodified protein (WT) or 

variants where a serine or a threonine have been replaced by alanine at either a single 

or up to two locations in the protein. The Vmax values were determined by 

GraphPad Prism analytical software. The data are presented as a mean ± S.E.M from 

duplicate experiments. 

(A) 

(B) 

Vmax value (cpm)  

WT: 9495; S89A: 7278; S103A: 3770 and S89A/S103A: 2730  
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Figure 3.5: In vitro CDPK1 phosphorylation of recombinant PfGAP45 and 

variants at 30
o
C, 10 minutes using 100 nM CDPK1. The intensity of the bands 

(autoradiography) was standardized with the protein concentration profile 

(coomassie) and analysed by ImageJ software. MTIP is a positive control for 

phosphorylation by CDPK1. The data are presented as a mean ± S.E.M from 3 

different experiments. * denotes a significant difference (p<0.05). 
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Figure 3.6: CDPK1-dependent phosphorylation of recombinant GAP45 proteins 

in vitro by incorporation of 
32

P at 30
o
C, using 100 nM CDPK1 and 0.1 mM 

[
32

P]ATP and detection by scintillation counting. The data are presented as a mean 

± S.E.M from duplicate reactions for the unmodified protein (WT) or variants where 

a serine has been replaced by alanine at either a single or up to three locations in the 

protein.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

109 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.7: Electrospray-mass spectrometry analysis of (i) unphosphorylated 

and (ii) phosphorylated recombinant WT GAP45, (iii) phosphorylated S89A, 

(iv) S103A, (v) S89A/S103A, (vi) S142A and (vii) S149A mutant GAP45. 

Recombinant protein was phosphorylated with 650 nM CDPK1 at 30
o
C for 90 mins. 

The phosphorylated WT GAP45 showed incorporation of up to 4 phosphate groups 

per molecule. Due to the molecular weight differences between serine and alanine, a 

reduction of molecular mass is detected in the spectrum of GAP45 mutants, 16 Da 

for a serine to alanine single mutation and 32 Da for the double mutation. Both S89A 

and S103A variants had decreased phosphorylation with up to 3 phosphate groups. 

The two-site variant, S89A/S103A had decreased phosphorylation, with up to 2 

phosphates incorporated. The variants S142A and S149A had no detectable mono-

phosphorylated form and a shift to increased relative amounts of the multiply 

phosphorylated forms, but with no more than four phosphate groups per molecule. 
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Figure 3.7 continued: Electrospray-mass spectrometry analysis of (i) 

unphosphorylated and (ii) phosphorylated recombinant WT GAP45, (iii) 

phosphorylated S89A, (iv) S103A, (v) S89A/S103A, (vi) S142A and (vii) S149A 

mutant GAP45. 
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Figure 3.7 continued: Electrospray-mass spectrometry analysis of (i) 

unphosphorylated and (ii) phosphorylated recombinant WT GAP45, (iii) 

phosphorylated S89A, (iv) S103A, (v) S89A/S103A, (vi) S142A and (vii) S149A 

mutant GAP45. 
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Figure 3.8: Far UV circular dichroism (CD) spectra of WT GAP45 and its 

variants. The purified GAP45 recombinant proteins were suspended in PBS prior to 

CD determination. The secondary structure of recombinant proteins was determined 

by monitoring CD in the far-UV region (190-260 nm). The values were averaged 

from multiple scans and presented on a mean residue weight (MRW) basis. 
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Figure 3.9: Far UV circular dichroism (CD) spectra of unphosphorylated and 

phosphorylated WT and S142A GAP45. The purified GAP45 recombinant 

proteins were subjected to CDPK1 phosphorylation with or without Ca
2+ 

using 650 

nM CDPK1 at 30
o
C for 90 mins. The sample solution was buffer exchanged with 

PBS prior to CD determination. The secondary structure of recombinant proteins was 

determined by monitoring CD in the far-UV region (190-260 nm). The values were 

averaged from multiple scans and presented on a mean residue weight (MRW) basis. 
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Table 3.1: In vitro CDPK1 phosphorylation of recombinant PfGAP45 and its 

variants at 30
o
C, 10 minutes using 100 nM CDPK1. The intensity of the bands 

(autoradiography) were standardized against the protein concentration profile 

(coomassie) and analysed by ImageJ software. The data are presented as a mean 

percentage ± S.D. a= 2 independent experiments, duplicate each; b= 3 independent 

experiments, duplicate each; c= 5 independent experiments, duplicate each and 

Unlabelled= duplicate. (The graph view is available in Appendix A). 

 
 

GAP45 protein Phosphorylation ± SD (%) 

WT 100.00 ± 0.00 

S6A 104.63 ± 12.25b 
S8A 116.72 ± 9.51 b  
S31A 90.09 ± 7.92b 

S89A 86.29 ± 27.79c 

S101A 97.21 ± 0.94a 

S103A 35.26 ± 10.54c 

S107A 93.90 ± 5.34 
S109A 131.78 ± 0.67 

S116A 128.20 ± 23.50 b 
S128A 127.29 ± 26.88 b 
S142A 248.04 ± 41.74b 

S149A 167.62 ± 4.62b 

S156A 87.79 ± 6.89 b 
S173A 106.06 ± 13.60b 

S198A 116.12 ± 10.33 b  
S204A 123.09 ± 15.98 b 
T84A 114.28 ± 16.33c 
S89A/S103A 23.83 ± 5.00c 

S89A/S103A/S142A 25.96 ± 6.22b 

S89A/S103A/S149A 29.77 ± 6.36b 
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                 (Winter et al., 2009) 
 

Table 3.2: Sequence motifs (± residues) flanking the phosphorylation sites 

identified in PfGAP45. Six out of nine phosphorylated residues were found to meet 

the CDPK1 simple 1 motif. The major phosphorylation site, S103 of GAP45, meets 

the simple 1 motif. The S109 residue meets the CDPK1 simple 2 motif. The S89 and 

S156 meet the simple 3 motif (Winter et al., 2009).     
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Chapter 4 

Characterization of P. falciparum GFP-tagged 

GAP45 

 

4.1 Introduction 

The GAP45 protein was first identified as a component of the motor complex 

machinery in T. gondii. It was located around the periphery of the parasite, 

specifically binding to the IMC (Johnson et al., 2007). Further investigation in T. 

gondii has embraced the dual role played by the GAP45 protein during parasite 

development and invasion.  First, the GAP45 protein is a protein that is responsible 

for recruiting other motor complex proteins such as MTIP and MyoA to the IMC. 

This process is governed by vesicle transportation (Agop-Nersesian et al., 2009) and 

post translational modification such as phosphorylation (Gilk et al., 2009) and C-

terminal palmitoylation (Frenal et al., 2010). The second function of this protein is to 

maintain the structure of the parasite pellicle during invasion which is played by the 

N-terminal myristoylation that binds the protein to the plasma membrane, and the 

length of the coiled-coil domain in GAP45 (Frenal et al., 2010). However, apart from 

an in vitro study, there is no clear evidence of GAP45 roles in Plasmodium parasites. 

It is hoped that further study of the GAP45 protein in Plasmodium parasites will 

elaborate new ideas about its function during parasite growth and invasion. Whether 

its function will or will not be similar to TgGAP45 is another exciting area that is 

worth investigating. With that in mind, this study has made an effort to create an 

episomal plasmid transfection construct programmed to express the GFP-tagged 

GAP45 protein in P. falciparum during blood stage schizogony. 

Given that GAP45 is an important component of the motor complex, the level 

of essentiality of this protein in parasite growth has to be considered before 
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performing any transfection process. Any modification to the native GAP45 protein 

might be detrimental to parasite development hence destroying the effort of 

determining the function of this protein due to a dead phenotype. The most suitable 

method to study this protein in vivo is by performing episomal transfection. Episomal 

transfected parasites can withstand any modification of an essential protein, as any 

harmful or lethal phenotype can be compensated for by the endogenous GAP45 that 

is still expressed.  

 The N-terminus and C-terminus of GAP45 have been shown to be important 

in specific localisation to the plasma membrane and protein-protein interaction 

respectively. The N terminus contains the sites for myristoylation and palmitoylation 

which direct the protein to the plasma membrane (Rees-Channer et al., 2006). The C-

terminus of TgGAP45 is important for motor complex interaction, especially with 

TgMLC1 (MTIP) (Frenal et al., 2010). Previous work also in T. gondii revealed that 

the addition of a YFP tag on the C terminus of TgGAP45 abrogated its binding to the 

rest of the motor complex, but did not prevent it from being targeted to the IMC 

(Johnson et al., 2007). So, with these considerations, it would not be suitable for this 

protein to be tagged at either the N or C-terminus. An alternative approach is to 

introduce a tag at an internal position, in the unconserved region of the protein that 

may not serve any important function. For the purpose of this study, green 

fluorescent protein (GFP) was used to tag the GAP45 protein. The GFP protein has 

been used in many studies, mostly without any interruption to the original protein 

function. The benefit of using GFP as a tagging protein has been highlighted by 

many live imaging studies (Talman et al., 2010; Tavare et al., 2001; Tilley et al., 

2007; Treeck et al., 2009; Tsien, 1998).  

 The present study has generated 3 different GFP-tagged GAP45 episomal 

constructs (FL-GAP45, N-GAP45 and C-GAP45). In detail, the GFP protein was 

inserted in the middle of the GAP45 unconserved region between amino acids and 29 

and 30. The expression of GFP-tagged GAP45 protein was controlled by the P. 

falciparum merozoite surface protein 3 (MSP3) promoter.  This promoter is active at 

a similar time frame as GAP45 protein is expressed; between 36 to 45 hours post red 

blood cell invasion. The C-terminal part of GAP45 protein that contains the 



 

118 

 

important phosphorylation sites for CDPK1, S89 and S103, was fused to the C-

terminus of GFP. Insertion of the C-terminal part of GAP45 produced a full length 

(FL-GAP45) GFP-tagged GAP45 (Figure 4.1A).  

 Once the construct is episomally expressed in P. falciparum, it is important 

that the GFP-GAP45 protein maintains the characteristics of endogenous GAP45 

with regard to timing of expression and subcellular localisation. Besides examining 

the localisation of the GFP-tagged GAP45 protein, the important roles of this protein 

such as participation in actin-myosin motor complex formation also need to be 

confirmed.  To further study the role of both the N- and C-termini of GAP45 in 

parasites, the C- (N-GAP45) and N-terminally truncated (C-GAP45) GFP tagged 

GAP45 protein were constructed. The N-GAP45 construct consists of only 29 amino 

acids from the N-terminus of GAP45 fused to GFP (Figure 4.1B). The C-GAP45 

construct lacks the 1-29 N-terminal region and only consists of amino acids 30-204 

of GAP45, fused to the C-terminus of GFP (Figure 4.1C). 

 

4.2 Expression and localisation of GFP tagged GAP45 protein in P. 

falciparum schizonts 

Transfection was performed using 100 μg of plasmid DNA construct containing GFP 

tagged GAP45 insert and the blasticidin resistant gene. As the expression of GFP 

tagged GAP45 is controlled by the MSP-3 promoter, expression started at the 

schizont stage of the parasite. However, the expression of GFP-tagged GAP45 

protein in each parasite was not homogenous. In order to get a homogenous GFP-

tagged GAP45 expression, the GFP-tagged GAP45 expressing parasites stage were 

sorted by fluorescence-activated cell sorting (FACS). The FACSCalibur 

flowcytometer was programmed so that only the schizont parasites with high 

intensity GFP signal were selected. The selected parasites were grown in culture 

medium prior to being used.       

 The full length GFP-tagged GAP45 (FL-GAP45) and the N-terminal 

truncated (C-GAP45) GFP-tagged GAP45 proteins were expressed successfully in 

parasites producing a protein of apparent molecular weight of ~64 kDa (Figure 4.2). 
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Although the predicted molecular weight of GFP-tagged GAP45 is ~50.3 kDa (~23.6 

kDa GAP45 + ~26.7 kDa GFP), the anomalous behaviour of GAP45 in SDS-PAGE 

causes a decrease in the migration of this protein resulting in an increase in apparent 

molecular weight of the fusion protein. The transfected parasites also expressed the 

native GAP45 protein (~37 kDa), confirming that the GFP-GAP45 fusion proteins 

are expressed from an episomal plasmid. The third GAP45 variant, GFP-tagged 

GAP45 lacking the C-terminal region (N-GAP45) expressed a smaller truncated 

GAP45 protein band with an approximate molecular weight of 30 kDa. The 3D7 

control parasite lysate showed only endogenous GAP45. By using an anti-GFP 

monoclonal antibody, the full length GFP-tagged GAP45 protein bands were 

detected as a major protein band at ~64 kDa, with some degraded products. The 

degraded products migrated at lower molecular weight, with two protein bands 

different in size at around 37 kDa. These results show that GAP45 can be episomally 

expressed in P. falciparum parasites. 

GAP45 has been reported to be membrane associated because of 

myristoylation and palmitoylation on its N-terminus. In order to confirm that the FL-

GAP45 protein is also a membrane bound protein, a subcellular fractionation 

experiment was performed in which parasite proteins were extracted in a series of 

buffers designed to solubilise protein based on their degree of membrane association 

(Papakrivos et al., 2005). Only integral proteins or those extremely tightly associated 

with membranes would fail to be solubilised by a high pH carbonate buffer.  In this 

experiment, FL-GAP45 together with N-GAP45 and C-GAP45 proteins were 

detected only in the carbonate insoluble fraction (Figure 4.2). These findings 

confirmed the tight association of these proteins to the membrane compartment. 

Another motor complex protein component, MTIP, was also insoluble in carbonate 

buffer (Figure 4.2). The parasite surface and peripheral membrane protein, MSP7 

was slightly detected in the carbonate soluble fraction, with most of the protein 

remaining insoluble (Figure 4.2). SERA5, a protein of the parasitophorous vacuole 

that is not membrane associated is largely released upon parasite treatment with a 

hypotonic solution (Figure 4.2, lane 1). 
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As a conclusion, the GFP-tagged GAP45 proteins (FL-GAP45, N-GAP45 and 

C-GAP45) show similar properties to native GAP45 protein, a membrane bound 

protein. Although MTIP is not directly associated with membranes, it is located 

between the parasite plasma membrane and the outer IMC membrane. It could be 

that the tight association between the motor complex proteins may hold the parasite 

plasma membrane and IMC together, which could hinder the motor complex protein 

component from being exposed to chemical dissociation under high pH carbonate 

solution.  

 

4.3 IMC localisation pattern of GFP-tagged GAP45 protein 

The GFP-tagged GAP45 proteins have been shown to be successfully expressed in P. 

falciparum parasites. However, the FL-GAP45 protein must localise at the correct 

site, which is at the parasite periphery specifically to the inner membrane complex 

(IMC), in order to function. In the T. gondii parasite (tachyzoite), the only way to 

distinguish the IMC and the parasite plasma membrane is by treating the parasite 

with Clostridium septicum α-toxin (Gaskins et al., 2004) or Aeromonas hydrophila 

aerolysin (Frenal et al., 2010). This treatment will cause the parasites plasma 

membrane to swell away from the IMC. However, in P. falciparum, the IMC and 

parasite plasma membrane can be distinguished in a different way: both IMC and 

plasma membrane can be easily be differentiated by monitoring young schizont 

development. At early schizogony, prior to segmentation, the IMC associated protein 

was found to be localised to ring-like structures of developing IMC for nascent 

merozoites while the plasma membrane was still surrounding the periphery of 

parental parasites (Bullen et al., 2009; Hu et al., 2010; Kono et al., 2012; Yeoman et 

al., 2011).        

 We present evidence that shows the localisation of the GFP-tagged GAP45 

proteins in early schizont stages, between 36 to 39 hours post invasion, the FL-

GAP45 protein shows a distinct localisation pattern as compared to the N-GAP45 

protein which lacks the C terminus (Figure 4.3). A live time course microscopy study 

was done (Section 2.10) to directly monitor the development or localisation pattern 
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of GFP-tagged GAP45 proteins (FL-GAP45, N-GAP45 and C-GAP45). Tightly 

synchronized transfected P. falciparum parasites were harvested at 3 different times 

post invasion starting from 30 hours till 45 hours post invasion. At young schizont 

stages, ~36 hours post invasion, the FL- GAP45 and N-GAP45 show different 

localisations; a distinct parasite IMC and parasite plasma membrane localisation 

pattern respectively. FL-GAP45 was found to be localised to ring-like structures that 

are situated in close proximity with single nuclei (~33 hours post invasion) (Figure 

4.3A). The GFP signal became more obvious as the number of nuclei increased at 

around 36 hours post invasion, where it formed a ring-like structure (Figure 4.3A). In 

contrast, without the 30-204 amino acid sequences, N-GAP45 exhibited an even 

distribution of fluorescence around the entire parasite periphery (Figure 4.3B).  

Interestingly, the localisation of C-GAP45, lacking the N-terminal acylation 

motifs, resembled very closely that seen for FL-GAP45. In early schizonts (~33 

hours post invasion), C-GAP45 was present in discrete foci (Figure 4.3C) that 

progress to small ring-like structures as development continues (~36 hours post 

invasion) and finally in the segmented schizont the protein was evenly distributed 

around the periphery of each merozoite (~42 hours post invasion) (Figure 4.3C). At 

this time point, both the IMC and parasite plasma membrane have invaginated, 

surrounding individual merozoites, which makes the IMC and parasite membrane 

indistinguishable (Figure 4.3 A, B and C).   

 The differences between IMC and parasite membrane localisation at early 

schizogony (36 hours post invasion) was further analysed by IFA (Figure 4.4). 

Several protein markers were used for co-localisation in this experiment. The 

antibodies used were anti-GAP45 as an IMC marker, anti-MSP1 as a parasite plasma 

membrane marker, and anti-rhoptry neck protein 10 (RON10) as a marker for the 

apex of the merozoite. GFP-Booster, a specific GFP-binding protein coupled to the 

fluorescent dye ATTO 488 (Chromotek), was used to detect the GFP-tagged GAP45 

protein signal. The signal of GFP tagged GAP45 protein was merged with that of the 

other protein markers in order to determine with which (if any) of the proteins 

localise to the same structures. As expected, at the 36 hour schizont stage, the ring-

like structure GFP signal of  FL-GAP45 protein was co-localised nicely with the 
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native GAP45 (Figure 4.4A, i) but not with MSP1 (Figure 4.4B, i). This phenomenon 

was also observed with C-GAP45 (Figure 4.4A & B, iii). In contrast, N-GAP45 was 

not co-localised with the native GAP45 protein (Figure 4.4A, ii). Instead, N-GAP45 

co-localised well with MSP1 (Figure 4.4B, ii).  However, both FL- GAP45 and N-

GAP45 were found to be co-localised with both IMC (GAP45) and parasite surface 

or membrane (MSP1) proteins at late schizont stage (~39-42 hours post invasion) 

(Figure 4.4A & B). 

The IMC components have been shown to form starting from the apical end 

of each developing merozoite and extend towards the posterior of the parasites 

(Bannister et al., 2000b). To further confirm the IMC ring-like structure of the GFP-

GAP45 signal, the apical protein marker, rhoptry-neck protein 10 (RON10), was 

included in this experiment. The RON10 protein was found to be expressed at early 

schizont stages (E. Knuepfer and O. Suleyman, unpublished) and localised in close 

proximity with the FL-GAP45 protein ring-like structure pattern (Figure 4.4C, i). 

Interestingly, in early schizonts, most of the punctate signal of RON10 coincides 

with the IMC of each developing IMC, and is situated on the edge or sometimes at 

the centre of the ring-like staining of FL-GAP45 in the early schizont (Figure 4.4C, i 

& Chapter 5, Figure 5.9C).  In contrast, the localisation of N-GAP45 protein seems 

not to be in close proximity with RON10 as the N-GAP45 was evenly distributed on 

the surface of the parental cell (Figure 4.4C, ii).  

The ring-like IMC localisation shown by FL-and C-GAP45 at early schizont 

stages was clearly observed using high resolution microscopy (Figure 4.5A). In 

combination with Z-stack imaging and deconvolution, the ring like-IMC localisation 

structure was very clearly seen in early schizont stages as the background signal 

could be computationally eliminated (Figure 4.5A; Appendix B, i). A similar 

analysis was also done on late schizont stages which resulted in an imperceptible 

improvement as compared to the normal fluorescent microscopy analysis (Appendix 

B, ii). In addition, similar microscopy analysis was performed on live samples of 

each of the GFP-GAP45 variant expressing parasites at 36 hours and 42 hours 

schizont stages (Appendix C) to further confirm the appearance of ring-like 

structures of FL- and C-GAP45.    
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The early schizont stage of native GAP45 (~36 hours post invasion) from 

untransfected parasites (3D7) also showed the ring-like localisation pattern which is 

similar to FL-GAP45 and C-GAP45, suggesting that the GFP signal does indeed 

represent the true GAP45 protein localisation pattern, rather than any artefacts owing 

to GFP-tagging (Figure 4.5B).  The development of punctate to a ring-like structure 

of GAP45 protein per nucleus was observed at an earlier time point (30 to 36 hours 

post invasion) of schizogony (Figure 4.5B). A similar pattern of localisation was also 

demonstrated by FL-GAP45 GFP live signal at this time point (Figure 4.6A). 

However, this is not the case for N-GAP45, as it was evenly distributed around the 

parasite’s periphery as early as 30 hours post invasion (Figure 4.6B). Starting at 39 

hours of schizont development, the native GAP45 and the GFP-tagged GAP45 signal 

was partially surrounding the developing merozoites. As shown earlier (Figure 4.3), 

this process is complete at 42 hours post invasion producing the individual 

merozoites ready to egress (Figure 4.5B and 4.6A and B).  

 In addition, parasite plasma membrane proteins such as CDPK1 (Green et al., 

2008) and MSP1 (Dluzewski et al., 2008) have been shown to accumulate around 

residual bodies, which contains the food vacuole, of the late schizont stage.  The food 

vacuole is an organelle formed by the combination of endocytosed red blood cell 

cytosol and the parasite’s parasitophorous vacuole and plasma membrane (Aikawa et 

al., 1966; Langreth et al., 1978; Lazarus et al., 2008; Slomianny, 1990; Slomianny et 

al., 1985; Yayon et al., 1984) . The engulfed red blood cell cytosol containing 

haemoglobin is digested and forms hemozoin (Egan, 2008; Egan et al., 2002; Pagola 

et al., 2000). As the schizont matures, individual merozoites are pinched off from the 

syncytium and the residual body is encapsulated by plasma membrane, but not the 

IMC. Residual bodies therefore stain for plasma membrane proteins (e.g. MSP1), but 

not IMC proteins (e.g. GAP50 and GAP45) (Green et al., 2008). To further 

investigate the plasma membrane localisation of N-GAP45, IFA was done on blood 

smears prepared 42-45 hours post invasion using the GAP50 and MSP1 antibodies as 

IMC and parasite membrane protein marker, respectively. The results showed that 

the N-GAP45 protein seems to be colocalised with MSP1 around the residual bodies 

(Figure 4.7B), rather than with GAP50 at the IMC (Figure 4.7A). As expected, the 

FL- and C-GAP45 did not localise with MSP1 around the residual bodies (Figure 
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4.7B).  Both of these proteins showed a similar localisation profile as GAP50, the 

IMC protein marker (Figure 4.7A). These results strongly suggest that both FL-

GAP45 and C-GAP45 proteins localise to the IMC while N-GAP45 protein is 

targeted to the plasma membrane of P.falciparum.  

 

4.4 Tetrameric motor complex of GFP-tagged GAP45 in P. 

falciparum  

GAP45 forms part of the parasite’s motor complex. Although GFP-tagged GAP45 

was localised at the IMC, the functionality of this protein which is modified by GFP 

insertion within the protein is still questionable. One of the characteristics that can 

confirm the functionality of this protein is whether it retains the ability to interact and 

be part of the tetrameric motor complex. In order to investigate this, 

immunoprecipitation of GFP-tagged GAP45 was performed by pull-down assays 

using anti-GFP antibodies coupled to agarose beads. The GFP antibodies will only 

bind the GFP-tagged GAP45 protein, hence isolating this protein from the native 

GAP45. The pull-down assay used was a GFP-Trap® system which utilises camel 

monoclonal GFP antibodies. These antibodies are suitable for the purpose of this 

experiment because of their short heavy chain and they have no light chain. The 

characteristic of this antibody eliminates the cross reaction of antibodies to heavy 

and light chain from conventional antibodies, a common problem in such 

experiments. 

Schizont parasite proteins were solubilised using extraction buffer containing 

1% NP40 prior to an immunoprecipitation experiment with the GFP-Trap® system. 

As shown in Figure 4.8A and Figure 4.8B, FL-GAP45 and C-GAP45 proteins are 

efficiently immunoprecipitated by the camelid GFP antibodies (GFP-Trap®). The 

immunoprecipitated GFP-GAP45 was confirmed by both GAP45 and GFP 

antibodies in western blotting. In order to detect the co-immunoprecipitated motor 

complex proteins, western blotting was performed on a similar sample probed with 

MTIP, GAP50 and MyoA antibodies.  Both FL-GAP45 and C-GAP45 were pulled 

down together with the other motor complex component proteins; MTIP, GAP50 and 
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MyoA (Figure 4.8A).  N-GAP45 does not co-precipitate these other proteins (Figure 

4.8B; Appendix D). These results suggest that the C terminus of GAP45 is 

responsible for binding to other protein components of the motor complex. The 

absence of native GAP45 in the precipitates also suggests that the GAP45 proteins do 

not form homo-oligomers. As a control, the 3D7 untransfected parasite lysate did not 

show any appearance of the motor complex proteins (Figure 4.8 A and B).   

 

4.5 Discussion 

The GFP-tagged GAP45 proteins (FL-GAP45, N-GAP45 and C-GAP45) were 

insoluble in carbonate buffer, indicating a strong association with membrane. As 

expected, the dual acylation on the N-terminus of GAP45, specifically on glycine 

(G2) and cysteine (C5), have probably helped this protein to interact with the 

membrane (Rees-Channer et al., 2006). Additional acylation or palymitoylation 

processes may also take place on its C-terminal region. Substitution of the conserved 

double cysteine (C230 and C233) to alanine on the C-terminal region of N-terminal 

truncated TgGAP45 causes mislocalisation of this protein to cytoplasm (Frenal et al., 

2010). Thus, a combination of multiple acylation processes makes GAP45 a strong 

membrane binding protein. 

 The N-and C-terminal parts of GAP45 appear to be important in mediating 

the interaction with the parasite membrane and other motor complex proteins 

respectively (Frenal et al., 2010; Johnson et al., 2007). As mentioned earlier, the only 

way to fluorescently label this protein is by inserting the tag in the middle of the 

unconserved region of GAP45 protein; this strategy has proven to be successful in 

TgGAP45 protein (Frenal et al., 2010; Gilk et al., 2009). We have shown that in P. 

falciparum, inserting GFP at an internal position in the GAP45 protein allows this 

protein to localise correctly at the IMC. The localisation pattern of GAP45 to the 

IMC and parasite membrane has been distinguished at young schizont stages (33-36 

hours post invasion). During schizogony, cell replication is initiated where nuclear 

division occurs and other organelles develop within a cytoplasm encapsulated by a 

single plasma membrane from the mother cell (Bullen et al., 2009). This process 
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produces daughter merozoites at late schizogony when cytokinesis takes place, 

followed by release of the free merozoites (Bullen et al., 2009). By monitoring the 

localisation of GFP-tagged GAP45 and truncated variants throughout schizogony, it 

has been possible to visualise and distinguish between the multiple forming IMCs 

and the single bounding plasma membrane.  

 In detail, the development of punctate to ring-like structures of GFP-tagged 

GAP45 which can be seen at early schizogony (30-36 hours post invasion) is a 

characteristic of IMC development in P. falciparum. A similar localisation pattern of  

IMC specific proteins has been shown by other motor complex proteins such as 

GAPM1 and GAPM2 (Bullen et al., 2009; Hu et al., 2010) and GAP50 (Yeoman et 

al., 2011). The study by Yeoman et al (2011) observed similar structures in parasites 

expressing GFP-tagged GAP50. Using 3D SIM  microscopy, the authors were able to 

show that the IMC precursor is present as a flattened ellipsoid that is punctured by 

two holes (showing a ring-like pattern in IFA) which then separated into two 

opposing claw-shaped structures as the nucleus starts to divide (Yeoman et al., 

2011). The IMC cisterna extends outwards from the apical rings or caps, leaving a 

central region that is free of cisternal membrane (Bannister et al., 2000b), which may 

represent the holes observed in the GFP-tagged GAP50 parasite (Yeoman et al., 

2011) and the GFP-tagged GAP45 signal in this study.  

The present study clearly shows that GAP45 is synthesized and localised to 

the IMC at earlier schizont stages (~30-33 hrs post invasion) concomitantly with the 

DNA replication process which normally occurs at early schizogony. Not only 

GAP45, but also the rhoptry organelle, parasite pellicle components and apical 

protein have also been shown to be generated while the DNA is replicating at early 

schizogony (Bannister et al., 2000b; Striepen et al., 2007). This is further 

demonstrated in this study, which found that the rhoptry neck protein RON10 is 

located in close proximity to the ring-like structures of GFP-tagged GAP45 (FL-

GAP45), presumably the region occupied by apical organelles such as rhoptry and 

polar ring (Figure 4.4C). These IMC-like patterns not only occur in Plasmodium 

parasites. The T. gondii IMC protein called IMC-sub-compartment protein 1 (ISP1) 

which localises at a cone-shaped structure at the periphery of the apical end of the 
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parasite has been shown to be visible as a pair of a small rings in each mother cell at 

early endodyogeny. This pattern of localisation represents the IMC development for 

each of the daughter cells, starting from the apical cap of the nascent parasites  (Beck 

et al., 2010).   

As schizogony proceeds the localisation of GFP-tagged GAP45 proteins (FL-

GAP45 and C-GAP45) extends towards the rear of the parasite and further 

encapsulates the merozoite at the end of schizogony (39-42 hours post invasion) as 

seen in this study (Figure 4.4 A & B; Figure 4.6). In contrast, the localisation signal 

of the parasite membrane specific protein was shown by the C-terminal truncated 

GFP-tagged GAP45 protein (N-GAP45).  At early schizogony (~30-33 hrs post 

invasion), the N-GAP45 protein was evenly distributed to the single plasma 

membrane of the mother cells. Other plasma membrane specific proteins such as 

MSP1 and CDPK1 have been detected at the surface of the residual bodies of the 

parasites, which can only be seen at late schizont stage (Dluzewski et al., 2008; 

Green et al., 2008). The mechanism by which merozoites pinch off from the 

synctium within the red blood cell means that plasma membrane from the mother cell 

surrounds the residual body (Green et al., 2008). Of the three GFP-tagged GAP45 

variants, only N-GAP45 was detected around residual bodies. Therefore, this study 

demonstrates the plasma membrane localisation of N-GAP45 as shown by the co-

localisation of N-GAP45 with the parasite membrane marker, MSP1, indicating that 

the N-terminal region of GAP45 protein is associated with parasite plasma 

membrane.   

The importance of the C-terminal region of GAP45 in targeting the protein to 

the IMC (C-GAP45) has been elucidated. The N-terminus of GAP45 (N-GAP45) 

was found to be associated with the parasite membrane and not in a complex with 

other motor proteins. In contrast, C-GAP45, which is without the first 30 amino acids 

of the protein, was able to form a complex with the other motor proteins MTIP, 

GAP50, and MyoA. These observations fit with a recent model of the motor complex 

in T. gondii tachyzoites where GAP45 is anchored in the plasma membrane by dual 

acylation of its N-terminus and interacts with GAP50 in the IMC membrane via its 

C-terminus (Frenal et al., 2010). Association with the IMC is strengthened by a 
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double palmitoylation within the C-terminus. An N-terminally truncated TgGAP45 

protein (MycGFPCtGAP45) was able to form a complex with other motor protein 

such as MLC1 or MTIP and MyoA and localised to the IMC. A double mutation of 

C230 and C233 to alanine (MycGFPCtGAP45CC-AA) (C217 and C220 in the case 

of PfGAP45) of this protein leads to a cytosolic localisation, whereas a CC/AA 

mutation in the full-length protein causes TgGAP45 to localise to the parasite 

membrane instead of the IMC (Frenal et al., 2010). These findings clearly suggest 

the dual role of the GAP45 C-terminus, which binds to other motor complex proteins 

and also anchors it to the IMC by virtue of palmitoylation of cysteine residues.  

 This study also suggests that even at very early stages of merozoite 

formation, before plasma membrane formation around individual merozoites, GAP45 

interacts with other proteins in the developing IMC membranes. If the motor 

complex is only required for merozoite invasion of red blood cells why is it 

assembled so much earlier in the developing schizont? It appears that IMC formation 

occurs concurrently with plasma membrane encapsulation of daughter merozoites. It 

is possible that a molecular motor is involved in this process. In other systems, 

myosins are crucial for cell division, for example myosin II is the primary motor 

protein responsible for cytokinesis in eukaryotes (Burgess, 2005; Field et al., 1999; 

Matsumura, 2005).  Notably, in another apicomplexan parasite, T. gondii myosin B 

has been implicated in the process of cell division (Delbac et al., 2001). Because of 

the unusual arrangement of membranes in the development of merozoites, it may be 

that Plasmodium achieves cytokinesis and segmentation using a myosin XIV in a 

motor complex that effectively brings the plasma membrane and IMC together by 

virtue of a member of the complex, GAP45, bridging the gap between the two 

membranes. In fact, protein phosphorylation of motor complex proteins (MTIP and 

GAP45) has been highlighted in a previous study (Green et al., 2008). The 

Plasmodium growth inhibitory effect of a CDPK1 inhibitor (Green et al., 2008) could 

be the result of defective motor complex protein that leads to impairment of 

cytokinesis. However, the inhibitor used, K252a, is fairly non-specific and will 

almost certainly inhibit kinases other than CDPK1 such as PKB which might show a 

similar effect.  
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Figure 4.1: The design of GFP-tagged GAP45 episomal transfection constructs. 

The plasmid phh3bsdGFPnG45 was previously designed to episomally express the 

N-terminal 29 residues of GAP45 fused to GFP (N-GAP45) (7435 bp) (A, ii). DNA 

sequence coding for the N-terminal 29 amino acids of GAP45 (~87 bp) were fused in 

front of sequence coding for GFP as mentioned in section 2.7.2.1 (Knuepfer and 
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Holder, unpublished). A second plasmid (phh3bsdGFPGAP45) was constructed to 

add an internal GFP tag to the GAP45 sequence, located between residues 29 and 30. 

The sequence encoding the N-terminal part of GAP45 fused with GFP was amplified 

by PCR eliminating the terminal stop codon (Section 2.7.2.1). The PCR product was 

reinserted into the pHH3 vector via AvrII/SacII restriction enzyme cleavage after the 

MSP3 promoter. The sequence encoding the C-terminal portion of GAP45 from 

residue 30 to the stop codon was amplified by PCR (~528 bp) (A, i) and ligated into 

the transfection vector via SacII restriction enzyme cleavage after the GFP tag 

sequence (A, iii) (Section 2.7.2.1). The ligation product was confirmed by plasmid 

digestion using SacII restriction enzyme (A, iii). The expression component of this 

plasmid, the MSP3 promoter and the GFP-tagged GAP45 gene were reconfirmed by 

plasmid digestion using double digestion enzymes, EcoRI/AvrII (B, i) and 

AvrII/SacII (B, ii) respectively. This plasmid, phh3bsdGFPGAP45, will episomally 

express the full length internally GFP tagged GAP45 (FL-GAP45). A third plasmid 

(phh3bsdGFPcG45) which will expressed the N-terminal truncated GFP-tagged 

GAP45 (C-GAP45) was also constructed by a similar approach by reconstructing the 

second plasmid phh3bsdGFPGAP45. The N-terminal 29 amino acids of GAP45 

fused to GFP sequence in plasmid phh3bsdGFPGAP45 was cut out and replaced 

with the GFP sequence only (without stop codon) via AvrII/SacII restriction enzyme 

cleavage after the MSP3 promoter. The sequence encoding the C-terminal portion of 

GAP45 from residue 30 to the stop codon was inserted via SacII restriction enzyme 

cleavage after the GFP tag sequence. This plasmid will express the GFP-tagged 

GAP45 that only contains 30-204 amino acid residues (lacking the first 29 amino 

acid N-terminus residues) (C-GAP45). The expression component of this plasmid, 

the MSP3 promoter and the GFP-tagged GAP45 gene were reconfirmed by plasmid 

digestion using double digestion enzymes, EcoRI/AvrII (C, lane 1) and AvrII/SacII 

(C, lane 2) respectively. Label M is a DNA marker and P is a PCR or digestion 

product. 
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Figure 4.2: The subcellular fractionation of WT or full length (FL-GAP45), N-

terminal truncated (C-GAP45) and C-terminal truncated (N-GAP45) GFP-

tagged GAP45 proteins. The subcellular fractionation was performed subsequently 

starting with the hypotonic lysis buffer, high salt buffer, and sodium carbonate 

buffer. All parasite solubilized fractions, hypotonic lysis (1), high salt (2), carbonate 

supernatant (3) and carbonate pellet (4) were separated by SDS-PAGE and analysed 

by western blotting, using antibodies to GFP, GAP45, MTIP, MSP7 and SERA5. 

The 3D7 parasite was used as a control for untransfected parasites. Nonspecific 

protein bands were detected in the hypotonic lysis fraction by the GAP45 polyclonal 

antibody but not by the GFP monoclonal antibody.  
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Figure 4.3: The live microscopy time course analysis of full length GFP-tagged 

GAP45 (FL-GAP45) (A), C-terminal truncated GFP-tagged GAP45 (N-GAP45) 

(B) and N-terminal truncated GFP-tagged GAP45 (C-GAP45) expressing P. 

falciparum. Synchronized transfected parasites were separated into several cultures. 

Each culture was harvested at 33 hours, 36 hours and 42 hours post invasion. The 

harvested parasites were visualized and analysed by fluorescence microscopy. The 

nucleus was labelled with Hoechst stain prior to microscopic analysis at 1000 X 

magnification.  In the early schizont stages, small localised structures of GFP signal 

of FL- and C-GAP45 were observed around the parasite's periphery, typical of an 

IMC location. The N-GAP45 protein produced a different pattern of GFP signal, 

probably corresponding to the parasite plasma membrane. At the late schizont stage 

(42 hrs post invasion) the GFP signal was detected at the periphery of merozoites 

developing within the schizont and at this time point the putative IMC and parasite 

plasma membrane patterns were indistinguishable. Scale bar is 2 µm. 
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Figure 4.3 continued: The live microscopy time course analysis of full length 

GFP-tagged GAP45 (FL-GAP45) (A), C-terminal truncated GFP-tagged GAP45 

(N-GAP45) (B) and N-terminal truncated GFP-tagged GAP45 (C-GAP45) 

expressing P. falciparum. 
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Figure 4.3 continued: The live microscopy time course analysis of full length 

GFP-tagged GAP45 (FL-GAP45) (A), C-terminal truncated GFP-tagged GAP45 

(N-GAP45) (B) and N-terminal truncated GFP-tagged GAP45 (C-GAP45) 

expressing P. falciparum. 
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Figure 4.4: Indirect immunofluorescence assay (IFA) microscopy analysis of (i) 

FL-GAP45, (ii) C-terminally truncated (N-GAP45) and (iii) N-terminally 

truncated (C-GAP45) GFP-tagged GAP45 expressing parasites. The monoclonal 

anti-GFP and polyclonal anti-GAP45 antibodies (A) were used to detect the GFP-

FL-GAP45 

C-GAP45 

N-GAP45 
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tagged GAP45 and native GAP45 proteins respectively. The slides were mounted by 

using DAPI containing antifade reagent prior to microscopy analysis at 1000 X 

magnification. FL-GAP45 is co-located with GAP45, whereas N-GAP45 is co-

located with the parasite plasma membrane marker MSP1 at all stages of schizont 

development. In (A) the binding of a monoclonal anti-GFP antibody (green) was 

compared to that of polyclonal anti-GAP45 antibodies (red). In (B) the binding of the 

GFP antibody (green) was compared with the binding of an MSP1-specific antibody 

(red) as a marker for the parasite plasma membrane. In (C) the binding of GFP 

antibody (green) was compared with the binding of RON10-specific antibody as a 

marker for apical protein. Merged images together with the corresponding 

differential interference contrast (DIC) picture are also shown. On the left of each 

panel the time post invasion is indicated in hours. Scale bar is 2 µm. 
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Figure 4.4 continued: Indirect immunofluorescence assay (IFA) microscopy 

analysis of (i) FL-GAP45, (ii) C-terminally truncated (N-GAP45) and (iii) N-

terminally truncated (C-GAP45) GFP-tagged GAP45 expressing parasites. 
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Figure 4.4 continued: Indirect immunofluorescence assay (IFA) microscopy 

analysis of (i) FL-GAP45 and (ii) N-terminally truncated (C-GAP45) GFP-

tagged GAP45 expressing parasites. 
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Figure 4.5: The localisation of GFP-tagged GAP45 variants at early schizont 

stage after high resolution immunofluorescent imaging analysis with Z-stack 

and deconvolution processing. (A) The ring-like IMC localisation pattern of both 

FL-GAP45 and C-GAP45 was obviously seen and distinguishable from the N-

GAP45 parasite plasma membrane-like localisation pattern. (B) The native GAP45 in 

3D7 untransfected P. falciparum parasites was localised in a similar manner as FL-

GAP45 and C-GAP45 at early schizont stage. The slides were mounted by using 

DAPI containing antifade reagent prior to microscopy analysis at 1000 X plus 1.6X 

magnification. Scale bar is 2 µm. 

(A) 
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Figure 4.5 continued: The localisation of GFP-tagged GAP45 variants at early 

schizont stage after high resolution immunofluorescent imaging analysis with Z-

stack and deconvolution processing. 
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Figure 4.6: The location of (A) GFP-tagged wild type GAP45 (FL-GAP45) and (B) GFP-tagged C-terminal truncated GAP45 

(N-GAP45) during schizont development (30-42 hours post invasion). Transfected parasite populations were synchronized and 

examined at 3-hr intervals from 30 to 42 hrs post invasion by fluorescence microscopy to detect GFP (green). The nucleus was labelled 
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with Hoechst stain (blue) prior to microscope analysis at 1000 X magnification. The merged image of the two is also shown together 

with the corresponding differential interference contrast (DIC) picture. In the early schizont stages (30-36 hrs), small punctate to ring 

like localised structures of GAP45 GFP signal were observed around the parasite's periphery, typical of an IMC location (A). The N-

GAP45 protein produced a different pattern corresponding to the parasite plasma membrane (B). At the late schizont stage (42 hrs post 

invasion) the GFP signal was detected at the periphery of merozoites developing within the schizont and at this time point the putative 

IMC and parasite plasma membrane patterns were indistinguishable. Scale bar is 2 µm. 

 

 



 

143 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: N-GAP45 is associated with the residual body whereas FL-GAP45 is 

not. The mature schizonts (~42 h) from the three transfected parasite lines were fixed 

and probed with a GFP binding protein and antibodies specific for either GAP50 (A) 

or MSP1 (B). The residual body containing the large semi-crystalline hemozoin 

granule is visible in the differential interference contrast pictures. Merged images 

allow the location of the different antibody reactivities to be compared with each 

other and with the residual body, which is marked with the white arrowheads for 

(B) 

(A) 
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clarity. The residual body was reactive with the anti-MSP1 antibody but not with the 

anti-GAP50 antibodies or the GFP-binding protein in both FL-GAP45 and C-GAP45 

lines. In the N-GAP45 line the residual bodies stained positive for GFP. The slides 

were mounted by using DAPI containing antifade reagent prior to microscopy 

analysis at 1000X magnification. Scale bar is 2 µm. 
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Figure 4.8: The FL-GAP45 and C-GAP45 proteins assemble into the motor 

protein complex, whereas N-GAP45 does not.  The schizont stage parasite proteins 

were solubilised by extraction buffer containing 1% NP40 prior to 

immunoprecipitation by using monoclonal GFP antibody (GFP-Trap®). Precipitated 

proteins and a sample of each corresponding lysate were resolved by SDS-PAGE and 

then analysed by western blotting using antibodies to GFP, GAP45, GAP50, MTIP 

and MyoA. A: The FL-GAP45 (FL) and C-GAP45 (C) co-precipitated other motor 

complex proteins such as MTIP, GAP50 and MyoA. B: The N-GAP45 (N) was 

unable to co-precipitate other motor complex protein such as MyoA, MTIP and 

GAP50. 3D7 is a control for untransfected P. falciparum parasites.  
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Chapter 5 

Phosphorylation of GFP-tagged GAP45 in the 

parasite 

 

5.1 Introduction 

The sites of GAP45 phosphorylation by CDPK1, serine 89 and serine 103, have been 

identified in this study. One of the residues, S89, has been identified in a GAP45 

phosphopeptide detected in parasites (Green et al., 2008). These findings led us to 

further investigate the effect of these phosphorylation events on P. falciparum in 

vivo. As episomal transfection to express GFP-tagged GAP45 has been shown to be 

successful in the previous chapter (Chapter 4), a similar approach was used. 

Mutations at residues S89, S103, S89/S103 in GFP-tagged GAP45 were made where 

the serine residue(s) were substituted with alanine which is a non-polar and non-

reactive amino acid residue. In order to mimic a phosphorylated residue, replacement 

of serine (S) residues with an acidic residue such as glutamic acid (E) or aspartic acid 

(D) can be performed. In this experiment, aspartic acid was chosen as a 

phosphomimetic residue for serine as it only involves a slight change in the size of 

the residue. The replacement of serine (S) by aspartate (D) did not cause any changes 

to the overall structure of GAP45, as shown in far UV CD spectroscopy analysis 

(Figure 5.1).  

 Using the same technique as mentioned in chapter 4, the GFP-GAP45 mutant 

constructs were introduced into the parasites by episomal transfection. The actual 

function of GAP45 phosphorylation is still unclear in P. falciparum. Phosphorylation 

of GAP45 starts to occur at the early schizont stage and peaks at late schizont stage 

(Green et al., 2008), suggesting a possible role of GAP45 phosphorylation in the 

regulation of motor complex assembly prior to invasion. Phosphorylation might 
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affect the localisation of GAP45 to the IMC. As shown in the previous chapter 

(Chapter 4), GFP-tagged GAP45 was assembled in the IMC during early schizogony, 

with 36-hour schizont stages showing a specific ring-like IMC localisation pattern. 

Any mislocalisation of this protein due to the effect of phosphorylation or 

dephosphorylation on S89 and/or S103 would be clearly evident, and we would be 

able to distinguish between protein localised to the parasite plasma membrane or 

cytoplasm instead of the IMC of the parasite. Even if phosphorylation has no effect 

on GAP45 localisation, in order to be functional it must still form a tetrameric motor 

complex (GAP45-GAP50-MTIP-MyoA). In T. gondii, phosphorylation of GAP45 

has been shown to be important in motor complex assembly. In detail, substitution of 

S163 and S167 to both alanine and glutamate had no effect on TgGAP45 distribution 

on the parasite IMC. However, replacement of these residues (S163 and S167) by 

glutamate (phosphomimetic form) prevented the trimeric complex, MyoA-MLC-

GAP45 interacting with GAP50 (Gilk et al., 2009). This study has highlighted the 

possibility that phosphorylation of GAP45 might also have a role in Plasmodium 

motor complex assembly.   

 

 5.2 The effect of phosphatase treatment on GFP-tagged GAP45 

protein. 

The P. falciparum GAP45 protein has been previously shown to be highly 

phosphorylated in the schizont stage. The appearance of a double protein band in 

SDS-PAGE is a feature of schizont GAP45 protein, where the upper band is 

phosphorylated (Green et al., 2008). Upon treatment with alkaline phosphatase, the 

migration of this protein band is affected such that it shifts to the lower molecular 

weight band by the removal of phosphate molecules from the protein.  This 

experiment will show whether or not the GFP-tagged GAP45 protein, which was 

tagged internally, is phosphorylated in parasites (Figure 5.2).  

By treatment with alkaline phosphatase, both FL-GAP45 and C-GAP45, 

together with the native GAP45 protein bands shifted to lower molecular weight 

(Figure 5.2A). This effect was stopped (or significantly reduced) in the presence of a 
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phosphatase inhibitor cocktail containing sodium orthovanadate, sodium molybdate, 

sodium tartrate and imidazole (Figure 5.2A, lane 3). Without the C-terminal region 

that contains most of the phosphorylation sites, the N-GAP45 protein does not seem 

to be affected by phosphatase activity (Figure 5.2B). Therefore, the GFP-tagged 

GAP45 appears to be phosphorylated mainly on its C-terminal sequence. Although 

the native GAP45 band is shifted to a lower molecular weight upon phosphatase 

treatment, there is still a remaining phosphorylated band which could be due to 

incomplete dephosphorylation by the phosphatase treatment in this study. This could 

also be due to other post-translational modifications of the GAP45 protein such as N-

myristoylation and palmitoylation which have been reported by Rees-Channer et al. 

(2006). 

 The S89A/S103A GFP-GAP45 protein was also affected by phosphatase 

treatment whereby its protein band also shifted to a lower molecular weight (Figure 

5.3). This suggests that additional unknown residues are phosphorylated on GFP-

tagged GAP45. 

 

5.3 
32

P-phosphate incorporation into GFP-tagged GAP45 protein in 

parasites 

As shown by phosphatase treatment in the previous section, the WT and 

S89A/S103A GFP-GAP45 proteins are phosphorylated in the parasite. However, we 

wish to know more about the level of WT GFP-GAP45 phosphorylation as compared 

with the S89A/S103A GFP-GAP45 protein. By performing 
32

P-phosphate parasite 

metabolic labelling, the quantity of phosphate incorporation into the GFP-GAP45 

protein can be measured. The radiolabelled GFP-GAP45 was immunoprecipitated by 

pull down assay using the GFP-Trap® system. The level of GFP-GAP45 protein 

phosphorylation was visualized by autoradiography. 

 As expected, the WT and S89A/S103A GFP-GAP45 protein bands showed 

incorporation of 
32

P-phosphate (Figure 5.4). After considering the total amount of 

GFP-GAP45 protein being pulled down for both WT and S89A/S103A variant, 

where there was less S89A/S103A than WT protein, there was no obvious difference 
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in the level of 
32

P-phosphate incorporation between them. The results suggest that 

S89 and/or S103 residues of GAP45 may not be the dominantly phosphorylated 

residues in parasites, and their phosphorylation is sub-stoichiometric. In order to 

check the integrity of the motor complex protein components that had been pulled 

down together with GFP-GAP45 protein, the same 
32

P-phosphate radiolabelled 

samples were subjected to western blotting and probed with antibodies against each 

member of the motor complex. All of the tetrameric motor complex proteins (MyoA, 

MTIP, GAP50 and of course the GFP-GAP45) were detected in the precipitated 

protein samples (Figure 5.4).  

 Surprisingly, besides the appearance of other 
32

P-phosphate radiolabelled 

protein bands such as MTIP and MyoA, which have been reported to be 

phosphorylated in parasites (Green et al., 2008; Treeck et al., 2011), this experiment 

also detected other unknown phosphorylated protein bands. The phosphorylated 

protein bands were referred as unknown phosphoprotein 1 and unknown 

phosphoprotein 2 (Figure 5.4). The unknown phosphoprotein 1 migrated at 

approximately 180 kDa while unknown phosphoprotein 2 migrated just below the 50 

kDa marker. Unknown phosphoprotein 2 has the strongest signal of 
32

P-phosphate 

incorporation, similar in intensity to that of GFP-GAP45 (Figure 5.4). To ensure that 

unknown phosphoprotein 2 was not a breakdown product of GFP-GAP45, western 

blotting using anti-GFP and GAP45 antibodies was performed. Neither antibody 

reacted with a protein of this size (Appendix E). The unknown phosphorylated 

proteins are either heavily phosphorylated in parasites, or are abundant 

phosphoproteins. However, judging by SYPRO Ruby staining of 

immunoprecipitation products, the relevant band for each unknown phosphoprotein 

did not appear to be abundant. Even the unknown phosphoprotein 2 did not show a 

clear protein band at the appropriate molecular weight (~50 kDa or slightly lower) 

(Appendix F). This indicates that the unknown phosphoproteins, especially 

phosphoprotein 2, are heavily phosphorylated. 
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5.4 GAP40 is part of the motor complex protein          

The identification of unknown phosphoprotein 2 was performed by liquid 

chromatography mass spectrometry (LC-MS/MS), implementing the electrospray 

ionization methodology. The immunoprecipitation of GFP-tagged GAP45 was 

performed as described in section 2.11. The immunoprecipitated proteins were 

separated by SDS-PAGE. As the protein concentration was likely to be too low for 

visualisation using coomassie blue staining, the protein bands were stained using 

SYPRO Ruby. A distinct ~50 kDa protein band (slightly lower than 50 kDa marker) 

was seen in the immunoprecipitate from the GFP-GAP45 schizont lysate (Figure 

5.5A). There were also other distinct protein bands detected which were absent from 

the control 3D7 parasite lysate. These were likely to correspond to GFP-GAP45 and 

GAP50 protein (Figure 5.5A). The distinct protein bands related to unknown 

phosphoprotein band 2, GFP-GAP45 and GAP50 were excised and prepared for 

trypsin digestion prior to protein identification by LC-MS/MS analysis. Other motor 

complex protein bands such as MyoA and MTIP were not visible in the staining 

hence it was not possible to identify these proteins. However, the presence of MyoA 

and MTIP in the same immunoprecipitate was confirmed by western blots (Figure 

5.5B). 

 LC-MS/MS analysis identified unknown phosphoprotein 2 as the P. 

falciparum protein, PFE0785c (Figure 5.5A). By referring to the Plasmodium 

genome database (PlasmoDB) (http://plasmodb.org/plasmo/), this protein is 

annotated as glideosome associated protein 40 (GAP40). Based on its amino acid 

sequence, the predicted molecular weight of this protein is 51.8 kDa, and 

transcriptional profiling showed that it is highly expressed in asexual blood stage 

schizonts (Bozdech et al., 2003). In phosphoproteomic analysis, this protein was 

found to be highly phosphorylated at the schizont stage, with 15 phosphorylated 

residues detected (Treeck et al., 2011). Moreover, its orthologue, TgGAP40, has 

been identified in Toxoplasma tachyzoites as a member of the actin-myosin motor 

complex (Frenal et al., 2010). The GFP-GAP45 and GAP50 protein bands were also 

confirmed by LC-MS/MS (Figure 5.5A). Other than that, there were background 

proteins detected in both 3D7 and GFP-GAP45 immunoprecipitated products such as 
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adenosylhomocysteinase (P50250) and elongation factor-1 gamma (PF13_0214). 

These proteins may bind non-specifically and be resistant to the washing conditions 

used in the immunoprecipitation assay. Due to the low amount of 

immunoprecipitated protein, it was not possible to identify unknown phosphoprotein 

1 (Figure 5.4).     

 

5.5 The effect of S89 and S103 phosphorylation on the localisation of 

GFP-tagged GAP45. 

Similar to FL-GAP45 protein, the single (S89A, S103A, S89D and S103D) and 

double variant (S89A/S103A or S89D/S103D) GFP-tagged GAP45 proteins were 

resistant to solubilisation in high pH carbonate buffer (Figure 5.6). These results 

demonstrate that substitution of S89 and S103, to either alanine or aspartate, does not 

affect the membrane binding properties of GFP-tagged GAP45 proteins. As a 

control, MTIP was also insoluble in carbonate buffer, as expected (Figure 5.6). The 

parasite surface and peripheral membrane protein, MSP7 was partially detected in 

the carbonate soluble fraction with most of the protein remaining insoluble (Figure 

5.6). SERA5, a protein of the parasitophorous vacuole that is not membrane 

associated is largely released upon parasite treatment with a hypotonic solution (lane 

1, Figure 5.6). 

 By live microscopy, GFP-GAP45 proteins with S89 and S103 variants 

(S89A, S89D, S103A, S103D, S89A/S103A and S89D/S103D) were localised in a 

similar manner as WT/FL-GAP45 in both young and late schizont stages (Figure 

5.7A & B). These findings show that substitution of S89 and S103 residues by either 

alanine (A) or aspartate (D) does not contribute to any differences in the GFP-tagged 

GAP45 localisation pattern: the appearance of ring-like GFP signal in 36-hour 

schizonts (early schizont) and peripheral GFP signal in 42-hour schizonts (late stage 

schizont). The double GFP-GAP45 variants, S89A/S103A and S89D/S103D, also 

showed an identical localisation pattern as that of WT or FL-GAP45 (Figure 5.7A & 

B). These findings were further confirmed by IFA, where at late schizont stage the 

WT or FL-GAP45 protein, together with its variants (S89A, S89D, S103A, S103D, 
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S89A/S103A and S89D/S103D),  were co-localised well with GAP45, MTIP, MSP1, 

and GAP50 proteins (Figure 5.8A-D). As expected, the RON10 protein was located 

at the anterior of each developing merozoite (Figure 5.8E).   

 Similar to the WT or FL-GAP45 (Figure 5.9A), the ring-like localisation 

pattern of  GFP-tagged GAP45 variants (S89A, S89D, S103A, S103D, S89A/S103A 

and S89D/S103D) did not co-localise with parasite plasma membrane markers such 

as MSP1 in the young schizont stage where the parasites are not completely 

segmented (Figure 5.9B). RON10 is located in close proximity to each ring-like 

localisation pattern of GFP-tagged GAP45 variants (Figure 5.9C), as seen previously 

with WT and FL-GAP45. In conclusion, it seems that phosphorylation of S89 and 

S103 in GFP-tagged GAP45 has no influence on GAP45 localisation during parasite 

schizogony.  

 

5.6 The effect of S89 and S103 mutation on the GAP45 tetrameric 

actin-myosin motor complex 

As shown previously in this study, WT and FL-GAP45 protein were able to interact 

with other motor complex protein partners (Figure 4.8; Appendix D). The 

substitution of either or both S89 and S103 of GFP-tagged GAP45 with alanine 

(S89A and S103A) or aspartate (S89D and S103D) does not seem to interrupt the 

binding ability of this protein to the motor complex protein partners.  

In Figure 5.10A and B, it is clearly shown that none of the substitutions 

interrupt the interaction of GFP-tagged GAP45 with MTIP, GAP50 and MyoA. The 

same findings were made in identical experiments performed with GFP-GAP45 

containing both S89A and S103A substitutions (S89A/S103A) (Appendix D). These 

data suggest that phosphorylation and dephosphorylation of GFP-GAP45 on S89 and 

S103 has no effect at all on the ability of GAP45 to interact with other components 

of the motor complex. A truly accurate analysis by densitometry was not possible, as 

the intensity of the protein band had reached its saturated level, so small effects could 

have been overlooked by this analysis.   
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 N-GAP45 acted as a control in this experiment. This protein is a truncated 

GFP tagged GAP45 protein which encodes the first 29 amino acids of GAP45 fused 

at the N-terminus of GFP. This region of GAP45 is thought to be important in 

targeting to the plasma membrane. Another negative control protein, CDPK1 is a 

non-motor complex protein and localises at the parasite plasma membrane. As 

expected, CDPK1 does not co-immunoprecipitate with GFP-tagged GAP45 protein, 

as shown in Figure 5.10A and B. 

 

5.7 Discussion 

Both CDPK1 expression and GAP45 phosphorylation peak at the late schizont stage, 

suggesting a possible role of CDPK1-mediated  phosphorylation in the regulation of 

motor complex assembly (Green et al., 2006).  Although GFP-tagged GAP45 was 

localised at the IMC, the functionality of this protein, with the GFP insertion at the 

middle of the GAP45 protein sequences, needed to be confirmed. One of the 

characteristics that can confirm the functionality of this protein is the ability of the 

protein to be phosphorylated. 

 The results clearly show that GFP-GAP45 (FL- and C-GAP45) is 

phosphorylated in parasite lysates (Figure 5.2). GAP45 is a hyperphosphorylated 

protein, as GFP-GAP45 containing S89A/S103A substitutions is still affected by 

phosphatase treatment (Figure 5.3), suggesting phosphorylation of additional 

residues. This was further supported by massive incorporation of 
32

P-phosphate into 

FL-GAP45 and S89A/S103A GFP-GAP45 at similar levels (Figure 5.4). C-GAP45 

(N-terminal truncated GFP-GAP45) was also found to be phosphorylated (Figure 

5.2), indicating that phosphorylation of the C-terminal region is independent of the 

N-terminus of GAP45. This also suggests that phosphorylation of GAP45 is not 

dependent on the protein being associated with the parasite plasma membrane 

through N-terminal dual acylation. 

 The immunoprecipitation of GFP-GAP45 
32

P-phosphate radiolabelled protein 

revealed five phosphorylated protein bands (Figure 5.4). One of these is GFP-

GAP45, whilst a further two were demonstrated to correspond to MyoA and MTIP 
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proteins. Both MyoA and MTIP have been shown to be phosphorylated in schizonts 

(Green et al., 2008; Treeck et al., 2011). The other two phosphorylated protein bands, 

unknown phosphoprotein 1 and 2 were detected at around ~150kDa and ~50 kDa 

respectively (Figure 5.4). Unknown phosphoprotein 2, was identified as GAP40 (~50 

kDa) and has an extremely high level of radiolabel incorporated (Figure 5.4). A 

phosphoproteomic study demonstrated that GAP40 is phosphorylated on at least 15 

amino acid residues (Treeck et al., 2011). The GAP40 orthologue, TgGAP40 has 

been demonstrated to form a complex with TgGAP45 and other motor complex 

proteins (Frenal et al., 2010). TgGAP40 has nine membrane spanning domains and 

may play a role in anchoring the motor complex proteins to the IMC (Frenal et al., 

2010).   One possible protein candidate with a size near to the ~180 kDa of unknown 

phosphoprotein 1 is ALV6. However, there is no clear evidence of ALV6 forming a 

complex with GAP45 or other motor complex proteins. According to a 

phosphoproteome study, ALV6 is highly expressed in schizonts and is 

phosphorylated at 23 amino acid residues (Treeck et al., 2011). Although ALV6 

(MAL13P1.260) involvement in motor complex formation is unknown, two of its 

family members, ALV4 and ALV5, together with GAP45 and GAP50 proteins were 

detected in the proteins immunoprecipitated with antibodies against GAPMs proteins 

(Bullen et al., 2009).  The alveolin family members (some of them are also known as 

inner membrane complex proteins) have been shown to be associated with the IMC 

of both P. berghei (IMC1a, IMC1b and IMC1h/PfALV3) and T. gondii (IMC1-14 

except IMC2 due to lack of an alveolin motif) parasites (Anderson-White et al., 

2011; Gould et al., 2008; Khater et al., 2004; Mann and Beckers, 2001; Tremp and 

Dessens, 2011; Tremp et al., 2008). Other uncharacterized Plasmodium alveolin-

related proteins are IMC1c, IMC1d, IMC1e, IMC1f and IMC1g (Khater et al., 2004).  

Phosphorylation at S89 and/or S103 does not affecting the localisation of 

GAP45 to the IMC. The substitution of S89 and S103 to either alanine (A) or 

aspartate (D) does not seem to cause any difference in localisation pattern throughout 

schizogony, at the young (~36 hours post invasion) and late (~42 hours post 

invasion) schizont stages. This suggests that phosphorylation or dephosphorylation 

of S89 and S103 does not have an important role in GAP45 targeting to the IMC.  

All of the GFP-tagged GAP45 variants (S89A, S89D, S103A, S103D, S89A/S103A 
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and S89D/S103D) showed similar localisation patterns as WT GFP-tagged GAP45 

by live microscopy and co-localised well with IMC markers MTIP and GAP50 in 

late stage schizonts. The localisation of GAP45 to the IMC has also been shown to 

be unaffected by phosphorylation in another apicomplexan parasite T. gondii (Gilk et 

al., 2009).   

Phosphorylation on S89 and S103 also does not seem to affect association of 

GFP-GAP45 into the motor complex of P. falciparum. In contrast, in T. gondii, the 

importance of  GAP45 phosphorylation has been highlighted in the final step of 

assembly of the motor complex with GAP50, where it causes the dissociation of the 

trimeric MyoA-MTIP-GAP45 complex from GAP50 (Gilk et al., 2009). The best 

explanation for this is that the phosphorylated residues in TgGAP45 (S163 and S167) 

are in the least conserved region of the protein and are not identical in P. falciparum 

GAP45 where the equivalent positions are D117 and T121. The TgGAP45 mutation 

S163E causes dissociation of the motor complex (Gilk et al., 2009), whereas the 

equivalent position in PfGAP45 is an acidic aspartate, suggesting that the mechanism 

of regulation of motor complex formation may not be conserved between the two 

species, or that negative charge alone was not the cause of complex dissociation in 

the TgGAP45 mutant protein. 

Phosphorylation of S89 and S103 is clearly not responsible for regulating 

motor complex assembly in P. falciparum, but there are other phosphorylated 

residues that may perform that function. For example, S142A and S149A GAP45 

variants were shown to increase GAP45 phosphorylation in this study. It will be 

important to study the function of S142 and S149 phosphorylation, as this might 

have a role in regulating the overall phosphorylation of GAP45.  Another possibility 

is that eliminating phosphorylation of S89 and S103 of GAP45 may not be sufficient 

to cause any effect on motor complex formation, as more CDPK1 phosphorylation 

sites have been detected in GAP45 in vitro (Winter et al., 2009). By 

phosphoproteome analysis on parasite schizonts using liquid chromatography-

tandem mass spectrometry (LC-MS/MS), GAP45 was shown to be phosphorylated 

on 8 residues: S89, S103, S107, S142, S149, S156, T158 and S198 (Treeck et al., 

2011). A recent study on calcium-induced T. gondii tachyzoites also showed that 
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TgGAP45 is phosphorylated at multiple sites (Nebl et al., 2011). Briefly, by a 

combination of different methods such as 
32

[P]/2-dimensional electrophoresis 

autoradiograph spot analysis and Multi-dimensional liquid chromatography Protein 

Identification Technology (MudPIT), 5 phosphorylated residues (S153, Y158, S163, 

S167 and S184) were detected in TgGAP45. An exhaustive investigation into the T. 

gondii motor complex components was done using Stable Isotope Labelling of 

Amino Acids in Culture (SILAC)-based quantitative LC-MS/MS with Orbitrap 

analysis. This method detected additional phosphorylation sites on TgGAP45: S169, 

S184/185 and T189. This technique also showed that only phosphorylation on 

S184/185 and T189 is enhanced by calcium, suggesting that GAP45 is a substrate for 

other kinases which are calcium-independent (Nebl et al., 2011). 

Another interesting finding by Nebl et al. (2011) is that the calcium-sensitive 

phosphorylated residue, S185, is conserved throughout apicomplexan GAP45 

sequences and the comparable residue in P. falciparum GAP45 is S149. The 

formation of the motor complex is enhanced or increased in calcium-treated T. gondii 

parasites as compared to non-induced parasites (Nebl et al., 2011). In contrast, a 

study by Gilk et al. (2009) focusing on calcium-independent phosphorylation sites 

(S163 and S167) of TgGAP45 demonstrated dissociation of GAP45 from GAP50 

when it is phosphorylated at these sites. Taken together, these data suggest that the 

formation of the motor complex can be regulated through phosphorylation, 

specifically on GAP45, by two different pathways, one of which is calcium-

dependent and increases motor complex association, whilst the other is calcium-

independent and promotes motor complex dissociation. Although such speculation is 

possible, it has to borne in mind that the study by Nebl et al. (2011) did not show any 

direct evidence about the effect of S185 in TgGAP45 (S149 in PfGAP45) 

phosphorylation on the increased motor complex assembly. They only show that the 

two phenomena, phosphorylation and increase in motor complex assembly, occur in 

response to calcium induction.  

There is direct evidence about the kinases responsible for phosphorylating 

GAP45 in parasites.  Other than CDPK1, PKB has been reported to phosphorylate 

GAP45 in parasites (Vaid et al., 2008). Briefly, the PKB inhibitor peptide called 
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calmodulin binding domain 1-15 (CBD1-15) was able to reduce GAP45 

phosphorylation through inhibiting PKB activity in parasite (Vaid et al., 2008). 

Further studies by the same group also showed that GAP45 phosphorylation on S103 

and S149 was regulated by calcium signal through the activation of the 

phospholipase C (PLC) pathway. In addition, PKB was shown to phosphorylate S103 

of GAP45 in the parasite (Thomas et al., 2012). Another potential calcium-dependent 

kinase is the P. falciparum protein kinase 2 (PfPK2), homologous to human 

calcium/calmodulin-dependent protein kinase, which is expressed in merozoites 

(Kato et al., 2008a). The calmodulin antagonist W-7 has been shown to inhibit 

PfPK2 activity and also decreased the parasitemia of ring forms in invasion assays 

(Kato et al., 2008a). However, the calmodulin antagonist used in the Kato et al. 

(2008) study will have effects on other calmodulin dependent kinases or pathways. 

For example, the calmodulin antagonist might also inhibit PKB, which is a 

Ca
2+

/calmodulin dependent kinases as mentioned above.  

Other studies have suggested that the phosphorylation of GAP45 is governed 

by calcium-independent and staurosporine resistant kinases, as treating the parasite 

with both intracellular calcium chelators (A23187, BAPTA AM and dantrolene) and 

kinase inhibitor (staurosporine) failed to inhibit GAP45 phosphorylation and motor 

complex association completely (Jones et al., 2009). However treatment with 

staurosporine does show some depletion in motor complex protein components 

(Jones et al., 2009). This further supports the notion that GAP45 is being 

phosphorylated sequentially by different kinases.  As suggested by Jones et al. 

(2009), other than the calcium-dependent protein kinases CDPK1 and PKB, there are 

other potential kinases that may phosphorylate GAP45 such as casein kinase II, 

which is known to be active during T. gondii tachyzoite invasion (Delorme et al., 

2003). Casein kinase II is not sensitive to staurosporine and does not rely on a second 

messenger for activation (Jones et al., 2009; Meggio et al., 1995). Additionally, 

protein kinase A (PKA) has been reported to phosphorylate apical membrane antigen 

1 (AMA1) at S610, an important protein in merozoite tight junction formation prior 

to red blood cell invasion (Leykauf et al., 2010). Last but not least, PKG is another 

kinase that may phosphorylate GAP45. Inhibition of this kinase by compound 1, a 
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specific PKG inhibitor, prevents schizont maturation in asexual blood stages of P. 

falciparum (Taylor et al., 2010).     

Phosphorylation events on GAP45 protein may be crucial in the motile 

/invasive stages of P. falciparum: merozoites, ookinetes and sporozoites. Again this 

is another obvious difference between P. falciparum and T. gondii studies; the 

studies on T. gondii were on the motile stage, the tachyzoite, whereas P. falciparum 

studies (including this one) were generally performed on schizonts. During red blood 

cell invasion the assembly or disassembly of motor complex proteins, which is 

regulated by phosphorylation, may be occurring, and by restricting our studies to 

schizonts we may miss important events, particularly relating to disassembly. 

Alternatively, phosphorylation of the residues we have studied, S89 and S103, may 

have a completely different consequence that was not evident in this study. Thus, 

studying GAP45 phosphorylation in the merozoite stage is imperative.   

As the parasite was episomally transfected, the GFP-tagged GAP45 was 

expressed together with an endogenous GAP45. It is possible that the presence of 

endogenous GAP45 has prevented a dominant phenotypic effect of these GAP45 

variants. An attempt to replace the native GAP45 with WT GFP-tagged GAP45 by 

single cross-over was unsuccessful, possibly due to the presence of only a short low 

complexity region at the 5’ UTR to allow recombination. For future experiments, a 

different mechanism for allelic replacement is needed to study the effect of GAP45 

phosphorylation (particularly by CDPK1) on Plasmodium growth and invasion.   
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Figure 5.1: Far UV circular dichroism (CD) spectra for WT, S89D, S103D and 

S89D/S103D GAP45 recombinant proteins. The purified GAP45 recombinant 

proteins were suspended in PBS prior to CD determination. The secondary structure 

of recombinant proteins was determined by monitoring CD in the far-UV region 

(190-260 nm). The values were averaged from multiple scans and presented on a 

mean residue weight (MRW) basis.  
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Figure 5.2: The GFP-GAP45 protein is phosphorylated in the parasite. The 

parasite lysate was treated with bovine intestinal alkaline phosphatase enzyme and 

analysed by western blotting using anti-GAP45 and anti-GFP antibodies. The 

GFPGAP45 protein band from FL-GAP45 and C-GAP45 (A) was shifted to a lower 

molecular weight upon treatment with alkaline phosphatase (lane 2) as compared to 

control without phosphatase (lane 1) or with phosphatase inhibitor cocktail (lane 3). 

The N-GAP45 protein band does not show any changes in its migration upon 

treatment or without phosphatase treatment (B).  The native GAP45 band shifted to a 

lower molecular weight upon treatment with phosphatase.  



 

161 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: The S89A/S103A GFP-GAP45 protein is also phosphorylated in the 

parasite. The parasite lysate was treated with bovine intestinal alkaline phosphatase 

and analysed by western blotting using anti-GAP45 and anti-GFP antibodies. The 

S89A/S103A GFPGAP45  protein band was shifted to a lower molecular weight 

upon treated with the alkaline phosphatase (lane 2) as compared to control without 

phosphatase (lane 1).  
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Figure 5.4: The S89A/S103A GFP-GAP45 is phosphorylated and at similar level 

as WT GFP-GAP45 (FL). Synchronized parasites were metabolically radiolabelled 

with 
32

P-phosphate at the schizont stage prior to immunoprecipitation with the GFP-

Trap® system. The precipitated samples were separated by SDS-PAGE and dried for 

autoradiography analysis. Western blotting was performed on a similar sample to 

identify the protein or phosphoprotein that has been pulled down. The identified 

motor complex proteins (GAP45, MyoA, MTIP and GAP50) were labelled as above. 

The new co-precipitated phosphoproteins were labelled as unknown phosphoprotein 

1 and 2 (?). 

 

 

 



 

163 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: The identification of GAP40 as a phosphorylated motor complex 

protein. (A) GFP-GAP45 protein was immunoprecipitated using the GFP-Trap® 

system. The immunoprecipitate was separated on a 10% NuPAGE gel and stained 

with SYPRO Ruby. The related protein band was excised by 2D gel spot picker. The 

excised gel was processed and digested with trypsin prior to LC-MS/MS analysis. 

GAP40 protein (PFE0785c) was identified as a motor complex protein in GFP-

GAP45 immunoprecipitation. GAP40 was not detected in the control 3D7 P. 

falciparum immunoprecipitate. GFP-GAP45 and GAP50 protein bands were also 

confirmed by LC-MS/MS. (B) The presence of MyoA and MTIP proteins was 

confirmed by western blotting as their corresponded protein bands could not be 

visualized by SYPRO Ruby staining. 
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Figure 5.6: Subcellular fractionation of S89 and S103 variants of GFP-tagged 

GAP45 proteins. Subcellular fractionation was performed starting with extraction 

using hypotonic lysis buffer, followed by high salt buffer, and sodium carbonate 

buffer. All parasite solubilized fractions, hypotonic lysis (1), high salt (2), carbonate 

supernatant (3) and carbonate pellet (4), were separated by SDS-PAGE and analysed 

by western blotting, using antibodies to GFP, GAP45, MTIP, MSP7 and SERA5. 
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Figure 5.7: The location of GFP-tagged GAP45 and a number of variants in (A) 

early and (B) late schizonts, by live fluorescence microscopy (green). Parasite 

DNA was stained with Hoechst dye (blue); merged images and the differential 

interference contrast pictures are also shown. In early schizont stages, small localised 

regions of GAP45-GFP signal were observed around the parasite's periphery, typical 

of an IMC location. At the late schizont stage the GFP signal was detected at the 

periphery of merozoites developing within the schizont. There was no difference in 

the pattern of location between the wild type (WT) or FL-GAP45 and its variants. As 

these pictures were not analysed by Z-stack imaging, some of the images of early 

schizont stages lack the ring-like IMC structures (S89D, S103D and S89D/S103D), 

which should mostly be visible at the center of the cell. At a certain focusing plane, 

only the punctate GFP-signal was seen at the periphery of the parasite. Scale bar is 2 

µm. 
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Figure 5.8: Localisation of GFP-tagged GAP45 variants in mature schizonts. 

Indirect immunofluorescence assays were performed by costaining the GFP-tagged 

GAP45 with antibodies specific for GAP45 (A), MTIP (B), GAP50 (C), MSP1 (D) 

and RON10 (E) protein signals. The GAP45, MTIP and GAP50 antibodies are 

markers for inner membrane complex proteins. The MSP1 and RON10 antibodies 

were used as parasite plasma membrane and apical markers respectively. The 

parasite variants are WT or FL-GAP45, S89A, S103A, S89A/S103A, S89D, S103D 

and S89D/S103D GFP-tagged GAP45. Scale bar is 2 µm. 
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Figure 5.8 continued: Localisation of GFP-tagged GAP45 variants in mature 

schizonts.  
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Figure 5.8 continued: Localisation of GFP-tagged GAP45 variants in mature 

schizonts. 
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Figure 5.8 continued: Localisation of GFP-tagged GAP45 variants in mature 

schizonts. 
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Figure 5.8 continued: Localisation of GFP-tagged GAP45 variants in mature 

schizonts. 
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Figure 5.9: Localisation of GFP-tagged GAP45 variants in young schizonts. 

Indirect immunofluorescence assays were performed by co-staining the GFP-tagged 

GAP45 with antibodies specific for GAP45 (A), MSP1 (B) and RON10 (C). The 

GAP45, MTIP and GAP50 antibodies are markers for inner membrane complex 

proteins. The MSP1 and RON10 antibodies were used as parasite plasma membrane 

and apical markers respectively. The parasite variants are WT or FL-GAP45, S89A, 

S103A, S89A/S103A, S89D, S103D and S89D/S103D GFP-tagged GAP45. Scale 

bar is 2 µm. 
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Figure 5.9 continued: Localisation of GFP-tagged GAP45 variants in young 

schizonts. 
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Figure 5.9 continued: Localisation of GFP-tagged GAP45 variants in young 

schizonts. 
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Figure 5.10: WT/FL-GAP45 proteins and its variants assemble into the motor protein complex, whereas N-GAP45 does not.  

Detergent lysates (1% NP40) of schizont stage-parasites were prepared from untransfected 3D7 or parasites transfected with plasmid 

to express the WT, S89A, S89D GFP-tagged GAP45 variants and N-GAP45 (A) and S103A, S103D GFP-tagged GAP45 variants (B). 

WT/FL-GAP45 and variants were immunoprecipitated using the GFP-Trap® system. Precipitated proteins and a sample of each 

corresponding lysate were resolved by SDS-PAGE and then analysed by western blotting using antibodies to GFP, GAP45, GAP50, 

MTIP, MyoA and CDPK1. The GFP antibody immunoprecipitated the GFP-tagged GAP45 protein together with its interacting 

proteins such as GAP50, MTIP and MyoA. CDPK1 is known to not be part of the motor complex and therefore was used as a control. 

(A) (B) 
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As untransfected 3D7 parasites were not expressing GFP-tagged GAP45 proteins, no immunoprecipitation product was detected in this 

lysate. The results show that all of the GFP-tagged GAP45 proteins formed a tetrameric motor complex with other motor proteins 

except for N-GAP45. The GFP-tagged GAP45 proteins tend to degrade after immunoprecipitation, hence 2 or 3 breakdown products 

between ~50kDa to ~30 kDa were detected by both GFP and GAP45 antibodies. 
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Chapter 6 

Research summary 

 

6.1 CDPK1 phosphorylates multiple residues on the GAP45 protein  

GAP45 is an unstructured protein. By CD analysis, it consists of 4% alpha helix, 

22% beta sheet, 10% turn and is 64% unstructured. As suggested in Toxoplasma 

studies (Frenal et al., 2010), most of the structured region of GAP45 is situated at the 

C-terminus of the protein. GAP45 protein has two likely functions. While recruiting 

the motor complex to the IMC via its C-terminus, this protein may also have a role in 

maintaining the gap between IMC and plasma membrane of the parasite. Interactions 

with each of these membranes are mediated by acylation; the dual acylation of the N-

terminus and one or more acylation in the C-terminal region. Therefore it is not 

surprising that tagging this protein at either the N- or C-terminus causes 

mislocalisation of the protein and prevents it from interacting with other motor 

complex proteins such as GAP50, MTIP and MyoA (Frenal et al., 2010; Johnson et 

al., 2007). As shown in this study and others (Frenal et al., 2010; Gilk et al., 2009), 

tagging the GAP45 protein internally preserves the function of the protein, at least 

with regard to its localisation and interaction with other motor complex members at 

the IMC.   

GAP45 is a highly phosphorylated protein (Green et al., 2008; Treeck et al., 

2011). Previously, it has been shown to be a substrate for CDPK1 in vitro (Green et 

al., 2008; Winter et al., 2009). By mutagenesis, in this study we have found several 

CDPK1 phosphorylation sites in vitro, particularly S89 and S103 (Chapter 3, Figure 

3.3), the residues that were found on GAP45 phosphopeptides enriched from 

merozoite lysates and detected by MALDI-TOF analysis (Green et al., 2008). As 

analysed by ES-MS, substitution of both serines to alanines resulted in a decrease in 

the level of phosphorylated GAP45 protein (Chapter 3, Figure 3.7). The other 
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possible CDPK1 phosphorylation sites identified in this study were S31, S156, S142 

and S149. Modification of S142 and S149 residues to alanine resulted in a very 

significant increase in the overall level of GAP45 phosphorylation in vitro (Chapter 

3, Figure 3.5-3.6) suggesting the presence of a switching mechanism, where the 

phosphorylation/dephosphorylation of some residues may change the exposure of 

other residues (perhaps S89 or S103) on GAP45 and cause them to be more readily 

phosphorylated. As shown by ES-MS analysis, the maximum number of phosphates 

incorporated (4 phosphates) into S142A and S149A GAP45 variants was still the 

same as for WT GAP45 but the proportion of GAP45 with 3 or 4 phosphates was 

increased. For example, the population of S142A and S149A GAP45 proteins with 3 

phosphate groups incorporated upon CDPK1 phosphorylation was increased as 

compared to WT GAP45 protein and there was no population of S142A or S149A 

GAP45 with only one phosphate incorporation detected (Chapter 3, Figure 3.7). 

 

6.2 GFP-tagged GAP45 forms part of the motor complex at the 

inner membrane complex: a possible interaction with the IMC and 

parasite plasma membrane via its C-terminal and N-terminal 

regions respectively. 

With current technology, excluding T. gondii tachyzoite GAP45, there is no other 

way of observing the localisation of GFP tagged GAP45 to IMC other than 

monitoring the development of GAP45 in the early schizont stage. During P. 

falciparum IMC development, parasites show discrete foci of GAP45 at their 

periphery which has also been shown by other IMC interacting proteins such as 

GAP50 (Yeoman et al., 2011), MTIP (R. Moon, NIMR, unpublished) and GAPM 

(Bullen et al., 2009; Hu et al., 2010). GFP-tagged GAP45 also showed a similar 

localisation pattern in early schizogony. This study has also demonstrated that 

truncated GFP-tagged GAP45, consisting of the first 29 amino acids from the N-

terminus (N-GAP45), was localised to a different membrane compartment at the 

early schizont stage, resulting in an even GFP distribution pattern surrounding the 
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developing schizont which is clearly distinct from that of the full length GFP-tagged 

(FL-GAP45) and endogenous GAP45. 

The IMC is a system of flattened membrane cisternae stabilized by a 

membrane-associated protein from the inner and outer side of its structure (Striepen 

et al., 2007). The IMC starts to develop at early schizogony forming the foci and ring 

like structures. As shown by the IMC interacting protein localisation pattern in this 

study, GFP-tagged GAP45 (FL-GAP45), the ring-like or punctate structure is 

situated in close proximity with each nucleus (33 hrs post invasion) (Figure 6.1A, i). 

The ring-like structures become more distinctive as the nuclei replicate (Figure 6.1A, 

ii) (36 hrs post invasion). The ring-like structure of GFP-tagged GAP45 may 

represent the starting point of where the IMC starts to develop, which is the apical 

ring. Previous ultrastructural studies of early schizont stage parasites have suggested 

that the developing IMC with its associated protein, GAP50, is localised at the  

apical ring, forming a membrane collar surrounding the apical pore (Yeoman et al., 

2011).  The GFP-tagged GAP45 signal then starts to surround the nuclei which 

represent the formation of a pellicular structure around developing merozoites (39 

hrs post invasion) (Figure 6.1A, iii). At the end of schizogony, GFP-tagged GAP45 

fully surrounds the developed merozoites (42 hrs post invasion) (Figure 6.1A, iv). At 

this point of schizogony, the plasma membrane and the IMC of the parasites are 

indistinguishable by fluorescence microscopy as they are situated close to each other 

(~25 nm as estimated from the electron microscopy figure of Pinder and colleagues 

(Pinder et al., 2000)). In Toxoplasma endodyogeny, the localisation of GAP45 is 

somewhat different than that of Plasmodium as it cannot be seen in the newly 

developing IMC of daughter cells. This also accounts for a major difference in the 

cytokinesis process between these Apicomplexa. Furthermore, in newly developed 

tachyzoites, only the integral membrane proteins GAP40 and GAP50 are found to be 

located at the developing IMC, whereas GAP45, MLC1 and MyoA proteins are 

absent. These proteins will only localise at the IMC once cytokinesis is complete 

(Frenal et al., 2010; Gaskins et al., 2004).   

As shown by IFA and live imaging of early schizont development, it is clear 

that inserting GFP within the GAP45 protein does not affect the localisation of the 
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protein to the IMC (Chapter 4, Figure 4.3-4.7). This may be explained by the fact 

that the site of GFP tag insertion on GAP45 falls between amino acid residues 29 and 

30 which are not conserved throughout the Plasmodium species and other 

apicomplexan parasites (Chapter 1, Figure 1.7 and Figure 1.10). In other words, the 

sequence might not be so important for GAP45 localisation and/or function. It has 

also been proven by this study that the GFP-tagged GAP45 was able to interact with 

other motor complex proteins (Chapter 4, Figure 4.8; Appendix D; Chapter 5, Figure 

5.5). Apart from that, this study has highlighted a probable orientation of PfGAP45 

that is similar to that in the previously mentioned TgGAP45 model. The ability of C-

GAP45 to localise at the IMC and interact with other motor complex proteins while 

N-GAP45 is only able to localise at the parasite membrane, strengthens the 

application of this model to Plasmodium. As suggested by Frenal et al. (2010), 

GAP45 is localised between the IMC and parasite membrane by spanning the gap 

between the membranes through association of the N-terminus and C-terminus of the 

protein with the parasite membrane and IMC respectively (Figure 6.1B). 

The internal tagging of PfGAP45 still preserves the integrity of the coiled-

coil domain and the structured C-terminal region that is important for GAP45 

function. As this study is based on episomal tranfection of GFP-tagged GAP45, 

restricted to just three constructs (FL-GAP45, C-GAP45 and N-GAP45), it is not 

possible to speculate on the role of this protein other than through its localisation and 

motor complex protein interaction. However, other transfection studies in 

Toxoplasma have elucidated the possible function of this protein in the parasite. By 

using an inducible knockout system, TgGAP45 was found to be an essential protein 

specifically in motility, invasion and egress (Frenal et al., 2010). Moreover, the 

internal GFP-tagged TgGAP45 protein (MycGFPGAP45) was able to complement 

the functional phenotype in GAP45 depleted parasites as observed by its localisation 

and ability to form plaques on human foreskin fibroblasts (HFFs) (Frenal et al., 

2010). Other TgGAP45 variants such N-terminal GC-AA mutants and one without 

the coiled-coil domain were unable to complement the depletion of TgGAP45, in that 

the parasites were unable to invade or form plaques (Frenal et al., 2010). In addition, 

an electron microscopy analysis has observed that the parasites expressing both 

defective TgGAP45 variants (N-terminal GC-AA mutants and coiled-coil mutants) 
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exhibited a deformation and irregular spacing between IMC and plasma membrane. 

This also includes the extra IMC membranes formed at the posterior pole of the 

parasite after the invasion (Frenal et al., 2010).  As shown by the phenotypic effect of 

this protein in the T. gondii study, this suggests the second function of GAP45 

protein is in maintaining the cohesion of the pellicle during invasion. The N-terminal 

acylation together with the coiled-coil domain could have a role in maintaining a 

fixed distance and tight connection between the two membranes in the context of 

tensions upon invasion and gliding motility (Frenal et al., 2010).    

 

6.3 Localisation and motor complex assembly of GAP45 is not 

affected by phosphorylation on S89 and S103 in parasites.  

CDPK1 can phosphorylate GAP45 in vitro on residues including S89 and S103. Both 

of these residues were previously found to be phosphorylated in P. falciparum 

(Green et al., 2008; Treeck et al., 2011). As shown by additional analysis such as 

electrospray mass spectrometry, replacement of S89 and S103 residues by alanine 

decreased GAP45 phosphorylation. In order to study the effect of this 

phosphorylation on the parasite, constructs to express GAP45 modified at S89 and 

S103 were transfected into P. falciparum parasites. However, parasites expressing 

S89A, S103A or S89A/S103A GAP45 variants showed no difference in GAP45 

localisation compared with WT GAP45 (Chapter 5, Figure 5.7). Substitution of each 

residue left intact the interaction of GAP45 protein with other motor complex 

proteins such as MTIP, GAP50 and MyoA (Chapter 5, Figure 5.10 and Appendix D).  

The phosphorylation of GAP45 by CDPK1 might not be enough to induce 

any changes in GAP45 localisation or interaction with motor complex proteins. As 

reported earlier, GAP45 is a multisubstrate protein for another kinase called protein 

kinase B (PKB) (Thomas et al., 2012; Vaid et al., 2008). Phosphorylation of this 

protein by both CDPK1 and PKB may complete the post-translational modification 

process and activate GAP45 function. As well as S89 and S103, parasite-derived 

GAP45 was found to be phosphorylated at multiple sites: S107, S142, S149, S156, 

S158 and S198 (Treeck et al., 2011). It may be that these sites are phosphorylated by 
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kinases other than CDPK1. Substituting a combination of, or all of, these 

phosphorylated residues may contribute to a more obvious phenotypic effect in 

GAP45 function than studying two sites in isolation. There might be other CDPK1 

sites left unidentified. In section 3.4 we showed that S31, S142, S149 and S156 

might also be substrates for CDPK1 (Chapter 3, Figure 3.5-3.7, Table 3.1). 

Interestingly, S156 is located in the structured C-terminal region of GAP45 which 

might serve an important role in recruiting the motor complex to the IMC. It is 

possible that modification of residues here could perturb motor complex formation. 

 As phosphorylation of GAP45 increases from early schizont and peaks in the 

late schizont, it does not seem likely that the fully phosphorylated GAP45 protein has 

importance in invasion and post-invasion by the merozoite, where the assembly and 

disassembly of the motor complex components occur. This study has also found that 

the GFP-tagged GAP45 can form a tetrameric motor complex in free merozoite 

stages (Figure 6.2A). However, this study did not have any data from the GFP-

tagged GAP45 variants (i. e. S89A and S103A) in the free merozoite stage. It has 

been shown in T. gondii that phosphorylation of TgGAP45 in the invasive tachyzoite 

caused dissociation of GAP50 from the trimeric motor complex GAP45-MTIP-

MyoA (Gilk et al., 2009). We have also found some evidence that the native GAP45 

protein is hyperphosphorylated in the merozoite, the Plasmodium invasive blood 

stage form where the GAP45 protein appears as a single band in SDS-PAGE with 

higher molecular weight as compared to late schizont GAP45 protein (Figure 6.2A 

and B). These data suggest that further phosphorylation of GAP45 occurs in the 

Plasmodium merozoite. 

 

6.4 Future studies     

The present study has addressed two aspects of GAP45 function in P. falciparum. 

The first aspect was to determine the localisation of GFP-tagged GAP45 throughout 

schizogony. The second aspect of this study was to assess the effect of GAP45 

phosphorylation by CDPK1 in P. falciparum, specifically on IMC localisation and 

motor complex assembly. The study has shown that GFP-tagged GAP45 (FL-
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GAP45) is able to localise at the IMC and interact with other motor complex 

components, suggesting it is functional. However, further phenotype identification is 

limited in this study which depends on episomally expressed GFP-GAP45. Even if 

there is a phenotypic effect, it may be masked by the function of native GAP45 that 

is still expressed from its endogenous locus. Any effects of GFP-tagged GAP45 on 

the parasite such as on growth and invasion rate could be determined by integrating 

the GFP-tagged GAP45 gene into the P. falciparum genome. In other words, the 

integration of GFP-tagged GAP45 must replace the endogenous GAP45 by 

performing a total gene replacement. An alternative approach would be to generate 

an inducible knockout of the endogenous GAP45 gene coupled with expression of 

GFP-GAP45 from a plasmid. Whilst successful in T. gondii, technology for the latter 

approach is currently unavailable for Plasmodium. Such experiments will further 

elucidate the functional phenotype effect of GFP-tagged GAP45 and its variants in P. 

falciparum schizogony. 

 It is important to study more the other CDPK1 phosphorylation sites such as 

S142, S149, S156 and S31. A series of replacements (S to A) at these residues might 

show an obvious effect and elucidate more information about GAP45 

phosphorylation in the parasite. It might also be interesting if the effect of S89 and 

S103 substitution or others can be monitored throughout schizogony. For example, a 

time course pull down assay might be worth doing so that the effect of 

phosphorylation on motor complex assembly could be seen at specific stages or time 

points of schizogony. The effect of GAP45 phosphorylation might be stage specific. 

As phosphorylation on S89 and S103 in late schizonts (42-45 hours post invasion) 

does not seem to be important, a similar study on free merozoites might lead to 

interesting findings.     

 The localisation of GFP-tagged GAP45 to the IMC has been shown to occur 

in parallel with cytokinesis and segmentation in schizogony. A close examination of 

this process might shed light on and provide new knowledge of GAP45 localisation 

to the IMC. It is important to know which segment or region of GAP45 is 

responsible for the localisation to the IMC specifically and also for motor complex 

protein recruitment. Whilst this study has roughly proposed the possible orientation 
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and function of the N and C termini of GAP45, the function of specific GAP45 

regions such as the coiled-coil domain and structured C-terminal domain are still 

unclear and worth investigating. By implementing an experiment using a series of 

truncated GAP45 proteins, with or without a certain region of C terminal or N 

terminal sequence may uncover the role of GAP45 in the P. falciparum life cycle in 

greater detail. For example, besides N-terminal dual acylation (myristoylation and 

palmitoylation), C terminal cysteine residue(s) of GAP45 may also be palmitoylated. 

Replacement of cysteine residues by alanine will give a clear picture of how this 

post-translational modification process can contribute to the localisation and motor 

complex recruitment to the IMC.  

 Although CDPK1 phosphorylates GAP45 in vitro, an in vivo role of this 

process remains unclear. However, with the discovery of specific CDPK1 inhibitors 

in the future, it may be possible to study the effect of GAP45 phosphorylation 

specifically by CDPK1 in the parasite. With CDPK1 fully or partially inhibited, any 

specific phenotype and biochemical effects of GFP-tagged GAP45 phosphorylation 

can be determined. However, it has been reported that CDPK1 can phosphorylate 

more than one substrate such as MTIP (Green et al., 2008). So, any effect of a 

CDPK1 inhibitor may not represent the inability of CDPK1 to phosphorylate only 

GAP45. A system or experiment that allows monitoring of the specific effect of 

CDPK1 inhibitor on GAP45 phosphorylation is needed although it might be 

impossible at this time.  
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Figure 6.1: The development and location of the IMC interacting protein GFP- 

GAP45 during schizogony. (A) The punctate structure of GFP-GAP45 starts to 

develop as early as 33 hrs post invasion (i). The development from punctate to ring-

like structure was seen as the nuclei replicate (around 4 to 8 nucleus) at ~36 hours 

post invasion (ii). GFP-GAP45 protein partially surrounds the replicated nucleus 

which is also representing the formation of the new merozoites pellicles (~39 hours 

(B) 

 

(A) 
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post invasion) (iii). At the end of schizogony, ~42 hours post invasion, GFP-GAP45 

has completely encapsulated individual merozoites (iv). Enlargement of distinct 

structures is marked (white square) and shown in inset (~2X magnification). Labels, 

green: GFP tagged GAP45; red: rhoptries; blue: nucleus; pink: plasma membrane; 

brown: residual body/food vacuole. (B) The model for the Plasmodium GAP45 

protein orientation as discussed in this study. The full length GFP-tagged GAP45 

(FL-GAP45) is associated with the IMC and parasite plasma membrane (PM) via the 

C-terminus and N-terminus respectively. Without the large proportion of its C-

terminus (20-204 amino acids) (N-GAP45), the protein mislocalises to the parasite 

PM. Without the N-terminal region (1-29 amino acids) (C-GAP45), the protein was 

associated with the IMC and still able to recruit the other motor complex protein 

such as MyoA and MTIP. Scale bar is 2 µm. 
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Figure 6.2: GAP45 was highly phosphorylated in merozoite blood stage. (A) The 

immunoprecipation of GFP-tagged GAP45 in merozoites.  The purified schizont was 

left to rupture prior to merozoite isolation. The merozoite fraction was extracted in 

1% NP40 and subjected to co-immunoprecipitation by GFP-Trap®. The GFP-tagged 

GAP45 (FL-GAP45) (GFP IP) appears to interact with other motor complex protein 

such as MyoA, MTIP and GAP50 in both schizont (GFP IP, lane C) and free 

(A) 

(B) 
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merozoites stage (GFP IP, lane b). The native GAP45 protein band expressed in 

GFP-tagged GAP45 transfected parasite (lysate, lane b) appears as a single smudge 

and higher in molecular weight (similar to native GAP45 in 3D7 untransfected 

parasite, lysate lane a) as compared to its schizont stage which exists as a doublet 

that corresponded to unphosphorylated and phosphorylated protein bands (lysate, 

lane c). However, the GFP-tagged GAP45 (FL-GAP45) protein band doesn’t show 

any difference in molecular weight between schizont and free merozoite parasites. 

(B) The effect of phosphatase treatment on GAP45 protein in free merozoites. The 

purified merozoites were extracted and treated with alkaline phosphatase. Both 

native GAP45 expressed in untransfected parasites and GFP-tagged GAP45 (FL-

GAP45) transfected parasites have decreased molecular weight upon phosphatase 

treatment. This effect can be prevented by including a phosphatase inhibitor. The FL-

GAP45 protein band was also decreased in its molecular weight after being treated 

with phosphatase. In contrast, the decrease in molecular weight of this protein did not 

happen upon phosphatase treatment with the addition of phosphatase inhibitor. These 

results suggest the GAP45 protein is highly phosphorylated in merozoite stage 

parasites. In the protein extract from free merozoites, the GAP45 proteins were also 

detected at higher molecular weight and appeared as a protein ladder between ~60 

kDa to ~100 kDa. The GAP45 protein ladder was detergent resistant and could not 

be dissociated by urea, a powerful protein denaturant (unpublished data). It is 

possible that some of this GAP45 ladder is hyperphosphorylated as it was shown to 

be affected by phosphatase treatment (this figure).  Another possibility is that the 

GAP45 protein may undergo ubiquitination allowing interaction with a ubiquitin 

complex prior to digestion by proteasomes. GAP45 protein ladders were detected by 

a ubiquitin-specific antibody (unpublished data) in western blotting analysis of the 

GAP45 immunoprecipitation product. This process possibly occurs in free 

merozoites where disassembly of the motor complex proteins might become active.  

However, the GAP45 protein ladder was not obviously detected by the GFP antibody 

binding to GFP-tagged GAP45. It could be that the hyperphosphorylated or 

ubiquitinated GFP-tagged GAP45 might produce higher molecular mass protein 

ladder products that could not be resolved by 10% SDS-PAGE. 
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 Appendix A: In vitro CDPK1 phosphorylation of recombinant PfGAP45 and its variants at 30
o
C, 10 minutes using 100 nM 

CDPK1. 
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Appendix B: Dual antibody immunofluorescence of young (i) and mature (ii) 

schizonts using anti-GAP45 and anti-GFP antibodies. In young schizonts, the signal 

from GFP and GAP45 coincides perfectly for FL-GAP45 and C-GAP45 proteins, but 

not for N-GAP45. In mature schizonts, the staining of all of the GAP45 variants 

localises to the periphery of merozoites, but it is clear that for N-GAP45 there are 

many areas where this does not coincide with endogenous GAP45. For FL-GAP45 

and C-GAP45 proteins, the colocalisation is exact. Scale bar is 2 µm. 
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Appendix C: The localisation of GFP-tagged GAP45 variants at early 

schizont stage after high resolution live fluorescent imaging analysis with Z-stack 

and deconvolution processing. 
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Appendix D: The FL-GAP45 (FL) and C-GAP45 (C) co-precipitated other 

motor complex proteins such as MTIP, GAP50 and MyoA. The N-GAP45 (N) was 

unable to co-precipitate other motor complex protein such as MyoA, MTIP and 

GAP50. The GFP-GAP45 variant containing both S89A and S103A (D4) 

substitutions was not affecting the integrity of motor complex proteins.  
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Appendix E: Western blotting showing that the unknown phosphoprotein 2 was not a breakdown product of GFP-GAP45, as 

 both anti-GFP and GAP45 antibodies were not reacted with a protein of this size. 
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Appendix F: Protein profile of GFP IP products of GFP-GAP45 showing the 

location of unknown phosphoprotein 1 (probably ALV6 ?) and 2 (probably GAP40 

?) and other motor complex proteins such as MyoA, GFP-GAP45, GAP50 and 

MTIP.   
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Appendix G: A scientific paper related to this thesis has been published by 

the author. 
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