
Big Data Cluster Analysis and its
Applications

Punit Rathore

Submitted in partial fulfilment of the requirements of the degree of

Doctor of Philosophy

Department of Electrical and Electronic Engineering
THE UNIVERSITY OF MELBOURNE

August 2018

Copyright © 2018 Punit Rathore

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint,
microfilm or any other means without written permission from the author.

Abstract

The increasing prevalence of Internet of things (IoT) technologies, smartphones, and social

media services generates a huge amount of data, popularly known as ’big data’. Extracting useful

information from big data is essential for many businesses and applications for providing better

services and increasing their profits. For example, smart city solutions aim to use this wealth of

data for formulating effective policies to solve the problems faced by citizens. These voluminous

data are usually unlabeled, therefore, scalable and efficient unsupervised algorithms are required

to manage and extract actionable information from big data.

Cluster analysis is a useful unsupervised approach to discover the underlying groups and use-

ful patterns in the data. Cluster Analysis for any data consists of three problems, (P1) cluster

assessment, which asks “Do the data have clusters? If yes, how many?"; (P2) Clustering i.e., par-

titioning the data into clusters, and (P3) cluster validity, which asks “Are the clusters found useful?

Is there a better one we did not find?" Traditional cluster analysis algorithms are not suitable for

big data owing to its volume, variety, and velocity property.

This thesis developed a suite of novel scalable algorithms to solve each of the three problems of

cluster analysis, namely, cluster assessment, clustering, and cluster validity, for big data, that may

be high-dimensional, anomalous and streaming. For demonstration, a novel scalable framework

for predicting large-scale taxi trajectories is presented as a real application of big data clustering.

Our first contribution addresses the high-dimensionality and scalability issues for soft clus-

tering methods. Specifically, we developed a simple and computationally efficient framework for

high-dimensional data clustering: CAFCM, which employs fuzzy c-means clustering on an en-

semble of random projections to obtain multiple fuzzy clustering partitions, and then cumulatively

aggregates them based on their quality to get a final output partition. The CAFCM framework

scales linearly in the number of samples in the data and does not require any prior knowledge of

iii

the number of clusters, which makes it an attractive clustering approach for big datasets.

Our second contribution solves the cluster tendency assessment and clustering problem for

voluminous, high-dimensional datasets. We developed a fast cluster tendency assessment and sub-

sequent clustering algorithm: FensiVAT, which integrates an intelligent sampling scheme, called

Maximin Random Sampling (MMRS), and a new random projection (RP)-based ensemble method

with a visual assessment of cluster tendency (VAT) method, in an efficient manner. The reordered

dissimilarity image (RDI) (aka cluster heat map) obtained in FensiVAT suggests the number of

clusters in data. The FensiVAT is more effective than the existing big data clustering techniques,

both in terms of CPU-time and cluster quality.

Our third contribution deals with the cluster validity problem for big data. Notably, we pre-

sented six novel approximation algorithms including two incremental methods to compute Dunn’s

cluster validity index for big data. Four methods used variations of the MMRS sampling and two

are based on unsupervised training of one class support vector machines. All six methods for es-

timation of Dunn’s index (DI) are linear in the number of samples. Computing approximations to

DI with MMRS methods is both tractable and accurate.

After dealing with big static data, our next contribution focused on detecting evolving structure

in high-velocity, streaming data. Existing VAT-based algorithms for streaming data, inc-VAT/ inc-

iVAT and dec-VAT/dec-iVAT, are impractical for high-velocity data streams. We developed a novel

algorithm, inc-siVAT, for incremental and time efficient visualization of evolving cluster structures

in high-velocity, data streams. The inc-siVAT extracts an initial smart (MMRS) sample and its RDI

image, then it incrementally updates them on the fly to track changes in cluster structure after each

chunk. The new algorithm is demonstrated for visualizing evolving cluster structures and detecting

anomalies in dynamic streams of four big datasets, including a real IoT data.

Finally, we demonstrate our big data clustering framework for a real-life smart city application.

Based on a big data clustering method and Markov models, we developed a scalable framework

for vehicle trajectory prediction which is suitable for a large number of overlapping trajectories in

a dense road network, typically for major cities around the world. The short-term and long-term

prediction performance of our framework on two real-life, large-scale taxi trajectory data from the

Beijing and Singapore Road networks is found to be better than two current methods, in terms of

prediction accuracy and distance error.

iv

v

This page intentionally left blank.

Declaration

This is to certify that

1. the thesis comprises only my original work towards the PhD,

2. due acknowledgement has been made in the text to all other material used,

3. the thesis is less than 100,000 words in length, exclusive of tables, maps, bibliographies and

appendices.

Punit Rathore, August 2018

vii

This page intentionally left blank.

Preface

All the work in this thesis was conducted by the author of this thesis including theoretical anal-

ysis, algorithm development, experiments, and manuscript writing. However, the author benefited

from his supervisors through group meeting sessions in which they provided technical comments

and guidance.

The thesis has not been submitted for other qualifications. All the work towards the thesis was

carried out after the enrolment in the degree. No third party editorial assistance was provided in

the preparation of the thesis. We acknowledge the support from the Australian Research Council

(ARC) Linkage Project grant (LP120100529), the ARC Linkage Infrastructure, Equipment and

Facilities scheme (LIEF) grant (LF120100129).

The author’s total publications during the Ph.D. candidature are listed in two sections. The first

section lists the publications directly related to this thesis i.e., these publications contribute towards

this thesis.The second section lists the other publications produced during the Ph.D. candidature.

However, they are not included in this thesis contributions in order to maintain focus on big data.

Overall, I have a total of 10 publications which include 7 (1 under review and 1 to be submitted

soon) journal papers and 3 conference papers. I got one best paper award at the IEEE 4th World

Forum on Internet of Things (WF-IoT).

Publications directly related to thesis

Chapters 3 to 7 are the contributory chapters of the thesis and are based on the following

publications. All the papers produced from this thesis are my original work. In all the publica-

tions, my contributions are: literature survey, theoretical analysis, problem formulation, algorithm

development, programming in MATLAB and Python, data preparation and pre-processing, per-

ix

forming experiments, results analysis, and manuscript writing. The contributions of co-authors

Dr. Dheeraj Kumar, Dr. Sutharshan Rajasegarar and Prof. James C. Bezdek are: Providing techni-

cal comments and guidance, discussion on result analysis, manuscript proofreading, and providing

critical feedbacks on manuscript writing. Other co-authors, Dr. Sarah M. Erfani, Zahra Ghafoori,

Prof. Christopher Leckie, and my supervisor Prof. Marimuthu Palaniswami provided helpful

guidance, suggestions, and proofreading to improve manuscript quality.

Journal Papers

1. Rathore P., Bezdek J. C., Erfani S. M., Rajasegarar S., Palaniswami M. “Ensemble Fuzzy

Clustering using Cumulative Aggregation on Random Projections" in IEEE Transactions on

Fuzzy Systems (IEEE T-FS), 26(3): 1510-1524, 2018

This article develops a simple and computationally efficient framework, cumulative agree-

ment based fuzzy c-mean (CAFCM), for high-dimensional data clustering. The CAFCM

framework employs fuzzy c-means clustering on an ensemble of random projections to

obtain multiple fuzzy clustering partitions, and then cumulatively aggregates them based

on their quality to get a consensus bsest final partition. Experimental results on various

big, high-dimensional datasets demonstrate that CAFCM outperforms three state-of the-art

methods in terms of accuracy and space-time complexity. CAFCM runs one to two orders of

magnitude faster than other state-of-the-arts algorithms. Chapter 3 is based on this paper.

2. Rathore P., Kumar D., Bezdek J. C., Rajasegarar S., Palaniswami M. “A Rapid Hybrid

Clustering Algorithm for Large Volumes of High-dimensional Data" in IEEE Transactions

on Knowledge and Data Engineering (IEEE T-KDE), 2018

Existing clustering algorithms encounter serious problems related to computational com-

plexities and/or cluster quality for datasets that are jointly large in the number of samples

and the number of dimensions. This article presents a new relative of the visual assessment

of tendency (VAT), which is popular method for cluster tendency assessment and subse-

quent clustering. To simultaneously overcome both the ‘curse of dimensionality’ problem

due to high dimensions and scalability problems due to large sample size, this article devel-

ops a novel, hybrid ensemble-based clustering framework, FensiVAT, by leveraging a fast

data-space reduction and an intelligent sampling strategy. FensiVAT also provides visual

x

evidence that is used to estimate the number of clusters (cluster tendency assessment) in the

data. FensiVAT was compared with nine state-of-the-art approaches which are popular for

large sample size and/or high-dimensional data clustering. Experimental results suggest that

FensiVAT, which can cluster large volumes of high-dimensional datasets in a few seconds,

is the fastest and most accurate method of the ones tested. Chapter 4 is linked with this

paper.

3. Rathore P., Ghafoori Z., Bezdek J. C., Palaniswami M., Leckie C.“Approximating Dunn’s

Cluster Validity Indices for Partitions of Big Data" in IEEE Transactions on Cybernetics

(IEEE T-CYB), 2017 (DOI: 10.1109/TCYB.2018.2806886)

Dunn’s internal cluster validity index assesses partition quality, however, it is infeasible for

big data due to O(N2) complexity. This article presents six novel methods, including two

incremental methods, for approximating Dunn’s index (DI) for big data. Four methods are

based on Maximin sampling, which identifies a skeleton of the full partition that contains

some boundary points in each cluster. Two additional methods are presented that estimate

boundary points associated with unsupervised training of one class support vector machines.

Numerical examples compare approximations to DI based on all six methods. Experiments

on several big datasets show that a MMRS based incremental method offered an average

speedup of about 1000 : 1, and produced average values that matched DI values up to±0.01

when computed on the full dataset. Chapter 5 is based on this paper.

4. Rathore P., Kumar D., Bezdek J. C., Rajasegarar S., Palaniswami M. “A Scalable Frame-

work of Trajectory Prediction for Connected Vehicles". IEEE Transactions on Intelligent

Transport System (IEEE T-ITS) (under review)

This article develops a novel scalable framework, based on a new big data clustering method

and Markov models, for both short-term and long-term trajectory prediction (TP) which can

handle a large number of overlapping trajectories in a dense road network. The proposed

framework can also determine the number of clusters, which represent different movement

behaviours in trajectory data. We compare the proposed framework with a mixed Markov

model (MMM)-based scheme and NETSCAN-based TP method on two real-life, large-scale

taxi trajectory datasets from the Beijing and Singapore road networks. Experimental results

xi

show that our proposed approach outperforms the existing approaches in terms of both short-

and long-term prediction performances, based on prediction accuracy and distance error .

Chapter 7 is linked with this paper.

5. Rathore P., Kumar D., Bezdek J. C., Rajasegarar S., Palaniswami M. “Detecting Evolving

Cluster Structures and Anomalies in High-Velocity, Big Streaming Data", to be submitted

in ACM Transactions on Knowledge Discovery from Data (ACM TKDD) (status: final draft

in preparation)

The widespread use of Internet of Things (IoT) technologies, smartphones, and social media

services generate huge amounts of data streams at high velocity. Automatic interpretation

of high-velocity streams is required for timely detection of interesting events that usually

emerge in the form of clusters. This article proposes a new relative of the improved VAT

(iVAT) model for high velocity streaming data. Existing incremental VAT algorithms, inc-

VAT/inc-iVAT and dec-VAT/dec-iVAT, are not suitable for high-velocity streams. To address

this problem, this article proposes an incremental method, inc-siVAT, which deals with the

large streaming data in chunks. It first extracts a small size smart sample using the MMRS

sampling scheme, then incrementally updates the smart sample points on the fly, using a

new incremental MMRS algorithm, to reflect changes in data streams after each chunk, and

finally, produces an incrementally built iVAT image of the updated smart sample, using inc-

VAT/inc-iVAT and dec-VAT/dec-iVAT algorithms. The sequence of these images can be

used to detect evolving cluster structure and anomalies in streaming data. Our evaluation on

dynamic streams of several big dataserts demonstrates the algorithm’s ability to successfully

identify anomalies and visualize changing cluster structure in high-velocity big, streaming

data. Chapter 6 is based on this paper.

Conference Papers

1. Rathore P., Kumar D., Bezdek J. C., Rajasegarar S., Palaniswami M. “Approximate Clus-

ter Heat maps for Big Data". 24th IEEE International Conference on Pattern Recognition

(ICPR) at Beijing, China, 2018.

A scalable version of iVAT called siVAT approximates iVAT images, but siVAT can be com-

putationally expensive for big datasets. This article develops a new intelligent sampling

xii

scheme, MMRS+, that in turn, introduces a modified version of siVAT, siVAT+, which ap-

proximates cluster heat maps for large volumes of high dimensional data much more rapidly

than siVAT. We show that the samples obtained using MMRS+ retain almost the same ge-

ometry as the MMRS does. Experimental results suggest that images obtained using siVAT+

provide visual evidence about potential cluster structure in all datasets, including two un-

labeled datasets, in significantly less time (8− 55 times faster) than siVAT with no loss of

accuracy or visual acuity.

2. Rathore P., Ghafoori Z., Bezdek J. C., Palaniswami M., Leckie C. “Estimating General-

ized Dunn’s Cluster Validity Indices for Big Data", IEEE Conference on System, Man, and

Cybernetics (IEEE-SMC) at Miyazaki, Japan, 2018. (Best student paper award - Finalist)

Original Dunn’s index (DI) is sensitive to anomalies due to the way distances are used in

its computation. Generalized Dunn’s indices (GDIs) overcome this drawback using various

different distance measures. However, similar to DI, GDIs also have quadratic time com-

plexity making them infeasible for big data. This article extended our previous work on

Dunn’s index for approximating GDIs. This article also illustrates that how our incremental

approach from previous work approximates DI values with an optimal number of points,

and shows that DI value monotonically decreases with the addition of new data point. The

proposed algorithms are compared with a support vector machine based boundary extrac-

tion method and a random-sampling based estimation method. Experiments on several big

datasets show that computing approximations to (three) GDIs with the MM skeleton is both

computationally feasible and reliably accurate.

Other Publications

Following publications were also produced during the Ph.D. candidature. However, these

publications do not contribute towards this thesis.

Journal Papers

1. Rathore P., Rao A., Rajasegarar S., Vanz E., Gubbi J., Palaniswami M. “Real-time Urban

Micro-climate analysis using Internet of Things", in IEEE Internet of Things Journal (IEEE

xiii

IoT), 5(2): 500-511, 2018

2. Rathore P., Kumar D., Rajasegarar S., Palaniswami M. “Maximum Entropy based Auto

Drift Correction using High and Low Precision Sensors", ACM Transactions of Sensors and

Networks (ACM TOSN), 13(3), 2017

Conference Papers

1. Rathore P., Kumar D., Rajasegarar S., Palaniswami M. “Bayesian Maximum Entropy and

Interacting Multiple Model based Auto Drift Correction in an IoT environment" in IEEE

4th World Forum on Internet of Things (WF-IoT) at Singapore 2018. (Best Paper Award)

xiv

Acknowledgements

As I am about to complete this thesis, I am already getting mixed feelings. Although I am

happy about finishing my Ph.D. and entering a new stage of my life, I have already started missing

the people, the campus, this lovely city Melbourne and everything here. There were hurdles and

difficulties during these four years of my Ph.D., but I have been lucky that helping hands were

always around. Each day of these four years has been a great opportunity for learning, thanks to

my advisors, colleagues, friends, and family.

Firstly, I would like to express my sincere gratitude to my advisor Prof. Marimuthu Palaniswami

for his patience, guidance, motivation, support, and immense knowledge. He is not only an ex-

cellent mentor, teacher, and researcher, but most importantly, he is a kind person in all spheres of

life. I enjoyed freedom both in thoughts and research direction while working under his aegis. It

was always enjoyable to chat with him in the kitchen or corridor. Indeed, it has been a rewarding

experience to work with him, which I would cherish forever.

I also want to thank Prof. Jim Bezdek, who gave me many helpful suggestions for work

and life. I am not only amazed by his strong academic expertise and life experience, but also

his passion for research and his professional research attitude. I would also like to thank Dr.

Sutharshan Rajasegarar, Dr. Dheeraj Kumar, and Dr. Aravinda Rao, not only for their insightful

comments and helpful guidance but also for the hard question which incented me to widen my

research from various perspectives. I am privileged to have worked with them. Dr. Jayavardhana

Gubbi was very helpful when I was working with him during the first year of my Ph.D.

I would like to thank all my ISSNIP labmates and lovely friends: Nandakishor, Shitanshu,

Bigi, Motin, William, Radha, Emerson, Bapin, Sharmistha, Ronit, and Anthony. You all made my

Ph.D. journey memorable, colorful and delightful. There are many others that I am grateful to but

cannot thank in this limited space. Last but not the least, I would like to thank my family. I am

xv

deeply indebted to my wife Nitisha for her love, motivation, patience, and support that have been

an enormous factor in successful completion of my Ph.D. My parents, my brother, my sister, and

my parents-in-law have been very supportive throughout the past four years. I thank them for their

constant encouragement and unconditional support. I would like to specially mention my father

who always encouraged me to pursue higher studies. He has been my role model and inspiration.

I can always count on him to inspire me and uplift my spirits.

xvi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement and Challenges . 3
1.3 Research Contributions . 8
1.4 Thesis Outline . 12

2 Background and Literature Review 15
2.1 Cluster analysis . 15
2.2 Cluster tendency assessment . 16

2.2.1 Statistical methods . 18
2.2.2 Visual methods . 19
2.2.3 Cluster tendency assessment for big data 21
2.2.4 Cluster tendency assessment for streaming data 26

2.3 Clustering . 31
2.3.1 Partitioning-based methods . 32
2.3.2 Hierarchical methods . 34
2.3.3 Density-based methods . 34
2.3.4 Distribution-based methods . 36
2.3.5 Clustering big data . 36

2.4 Cluster Validation . 51
2.4.1 Internal CVIs . 52
2.4.2 External CVIs . 55
2.4.3 Cluster validity for big data . 59

2.5 Big data clustering applications . 59
2.5.1 Big data clustering for smart city applications 60

2.6 Summary . 64

3 Clustering High-Dimensional Data using Cumulative Aggregation on Random Pro-
jections 67
3.1 Introduction . 67
3.2 Related Work . 68

3.2.1 Random Projection Based Ensemble Approaches 69
3.2.2 Agreement Based Combination Schemes 70

3.3 Agreement based Aggregation Model . 71
3.4 Quality of Consensus Partitions . 74

xvii

3.5 Cumulative Agreement FCM (CAFCM) Algorithm 75
3.6 Experiments . 79

3.6.1 Datasets and Parameter Settings . 80
3.6.2 Evaluation Criteria . 82
3.6.3 Selection of Random Matrix T for Downspace Data (Y) Generation . . . 84
3.6.4 Internal CVIs Validation for Best ’cr’ 85
3.6.5 The Internal/External (I/E) Agreement Test 86
3.6.6 Effect of Ordering Sequence of Partitions on Output Partition 88
3.6.7 Comparison of Different Cluster Ensemble Methods 89

3.7 Summary . 94

4 Cluster Tendency Assessment and Subsequent Clustering on Big, High-Dimensional
Data 97
4.1 Introduction . 97
4.2 Related Work . 98
4.3 FensiVAT algorithm . 100
4.4 Time Complexity . 106
4.5 Experiments . 106

4.5.1 Datasets and Parameter Settings . 107
4.5.2 Evaluation Criteria . 109
4.5.3 Cluster Distribution using Various Sampling Schemes 110
4.5.4 Single Random Projection vs. Ensemble RP for iVAT Image 112
4.5.5 Cluster Assessment . 113
4.5.6 Synthetic Dataset for Different Numbers of RPs in Ensemble Step 116
4.5.7 Effect of Different Downspace Dimesions, q 117
4.5.8 Comparison of Different Clustering Methods 118

4.6 Summary . 120

5 Approximating Dunn’s Cluster Validity Indices for Big Data 121
5.1 Introduction . 121
5.2 Related Work . 122
5.3 Dunn’s Index (DI) . 123
5.4 The Maximin Random Sampling (MMRS) . 128
5.5 Approximating Dunn’s index . 129

5.5.1 The MMRS algorithms . 129
5.5.2 Boundary Vector algorithms . 135

5.6 Experiments . 137
5.6.1 Computation Protocols . 137
5.6.2 Datasets . 138
5.6.3 Experiments . 138

5.7 Computational Complexity . 147
5.8 Summary . 147

xviii

6 Cluster Tendency Assessment and Anomaly Detection in High-Velocity Streaming
Data 149
6.1 Introduction . 149
6.2 Related Work . 150
6.3 Proposed Algorithm . 153
6.4 Experiments . 160

6.4.1 Cluster Evolution Analysis in Big, Streaming Data 160
6.4.2 Time Comparison . 166
6.4.3 Anomaly Detection . 167

6.5 Summary . 170

7 A Scalable Framework for Trajectory Prediction 171
7.1 Introduction . 171
7.2 Related Work . 173

7.2.1 Rule-based learning based approaches 173
7.2.2 Markov model-based approaches . 174
7.2.3 Clustering based approaches . 175

7.3 Preliminaries . 177
7.3.1 Road Network and Trajectories . 177
7.3.2 Distance Measure (trajDTW) . 178
7.3.3 Non-directional trajDTW . 179
7.3.4 Markov Chain Model . 179

7.4 Proposed Framework . 180
7.4.1 Training Model . 180
7.4.2 Prediction Model . 187

7.5 Time Complexity . 188
7.6 Experiments . 188

7.6.1 Datasets . 188
7.6.2 Evaluation Metrics . 191
7.6.3 Comparison Methods . 192
7.6.4 Computation Protocols . 193
7.6.5 Comparison of MMM, NETSCAN, and Traj-clusiVAT for Long-term Pre-

dictions . 194
7.6.6 Next location predictions . 196
7.6.7 Effect of latest locations of partial trajectory for prediction 197
7.6.8 Effect of Cut threshold α . 198
7.6.9 Time performance analysis . 199

7.7 Summary . 200

8 Conclusions 201
8.1 Summary of Contributions . 201
8.2 Future Research Directions . 203

Bibliography 205

xix

This page intentionally left blank.

List of Figures

1.1 Thesis outline . 13

2.1 Cluster analysis techniques . 17
2.2 Data scatterplot, VAT, iVAT, and siVAT images for a small (top) and a big dataset

(bottom). 25
2.3 Three ways to make big data look small [41] . 37
2.4 Processing naive or sample chunks of big data [41] 38

3.1 Four methods (including CAFCM (proposed)) of ensemble FCM clustering using
random projection . 72

3.2 VARIs values (in left column) and Aggregation time Tagg (in right column) for dif-
ferent downspace dimensions . 91

3.3 VARIs values (in left column) and Aggregation time Tagg (in right column) for dif-
ferent downspace dimensions . 92

3.4 KDD CUP Dataset: Aggregation time Tagg for different number of samples . . . 94

4.1 The FensiVAT architecture. 101
4.2 Histogram of data in the Forest Dataset. The MMRS and Near-MMRS parameters

are k
′
= 30, and n = 100 samples, and q = 5 (for Near-MMRS). 111

4.3 iVAT images obtained using single distance matrices (a-e) and ensemble distance
matrix (f). 112

4.4 ClusiVAT (a) and (c), and FensiVAT images (b) and (d) for GM1 and GM2. The
parameters are k′ = 9, n = 205 for GM1 and k′ = 12, n = 206 for GM2 dataset.
The downspace dimensions for FensiVAT are q = 20 for GM1 and q = 50 GM2. . 114

4.5 iVAT images of D′∗n,d for each of the datasets obtained by FensiVAT algorithm. . 115

5.1 Set distance and diameter with respect to d = dE 124
5.2 αMMRS and α{i}MMRS for the 2D XG dataset. 141
5.3 The Banana (two-dimensional) data: |XB|= 50,000 142
5.4 Boundaries and MMRS Skeletons for the 2D Banana data. 143
5.5 CPU times (log scale on y-axis) for six methods and seven datasets. 146
5.6 Termination: iMMRS and inMMRS . 146

6.1 The architecture of our proposed framework. 152
6.2 2D data scatterplots (first row) and (incrementally built) inc-iVAT (second row)

and inc-siVAT (last row) images of a big, streaming data X at Ncurr = 5000, 12500,
48000, 50000, 75000, and 100000 data points. 161

xxi

6.3 inc-siVAT images visualizing evolving clusters in KDD Cup’ 99 datastreams at
different time instant . 165

6.4 Time comparison of siVAT and inc-siVAT for high-dimensional synthetic and
KDD datasets. 167

6.5 h(curr)
n plot and inc-siVAT images showing normal and anomalous data points for

(a,d) MiniBoone; (b,e) US Census 1990l and (c,f) Heron Island Dataset 169

7.1 The architecture of our proposed framework. 180
7.2 A simple illustration of Traj-clusiVAT for trajectory clustering 187
7.3 Road networks used in our trajectory prediction experiments 189
7.4 Trajectory distribution of predicted trajectories based on their lengths. 191
7.5 Average prediction accuracy and distance error comparison by prediction steps . 194
7.6 Average DE vs latest locations of partial trajectory used to select best cluster in

the hybrid NPR step. 198
7.7 Effect of cut threshold α . 198
7.8 Training time comparison . 199

xxii

List of Tables

2.1 Clustering algorithms for big data . 48
2.2 The Contingency Table A to compare partition U and V 56

3.1 Time and space complexity of four FCM-based ensemble approaches 79
3.2 Properties of two synthetic datasets GM1 and GM2 80
3.3 The average VARIs and downspace data generation time for distribution (2.9) and (2.10) 85
3.4 The average (20 trials) of the best ’c’s from all internal CVIs (Vints) 86
3.5 Average Values (5 trials) of Kendall’s τ and (VUb) of internal CVIs against VARIs . 87
3.6 The effects of ordered versus random aggregation of ensemble partitions (tabu-

lated values are the 10 trial average of VARIs). 88
3.7 Average VARIs values and ensemble time Tagg (in s) for all approaches on the GM1

and GM2 datasets. 90
3.8 Average VARIs values and ensemble time Tagg (s) for different number of RPs (Q)

on the GM2 dataset. 92

4.1 Properties of real datasets . 108
4.2 Average (20 trials) chi-square values and run-time (seconds) for each sampling

scheme . 111
4.3 Average PA (%) values (20 trials) using single distance matrices, {Dd,i}Q=5

i=1 and
ensemble distance matrix Dn,d for VAT/iVAT in FensiVAT. 113

4.4 Average (20 trials) PA (%) values (with standard deviation) and run-time (in sec-
onds) of FensiVAT for different RPs Q in ensemble step 116

4.5 Average (20 trials) PA (%) values (with standard deviation) and run-time (in sec-
onds) of FensiVAT for different downspace dimensions, q. 117

4.6 Average PA (%) values (DI for US Census) and run-time (in seconds) for all the
approaches on all the datasets. 118

5.1 Seven datasets used for our experiments . 138
5.2 V11 values of αMMRS for different values of α 139
5.3 V11 values based on the QMS+ algorithm for different values of K. 140
5.4 V∗1 values (times) for α = α{i}= 0.005, for XG dataset 141
5.5 V∗1 values (times) for α = α{i}= 0.005, for FOREST dataset 141
5.6 Average (10 trials) approximate values of Dunn’s index V11 for six algorithms on

seven datasets. 144
5.7 Average (10 trials) CPU times (seconds) for six algorithms on seven datasets. . . 145

xxiii

6.1 The number of data points in the four main clusters of KDD Cup’99 dataset. . . . 164

7.1 Notations . 178
7.2 Training and test set description . 190
7.3 Long-term prediction: Comparison of MMM, NETSCAN and Traj-clusiVAT . . 196
7.4 Next location prediction: Comparison of MMM, NETSCAN and Traj-clusiVAT . 196
7.5 Prediction time in seconds for all three algorithms 199

xxiv

Chapter 1

Introduction

1.1 Motivation

The ubiquity of the Internet and personal computing technologies, especially mobile comput-

ing and social media, has resulted in digital data explosion. Everyday an abundant amount of

data is generated in the form of text, image, audio, video, time-series, and GPS logs, from various

sources such as Internet of things (IoT) devices, smartphones, social networks activities, emails,

and video-hosting services. Facebook alone logs over 25 terabytes (TB) of data per day [1]. It

is estimated that more than 200 million emails are exchanged every minute 1, and 300 hours of

videos are uploaded to Youtube 2 every minute [2]. Such data are termed as ’big data’ [3].

Big data analytics can extract meaningful information from the oceans of the data produced

by various sources [4]. Virtually every large business is interested in collecting large amounts

of data from its customers or underlying infrastructure, and mining it to generate useful infor-

mation in timely manner. This information helps businesses to provide better customer services

and increase their profitability. The New York Exchange gathers about 1 TB of trade information

during each trading session [2]. The real-time processing of this data can assist traders in making

important trade decisions. About 23% of available digital data are believed to contain meaning-

ful information that can be utilized by companies, government institutions, policy makers, and

individual users 3.

Big data with IoT technologies have also played an essential role in the feasibility of smart

city initiatives [5, 6]. Big data collected from smart city infrastructure and citizens through IoT

1http://mashable.com/2014/04/23/data-online-every-minute
2https://www.youtube.com/yt/press/statistics.html
3http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation

1

2 Introduction

technologies and social media services offer the potential for the city to obtain valuable insights,

that assist the city councils and administrators to plan and manage the city in a better way. Big

data analytics has also lead to the development of new applications and services like Microsoft’s

HealthVault 4 - a platform to gather, store, utilize and share the health information online for health

management.

Effective analysis of big data is a key factor for the success in many applications, businesses,

and services, including several smart city application domains such as health care, transportation,

finance, and energy sectors. The big data can be effectively utilized using suitable learning ap-

proaches, which can be supervised, semi-supervised, or unsupervised. Supervised approaches,

such as classification techniques, require labeled training data for learning. Supervised learning

techniques [7] finds its utility in many applications such as intrusion detection, spam detection, ma-

chine translation, sentiment analysis, and object recognition. Unfortunately, a significant amount

of big data available to us are unlabeled. Only about 3% of the potentially useful data on the web

is labeled. Moreover, obtaining the labels for massive amounts of data is extremely expensive

and time-consuming, making supervised learning difficult for most big data applications. Semi-

supervised approaches [8] alleviate the labeling problem by using a large pool of unlabeled data

with a small set of labeled data. However, it is expensive to obtain supervision in many appli-

cations, such as medical and stock market analysis, where high-level of expertise is required for

labeling. Unlike supervised and semi-supervised approaches, unsupervised methods do not require

labeled data, thereby, avoiding the labeling cost and allowing one to leverage big data with mini-

mum prior knowledge. Therefore, many applications demand sophisticated unsupervised tools to

analyze big data for their better understanding.

Cluster analysis or clustering is the most common unsupervised approach to discover the un-

derlying groups and patterns in the data. In clustering, data are partitioned into several subsets

of similar objects without any prior knowledge. Clustering provides a summarized view of data

in the form of patterns, and with the domain-specific information, these patterns may provide

a better understanding of big data. Cluster analysis is an essential tool for knowledge discov-

ery [9], outlier/anomaly detection [10–12], indexing [13], and compression [14]. It has also been

used in many applications such as web search [15], social network analysis [16], information re-

4https://www.healthvault.com/us/en/overview

1.2 Problem Statement and Challenges 3

trieval [17], bioinformatics [18], gene expression analysis [19], image processing [20], market

analysis [21, 22] and recommendation systems [23]. Clustering also finds it utility in several

smart city applications to gain valuable insights from raw data obtained through various sensing

devices. For example, the work in [24, 25] employ k-means clustering on weather station data to

analyze urban heat island (UHI) effect and understand the characteristics of different surround-

ing environments, which assist city councils in urban planning. For smart parking applications,

the studies in [26–28] apply clustering to urban car parking data to automatically obtain useful

trends for better utilization of available parking facilities. Clustering methods have also been em-

ployed in intelligent transportation systems (ITS) to extract urban mobility patterns [29, 30] from

pedestrians and vehicles movement data for better traffic management. For smart grid applica-

tions [31–33], clustering has been applied to time-series energy data from smart meters to identify

energy usage profiles of residential, commercial, and industrial consumers. There are also several

applications of clustering in other smart city contexts, such as in smart health care [34–36], smart

agriculture [37, 38], and smart waste management [39, 40].

While cluster analysis is useful for many applications and services, it is a challenging task to

analyze big data that are mostly noisy, streaming, high-dimensional, and heterogeneous. There-

fore, sophisticated and efficient algorithms are required to manage and extract actionable infor-

mation from big data. There are several fundamental questions to be answered when performing

cluster analysis. We explain each of these questions of cluster analysis, followed by their chal-

lenges and limitations of existing algorithms for big data, in the next section.

1.2 Problem Statement and Challenges

Consider a dataset X consisting of N objects is partitioned into k ∈ {1,2, ..,n} subsets (clus-

ters), and each object in X is defined by a p-dimensional feature vector. Cluster analysis in X

consists of three problems [41]: (P1) pre-clustering assessment of tendency, which asks the

question "Do the data have clusters? If yes, how many (k)?"; (P2) partitioning the data –

finding the k clusters; and (P3) post-clustering cluster validity, which asks "Are the k clusters

found useful?". Below, we explain each of the three problems of cluster analysis.

1. Clustering tendency assessment: A natural question that comes before applying any clus-

4 Introduction

tering method on the dataset is- "Does the data contain any inherent grouping structure or

cluster?" A major problem in unsupervised machine learning, specifically in cluster analy-

sis, is that all clustering methods will partition the data into groups even if no "actual" cluster

exists in the data. Therefore, prior to clustering or as a pre-clustering step, it is important to

determine whether the data contains meaningful clusters (i.e., non-random structure) or not.

If yes, then how many clusters, k? This problem is defined as an assessment of clustering

tendency or clusterability.

There are mainly two types of approaches to evaluate the clustering tendency : (i) statistical

methods, that measure the probability that a given dataset is generated by a uniform data

distribution to test the spatial randomness of the data. A popular statistical approach is

Hopkins statistic [42, 43]; and (ii) visual methods, which visually inspect the clustering

tendency of the dataset. These methods reorder the dissimilarity matrix of the input data,

and visually estimate the number of clusters that appear as the dark blocks along the diagonal

of reordered dissimilarity image (RDI). Some popular methods in this category are visual

assessment of cluster tendency (VAT) [44], improved VAT (iVAT) [45, 46] and their scalable

versions scalable VAT (sVAT) and scalable iVAT (siVAT) [47].

2. Clustering: Once the number of clusters (k) in the data is known, the next task is to par-

tition the data into k clusters using a suitable clustering algorithm. Numerous clustering

methods have been proposed in the literature, which can be broadly classified into three cat-

egories: partitional, hierarchical, distribution, and density-based methods. The partitional

algorithms such as k-means, fuzzy c-means (FCM) attempt to determine partitions that opti-

mize a given objective function. In hierarchical clustering algorithms such as single-linkage

(SL), complete-link (CL), and minimum variance, data are organized into hierarchical clus-

ters based on the proximity between pairs of objects. Distribution-based approaches such as

Expectation Maximization (EM) with Gaussian Mixture models (GMMs) partition the data

based on the distribution of the data points. Density-based clustering such as DBSCAN, OP-

TICS detects regions (neighborhoods) of high density that are separated from one another

by regions of low density.

3. Cluster validity: Clustering algorithm with different cost functions provide different clus-

1.2 Problem Statement and Challenges 5

tering results, and there is no single best choice of clustering algorithm and cost function

for all possible datasets. The last important problem in cluster analysis is the evaluation of

clustering results to find the partitioning that best represents the structure of the dataset. It

also asks the question whether the k clusters found useful or not? Is there any better partition

that clustering algorithm did not find? This process of evaluating the clustering results in

a post-clustering step is commonly known as cluster validity. One approach of finding the

best partition is through the use of scaler measures of partition quality. These measures are

known as cluster validity indices (CVIs). The most important distinction for such measures

is whether the index is internal or external. Internal CVIs use only data and/or algorithmic

outputs, whereas, external CVIs require additional "outside" information such as a ground

truth partition that labels subsets in the data. Some of internal CVI examples are Dunn’s

index (DI) [48], David-Bouldin index (DBI) [49], Xie-Beni (XB) index [50] and Silhouette

coefficient [51] which use the output partition from clustering and the input dataset itself.

Examples of external CVIs include Rand index(RI) [52], Adjusted Rand index (ARI) [53],

and Purity [54].

Challenges

Despite its usefulness for many applications, big data cluster analysis is a challenging task due

to the following properties of big data:

1. Volume: The two most important ways a dataset can be big are: (1) it has a very large num-

ber (N) of instances, and (2) each instance has many (p) features, i.e. it is high-dimensional

data. In this era of big data, we witness tremendous growth of data, not only in the number

of observations but also in the number of features, collected for each data object. In many

applications such as biomedical imaging, sequencing, and time series matching, the dataset

may consist of millions of instances in hundreds to thousands of dimensions [55]. The vol-

ume property of big data refers to the ability of a clustering algorithm to deal with large

volumes of high-dimensional data.

To deal with voluminous data, clustering algorithms should be scalable and efficient. This

means that their complexity should be nearly linear or sub-linear with respect to the sample

6 Introduction

size. Although the time complexity of clustering algorithms is related to the number of

instances in the dataset, the dimensionality of the dataset is another critical aspect. Real-

world datasets in the higher dimensional feature space are usually highly sparse, which

makes it difficult to find statistically meaningful structures from such redundant and sparse

data [56] through traditional clustering algorithms. Also, noisy and irrelevant attributes in

the data can worsen the performance of a clustering algorithm.

A variety of clustering algorithms [41, 56–60] have been developed (discussed in Chapter 2)

for a dataset that has either (1) large N but small p, or (2) small N but large p, but most clus-

tering algorithms are impractical for handling datasets that are large jointly in N and p [61].

Most existing clustering algorithms encounter serious problems related to computational

and space complexities and/or cluster quality for big datasets.

Similar to clustering, the implementation of clustering tendency assessment algorithms and

cluster validity indices (CVIs) is often very computationally expensive for big datasets [62].

The scalable versions of VAT/iVAT algorithm such as sVAT [47], siVAT, and clusiVAT [63]

are adequate for large sample size datasets, however, they still suffer from substantial com-

putation time when the data is large in the number of dimensions. For cluster validity, inter-

nal CVIs that require both the input data and the output partition such as DI [48], XB [50],

and Silhouette [51] have quadratic or higher computational complexity, which restricts their

use for small to medium size datasets. There has been a considerable amount of work done

to address the problem of clustering for big data. However, there is very little work available

in the literature to address cluster tendency assessment and cluster validity problem for big

data.

2. Velocity: Several processes generate large amounts of data which grow at an unlimited rate.

These data processes are referred to as data streams. New data points are added to an already

voluminous dataset at a fast rate, so it has to be dealt within a reasonable time. The velocity

property refers to the ability of a clustering algorithm to handle high-velocity data streams

in a timely manner.

Extracting knowledge as a set of patterns in a continuous stream of data is a challenging

task, due to the constraints imposed by the nature of data streams. First, due to memory

1.2 Problem Statement and Challenges 7

constraints, it is not feasible to store big data streams for a longer period. Second, patterns

continuously appear and/or disappear in streaming data. Therefore, data must be processed

faster before a new data stream is generated otherwise trends may change. These constraints

on memory and computational complexity make cluster analysis a challenging task for data

streams.

A suitable clustering approach should be able to update the existing result by accommodat-

ing new information without running the experiment on entire data again. Several clustering

algorithms [64–68] have been developed to handle data streams. These approaches are usu-

ally incremental, which continuously update existing result either with each new data point

or with a small chunk (of fix size) of data points. The inability of these approaches to

determine the number of evolving clusters (patterns might change with new data points)

dynamically makes them ineffective for unlabeled data (for which k is mostly unknown).

The incremental and decremental VAT algorithms for streaming data, inc-VAT/dec-VAT and

inc-iVAT/dec-iVAT [69], provide a point by point visualization of evolving cluster structures

in streaming data using a sliding window based approach. However, hardware and software

constraints limit them to a maximum window size of about N ∼ 5,000 inputs, due to sys-

tem limitations to storing and visualize reordered dissimilarity matrix. When this limit is

reached, point by point deletion and insertion maintains this fixed window size. Thus, If

N = 100,000, the user will have a cluster heat map (RDI) of only the last window at the

end of the process. The salient point is that the history of cluster evolution is not available.

At present, to our knowledge, there is no technique on offer for visualization of evolving

cluster structures in high-velocity, data streams.

3. Variety: The variety property refers to an ability of a clustering algorithm to handle het-

erogeneous and unstructured data. As technology moves into more realms of human lives,

big data is taking on a larger variety of forms. The massive spread out of smart devices,

sensors, and social collaboration technologies has made it challenging to deal with big data,

as data collected from various sources with different specializations not only includes the

traditional data but also raw, unstructured, and semi-structured data in the form of audio,

text, emails, videos etc [70].

8 Introduction

Consider a transport application in smart city perspective for real-time traffic monitoring.

Assume that various noise and pollution sensors are deployed across the road segment to

estimate the crowd-density or road traffic. Besides, people available in that locality share

their GPS information, geo-tagged images of traffic, text, audio, video using a participatory

sensing platform. They are also able to send nominal information (yes/no for "Is your area

crowded") by using a dedicated platform or an app. These data may also have mixed at-

tributes such as numerical, categorical, nominal, and ordinal. The heterogeneity and noise

make processing and clustering of big data a challenging task. Specialized techniques may

be needed to handle different formats of the data. Most clustering algorithms handle het-

erogeneous data either by employing feature transformation to unify the format of data or

using heterogeneous data directly with customized distance measures to compute pairwise

similarities among data points.

Although there are two other characteristics (veracity and value) of big data, these (above)

three core characteristics must be taken into account when developing a clustering algorithm for

big data. Next, we discuss our research contributions to address each of these challenges for big

data cluster analysis.

1.3 Research Contributions

Based on the above discussion on challenges, it is evident that sophisticated and efficient

algorithms are required for cluster analysis of big data which (i) should have linear or sub-linear

running time complexity, (ii) need a minimum amount of memory, and (iii) do not compromise

with the output quality. The new algorithms should be adaptable for various applications which

means they should (i) not require lots of tunable and sensitive input parameters, (ii) not require

the number of clusters to be known in advance, and (iii) be able to handle high-velocity data for

streaming data applications.

The objective of this thesis is to design algorithms to solve each of the three problems

of cluster analysis viz., cluster tendency assessment, clustering, cluster validity, for large

volumes of high-dimensional data, including streaming data. The main contributions of this

thesis are outlined as follows:

1.3 Research Contributions 9

1. Clustering high-dimensional data: The first contribution of this thesis addresses the high-

dimensionality and scalability issues for soft clustering methods. Specifically, a novel, sim-

ple and computationally efficient framework, cumulative agreement based fuzzy c-means

(CAFCM), has been developed for high-dimensional data clustering which employs fuzzy

c-means clustering on an ensemble of random projections. The proposed ensemble approach

combines multiple fuzzy (or soft) partitions sequentially based on their quality, as measured

using cluster validity indices (CVIs).

(a) The performance of CAFCM was compared with three other ensemble-based cluster-

ing methods, called EFCM [71], RPFCM-A [72], and RPFCM-B [73], on two syn-

thetic and six real large, high-dimensional datasets. Experimental results show that

CAFCM outperforms the other three approaches based on accuracy, stability (stan-

dard deviation), space, and time complexity.

(b) CAFCM scales linearly in the number of data points and the number of repetitions,

making CAFCM approach feasible for large and high-dimensional datasets.

(c) CAFCM does not require any prior knowledge of the number of clusters that might be

present in the dataset, which makes it attractive for real-world clustering applications.

2. Cluster tendency assessment and subsequent clustering on big, high-dimensional data:

The second contribution of this thesis solves the cluster tendency assessment and clustering

problem for large-scale, high-dimensional datasets. We proposed a fast, hybrid cluster-

ing algorithm called FensiVAT, which effectively integrates a visual assessment of cluster

tendency (VAT) approach with a new random projection based ensemble technique and a

smart sampling strategy, called Maximin and Random sampling (MMRS), to deal with large

amounts of high-dimensional data.

(a) FensiVAT provides reliable visual evidence about the number of clusters that may be

present in big, high-dimensional data, in a few seconds.

(b) Experiments were performed on two synthetic and seven real datasets including one

unlabeled dataset, that are large in sample size (N) and dimensions (p). The per-

formance of FensiVAT FensiVAT was compared with nine other methods, which in-

clude six big data clustering methods, viz., single pass k-means (spkm) [74, 75],

10 Introduction

mini-batch k-means (MBKM) [76], CLARA [77], CURE [78], clusiVAT [63], GAR-

DENkm [79], and FastSpec [80] and two high-dimensional data clustering approaches,

PROCLUS [81], and random projection based ensemble clustering (RP-EN) [72, 82].

(c) Experimental results suggest that FensiVAT is up to several order of magnitudes faster

than the other nine approaches (except MBKM), without compromising accuracy.

3. Cluster validity for big data: The third contribution deals with the cluster validity problem

for big data. Six approximation methods are proposed to address the high computational

complexity problem of Dunn’s internal cluster validity indices for big data.

(a) The four methods viz., αMMRS, αnMMRS, iMMRS, inMMRS are based on a variant

of Maximin random sampling (MMRS) [83] which identifies a skeleton of the full

partition that contains some boundary points (required to compute Dunn’s indices) in

each cluster. The iMMSR and inMMSR schemes are incremental methods, which

produce a specified number of (boundary) points to compute the approximate Dunn’s

index.

(b) The other two methods are based on the unsupervised training of one class support

vector machines (OCSVM) [84, 85].

(c) All six methods presented have linear complexity in the number of samples (N).

(d) Experiments were performed on three synthetic and four real labeled datasets that are

large in sample size (n) and dimension (p). Our experiments show that computing

approximations to DI with Maximin skeleton based methods are both tractable and

accurate.

4. Cluster tendency assessment and anomaly detection in high-velocity, streaming data:

This contribution of the thesis focused on detecting evolving structure and anomalies in

high-velocity, streaming data. We developed an incremental version of siVAT, inc-siVAT,

for visualization of evolving cluster structures in high-velocity, big streaming data.

(a) inc-siVAT deals with the large streaming data in chunks. First, it extracts a small size

smart sample using the MMRS sampling scheme, then it incrementally updates the

smart sample points on the fly, using a new incremental MMRS algorithm, to reflect

1.3 Research Contributions 11

changes in data streams after each chunk, and finally, produces an incrementally built

RDI image of the updated smart sample, using inc-VAT/inc-iVAT and dec-VAT/dec-

iVAT algorithms. The image of the updated RDI provides the visualization of evolving

cluster structure after each chunk of data streams.

(b) Experiments were performed on dynamic streams of a two-dimensional Gaussian mix-

ture data and KDD Cup’99 data to show time effectiveness of inc-siVAT over existing

incremental VAT/iVAT methods.

(c) We demonstrated the applicability of inc-siVAT for cluster assessment and subsequent

anomaly detection in evolving data streams of three real datasets including a smart

city IoT data, collected from the Heron Island weather station deployed on the Great

Barrier Reef, Australia [86].

5. Big data clustering for a real-world application: The thesis also presents a utility of

big data clustering for a real-life smart city application. We proposed a novel scalable

framework for vehicle trajectory prediction (TP), based on a big data clustering algorithm

and Markov chain models, which can utilize a huge number of trajectories in a dense road

network, typical for major cities around the world.

(a) A modified version of clusiVAT, Traj-clusiVAT, was developed to cluster a large num-

ber of trajectories accurately and efficiently, for better trajectory prediction perfor-

mance.

(b) The proposed TP framework was compared with two existing TP algorithms: a mixed

Markov model (MMM)-based [87] and a trajectory clustering model NETSCAN [88]-

based algorithm, for both short and long-term trajectory prediction.

(c) Experiments used two real, large-scale taxi trajectory datasets: (i) T-Drive taxi trajec-

tory dataset [89, 90] consisting of 43,405 trajectories on a road network in the center

of Beijing, and (ii) Singapore taxi dataset consisting of 370 million GPS traces and

3.28 million passenger trips from 15,061 taxis during one month period in Singapore.

This was the first time any TP approach used such a large number of real-life road

network trajectories for trajectory prediction.

(d) Experimental results show that the proposed TP framework outperforms the existing

12 Introduction

two approaches for both short- and long-term prediction performances, based on pre-

diction accuracy and distance error (in km).

1.4 Thesis Outline

In this thesis, we introduce a suite of novel algorithms to solve each of the three problems of

cluster analysis for big data (including streaming data). These algorithms address most of the chal-

lenges of big data. This thesis is structured into eight chapters presenting five main contributions,

as shown in Fig. 1.1. Chapter 2 provides the detailed review of traditional algorithms for each

of the three problems of cluster analysis viz., cluster tendency assessment, clustering, and cluster

validity, with a specific focus on existing visual assessment of tendency family algorithms, e.g.,

VAT, iVAT, sVAT, siVAT, and incremental VAT methods that provide foundation to this thesis con-

tributions. Chapters 3-7 presents the main contributions of the thesis introducing a novel algorithm

for each of the three problems of cluster analysis for big data in each chapter. Chapter 3 describes

a novel clustering algorithm, CAFCM, for high-dimensional data clustering, which employs FCM

clustering on an ensemble of random projections, and provides a final output partition using a new

aggregation scheme. Chapter 4 address the cluster tendency assessment and clustering problem

for large-volume, high-dimensional datasets. Particularly, it presents a fast cluster tendency as-

sessment and subsequent clustering algorithm, based on an intelligent sampling scheme and a new

random projection-based ensemble method, for large volumes of high-dimensional data. Chapter 5

address the problem of cluster validity for big data. Specifically, it introduces six approximation

algorithms for Dunn’s cluster validity indices for big data. Chapter 6 proposes a novel algorithm,

inc-siVAT, for visualizing evolving cluster structures and detecting anomalies in high-velocity data

streams. Chapter 7 presents a novel scalable framework for vehicle trajectory prediction as a real-

world application of big data clustering. Finally, Chapter 8 concludes this thesis and discusses

possible future work.

1.4 Thesis Outline 13

Big data cluster analysis with smart city

applications

Chapter 3

Clustering high-dimensional data

Chapter 4

Cluster tendency assessment and

subsequent clustering on big data

Chapter 5

Approximating cluster validity indices

for partitions of big data

Chapter 6

Incremental cluster tendency

assessment of big, streaming data

Chapter 7

Clustering for smart city application:

A scalable framework for trajectory

prediction of connected vehicles

Chapter 1: Introduction

Chapter 2: Literature review

Chapter 8

Conclusions and Future Directions

Figure 1.1: Thesis outline

This page intentionally left blank.

Chapter 2

Background and Literature Review

This chapter gives a detailed review of the major cluster analysis techniques proposed in the

literature. In particular, clustering tendency assessment techniques are discussed in Section 2.2.

Then, traditional clustering algorithms and big data clustering techniques are reviewed in Sec-

tion 2.3. Cluster validity indices are discussed in Section 2.4. Significant work in the area of a big

data clustering application for trajectory prediction are discussed in Section 2.5. Fig. 2.1 outlines

popular cluster analysis techniques, and Table 2.1 provides a summary of the existing clustering

algorithms for big data.

2.1 Cluster analysis

Cluster analysis is an important unsupervised technique in exploratory data analysis. It aims

to divide data objects into groups (clusters), so that data objects within the same group are more

similar than those in different groups. It is often used at the initial stage of data analysis, when

there is little knowledge available about the data. Next, we introduce some basic notations.

Consider a set of N objects O = {o1,o2, ...,oN}, partitioned into k ∈ {2, ..,N − 1} subsets,

where each object oi is defined by a p-dimensional feature vector, xi ∈ Rp in a set of X =

{x1,x2, ...,xN}. Alternatively, data may be presented in the form of N×N dissimilarity matrix

DN = [di j], where di j represents dissimilarity between oi and o j. We denote the set of all non-

degenerate (no zero rows corresponding to empty clusters) soft (fuzzy/probabilistic) k-partitions

15

16 Background and Literature Review

of N objects as:

M f kN = {U ∈Rk×N : ui j ∈ [0,1]∀ 1≤ i≤ k, 1≤ j ≤ N;
k

∑
i=1

ui j = 1 ∀ j;0 <
N

∑
j=1

ui j < N ∀i},

(2.1)

where U is the membership matrix (partition), and its entry ui j denotes the membership of point

j in the cluster i, for fuzzy clustering. If the clustering is probabilistic, the value ui j = pi j of data

point j is the posterior probability that, given point j, it came from class i. The crisp partition can

be viewed as a special case of soft partition, where membership ui j is 1 if point j belongs to cluster

i, else ui j is 0. The crisp k-partition can be denoted as:

MhkN = {U ∈M f kN |ui j ∈ {0,1}∀i, j}, (2.2)

Alternatively, a crisp partition U of X is a set of disjoint clusters that partitions X into k groups:

C = {C1,C2, ...,Ck}; U↔ X =
k⋃

i=1
Ci; and Ci∩C j = /0 ∀ i 6= j. The centroid of cluster Ci is its mean

vector vi↔Ci =
1
|Ci| ∑

xi∈Ci

xi, where |Ci| represents the the number of data points in cluster Ci.

Cluster analysis consists of three problems viz., (P1) cluster tendency assessment; (P2) clus-

tering; and (P3) cluster validity. The problem of estimating the number of clusters k prior to actual

clustering is known as cluster tendency assessment (P1). Once the k is known, the next problem

(P2) is to partition the data into k subsets of similar objects. The last problem (P3) comprises

computational models and algorithms that identify a "best" member amongst a set of candidate

partitions CP = {U ∈M f kN or MhkN} of the objects in O, obtained using either different clustering

algorithms or using different configurations of the same clustering algorithm. Below, we discuss

important techniques and algorithms available in the literature to address each of the three prob-

lems of cluster analysis. The classification of these techniques in the form of the graph along with

example algorithms for each class is shown in Fig. 2.1.

2.2 Cluster tendency assessment

Clustering is used in many different scientific domains and applications as a practical tool to

identify structure in complex data. There is renewed interest in clustering because of new areas

2.2 Cluster tendency assessment 17

Cluster analysis

Cluster assessment

Statistical methods

• Hopkins statistic

Visual methods

• Visual assessment of
cluster tendency (VAT)

• Improved VAT (iVAT)

• Scalable VAT/iVAT

• Incremental VAT/iVAT

Clustering

Partitioning-based

methods

• K means

• Fuzzy c-means

• K medoids

Hierarchical methods

• Single linkage (SLINK)

• Complete linkage (CLINK)

• CURE

Density-based methods

• DBSCAN

• OPTICS

• DENCLUE

Distribution-based

methods

• Expectation Maximization
(EM)

Cluster validity

Internal cluster validity

indices

• Indices using both data

and membership values

• Dunn’s index, Xie-Beni,
Silhouette, Davies-
Bouldin index

• Indices using only

membership values

• Partition coefficient,
partition entropy

External cluster validity

indices

• Purity, partition accuracy

• Rand index, adjusted rand
index, mutual information

Figure 2.1: Cluster analysis techniques

of application, such as image and speech processing, bioinformatics, social network and IoT data

analysis. Most clustering algorithms require the number of clusters, k, as an input, which is usually

unknown for real-life data [91]. The estimation of k for real datasets has been identified as "one

of the most difficult problems in cluster analysis" by Bock [92].

Traditional approach to this problem is based on either (i) a framework in which clusters of

a particular shape are assumed as a model or (ii) on a two-step procedure using clustering and

separate criterion in which clustering criterion determines an optimal partition for a given k and

a separate criterion measures the goodness of the classification to determine k [93]. These two

steps can be combined in a single principle in the former approach, e.g., this is achieved in the

probabilistic mixture model assuming that data can be described by a mixture of multivariate

distributions with some parameters that determine their shape. However, now the problem of

finding the number of clusters turns to statistical model selection problem.

18 Background and Literature Review

Density-based clustering approaches such as DBSCAN and OPTICS do not require the spec-

ification of k, however, they require the choice of other two parameters which are sensitive to

the clustering algorithm. Hierarchical clustering avoids this problem by providing a hierarchical

structure of all the data points. However, it also requires the choice of similarity threshold that

results in a different number of clusters. There is no general technique to estimate k for centroid

and distribution based clustering algorithms. The most practiced technique is to run clustering

for different values of k, then find the best partition and the corresponding number of clusters in

it, using a cluster validity index. Other methods for the estimation of k and model selections in-

clude elbow technique [83] and information theoretic criterion like Bayesian information criteria

(BIC) [94] and Akaike information criterion (AIC) [95]. Clustering tendency approaches can be

divided into the two groups (i) statistical methods, and (ii) visual methods.

2.2.1 Statistical methods

Statistical methods assume that data is generated by a particular distribution on the hypothesis

that random data should not have clusters. They compare the input data against random data to

measure to what degree clusters exist in the data to be clustered. The Hopkins statistic [42, 43]

is one of the most popular statistical methods for cluster tendency assessment. It measures the

probability that a given dataset is generated by a uniform data distribution. There are several

formulations of Hopkins statistic. A typical formulation is as follows:

• Let X be the set of N data points in p-dimensional space

• Consider a random sample (without replacement) of n << N data points with members xi.

• Generate a set Y of n uniformly randomly distributed data points.

• Define two distance measures, ui to be the distance of yi ∈ Y from its nearest neighbor in X

and wi to be the distance of xi ∈ X from its nearest neighbor in X

• Compute Hopkins statistic using the following formula

H =
∑

n
i=1 up

i

∑
n
i=1 up

i +∑
n
i=1 wp

i
(2.3)

2.2 Cluster tendency assessment 19

A value close to 0 indicates uniformly distributed data, a value around 0.5 indicates the data is

random, and a value close to 1 indicates that the data is highly clustered. However, data containing

just a single Gaussian will also score close to 1, as Hopkins statistic measures deviation from a

uniform distribution, not multimodality. This problem makes it largely useless in application.

2.2.2 Visual methods

Visual methods for various data analysis problems have been extensively studied in [96]. Par-

ticularly, the representation of data structures in an image format has a long and continuous his-

tory [44, 97–99]. The earliest published work that discusses visual display of clusters is the Shade

approach in [98]. SHADE approximates a digital image representation of clusters using a crude

15 level halftone scheme created by overstriking standard printed characters. It displays the lower

triangulation part of a complete square display. SHADE is used after application of a hierarchical

clustering scheme, as an alternative to visual displays of hierarchically nested clusters via the stan-

dard dendrogram. Visual identification of (triangular) patterns in SHADE is more difficult than

when a full, square display is used.

Visual representation of structure in unlabeled dissimilarity data using reordered dissimilarity

image (RDI) started in 1909 [97]. The visual representation of pairwise dissimilarity between a set

of N objects is depicted by a N×N image, where objects are reordered such that resulting image

(RDI) is able to highlight the potential cluster structure in the data. The intensity of each pixel in an

RDI reflects the dissimilarity between the corresponding row and column objects. In a grayscale

image of RDI, white pixels represent high dissimilarity, while black represents low dissimilarity.

A "useful" RDI highlights potential clusters as a set of "dark blocks" along the diagonal of the

image. Several schemes [44, 97–99] have been presented to generate RDI. Among them, visual

assessment of cluster tendency (VAT) and its relatives are most popular. Below, we discuss some

of them.

2.2.2.1 Visual assessment of cluster tendency (VAT)

The VAT [44] algorithm is based on (but not identical to) Prim’s algorithm [100] for finding

the minimum spanning tree (MST) of a weighted undirected graph. It is a single-linkage (SL)

20 Background and Literature Review

based approach which proceeds by connecting the next nearest vertex to the current edge until

the complete MST is formed. It reorders the dissimilarity matrix DN to D∗N using edge insertion

ordering of the vertices added to the MST and specifies either end of the longest edge as the initial

vertex for MST formation. When the dark blocks appear along the diagonal of the image I(D∗N) of

the reordered distance matrix D∗N , they potentially represent different (ideally, k) clusters. Since

single-linkage clusters are always diagonally aligned in the VAT ordered images, so, having the

estimate of k from I(D∗N), k-aligned clusters can be obtained by cutting the largest k− 1 edges

(given by the MST cut magnitude order) in the MST. SL performs best if data has long, chain-

like clouds, well-separated clusters. As overlap among clusters increases, SL becomes unreliable.

Nonetheless, SL has been successfully used in many data clustering applications. Pseudocode for

VAT is given in Algorithm 1.

Algorithm 1 VAT
Input: DN- N×N dissimilarity matrix
Output: D∗N - N×N VAT reordered dissimilarity matrix of DN

P- VAT reordering indices of DN

h- Ordering of MST cut magnitudes
F- MST connection indices
Initialize the MST with the first element

Set K = {1,2, ..,N};
I = J = /0;
Select (i, j) ∈ argmaxa∈K,b∈K DN ab
Set P(1) = i;
I = {i},
J = K−{i}
F1 = 1

Keep on adding the nearest of the remaining points to the current MST
for r = 2 to N do

Select (i, j) ∈ argmina∈I,b∈J DN ab
hr−1 = DN aib j
Pr = j
I← I∪ j
J← J− i
Fr = i

end for
Rearrange the distance matrix DN as per the VAT reordering indices P to obtain D∗N

D∗N ab = DN PaPb 1≤ a,b≤ N

2.2 Cluster tendency assessment 21

2.2.2.2 improved VAT (iVAT)

Though VAT often provides a useful estimate of k in a dataset, a much sharper reordered

diagonal matrix image can be obtained using improved VAT (iVAT) [45, 46]. iVAT provides better

reordered diagonal matrix image by replacing input distance di j in distance matrix DN by distances

D
′
N = [d

′
i j],

d
′
i j = min

r∈Pi j
max

1<h<|r|
DNr[h]r[h+1] , (2.4)

where r ∈ Pi j is an acyclic path in the set of all acyclic paths from object (oi) and (o j) (vertices i

and j) in O.

The recursive version of iVAT [45] has a time complexity of O(N2) as compared to O(N3) for

iterative version of iVAT [46]. Importantly, the theory that connects SL to VAT also holds for re-

cursive iVAT, which preserves VAT order. Pseudocode for recursive iVAT is given in Algorithm 2.

Algorithm 2 iVAT
Input: D∗N - N×N VAT reordered dissimilarity matrix
Output: D′∗N - N×N iVAT dissimilarity matrix

for r = 2 to N do
j = argmin1≤a≤r−1 D∗N ra
D′∗N r j = D∗N r j
b = {1,2, ...,r−1}/ j
D′∗N rb = max{D∗N r j,D

∗
N jb}

end for
D′∗Nrb

= D′∗N br

2.2.3 Cluster tendency assessment for big data

Existing cluster tendency assessment algorithms for big data are based on an intelligent sam-

pling technique that combines Maximin and Random Sampling, called Maximin Random Sam-

pling (MMRS) [47, 83]. The Maximin sampling rule was introduced in 1953 by Thorndike [83] in

this way:

Our procedure is to assume that the two jobs [objects underlying the data] which are at the

greatest distance from one another will axiomatically fall in different families. The third cluster

22 Background and Literature Review

starts with the job which is least near to the other two. Each cluster is built up by adding on that

specimen which is nearest to the one which initially defined the cluster.

Thorndike illustrated his idea by initializing a sequential 3-means clustering algorithm with

cluster centers obtained by this approach. Casey and Nagy [101] described the same procedure in

exact detail this way:

[MM sampling] The first sample in the batch to be processed is designated cluster center

number one. The distances of the remaining samples from this one are calculated, and the farthest

sample is called center number two. The smaller of the two distances from each sample to these

two centers are listed, and the sample having the greatest minimum distance is selected. The

remaining centers are chosen in turn to have maximum separation from the existing centers. These

initial cluster centers are well-scattered over the sample space, an intuitively desirable property.

Kennard and Stone [102] used the MM sampling to select initial prototypes. Gonzalez [103]

describes an algorithm that at first glance looks different than the MM sampling, but upon closer

examination, his algorithm is identical to the MM sampling. A formal definition [104] of Maximin

sampling is given as:

Maximin (MM) sampling is a distance-based sampling method, which selects a few samples

far from each other so that they represent diverse regions of the input space. The rationale for

Maximin sampling is to select data points from the input data such that the minimal pairwise

distance between sampled points is maximized. This means that a Maximin sample of size n<<N

contains sample whose pairwise distances are maximum compared to any other n-sized sample of

the same data.

Several variations of random sampling (RS) are used to enrich the MM samples. MMRS

sampling is the basis of the success of scalable visual assessment of tendency (sVAT) [47] and

scalable improved VAT (siVAT) for building approximate cluster heat maps in big data.

MMRS sampling starts with the selection of k
′

distinguished objects (the selected MM sam-

ples) in X , which are furthest from each other. Then, each object in O is grouped with its nearest

distinguished object. This stage divides the entire dataset X into k′ groups, {St}k′
t=1, by associat-

ing |St | objects to the t-th distinguished object. This grouping task requires the computation of a

k′×N distance matrix. Then, the Maximin sample S̃ of size n (just a small fraction of N), is built

by selecting a specified number of random data points (Random sampling (RS)) from each of the

2.2 Cluster tendency assessment 23

k
′
groups. The number of points, nt extracted from subset St is proportional to the number of data

points in St , namely, nt = dn×|St |/Ne, where d·e denotes the ceiling function. The term MMRS

is used for overall process. Psuedocode for MMRS sampling is given in Algorithm 3.

Algorithm 3 Maximin Random Sampling (MMRS)
Input: Dataset X = {x1,x2, ...,xN} ⊂RN×p or a pairwise dissimilarity matrix DN ;
k′: desired number of MM samples (distinguished objects) in X
n: an approximate sample size.
Output: M: A vector containing indices of k′ MM points of DN ;
Dmax: A vector containing maximum distance of each MM point from previous MM points;
R⊂RN×k′ : A matrix containing distance of each MM point from objects in X ;
ntall: a set of number of local (neighbour) samples for each MM point;
S̃: indices of MMRS sample (of size n) of DN .
Step 1: Select [the indices M = {m1, ...,mk′} of] MM points
Start point, m1 = any random point in X ;
D= {dist{xm1 ,xm1}, ..,dist{xm1 ,xN}} = {D1, ...,DN}↔ {r11,r21...,rN1} = R•1

for t← 2 to k′ do
D= (min{D1,r1mt−1}, ...,min{DN ,rNmt−1})︸ ︷︷ ︸

min(D,R•(t−1))

mt = argmax
1≤ j≤N

{D j}

dmaxt =Dmt

R•t = {dist{xmt ,xm1}, ..,dist{xmt ,xmt}, ..,dist{xmt ,xN}}
end for

M =
k′⋃

t=1
mt ; Dmax = {dmax1,dmax2, ...,dmaxk′}

Step 2: Group each object in X with its nearest MM point
S1 = S2 = ...= Sk′ = /0

for t← 1 to N do
l = argmin

1≤ j≤k′
{dist{xmj ,xt}}

Sl = Sl ∪{t}
end for

Step 3: Randomly select data near each MM points to obtain the n number of samples
nt = dn∗ |St |/Ne t = 1,2, ...,k′

Draw nt unique random indices S̃t from St

S̃ =
k′⋃

t=1
S̃t ; N = {n1,n2, ...,nk′}

MMRS sampling picks distinguished objects from the dataset. Hence, it requires relatively

very few samples compared to random sampling to yield a diverse subset of the big data, which

represents the cluster structure in the original (big) dataset. Hathaway [47] provided two proposi-

tions about the MMRS procedure, which form the basis of cluster tendency assessment algorithms

24 Background and Literature Review

for big datasets.

Proposition 2.1. Let O be a finite set of distinct objects that can be partitioned into k compact-

separated (CS) [48] clusters and let k′ ≥ k (i.e. k′ is an overestimate of the true number of clusters

k), then

A. Step 1 of the MMRS algorithm selects at least one distinguished object (MM sample) from

each cluster.

B. In addition, if nt = n× |St |/N is an integer for i = 1,2, ...,k′ (Step 3 of MMRS) then the

proportion of the objects in the MMRS sample from cluster O(j) equals the proportion of objects

from same cluster O(j) in the original data, for j = 1,2, ...,k.

Proof. See [47] for proof. �

2.2.3.1 sVAT/siVAT

While VAT and iVAT algorithms work fine on small datasets, they suffer from resolution and

memory constraints that limit their usefulness for input matrix sizes of order of 105 and so. To

overcome these limitations, scalable single linkage algorithms sVAT/siVAT [45, 47] were pro-

posed, which first find n << N samples using MMRS sampling, and then apply VAT (or iVAT) to

the small distance matrix Dn (computed from n samples) to obtain its reordered distance matrix

D∗n (or D′∗n). The image I(D′∗n) usually provides a useful visual estimate of k without the need

to compute the very large distance matrix, DN of the big dataset, and circumvents the problem

that I(D∗N) is not computable. sVAT is just like siVAT, except it uses only VAT after the sampling

step. Pseudocodes for siVAT algorithm is given in Algorithm 4. The siVAT scheme does not in-

volve any sensitive threshold parameter, and requires the user to supply only two parameters: n

the desired sample size, and k
′
, an overestimate of k, the assumed number of clusters, to obtain k

′

distinguished objects (or MM points) in the sample.

Fig. 2.2 illustrates VAT, iVAT, and siVAT for a 2D synthetic dataset. View (a) is the scatterplot

of 5000 data points randomly drawn from five Gaussian mixture (GM) components with equal

prior probabilities. Its VAT and iVAT images are shown in Views (b) and (c). While both VAT

and iVAT images show five dark blocks along the diagonal corresponding to the five clusters in the

dataset, dark blocks in the iVAT image are much clearer than the VAT image. View (d) shows the

2.2 Cluster tendency assessment 25

Algorithm 4 siVAT
Input: Dataset X or N×N dissimilarity matrix, DN

k′: Overestimate of the true number of clusers, k, in X
n: an approximate sample size.
Output: D′∗n - n×n iVAT dissimilarity matrix of Dn

S̃- indices of samples in Dn

P- VAT reordering indices of Dn

h- Ordering of MST cut magnitudes
Apply Maximin Random sampling on X (or DN) returning a MMRS sample S̃ of size n (Algorithm 3)
Compute Dn = dist{xS̃,xS̃}
Apply VAT on Dn, returning D∗n, P, h. (Algorithm 1)
Apply iVAT on D∗n, returning D′∗n (Algorithm 2)

(a) Dataset N = 5000 (b) VAT for N = 5000 (c) iVAT for N = 5000 (d) siVAT for n = 500

(e) Dataset N = 1,000,000 (f) VAT for N = 1,000,000 (g) iVAT for N = 1,000,000 (h) siVAT for n = 500

Figure 2.2: Data scatterplot, VAT, iVAT, and siVAT images for a small (top) and a big dataset
(bottom).

26 Background and Literature Review

siVAT image of n = 500 samples (10% of the total dataset) which was made in 1/1000 fraction of

the time taken to compute the full iVAT image.

Figs. 2.2 (e-h) illustrate VAT, iVAT, and siVAT for a big data (N = 1,000,000) extracted from

same five GM components with equal probabilities. In this case, the VAT and iVAT images cannot

be generated due to their high computational complexity and memory constraints, indicated by

question marks (?) in Views (f) and (g). However, the siVAT extracts a small size (n= 500) MMRS

sample from this big data and produces its iVAT image which suggests five clusters present in the

big dataset. The sizes of the diagonal blocks in siVAT images show the relative size of each cluster

accurately, which supports the Proposition 2.1 (B) that the number of objects selected from each

partition in the MMRS sample is proportional to the number of data points in that partition in big

data.

The sVAT and siVAT algorithms suggest the number of clusters (k) to seek in the big data.

However, these algorithms do not partition the data into k subsets. sVAT-SL and clustering using

iVAT (clusiVAT) produce the actual clusters of the big data from the sVAT/siVAT samples. Both

algorithms are discussed in clustering (next) section.

Despite its computational efficiency in lower dimensions, Maximin sampling is time-consuming

for big, high-dimensional data, and consequently, sVAT/siVAT take much time when the data is

large jointly in the number of samples (N) and the number of dimensions (p). Therefore, there

is a need of cluster tendency assessment for handling datasets that are jointly large in N and p.

Chapter 4 proposes a new algorithm, FensiVAT, to deal with large amounts of high-dimensional

datasets. FensiVAT not only provides a reliable visual assessment about the number of clusters

that may be present in big, high-dimensional data, but it also produces the actual cluster of the big

data in a shorter time than sVAT-sL and clusiVAT, without compromising clustering accuracy.

2.2.4 Cluster tendency assessment for streaming data

For streaming data, VAT/iVAT needs to be (re)executed at each arrival of a new data point,

which is time-consuming and very inefficient. Kumar et al. [69] proposed incremental methods

for VAT and iVAT, called inc-VAT/dec-VAT and inc-iVAT/dec-iVAT, respectively, for visualizing

evolving cluster structures in streaming data using a sliding window approach. The inc-VAT/inc-

iVAT updates the current minimum spanning tree (MST) used by VAT with an efficient edge

2.2 Cluster tendency assessment 27

insertion scheme. Similarly, dec-VAT/dec-iVAT efficiently removes a node from the current VAT

MST. A sequence of inc-iVAT/dec-iVAT images can be used for (visual) anomaly detection in

evolving data streams and for sliding window based cluster assessment for time series data. The

pseudocodes of all four algorithms and their procedure subroutines are well-documented in [69].

Since, these incremental methods of VAT and iVAT are used in our proposed approach (presented

in Chapter 6) for visualizing evolving cluster structures in high-velocity streaming data, we explain

them here in detail.

Consider a time series dataset XN = {x1,x2, ...,xN}, having N p-dimensional data points ar-

riving sequentially. Let N ≥ 2 so that an initial VAT image of XN can be constructed. When xN+1

arrives, the augmented dataset is denoted with XN+1 = XN ∪{xN+1}. VAT on DN (dissimilarity

matrix of XN) results an N ×N reordered dissimilarity matrix D∗N , VAT reordering indices PN ,

the MST cut magnitude order hN , and the MST connection indices FN as outputs (refer to Algo-

rithm 1). VAT reorders the N data points (or objects) in such a way that each point in the reordered

matrix is closer than any data point after it to any data point before it (before and after here refer

to positions in the reordered list of indices, not to times of data arrival). This property of VAT

reordering is the basis for incremental methods of VAT algorithms.

2.2.4.1 inc-VAT

The inc-VAT algorithm comprises three main steps:

1. Finding the insertion position of the new data point xN+1 in the VAT ordering of XN:

When the new data point xN+1 arrives, its distances to all (previous) points in XN , denoted

by V = {v1,v2, ...,vN}, are computed, where v j (1≥ j ≥ N) is the distance between x j and

xN+1. Reordering the distances in V using the indices in PN gives L, the distances of the

xN+1 from the VAT reordered data points of xN , so L = VPN = {vP1 ,vP2 , ...,vPN}. First, the

insertion position (say i) of the new data point is identified in the VAT reordering of the

augmented set XN+1. The condition for determining the new position is satisfied at i when

min{L1,L2, ...,Li−1} ≤ dNi for 1 ≤ i ≤ N. For the augmented dataset XN+1, the new index

array PN+1 is initialized with the first i−1 elements of PN and the new index, N +1, is ap-

pended at the end, hence PN+1 = {PN1 ,PN2 , ...PNi−1 ,N+1}. Similarly, the new MST cut mag-

nitude order is initialized as hN+1 = {hN1 ,hN2 , ...hNi−2 ,min{L1,L2, ...Li−1}}. and the new

28 Background and Literature Review

MST connection indices are initialized as FN+1 = {FN1 ,FN2 , ...FNi−1 ,argmin({L1,L2, ...Li−1})}.

2. Reordering the remaining data points after the insertion position: Next, the remaining

indices in PN , denoted by A = {PNi ,PNi+1 , ...PNN}, which are not in PN+1, are reordered. As

the indices from A are added to PN+1 one by one, the data points corresponding to indices

in PN+1 can be divided into three groups.

• Group G1 represents the data points, whose indices form the longest subsequence C of

PN i.e., C = LongestSubsequence(PN ,PN+1). The remaining indices in PN , which are

not in C are represented by B, i.e., B = PN / C. C is initialized to {PN1 ,PN2 , ...PNi−1}, and

B is initialized to {PNi ,PNi+1 , ...PNN}. The MST connection indices of the data points in

B is given by H, which is initialized to {FNi ,FNi+1 , ...FNN}.

• Group G2 represents the new data point xN+1.

• Group G3 represents the data points corresponding to the remaining indices in PN+1,

which are not in G1 or G2. Let E represent the indices of the data points in G3, i.e.,

E = PN+1/ {N +1}/ C. E is initialized to /0.

The next index to be added to PN+1 corresponds to the data point represented by indices in

A that is nearest to any data point associated with the indices in PN+1. Since the indices in

PN+1 are divided into three groups G1, G2, and G3, the index of the closest data point is

found from each of the three groups. Let w j and z j : 1 ≤ j ≤ 3, respectively, represent the

index and the distance of the closest data point from G j group. The closest data point from

G1 is found using the VAT property of PN+1, from G2 using L and A, and from G3 using a

sub-matrix of the VAT reordered dissimilarity matrix D∗N of XN , whose rows and columns

are given by indices in A and E, respectively.

Let b j : 1≤ j ≤ 3 represents the positions in PN+1 of the data points in G j which are closest

to w j. If zi = min(z j) : 1 ≤ j ≤ 3, then zi is added to hN+1, wi is added to PN+1, and

bi is added to FN+1. Based on which of the z1, z2, and z3 is minimum, three separate

procedures [69] are used to update new reordering indices PN+1, MST cut magnitude order

hN+1, MST connection indices FN+1, A, B, E, G, and H. This procedure is repeated until

all the remaining data points (indices in A) are added to PN+1. The vector G represents the

reordering of the indices of PN to obtain PN+1.

2.2 Cluster tendency assessment 29

3. The last step is to compute the new reordered dissimilarity matrix D∗N+1. First, the rows and

columns of D∗N are reordered by the indices of G. Then, the distances of new data point xN+1

to the previous points in L are reordered using the indices of G to obtain L∗. The distance

value of 0 is inserted at ith position of L∗ to account for the distance of xN+1 to itself. Then,

the vector L∗ is inserted after (i−1)th row and (i−1)th column of D∗N to obtain D∗N+1.

2.2.4.2 inc-iVAT

The inc-iVAT produces the iVAT dissimilarity matrix D′∗N+1 for XN+1. The sub-matrix con-

sisting of the first i−1 rows and the first i−1 columns of D′∗N+1 is same as that of D′∗N , where i is

the insertion position of the new data point xN+1. The remaining elements of D′∗N+1 are computed

using the same procedure as iVAT.

2.2.4.3 dec-VAT

For sliding window based clustering applications for streaming data, it is not sufficient to

just add the latest data point to the VAT-generated MST using inc-VAT/inc-iVAT because of the

memory requirement to store the O(N2) size reordered distance matrix. A suitable strategy is

to keep deleting oldest data points from the MST to keep the number of data points manageable

(assuming a sliding window of fixed size). The decremental version of the VAT, dec-VAT, achieves

this using the VAT reordering information of XN , similar to inc-VAT.

If a data point (say) xl is to be removed from XN , the modified dataset is denoted as XN−1 =

XN/ {xl}. The dec-VAT comprises two main steps:

1. Finding the position of the to-be-removed data point xl in the VAT ordering of XN: The

first step in dec-VAT is to determine the position i of xl in PN using i = arg(PN = l). Then,

the set of data points after position i in PN , that are connected to xl in the current MST of

XN , are determined. This is obtained using FN , the MST connection indices of PN . Let these

data points be represented by J. The initializations of PN−1, FN−1, and hN−1 differs in two

following cases:

• If xl is a leaf node (the nodes that have only one branch edge) i.e., J = /0, then, only the

node xl is to be removed from the MST of XN to obtain the VAT reordering of XN−1.

30 Background and Literature Review

This is achieved by removing the i-th element (position of xl in PN) of PN and FN , and

the (i− 1)-th element of hN to obtain PN−1, FN−1, and hN−1, respectively. Since, the

i-th element xl is deleted, the values of FN−1, which are greater than i, are decreased

by 1. The i-th row and i-th column of D∗N is also deleted to obtain D∗N−1.

• If xl is not a leaf node i.e., J 6= /0, then the PN−1, FN−1, and hN−1 are initialized based

on whether the data point to be removed xl is the first element of PN or not. If xl = PN1 ,

the VAT reordering starts from the second element of PN , PN2 , else, the PN−1 ad FN−1

are initialized with the first i−1 elements of PN and FN , respectively, and the MST cut

magnitude order is initialized as hN−1 = {hN1 ,hN2 , ...hNi−2}.

Similar to inc-VAT, A= {PNi+1 ,PNi+2 , ...PNN} represents the remaining indices to be reordered

and H = {FNi+1 ,FNi+2 , ...FNN} represents their MST connection indices. C =LongestSubseque-

nce(PN ,{PN−1, i}) represents data points belonging to G1. The remaining indices in PN ,

which are not in C, are given by B = PN/ C. Since no new data point is added here, G2 = /0.

G3 represents the data points in PN−1, which are not in G1. Let E represents the indices of

the data points in G2, so that E = {PN−1, i}/ C. The vector G represents the reordering of

the indices of PN to obtain PN−1.

2. Reordering the remaining data points after the deletion position: As xl is removed from

the MST of DN , the edges joining xl to the data points whose indices are given by J are cut.

The next nearest point to the current MST of XN−1 is provided by B1. Based on whether

B1 = J1 or not, two different procedures [69] are used to insert the remaining elements

having indices A.

• If B1 = J1, the distance of data points in A (indices of the remaining points) to the

current points in PN−1 (whose rearranged order is given by G) is computed. In this

case, the minimum distance (z), nearest data point (w), and MST connection index

(l) are appended to the appropriate matrices PN−1, hN−1, FN−1, and G. If w ∈ J, then

we delete w from A and J, otherwise add it to E. Additionally, if w = J1, then C, B,

and H are updated as the data point attached to the deleted node of the MST of XN is

reconnected to the MST of XN−1.

• If B1 6= J1, the remaining data points whose indices are given by A are inserted into the

2.3 Clustering 31

MST of XN−1 using the same procedure that was used in inc-VAT (using G1, G2, and

G3), with G2 = /0. Subsequently, based on which of the z1 and z3 is minimum, two

different procedures (similar to inc-VAT) are used to update PN−1, hN−1, and FN−1.

2.2.4.4 dec-iVAT

The dec-iVAT provides the iVAT dissimilarity matrix D′∗N−1 of XN−1. The sub-matrix consist-

ing of the first i−1 rows and the first i−1 columns of D′∗N−1 is same as that of D′∗N . The remaining

elements of D′∗N−1 are computed using the same procedure as iVAT Algorithm.

Although, the inc-VAT/dec-VAT and inc-iVAT/dec-iVAT significantly lower the time com-

plexity of VAT and iVAT, the output of these algorithms is a reordered distance matrix that has N2

elements, so storing and visualizing them could be problematic due to software and hardware con-

straints as N becomes large. Both sVAT and siVAT are suitable for cluster tendency assessment of

big data. However, to handle streaming data, they also need to be re(applied) each time a new data

point or a chunk of new data points arrive, which is not feasible due to computational complexities

associated with retraining at each instance of the new data point or new chunk arrival.

To address this problem, Chapter 6 proposes an incremental version of the siVAT algorithm,

inc-siVAT, for online visual assessment of evolving cluster structures in high-velocity, streaming

data.

2.3 Clustering

Once the number of clusters k is known, the next task is clustering, i.e., partitioning the data

into k subsets. Clustering is an essential method of exploratory data analysis in which data are

partitioned into several (k) subsets such that objects in each subset are similar to each other and

dissimilar to members of other subsets. Clustering can be roughly distinguished into two types:

hard and soft. In hard (crisp) clustering, each object either belongs to only a cluster or not, whereas,

in soft (fuzzy/probabilistic) clustering, each object belongs to each cluster to a certain degree of

membership. Several paper and books [105–108] discuss different clustering algorithms, which

can be broadly classified into four main categories: partitioning, hierarchical, distribution-based,

and density-based methods. Below, we first discuss traditional clustering algorithms, followed by

32 Background and Literature Review

different strategies and algorithms for big data clustering. The classification and summary of these

methods are provided in Table 2.1.

2.3.1 Partitioning-based methods

The partitioning-based clustering methods attempt to determine partitions to optimize a certain

objective function defined in advance. Generally, these algorithms are combinatorial optimization

algorithms which means they minimize a given objective criterion by iteratively relocating data

points between clusters until a (locally) optimal partition is obtained. The most intuitive and

commonly used objective function of partitioning methods is the squared error function. Some

well-known techniques in this category are k-means, k-medoids, and fuzzy c-means.

2.3.1.1 k-means

The k-means algorithm is one of the most popular, and computationally efficient partitional

clustering algorithms. Llyod [109] proposed standard k-means algorithm in 1957 as a pulse code

modulation technique which was published as a Balls Laboratory paper [110] (published as a

journal [109] in 1982). Therefore, k means is also refereed to Lloyd’s algorithm. The k-means

algorithm consists of two steps. It starts with selecting k initial cluster centroids from the input

data, where each centroid is a representative of a cluster. In the first (assignment) step, each

data point is assigned to the closest center using some dissimilarity measure function (usually the

Euclidean or L2 distance for numerical data). Then, in the second (update) step, each centroid

is updated using the points assigned to its cluster. The assignment and update steps are repeated

until the objective function converges to an optimum solution. k-means is intuitive and easy to

implement, however, it has some drawbacks. The major limitation is that it requires the number

of clusters, k, to be known prior to clustering, which is usually unknown for real-world data. It

is very sensitive to the selection of initial centroids which may result in an suboptimal solution.

Moreover, it works assuming that the variance of distribution of each attribute is spherical, and

each cluster has roughly equal number of observations.

2.3 Clustering 33

2.3.1.2 Fuzzy c-means (FCM)

Fuzzy c means [48, 111, 112] is a soft clustering method which is based on k-means con-

cept of partitioning data into clusters i.e., it iteratively searches the cluster centers and update

the memberships of objects in each cluster until it converges to an optimal solution. The FCM

clustering is obtained by minimizing the following objective function (within membership matrix

constraints (2.1)):

Jm =
N

∑
i=1

c

∑
j=1

um
i j||xi−v j||2, (2.5)

where m is a fuzziness factor (≥ 1), ui j is the degree of membership of object xi in the cluster j, c1

is the number of clusters, v j is the p-dimensional center of cluster j, and ||∗|| is a distance norm.

The memberships ui j and centroid v j are updated using following equations:

ui j =
1

∑
c
l=1

(
||xi−v j||
||xi−vl ||

) 2
m−1

, 1≤ i≤ c, 1≤ j ≤ N (2.6)

v j =
∑

N
i=1 um

i jxi

∑
N
i=1 um

i j
, 1≤ j ≤ c. (2.7)

FCM also suffers from most of the problems suffered by k-means. However, the fuzzy partition

smoothes the search space, thus making optimization easier and therefore, providing better results,

especially in recovering from bad initialization of centroids.

2.3.1.3 k-medoids

The k-medoid [113, 114] algorithm is related to k-means that seeks a subset of points, called

medoids, such that average dissimilarity between them and their closest points (all the objects in

the cluster) is minimal. A medoid is a most centrally located point in the cluster, and hence, can

be considered as a representative point of the cluster. Since the k-medoids algorithm attempts to

minimize a sum of pairwise dissimilarity instead of a sum of squared Euclidean distances, it is

robust to noise and outliers as compared to the k-means algorithm. The most common realization

1In fuzzy clustering, c is used to define the number of clusters. Therefore, we use k and c interchangeably to
represent the number of clusters for crisp and soft (fuzzy) clustering, respectively, in this thesis.

34 Background and Literature Review

of k-medoid clustering is the Partitioning around Medoid (PAM) algorithm. PAM uses a greedy

search which may not find the optimum solution, but it is faster than exhaustive search.

2.3.2 Hierarchical methods

In hierarchical clustering, data are organized in a hierarchical manner based on the proximity

between pairs of data points. Hierarchical methods can be agglomerative (bottom-up) and divisive

(top-down). An agglomerative clustering starts with one object for each cluster and recursively

merges pairs of clusters as it moves up the hierarchy. A divisive clustering starts with the dataset

as one cluster and splits them in a top-down fashion as it moves down in the hierarchy. The results

of hierarchical clustering can be represented as a dendrogram [115]. A dendrogram is a type of tree

diagram which represents the nested grouping of data points and similarity levels where groupings

change. The dendrogram can be broken at certain levels based on the given criterion such as the

requested number of clusters or desired similarity to form clusters.

Measures for proximity among clusters are single linkage (minimum distance between any

two points from the cluster), complete linkage (maximum distance between any two points from

the cluster), and their variations such as mean (average linkage [116, 117]) or median of distances

among all data points between clusters. Three prominent examples of hierarchical clustering are

SLINK [118], CLINK [119], and Ward’s method [120] which are variants of single linkage [121],

complete linkage [122], and the minimum variance [123] algorithms. The advantage of hierarchi-

cal clustering includes the easy handling of any similarity measure and the flexibility regarding

the level of granularity. However, it has a major drawback that once a merge or split process is

performed, this cannot be undone.

2.3.3 Density-based methods

In density-based clustering [124, 125], data points are separated based on their regions of den-

sity, boundary, and connectivity to form clusters. The notion of a cluster is identified by dense

regions with nearest neighbour concept. The notion of dense region results in discovering clus-

ters of arbitrary shapes. This also provides natural protection against outliers [58]. DBSCAN,

OPTICS, and DENCLUE are well-known density based algorithms.

2.3 Clustering 35

2.3.3.1 DBSCAN

The most popular density-based algorithm is Density Based Clustering of Applications with

Noise (DBSCAN) [124]. DBSCAN searches for the regions that have at least a certain number

of data points (MinPts), within a certain distance threshold called reachability distance (ε- neigh-

bourhood). Based on these user-defined parameters (MinPts and ε), each data point is labeled as

either core, border, or noise point. DBSCAN can discover arbitrary shape clusters, and it is effec-

tive even for a spatial database. However, it is susceptible to the choice of its parameter. Moreover,

it performs poor in identifying meaningful clusters in data of varying density.

2.3.3.2 OPTICS

Ordering Points To Identify the Cluster Structure (OPTICS) [126] is similar to DBSCAN but it

overcomes DBSCAN’s weakness in detecting meaningful clusters when they vary widely in their

densities. To address this problem, the data points are (linearly) ordered such that points which

are closest become neighbours in the ordering, similar to single linkage clustering. The ordering

works on the principle that sparsely populated clusters have a higher value of ε-neighbourhood and

vice versa. OPTICS produces a hierarchical result for different values of the reachability distance

parameter. Unlike DBSCAN, it ensures good quality clustering by maintaining the order in which

data points are processed, i.e., high-density clusters are preferred over lower-density clusters.

2.3.3.3 DENCLUE

DENsity based CLUstEring (DENCLUE) [127] models the cluster distribution as the sum of

influence functions of all data points. The influence function describes the impact of a data point

within its neighbourhood. The cluster can be determined mathematically as density attractors,

which are local maxima of the overall density function. Density attractors are determined using a

hill-climbing method guided by the gradient of the overall density function. Although DENCLUE

can detect the clusters of arbitrary shapes and sizes and can handle noise, it shares same limitations

of DBSCAN.

36 Background and Literature Review

2.3.4 Distribution-based methods

Distribution-based methods are based on the assumption that data is generated from a mixture

of underlying probability distributions. Such methods optimize the fit between the given data and

a predefined mathematical model. These methods aim to identify the number of distributions and

their parameters based on the standard statistics, taking noise into account, thus yielding a robust

clustering result. Most of the distributed-based methods assume that the individual component

of the mixture is Gaussian, and in such case, its parameters are estimated by expectation maxi-

mization (EM) procedure. Distribution-based methods can produce complex models for clusters,

however, they may suffer from over-fitting if the number of mixtures is not fixed. Moreover, there

may be no concisely defined mathematical model for many real datasets.

2.3.4.1 Expectation maximization (EM)

Expectation maximization [128] is a well-known method to estimate the maximum likelihood

parameters of a statistical model such as a Gaussian mixture model. A Gaussian mixture model

is a probabilistic model that assumes all the data points are generated from a mixture of a finite

number of Gaussian distributions with unknown parameters. EM algorithm provides an iterative

method to find the maximum likelihood estimators of distributions. First, it assumes random

components and computes for each point a probability of being generated by each component of

the model. Then, it tweaks (updates) the parameters to maximize the likelihood of the data given

those assignments of data points to mixture components. Repeating this process is guaranteed to

find a locally optimal solution for the model parameters estimate. However, it is sensitive to the

selection of initial parameters, similar to k-means algorithm. Moreover, it has a slow convergence

rate which results in a decreased precision of output within a finite number of steps [129].

2.3.5 Clustering big data

Traditional clustering algorithms cannot cope with big data because of their high complexity

and computational cost. The main objective is to speed up the clustering algorithms without com-

promising clustering quality. There are many ways to classify clustering algorithms that scale up

to big static data, based on their style of processing the inputs: sampling, streaming, incremental,

2.3 Clustering 37

distributed (parallel) [41, 57]. Fig. 2.3 illustrates three most common approaches [41] to address

the problem of clustering for big static datasets. For convenience, let BDN represent big static

data, and let SDn denote small subsets of BDN .

BD
N

SD
n

SD
2

SD
1

SD
M

BDN - SDn

(a) Big data

(b) Chunks

(Naïve or

Sampling)

(c) Sampling

and

Extension

(d) Streaming

Figure 2.3: Three ways to make big data look small [41]

1. Naive or Sample Chunks: Fig. 2.3(b) depicts clustering in loadable chunks of big static data

in which BDN is partitioned into M loadable subsets (or chunks) {SDi}M
i=1. There are two

ways to generate and handle these small size chunks:

• Naive Chunking: The partitioning of BDN is done by cutting successive chunks (shown

with the dashed vertical bar in Fig. 2.3 (a)) out of the big data.

• Sample Chunking: Another way is to build each chunk with a sampling function (ran-

dom or intelligent sampling) that hopefully collects representative samples for each

chunk from each of the k clusters assumed to be in the big data.

Once the chunks are obtained, each chunk is clustered literally by any suitable clustering

algorithm which produces M literal partition U1,U2, ...UM. Fig. 2.4 shows two different

way of processing chunks to obtain the final clustering result.

• The first way of processing naive chunks is to process each chunk in parallel (or

distributed) fashion, which amounts to the independent processing of each chunk.

Chunks can be processed using either a parallel or distributed clustering algorithm

38 Background and Literature Review

SD
1

SD
M

SD
2

 !" =#
$%&

'
(!$

BDN

U
1

U
2

U
M

) = *++,)-.

Data chunks Partitions Aggregation

clustering

clustering

clustering

SD
3

U
3

clustering

single pass

or

parallel (distributed)

Figure 2.4: Processing naive or sample chunks of big data [41]

or parallel processing architecture (e.g., MapReduce) on multi-machine platform [57].

After having a partition from each of the M chunks, they need to be combined into

a partition for big data. The problem of aggregating all literal partitions U1,U2, ...UM

to obtain final partition is often known as cluster ensembles or ensemble clustering.

The aim of the cluster ensemble approach is to obtain a final partition that provides a

better idea of cluster structure than any of the individual partitions that contribute to

the aggregation.

The usual assumption in ensemble clustering is that the M partitions are all of the

same dataset, made by different clustering algorithms or by different initializations or

different parameter settings of a clustering algorithm. Therefore, ensemble clustering

methods are not usually applicable to naive chunking approach for clustering in big

data, because literal chunks or partitions do not share common data. However, they

can be useful in the distributed case depending on the objective of the model. They are

also useful for high-dimensional data clustering [130], where all literal subsets have

the same data points in different dimensions or each subset is processed by different

clustering algorithms.

2.3 Clustering 39

• Second way of processing naive chunks is to cluster the first chunk (usually the biggest)

with a literal algorithm, summarize the results, and then move along to the next chunk

(the vertical path is shown by dashed lines in Fig. 2.4). This way of handling naive

chunks is sometimes called partial data access, and if only one pass is made through

BDN , the method is called is single pass (or single scan) algorithm [41].

2. Sampling and Extension: Fig. 2.3(c) illustrates a method called sampling followed by non-

iterative extension. In this approach, a loadable sample (of size n) SDn ⊂ BDN is built

by sampling, and a literal partition is obtained by applying a clustering algorithm on it.

Then, the sample partition is extended to the rest of the samples non-iteratively using nearest

neighbour approach, also called nearest prototyping rule (NPR)

3. Streaming (Sequential): Fig. 2.3(d) shows one alternative to the collection, storage, sam-

pling, and batch processing. In this approach, the points are regarded as streaming or se-

quential data, so BDN is never stored. It is replaced by a data stream, say x1,x2, ...,xN

that arrive as a time-ordered sequence or small size chunks in a sequential manner. In this

approach, the idea is to build clusters using the first few points or chunks and then incre-

mentally incorporate new inputs to update clustering results. This way it avoids the storage

of big data and time complexities associated with batch processing [41].

Below we discuss some well-known algorithms developed for big data clustering in the following

categories.

• Sampling based techniques

• Streaming (sequential) techniques

• Parallel processing (MapReduce)

• Dimensionality reduction based technique

Sampling based techniques Sampling based techniques speeds up the clustering task be-

cause computation is performed on small subsets. Consequently, the complexity and memory

space needed for clustering decreases.

40 Background and Literature Review

2.3.5.1 Clustering Large Applications (CLARA)

PAM worked well on very small datasets, but its computational complexity is O(k(n− k)2).

CLARA [77] extends the PAM approach for a large number of objects using sampling and exten-

sion approach. CLARA begins by randomly drawing a small sample (40+ 2k data points) from

the big data using uniform random sampling. Partitioning Around Medoids (PAM) then operates

on these data points to find an optimal set of k-medoids for the sample. The remaining objects are

labeled with the nearest prototype rule (NPR), and the average dissimilarity between crisp clus-

ters is computed. If this improves the objective, retain these k medoids and continue. To reduce

sampling bias, CLARA repeats the sampling and clustering process multiple numbers of times

and subsequently selects the set of medoids with the minimal cost as the final clustering result.

However, the best k-medoids may not be selected in any of the samples, giving poor clustering

result.

2.3.5.2 Clustering Large Applications based on Randomized Search (CLARANS)

CLARANS [131] improves the quality and scalability of CLARA using dynamic sampling

based on the randomized search. CLARANS views the desired medoids as special nodes in a

graph representation of the data. The best medoids are selected using serial randomized search.

While CLARA draws a random sample of data points at the beginning of a search, CLARANS

draws a random sample of neighbors of the data points in each step of its search, and hence, is

more efficient than the sampling method used in CLARA.

2.3.5.3 Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH)

If the dataset is too large to fit in memory, it causes a lot of overhead for a clustering algorithm

in maintaining high clustering quality while minimizing the cost of additional input-output (I/O)

operation. BIRCH [132] is perhaps the first algorithm explicitly designed to solve this problem

using a compressed representation (summarization) of part of the input data. In the initial phase of

BIRCH, as much data as possible is scanned, clustered using a hierarchical clustering algorithm,

and then each cluster is summarized by a special data structure called clustering feature (CF). Once

the CFs are calculated, the data underlying them are deleted, and only the set which summarizes

2.3 Clustering 41

the process is retained. The CFs are stored in the highly balanced cluster feature tree. As new

data points arrive, the nodes of the tree are dynamically built and inserted into the tree. BIRCH is

shown to perform well on several large datasets, and it is better to CLARANS in terms of run-time,

space, and in handling outliers.

2.3.5.4 Clustering Using REpresentative (CURE)

A shortcoming of the previously described clustering algorithms (CLARANS, BIRCH) is that

they consider only one point (centroid/medoid) to represent a cluster, which means they work

well in identifying cluster of spherical shapes but do not perform well in identifying clusters of

non-spherical or arbitrary shapes. To deal with this challenge, CURE [78] represents clusters by

well-scattered points. CURE is a sampling and extension based algorithm that adopts a middle

ground between a type of hierarchical clustering and centroid-based algorithm. It randomly sam-

ples a constant number of points from the large dataset so that the selected (representative) points

(hopefully) retain the geometry of the entire dataset. In CURE, each cluster is represented by a

fixed number, g, of well-scattered points, which are shrunk towards the centroid of a cluster by

a fraction, α . These scattered points after shrinking are defined as representatives of the cluster.

Then, the clusters with the nearest representative points are merged at each step until the desired

value of k is attained, akin to SL. Once CURE has labeled the sample, the extension function that

assigns cluster labels to the remaining data points employs a fraction of randomly selected repre-

sentative points for each of the final k clusters. Two main data structures are used in CURE for

efficient search: heap and k-d tree. Heap is used for tracking the distance of each existing cluster

to its closest cluster, and the k-d tree is used to store all the representative points for each cluster.

As the number of clusters in the data increases, the probability of CURE samples retaining the

data geometry decreases, and hence, the accuracy of CURE decreases.

2.3.5.5 Single pass fuzzy c-means

A single pass fuzzy c-means algorithm was presented in [74] for large datasets, which produces

a final clustering in a single pass through the data with limited memory allocation. It first divides

the N points into M chunks and requires only a portion of the data (one of the M chunks) to

42 Background and Literature Review

be stored in the memory for k-means clustering. Then, it updates the current model (k weighted

centroids) over the contents of the buffer (other chunks) iteratively until the whole dataset is loaded

and processed. After obtaining the final k centroids, the big data are labeled based on the label of

the nearest object, i.e., the standard k-means nearest prototype rule (NPR).

2.3.5.6 Mini-batch k-means

Mini-batch k-means (MBKM) [76], also known as web-scale k-means, is a k-means variation

using "mini-batch" samples for datasets that do not fit into memory. This scheme processes small

random batches (mini-batches) of the dataset to reduce the computation time while attempting to

optimize the same objective function. The algorithm iterates between two major steps. In the first

step, samples are drawn randomly from the dataset, to form a mini batch. Then, each data point

in the batch is assigned to a cluster (nearest centroid). In the second step, a new random sample

is obtained and used to update the centroid until termination is achieved. For each sample in the

batch, the assigned centroid is updated using a convex combination of the samples of mini batch

and previous samples assigned to that centroid, applying a learning rate. The learning rate is the

inverse of the number of samples in each batch assigned to a centroid during the process. The

effect of new samples decreases as the number of iterations increases. These steps are performed

until termination or until a pre-determined number of iterations is obtained. MBKM reduces the

computation time by not using all the dataset but a subsample of a fixed size in each iteration,

however, at the cost of lower cluster quality.

2.3.5.7 clustering using iVAT (clusiVAT)

sVAT and siVAT algorithms (discussed in Section 2.2.3) answer the tendency assessment prob-

lem by suggesting the number of clusters to seek in the big data, however, they do not produce the

actual clusters of the data. clusiVAT produces the actual cluster of the big data X from the siVAT

samples, as described below:

Single-linkage clusters are always diagonally aligned in the VAT/iVAT ordered images [133,

134]. Having an estimate of k from the iVAT image of Maximin random sample (MMRS) pro-

duced by siVAT, the longest (k−1) edges of the MST are cut to form the corresponding k aligned

2.3 Clustering 43

partition. For big data clustering, clusiVAT [63, 135] use this idea to extend the k partition of Dn

(or D∗n) non-iteratively to the (N−n) unlabeled objects in X using the NPR. sVAT-SL is similar to

clusiVAT except that sVAT-SL applies sVAT instead of siVAT, after the sampling step.

Both sVAT-SL and clusiVAT are adequate for large sample size datasets, however, they still

suffer from large computation time when the dataset is large in the number of dimensions. The

two main time-consuming steps in both algorithms for large, high-dimensional data clustering are

(i) the Maximin step of MMRS sampling; and (ii) Extension. The computational complexities in

the first and second steps of MMRS sampling in siVAT are O(pk′N), and the last stage requires

O(pn2) operations to build sample S̃ (refer to Section 2.2.3). Despite its computational efficiency

in lower dimensions, MMRS sampling is computationally expensive in high-dimensions. The

computational complexity of extension step is O(pn(N − n)). Because, N and (N − n) can be

very large for big datasets, and the distance computations are performed in the original (high) p-

dimension, siVAT-SL and clusiVAT take a large amount of time to cluster large volumes of high-

dimensional data. Chapter 4 presents a fast cluster tendency assessment and subsequent clustering

algorithm, FensiVAT, which can cluster large volumes of high-dimensional data in significantly

less time, without compromising clustering accuracy.

Algorithm 5 clusiVAT
Input: Dataset X or N×N dissimilarity matrix, DN

k′: an overestimate of the true number of clusers, k, in X
n: an approximate sample size.
Output: D′∗n - n×n iVAT dissimilarity matrix of Dn

U - cluster membership vector of data points in X .
siVAT

Apply Maximin Random Sampling on X returning S̃ Algorithm 3
Compute Dn = dist{xS̃,xS̃}
Apply VAT/iVAT on Dn returning D′∗n, P, h Algorithms 1 and 2
Choose the number of clusters k using image of D′∗n.

Clustering
Find indices t of k largest values in MST cut magnitudes h.
Form the aligned partition: U∗ = {t1 : t2− t1 : ... : tk− tk−1}
uS̃ = u∗Pi

, 1≤ i≤ k.

Extension
for x̂ ∈ X̂ = X−XS̃ do

j = argmini∈S̃ {dist{x̂,xi}}
u(i)x̂ = ul Nearest prototype rule (NPR)

end for

44 Background and Literature Review

Sequential clustering techniques High-velocity data streams form a significant part of big

data. For example, most wireless sensor networks continuously transmit reports of sensor data,

e.g., temperature, humidity and barometric pressure for monitoring applications. The amount

of data generated by streaming processes is usually too large for collection and batch storage,

and hence, such type of data is interpreted as a different instance of big data. In a streaming

environment, clustering is often used to summarize or compress the data stream into a repre-

sentative model of the data. Most of the streaming clustering algorithms usually have a change

detection algorithm, which identifies a change in the data streams as potential times for creat-

ing/deleting/updating cluster(s) in the data.

Streaming clustering algorithms can be grouped into two groups based on the assumptions

made by each method: (i) one-pass, and (ii) evolving methods. One-pass (or single-pass) meth-

ods assume that data streams follow only one model throughout its lifetime, and hence, they

cannot handle evolving data distributions. The one-pass family of clustering algorithms include

mainly the first generation of scalable clustering algorithms e.g., BIRCH [132], Randomized k-

means [136], clustering with fractals [137], STREAM [65].

The evolving methods view the data streams evolving over time, where clusters may appear

and/or disappear in streaming data as time progresses. These clusters may contain timely infor-

mation about anomalies, switching between events, or evolving drift, and so on, that requires

immediate action. Cluster partitions on evolving data streams are often computed based on cer-

tain time intervals (or windows). There are three well-known window-based methods: landmark

window, damped window, and sliding window [68]. Landmark window models consider the data

stream from the beginning until now. An example of the landmark window model is the CluStream

algorithm [64]. Damped window models associate weights, also called a forgetting or decay fac-

tor, with the data in the stream such that higher weights are given to recent data than those in the

past. An example of the damped window model is the Den-Stream algorithm [68]. The sliding-

window based approach considers the data from now up to a certain range in the past. It is the

most common approach to visualize evolving cluster structure in streaming data. An example of

the sliding window based model is the SWClustering algorithm [138].

Some other examples of evolving methods are TRAC-Streams [139], STREAM fuzzy k-

means [140], and Sequential leader algorithm [141]. Aggrawal [142, 143] provides an extensive

2.3 Clustering 45

survey of stream clustering algorithms. Below, we discuss some popular clustering techniques for

streaming data.

2.3.5.8 STREAM

STREAM [65] algorithm is a divide and conquer based approach that divides the data into

chunks, each of them is of manageable size and fits into main memory. Then, it applies a k-

medians algorithm to each chunk to find its k optimal medoid representatives. After processing

the entire data stream, all the representative medoids of different chunks are clustered together

using a final application of k-medoid algorithm. The quality of the final output depends on the

manner in which data is partitioned into chunks.

2.3.5.9 CluStream

CluStream [64] framework consists of online and offline components. Online component

computes statistical information about the data locality in terms of micro-clusters. Each micro-

cluster is represented by a set of clustering feature (CF) that incorporates temporal feature in

CF’s used by BIRCH. The micro-clusters are stored in main memory in the form a pyramidal tree

structure which offers an efficient means for recovering historical information about clusters across

time. When a new data point arrives, the micro-clusters are updated in order to reflect changes.

Offline analytical component applies a variant of k-means algorithm on the micro-clusters to obtain

final clusters from the stream. CluStream offers a straight-forward approach to summarize data

streams. However, it maintains a constant number of micro-clusters, hence it might consider some

outliers as real clusters, or even split some of the good clusters.

2.3.5.10 DenStream

Inspired by DBSCAN and CluStream, Cao et al. [68] presented DenStream that makes no

assumption on the number of clusters, discover arbitrary shaped clusters, and can handle outliers.

In DenStream, each data point is given a weight using a function f (t) = 2−λ .t , where t is the

current time, and λ > 0 is a constant that reflects more importance to most recent data. Den-

Stream also consists of two components: (i) online component incrementally maintains a set of

46 Background and Literature Review

potential-micro-clusters (p-micro-clusters), and outlier-micro-clusters (o-micro-clusters), and (ii)

offline component generates final clusters by applying DBSCAN on the set of p-micro-clusters

maintained by the online component.

2.3.5.11 D-Stream

D-Stream [67] is a grid-based and density-based clustering algorithm similar to DenStream,

hence it shares the same advantages as DenStream. In D-Stream, each data point is assigned a

density coefficient which decays over time: D(x, t) = λ t−tc , where t is the current time and tc is

the arrival time of point x. Online component maps each data point into a grid, and the offline

component computes the grid density and clusters the grids based on the density. The overall

density of a grid is defined as the sum of the density coefficients for all the points belonging to that

grid. This density is used to determine if the grid is dense or not. This technique makes high-speed

data stream clustering feasible without degrading the clustering quality.

Parallel data clustering techniques Parallel data clustering methods are usually imple-

mented on multi-machine platforms. These techniques break the big data into smaller chunks

which can be loaded on different machines and then uses their processing power to cluster big

data. Parallel clustering can be performed using either clustering algorithm which adapts parallel

processing of chunks or using automated distributing architecture (MapReduce) on multiple ma-

chines. In parallel clustering, developers need to configure the data distribution and networking

process among multiple machines which makes it complicated and time-consuming. Whereas,

MapReduce relieves programmers from unnecessary networking problems and concepts such as

fault tolerance, load balancing, and data distribution, by handling them automatically.

In parallel clustering, data are divided into chunks that are distributed over machines. Then,

each machine performs clustering individually on the assigned chunk of the data. Two main chal-

lenges with these methods are minimizing data traffic and their lower accuracy in comparison to

their serial implementation. Lower accuracy can be due to the two main reasons: first, different

clustering algorithms are used in different machines, and secondly, each chunk may have different

data distribution resulting in poor accuracy. Examples of parallel/distributed clustering algorithms

are DBDC [144] (distributed and density-based clustering), ParMETIS [145] (a parallel version of

2.3 Clustering 47

METIS [146]), and G-DBSCAN [147] (GPU accelerated DBSCAN).

MapReduce is a programming model for processing big data with a parallel or distributed

algorithm on a cluster. It contains two important task, namely map and reduce. Map function maps

a set of data to another set of data, where individual elements are represented as tuples (key/value

pairs). Reduce function summarizes the map output. Specifically, it takes the map output as an

input and combines those data tuples into a smaller set of tuples. The key contributions of the

MapReduce framework are scalability, load scheduling, and fault-tolerance achieved for a variety

of applications. MapReduce libraries have been written in many languages like Java, C#, and

C++. A popular open-source implementation that has support for distributed scheduling is part

of Apache Hadoop. A few examples of parallel implementation of various clustering algorithms

using MapReduce include [148–152].

PKMeans [148] is a distributed version of k-means clustering algorithm that distributed the

computation between multiple machines using MapReduce framework to scale up the process.

An individual clustering is performed in the mapper and then general clustering is performed in

the reducer. Ene et al. [149] introduced the first approximation algorithms for the k-center and

k-median on MapReduce. They adopt an iterative sampling strategy to reduce the data size and run

a (time-consuming) clustering algorithm, such as local search or Llyod’s algorithm on resulting

subset. These algorithms run in a constant number of MapReduce rounds and achieve a constant

factor approximation.

Ferreira et al. [150] examine MapReduce for clustering the datasets that do not fit even on a

single disk. To minimize the I/O and network cost, they propose the Best of both Worlds (BOW)

and derive its cost function that dynamically determines the best strategy to balance the cost for

disk accesses and network accesses. They showed that it could work with most of the serial

clustering algorithms as a plugged-in clustering subroutine. It matches the clustering quality of

the serial algorithm with near-linear scale-up.

Jin et al. [151] presented a Distributed Single Linkage hierarchical Clustering (DiSC) al-

gorithm using a MapReduce framework. The key idea is to divide the original problem into

a set of overlapped subproblems, to solve each subproblem, and to merge the sub-solutions to

obtain an overall solution. DiSC is a memory efficient algorithm, and it scales linearly. MR-

DBSCAN [152] is a scalable MapReduce-based DBSCAN clustering algorithm in which all the

48 Background and Literature Review

Table 2.1: Clustering algorithms for big data

Categories Algorithm name Dataset
size (N)

Handling high-
dimensionality

Number of
(main) input
parameters

Algorithm
complexity

Underlying strategy to handle
big data

Partitioning

k-means Large No 1 O(N pkt) linear in N
FCM Large No 1 O(N pc2) linear in N

k-medoids Small Yes 1 O(k(N− k)2) not suitable for big data
single pass k-means Large No 2 O(N pk) Sequential (one-scan)
mini-batch k-means Large No 3 O(npkt) Sampling (mini-batches)

CLARA Large No 1 O(kn2 + k(N− k)) Sampling and extension

CLARANS Large No 2 O(N2)
Sampling and randomized

search
STREAM Large No 4 O(N pkt) Sequential (chunks processing)

Parallel k-means Large No 1 O(N pkt) Distributed (MapReduce)

CluStream Large No 5 O(N pkt)
Data summarization, sequential

(data stream processing)

Hierarchical

CURE Large Yes 2 O(n2 log(n) Sampling and extension
BIRCH Large Yes 2 O(N p) Data summarization

sVAT-SL/clusiVAT Large Yes 2 max(O(pk′N), pn2) Sampling and extension
DisC Large No 1 O(N log(N)) Distributed (MapReduce)

Density-based

DBSCAN Large No 2 O(N log(N))
Process each point once spatial

indexing

OPTICS Large No 2 O(N log(N))
Process each point once,
spatial indexing

DENCLUE Large Yes 2 O(log(N p)) Uses tree-based access structure

DenStream Large No 5 O(N log(N))
Sequential (data stream

processing)

D-Stream Large No 5 O(N log(N))
Sequential (data stream

processing)
Distribution-
based EM Large No 3 O(Nkp) linear in N

t:number of iterations, N: data size, n: sample size, p: dimension, k, c: number of crisp (or fuzzy) clusters

critical sub-procedures are fully parallelized using a MapReduce framework. Their novel data

partitioning scheme is based on computation cost estimation that aims to achieve load-balancing,

even for a heavily skewed data.

Dimensionality Reduction techniques Although the algorithm complexity is related to the

number of samples in the dataset, dimensionality is another important aspect that contributes to the

algorithm complexity. Higher dimension adds more complexity to any clustering algorithm that

results in the larger computation time. High-dimensional data also causes the problem of the curse

of dimensionality that means the data becomes sparse in high-dimensional space which makes it

difficult for final meaningful structures (clusters) in the data [56]. Sampling techniques reduce the

number of instances in the dataset, but they do not offer a solution for high-dimensional datasets.

One common solution to improve the clustering solution and to reduce the computational time for

high-dimensional data is to perform dimensionality reduction before clustering [153]. The goal

is to obtain a new dataset with a reduced set of features that preserves, up to a level, the original

structure (geometry) of the data. Feature selection and feature extraction (or transformation) are

2.3 Clustering 49

two popular approaches for dimensionality reduction [153].

The data may contain many features that are either redundant or irrelevant, and thus can be

removed without loosing much information. Feature selection methods try to find a subset of

original features which are relevant to model construction. Most feature selections methods for

unsupervised learning can be divided on filters that use the characteristics of the features, such as

the correlation among them to select features regardless of the model, and wrappers that explore

the subset of features with a clustering algorithm to evaluate the quality of output partition using

internal or external quality criteria.

Feature extraction or feature transormation involves transforming the original features into

a new set of features (usually, of reduced size) in order to reduce the computation cost and in-

crease the accuracy of a clustering/classifier algorithm. Feature extraction methods generate new

features that are generally linear or non-linear combinations of the original features. Two popu-

lar methods that obtain a linear transformation of the data are principal component analysis and

random projection. Principal component analysis (PCA) [154] uses an orthogonal transformation

to obtain a set of observations of linearly uncorrelated variables that account for variance, called

principal components. Random projection (RP) [155–157] is a linear transformation from high-

dimensional space to a lower-dimensional space. RP is a simple and efficient way to reduce the

data dimension by trading a controlled amount of distance error for faster processing times. Popu-

lar non-linear feature extraction methods include kernelized variants [158] of PCA, and manifold

learning methods such as ISOMAP [159], locality linear embedding [160], and multidimensional

scaling (MDS) [161]. Non-linear feature extraction methods can uncover more complex patterns

in the data.

PCA and other non-linear methods use a well-defined criterion to optimize the projection in

a lower dimension. However, these methods have high computational complexity, especially for

large sample size datasets. Unlike these algorithms, random projection is a simple and compu-

tationally efficient technique which does not use any special criteria to find optimal lower di-

mensional projections. Lower computational complexity, (approximate) distance preservation in

lower dimension subspaces and its easy implementation make it [156] an attractive choice for di-

mensionality reduction. Our contributions presented in Chapters 3 and 4 use random projection to

deal with high-dimensional data. Below, we briefly explain random projection methods.

50 Background and Literature Review

2.3.5.12 Random Projection

A random projection (RP) is a linear transformation from Rp to Rq, represented by a matrix

T . Let X = {x1,x2, ...,xN} ⊂Rp be a set of N points in p dimensions, denoted as the "upspace".

X can be mapped to a reduced dimension dataset Y = {y1,y2, ...,yN} ⊂Rq,q� p, denoted as the

"downspace", by the linear transformation of X with T . Most RP methods are based on Johnson-

Lindenstrauss (JL) Lemma [162] which states that if data points in a vector space are of sufficient

high-dimension, then they may be projected into a suitable lower-dimensional space in a way that

approximate distances among them are preserved. Several RP methods [155–157] have been pro-

posed in the literature for different applications. A variant of the JL lemma proposed by Achlioptas

in [156] is one of the most popular RP methods for clustering. The theorem proved by Achlioptas

is as follows:

Theorem 2.1. Let matrix X ⊂RN×p be a dataset of N points and p attributes. Given ε > 0, and

β > 0, for any integer q

q≥ q0 =
(4+2β)log(N)

ε2/2− ε3/3
. (2.8)

The parameter ε controls the accuracy in distance preservation, while β controls the proba-

bility that distance preservation to within 1± ε is achieved. Let T be a p× q random matrix, in

which each element ti, j is drawn from one of the following independently identically distributed

distributions:

ti, j =


+1 with probability 1/2

−1 with probability 1/2
(2.9)

ti, j =


+
√

3 with probability 1/6

0 with probability 2/3

−
√

3 with probability 1/6.

(2.10)

2.4 Cluster Validation 51

Let Y = 1√
q XT be the projection matrix of the N points in Rq. Let f : Rp→Rq map the ith row

of X to the ith row of Y . Then for any u,v ∈ X with probability at least 1−N−β , we have

(1− ε)||u−v||2≤ | f (u)− f (v)||2≤ (1+ ε)||u−v||2.

According to Theorem 2.1, if the reduced (downspace) dimension q is equal or bigger than the

JL lower bound q0, then pairwise Euclidean distance squares are preserved within a multiplicative

factor of 1± ε , and it is said that Y has JL certificate. An older version of this projection operator

is based on randomly choosing each element of T from a Gaussian distribution with zero mean

and unit variance which carries a similar guarantee [156, 163]. The authors in [164] assert that the

JL bound often holds for q� q0. They called such projections "rogue random projections".

Since RP methods provide a probabilistic guarantee for distance preservation in lower-dimensional

space, clustering results using a single random projection might be unstable. Therefore they are

more often used in ensemble-based frameworks [71–73, 82] that aggregate the results of various

lower dimensional clustering results to obtain a reliable final solution. Chapter 3 proposes a novel

RP-based ensemble framework, CAFCM, for high-dimensional data clustering which employs

FCM clustering on an ensemble of random projections. Also, the FensiVAT algorithm presented

in Chapter 4 uses a new RP-based ensemble technique with MMRS sampling scheme for fast

clustering of large-scale, high-dimensional datasets.

2.4 Cluster Validation

Once a clustering algorithm has processed the dataset and obtained a partition of the input

data, the last question arises: Does the output partition represent the underlying structure of the

input data? In other words, how well does the output partition fit the input data? This is a genuine

question as an optimal clustering algorithm does not exist. Different clustering algorithms or even

the same clustering algorithm with different configurations produce different partitions, and none

of them have to be proved best in all situation. Therefore, the best strategy is to compute different

partitions and choose the one which best fits the data. The process of evaluating clustering results

is known as cluster validation. Cluster validity can also be used to estimate the number of clusters

in the data. The usual approach is to apply a clustering algorithm with a different value of the

52 Background and Literature Review

number of clusters, evaluate all partitions, and the chosen one that best fits the data.

One approach to measure the quality of the output partition is through the use of scalers

measures, which are known as cluster validity indices (CVIs). There are more than hundreds

CVIs [62, 165–169] are available in the literature, and most of them can be classified into two

groups: internal and external. Internal CVIs use only data and/or algorithmic outputs, whereas,

external CVIs require additional "outside" information such as a ground truth partition that labels

subsets in the data.

Various CVIs are available in the literature for evaluating soft (fuzzy/probabilistic) [62, 165,

170] and hard (crisp) clustering partitions [167, 169]. Both soft and crisp partitions are math-

ematically defined (at the beginning of this chapter) using Eqs. (2.1) and (2.2). We call a CVI

whose minimum value over a set of candidate partitions (CP) points to the "best one" as min-

optimal [171], indicated by the symbol (↓), and CVIs that indicate a choice of U in CP by their

maximum value are max-optimal, indicated by (↑).

2.4.1 Internal CVIs

Most internal CVIs consider two criteria to find an optimal partition: (i) Compactness or

Cohesion- It measures how similar (or close) the data objects in the same cluster are, and (ii)

Separation - it measures how well a cluster is separated from other clusters. Ideally, points of the

same clusters should be as close to each other as possible, and clusters should be well separated

from each other.

CVIs for soft clustering (fuzzy/probablistic) The internal CVIs available in the literature

for fuzzy clustering can be classified mainly in two categories [62, 165]: the first category uses

only the membership values U ; and the second type involves both the U matrix and the dataset X

itself. Some of the internal CVIs are discussed below:

Indices using both data (X) and membership values (U)

2.4 Cluster Validation 53

2.4.1.1 Xie Beni Index (↑)

Xie-Beni (XB) index [50], also called the compactness and separation validity function, was

originally devised for use with FCM clustering. It is defined as:

XB(U) =
∑

k
i=1 ∑

N
j=1[u

m
i j||x j−vi||2]

N mini 6= j(||vi−v j||)
(2.11)

2.4.1.2 Partition Index (↑)

The partition index, abbreviated as SC, is based on a fuzzy CVI proposed by Gath and Geva [172]

which uses the concept of hypervolume and density, and it is defined as:

SC(U) =
k

∑
i=1

(
∑

N
j=1(ui j)||x j−Vi||m/2

∑
n
j=1(ui j)2

)
(2.12)

Small values of SC indicates the existence of compact clusters.

Indices using only membership values (U)

2.4.1.3 Partition Coefficient (↑)

Bezdek [173] proposed the partition coefficient (PC) index that indicates the average relative

amount of membership sharing between pairs of fuzzy subsets in U . The PC index is max-optimal

and, its value ranges in [1/k,1], where k is the number of clusters. PC is

PC(U) =
k

∑
i=1

N

∑
j=1

(ui j)
2; (2.13)

The PC index possess monotonic evolution tendency with k. Dependence on k makes interpreta-

tion of its relative values difficult to evaluate. To alleviate this, Roubens [174] defined a normalized

version of PC,

PCR(U) =
(kPC(U)−1)

(c−1)
. (2.14)

The PCR value ranges in [0,1] for all values of k.

54 Background and Literature Review

2.4.1.4 Normalized Partition Entropy (↓)

Bezdek [173] proposed another fuzzy CVI, partition entropy (PE), which is defined as:

PE(U) =− 1
N

k

∑
i=1

N

∑
j=1

ui jlog(ui j) (2.15)

The PE index is a scalar measure of the amount of fuzziness in a given U . The PE is min-

optimal and its value ranges in [0, lnak]. Similar to PC, PE index also shows monotonicity with k.

Bezdek [175] defined the normalization of PE as:

PEB(U) = PE(U)/lnak (2.16)

CVIs for crisp clustering

2.4.1.5 Davies-Bouldin Index (↓)

Davies-Bouldin Index (DBI) [49] is the ratio of the sum of within cluster scatter or cohesion

(the distance from the points in a cluster to its centroid) to the between cluster separation (distance

between cluster centroids). Hence, a lower value of DBI is desirable.

DBI(U) =
1
k

k

∑
i=1

max
i 6= j

S(Ci)+S(C j)

dist(Ci,C j)
, where S(Ci) =

1
|Ci| ∑

xi∈Ci

dist(xi,vi) (2.17)

2.4.1.6 Silhouette Index (↑)

The silhouette [51] index is a measure of how similar an object is to its own cluster (cohesion)

compared to other clusters (separation). The cohesion is measured based on the distance between

all the points in the same cluster and separation is based on the nearest neighbour distance. The

Silhouette value ranges in [−1,1]

Sil(U) =
1
N

k

∑
i=1

∑
xi∈Ci

b(xi,Ci)−a(xi,Ci)

max{a(xi,Ci),b(xi,Ci)}
, (2.18)

2.4 Cluster Validation 55

where

a(xi,Ci) =
1
|Ci| ∑

x j∈Ci

dist(xi,x j) ; b(xi,Ci) = min
j 6=i

{
1
|C j| ∑

x j∈C j

dist(xi,x j)

}
(2.19)

2.4.1.7 Dunn’s Index (↑)

Dunn’s index (DI) [48] is a metric of how well a set of clusters represent compact separated

(CS) clusters. It is defined as:

DI(U) =
min1≤i, j≤k i 6= j dist(Ci,C j)

max1≤l≤k diam(Cl)
, (2.20)

where Ci is the i-th cluster, dist(Ci,C j) is the distance between two clusters, and diam(Cl) is

the cluster diameter. The distance between two clusters can be single linkage, complete linkage,

average linkage, or centroid-based distance. The diameter of a cluster can be its maximum or

average diameter. Bezdek and Pal [169] proposed 18 variants of DI, which they called Generalized

Dunn’s indices (GDIs), based on various combinations of distance function in the numerator and

denominator of Eq. (2.20).

The computation of DI is very computationally expensive due to its quadratic growth in the

number of samples. To solve this problem, this thesis presents six approximation methods to

compute DI for big data, in Chapter 5. These methods may also be useful for computation of

other CVIs that require both X and U , such as DBI, XB, Silhouette index and the GDIs. Chapter 5

discusses DI and GDIs in more detail, and presents their approximation methods for big data.

2.4.2 External CVIs

External CVIs validate the clustering model against external information (ground truth sub-

sets). The aim of these indices is to evaluate the extent to which a true (ground truth) partition can

be discovered using clustering. Many well-known external CVIs are derived from the values of

contingency table [176, 177]. Given the partitions U and V , the contingency table is defined as:

The partition U and V need not possess the same number of clusters. The classical approach to

compare U and V begins by considering the four possible combinations for pairs of objects from

56 Background and Literature Review

Table 2.2: The Contingency Table A to compare partition U and V

Partition V
v j = row j of V

Class v1 v2 ... vr Sums

Partition U
ui = row i of U

u1
u2
u3
.

uk

A =


N11 N12 ... N1r

N21 N22 ... N2r

N31 N32 ... N3r

...
Nk1 Nk2 ... Nkr

=UV T

N1•
N2•
N3•

.
Nk•

Sums N•1 N•2 ... N•r N•• = N

the set O in clusters of U and V . These four quantities are defined as:

• f00- the number of pairs of data points that are in the different subset in V , and are in different

subset in U

• f01- the number of pairs of data points that are in the different subset in V , and are in same

subset in U

• f10- the number of pairs of data points that are in the same subset in V , and are in different

subset in U

• f11- the number of pairs of data points that are in the same subset in V , and are in same

subset in U

Below, we discuss some clustering oriented external validity indices.

2.4.2.1 Partition Accuracy (↑)

Partition accuracy (PA) of a clustering algorithm is the ratio of the number of samples with

matching ground truth and algorithmic labels to the total number of samples in the dataset. The

assignment of class labels to the clusters is done on the basis of the majority value of the class

attribute within each cluster. The value of PA ranges from 0 to 1, and a higher value implies a

better match to the ground truth partition.

2.4 Cluster Validation 57

2.4.2.2 Purity (↑)

Purity [54] is a measure of the extent to which clusters contain a single class. It is defined as:

Purity =
k

∑
i=1

Ni•
N

max
j

Ni j

Ni•
(2.21)

A high purity means that the cluster is pure (i.e. contains objects from the same class). Its values

range in [0,1].

2.4.2.3 Rand Index (↑)

Rand index (RI) [52] measures the similarity between two clustering partitions. It takes into

account the numbers of point pairs that are in the same and different clusters, and is defined as,

RI(U,V) =
f00 + f11

f00 + f01 + f10 + f11
(2.22)

Intuitively, the sums f00 + f11 and f10 + f01 are interpreted, respectively, as (the total number of)

agreements and disagreements between U and V . RI values lie between 0 and 1, and a value close

to 1 indicates high agreement between partition U and V .

2.4.2.4 Adjusted Rand Index (↑)

A problem with RI is that its expected value between two random partitions is not a constant,

and on certain datasets it can achieve a high score otherwise. This problem is corrected by the

adjusted Rand index (ARI) [53] that assumes the generalized hyper-geometric distribution as the

model of randomness. It is defined as:

ARI =
Rand Index−Expected index

Maximum index−Expected index
, (2.23)

The ARI has the maximum value 1 for perfect partition, and 0 when the index equals its expected

value. The adjusted RI takes following form [53]:

ARI =
a− (a+c)(a+b)

(a+b+c+d)
(a+c)+(a+b)

2 − (a+c)(a+b)
(a+b+c+d)

, (2.24)

58 Background and Literature Review

where the values of a,b,c, and d [53] are derived from the contingency table (Table 2.2), and are

given as:

a =
1
2

r

∑
i=1

k

∑
j=1

Ni j(Ni j−1) (2.25a)

b =
1
2

(
k

∑
j=1

N2
• j−

r

∑
i=1

k

∑
j=1

N2
i j

)
(2.25b)

c =
1
2

(
r

∑
i=1

N2
i•−

r

∑
i=1

k

∑
j=1

N2
i j

)
(2.25c)

d =
1
2

(
N2 +

r

∑
i=1

k

∑
j=1

N2
i j−

(
r

∑
i=1

N2
i•+

k

∑
j=1

N2
• j

))
(2.25d)

2.4.2.5 Normalized Mutual Information (↑)

The Normalized mutual information (NMI) [130] measures the information shared between

two clustering partitions. It is defined as:

NMI(U,V) = MI(U,V)/
√

H(U)H(V), (2.26)

where MI is the Mutual information (MI) between U and V , and H(U) is the entropy associated

with partition U which are defined as:

MI =
c

∑
i=1

r

∑
j=1

(Ni j/N)log(
Ni j/N

Ni•N j•/N2) (2.27)

H(U) =−
c

∑
i=1

(Ni•/N)log(Ni•/N) (2.28)

If two classes are completely independent, then NMI is 0. If both are identical, then their NMI is

1.

The soft RI [178], soft ARI [177, 178], and soft NMI [170] can be computed using entries (in

their formulas) from generalized contingency matrix A∗ = φUV T (Table 2.2), where φ = N
∑

c
i=1 Ni•

.

2.5 Big data clustering applications 59

2.4.3 Cluster validity for big data

There has been a considerable amount of work done to address clustering tendency assessment

and clustering problem for big data. However, very little work is available on cluster validity for

big data. Early validity indices considered only membership values due to the advantage of being

easy to compute. These CVIs can handle big data as they use only the output partition (U), which

is not usually big as compared to the input (big) dataset X . However, these indices may have

some drawbacks [165] such as their monotonous dependency on the number of clusters and the

lack of direct connection to the geometry of the data. Now, it is widely accepted that a better

definition of a validity index always considers both partition matrix U and the dataset itself. The

implementation of most of such indices is very computationally expensive, especially when the

number of clusters and number of objects in the dataset grows very large [62].

There is very limited work available in the literature for cluster validity index for big data.

Tlili et al. [179] proposed a fuzzy version of Davies-Bouldin index [49] for big data clustering.

Since DBI uses both the output partition and the data itself, it still has the higher computational

complexity for big data. Another work [180] introduced Spark implementation of DI and Silhou-

ette index to deal with big data. Chapter 5 of the thesis proposes six novel approximation methods

to compute DI (and GDIs) for big data.

2.5 Big data clustering applications

Cluster analysis techniques have been used in many applications such as social network anal-

ysis [16, 23, 181], bioinformatics [18], market analysis [21, 22], gene expression analysis [19],

and image processing [20]. Big data image segmentation is an image analysis technique, which

has emerged especially in the medical area. Due to the complexity of image segmentation and

with limited prior knowledge, unsupervised methods are a better choice for image segmenta-

tion. Partitioning-based clustering methods are popular for big data image segmentation due to

their easy implementation. The scalable fuzzy c-means clustering algorithms were applied to

large-scale magnetic resonance images (MRI) of the brain for image segmentation [1]. A dis-

tributed c-means algorithm was proposed for big data image segmentation and was applied to

MRIs in [182]. Fuzzy clustering methods have also been applied to high-dimensional DNA mi-

60 Background and Literature Review

croarray data for gene expression analysis [71, 183]. Clustering also finds its utility to organize

and retrieve databases in an efficient way [15, 17].

2.5.1 Big data clustering for smart city applications

Clustering has also been used in several smart city applications to gain valuable insights from

raw data obtained through various sensing devices and crowdsourcing. For example, the work

in [31–33] applied clustering to time-series energy data from smart meters to identify energy usage

profiles of residential, commercial, and industrial consumers, and for load-forecasting. There are

also several applications of clustering in other smart city contexts, such as in smart parking [26–

28], smart environment [24, 25], smart health care [34–36], smart agriculture [37, 38], and smart

waste management [39, 40], and intelligent transportation systems [29, 30].

This thesis also presents a big data clustering application for smart city generated big data,

viz., prediction of vehicle trajectories using a clustering-based approach on large-scale GPS data.

Below, we first discuss trajectory prediction and its important for smart city applications, and then

we provide a brief review of the existing trajectory prediction approaches and their limitations.

Trajectory prediction The widespread use of global positioning system (GPS) navigation

systems and wireless communication technology enabled vehicles have resulted in huge volumes

of spatio-temporal data, especially in the form of trajectories. These data often contain a great deal

of information [184], which give rise to many location-based services (LBSs) and applications

such as vehicle navigation, traffic management, and location-based recommendations. One key

operation in such applications is the route prediction of moving objects. Vehicle route prediction

allows certain services to improve their quality, e.g., if the route of vehicles is known in advance,

intelligent transportation systems (ITSs) can provide route-specific traffic information to drivers

such as forecasting traffic conditions and routing the driver to avoid traffic jams. Route prediction

also enables location-based advertising, which can advertise certain products/services and special

offers to the target commuters most likely to pass through business outlets and stores based on

their travel trajectory.

The first step in the trajectory prediction task is the trajectory representation. Won et al. [185]

represented a trajectory as a list of segments, each of which has its identifier and length. How-

2.5 Big data clustering applications 61

ever, the method to divide the road segment is not explicitly described and is driven by intu-

ition. Guo et al. [186] used topological information from graph-based structures to represent

trajectory data. A road network is represented as an undirected graph, where each node rep-

resents a junction/intersection and each edge represents a road (path) segment of the road net-

work. The trajectory of a moving object appears as a sequence of symbols in [88, 187–189],

where each symbol represents a road section. For vehicles moving along the road segments, their

trajectory can be best represented as a 1-dimensional array of nodes or edges of the road net-

work [88, 187–190]. The (Latitude, Longitude) coordinate pair obtained from the GPS sensor

can be associated with a corresponding road network edge using one of the many popular map-

matching techniques [191, 192].

Several studies have been carried out on trajectory prediction, particularly after Song et al. [193]

demonstrated a 93% potential for predictability in user mobility, which supplied the theoretical

basis for location prediction methods. These methods mainly focus on two kinds of prediction

models. The first type is the short-term trajectory prediction model, which aims to predict the

next-location or a few locations in the near future. These models usually rely on current location

and one or two previous locations of an object to predict its next location. The second type is

the long-term trajectory prediction model which focuses on location prediction at a more distant

future time or on complete route prediction. These models generally rely on an available partial

trajectory of a moving object to predict the complete trajectory.

Trajectory prediction approaches Existing TP methods are hybrid in nature and can be

broadly classified into three categories: (i) Rule-based learning based approaches (ii) Markov

model-based approaches (iii) Clustering-based approaches.

2.5.1.1 Rule-based learning based approaches:

Morzy [194] implemented a modified version of the PrefixSpan algorithm to extract associa-

tion rules from a moving object database. Then, the trajectory of a moving object was matched

with the database of movement rules using matching functions to select the best association rule

and then used it for prediction. The matching function in [194] is based on the notion of support

and confidence and does not consider any notion of spatial and/or temporal distance. Jeung et

62 Background and Literature Review

al. [195] proposed a hybrid prediction approach, which combines association rules in the form of

trajectory patterns with the motion functions of an object’s recent movements, to estimate future

locations. Given an object’s recent movement and predictive queries, the best association rule

is chosen for prediction. The query processing approaches presented in [195] can only support

near and distant-time predictive queries, unsuitable for long-term trajectory prediction. Moreover,

with the huge number of trajectories, the number of association rules is also huge, which makes

association-rule based algorithms impractical for large-scale mobility data.

2.5.1.2 Markov model-based approaches:

A Markov model (MM) is a stochastic model used to model randomly changing systems. It

assumes that future states depend only on the current state, not on the past events before it (that is,

it assumes the Markov property). MMs [196–198] have been widely used to mine frequent patterns

for route prediction problems. Ishikawa et al. [196] proposed a model to extract mobility statistics,

called the Markov transition probability, which is based on a cell-based organization of target space

and a Markov chain model, and employed R-tree spatial indices to compute Markov transition

probabilities. Simmon et al. [197] presented a Hidden Markov Model (HMM) based probabilistic

approach to predict a driver’s intended route and destination through observations of the driver’s

habits. Asahara et al. [87] suggested that standard MM and HMM are not generic enough to

encompass all types of movement behaviour. They proposed a variant of Markov model, called

the mixed Markov-chain model (MMM), as an intermediate model between individual and generic

models, for pedestrian movement prediction. This approach clusters individuals into groups based

on similar movement behaviour, and generates a Markov model for each group. The next location

is predicted by first identifying the group a particular individual belongs to and then inferring next

location using corresponding Markov model. Gambs et al. [198] extended a previously proposed

mobility model, named w-Mobility Markov Chain (w-MMC), to incorporate the w previous visited

locations. They showed that prediction accuracy increases with w, but increasing w beyond two

(w > 2) does not compensate for the significant overhead in terms of computation and space for

learning and storing the mobility model. They only considered the sequence of the significant

locations, instead of all locations, to build higher order MM.

2.5 Big data clustering applications 63

2.5.1.3 Clustering based approaches:

Some researchers have proposed trajectory clustering based route prediction methods [199,

200], which partition the trajectories into several clusters representing different motion patterns

based on the trajectory similarity. Various clustering approaches [201] using different methods

and distance measures between trajectories have been proposed in the literature. Road network

constrained trajectory clustering approaches can be classified into two broad categories. The first

type uses the traditional clustering approaches such k-means and DBSCAN with specially de-

signed distance measures [185, 188, 202, 203] for trajectories. For example, Ashbrook et al. [199]

presented a system that first extracts the significant locations, called Point of Interests (POIs), using

k-means clustering on GPS data, and then calculates the probability of transitions between these

significant location using various orders of Markov models, to find next most likely significant

location based on those recently visited.

The second category of algorithms [88, 190] cluster road segment vehicle frequencies based

on density and flow. Flow and density based trajectory clustering schemes such as NETSCAN [88]

and network aware trajectory (NEAT) [190] first summarize the trajectory data into an edge den-

sity or edge transition matrix based on the frequency of the trajectories passing through a road

segment (density) or two consecutive road segments (flow). Clustering is then performed on road

segments based on their traffic flow to create a set of consecutive road segments having continuity

of traffic density and flow.

Traditional clustering-based TP algorithms [199, 200, 204] are not scalable to large numbers

of trajectories in a city environment as computation of the distance matrix is time intensive. Most

of them require the number of clusters to be known in advance, but in practice, it is often unknown,

making it difficult for the user to choose the optimal number of clusters for location prediction.

Furthermore, the clusters are determined by fixed rules. Although some of the road network based

clustering approaches [88, 190] are scalable, they produce loose clusters which span a large space

of the road network and may not represent actual traffic flow. Hence, they are not suitable for

vehicle trajectory analysis.

Most TP methods demonstrated in the literature [87, 194, 195, 205] use synthetic or small to

medium size real trajectory datasets. Most of them cannot handle big trajectory datasets. There

have been several attempts to demonstrate trajectory prediction on real data having a large number

64 Background and Literature Review

of samples. For example, [206] uses a real dataset consisting of 4.9 million trajectories (790

million GPS points) as a population, but only small subsets having a maximum 30,000 trajectories

are used in their experiments.

As a real-world application of big data clustering, Chapter 7 of this thesis presents a novel,

scalable, hybrid framework for vehicle trajectory prediction, which can handle a large number of

trajectories in a dense road network, typically for major cities around the world. The proposed

framework is based on a scalable clustering approach, Traj-clusiVAT, a modified version of clu-

siVAT implemented for trajectory prediction. Traj-clusiVAT can also determine the number of

clusters, which represent different movement behaviours in input trajectory data. After cluster-

ing trajectories, Markov chain models are constructed from the trajectories in each cluster. These

models quantify the movement patterns within clusters, and subsequently, are used for trajectory

prediction. The proposed TP framework used two large, city-scale taxi trajectory datasets: T-Drive

dataset consisting of 43,405 GPS trajectories from 10,357 taxis in Beijing over a period of one

week and Singapore taxi dataset consisting of 3.28 million passenger trajectories from 15,061

taxis over a period of one month. This was the first time trajectory prediction task had been per-

formed on such a large number of real-world road network trajectories.

2.6 Summary

In this chapter, we have reviewed major techniques to solve each of the three problems of

cluster analysis, viz., clustering tendency assessment, clustering, and cluster validity. We reviewed

and compared popular methods for cluster analysis for big data, including streaming data. Several

methods in the area of big data clustering applications for trajectory prediction are also reviewed.

We discussed that most cluster analysis algorithms encounter serious problems related to com-

putational and space complexities and/or cluster quality for large-scale, high-dimensional datasets.

To address these challenges, we developed a suite of novel algorithms to solve each of the three

problems of cluster analysis for knowledge discovery from large-scale, high-dimensional data, by

leveraging intelligent sampling and dimensionality reduction strategies. These contributions are

presented in Chapters 3-5. In this chapter, we also explored that existing cluster assessment tech-

niques are not suitable for high-velocity, massive streaming data. To address this problem, we

2.6 Summary 65

presented an incremental algorithm for online assessment of evolving cluster structures in high-

velocity data streams, in Chapter 6. Finally, as a real application of big data clustering, we present

a scalable framework for vehicle trajectory prediction in Chapter 7.

This page intentionally left blank.

Chapter 3

Clustering High-Dimensional Data using
Cumulative Aggregation on Random

Projections

This chapter proposes a new, simple and computationally efficient framework called CAFCM

for high-dimensional data clustering, which employs FCM clustering an ensemble of random pro-

jections. CAFCM outperforms the three other state-of-the-art approaches, EFCM [71], RPFCM-

A [72], and RPFCM-B [73], in terms of accuracy, stability, space, and time complexity, based on

our numerical comparisons on two synthetic and six real large, high-dimensional datasets.

3.1 Introduction

Many applications such as biomedical imaging, physiological monitoring, sequencing [207],

and time-series matching produce large amounts of high-dimensional data [55]. High-dimensional

feature vector data, i.e., data described by a large number of attributes, poses two challenges for

clustering. First, the so-called “curse of dimensionality", which is caused by the lack of a sufficient

number of samples in most high-dimensional data, makes it difficult to find statistically meaningful

structures in the data [56]. Second, noisy and irrelevant attributes in the data can worsen the

performance of a clustering algorithm. One possible solution to improve the utility of clustering

algorithms for high-dimensional data is to perform dimensionality reduction [208].

Popular algorithms for dimensionality reduction, such as Principal Component Analysis (PCA)

and Singular Value Decomposition (SVD), use well-defined criteria to optimize the projection in

lower dimensional space. Unlike these algorithms, random projection [155–157] is a relatively

simple, computationally efficient linear transformation method which does not use any special

67

68 Clustering High-Dimensional Data using Cumulative Aggregation on Random Projections

criteria to find "optimal" lower dimensional projections. Two key properties, namely low compu-

tational complexity and (approximate) distance preservation in lower dimension subspaces, make

random projection [156] an attractive choice for dimensionality reduction.

Over the past few years, ensemble clustering [130, 209–214] has drawn significant attention

in addressing the clustering problem. Random projection based ensemble frameworks [71–73,

82] have been proposed for high-dimensional clustering using fuzzy or probabilistic clustering

algorithms. These approaches use random projection to generate multiple subsets into a lower

dimension from the original dataset, and then some method of integration is used across the soft

clustering results obtained on all projected datasets. Among these random projection based fuzzy

clustering approaches, the most recent approaches [72, 73] require less memory and run faster than

earlier approaches [71, 82]. However, the ensemble algorithms developed in [72, 73] still require

very large amounts of space for storing a big affinity matrix; moreover, they take a lot of time to

cluster the affinity matrix.

This chapter proposes a new, simple, and efficient random projection based ensemble frame-

work using a cumulative agreement scheme to aggregate multiple fuzzy membership matrices

based on their quality. Cluster Validity Indices (CVIs) are used to determine the quality of con-

sensus partitions. This framework eliminates the need of a final time-consuming clustering step

such as the ones reported in [71–73, 82] to obtain output partitions. The ensemble approach

in our framework combines fuzzy partitions in a sequential manner, thus avoiding the complex-

ity required by simultaneous aggregation of the suite of fuzzy partitions produced by clustering

many random projections of the high-dimensional data. Our method, which we called Cumu-

lative Agreement FCM (CAFCM), scales linearly in the number of data points and the number

of repetitions, making our random projection based ensemble approach feasible for large, high-

dimensional datasets.

3.2 Related Work

This section reviews existing random projection based cluster ensemble methods for high-

dimensional data clustering and agreement based combination schemes.

3.2 Related Work 69

3.2.1 Random Projection Based Ensemble Approaches

Several ensemble approaches have been proposed for high-dimensional data clustering which

are based on RP and FCM. The main idea of the existing approaches is as follows; First, multiple

downspace datasets {Yr}Q
r=1 are generated in a fixed lower dimension Rq using RP, where Q is the

number of RPs. Then, FCM clustering is performed on each downspace copy to obtain Q fuzzy

partitions, e.g., Ur = FCM (Yr), where Ur ∈M f cN . These output partitions {Ur}Q
r=1 are aggregated

using an ensemble scheme. The final output partition is typically obtained by performing soft

clustering on the rows of an aggregated matrix.

Apparently, the first cluster ensemble approach that used random projection was proposed

in [82], in which GMM/EM clustering was used to obtain probabilistic partitions P∈M f cN , where

p(c|i,θ) is the probability of point i being in cluster c under a model θ . Subsequently, a similarity

matrix Mi was computed between two joint probability distributions for each downspace dataset.

The final similarity matrix M was obtained by averaging the Mis, and then the final clustering

output was obtained by applying a hierarchical clustering algorithm, called complete linkage (CL),

on the aggregated similarity matrix M.

A similar approach using FCM for fuzzy clustering (EFCM) was used in [71] to find the

significant genes in DNA microarray data. Random projection was used to reduce the data di-

mensionality. Then, the FCM clustering algorithm was employed on each downspace dataset to

generate membership matrices Ur ∈M f cN . Then for each r, a similarity matrix Mr was computed

as Mr = UT
r Ur ⊂RN×N . Then, an aggregated similarity matrix (M) was calculated by averaging

the Q Mrs across multiple projection runs. The distance matrix D = 1−M was computed, and

then FCM was performed on the rows of D ⊂RN×N to obtain a final membership matrix.

Both of the above approaches have space complexity O(N2) for storing the similarity matrix

(M). There is a time complexity of O(N2log(N)) in applying complete linkage (GMM/EM-based

approach) and O(dlNc2) in applying FCM (the EFCM approach) on D ⊂ RN×N , where N is

number of data points, d is the dimensions of the matrix on which clustering is applied (for EFCM

approach, d =N), c is the number of clusters, and l is the number of iterations used by FCM. There

is additional time complexity of O(cQN2) in the EFCM approach due to computing the product

of the Q partition matrices and their transposes. Therefore, both of these algorithms are limited

to applications for which the number of objects N is small (e.g., some thousands of samples), and

70 Clustering High-Dimensional Data using Cumulative Aggregation on Random Projections

the original dimension p of the upspace data is large (e.g., more than tens of thousands). As N

increases, the EFCM approach becomes intractable for big data.

To address the limitations of these two approaches for big data clustering, Popescu et al. [72]

proposed a new method, RPFCM-A, that began with the FCM clustering of random projec-

tions of the data. The resultant membership matrices {Ur}Q
r=1 were concatenated as Ucon =

[UT
1 |UT

2 |....|UT
Q], and the final membership partition was obtained by applying FCM to the rows

of the aggregated matrix Ucon ⊂RN×cQ. Concatenating Q partitions of N× c dimension by stack-

ing them along the element dimension results in an N× cQ matrix which is significantly smaller

than Mr (used in EFCM). This approach eliminates the time complexity spent computing products

of the membership matrices and their transposes. Thus, it seems more suitable than the EFCM

based approach. However, it still requires the multiplication of the concatenated matrix with its

transpose when a crisp output partition is desired. Moreover, this scheme has time complexity of

O(dlNc2) when applying FCM to the concatenated matrix Ucon ⊂ RN×cQ, where d = cQ. If the

number of clusters c in the data and the number of downspace datasets Q are such that cQ > p; it

means the dimension of the agreement matrix becomes higher than the original dimension of the

dataset, which makes this approach unsuitable for high-dimensional data clustering.

Mao et al. [73] proposed a modified approach, RPFCM-B, based on spectral graph partition-

ing. Instead of considering the full agreement matrix Ucon, they performed the clustering on the

first c left singular vectors of Ûcon, where Ûcon = SV D(Ucon)⊂RN×c, which reduces the computa-

tional time as compared to RPFCM-A approach. However, there is space complexity of O(cNQ),

and computational complexity of O(N(cQ)2) for SVD and O(dlNc2) for the FCM clustering,

where d = c.

3.2.2 Agreement Based Combination Schemes

Among existing ensemble approaches, agreement based merging algorithms are popular due

to their simplicity and computational efficiency. The idea of the agreement based combination

scheme for fuzzy clustering was first introduced by Dimitriadou et al. [213], which is based on

minimizing the average squared distance between ensemble membership partitions and an optimal

output partition. This algorithm computes an approximate solution sequentially, in which, the best

cluster label permutation is obtained for each ensemble partition with respect to a reference parti-

3.3 Agreement based Aggregation Model 71

tion, followed by updating the reference partition through averaging. However, the determination

of the best cluster label for each cluster in a partition for large values of c is a time-consuming task

due to the computation of squared distances between partitions across each possible permutation

of cluster labels. The labelling correspondence problem is solved in [212] using a maximum-

likelihood estimate found with the Hungarian method [215], and then plurality voting is applied to

obtain an optimal partition. The Hungarian algorithm can be costly because it is O(c3). The most

recent work on consensus clustering employs a voting based mechanism [214], where the cluster

label assignment problem is addressed using a contingency matrix which requires less computation

time than that required by previous methods. The study in [214] was limited to crisp partitions.

This scheme may not enjoy the same performance for soft partitions, which are obtained from

projected datasets using random projection. This is because random projection produces highly

unstable and radically different outputs [82, 163].

Although a fair amount of work has been done on agreement based aggregation schemes,

only a few schemes are applicable to soft clustering. In our work, the use of FCM clustering

on the aggregated matrix to get a final output partition is eliminated using an agreement based

aggregation scheme which is computationally efficient and easy to implement. Fig. 3.1 compares

the three FCM based schemes in [71], [72] and [73] to our proposed CAFCM method.

In the next section, we discuss our agreement based scheme for aggregating the fuzzy parti-

tions {Ur}Q
r=1, obtained from FCM clustering on Q randomly projected datasets.

3.3 Agreement based Aggregation Model

The objective of an aggregation model is to find a partition U f , which represents a set of Q

fuzzy partitions {Ur}Q
r=1, the representation being optimal in some well-defined sense. We assume

that U f and the Ur are all the same size (c×N). Let u(r)
i and u(f)

i be the label vectors of data point

xi for the partitions Ur and U f , respectively. That is, u(r)
i is the i-th column of Ur, and similarly for

u_i(f). The average dissimilarity function h(Ur,U f) is chosen as an optimality criteria, and can be

expressed as the average squared distance between the Q columns of Ur and U f , as [213]

h(Ur,U f) =
1
N

N

∑
i=1
||(u(r)

i −u(f)
i)||

2
. (3.1)

72 Clustering High-Dimensional Data using Cumulative Aggregation on Random Projections

Upspace Dataset

 ! "#

Downspace

Dataset $% ! "&

D

Downspace

Dataset $' ! "& ………….
Downspace

Dataset $(! "&

Membership

matrix)% * +,-.

Membership

matrix)' * +,-. ………..
Membership

matrix)(* +,-.

Random

Projection Random

Projection

Random

Projection

Random

Projection

FCM FCM FCM FCM

D= 1 /
%

0
2
34%
(

)3
5)3

)-67 = [)%
5)'

5 8 8 |)(
5] Cumulative

Agreement +CVI

FCM

)9:;<

FCM

)>?:;<@A

SVD

);A:;< [Proposed]

)>?:;<@B

FCM

C)DEF GHIJKL D KIFMNOPJ QRDLEJKS

Figure 3.1: Four methods (including CAFCM (proposed)) of ensemble FCM clustering using
random projection

The computation in equation (3.1) measures the similarity between Ur and (the unknown solution)

U f on the assumption that the c clusters in Ur and U f are "aligned", i.e., the rows of Ur and U f

represent the clusters in the same order. This is the so-called "registration problem" in clustering,

and care must be taken to ensure that all of the partitions being aggregated are aligned in this sense.

This problem is exacerbated when the partitions are fuzzy. We want to relabel the Q Ur’s so that

they are aligned. This ensures that they will be aligned with the unknown U f .

One way to approach this problem is to let Πb(Ur) represent the mapping of partition Ur to

an optimally relabelled partition Ur,b with respect to some base (or core) partition Ub. Then, an

optimal partition can be obtained as the solution to [213],

U f = argmin
Ub∈M f cN

(
1
Q

Q

∑
r=1

h(Πb(Ur),Ub)

)
. (3.2)

3.3 Agreement based Aggregation Model 73

The solution of this minimization problem in [213] gives u(f)
i as the arithmetic mean of u(r)

i over

all partitions. In order to obtain the best cluster label permutation for each ensemble partition, the

squared distance (minimization) between the ensemble and base partitions was chosen as mapping

Πb(Ur). A contingency weight matrix based mapping scheme was proposed in [214] as a solution

of (3.2). These solutions are not effective in combining multiple fuzzy partitions which are ob-

tained using random projections. Our experiments with this method did not show very promising

results. So, we turned to another approach, which effectively combines fuzzy partitions, obtained

using RPs, based on their quality, as measured by cluster validity indices.

The concept behind agreement based ensemble approach is that pairs of points that stick to-

gether (appear in the same cluster) in most or all of the individual partitions should also stick

together in the final ensemble partition. Suppose the number of clusters cr for individual partitions

Ur is randomly selected within some range {cmin,cmax}. The intuition underlying our approach is

that the pairs of points that are members of a cluster for higher values of c should be considered

to be more strongly associated to each other than pairs of points which are together in a cluster at

a smaller value of c.

The Q partitions obtained by applying FCM clustering to Q random projections will have dif-

ferent information content (quality). The best quality partition, which has maximum information

content about the cluster labels distribution, is chosen as the base partition, Ub, in the first step

of the aggregation. Assuming that no prior knowledge for the selection of the base partition and

the "true" number of clusters is available, an internal CVI is used to choose the base partition

(discussed in the next section).

The remaining Q− 1 partitions are ranked in decreasing order of quality based on their rela-

tionship to the base partition, and are combined sequentially based on their rank. The objective

of this scheme is to secure the strongest agreement between the highest ranked partitions in the

queue with the base partition. In this way, low-quality partitions will have minimal effect on the

quality of the overall output partition. Minor variations in ranking are not expected to impact the

performance of this scheme, because using an ordered sequence based on decreasing quality ef-

fectively integrates the good and bad fuzzy partitions, and decreases the effects of bad partitions

on the overall output. If the base partition is of poor quality or there is major variation in ranking

(for example, a few poor-quality partitions are in the top five partitions in the CVI queue), then

74 Clustering High-Dimensional Data using Cumulative Aggregation on Random Projections

the performance may deteriorate. At the other extreme, if all Q partitions are of roughly the same

quality, then the selection of the base partition and ranking of the remaining partitions will not

have a significant effect on the output partition.

In the next section, we discuss the use of CVIs to achieve the best performance for CAFCM.

3.4 Quality of Consensus Partitions

The projected datasets can be drastically different from each other due to the random mapping

from upspace to downspace. Consequently, clustering on these different downspace datasets with

any algorithm may result in output partitions of different quality. In our work, a CVI is used to

determine the quality of partitions. A CVI can be used to identify the "best" member amongst a

set of multiple partitions (where best means, with respect to the CVI in use). A detailed analysis

and discussion on various internal and external CVIs are provided in Chapter 2 (Section 2.4).

The quality of the output partition U f constructed by CAFCM depends on the quality of the

base partition Ub, which is chosen in the initialization phase. The fuzzy partition from the set

{Ur}Q
r=1, which best preserves the structure of the ground truth partition of labeled data will be

taken as the base partition (we use internal CVI to find the best partition (explained in subsequent

paragraphs)). The intuition behind using the best member from the set of ensemble partitions as

the base partition is that the output partition U f should contain the maximum amount of informa-

tion about structure in the data that is present in the best quality partition amongst all ensemble

partitions. Most importantly, this will eventually lead us to a method for identifying Ub for the

unlabeled data case.

The quality of individual fuzzy partitions compared to a ground truth (labeled data) partition

can be determined using a soft external CVI. Let the quality of any partition Ur with respect to

the ground truth partition Ugt , using an external soft CVI Vexts , be denoted as Vexts(Ur|Ugt), where

subsubscript ”s” means soft. Based on the optimality of Vexts(Ur|Ugt), the Q ensemble partitions

can be ranked in descending order of quality such that

Vexts(U(1)|Ugt)≥ Vexts(U(2)|Ugt)≥ ...≥ Vexts(U(Q)|Ugt), (3.3)

where parenthetical subscripts indicate the permutation of the original indices that results in the

3.5 Cumulative Agreement FCM (CAFCM) Algorithm 75

ordering shown in (3.3), and we assume without loss of generality that the CVI is max-optimal

(best is maximum). This gives a set of sorted partitions U
(exts)
sorted based on their quality with respect

to the external CVI Vexts . In real-world applications, the data is unlabeled so the ground truth

information, which is required to evaluate partition quality based on (3.3), is not available. In this

case, a question that must be answered is: can internal CVIs (Vints) be used to achieve similar

rankings for a set of partitions U
(ints)
sorted? Internal/external (I/E) matching analysis is discussed

in Section 3.6 to determine whether the same base partition and similar ranking of the sorted

partitions, suggested by an external CVI, can be obtained using internal CVIs.

Assuming that similar sets of partitions U
(ints)
sorted = U

(exts)
sorted can be obtained using an internal

CVI, the best quality partition for unlabeled data, U(1) from U
(ints)
sorted , can be chosen as the base

partition Ub. Using the base partition in Algorithm 6, chosen by this criterion, results in an output

partition U f , which is an aggregation of the ensemble of inputs that is optimal with respect to the

chosen CVI. This minimizes the average dissimilarity between ensemble matrices and the best

quality partition, which best preserves apparent cluster structure or information about X . Next, we

discuss the proposed framework, CAFCM.

3.5 Cumulative Agreement FCM (CAFCM) Algorithm

Suppose we have a set of ensemble partitions Usorted = {U(r)}Q
r=1, each partition having cr

clusters, ranked according to (3.3) in decreasing order of their quality with respect to a specified

CVI. Let the best (first) partition U(1) in Usorted have c clusters and take U(1) =Ub. The partitions

{U(r)}Q
r=2 are designated as voting partitions with respect to Ub. The entries of each column vector

of membership matrix U(r) ∈ M f crN represent the degree of membership of that object in each

cluster (rows), and sum to 1, whereas, in the Moore-Penrose pseudoinverse U−1
(r) ∈ M f crN , each

column vector turns into the row (cluster) vector {ci}cr
i=1 whose entries sum to 1 [216]. These

values can be interpreted as the weight of each data point (rows) in cluster (columns) vector ci.

Multiplying the pseudoinverse of U(r) with base partition Ub gives the weight matrix Wr,b ⊂Rc×cr ,

Wr,b =UbU−1
(r) . (3.4)

76 Clustering High-Dimensional Data using Cumulative Aggregation on Random Projections

Due to the pseudoinverse U−1
(r) in the weight matrix calculation, the entries in Wr,b do not lie in

the range [0,1]. The relabelling of partition U(r) against the base partition Ub is achieved by

multiplying U(r) with this weight matrix Wr,b, which gives the transformed partition Ur,b as

Ur,b =Wr,bU(r). (3.5)

The degrees of membership in the transformed partition Ur,b correspond to degrees of memberships

in U(r), which are scaled by the entries of Wr,b. This accomplishes the vote by U(r) to the base

partition Ub. The ensemble approach in [214], that computes the weight matrix W 1 as

W =UbUT
(r), (3.6)

is a special case of approach (3.4) (suitable for fuzzy partitions).

Both approaches are demonstrated in Example 1 with a base partition Ub and an ensemble

partition U(r). The mutual information between the transformed and the base partition is measured

using the soft Normalized mutual information index (NMI) VNMIs [170] . It can be inferred from

the NMI values in Example 1 that Ur,b contains more mutual information with respect to the base

partition Ub, than U (obtained using (3.6) and (3.5)).

Example 1. Consider a fuzzy base partition Ub of size 3×4 and an ensemble fuzzy partition U(r)

of size 2×4, as given below:

Ub =


0.8 0.9 0.0 0.1

0.1 0.1 0.9 0.1

0.1 0.0 0.1 0.8

 ,U(r) =

0.6 0.7 0.1 0.1

0.4 0.3 0.9 0.9



The weight matrix Wr,b, computed using (3.4), and the matrix W, computed with (3.6), are as

1The columns of weight matrix, W , are normalized in [214] such that wi j ∈ [0,1], and ∑
cr
j=1 wi j = 1.

3.5 Cumulative Agreement FCM (CAFCM) Algorithm 77

follows:

Wr,b =


1.35 −0.09

−0.15 0.57

−0.20 0.52

 ,W =


0.74 0.27

0.15 0.39

0.11 0.34

 ,

which gives the corresponding transformed partitions Ur,b and U, using (3.5), as:

Ur,b =


.78 .92 .05 .05

.14 .06 .50 .50

.08 .02 .45 .45

 ,U =


.56 .60 .32 .32

.24 .22 .36 .36

.20 .18 .32 .32

 ,

VNMIs(Ur,b|Ub)=0.2178, VNMIs(U |Ub)=0.0217.

When multiplying the partition U(r) with weight matrix Wr,b, each row vector {ci}cr
i=1 of U(r)

votes for each of the clusters {c j}c
j=1 of Ub, with weights wi j from the cumulative vote weight

matrix Wr,b. In the general case, each partition U(r) from Usorted , casts its vote with Ub this way in

decreasing order of their quality in a sequential manner. Following [213], the base partition U (i)
b at

iteration i is calculated by averaging the last base partition U (i−1)
b with transformed partition U (i)

r,b .

It is evident from (3.4) and (3.5) that Ur,b, and in turn U f , will have the same number of

clusters as the base partition Ub. If the number of clusters cr for each ensemble partition is chosen

randomly from cmin to cmax, the criterion of selecting the base partition based on the CVI ranking

(refer to Section 3.4) does not always capture the most ’meaningful’ information i.e., true number

of clusters in the base partition. The problem of finding the true or best number of clusters,

using CVIs, is well addressed in the literature. In our work, each ensemble partition having the

best number of clusters cr is obtained using a chosen CVI. For each downspace dataset, FCM

clustering is performed with the number of clusters varying from cmin to cmax. Depending on the

evaluation of the CVI, the ensemble partition Ur having the CVI-best number of clusters, cr is

obtained for each downspace dataset.

Our CAFCM algorithm for high-dimensional data clustering using random projection and

cumulative agreement based aggregation with FCM clustering is presented in Algorithm 6. In Step

78 Clustering High-Dimensional Data using Cumulative Aggregation on Random Projections

Algorithm 6 CAFCM: Cluster Ensemble for FCM Clustering with Random Projection
Input: Dataset X ⊂RN×p

{cmin,cmax}- cluster range (an underestimated and an overestimated value of the number of clus-
ters)
q- downspace dimension, Q- number of random projections
Output: Fuzzy partition U f .
Step 1: Dataset generation in downspace.

for r = 1 to Q do
Generate downspace datasets Yr ⊂ RN×q using Y = 1√

q XT , where T ⊂ Rp×q is the random matrix
built using (2.9).
end for

Step 2: Run FCM on each Yr, obtaining Ur ∈M f cN : c = cmin to cmax.
Step 3: Get partitions {Ur}Q

r=1 ∈M f crN , each partition having a CVI-best cr number of clusters,
choosing each cr with an internal cluster validity index, Vints .
Step 4: Get a set U of sorted partitions {U(r)}Q

r=1 ∈ M f crN , as given in (3.3), using the cluster
validity index, Vints .
Step 5: Assign the best partition U(1) (from Step 4) as the base partition, i.e., U (1)

b =U(1).
for i = 2 to Q do

Wi,b =U (i−1)
b U−1

(i)
Ui,b =Wi,bU(i)

U (i)
b = i−1

i U (i−1)
b + 1

i Ui,b
end for

U f =Ub.

1 of the Algorithm 6, multiple downspace datasets {Yr} are generated in fixed lower dimensions;

downspace Rq using random projection, as discussed in Chapter 2 (Section 2.3.5.12). In Step 2,

FCM clustering is applied to each downspace dataset Yr, with the number of clusters varying from

cmin to cmax. In Step 3, the partition Ur with the best number of clusters cr is obtained for each

downspace dataset, using a chosen CVI. This step gives Q fuzzy partitions, each having a CVI-

best number of clusters cr. In Step 4, these Q fuzzy partitions are ranked based on their quality as

in (3.3). In our experiments, the Normalized Partition Entropy (PEB) VPEBs [175] (see Eq. 2.16)

was chosen as an internal index in Steps 3 and 4. Step 5 corresponds to the cumulative agreement

based aggregation approach, as discussed in this Section. While FCM is part of the title of our

algorithm, this scheme applies without change when the ensemble of soft partitions is generated

by ANY fuzzy or probabilistic clustering algorithm.

The time and space complexity of the proposed aggregation approach and the three state-of-

the-art ensemble approaches that are used for comparison is shown in Table 3.1. Our aggregation

3.6 Experiments 79

Table 3.1: Time and space complexity of four FCM-based ensemble approaches

Ensemble Methods Time Complexity Space Complexity
EFCM [71] O(dlNc2)+O(cQN2), d = N O(N2)

RPFCM-A [72] O(dlNc2)+O(cQN2), d = cQ O(N2)

RPFCM-B [73] O(dlNc2)+O(N(cQ)2), d = c O(cNQ)

CAFCM (Proposed) O(NQc2) O(cN)

l is the number of iterations to termination, d is the dimensions of the matrix on which
clustering is applied, c is the number of clusters, N is the number of data points, and Q
is the number of random projections.

approach has time complexity of O(NQc2) for matrix multiplication and computation of pseu-

doinverse of the rectangular matrix [217]. The fast Moore-Penrose inverse method [217] was used

to compute the pseudo inverse of ensemble partition U(r). Therefore, the proposed aggregation

method has linear computational complexity in the number (N) of input samples. The CAFCM

approach has the minimal space complexity, O(cN), which is required to store the base partition

that is updated sequentially in each iteration.

3.6 Experiments

Five sets of experiments were performed. In the first experiment, the effect of using downspace

datasets generated by different RP distributions (2.9) and (2.10) on the output partition is dis-

cussed. In the second experiment, an internal CVI validation test was performed among all in-

ternal CVIs to choose the best ’cr’ corresponding to each RP, and subsequently, a best internal

CVI is chosen. In the third experiment, an Internal/External (I/E) agreement test was performed

to determine whether the partitions ranking, achieved by a soft external CVI, can also be obtained

using a soft internal CVI. Based on the agreement performance of each internal CVI against the

soft external CVI, one best internal CVI is chosen to get sorted partitions for each dataset in our

ensemble approach. In the fourth experiment, the effect of altering the ordering sequence of en-

semble partitions on the output partition for CAFCM is studied. In the last experiment, different

cluster ensemble approaches for high-dimensional data clustering are compared. The experiments

were performed in the MATLAB environment on a normal PC with the following configurations;

OS: Windows 7 (64 bit); processor: Intel(R) Core(TM) i7-4770 @3.40GHz; RAM: 16GB.

80 Clustering High-Dimensional Data using Cumulative Aggregation on Random Projections

3.6.1 Datasets and Parameter Settings

The experiments were performed on the following datasets.

3.6.1.1 Synthetic datasets

Two synthetic datasets, each having N = 10000 data points in p = 1000 dimensions, were

constructed by drawing labeled samples from a mixture of three Gaussian distributions. GM1

is a well separated Gaussian mixture, while GM2 presumably has overlapping Gaussian clusters

because its means are closer than those in GM1. The properties of these synthetic datasets are

given in Table 3.2.

Table 3.2: Properties of two synthetic datasets GM1 and GM2

Component 1 2 3
Means

GM1 (−6,−6, ...,−6)1000 (0,0, ...,0)1000 (6,6, ...,6)1000

GM2 (−2,−2, ...,−2)1000 (0,0, ...,0)1000 (2,2, ...,2)1000

Standard deviations in all directions
GM1 (1,1, ...,1)1000 (2,2, ...,2)1000 (3,3, ...,3)1000

GM2 (1,1, ...,1)1000 (2,2, ...,2)1000 (3,3, ...,3)1000

3.6.1.2 Real datasets

Six publicly available real high-dimensional labeled datasets were chosen to demonstrate the

applicability of our approach. The details are as follows:

KDD CUP 99 [218]

We used a sample of KDD CUP 99, which contains a wide variety of internet attacks simulated

in a military environment. It consists of 494021 instances of 41 dimensional vectors, and each

vector is labeled to specify the attack type. All 41 features were normalized to the interval [0,1]

by subtracting the minimum and then dividing by the subsequent maximum so that they all had

same scale. This dataset contains 22 types of simulated attacks which fall into one of four main

categories [218].

3.6 Experiments 81

ACT [219]

This is a time-series dataset which contains data representing 19 activities such as sitting,

walking, jumping etc., captured by 45 motion sensors over a 5 minute window sampled at 25Hz.

Each activity is performed by 8 different subjects. The 5-min signals are divided into 5-sec seg-

ments so that 480 (= 60×8) signal segments are obtained for each activity. In each segment, there

are a total of 125 (= 5sec ×25Hz) rows and 45 columns. We concatenated each segment data to

obtain 9120 (= 480× 19) instances in 5625 dimensions. All features were normalized to [0,1]

using the method discussed earlier.

Forest Covertype [220]

These data consist of 54 cartographic features obtained by the U.S. Geological Survey and U.S.

Forest Services, collected from a total of 581012 (30m×30m) cells, which were then categorized

into 7 forest cover types. This is a challenging dataset for any clustering algorithm as it contains ten

continuous features, and 44 binary features (four wilderness types and 40 soil types). Because of

the different nature of 54 features, we started developing our own distance metric using Euclidean

and Hamming distance with normalized continuous feature (within [0,1]) that accounts for these

differences to give similar weight to all the features. But the clustering results were slightly worse

than using Euclidean distance alone. After several experiments, we discovered that the binary

features do not add too much value in discriminating the forest Cover type. Using the Euclidean

distance with scaled continuous features, with all binary features, yielded the best results in our

experiments, therefore, Euclidean distance model was used for Forest dataset. The continuous

features were normalized to the interval [0,1].

MNIST [221]

This dataset is a subset of a large set of handwritten images from the National Institute of

Standards and Technology (NIST). It contains a total of 70000 784 (= 28× 28) dimensional

binary images of the digits 0 to 9. The main problem with handwritten images is that a single

character can be written in many often quite different ways. This causes overlapping clusters in

the data and makes it challenging for clustering.

82 Clustering High-Dimensional Data using Cumulative Aggregation on Random Projections

HAR [222]

This time-series dataset contains 10299 instances of 6 daily activities performed by 30 sub-

jects, while carrying a waist-mounted smartphone with embedded inertial sensors. It is a prepro-

cessed dataset which has 561 features with time and frequency domain variables.

CIFAR 10 [223]

This dataset contains 60000 32x32 color images in 10 classes, with 6000 images per class.

The classes are mutually exclusive. We concatenated each image into a 3072 = (32× 32× 3)

dimensional feature vector.

3.6.1.3 Parameters

The model and error norms were both Euclidean for FCM except for the two time-series

datasets. The Cosine distance was used as the model norm for HAR and ACT, based on its per-

formances in previous studies [72]. This was done by replacing the Euclidean norm by the Cosine

distance in the FCM function. In this case, the resultant algorithm is not an alternating optimiza-

tion since the FCM objective function has been abandoned. So this is an instance of alternating

cluster estimation. The number of random projection (RPs), Q is chosen as 30, unless stated oth-

erwise. The weighting exponent m = 2, termination threshold ε = 0.000001, and the number of

maximum iterations l is chosen as 100 for the MATLAB implementation of FCM. Termination

occurs when the absolute value of the difference between successive values of the FCM objective

function using either distance is less than ε .

3.6.2 Evaluation Criteria

Adjusted Rand Index

The soft version [177] of the adjusted rand index, ARIs (Hubert and Arabie [53]) is used as

an external soft CVI. This index VARIs(U |Ugt) measures the degree to which a fuzzy partition U

matches a crisp Ugt . Higher values indicate a better match, so VARIs is a max-optimal CVI. This

3.6 Experiments 83

index maximizes at 1 when U =Ugt , and its minimum may be negative when its expected value is

not zero.

The Normalized Partition Entropy (PEB) VPEBs [175], Partition Index (SC) VSCs [224], Nor-

malized Partition Coefficient (PCR) VPCRs [174], and Xie-Beni index (XB) VXBs [50], are used for

internal CVI comparisons. More details about these CVIs are given in Chapter 2 (Section 2.4).

Based on the min or max-optimality of internal CVIs, a set U of partitions, ordered in decreasing

quality as in (3.3), is obtained for each internal CVI Vints . The performance of each internal CVI

Vints against the external CVI VARIs is evaluated using two metrics:

Kendall’s rank correlation coefficient [225]

Let Eexts and Eints be position vectors of Vexts and Vints respectively, which contain the ranking

of sorted (descending order of quality) partitions. Kendall’s coefficient τ measures the similarity

between orderings in Eexts and Eints , which is given as [225]:

τ =

Number of

concordant pairs −

Number of

discordant pairs
Q(Q−1)/2

. (3.7)

Kendall’s τ is valued in [−1,1], where 1 is for perfect agreement between two rankings, and −1,

for perfect disagreement.

Position of the base partition

The selection of the best quality partition to be the base partition is important in our approach.

Let the position of the best partition U(1) (first in Eexts) in Eints be denoted as eU(1) , then a position

metric VUb is used to evaluate how accurately an internal CVI determines the position of the base

partition in Eints , thus

VUb = 1−
eU(1)−1

Q−1
. ∈ [0,1] (3.8)

The integer eU(1) is the position of the partition in the internal ranking Eints whose partition matches

84 Clustering High-Dimensional Data using Cumulative Aggregation on Random Projections

U(1) = Ub, so eU(1) can take any value from 1 to Q. Suppose eU(1) = 1, so that U(1) is the best

partition in both rankings Eexts and Eints , then VUb = 1. On the other hand, suppose eU(1) = Q,

then VUb = 0, So the range of VUb is [0,1], maximum at 1 when the best external and best internal

partition are the same; and minimum at 0 when the best external partition is the worst internal

partition. The higher the value of VUb , the higher the ranking of the best partition U(1) in Eints .

The evaluation criteria to compare the performances of different ensemble approaches are:

Accuracy

The similarity of the final clustering solution U f with respect to ground truth partition Ugt is

measured using VARIs(U f |Ugt), for all four fuzzy ensemble approaches.

Run-Time

Running time is also an important criterion for comparison, which is related to the scalability

of an algorithm. For each dataset, downspace datasets were pre-generated using random projec-

tion, and the same projection matrices were used for all algorithms. The number of RPs Q and

other parameters were kept fixed for all approaches. We also compare the four fuzzy ensemble

approaches based on the aggregation time Tagg, required to get a final output partition U f from the

Q ensemble partitions.

3.6.3 Selection of Random Matrix T for Downspace Data (Y) Generation

An experiment was conducted to demonstrate that either of equations (2.9) or (2.10) can be

used as the basis for random projection. Using datasets GM1 and GM2 with distributions (2.9)

and (2.10), downspace datasets {Yr} (q = 100) were generated and used in CAFCM framework

for ensemble clustering. The average (10 trials) execution times for downspace data generation

and the corresponding soft adjusted rand indices VARIs for output partitions are shown in Table 3.3.

These values confirm that there is very little difference between the projections based on equa-

tions (2.9) and (2.10). As also shown in [156], both (2.9) and (2.10) are very simple probability

distributions and all mathematical operations required to compute Y = 1√
q XT are very efficient

3.6 Experiments 85

Table 3.3: The average VARIs and downspace data generation time for distribution (2.9) and (2.10)

Random Matrix\Datasets
GM1 GM2

VARIs Time (s) VARIs Time (s)
Distribution (2.9) 1.00 0.0266 0.90 0.0267
Distribution (2.10) 1.00 0.0265 0.90 0.0265

and easy to implement. Subsequently, distribution (2.9) was used to generate downspace datasets

in all the remaining experiments.

3.6.4 Internal CVIs Validation for Best ’cr’

The base partition should ideally contain the nominally "true" target value for the number of

clusters cgt , that are identified by Ugt . In this regard, the best-c validation test [171] was performed

using the four soft internal CVIs to estimate cgt in all datasets. The downspace dimension q was

chosen as 20. For the choices of ε = β = 0.25, and N = 10000, qo = 1591, so q is well below the

JL bound qo. In this experiment, FCM was performed on each downspace dataset by partitioning

the data at each value of c between {cmin,cmax}. The lower (cmin) and the upper (cmax) limits

were chosen such that they under- and over-estimated the possible number of clusters in the data.

The best quality partition, Ur, having cr clusters, was chosen using each CVI based on its min/max

optimality. This procedure was performed for each downspace projection, and the (round) average

of the ’best c’s was used as an estimate of the true number of clusters in the upspace data. In this

test, randomly chosen subsets of each upspace dataset were used for the big datasets.

Table 3.4 shows the estimated number of clusters in each dataset for each of the internal CVIs.

The value of the apparent2 true number of clusters cgt is shown in the second column of Table 3.4.

The values in the last row of Table 3.4 show the square root of the sum of squared errors (RMSE)

between cgt and the estimated values for each internal CVI. In this exercise, VSCs produces slightly

more reliable estimates of cgt than the other three CVIs, whilst VPEBs produces the second best

estimates of cgt . We remark that these conclusions are not generally applicable. You could test

many different CVIs and get different best results. Or you could change datasets and discover that

VSCs and VPEBs performed badly. And so on, ad infinitum. It can also be observed from Table 3.4

2We say apparent because it is well known that labeled data which contain c1 physically labeled subsets often
possess c2 6= c1 "best clusters" with respect to a given model and algorithm [41].

86 Clustering High-Dimensional Data using Cumulative Aggregation on Random Projections

Table 3.4: The average (20 trials) of the best ’c’s from all internal CVIs (Vints)

<Internal CVI> cgt <VPEBs> <VSCs> <VXBs> <VPCRs>
Synthetic Datasets

GM1 3 3.0 3.0 2.1 3.0
GM2 3 3.0 3.0 2 2.9

Real Datasets
MNIST 10 10.83 11.98 6 10.12
CIFAR 10 7.1 9.6 6.2 6.4
HAR 6 5.3 6.5 3 4.9

FOREST 7 4.8 6.7 4.2 4.4
ACT 19 18.8 21.5 17.1 18.2

KDD CUP 23 19.3 20.7 19.5 18.8
Root Mean Square Error 5.30 4.00 8.04 6.26

that VPCRs works best for MNIST, VPEBs for ACT, while VSCs is best for rest of the datasets. The

performance of the CAFCM algorithm was tested using both VSCs and VPEBs in Step 3, and the

final results were very similar. Therefore, VPEBs was chosen as the best internal CVI based on this

and the I/E agreement test (next) for use in Steps 3 and 4 of CAFCM Algorithm.

3.6.5 The Internal/External (I/E) Agreement Test

In this experiment, we performed the Internal/External (I/E) agreement test, in which the per-

formance of an internal CVI is compared with the performance of an external CVI to assess

whether they both yield similar base partition and similar partition rankings or not [41, 167].

We compared the partition rankings and the base partition obtained using the external CVI (VARIs),

with the partition rankings and base partition obtained using each of the four internal CVIs. Among

these four internal CVIs, the CVI which determines the most similar partition ranking and base

partition obtained using the external CVI is chosen for use in our framework. Using this best inter-

nal CVI, we hope to achieve the desired partition rankings and base partition in the best possible

way when ground truth data are not available (the unlabeled case).

Partition rankings comparison

Step 3 of the CAFCM algorithm produces the Q ensemble partitions having best ’cr’ number

of clusters. The ranking of each ensemble of fuzzy partitions is established using the external

3.6 Experiments 87

CVI VARIs , and the four soft internal CVIs VPEBs , VSCs , VXBs , and VPCRs , based on the partition

quality. The partitions ranking, Eints , of each of the four soft internal CVIs, was compared with

the partitions ranking, Eexts , of soft external CVI, VARIs , for each dataset using the Kendall rank

correlation coefficient.

Base partition comparison

Besides the partition rankings, the selection of the base partition, Ub, is also important in

our framework. In this experiment, the position eU(1) of the base partition Ub, the best external

CVI partition (first in Eexts), in each internal CVI partition ranking Eints was used to compute the

position metric VUb for each internal CVI and for each dataset.

The values of τ and VUb were computed between rankings Eexts = {EARIs} and each ranking of

Eints = {EPEBs ,ESCs ,EXBs ,EPCRs}, using (3.7) and (3.8). This procedure was repeated 5 times for

each dataset.

Table 3.5: Average Values (5 trials) of Kendall’s τ and (VUb) of internal CVIs against VARIs .

<Internal CVI> <VPEBs> <VSCs> <VXBs> <VPCRs>
Synthetic Datasets

GM1 1.00 (1.00) 0.99 (1.00) 0.05 (0.96) 1.00 (1.00)
GM2 0.89 (1.00) 0.99 (1.00) 0.01 (0.41) 0.89 (1.00)

Real Datasets
MNIST 0.36 (0.98) 0.11 (0.95) 0.01 (0.66) 0.23 (0.97)

CIFAR 10 0.25 (0.98) 0.42 (0.98) -0.06(0.55) 0.28 (0.98)
HAR 0.68 (1.00) 0.26 (0.98) 0.06 (0.96) 0.58 (0.99)

FOREST 0.17 (0.98) 0.11 (0.98) 0.10 (0.86) 0.15 (0.96)
ACT 0.65 (1.00) 0.36 (1.00) 0.17 (0.94) 0.64 (1.00)

KDD CUP 0.19 (0.93) 0.09 (0.28) 0.10 (0.96) 0.18 (0.93)
Column Average 0.52 (0.98) 0.41 (0.89) 0.04 (0.78) 0.49 (0.98)

Table 3.5 shows the averaged values of τ and VUb (in parentheses) corresponding to the order

of the Q fuzzy partitions established by each internal CVI for each dataset. The notation <CVI>

in the first row of the table indicates the basis of the τ and VUb values that are displayed in each

column, not to be confused with the value of the CVIs, which are NOT shown. The values in each

column are formatted with just enough resolution so that the optimal values can be seen.

Apparently, all of the CVIs except VXBs perform well for the two synthetic datasets, which

88 Clustering High-Dimensional Data using Cumulative Aggregation on Random Projections

Table 3.6: The effects of ordered versus random aggregation of ensemble partitions (tabulated
values are the 10 trial average of VARIs).

Sequence Ordering of Partitions GM1 (q = 30) GM2 (q = 100)
Decreasing order of quality 1.00 0.90

Arbitrary order 0.98 0.85

means three internal CVIs are able to achieve almost the same ranking of partitions as obtained by

the external CVI VARIs . The τ value of all four CVIs degrades for the real datasets. However, the

(VUb) values of VPCRs and VPEBs are high for all real datasets, which means they reliably choose the

best quality partition from the Q ensemble partitions. The last row of Table 3.5 contains column

averages, and it shows that overall VPCRs and VPEBs perform well (with a very slight advantage to

VPEBs), while VXBs performs worst.

Based on this overall performance of four internal CVIs in determining partition rankings and

the base partition, the performance of VPEBs (internal CVI) agrees best with the performance of

the soft external index VARIs . Therefore, VPEBs is chosen to determine the base partition and a set

of sorted partitions, required in Step 4 of CAFCM Algorithm. The CVI VPEBs is also used in Step

3 of Algorithm 6 to obtain the ensemble partitions, having the best ’cr’ number of clusters.

3.6.6 Effect of Ordering Sequence of Partitions on Output Partition

To demonstrate the effect of altering the ordering of the ranked queue, as shown in (3.3), on

the output partition, an experiment was performed using datasets GM1 and GM2 considering two

cases viz., where the sequence of ensemble partitions is (i) ordered and (ii) arbitrary. First, we

obtained a base partition for each dataset in the manner described. Table 3.6 compares the VARIs

values of the output partition obtained when the ensemble partitions are combined in a sequential

manner based on their CVI quality as in (3.3) to the VARIs values of the output partition obtained

when the Q−1 remaining partitions are combined with the base partition in an arbitrary order. The

average VARIs values (10 trials) in Table 3.6 make it clear that combining the remainder partitions

according to their CVI rank yields better VARIs values (and hence, a better output partition) than an

arbitrary combination.

3.6 Experiments 89

3.6.7 Comparison of Different Cluster Ensemble Methods

In this experiment, we compare the performance of our approach with three existing ensemble

approaches for high-dimensional data clustering using random projection with FCM. The perfor-

mance of all four cluster ensemble approaches is discussed in 5 data groups (G1-G5), based on

the different attributes of datasets.

Synthetic datasets of different downspace dimensions q (G1)

For synthetic datasets GM1, GM2, experiments were performed for downspace dimension

q = 10,20,30,50,100. These q values are corresponding to rogue random projections, which are

chosen irrespective of ε and β (below the JL bound) as mentioned in Section 3.6.4. The average

VARIs values and ensemble time Tagg of all approaches over 5 trials for GM1 and GM2 are shown in

Table 3.7. The best performance approach for each downspace dimension is highlighted in bold. It

is evident from the values in Table 3.7 that even with q = 10, all the ensemble approaches achieve

very good clustering results (VARIs > 0.9) for the GM1 dataset. This is because the clusters in this

dataset are (probably) well separated from each other. EFCM and RPFCM-B get perfect results

(VARIs = 1) for q = 10 and 20. The CAFCM approach performs reasonably well (VARIs > 0.9) in

significantly less computation time, and achieves perfect results for q = 30. It can be concluded

from Table 3.7 that the CAFCM approach is 10−100 times faster than the other three approaches.

All four approaches get perfect results for q = 30 and above, so they are not compared for higher

downspace dimensions.

For the GM2 dataset, CAFCM performs significantly better than the other three approaches

for all downspace dimensions except q = 10. The weak performance of CAFCM for q = 10 may

be because of the overlapping clusters present in the GM2 dataset. Due to this, the distribution

of points among clusters changes in each consensus partition, which in turn, causes the weak

agreements of points for any cluster across all consensus partitions. Whereas for q > 10, more

features make a stronger agreement of each data point for any cluster. The CAFCM algorithm

performs aggregation in negligible time compared to the other three approaches, for both synthetic

datasets. This is because, unlike other ensemble approaches, CAFCM does not use FCM on a final

aggregation matrix to get the final membership matrix.

90 Clustering High-Dimensional Data using Cumulative Aggregation on Random Projections

Table 3.7: Average VARIs values and ensemble time Tagg (in s) for all approaches on the GM1 and
GM2 datasets.

EFCM RPFCM-A RPFCM-B CAFCM
q VARIs Tagg VARIs Tagg VARIs Tagg VARIs Tagg

GM1 Dataset cr ∈ {2,8}
10 1.00± 0.0 68.9 0.97± 0.0 0.36 1.00± 0.0 0.15 0.94± 0.0 0.01
20 1.00± 0.0 70.9 0.99± 0.0 0.39 1.00± 0.0 0.13 0.99± 0.0 0.01
30 1.00± 0.0 71.9 1.00± 0.0 0.40 1.00± 0.0 0.16 1.00± 0.0 0.02

GM2 Dataset cr ∈ {2,8}
10 0.76± 0.02 89.6 0.40± 0.02 0.18 0.75± 0.12 0.15 0.61± 0.01 0.00
20 0.60± 0.10 83.2 0.43± 0.15 0.54 0.45± 0.26 11.7 0.68± 0.02 0.01
30 0.79± 0.18 82.4 0.47± 0.03 0.52 0.30± 0.01 11.03 0.83± 0.01 0.02
50 0.90± 0.02 71.1 0.55± 0.16 0.54 0.70± 0.22 0.12 0.90± 0.01 0.02
100 0.85± 0.19 73.1 0.75± 0.23 0.47 0.63± 0.29 0.11 0.90± 0.02 0.02

In order to compare the performance of all four ensemble methods with respect to stability,

the standard deviation (rounded off) of VARIs values with average values are shown in Table 3.7.

CAFCM seems to be the least variable among all the approaches. This might be due to the smooth-

ing effect from sequential averaging of the transformed partitions and base partition (refer to Al-

gorithm 6). The EFCM algorithm seems to be the most stable of the other three approaches.

Synthetic dataset GM2 for different number of RPs, Q (G2)

We conducted another experiment for the GM2 dataset for different numbers of RPs, Q (en-

semble size). For datasets having high diversity (overlapping clusters) like GM2, increasing Q

may be beneficial because there will probably be much more diversity in the random projections

due to the mixed clusters in the upspace. Table 3.8 shows the average VARIs values and ensemble

time (5 trials) of all approaches for a fixed value of q(= 40). It can be noted that CAFCM gives

the best performance for all Qs except Q = 5 and 10. As expected, the adjusted Rand index (VARIs)

increases for all approaches as Q increases. Unlike existing approaches, increasing the ensem-

ble size has a negligible effect on the computational time of CAFCM. The maximum speedup is

CAFCM:EFCM is 4200 : 1 at Q = 50, and the minimum speedup is CAFCM:RPFCM-B 11 : 1 at

Q = 20.

3.6 Experiments 91

10 20 30 50 100
Reduced Dimension (q)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

A
dj

us
te

d
R

an
d

In
de

x
(A

R
I s)

EFCM RPFCM-A RPFCM-B CAFCM

10 20 30 50 100
Reduced Dimension (q)

10-2
10-1

100
101

102
103

104

A
gg

re
ga

tio
n

T
im

e,
 T

ag
g (

s)

EFCM RPFCM-A RPFCM-B CAFCM

(a) HAR Dataset, cr ∈ {3,10}

10 20 30 50 100
Reduced Dimension (q)

-0.05

0

0.05

0.1

0.15

A
dj

us
te

d
R

an
d

In
de

x
(A

R
I s)

EFCM RPFCM-A RPFCM-B CAFCM

10 20 30 50 100
Reduced Dimension (q)

10-2
10-1

100
101

102
103

104

A
gg

re
ga

tio
n

T
im

e,
 T

ag
g (

s)
EFCM RPFCM-A RPFCM-B CAFCM

(b) ACT Dataset, cr ∈ {15,25}

10 20 30 50 100
Reduced Dimension (q)

0.005

0.01

0.015

0.02

0.025

A
dj

us
te

d
R

an
d

In
de

x
(A

R
I s)

RPFCM-A RPFCM-B CAFCM

10 20 30 50 100
Reduced Dimension (q)

0

30

60

90

120

150

180
200

A
gg

re
ga

tio
n

T
im

e,
 T

ag
g (

s)

RPFCM-A RPFCM-B CAFCM

(c) CIFAR Dataset, cr ∈ {4,16}

10 20 30 50 100
Reduced Dimension (q)

-1.7

-1.6

-1.5

-1.4

-1.3

-1.2

A
dj

us
te

d
R

an
d

In
de

x
(A

R
I s)

×10-4

RPFCM-A RPFCM-B CAFCM

10 20 30 50 100
Reduced Dimension (q)

0

20

40

60

80

A
gg

re
ga

tio
n

T
im

e,
 T

ag
g (

s)

RPFCM-A RPFCM-B CAFCM

(d) MNIST Dataset„ cr ∈ {4,16}

Figure 3.2: VARIs values (in left column) and Aggregation time Tagg (in right column) for different
downspace dimensions

92 Clustering High-Dimensional Data using Cumulative Aggregation on Random Projections

Table 3.8: Average VARIs values and ensemble time Tagg (s) for different number of RPs (Q) on the
GM2 dataset.

EFCM RPFCM-A RPFCM-B CAFCM
Q ARI Tagg ARI Tagg ARI Tagg ARI Tagg

5 0.56 75 0.43 0.12 0.45 0.12 0.52 0.00
10 0.69 70 0.44 0.17 0.60 0.12 0.65 0.00
20 0.66 88 0.43 0.40 0.70 0.11 0.74 0.01
30 0.62 98 0.58 0.66 0.71 0.13 0.79 0.02
40 0.63 97 0.41 0.85 0.74 0.16 0.85 0.03
50 0.80 126 0.62 1.08 0.82 0.18 0.89 0.03

10 20 30 40
Reduced Dimension (q)

0.6

0.65

0.7

0.75

0.8

A
dj

us
te

d
R

an
d

In
de

x
(A

R
I s)

RPFCM-A RPFCM-B CAFCM

10 20 30 40
Reduced Dimension (q)

0
200
400
600
800

1000
1200
1400
1600
1800
2000

A
gg

re
ga

tio
n

T
im

e,
 T

ag
g (

s)

RPFCM-A RPFCM-B CAFCM

(a) KDD Dataset, cr ∈ {15,25}

10 20 30 40
Reduced Dimension (q)

-0.01

-0.005

0

0.005

0.01

0.015

0.02

A
dj

us
te

d
R

an
d

In
de

x
(A

R
I s)

RPFCM-A RPFCM-B CAFCM

10 20 30 40
Reduced Dimension (q)

0

30

60

90

120

150

A
gg

re
ga

tio
n

T
im

e,
 T

ag
g (

s)

RPFCM-A RPFCM-B CAFCM

(b) FOREST Dataset, cr ∈ {3,15}

Figure 3.3: VARIs values (in left column) and Aggregation time Tagg (in right column) for different
downspace dimensions

3.6 Experiments 93

High-dimensional real datasets (ACT, HAR, MNIST and CIFAR) for different q (G3)

In this group, we discuss the performance on the real datasets ACT, HAR, MNIST and CIFAR,

which have relatively high-dimensions (in hundreds and thousands) as compared to the KDD CUP

and FOREST datasets, which have smaller upspace dimensions. For G3 datasets, the downspace

dimensions q = 10,20,30,50,100 were chosen. Line-plots are used to present the VARIs values of

all ensemble approaches for different downspace dimensions, which are shown in the left columns

of Figs. 3.2 and 3.3, whereas, the right columns in Figs. 3.2 and 3.3 shows the time performance

(on logarithmic scale) of all ensemble approaches for different numbers of downspace dimensions.

We did not apply EFCM to MNIST, CIFAR (as N > 50000) to avoid an out of memory error, and

its associated computational load. Therefore, the time performance for these datasets is shown on

a non-logarithmic scale. The minimum and maximum number of clusters in consensus partitions

is shown in the title of the figure for each dataset.

Figs. 3.2(a) and (b) show that CAFCM outperforms all other ensemble methods for the two

time-series datasets (HAR and ACT). For the image datasets (MNIST and CIFAR), the perfor-

mance of CAFCM is comparable to RPFCM-B, and outperforms RPFCM-A. The aggregation

time for CAFCM is quite small compared to the other three approaches, which agrees with our

time complexity analysis as discussed in Section 3.2.

KDD CUP and FOREST Covertype (G4)

The upspace dimensions for FOREST and KDD CUP are 41 and 54, respectively, so we chose

the downspace dimensions to be q = 10,20,30,40. For each of these datasets, the experiments

were performed on a subset of N = 100,000 instances. Consequently, the EFCM algorithm was

not applied on these datasets to avoid the associated computational load. The performance of

all ensemble approaches for these two datasets, is shown in Figs. 3.3 (a) and (b) respectively.

The CAFCM approach performs better than the other three ensemble methods for almost all of

the downspace dimensions. The CAFCM algorithm achieves near to best accuracy even with

q = 10 (25%) dimensions for these two datasets. The time performance in Fig. 3.3 (b) shows that

even for the large datasets, CAFCM takes negligible time for aggregation compared to the other

approaches.

94 Clustering High-Dimensional Data using Cumulative Aggregation on Random Projections

1k 2k 3k 4k 5k 10k 20k 30k 50k 100k

Number of Samples (N)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

A
g

g
re

g
a

ti
o

n
 T

im
e

,
T

a
g

g
 (

s
)

EFCM RPFCM-A RPFCM-B CAFCM

Figure 3.4: KDD CUP Dataset: Aggregation time Tagg for different number of samples

Performance of all ensemble approaches for different number of samples (N) (G5)

In order to demonstrate the applicability of our algorithm for big data, the time performance

of each ensemble approach for different number of samples of the KDD CUP dataset is presented

in Fig. 3.4 (on logarithmic scale). EFCM tests were limited to N = 20,000 input samples to

avoid the large computational burden. CAFCM takes just a few seconds for even N = 100,000

samples. The maximum computational time (for 100,000 samples) of CAFCM is no more than

the minimum time (for 10,000 samples) taken by the other approaches.

3.7 Summary

This chapter introduces a simple and computationally efficient framework called CAFCM

for high-dimensional data clustering, which employs FCM clustering on an ensemble of random

projections. Three other state-of-the-art ensemble approaches that also use FCM clustering are

compared with CAFCM in this chapter. These approaches require large amounts of space for

storing a big affinity matrix. In addition, they also require FCM clustering on a large affinity

matrix to get the final partition, so they incur much larger computation time than CAFCM does.

The CAFCM algorithm eliminates the complexity involved in dealing with a final affinity ma-

trix using a cumulative agreement based fuzzy partition aggregation approach. The final CAFCM

partition is achieved with a cumulative agreement based relabelling and averaging of the ensem-

ble of fuzzy partitions. Each partition is taken sequentially from a ranked queue established per

3.7 Summary 95

equation (3.3). The ranks are computed with a CVI. The highest ranking partition becomes the

core partition Ub, and this partition drives the agreement procedure.

Different internal CVIs were used to assess the quality of ensemble partitions having known

target (true) numbers of labeled subsets. The performance of four internal CVIs was correlated

with the assessments made by the soft external ARI, VARIs . The normalized soft partition entropy

(VPEBs) index led to the best final partitions in the experiments presented here. Once the CVIs

for steps 3 and 4 in Algorithm 6 are chosen, CAFCM does not require any prior knowledge of the

number of clusters that might be present in the dataset, which makes it attractive for real clustering

problems.

The superiority of the CAFCM approach was demonstrated by comparing it with three existing

approaches on two Gaussian mixture datasets and six real datasets. Experimental results show that

CAFCM outperforms the other three approaches in terms of accuracy, stability, space, and time

complexity. Experimental results reveal that on average our algorithm runs one to two orders of

magnitude (10− 100 times) faster than other state-of-the-art algorithms, and at best, can achieve

speedups in on the order of 4000 : 1.

We showed that CAFCM can produce reasonable performance even for downspace dimensions

well below the JL bound (rogue random projections). This is very important when the dataset has

many features. For example, even with q= 10, the CAFCM approach produced good results on the

ACT data. The proposed CAFCM algorithm has linear O(N) time complexity in the number (N) of

data points. It was also showed empirically that CAFCM algorithm scales linearly in the number of

samples (N) for a big dataset (KDD CUP). The CAFCM ensemble time for N = 100,000 samples

was less than the minimum ensemble time for the other approaches for any number of samples.

This page intentionally left blank.

Chapter 4

Cluster Tendency Assessment and
Subsequent Clustering on Big,

High-Dimensional Data

This chapter introduces FensiVAT which uses fast data-space reduction and an intelligent

sampling strategy to deal with large volumes of high-dimensional data. FensiVAT also provides

visual evidence that is used to estimate k (cluster tendency assessment) in the data. Experimental

results report that FensiVAT can cluster large volumes of high-dimensional data in a few seconds

time without sacrificing accuracy, and it is orders of magnitude faster than other state-of-the-art

algorithms.

4.1 Introduction

The scalable VAT (sVAT) algorithm and its extension, siVAT, presented in Chapter 2 answer

the clustering tendency assessment problem by suggesting the number of clusters to seek for in

the big data X . However, they do not produce actual cluster in X . Two single linkage (SL) type

clustering algorithms, sVAT-SL and clusiVAT [41, 63] extend sVAT and siVAT, respectively, to

cluster the data X into k aligned partitions. Both sVAT-SL and clusiVAT are adequate for large

sample size datasets, however, they still suffer from large computation time when the dataset is

large in the number of dimensions.

To deal with large amounts of high-dimensional data, this chapter presents a rapid, hybrid clus-

tering algorithm , which efficiently integrates (i) a new random projection (RP) based-ensemble

technique; (ii) an iVAT algorithm [45], and (iii) a smart sampling strategy, called Maximin Ran-

dom Sampling (MMRS) [47, 83]. The proposed method achieves fast clustering by combining

97

98 Cluster Tendency Assessment and Subsequent Clustering on Big, High-Dimensional Data

ensembles of random projections with scalable version of iVAT, hence we call it FensiVAT. Fensi-

VAT aggregates multiple distance matrices, computed in a lower-dimensional space, to obtain the

iVAT image in a fast and efficient manner, which provides visual evidence about the number of

clusters (k) to seek in the original dataset.

4.2 Related Work

Many papers and surveys [57, 58] discuss different clustering approaches for big datasets. The

most popular algorithms for big data clustering are based on partitioning and hierarchical tech-

niques. Among them, single pass k-means (spkm) [74, 75], mini-batch k-means (MBKM) [76],

CLARA (CLustering LARge Applications) [77] and CURE (Clustering Using REpresentatives) [78],

are the most widely known for big datasets. A recently developed algorithm clusiVAT [63] has

also shown promising results for big datasets. These algorithms have been discussed in detail in

Chapter 2 (Section 2.3.5).

These methods depend on nearest neighbor(s) information, so they are ineffective when clus-

tering high-dimensional data, due to diminishing differences in distance in high-dimensional up-

spaces [60]. Most of these clustering algorithms use sampling-based strategies to reduce compu-

tational time. Therefore, they are fast for large N; however, they are inefficient for datasets jointly

large in N and p. At the other extreme, there are methods that excel for large p and small N. There

are a number of surveys [56, 59, 60] of high-dimensional data clustering techniques available in the

literature. Several widely known clustering algorithms for high-dimensional data [60] are based

on subspace clustering [208] or dimensionality reduction [226] (from ‘upspace’ to ‘downspace’).

Subspace clustering [81, 227] is an extension of traditional clustering that seeks to find clusters

in different subspaces within a dataset. These methods [208] do not suffer from nearest neighbor

problems in high-dimensional space. PROCLUS [81] is a subspace clustering approach, which

first samples the data, then selects a set of k medoids, and iteratively improves the clustering.

PROCLUS is capable of discovering arbitrary shaped clusters in high-dimensional datasets. How-

ever, it is very sensitive to input parameters. In practice, most of the subspace clustering ap-

proaches suffer from long run-times and/or low accuracies for large volumes of high-dimensional

data. Dimensionality reduction based approaches such as global projection (e.g., singular value

4.2 Related Work 99

decomposition (SVD)) and random projection (RP) based ensemble approaches [72, 82] reduce

computational time by clustering the projected data in a lower dimensional space. However, they

too suffer from space and/or time complexity problems for big datasets, and clusters in the pro-

jected space do not necessarily correspond to clusters in the original space.

There has been a limited amount of work on clustering algorithms that work efficiently on

datasets that are jointly large in (N) and (p). These algorithms are hybrid in nature. They use

random sampling or dimensionality reduction techniques either together [80] or with some other

approach such as axis-parallel partitioning [228] or indexing [229], to reduce computation time.

O-cluster [228] (Orthogonal partitioning CLUSTERing) combines active random sampling with

an axis-parallel partitioning strategy to identify continuous areas of high density in the input space.

O-cluster works well for high-dimensions, but it does not function optimally when the dimension-

ality is low. The low number of dimensions makes the use of axis-parallel partitioning algorithm

problematic. O-cluster uses a parameter sensitivity, ρ , which require careful tuning when it is ap-

plied to a dataset where the number of clusters is unknown, and also, it requires a large buffer size

to correctly identify all original clusters in the dataset. GARDEN k-means (GARDENkm) [79]

begins with a Gamma region density partitioning scheme for data summarization. Using this

partitioning technique, it eliminates the empty regions in the data space so that only tight, high-

dense regions are retained. Then, it utilizes k-means to cluster the summarized information. Like

k-means, this algorithm also requires the number of clusters (k) as an input prior to clustering.

Another hybrid approach, fast spectral clustering (FastSpec) [230], combines random sampling

and FastMap projection with spectral clustering to identify clusters. In an intermediate step, it

computes an affinity matrix of N× r size in the downspace (r is the number of random samples,

r = 300× k [230]), and a diagonal matrix of N×N size, which can be very big for big datasets.

Therefore, FastSpec has very high space complexity.

Almost all these approaches use sampling and/or dimensionality reduction for clustering high-

dimensional massively large datasets. However, random sampling may fail [41] to provide a faith-

ful representation of cluster structure in the input data, which may degrade clustering accuracy.

The authors of [78] give a theorem that (in probability) insures representative random samples,

but this result often leads to samples that are roughly half the size of the original data. This is still

too large when N is big, say N > 107. Therefore, all the methods reviewed either take hours for

100 Cluster Tendency Assessment and Subsequent Clustering on Big, High-Dimensional Data

large size datasets having hundreds to thousands of dimensions and/or sacrifice accuracy for faster

computation time.

In the next section, we discuss our FensiVAT algorithm.

4.3 FensiVAT algorithm

The FensiVAT algorithm finds its root in the VAT/iVAT algorithm. Scalable VAT-based SL

clustering algorithms, sVAT-SL and clusiVAT, first find n << N MMRS sample points that are

representative of full data, and then construct an image of this sample using distance matrix D′∗n.

Supposedly one of these images suggests that the best guess for the number of clusters in X is k.

Having this estimate, the longest k−1 edges of the MST are cut resulting in k connected subtrees

(the clusters). For big data clustering, sVAT-SL and clusiVAT [63, 135] extend this partition of

Xn non-iteratively to the (N− n) unlabeled objects in X using the nearest (object) prototype rule

(NPR).

The two main time-consuming steps in both algorithms for large, high-dimensional data clus-

tering are (i) the Maximin step of MMRS sampling; and (ii) Extension. In the Maximin step, k′

distinguished objects are chosen which are furthest from each other in the dataset. This requires

the computation of a k
′×N distance matrix, (say) D̂⊂DN , in p dimensions. In the extension step,

the labels of n samples are used to label the remaining (N−n) objects in the data using the NOPR.

This requires the computation of an n× (N−n) distance matrix (say) ˆ̂D⊂DN , the distances again

being in p dimensions. In an intermediate step of clusiVAT, SL clustering is applied to an n× n

matrix, Dn. Because, N and (N−n) can be very large for big datasets, and the distance computa-

tions (D̂ and ˆ̂D) are performed in the original (high) p-dimension, siVAT-SL and clusiVAT take a

large amount of time to cluster large volumes of high-dimensional dataset.

To address the above challenges, FensiVAT integrates random projection with MMRS sam-

pling and VAT method. In FensiVAT, MMRS is performed in randomly projected downspace, so

we call MMRS in downspace as Near-MMRS and MM in downspace as Near-MM. The essential

steps in FensiVAT are: (i) Near-MMRS Sampling: MMRS sampling is done in Y , the downspace

(subscript d), to obtain a small and diverse subset S̃d ⊂Y from the full dataset, which is then lifted

by using the same indices to the upspace (subscript u), S̃u ⊂ X ; and (ii) Ensemble: Aggregation

4.3 FensiVAT algorithm 101

1. Upspace

Dataset, X Rp

|X|= N

2. Downspace

Dataset,Y R q

|Y|= N

3. MMRS

Samples, !"# Rq

!"# = $

4. Lifted MMRS

Samples, !"% R p

!"% = $

5. Downspace

sample, !"#,& R q

!"#,& = n

…….

6. Distance Matrix

('#,&)
…..

6. Distance Matrix

('#,()

7. Ensemble of

Distance Matrices

9. Clustering

(Single Linkage on

'),#
*+)

8. iVAT image

I('),#
*+)

Cluster Assessment

Random

Projection

Dn,d

Near-

MMRS

Sampling

produces
!"# -

Transfer

"# -

to

"% .

5. Downspace

sample, !"#,(Rq

!"#,(= n

10. Extension
(Generate Q randomly

projected subsets ! from X.

Apply NPR to (N-n)

unlabeled points in each

Y". Vote for the final label of

each unlabeled point.)

#: $% & $'

(): *
+ & *,: - /) / 0

Figure 4.1: The FensiVAT architecture.

of Q n× n distance matrices, {Di}Q
i=1, computed from multiple random projections of S̃u to ob-

tain Q sets of Near-MMRS samples {S̃d,i}Q
i=1 in the downspace. This is done to obtain a reliable

output iVAT image, I(D′∗n,d), which visually suggests the number of clusters, k, in the dataset, (iii)

Clustering: SL partitioning on the D′∗n,d to obtain k clusters, and (iv) Extension in downspace

to label the remaining data points in the dataset Y by giving them the label of their nearest object

from sample S̃d . Pseudocode of FensiVAT algorithm is given in Algorithm 7. Below, we explain

each step of the FensiVAT algorithm, whose architecture is shown in Fig. 4.1.

Near-MMRS Sampling

The input data to FensiVAT is a set of objects O = {o1,o2, ...,oN} in the form of a set of

feature vectors X = {x1, ...,xN} ⊂ Rp; N and p are large. In the second step, random projection

is applied to X ⊂ Rp to obtain downspace data Y ⊂ Rq. Unlike ensemble-based approaches,

random projection is applied only once to the large dataset to obtain a downspace dataset, which

is subsequently used for the sampling step. It is possible that the clusters in a sample from the

downspace dataset Y are drastically different from the points that MMRS sampling would produce

when applied to X . This point is discussed below with the Near-MMRS sampling (third) step of

the FensiVAT algorithm.

102 Cluster Tendency Assessment and Subsequent Clustering on Big, High-Dimensional Data

Near-MMRS sampling begins by finding the k′ Maximin (MM) samples (distinguished ob-

jects) in Y , which are furthest from each other. MM sampling starts at a random point and then

chooses as the second MM sample the point which is furthest from the initial point with respect

to a chosen measure of distance on the set being sampled. The third object selected maximizes

the distance from both of the first two points. This process continues until k′ MM samples are

chosen. Then, each object in O is grouped with its nearest distinguished object. This stage divides

the entire dataset O into k′ groups, {Zi}k′
i=1 by associating |Zi| objects to the ith distinguished ob-

ject, which provides a representation of each of the k′ clusters. This grouping task requires the

computation of a k′×N matrix D̂ now done in downspace (Rq), which reduces the computational

time that would be needed for the calculations of a k′×N distance matrix of p−dimensional fea-

ture vectors. Finally, the sample S̃d of size n (just a small fraction of N), is built by selecting

random data points (Random sampling (RS)) from each of the k′ clusters {Zi}k′
i=1. The number

of points, ni extracted from cluster Zi is proportional to the number of data points in Zi, namely,

ni = dn×|Zi|/Ne, where d·e denotes the ceiling function.

The approximate distance preservation (within 1± ε) property of randomly projected pairs

from X asserted by Theorem 2.1 (Chapter 2) supports a belief that if the Near-MM distinguished

objects in Y are generated by applying MM to it, beginning with the same initial point, that the

MM samples in Y should be the same or close (due to approximation distance error) to the k′

MM points in X (upspace) that would be produced by MM sampling in the upspace. Two Propo-

sitions from [47] discussed in Chapter 2 (Section 2.2.3) about MMRS procedure provide some

justification for believing this.

In Near-MMRS sampling, MMRS sampling (Algorithm 3) is performed in the randomly pro-

jected lower dimensional space Y (downspace). Therefore, if dataset X has k compact separated

(CS) clusters and k′ ≥ k, and if downspace data Y has k CS clusters, and carries a JL certificate

(q ≥ q0) as in Theorem 2.1, then Proposition 1A guarantees that Near-MMRS sampling will se-

lect at least one distinguished object from each of the k clusters, and Proposition 1B assures us

that the proportion of the objects in each cluster in the Near-MMRS sample will be similar to the

proportion of objects in each subset in the original data.

4.3 FensiVAT algorithm 103

Algorithm 7 FensiVAT
Step 1. Input: Dataset X = {x1, ..,xN} ⊂Rp

q- downspace dimension
k′: an overestimate of the true number of clusters, k, in X
n: an approximate sample size
Q- number of RPs
Output: D′∗n,d - iVAT reordered dissimilarity matrix of Dn,d .
U - cluster membership vector of data points in O.
Step 2. Dataset generation in downspace.

Generate downspace datasets Y ⊂ RN×q using Y = 1√
q XT , where T ∈ Rp×q is the random matrix as

discussed in Section 2.3.5.12.

Step 3: Near-MMRS Sampling: MMRS on Y
Apply MMRS on Y returning a MMRS sample S̃d of size n (Algorithm 3)

Step 4-7: Ensemble method to obtain a reliable iVAT image.
Generate Q, downspace datasets {S̃d,i}Q

i=1 ⊂ Rq from S̃u ⊂ Rp (S̃d → S̃u), using random matrices
{Ti}Q

i=1 ∈Rq×q, |S̃u|= |S̃d |= n.
Compute distance matrices {Dd,i}Q

i=1 from {S̃d,i}Q
i=1.

Dn,d ← 0 (Initialize a n×n distance matrix).
for i = 1 to Q do

Wi = NormalizeRows(Dd,i)
Vi =

1
2 (Wi +Wᵀi)

Dn,d = Dn,d +Vi
end for

Step 8: Apply VAT/iVAT on Dn,d , returning D′∗n,d , P, h. (Algorithms 1 and 2)
Choose the number of clusters k using image of D′∗n,d .
Step 9: Clustering:
Find indices u of k largest values in MST cut magnitudes h.
Form the aligned partition, U∗ = {u1 : u2−u1 : ... : uk−uk−1}
US̃u

=U∗Pi
, 1≤ i≤ k.

Step 10: Extension in Downspace:
Generate downspace datasets {Yi}Q

i=1 ⊂Rq using RP, |Yi|= N.
for each Yi do

Consider sample Y (i)
S̃d
⊂Rq and Yi−Y (i)

S̃d
⊂Rq, where |Y (i)

S̃d
|= n, and |Yi−Y (i)

S̃d
|= N−n.

for each data point, ŷ ∈ Yi−Y (i)
S̃d

do
l = argmini∈S̃d

{dist{ŷ,yi}}
U (i)

ŷ =Ul
end for

end for
U = Mode of labels for each data points U (i)

ŷ .

Distance Matrix using Ensemble Method

The third (previous) step provides n samples in the downspace, S̃d ⊂Rq, which can be used to

build an n×n distance matrix Dn,d . A reliable iVAT image is needed in order to select the number

104 Cluster Tendency Assessment and Subsequent Clustering on Big, High-Dimensional Data

of clusters obtained by SL in penultimate steps of FensiVAT. The VAT/iVAT image provides a

subjective visual assessment of potential cluster substructure based on how distinctive the dark

blocks (clusters) appear in the image. However, the quality of the image of the reordered distance

matrix D′∗n,d , obtained by applying VAT/iVAT to Dn,d , often turns out to be very poor due to the

unstable nature of random projection. Hence, we turned to an ensemble-based approach to obtain a

good quality iVAT image from multiple reordered distance matrices ({D′∗d,i}
Q
i=1) in the downspace.

Since the ordering of the data in every reordered matrix D′∗d,i may be different, it is not feasible

to directly aggregate multiple reordered distance matrices ({D′∗d,i}
Q
i=1). Therefore, a new method

is devised to aggregate the Q n×n ensemble of distance matrices to obtain a better quality iVAT

image.

The new ensemble-based approach to build the aggregate n×n distance matrix, Dn,d is shown

in Steps 4-7 of Algorithm 7. First (in the fourth step), the Near-MMRS samples S̃d are back-

projected to the upspace by using the sample indices in S̃d to identify the corresponding samples

S̃u in X . Then random projection is applied to S̃u Q times, resulting in the downspace sample sets

{S̃d,i}Q
i=1 (Step 5 in Fig. 4.1).

Next, the Q downspace samples, {S̃d,i}Q
i=1 are used to compute Q distance matrices, {Dd,i}Q

i=1

in the sixth step. Since the downspace samples can be drastically different from each other due

to the random nature of the mapping from upspace to downspace, the distance matrices will be

diverse. Therefore, the Q n×n distance matrices are aggregated to obtain a more reliable distance

matrix, which in turn yields a better iVAT image than the Q individual iVAT images. The aggre-

gation (Step 7) is performed in three sub-steps: Normalization, Symmetrization, and Summation.

Normalization: Since each distance matrix is computed from randomly projected samples,

the distance of each data point from the remaining data points may have a different range in

different distance matrices. Therefore, the distance of each data point from the remaining data

points is normalized to a unit scale in each distance matrix. The rows (or columns) of each Dd,i

are normalized such that the i j-th entry of Dd,i is in [0,1], and the row sum of each row is 1.

Symmetrization: The normalized distance matrices, Wi (in Algorithm 7), may be asymmetric.

The input distance matrix to VAT/iVAT must be symmetric, so all normalized distance matrices

are replaced by symmetric matrices using Vi =
1
2(Wi +W ᵀi).

Summation: After symmetrization, the output distance matrix Dn,d is obtained using element-

4.3 FensiVAT algorithm 105

wise summation of the Q distance matrices {Vi}Q
i=1.

Cluster Assessment

In the eighth step, the VAT/iVAT algorithm is applied to distance matrix Dn,d , which returns

a reordered matrix, D′∗n,d and the cut magnitudes of the MST links, h. The visualization of D′∗n,d

using I(D′∗n,d) suggests the number of clusters k present in the dataset. The comparison of iVAT

images obtained using the Q single distance matrices {Dd,i}Q
i=1 to the image based on Dn,d is

discussed in Section 4.5. Although human interpretation is used to estimate the number of clusters

by viewing the output iVAT image, there are also methods [231–233] to automatically determine

the number of clusters from VAT/iVAT images or D′∗n,d .

Clustering

All single linkage partitions are aligned partitions [234] in the VAT/iVAT ordered matrices,

so SL is an obvious choice for the clustering algorithm in Step 9. Having the estimate of the

number of clusters, k from the previous step, the k− 1 longest edges are cut in the iVAT-built

MST, resulting in k single linkage clusters.

If the dataset is complex and clusters are intermixed, cutting the k−1 longest edges may not

always be a good strategy as the data points (outliers), which are typically furthest from normal

clusters, might comprise most of the k− 1 longest edges of the MST, leading to misleading par-

titions. Such data points need to be partitioned (usually in their own cluster) before a reliable

partition can be found via the SL criterion. However, the iVAT image provides visual evidence as

to how large the clusters should be. Thus, if the size of SL-clusters does not match well the visual

evidence, then the partition can be discarded (perhaps choosing a different clustering algorithm to

partition the sample of feature vectors in Rp or throwing out data from small clusters).

Next, the aligned partition {U∗Pi
}k

i=1 is calculated using the indices of the k−1 longest edges.

Since the objects in U∗Pi
are arranged according to VAT reordering indices P, the cluster labels in

vector U∗Pi
are reordered to match the index-ordering of samples S̃u in the original objets, resulting

in the partition US̃u
of S̃u.

106 Cluster Tendency Assessment and Subsequent Clustering on Big, High-Dimensional Data

Extension

In the extension step (Step 10) of FensiVAT, the remaining Ñ = (N− n) data points in O are

labeled by giving them the label of their nearest object in S̃d . This requires the computation of

an n× Ñ size matrix, ˆ̂D, with computational complexity O(qnÑ). In this step, the sample S̃d and

feature vectors Y in Rq (obtained in Step 2) are used to compute the distance matrix ˆ̂D. This

further reduces the computation time which would be needed for the equivalent operation in Rp.

Next, the remaining Ñ data points in O are labeled using this distance matrix, based on the

label of the nearest object in S̃d . Although a single random projection (RP) might be sufficient to

achieve comparable accuracy in the NPR labeling step, several [235] RPs are used to best ensure

robust nearest neighbour search in NPR. First, multiple RPs are applied on the full dataset to get

multiple Y s. Then, the sample labels are extended to each of these Y s using NPR, which would

give multiple sets of labels {U (i)
ŷ }

Q
i=1 for full dataset. The final labels (U) are selected using voting,

based on the labels cast by each voter from each RP, for each remaining data point in O.

4.4 Time Complexity

For dataset Y ⊂ Rq, the computational complexity in the first and second stages of Near-

MMRS (Algorithm 3) sampling are O(qk′N), and the last stage requires O(qn2) operations to build

sample S̃d . The complexity in computing multiple distance matrices in ensemble step is O(qn2Q),

and the complexity of iVAT is O(qn2). The computational complexity to compute the aligned

partition and reordering in the clustering step is O(N). The computational complexity of extension

step is O(qnÑQ). So, the overall complexity of FensiVAT is O(max{qk′N,qn2,qn2Q,N,qnÑQ}).

In other words, FensiVAT is linear in N, i.e., it is scalable with respect to the number of samples

while simultaneously reducing the dimensional complexity from p to q.

4.5 Experiments

Six set of experiments were performed on two synthetic and six real datasets, that are rel-

atively big in sample size (N) as well as in dimension (p). In the first experiment, the cluster

distribution obtained using three sampling schemes are compared. In the second experiment, the

4.5 Experiments 107

quality of iVAT images, obtained using Q distance matrices built with Q RPs, is compared to

the quality of the iVAT image obtained using ensemble distance matrix. In the third experiment,

the capability of FensiVAT is explored to visually suggest the number of clusters in big datasets

in the downspace dimension. In the fourth and fifth experiments, the performance of FensiVAT

for different numbers (Q) of RPs in the ensemble step and for different downspace dimensions

q = 5,10,20,30,50, and 100, respectively, is investigated. In the last experiment, the performance

of FensiVAT is compared with nine state-of-the-art methods, discussed in Section 4.2. These nine

approaches are clusiVAT [63], MBKM [76], CLARA [77], spkm [74] (a crisp adaptation of the sin-

gle pass fuzzy k-means [74]), CURE [78], a RP based ensemble technique, called RP-EN [72, 82],

PROCLUS [81], GARDENkm [79], and FastSpec [80]. While the comparison of FensiVAT with

O-Cluster [228] would have been desirable, a publicly available code does not exist, and [228]

does not offer sufficient implementation details to develop a reliable in-house version. The exper-

iments were performed using MATLAB, WEKA and ELKI software on a Windows 7 (64 bit) PC

with 16 GB RAM and Intel i7 @3.40 GHz processor.

4.5.1 Datasets and Parameter Settings

We performed experiments on the following datasets.

Synthetic datasets:

Two synthetic datasets, each having N = 100,000 data points in p = 1000 dimensions, were

constructed by drawing labeled samples from a mixture of k = 3 Gaussian distributions. GM1 is

a well separated Gaussian mixture, while GM2 has overlapping Gaussian clusters. The properties

of these synthetic datasets are provided in Table 3.2 (Chapter 3).

Real datasets

Six publicly available real, high-dimensional (large volumes) datasets were chosen to demon-

strate the applicability of FensiVAT. The details of all real datasets1 are given in Table 4.1. All

1These datasets can be found at the UCI machine learning data repository [236] and [221]. The features are nor-
malized to the interval [0,1] by subtracting the minimum and then dividing by the subsequent maximum so that they all
had the same scale.

108 Cluster Tendency Assessment and Subsequent Clustering on Big, High-Dimensional Data

Table 4.1: Properties of real datasets

Dataset N p k Dunn’s Index, DI(k,Ugt)

US Census 1990 2458285 68 Unknown Unknown
KDD CUP’99 4898431 41 23 0 (Non-CS)

FOREST 581012 54 7 0.002 (Non-CS)
MiniBooNE 130064 50 2 0 (Non-CS)

MNIST 70000 784 10 0.15 (Non-CS)
ACT 9162 5625 19 0.01 (Non-CS)

datasets are labeled except the US Census 1990 dataset. We point out that the labeled subsets in

these datasets may or may not correspond to computationally identifiable sets of clusters.

Parameter settings

In all the experiments, FensiVAT and clusiVAT parameters, k′ and n are randomly chosen be-

tween 2k and 4k, and 10k and 30k respectively (unless stated otherwise), where k′,n ∈ Z, and k

is the number of labeled subsets in the ground truth data. The number of random projections Q

in the ensemble step of FensiVAT algorithm is chosen as 5, unless stated otherwise. For MBKM,

the parameter batch size = 50, the iteration limit = 100, and the termination threshold = 0.001.

The initial centroids for MBKM were built using ’kmeans++’ method to speed-up convergence.

For CLARA, the number of samples was 5, and sample size was 40+ 2k [77]. For spkm, n is

10% of N. The k-means++ seeding technique was used to choose k initial centroids in CLARA.

For CURE, the number of representative (well-scattered) points in clusters is 5, shrink factor is

0.7, and the number of (random) samples is kept the same as n in FensiVAT. For PROCLUS, the

average dimensionality of clusters, xd , were chosen based on the grid search for best clustering

performance. For the ensemble clustering method, RP-EN, we chose the number of random pro-

jections as 20, the weighting exponent as 2, termination threshold as 0.000001, and the iteration

limit as 100. For FastSpec, we used r = 300k for all datasets except KDD Cup, US Census, and

FOREST. FastSpec [80] has very high space complexity, so we could not run it on our PC for

datasets using r = 300k [80] with very big N and k such as KDD Cup, US Census, and Forest

dataset, so we ran it with r = 100k for FOREST, and r = 10k for the KDD and US datasets, and

using sparse MATLAB function to store diagonal matrices. The downspace dimensions for RP-EN

and FastSpec were the same as those chosen for FensiVAT. The authors of [79] kindly provided us

4.5 Experiments 109

the GARDEN k-means code, written in C++. The density threshold in GARDENkm was chosen

based on the best performance, for each dataset. All the experiments were performed 20 times on

each dataset except KDD (5 times) and the average results are reported.

4.5.2 Evaluation Criteria

Partition Accuracy

For all datasets, except US Census 1990, the quality of the output crisp partition obtained by

various clustering algorithms is assessed using ground truth information, Ugt . The similarity of

computed partitions with respect to ground truth labels is measured using the partition accuracy

(PA).

Dunn’s Index

Since the ground truth information is not available for US Census 1990 dataset, an internal

CVI, Dunn’s Index (DI) [48], is used to evaluate the quality of output partitions for all clustering

algorithms for this dataset.

Dunn defined CS clusters in X with a distance criterion, and showed that X contains CS clusters

if and only there is a partition U∗ of X for which DI(k,U∗) > 1. Havens et al. [133] related the

effectiveness of VAT in showing cluster tendency to DI. The sVAT-SL [134] partition is equivalent

to the SL partition for CS datasets. Since the recursive version of iVAT [45] is used in FensiVAT

algorithm, the same rule applies to FensiVAT. If a dataset does not contain k-CS clusters, then

FensiVAT is not guaranteed to find the same partition as SL. However, we show in our comparison

experiments that FensiVAT produces a good approximation for large datasets whether they are CS

or not. The DI of the ground truth partition for all real datasets (except US Census) is shown in

Table 4.1.

110 Cluster Tendency Assessment and Subsequent Clustering on Big, High-Dimensional Data

Chi-square distance

The similarity between two cluster distributions (histograms) A and B can be compared using

the chi-square distance [237], χ2(A,B), as follows

χ
2(A,B) =

1
2

f

∑
i=1

(Ai−Bi)
2

Ai +Bi
, (4.1)

where f is the number of bins in histograms of the data. We take f = k ∈Z as the number of bins.

The value of χ2 is in [0,∞], and a lower value implies higher similarity between two distributions.

Run-time

We also report the run-time (in seconds), another important criteria for comparison, which is

related to the scalability of an algorithm.

4.5.3 Cluster Distribution using Various Sampling Schemes

In this experiment, we compare the cluster distribution in samples, obtained using three sam-

pling schemes viz., random, MMRS, and Near-MMRS sampling for four datasets GM2, MNIST,

ACT, and FOREST, which have different numbers of labeled subsets (k) and cluster distributions.

First, for each sample, obtained from a sampling scheme, a histogram is computed using the label

distribution in that sample in {1,2, ..,k} integer bins. Then, the similarity of each cluster distri-

bution is computed with respect to the actual (ground truth) distribution in the full dataset using

chi-square distance.

The average distribution of data points in samples obtained using the three sampling schemes

for FOREST are shown in Fig. 4.2. The distribution of data points using MMRS and Near-MMRS

sampling are very similar to each other, and to the actual distribution in the data, whereas, with

random sampling alone, subsets 3, 5 and 7 are oversampled, while subsets 4 and 6 are undersam-

pled. MMRS and Near-MMRS sampling both acquired at least one data point from each subset in

every trial. On the other hand, random sampling did not select any data points from subset 4 on

4/10 trials (not shown in Fig. 4.2).

Table 4.2 shows the run-time and average (20 trials) chi-square values between cluster distri-

4.5 Experiments 111

1 2 3 4 5 6 7
Cluster Number

0
10
20
30
40
50
60

D
at

ap
oi

nt
s

(%
)

(a) Actual Distribution

1 2 3 4 5 6 7
Cluster number

0
10
20
30
40
50
60

D
at

ap
oi

nt
s

(%
)

(b) MMRS sampling (R54)

1 2 3 4 5 6 7
Cluster number

0
10
20
30
40
50
60

D
at

ap
oi

nt
s

(%
)

(c) Near-MMRS sampling (R5)

1 2 3 4 5 6 7
Cluster number

0
10
20
30
40
50
60

D
at

ap
oi

nt
s

(%
)

(d) Random sampling (R54)

Figure 4.2: Histogram of data in the Forest Dataset. The MMRS and Near-MMRS parameters are
k
′
= 30, and n = 100 samples, and q = 5 (for Near-MMRS).

butions for full and sampled datasets for each sampling scheme. The number of samples n for each

sampling scheme, the number of distinguished objects k′ for MMRS and Near-MMRS sampling

scheme, and the downspace dimension q for Near-MMRS sampling scheme are also shown. The

values in Table 4.2 show that the chi-square values for MMRS and Near-MMRS sampling differ

from each other by either 0.01 or 0.02, so these two methods yield essentially the same samples,

which match the distribution quite well. The random sampling scheme has much higher χ2 values,

indicating a poorer match to the full distribution. Experimental results indicate that Near-MMRS

sampling accurately portrays the distribution of the original data in randomly projected lower di-

mensions, and takes significantly less time (around a second) than the MMRS sampling scheme.

Table 4.2: Average (20 trials) chi-square values and run-time (seconds) for each sampling scheme

Dataset Random MMRS Near-MMRS
χ2 Time χ2 Time χ2 Time

GM2 (n = 200,k′ = 10,q = 50) 0.3 0.00 0.06 20.5 0.05 0.8
MNIST (n = 300,k′ = 30,q = 100) 1.25 0.00 0.59 25.2 0.60 1.2

ACT (n = 100,k′ = 30,q = 50) 6.71 0.01 4.98 115 4.50 0.2
FOREST (n = 100,k′ = 30,q = 5) 1.86 0.01 1.18 4.4 1.19 0.9

112 Cluster Tendency Assessment and Subsequent Clustering on Big, High-Dimensional Data

(a) I(D′∗d,1), PA = 32% (b) I(D′∗d,2), PA = 50% (c) I(D′∗d,3), PA = 73%

(d) I(D′∗d,4), PA = 74% (e) I(D′∗d,5), PA = 51% (f) I(D′∗n,d), PA = 99.6%

Figure 4.3: iVAT images obtained using single distance matrices (a-e) and ensemble distance
matrix (f).

4.5.4 Single Random Projection vs. Ensemble RP for iVAT Image

In this experiment, we compare the quality of iVAT images obtained by applying VAT/iVAT

to distance matrices {Dd,i}Q
i=1, for Q = 5, computed from single random projections to the iVAT

image of the distance matrix Dn,d , computed from an ensemble of multiple random projections

in our FensiVAT scheme. We also compare the PA values of NPR partitions U , obtained by SL

partitioning based on the VAT reordered distance matrices {Dd,i}Q
i=1 and Dn,d .

Figs. 4.3 (a)-(e) show the iVAT images, {I(D′∗d,i)}
Q
i=1, obtained using single random distance

matrices {Dd,i}Q
i=1, for the GM2 dataset, which has three (true) clusters. It is clear from these

five iVAT images and corresponding PA values that the qualities of these images vary due to

random nature of RP, and none of them strongly suggests that actual number of clusters in GM2

is k = 3. Fig. 4.3 (f) shows the iVAT image I(D′∗n,d) based on the ensemble distance matrix Dn,d ,

which is obtained by aggregating the five distance matrices, {Dd,i}Q
i=1 using FensiVAT ensemble

scheme. View 4.3 (f) contains three dark blocks that are clearly visible along the diagonal in this

image, and the PA value corresponding to this image is nearly perfect (99.6%).

Table 4.3 shows the PA values for the GM1 and GM2 datasets. The PA values corresponding

to individual distance matrix for GM1 dataset show better accuracy than those obtained for the

4.5 Experiments 113

Table 4.3: Average PA (%) values (20 trials) using single distance matrices, {Dd,i}Q=5
i=1 and ensem-

ble distance matrix Dn,d for VAT/iVAT in FensiVAT.

Distance Matrix Dd,1 Dd,2 Dd,3 Dd,4 Dd,5 Dn,d

GM1 (q = 20,k′ = 10,n = 200) 86 99 100 100 89 100
GM2 (q = 50,k′ = 10,n = 200) 32 50 73 74 51 99.6

GM2 dataset. This is because the clusters in GM1 are much more separated than in the GM2 data,

which has overlapping clusters. In contrast, the PA value corresponding to ensemble distance

matrix is almost perfect for both datasets, which demonstrate the effectiveness of FensiVAT to

obtain accurate NPR partitions with the ensemble approach.

4.5.5 Cluster Assessment

The FensiVAT algorithm can be used to assess the potential number of clusters present in

large, high dimensional data in significantly less time (discussed in Section 4.5.3) than clusiVAT,

and with similar iVAT image quality. In this experiment, we compare iVAT images obtained using

clusiVAT and FensiVAT for GM1 and GM2, and then we will showcase the ability of FensiVAT to

correctly estimate the number of labeled subsets for the real datasets.

The iVAT images obtained using clusiVAT and FensiVAT for GM1 and GM2 are shown

in Fig. 4.4 with corresponding algorithm parameter values. The ground truth partition of GM1

dataset has CS clusters because its DI = 1.26 (> 1). Figs. 4.4 (a) and (b) show that both clusiVAT

and FensiVAT exhibit three (well-separated) dark blocks along the diagonal, suggesting that k = 3

for GM1. The ground truth partition for GM2 is non-CS because its DI is 0.66 (< 1). Figs. 4.4

(c) and (d) show that FensiVAT produces three dark blocks along the diagonal for GM2, whereas

clusiVAT shows three light blocks including many tiny blocks (data points) along the diagonal.

Both views show the two darker blocks superimposed on a lighter dark block, which indicates

that this data has a high degree of overlap. While clusiVAT and FensiVAT both show three blocks

for GM1 and GM2, FensiVAT provides the more convincing assessment because of the sharper

contrast between diagonal blocks and the background. Moreover, FensiVAT takes only a fraction

of second for both datasets, whereas, clusiVAT takes around 20s to obtain poorer quality iVAT

images. The sizes of the diagonal blocks in all four images show the relative size of each cluster

accurately, which supports our claim that Near-MMRS sampling replicates (approximately) the

114 Cluster Tendency Assessment and Subsequent Clustering on Big, High-Dimensional Data

(a) GM1, ClusiVAT (Time=20.1s) (b) GM1. FensiVAT (Time=0.35s)

(c) GM2, ClusiVAT (Time=21.3s) (d) GM2, FensiVAT (Time=0.84s)

Figure 4.4: ClusiVAT (a) and (c), and FensiVAT images (b) and (d) for GM1 and GM2. The
parameters are k′ = 9, n = 205 for GM1 and k′ = 12, n = 206 for GM2 dataset. The downspace
dimensions for FensiVAT are q = 20 for GM1 and q = 50 GM2.

same cluster distribution in the sample as the MMRS sampling used by clusiVAT.

The iVAT images of D′∗n,d for six real datasets are shown in Fig. 4.5 with corresponding Fen-

siVAT algorithm parameter values. A (large) zoom is required to see all tiny dark blocks. The US

Census 1990 data is an example of a real-world unlabeled, big data that is very large in both the

number of records (N) and the number of attributes (p). Fig. 4.5 (a) shows the FensiVAT image

for the US Census 1990 data. It can be seen that it shows two distinguished dark blocks along the

diagonal in which the lower dark block comprises two small dark blocks. This suggests that there

are two or three clusters in this data. Several previous researches [238, 239] also suggest k = 2 or

3 as the best estimate of the number of clusters for this dataset. FensiVAT just takes approximately

3 seconds to make this estimate.

The KDD CUP’99 is a big, labeled dataset that specifies attack types (normal or attack). It has

23 labeled subsets (22 simulated attacks and a normal subset), that fall into four main categories:

DOS, R2L, U2R, and probing. The FensiVAT image of KDD-99 in View 4.5 (b) suggests 4 pri-

mary dark blocks and 18−20 tiny dark blocks. The top left big dark block represents the ’smurf’

4.5 Experiments 115

(a) Census, k′ = 10, n = 100, q = 5,
Time= 2.9s

(b) KDD, k′ = 47, n = 322, q = 5,
Time= 14.5s

(c) MiniBooNE, k′ = 5, n = 30, q = 5,
Time= 0.05s

(d) FOREST, k′ = 20, n = 108, q = 5,
Time= 0.7s

(e) MNIST, k′ = 28, n = 313, q = 100,
Time= 1.5s

(f) ACT, k′ = 38, n = 314, q = 50,
Time= 0.5s

Figure 4.5: iVAT images of D′∗n,d for each of the datasets obtained by FensiVAT algorithm.

attack (60% of the total dataset) in the DOS category. The right bottom dark block represents ’nor-

mal’ data, which comprises approximately 18% of the data, and the middle dark block represents

the ’neptune’ attack in the DOS category, which comprises approximately 20% of the data. The

remaining attacks are represented by 18−20 tiny (hard to see) dark blocks along the diagonal.

The MiniBooNE data consists of N = 130064 instances divided into 36,499 signal events

of electron neutrinos and 93,565 background events of muon neutrinos. The FensiVAT image

(Fig. 4.5 (c)) for the MiniBooNE dataset shows two dark blocks along the diagonal. Although it

shows two blocks, their sizes are not relative to the actual number of points in both classes. This is

because some of the signal events are grouped with the background events due to similar attribute

values. The FensiVAT image (Fig. 4.5 (d)) for FOREST dataset shows 2 big dark blocks on low

resolution, 6−7 dark blocks (of moderate size) in medium resolution, and 14−15 tiny dark blocks

on high-resolutions. The FOREST dataset has overlapping clusters due to heterogeneous features,

so it has inter-mixed dark blocks along the diagonal. This is a case where the physically labeled

subsets do NOT form well-defined clusters, at least not in the sense of SL distance, the basis of

the iVAT image.

The MNIST dataset is a big, fairly dimensional (p = 784) dataset. This is also a challenging

116 Cluster Tendency Assessment and Subsequent Clustering on Big, High-Dimensional Data

Table 4.4: Average (20 trials) PA (%) values (with standard deviation) and run-time (in seconds)
of FensiVAT for different RPs Q in ensemble step

Q = 2 Q = 3 Q = 5
PA Time PA Time PA Time

GM1 99.9±0.04 1.01 100±0 1.11 100±0 1.14
GM2 97±5.8 1.68 99±0.74 1.72 99.99±0.1 1.89

Q = 10 Q = 20 Q = 30
GM1 100±0 1.38 100±0 1.75 100±0 2.11
GM2 100±0 1.95 100±0 2.33 100±0 2.62

dataset for clustering because handwritten images of a single character can be executed in many

often quite different ways, which causes overlapping clusters in the data. Fig. 4.5 (e) shows the

FensiVAT image for the MNIST dataset, which indicates 10−12 dark blocks. The ACT dataset is a

high-dimensional (p = 5625), time-series dataset, which contains 19 activity types such as sitting,

walking, jumping etc. The FensiVAT image (Fig. 4.5 (f)) shows 18−24 tiny and middle size dark

blocks along the diagonal. Thus, the FensiVAT recommendation for this dataset is to cluster it at

every k from 18 to 24, and use a post-clustering validation method to select the "best" partition of

the data. The MNIST and ACT datasets contain inter-mixed clusters, so we removed outliers using

the strategy mentioned in Section 4.3 to improve the quality of the FensiVAT images. In summary,

FensiVAT takes only about a second for most of the datasets (14.5s maximum for KDD) to provide

visual evidence about potential cluster structure, which makes it one of the best cluster assessment

tools for big, high-dimensional dataset.

4.5.6 Synthetic Dataset for Different Numbers of RPs in Ensemble Step

In this experiment, we compare the PA of FensiVAT algorithm for different number of RPs

(or distance matrices) used in the ensemble step in FensiVAT algorithm. For datasets having high

diversity (overlapping clusters) like GM2, increasing Q in the ensemble method may be beneficial

because there will probably be much more diversity in the random projections due to the mixed

clusters in the upspace. Table 4.4 shows the average (20 trials) PA values with standard deviation

and run-time of FensiVAT for Q = 2,3,5,10,20, and 30, for a fixed value of q for GM1 (q = 20)

and GM2 (q = 50). FensiVAT achieves 100% accuracy for all Q ≥ 3 on GM1, and for all Q > 5

on GM2, respectively. As expected, the accuracy of FensiVAT for GM2 increases as Q increases.

4.5 Experiments 117

Table 4.5: Average (20 trials) PA (%) values (with standard deviation) and run-time (in seconds)
of FensiVAT for different downspace dimensions, q.

q = 5 q = 10 q = 20
PA Time PA Time PA Time

GM1 99.8±0.2 0.80 99.9±0.1 0.94 100±0 1.11
GM2 92.4±8.9 0.85 98.1±1.2 0.96 99.2±0.4 1.14

q = 30 q = 50 q = 100
GM1 100±0 1.33 100±0 1.61 100±0 2.51
GM2 99.9±0.1 1.21 100±0.0 1.53 100±0.0 2.52

Furthermore, increasing the ensemble size has very little effect on FensiVAT CPU time.

4.5.7 Effect of Different Downspace Dimesions, q

In this experiment, we compare the performance of FensiVAT for different downspace di-

mensions q = 5,10,20,30,50,100 for synthetic datasets GM1 and GM2. For the choices of

ε = β = 0.25, and n = 9162, q0 = 1576 (using (2.8)) and the probability of distance preserva-

tion = 0.9, so the chosen q values are well below the JL bound. These q values correspond to

rogue random projections, which are chosen irrespective of ε and β . Table 4.5 shows the aver-

age (20 trials) PA values with standard deviation and run-time of FensiVAT for a fixed value of

Q (= 5). As expected, the accuracy of FensiVAT increases with increasing q and the performance

becomes more stable (as standard deviation decreases). This is because higher q’s correspond to

more dimensions, so there is a better chance to preserve distances and lose less information under

the projection.

The values in Table 4.5 show that even at q = 5 downspace dimensions, FensiVAT achieves

very good clustering results (PA> 99%) and achieves perfect (PA= 100%) results with q ≥ 30

for GM1. This is because the clusters in this dataset are (probably) well separated (recall that

the ground truth partition of GM1 has CS clusters in the sense of Dunn). Thus, FensiVAT takes

a fraction of a second to achieve perfect accuracy for the big, high-dimensional data GM1. For

GM2, FensiVAT achieves near perfect results with q ≥ 50. Unlike GM1, the performance of

FensiVAT for GM2 is unstable for q < 30, most likely due to overlapping clusters in GM2 in the

input space. Overall, FensiVAT achieves very good and stable clustering solutions even with rogue

random projections.

118 Cluster Tendency Assessment and Subsequent Clustering on Big, High-Dimensional Data

4.5.8 Comparison of Different Clustering Methods

In this last experiment, we compare the performance of FensiVAT with nine existing ap-

proaches, which are best known for big and/or high-dimensional data clustering. The downspace

dimensions for FensiVAT are chosen based on its best performance for each dataset. These values

are shown in Figs. 4.4 and 4.5 for each dataset. Table 5.1 shows the comparison of FensiVAT to

nine other algorithm based on the accuracy (PA) and run-time. Since US Census 1990 dataset is

not labeled, we use DI as a measure of accuracy for different algorithms on the census data. The

highest accuracy and smallest CPU time are shown in bold for each dataset.

For GM1, GM2, and ACT, FensiVAT outperforms the other approaches in terms of accuracy

and CPU time. For GM2, FensiVAT, CLARA, CURE and RP-EN achieve perfect results (ave.

PA= 100%), however, CLARA, CURE, and RP-EN take 16.6s, 511.9s and 183.9s respectively,

whereas FensiVAT just takes 1.7s. For the FOREST, FensiVAT and clusiVAT achieve the highest

PA (48.9%), however, FensiVAT takes the least time (2.17s). For MNIST, clusiVAT achieves the

highest PA (50.1%) in 25.3s, whereas FensiVAT just takes 2.6s to achieve (nearly) similar accuracy

(50.0%). For KDD, FensiVAT and clusiVAT achieve the highest accuracy, but FensiVAT is about

10 times faster than clusiVAT.

Table 4.6: Average PA (%) values (DI for US Census) and run-time (in seconds) for all the ap-
proaches on all the datasets.

Dataset /
Methods

GM1 GM2 KDD FOREST MiniBooNE US Census MNIST ACT
PA Time PA Time PA Time PA Time PA Time DI Time PA Time PA Time

FensiVAT 100 1.12 100 1.72 96.1 88.4 48.9 2.17 71.9 0.12 0.10 6.9 50.0 2.6 49.5 1.2
clusiVAT 100 22.3 75.6 24.9 96.1 798.8 48.9 5.39 71.9 0.38 0.08 21 50.1 25.3 49.2 123.7
MBKM 90.1 2.07 89.9 2.03 74.3 33.2 34.2 1.75 71.9 0.12 0.08 3.12 44.3 3.38 47.8 7.8
CLARA 100 16.7 100 16.6 73.9 223.4 37.2 10.30 71.9 0.94 0.07 31.8 37.5 19.94 45.7 44.1

spkm 100 39.5 95.8 37.4 78.6 147.6 45.3 53.3 64.6 1.97 0.12 33 19.8 2296.8 12.5 3315.6
CURE 100 505.2 100 511.9 95.2 828.8 44.7 17.6 76.8 11.36 0.12 270 18.5 78.2 19.8 1871.3
RP-EN 100 31.8 100 183.9 95.7 52584 45.4 1596.3 76.8 30.3 0.12 475 26.5 95.8 26.5 205.9

PROCLUS 79.3 19.8 75.5 23.3 94.5 14346 45.1 2901.3 71.9 36.7 0.02 9162355 17.9 1185.7 17.8 12479.5
GARDENkm 65.8 1564 51.3 1652 94.1 326 38.2 44.5 71.9 340 0.01 3617 17.8 1133 18.5 3458

FastSpec 100 30.3 100 31.2 71.8 66.38 42.4 86 65.7 14.5 0.06 420 33.5 68.4 45.2 21.7

For GM1, GM2, MNIST, and ACT data, which have relatively high dimensions, FensiVAT

outperforms the other clustering methods. It achieves the highest PA values in less than 2.6s

(maximum 2.6s for MNIST), whereas, clusiVAT takes more than 20s for GM1 and MNIST, and

hundreds of seconds for ACT. For all datasets except GM2, clusiVAT and FensiVAT achieve ap-

proximately equal PA values, but clusiVAT is 5− 100 times slower than FensiVAT. Surprisingly,

FensiVAT achieves perfect results for GM2 dataset, whereas clusiVAT achieves 75.6%. This is

4.5 Experiments 119

probably because of the robust distance matrix obtained using ensemble scheme in FensiVAT.

For the US Census data, spkm, CURE, and RP-EN achieve the highest DI value (0.12), which

implies that their partitions are very slightly superior with regard to Dunn’s validity measure.

FensiVAT achieves the second highest DI value (0.1) and takes only 6.9s. ClusiVAT and MBKM

achieve similar DI value, with MBKM the fastest algorithm. For KDD, which has millions of

samples, FensiVAT achieves the best accuracy (96.1%) in just 88.4s, whereas the other approaches

(except MBKM) take up to about 52,000s average CPU time.

The MBKM approach is the second fastest method for all datasets except US Census, KDD,

and FOREST (fastest), but, at the cost of lower clustering accuracy. CLARA is able to achieve

the best PA for GM1 and GM2 dataset, but it is 10− 60 times slower than FensiVAT. The spkm

algorithm achieves good accuracy for GM1, GM2, US Census, and FOREST, but performs poorly

on MiniBoone, MNIST, and ACT. It is approximately 30− 50 times slower than FensiVAT for

GM1, GM2, KDD, and FOREST dataset, and 1500−6000 times slower for the high-dimensional

datasets MNIST and ACT. CURE achieves comparable accuracy on all datasets except MNIST

and ACT. It is likely that with many clusters, the randomly drawn samples used by CURE do not

adequately capture the geometry of the big data. Therefore it suffers for the ACT and MNIST data,

which appear to have many clusters. CURE is approximately 20− 500 times slower than Fensi-

VAT for GM1, GM2, MNIST, and FOREST, and 3500 times slower for ACT dataset. PROCLUS

is inaccurate for all datasets except KDD. The ensemble clustering method, RP-EN, achieves its

highest PA values for GM1, GM2, and MiniBooNE and highest DI for US Census dataset, but

at a time cost that is about 100− 1500 times higher than FensiVAT. RP-EN becomes intractable

for KDD, and takes 52584s. Among high-dimensional clustering algorithms, RP-EN outperforms

PROCLUS for all datasets except KDD. FensiVAT is about 4− 3000 times faster than GAR-

DENkm. GARDENkm is relatively inaccurate for all the datasets except for KDD and Mini-

BooNE. FastSpec performs better than GARDENkm based on the clustering accuracy and CPU

time. FastSpec achieves perfect results for GM1 and GM2, and exhibits comparable accuracy for

all other datasets except KDD and MNIST. FensiVAT is faster (20− 120 times) than FastSpec

for all datasets except KDD. FastSpec is little faster than FensiVAT on KDD, but at the cost of

clustering accuracy. To summarize, FensiVAT seems superior to the nine comparison algorithms

for the datasets used in this paper.

120 Cluster Tendency Assessment and Subsequent Clustering on Big, High-Dimensional Data

4.6 Summary

This chapter introduced a new, fast clustering algorithm, called FensiVAT, which can be used

to cluster large volumes of high-dimensional data. FensiVAT integrates a new random projection-

based distance matrix ensemble method with Maximin and Random sampling (MMRS) and a

visual assessment of cluster tendency method. We showed that the samples obtained using MMRS

sampling in the downspace dimension (Near-MMRS sampling) retain the same geometry in the

downspace as samples in the upspace. This enables us to use random projection effectively with

MMRS sampling and in our ensemble method to reduce the computation time.

We demonstrated the superiority of our FensiVAT approach by comparing it with nine state-

of-the-art approaches on two Gaussian mixture datasets and six real datasets which have both

large sample size and high dimensions. Experimental results on eight large, high-dimensional

datasets show that FensiVAT almost always outperforms the other nine approaches. FensiVAT is

an order of magnitude faster than clusiVAT, and several order of magnitudes faster than the other

nine approaches (except MBKM), without compromising accuracy.

Chapter 5

Approximating Dunn’s Cluster Validity
Indices for Big Data

This chapter presents six approximation algorithms including two incremental approaches to

compute Dunn’s cluster validity index for big data. Four methods are based on MMRS sampling,

and two are based on unsupervised training of one class support vector machines. Numerical

experiments on seven real and synthetic datasets assert that MMRS methods provide accurate DI

estimates, and represent a speedup on the order of 1000:1.

5.1 Introduction

As discussed in Chapter 2 (Section 2.4.1), there has been a considerable amount of work done

to address clustering tendency assessment and clustering problem for big data. However, there is

very little work done on cluster validity for big data. CVIs that use only membership values (U) are

easy to compute for big data because the output partition (U) is not usually big as compared to the

input (big) dataset X . However, most of these CVIs have a monotonic dependency on the number

of clusters. They also lack the direct connection with the geometry of the data (X) because they do

not use data itself. It is a well-known fact that a better definition of validity index should always

consider the geometry of data. However, the implementation of such CVIs, that consider both

partition U and dataset X , is often very computationally expensive, especially when the number of

clusters and number of objects in the dataset grows very large [62].

This chapter focuses on Dunn’s internal CVI which uses both the data and the partition re-

sulting from any hard clustering algorithm. Dunn’s index (DI) [48] is one of the most popular

internal CVIs finding its way into many cluster validity studies [62, 165, 167]. DI has been related

121

122 Approximating Dunn’s Cluster Validity Indices for Big Data

to visual assessment methods such as VAT and iVAT algorithms in [133]. DI provides a measure

of contrast between the blocks on the VAT/iVAT image diagonal and the background regions. A

recent study using neuron spike data relates DI to both iVAT and SL [240]. Since DI has quadratic

time complexity O(pN2), their computation is infeasible for big datasets (X with big N).

To address this issue, this chapter presents six methods for approximating DI for big data.

The first four proposed methods viz., αMMRS, αnMMRS, iMMRS, and inMMRS are based on

the Maximin Random Sampling (MMRS) rule [83], which identifies approximate boundary points

in each cluster. The iMMRS and inMMRS schemes are incremental methods, which produce an

optimal number of (boundary) points to compute the approximate Dunn’s index. Two additional

methods are presented here to compute approximate DI, that are based on the unsupervised training

of one class support vector machines (OCSVM) [84, 85]. Our experiments show that computing

approximations to DI with Maximin skeleton based methods are both tractable and accurate.

5.2 Related Work

Many books on cluster analysis contain at least one chapter on cluster validity [41, 105, 241,

242]. Surveys on crisp CVIs that compare various validation schemes in one way or another

began to appear in the 1980s [166]. Halkidi et al. [62] present a review of many popular clus-

tering validity measures along with numerical examples of experimental evaluation. Milligan and

Cooper [243] compared 30 validity tests (which they called "stopping rules") using partitions gen-

erated by four hierarchical clustering methods, and their paper is considered the classic reference

on "best-k" studies of internal CVIs. Gurrutxaga et al. [244] present a very thorough critique of

Milligan and Cooper’s "best-k" methodology.

Dimitriadou et al. [245] presented a nicely written survey of 15 internal CVIs in 2002. Ar-

belaitz et al. [167] published an extensive comparison of 30 internal CVIs for crisp c-partitions

that channels the Milligan-Cooper style. Three crisp clustering algorithms were used to populate

candidate partitions in their study. Seventeen goodness of fit functions which can be regarded

as internal CVIs for probabilistic (Gaussian) clusters generated by the Expectation-Maximization

(EM) algorithm [41] for Gaussian Mixture Decomposition (GMD) are compared to both crisp and

fuzzy CVIs in [246]. Nguyen et al. [168] presented a "best-k" study of similarity measures and

5.3 Dunn’s Index (DI) 123

distance based functions that compare pairs of crisp partitions using external information-theoretic

CVIs. They identify a total of 26 measures that are subdivided into 10 similarity measures and 16

distance measures.

Very limited research literature studies CVIs for big data. Tlili et al. [179] proposed a fuzzy

version of the Davies Bouldin Index (DBI) for big data clustering. Since, the DBI uses both the

output partition and the data itself, it still has the higher computational complexity for big data.

Although this method was proposed for big data, the datasets used to illustrate it (largest one

N = 10,000 and p = 85) are not considered large in today’s computing environment. Moreover,

they did not report the computation time in their experiments. Another work [180] implemented

DI and Silhouette on a Spark platform to deal with big data.

Chapter 2 (Section 2.4.2) briefly discussed DI and its limitation for big data. Below, we ex-

plain DI and its generalized indices, called GDIs, in detail before presenting their approximation

methods.

5.3 Dunn’s Index (DI)

Let X = {x1, ..,xN} ⊂ Rp be a set of N feature vectors in p-dimensional space. A crisp par-

tition U of X can also be represented in terms of the k disjoint subsets {Ci} written as U ↔ X =
k⋃

i=1
Ci; Ci∩C j = /0 for i 6= j. The cardinalities (or sizes) of the ith clusters is given as |Ci| so that

∑
k
i=1|Ci|= N.

Dunn’s index is based on the geometrical premise that "good" sets of clusters are compact

(dense about their means) and well separated from each other. To quantify this index, Dunn let Ci

and C j be non-empty subsets of Rp, and let d : Rp×Rp 7→R+ be any metric on Rp×Rp. Dunn

based his index on the standard definitions of the diameter ∆ of Cl and the set distance δ between

Ci and C j.

∆(Cl|d) = max︸︷︷︸
x,y∈Cl

{d(x,y)} , (5.1)

δ (Ci,C j|d) = δSL(Ci,C j|d) = min︸︷︷︸
x∈Ci
y∈C j

{d(x,y)}. (5.2)

124 Approximating Dunn’s Cluster Validity Indices for Big Data

 !

z
f

g

(a) The classical diameter ∆(Cl) of Cl

 !

 "

w

(b) The classical (SL) distance δSL(Ci,C j) and com-
plete linkage (CL) distance δCL(Ci,C j) between Ci
and C j

Figure 5.1: Set distance and diameter with respect to d = dE .

For any partition, U↔ X = {C1∪ ...Ci∪ ...Ck}, Dunn defined the separation index of U as follows:

VDI(U |d,δ ,∆) =

min︸︷︷︸
1≤i≤k

 min︸︷︷︸
1≤ j 6=i≤k

{δ (Ci,C j|d)}


max︸︷︷︸
1≤l≤k

{∆(Cl|d)}
. (5.3)

The notation in (5.3) indicates that Dunn’s index requires choices for three functions, {d,δ ,∆};

the pair wise distance metric d, the set distance δ , and the diameter function ∆. Dunn’s definition

at (5.3) and hence, in (5.1) or (5.2) as well, are based on an arbitrary metric d on any real vector

space. The notation (∗|d) for δ and ∆ indicate that they both depend only on d.

The set distance shown in equation (5.2) is used by the hierarchical single linkage (SL) clus-

tering algorithm [41, 105, 241, 242], and is often called the single linkage set distance for this

reason. Fig. 5.1 depicts the classical meaning of equation (5.1) for ∆ and (5.2) for δ when d

is chosen as Euclidean distance, d = dE . The outlier point z in Fig. 5.1 (a) and inlier point w

in Fig. 5.1 (b) will be discussed shortly.

Following many subsequent authors, we refer to VDI at (5.3) as Dunn’s index (DI). The most

common metric for d in the numerator and denominator of VDI i.e., in (5.1) and (5.2), is dE

but there are many other choices. The diameter ∆(Cl|d) in (5.1) which appears in the denominator

of (5.3) is a measure of scatter volume for cluster Cl . Compact clusters will have smaller diameters

than ones that are more dispersed about their mean vectors. A set of clusters is relatively compact

when the largest of its k diameters and, hence the denominator in (5.3), is small.

5.3 Dunn’s Index (DI) 125

The quantity δ (Ci,C j|d) that appears in the numerator of VDI is the SL set distance with respect

to d at equation (5.2) between pairs of crisp clusters in U . Hence, the larger δ (Ci,C j|d) is, the

better separated are Ci and C j. Taking the double minimum in the numerator identifies the pair of

clusters that are least well separated. As the k clusters become better separated, the numerator in

(5.3) grows.

Thus, the geometric objective of DI is to maximize inter-cluster distances (big numerators)

while minimizing intra-cluster distances (small denominators). Large values of VDI intuitively

correspond to better clusters in the sense of DI. The partition U∗ that maximizes VDI over a set

of candidate partitions is taken as the (DI) optimal set of clusters. Consequently, VDI is called a

max-optimal internal CVI.

The range of VDI is (0,∞), and VDI is undefined when k = 1 (U1×N = 1N) and k = N (UN×N =

IN). Dunn called a partition U ∈MhkN compact and separated (CS) relative to d if and only if the

following property is satisfied: for all s, q and r with q 6= r, any pair of points x,y ∈Cs are closer

together (with respect to d) than any pair (u,v) with u ∈Cq and v ∈Cr. Dunn [48] proved that X

can be clustered into a CS k-partition with respect to d if and only if there is a U ∈MhkN for which

the index is greater than 1.

Theorem 5.1. X ⊂Rp has a CS k-partition U∗ with respect to d⇐⇒U∗ = max︸︷︷︸
U∈MhkN

{VDI(U |d)} >

1 [48].

This is a nice theoretical result, but in practice, it is quite difficult to verify that a given input

dataset can be partitioned into CS clusters, because MhkN is finite, but very, very large. The exact

cardinality of MhkN is |MhkN | =
(1

k!

) k
∑
j=1

(k
r)(−1)k− j jN . For k << N, the last term dominates this

sum, which yields the approximation |MhkN | ≈ kN/k!. Consequently, computing DI over all of

MhkN is impractical for all but trivial values of k and N. The value of VDI(U |d) for a given U ,

however, is easily computed with (5.3) when N is not too large, and if it happens to be greater than

1, its clusters are said to be compact and separated in the sense of Dunn.

DI at (5.3) has a well known flaw, viz., sensitivity to anomalies, which can render it ineffective

for partitions of data that have clusters with outliers and/or inliers. This is easy to see. Return

to Fig. 5.1 (a) and imagine adding the single outlier point z to Cl . As shown, this one point

can double the diameter of Cl , ∆(Cl ∪{z}) = 2∆(Cl). Similarly, adding the inlier point w to C j

126 Approximating Dunn’s Cluster Validity Indices for Big Data

in Fig. 5.1 (b) will significantly decrease the distance between Ci and C j. Thus, a single anomaly

can alter the numerator and/or denominator of Dunn’s index by orders of magnitude.

To address this issue, a family of 18 generalized Dunn’s indices (GDIs) were defined and

analyzed in [169]. Under the same conditions as in (5.3), these indices take the general form

VGDI(U |d,δa,∆b)) = min︸︷︷︸
1≤i≤k

 min︸︷︷︸
1≤ j≤k

j 6=i


δa(Ci,C j)

max︸︷︷︸
1≤l≤k

{∆b(Cl)}


 , (5.4)

where a ∈ {1, ...,6},b ∈ {1, 2, 3}. For brevity we write (5.4) as Vab, where a and b define the

choice of set distance (numerator) and diameter (denominator), respectively, from GDIs (5.4).

Equation (5.4) reduces to the original DI at (5.3) when a = b = 1, i.e., V11 = VDI . Below, we list

the equations that result in the 17 GDIs.

Equations (5.5)-(5.11) define the six numerators alluded to by equation (5.4). The numerator

for a = 2 is the complete linkage (CL) distance between Ci and C j, and the choice a = 3 corre-

sponds to the average linkage (AL) distance.

δ2(Ci,C j) = δCL(Ci,C j) = max︸︷︷︸
x∈Ci
y∈C j

{d(x,y)} (5.5)

δ3(Ci,C j) = δAL(Ci,C j) =
1

|Ci||C j| ∑
x∈Ci
y∈C j

d(x,y). (5.6)

The choice of a = 4 and 5 corresponding to δ4 and δ5, respectively, are the set distances that

incorporate the averaging concept of δ3. The sixth set distance (a = 6) is based on the Hausdorff

metric.

δ4(Ci,C j) = d(vi,v j), (5.7)

where vi =
1
|Ci| ∑

x∈Ci

x and v j =
1
|C j| ∑

y∈C j

y

5.3 Dunn’s Index (DI) 127

δ5(Ci,C j) =
1

|Ci|+|C j|

(
∑

x∈Ci

d(x,vi)+ ∑
y∈C j

d(y,v j)

)
(5.8)

δ6(Ci,C j) = δHausdor f f (Ci,C j)

= max{δ (Ci,C j),δ (C j,Ci)}
(5.9)

where

δ (Ci,C j) = max︸︷︷︸
x∈Ci

{min︸︷︷︸
y∈C j

{d(x,y)}} (5.10)

δ (C j,Ci) = max︸︷︷︸
y∈C j

{min︸︷︷︸
x∈Ci

{d(x,y)}} (5.11)

If b = 1, V21(U |d) and V31(U |d) will also be sensitive to outliers and inliers, so the authors

of [169] proposed two other diameters for the denominator of (5.4). The choice b = 2 corresponds

to the average distance between the data points in cluster Cl , and the choice b = 3 is the average

distance between the points in Cl and its cluster center, v̄.

∆2(Cl) =
1

|Cl|·(|Cl|−1) ∑
x,y∈Cl

x6=y

d(x,y) (5.12)

∆3(Cl) = 2

 ∑
x∈Cl

d(x, v̄)

|Cl|

 ,where v̄ =
1
|Cl| ∑

x∈Cl

x (5.13)

The generalized Dunn’s index V33(U |d) has done well in several comparative studies [167,

169, 247]. For example, the study in [247] ranked V33 8-th among 40 competing internal CVIs,

scoring 389 hits in 432 clustering scenarios, whereas V11 was ranked 29-th in this same study. The

datasets used in [247] were relatively small.

The terms “good CVIs" and “bad CVIs" are oxymorons in cluster validity and it can not be

asserted that DI (V11) is either a good one or bad one. Despite its sensitivity to noisy points,

DI provides a rich and very general structure for defining cluster validity indices for different

types of clusters. DI finds its way into many cluster validity studies [62, 165, 167]. And, various

commercial software packages such as the spike extraction and sorting software (Offline Sorter,

Plexon Inc, Dallas, TX) report DI as part of their default cluster validity statistics [248].

128 Approximating Dunn’s Cluster Validity Indices for Big Data

Our approximations of Dunn’s index are based on Maximin Random Sampling (MMRS), the

topic we turn to next.

5.4 The Maximin Random Sampling (MMRS)

Although MMRS sampling is well explained in Chapter 2 (Section 2.2.3), we briefly discuss

it here for completeness. MMRS is a combination of Maximin and Random sampling. Maximin

(MM) sampling selects a few samples far from each other so that they represent diverse regions of

the input space. These samples are called distinguished objects or MM samples. Pseudocode for

the MMRS algorithm is shown in Algorithm 3. Hathaway et al. [47] proved a proposition (Propo-

sition 2.1) that relates the quality of the objects selected by MMRS to compact and separated

(CS) clusters as defined by Dunn. According to this proposition, if dataset X has k CS clusters and

k′ ≥ k, then Maximin step of MMRS sampling will always select at least one object (MM sample)

from each cluster, where k′ is the number of MM samples.

The practical implication stemming from this result is that the MMRS procedure probably

finds points that are fairly well distributed across even non-CS clusters when there are many points

in each subset. The efficacy of this assumption has been well tested in a variety of big data

application domains. For example, MMRS underlies the success of scalable visual assessment of

tendency (sVAT) [47] for building approximate cluster heat maps in big data. And, clusiVAT [135]

and FensiVAT (presented in Chapter 4) use MMRS to scale a generalization of the single linkage

clustering algorithm up to big data of arbitrary size in N and p. However, our interest in this

chapter lies in another direction.

Fig 5.1 shows that V11 and V21 both depend on the extremal (or "boundary") points in each

cluster. We do not define the term boundary point exactly, but it is clear that for ∆1(Cl) we want

the points in each Cl that are furthest from each other. And for δ1(Ci,C j) (or δ2(Ci,C j)), we want

the points in the two sets that are closest (or furthest) away from each other. We loosely call such

points boundary points.

So, we want to find a set of approximate boundary points, δB(Ci), in each cluster Ci of the

partition U ↔ X =
k⋃

i=1
Ci. If the extremal points in Ci are contained in δB(Ci), computing Dunn’s

index on the sub-partition (of reduced size) δB(X) =
k⋃

i=1
δB(Ci) should provide a good estimate

5.5 Approximating Dunn’s index 129

of the literal Dunn’s index that we would get by computing it on all of the points in each cluster.

This affords a way to estimate Dunn’s index and its generalizations on intractably large partitions

of big data.

Since the GDIs in [169] are designed to overcome the sensitivity of Dunn’s index to extremal

points in the data, we do not expect the methods in this chapter to provide as good approximations

to their literal values as we will get for V11 and V21.

5.5 Approximating Dunn’s index

This section describes six algorithms that build a reduced partition δB(X) =
k⋃

i=1
δB(Ci) of

U ↔ X =
k⋃

i=1
Ci ∈ MhkN . The first four algorithms are based on the MMRS and the last two are

based on boundary (support) vector algorithms. All six algorithms share these common inputs:

1. X = {x1,x2, ...,xN} ∈Rp,

2. a k×N partition U ↔ X =
k⋃

i=1
Ci ∈MhkN ,

3. a distance metric d for equations (5.3) to (5.13), and for nearest neighbour rules.

5.5.1 The MMRS algorithms

MM (Step 1 of MMRS (Algorithm 3)) finds the distinguished points which are furthest from

each other. This is the basic motivation for using the MMRS to approximate the boundary points

of each cluster. These furthest points, roughly called "boundary points", from each cluster can

be used to estimate V11 and V21. We also expect the MMRS to provide a good skeleton because

of the last sentence in Casey and Nagy’s MMRS description [101] (Chapter 2): "These initial

cluster centers are well scattered over the sample space.". Hathaway et al. [47] proved a theorem

(Theorem 2.1) which says that, for CS datasets, the proportion of objects in each cluster Ci in the

MMRS sample equals the proportion of the objects from the same cluster in the original data for

i = 1,2, ..,k. This means that the MMRS algorithm not only finds the boundary points, but it also

selects well-distributed points within each cluster, which can be used to estimate V31 (using AL

distance).

130 Approximating Dunn’s Cluster Validity Indices for Big Data

Instead of applying MMRS to the entire input data as in [47], we apply MMRS to each cluster

in a k-partition U of data X . Applying MMRS to each Ci should find most of the points that are

far apart from each other within the cluster Ci in the sense of the metric d used in equations (5.1)

to (5.6). Algorithms 8 and 9 can take inputs a ∈ {1, ...,6},b ∈ {1, 2, 3} as described at (5.4).

Algorithms 10 and 11 are restricted to a = 1,2;b = 1.

5.5.1.1 αMMRS

The pseudocode for the αMMRS algorithm is shown in Algorithm 8. The parameter α dictates

the choice of the first dαNeMM points from each cluster. When α = 1, all the points in X are used,

and algorithm αMMRS computes literal Dunn’s indices. Can unequal cluster sizes {Ni} bias the

approximation of X by Xα? To address this question, we conducted an experiment, which studies

whether a fixed fraction α of |X |= N (αMMRS) yields a different approximation to the DI than

applying the fraction α to each Ci individually. We call latter approach α{i}MMRS. Experiment

1 in Section 5.6.3.3 shows that estimates of V11 and V21 are not biased by unbalanced cluster sizes,

but V31 is affected. This is probably because V11 and V21 only relies on border points, whereas, in

V31, average distance changes with each extracted data point.

Algorithm 8 The αMMRS algorithm

Input: α- a fraction of N, 0 < α ≤ 1;
a,b- inputs to compute GDI Vab

1: ∀i : Extract k′ = dαNeMM points δBα(Ci) from cluster Ci with Step 1 of Algorithm 3.

2: Form the reduced partition Uα ↔ Xα =
k⋃

i=1
δBα(Ci)

3: ∀a,b : Compute Vab(Uα |d)
Output: Vab(Uα |d)

5.5.1.2 αnMMRS

Steponavičė et al. [104] showed that Maximin sampling tends to select decision vectors that

are located near the boundary of the decision space.. In such cases, MM may require a relatively

large number of samples to extract exact boundary points. This is probably because once the

MM sampling extracts a point, say point f (see Fig. 5.1 (a)), which is near to the border but not

exactly on the borderline of a cluster, it may take quite a few more samples before MM extracts

5.5 Approximating Dunn’s index 131

the borderline point g, which is near f, due to the MM property of picking points furthest from all

previous points.

To address this issue, the neighbourhood part of the MMRS algorithm is utilized. αnMMRS

(Algorithm 9) adds some points to Xα in the neighborhood of each αMMRS sample (using Step

3 of Algorithm 3), resulting in Xαn. The rationale is that local neighbors of "nearly extremal"

points in Xα should contain points essential for a better approximation of V11 and V21. Evidently

Xα ⊂ Xαn.

Algorithm 9 The αnMMRS algorithm

Input: α- a fraction of N, 0 < α ≤ 1;

nid- the number of local neighbourhood samples of MM points for each cluster, and
k⋃

i=1
nid = n;

a,b- inputs to compute GDI Vab

1: for i← 1 to k do
2: Extract k′ = dαNeMM points δBα(Ci) from Ci with Step 1 of Algorithm 3

3: Extract nt neighbors of each MM point with Step 3 of Algorithm 3, resulting a total of nid =
k′⋃

t=1
nt

neighbour points
4: δBαn(Ci) = δBα(Ci)∪nid
5: end for
6: Form the reduced partition Uαn↔ Xαn =

k⋃
i=1

δBαn(Ci)

7: ∀a,b : Compute Vab(Uαn|d)
Output: Vab(Uαn|d)

5.5.1.3 iMMRS

Instead of generating all k′ MM points with αMMRS or αnMMRS and then computing ap-

proximate Dunn’s indices, the iMMRS algorithm tries to estimate an optimal number to points

to approximate DI. The intuition behind this algorithm is that inclusion of a new MM data point

to any cluster Ci will not increase the value of Dunn’s original index for X . We explain this idea

for V11 based on the changes to the diameter (denominator) and the SL set distance between two

clusters (numerator) using Fig. 5.1, as follows:

First, we discuss the effect of a new data point on cluster diameter (Eq (5.1)). The maximum

intra-cluster distance is used as cluster diameter in the denominator of DI (Eq (5.3)). As can be

seen in Fig. 5.1 (a), a new data point can lie either within, on, or outside the hypersphere with

diameter ∆(Cl) of an existing set of data points (shown in red). If a new data point lies within or

132 Approximating Dunn’s Cluster Validity Indices for Big Data

on the boundary of the hypersphere, the maximum within cluster distance is unchanged, so the

diameter in Eq (5.1) will be unchanged. If the new data point (say z) lies outside the hypersphere,

the maximum distance within the cluster will increase, so the diameter will also increase. In all

three cases, the denominator of DI will not decrease.

How will a new data point affect the SL set distance between two clusters in Eq (5.2)? The min-

imum of inter-cluster distances is used to compute the numerator in DI. Consider the hypersphere

shown in Fig. 5.1 (b) with diameter δSL(Ci,C j) which is in between ("tangent" to) the current pair

of minimal points. A new data point can lie either within, on or outside this hypersphere. So,

when a new data point falls on or outside the hypersphere, the minimum distance between two

clusters is unchanged. If the new data point falls within the hypersphere, the inter-cluster distance

will decrease. Therefore, in all cases, the numerator of DI will not increase. In summary, when a

new data point is added to a cluster, DI (V11) will either be the same or it will decrease.

Algorithm 10 The iMMRS algorithm

Input: T -Loop Limit;
ε- termination threshold, ε > 0;
a,b- inputs to compute GDI Vab

1: for i← 1 to k do
2: Draw xm0,i ∈Ci, (m0 = a random point in Ci)
3: Find first MM point xm1,i
4: δB1,i(Ci) = xm1,i ; delete xm0,i;
5: Find second MM point xm2,i ;
6: δB2,i(Ci) = {xm1,i}∪{xm2,i}
7: end for
8: ∀a,b : Vab(U2|d)
9: for j← 3 to T do

10: for i← 1 to c do
11: Find MM point xmj,i ∈Ci
12: δB j,i(Ci) = δB j−1,i(Ci)∪{xmj,i}
13: end for
14: Form U j =

k⋃
i=1

δB j,i(Ci)

15: Compute: Vab(U j|d); Vab(U j−1|d)
16: if

∣∣Vab(U j|d)−Vab(U j−1|d)
∣∣≤ ε then

17: Vab(U j|d)
18: break;
19: else
20: next j
21: end if
22: end for

Output: ∀a,b : Vab(U j|d) : j

5.5 Approximating Dunn’s index 133

Now, we discuss the iMMRS algorithm to approximate DI. Initially, the approximate boundary

points, ∂B(Ci) for each cluster Ci is empty, so ∂B(X) =
k⋃

i=1
∂B(Ci) = /0. This method starts with k

random initial points {xm0,i}, one from each cluster Ci. Then, based on these k initial points, the

first MM, {xm1,i}, is extracted from each cluster and added to ∂B(Ci). Since at least two points

per cluster are required to compute the diameter of each cluster, so {xm2,i}, the second MM points

(furthest from {xm1,i}) are extracted from each cluster and added to ∂B(Ci). Then, we can compute

the two MM points estimate of Vab using ∂B(X). Then, {xm3,i}, the next (third) MM points are

added to each subset resulting in a 3-point estimate. This procedure continues until successive

estimates of V11 are close. This amounts to progressive MM sampling with termination criteria as

shown at line 16 of Algorithm 10. The objective is to obtain a reasonable estimate of V11 with a

minimal number of MM points per cluster. Since this method is incremental, we call it the iMMRS

approximation (Algorithm 10).

5.5.1.4 inMMRS

Our initial experiments with iMMRS showed that successive local estimates of Dunn’s index

were often small, but the overall approximation descended in staircase fashion, so iMMRS of-

ten terminated before reaching a good approximation to the literal value of Dunn’s index. This

led us to the modification (Algorithm 11), which combines ideas from the neighborhood part of

αnMMRS with the incremental part of iMMRS algorithm. Similar to αnMMRS, inMMRS al-

gorithm add some points in the neighborhood ({nt,i}) of each MM point for fast convergence.

We will discuss the termination issue further in Experiment 4. In contrast with αMMRS and

αnMMRS, iMMRS and inMMRS do not require the parameter α .

Algorithms 10 and 11 are incremental methods, in which approximate boundary points are ex-

tracted incrementally one by one from each cluster using Maximin algorithm. Once the extracted

approximate boundary points contain the closest (for SL distance) and furthest elements (for CL

distance) from each cluster, the SL (a = 1,b = 1) and CL distance (a = 2) does not change, and

consequently, DI value also does not change. Once the optimal DI value is achieved, the algorithm

terminates. Therefore, Algorithms 10 and 11 are restricted to a = 1, 2 and b = 1. Unlike V11, V21

does not decrease or increase monotonically with an addition of an MMRS point, however, it

achieves a steady value after adding enough MMRS points. The termination may not be achieved

134 Approximating Dunn’s Cluster Validity Indices for Big Data

Algorithm 11 The inMMRS algorithm

Input: T -Loop Limit;
ε- termination threshold, ε > 0;
a,b- inputs to compute GDI Vab

1: for i← 1 to k do
2: Draw xm0,i ∈Ci, (m0 = a random point in Ci)
3: Find first MM point xm1,i
4: δB1,i(Ci) = xm1,i ; delete xm0,i;
5: get ni = 1 local neighbors, n1,id , of xm1,i
6: end for
7: U1 =

k⋃
i=1

δB1(Ci) =
k⋃

i=1
[xm1,i ∪n1,id]

8: ∀a,b : Vab(U1|d)
9: for i← 1 to k do

10: Find second MM point xm2,i
11: get ni = 2 local neighbors n2,id of {xm1,i}∪{xm2,i}
12: end for
13: U2 =

k⋃
i=1

δB2(Ci) =
k⋃

i=1
[{xm1,i}∪{xm2,i}∪n2,id]

14: ∀a,b : Vab(U2|d)
15: for j← 3 to T do
16: for i← 1 to k do
17: Find MM point xmj,i

18: get ni = j local neighbors n j,id of
j⋃

r=1
{xmr,i}

19: δB j(Ci) = {
j⋃

r=1
{xmr,i}}∪n j,id

20: end for
21: Form the reduced partition U j↔

k⋃
i=1

δB j(Ci)

22: Compute: Vab(U j)
23: Sort {Vab(Ur) : r = 1, ..., j} in descending order
24: {Vab(U(r)) : r = 1, ..., j} . U(k) is the k-th partition after sorting
25: if std(Vab(U j),Vab(U j−1),Vab(U j−2))≤ ε then
26: Vab(U j|d) . std= standard deviation
27: break;
28: else
29: next j
30: end if
31: end for

Output: ∀a,b : Vab(U j|d) : j

5.5 Approximating Dunn’s index 135

for average linkage distance (a = 3) because the average distance changes with each extracted data

point.

5.5.2 Boundary Vector algorithms

The support vector machine (SVM) [242] relies on support vectors at the boundaries of labeled

subsets to define an optimal separating hyperplane. The boundary points of each data class that

are "away" from the supporting hyperplanes play no role in SVM designs. However, several

recent papers that estimate hyper-parameters for the one class support vector machine [84, 85] do

estimate and use all of the boundary points in datasets assumed to contain normal and anomalous

(but unlabeled) samples. Algorithms 12 [84] and 13 [85] are based on this type of boundary

estimation.

5.5.2.1 QMS+

Algorithm 12 presents a brief summary of the part of the Quick Model Selection (QMS) [84]

algorithm that estimates the boundary points of X using the K-nearest-neighbor (K-NN) rule. The

parameter η is a shrinking factor which divides the sample into three groups viz., normal, outlier,

and border-line [84]. Since, we used QMS to generate boundary point estimates in Algorithm 12,

we name it QMS+.

Algorithm 12 The QMS+ algorithm

Input: K- the number of nearest neighbors,
η- shrinking factor,
a,b- inputs to compute GDI Vab

1: for i← 1 to k do
2: Find niK,d = {K-NNs of each x ∈Ci wrt. d}.
3: d̄i = ∑

y∈niK,d

d(x,y)/K

4: Sort {d̄i}→ {d̄(i)} in ascending order
5: Find last sudden change point (index) m in {d̄i}. . see [249] for details of this step
6: ωL = dηme ; ωU = d(2−η)me
7: XQi = {x(i) : ωL ≤ (i)≤ ωU}
8: end for
9: UQMS+↔ XQMS+ =

k⋃
i=1

XQi

10: Compute Vab(UQMS+|d)
Output: ∀a,b : Vab(UQMS+|d)

136 Approximating Dunn’s Cluster Validity Indices for Big Data

5.5.2.2 BEPS+

Li et al. [85] describe a method they call Border-Edge Pattern Selection (BEPS) that is also

based on the K-NN rule. Since, we used the portion of the BEPS boundary estimation algorithm

to generate boundary (border) points, and subsequently, used them to compute approximate DI,

we call modified algorithm BEPS+. The pseudocode of BEPS+ is shown in Algorithm 13.

The rationale given in [85] for the BEPS algorithm is that a boundary point has all or most

of its nearest neighbors sitting on one side of the tangent plane which has e as an approximate

normal vector. The vector x is an edge pattern when the number of neighbors y j ∈ nx
iK,d of x with

θy j ≥ 0 exceeds the threshold 1− γ . Since g(x)/K ranks points in ascending order of being an

edge pattern, a predefined fraction of edge patterns with top ranks can be selected to compute

Vab(UBEPS+|d) without finding a best γ . We modified the algorithm in [85] to select a fraction of

the top ranked points (given the ranking g(x)/K) as XBEPS+,i.

Algorithm 13 The BEPS+ algorithm

Input: γ ∈ (0,1]- a threshold
K = d5lnNe- nearest neighbors
a,b- inputs to compute GDI Vab

1: for i← 1 to k do
2: for t← 1 to |Ci| do
3: Find nxt

iK,d = {K-NNs of xt ∈Ci wrt. d}.
4: for j← 1 to K do
5: y j ∈ nxt

iK,d : ej(xt) = (xt−yj)/||xt−yj||d, . y j is the j-th NN from xt; and ej(xt) is the
norm vector for each K-NN

6: end for
7: zt = ∑

K
j=1 e j(xt)

8: g(xt) = 0
9: for j← 1 to K do

10: θy j =
〈
(xt−y j),zt

〉
11: if θy j ≥ 0 then
12: g(xt) = g(xt)+1
13: end if
14: end for
15: if (g(xt)/K)> (1− γ) then
16: xt ∈ XBEPS+,i
17: end if
18: end for
19: end for

20: UBEPS+↔ XBEPS+ =
k⋃

i=1
XBEPS+,i

21: Compute Vab(UBEPS+|d)
Output: ∀a,b : Vab(UBEPS+|d)

5.6 Experiments 137

5.6 Experiments

We performed six sets of experiments. In the first experiment, we study the impact of α on the

approximation of DI by the αMMRS algorithm. In the second experiment, we discuss the impact

of K on the approximation of DI for the QMS+ algorithm. In the third experiment, we study the

effect of unequal cluster sizes Ni on the approximation of X by Xα . In the fourth experiment, we

compare the boundaries and MMRS skeletons of all six methods on the 2D Banana dataset. In

the fifth experiment, we compare all six methods on all datasets based on their approximated DI

value and computation time. In the last experiment, we discuss the termination of the iMMRS and

inMMRS algorithms.

5.6.1 Computation Protocols

All algorithms were coded in MATLAB on a PC with the following configuration; OS: Win-

dows 7 (64 bit); processor: Intel Core i7− 4770 @3.40GHz; RAM: 16GB. The parameters for

each method were chosen as follows, unless stated otherwise:

• metric d = dE (Euclidean),

• K = 5 for QMS+ and K = d5lnNe as in [85] for BEPS+

• α = 0.005 for XG, BANANA, HAR and MNIST dataset,

• α = 0.0005 for FOREST dataset,

• α = 0.00005 for BigX and ACTR dataset,

• k′ = n = dαNe for αMMRS and αnMMRS.

The input parameters η and γ ordinarily determine the boundary points extracted by QMS+

and BEPS+, respectively. However, to make the comparisons as fair as possible, we computed

n∗ = dαNe for αMMRS (Algorithm 8), and used the n∗ highest ranked boundary points from each

method in the experiments. Our motivation for choosing the values of α and K are discussed in

Experiments 1 and 2. The value of K should be selected such that it reflects the local neighborhood

of the data points. A small K will reflect a very local neighborhood. A large K will make nearest

138 Approximating Dunn’s Cluster Validity Indices for Big Data

Table 5.1: Seven datasets used for our experiments

Dataset |X|= N p k pN2

XG 55,500 2 3 6.05E9
BANANA 50,000 2 2 5E9

ACTR 1,140,000 45 19 6E13
HAR 10,299 561 6 6E10

FOREST 581,082 54 7 2E13
MNIST 60,000 784 10 3E12
BigX 1,000,000 100 4 1E14

neighbors span a large space around x. Thus, a reasonable value of K should be used in order to

reflect the curvature of the class surface. For BEPS+, Li et al. [85] suggest making the value of K

a function of the size of the dataset, viz., K = d5lnNe. The experimental study in [85] shows that

the pattern selection rate is relatively insensitive to the value of K after a certain value of K.

5.6.2 Datasets

Table 5.1 lists the seven datasets used in the experiments. XG, Banana and BigX are synthetic,

the ACTR, HAR and FOREST datasets are available from the UCI repository [236]. The MNIST

data is available at [221]. The last column of Table 5.1 shows pN2. The complexity of Dunn’s

index on the full data is O(pN2) [247]. ACTR is a resized version of the ACT data at the UCI web-

site to 1,140,000× 45 which we made by splitting a large time window signal to multiple small

time windows. The BigX dataset is created by drawing labeled samples from a mixture of k = 4

circular Gaussian distributions, having the mean components (−12, ..,−12)100, (−6, ..,−6)100,

(6, ..,6)100 and (12, ..,12)100, and the standard deviations (1, ..,1)100, (2, ..,2)100, (1, ..,1)100 and

(2, ..,2)100. The values of k shown in Table 5.1 are the numbers of labeled subsets (assumed here

to form clusters) in each dataset.

5.6.3 Experiments

5.6.3.1 Effect of α on DI approximation

In this experiment, we investigate the effect of α on the approximations of Dunn’s original

index V11, by varying α from 0.05 to 0.00005 in multiples of 10. Although both αMMRS and

5.6 Experiments 139

Table 5.2: V11 values of αMMRS for different values of α .

Dataset α = 1 (literal V11) α = 0.05 α = 0.005 α = 0.0005 α = 0.00005
XG 0.27 (61s) 0.27 (1.38s) 0.27 (0.23s) 0.28 (0.15s) 0.32 (0.14s)

Banana 0.07 (39s) 0.07 (0.11s) 0.07 (0.07s) 0.08 (0.10s) 0.11 (0.09s)
ACTR 0 (56656s) 0 (37220s) 0 (3704s) 0 (363s) 0 (22s)
BigX 1.26 (820788s) 1.27 (41484) 1.28 (4152) 1.30 (419s) 1.31 (44s)

FOREST 0.002 (208382s) 0.003 (92312s) 0.005 (893s) 0.007 (113s) 0.02 (8.76s)
HAR 0.09 (614s) 0.11 (64.3s) 0.17 (4.8s) 0.32 (0.8s) 0.54 (0.4s)

MNIST 0.15 (24320) 0.16 (2879s) 0.18 (273s) 0.33 (36.9s) 0.43 (4.8s)

αnMMRS require the user to input α , we present this study for αMMRS, as Xα ⊂ Xαn. Table 5.2

shows the V11 values and computation times (in parentheses) for different values of α for all seven

datasets. When α = 1 (second column of Table 5.2), all of the input data are used to compute

V11 without applying the MMRS algorithm to each cluster. The values in Table 5.2 show that the

approximations are close to literal values for higher values of α . However, the computation time

also increases significantly for each multiplication of 10 to α . For small datasets, e.g., XG and

Banana, a very small value of α = 0.00005 means that only two1 to three MMRS points per cluster

are extracted, which are insufficient to compute a good approximate DI. And, for a big dataset,

e.g., FOREST, a large value of α = 0.05 means almost all the points are extracted from a cluster

if k′ = dαNe ≥ |Ci|. The values in Table 5.2 suggest that α ≈ inverse(order of N) is a good choice

for any dataset. Hence, the values of α for subsequent experiments are chosen using this criterion,

and as discussed in Section 5.6.1.

The parameter α of αMMRS specifies the number of points extracted by MMRS from X from

each labeled subset. When α = 0.05, the approximations are based on using 1/20 of the input

data. Table 5.2 shows that for this choice, the worst approximation to DI by αMMRS is in error

by 0.02 (the HAR data), and it is obtained in about 1/10 of the time required to secure the literal

value. Three of the seven approximations at α = 0.05 are exact.

5.6.3.2 Effect of K in QMS+ on DI approximation

In this experiment, we investigate the effect of the number of nearest neighbors K on boundary

extraction by QMS+, by varying K from 1 to 9 with an interval of 2. Table 5.3 shows the V11 values

1For each cluster in each data, we choose k′ = (max(2,dαNe)) MMRS points, as at least two points per cluster are
required to compute the DI. If k′ = dαNe ≥ |Ci|, then we choose k′ = min(dαNe, |Ci|)

140 Approximating Dunn’s Cluster Validity Indices for Big Data

Table 5.3: V11 values based on the QMS+ algorithm for different values of K.

Dataset V11 K = 1 K = 3 K = 5 K = 7 K = 9
XG 0.27 0.27 (0.24s) 0.27 (0.19s) 0.27 (0.19s) 0.27 (0.19s) 0.27 (0.19s)

Banana 0.07 0.10 (0.1038s) 0.07 (0.1895s) 0.07 (0.1818s) 0.07 (0.1817s) 0.07 (0.1960s)
ACTR 0 0.13 (3677s) 0.10 (3665) 0.10 (3689s) 0.10 (3695s) 0.10 (3686s)
BigX 1.26 1.36 (19845s) 1.34 (19891) 1.30 (19895) 1.30 (19847) 1.30 (19899)

FOREST 0.002 0.006 (5686s) 0.006 (5693s) 0.006 (5678s) 0.006 (5696s) 0.006 (5648s)
HAR 0.09 0.16 (16.42s) 0.14 (16.10s) 0.14 (16.34s) 0.14 (16.24s) 0.14 (16.46s)

MNIST 0.15 0.21 (357s) 0.20 (356s) 0.20 (359s) 0.20 (361s) 0.20 (360s)

and computations times (in parentheses) for different values of K for all the seven datasets. The

values are not too sensitive to K. In particular, the approximations are all identical for K = 3,5,

7 and 9, excepting the difference of 0.04 for BigX on passing from K = 3 to K = 5. Moreover,

the computation time is fairly stable to small changes in K and is random for some datasets as the

complexity of the k-d tree, to compute nearest neighbors, may slightly vary in different runs. For

K = 1, the V11 approximations are affected as K = 1 does not reflect the local proximity of the

data points. As discussed in Section 5.6.1, the approximations do not change after a certain value

of K (= 5).

5.6.3.3 Effect of unequal cluster sizes (αMMRS vs α{i}MMRS)

This experiment studies whether a fixed fraction α of |X |= N yields different approximations

to Dunn’s index than applying the fraction α to each Ci individually, i.e., to |Ci|. This study

is performed on the XG and FOREST datasets. These datasets have highly unbalanced cluster

distributions, which makes them suitable for this study. The other datasets in our experiments

have (almost) balanced cluster distributions, so αMMRS and α{i}MMRS will probably yield

similar DI values for these datasets.

The input data XG are shown in Fig. 5.2 (a). XG has k = 3 labeled, p = 2 dimensional

Gaussian clusters with N = 55,500 points, composed of |C1|= 500, |C2|= 5000 and |C3|= 50000

points. Choosing α = 0.005 for N = 55,500 points instructs αMMRS to extract 275 points from

each of the three clusters, resulting in a total of 875 points. These points are Xα , the round circles

in Fig. 5.2 (b). This scheme extracts 55% of the points in C1, but only 0.55% of the points in C3.

The crosses in Fig. 5.2 (c) show the 278 points retrieved when the fraction of points extracted from

Ci is α of |Ci| instead of α of N. For example, only 0.005× 500 = 2.5 (rounded up to 3) points

5.6 Experiments 141

(a) Unbalanced dataset XG
(b) Uα ↔ Xα =

k⋃
i=1

δBα (Cl) for

α = 0.005

(c) Uα{i}↔ Xα{i} for α{i}= 0.005

Figure 5.2: αMMRS and α{i}MMRS for the 2D XG dataset.

Table 5.4: V∗1 values (times) for α = α{i}= 0.005, for XG dataset

α = 1, |X |= 55,000 α = 0.005, |Xα |= 875 α{i}= 0.005, |Xα{i}|= 278
V11(U |dE) 0.27 (61s) 0.27 (0.35s) 0.27 (0.26s)
V21(U |dE) 1.57 (61s) 1.58 (0.35s) 1.57 (0.26s)
V31(U |dE) 3.40 (46s) 3.40 (0.35s) 2.99 (0.26s)

are extracted from C1 using this method.

Table 5.4 shows Dunn’s index for X , Xα , and Xα{i} using the three set distances corresponding

to single, complete and average linkage; a = 1,2 and 3 in the numerator of (5.4). The approxima-

tions of V11 and V21 are not affected by unbalanced cluster fractions. The estimate of V31 using Xα

agrees with its value on X , but drops when using Xα{i}, suggesting that V31 is affected by unbal-

anced cluster sizes. Apparently XG has CS clusters when the set distance is δ = δCL or δ = δAL,

indicated by DI values greater than 1, but does not contain CS clusters for the choice δ = δSL.

Table 5.5 shows V∗1 values for X , Xα , and Xα{i}, for the FOREST dataset. All the approxi-

mations for Xα agree with their value on X ; however, V11 and V31 differ for Xα{i}, suggesting that

they are affected by unbalanced cluster fractions. Seemingly, FOREST has non-CS clusters for all

three set distances.

Table 5.5: V∗1 values (times) for α = α{i}= 0.005, for FOREST dataset

α = 1, |X |= 581,012 α = 0.005, |Xα |= 2030 α{i}= 0.0005, |Xα{i}|= 295
V11(U |dE) 0.00 (208382s) 0.00 (115s) 0.02 (0.29s)
V21(U |dE) 0.93 (208349s) 0.94 (119s) 0.94 (0.27s)
V31(U |dE) 0.64 (172460s) 0.65 (112s) 0.70 (0.25s)

142 Approximating Dunn’s Cluster Validity Indices for Big Data

Computation times for XG and FOREST in this experiment are shown in parentheses in Ta-

ble 5.4 and Table 5.5, respectively. For XG , using Xα instead of X affords a speedup of about 175

times for V11 and V21; and about 130 times for V31, with almost no loss in accuracy. For FOREST,

a speedup of about 1750 times is achieved for all approximations (V∗1) using Xα instead of X , and

a speed up of 750,000 is achieved using Xα{i}. However, the approximation accuracy drops for

Xα{i}, especially for V11 and V31.

The results of this experiment suggest that unbalanced clusters do not bias the αMMRS algo-

rithm for some Dunn’s indices, but not all of them. Approximated values of V11 and V31 based

on Xα are equal to their literal values (bold and italic) based on all of X ; V21 differs by 0.01 for

the XG and FOREST datasets. The estimations of Dunn’s original index for all six algorithms for

the XG dataset are shown in the second row of Table 5.6. Three of the six estimates produce the

exact value on 10 trials (0.27, the literal value) for the XG data; the other three are within ±0.01

or ±0.04 on all 10 trials.

5.6.3.4 Boundary points and MMRS skeleton on Banana data

This experiment compares estimates of Dunn’s index based on extracted partitions found by

the six algorithms presented in Section 5.5. The input dataset Banana (XB) is the pair of semi-

ellipsoidal clusters shown in Fig. 5.3, which we call the Banana data. There are |C1|= |C2|=

25,000 points in each of the clusters, so, N = |XB|= 50,000.

Figure 5.3: The Banana (two-dimensional) data: |XB|= 50,000

The cardinalities of the αMMRS (500) and αnMMRS (1000), QMS+ (500) and BEPS+ (500)

5.6 Experiments 143

2.3 2.33 2.36 2.39 2.42 2.45 2.48 2.5071

104

0

0.2

0.4

0.6

0.8

1

1.2

m = 24607

Inliers
Boundary Points

(a) {d̄i}⇒ QMS+ on X2 (b) |XQMS+|= 500

0 0.5 1 1.5 2 2.5

104

0

0.2

0.4

0.6

0.8

1
Inliers
Boundary points

(c) {g(i)/K}⇒BEPS+ on X2 (d) |XBEPS+|= 500

(e) |XαMMRS|= 500 (f) |XαnMMRS|= 500 (g) |XiMMRS|= 141 (h) |XinMMRS|= 121

Figure 5.4: Boundaries and MMRS Skeletons for the 2D Banana data.

subsets are a direct consequence of choosing α = 0.005. We selected only the highest ranked

n∗ = dαNe= 500 boundary points from each of QMS+ and BEPS+. The cardinalities for iMMRS

(141) and inMMRS (121) are determined by the termination criteria for these two MMRS methods.

Fig. 5.4 (a) graphs the rank-ordered K-NN distances {d̄i} obtained by QMS+ for cluster C2.

The last sudden change point in this cluster occurs at index m = 24,607, and QMS+ obtained a

similar graph for cluster C1, the outer cluster in Fig. 5.3. The overall result was the selection of

2% of 50,000, of which the highest ranked 500 were selected as shown for XQMS+ in Fig. 5.4

(b). Fig. 5.4 (c) and (d) are the analogous displays for the ranking function rank(x) = g(x)/K of

the BEPS+ algorithm, for which we also prespecified a total of 2% of the boundary points; the

highest ranked 500 points are shown in Fig. 5.4 (d).

QMS+ (Algorithm 12) and BEPS+ (Algorithm 13) both produce visually appealing subsets of

extreme points. The BEPS+ points appear to be slightly better visually since they capture a few

points missed by QMS+ at the extreme right side of each cluster, whereas the QMS+ points tend

to pool a bit at the left sides of the two banana clusters.

Figs. 5.4 (e)-(h) show the MMRS points extracted from the Banana data with Algorithms 8-11,

respectively. All four MMRS methods extract some boundary points, but they also retrieve some

points in the "interior" of each cluster. Hence, the term MMRS skeleton seems more descriptive

than calling them boundary approximations. Nonetheless, we will see that the MMRS skeletons

144 Approximating Dunn’s Cluster Validity Indices for Big Data

contain the points we need to make pretty good estimates of Dunn’s index.

Estimates of Dunn’s original index (V11) for the Banana data are shown in the third row of

Table 5.6. All six estimates are exact, producing the same value (0.07) as the literal computation

on all 50,000 points, so the Banana data illustrates differences in the extraction methods, but it

does not provide us with a comparison for the six methods that points to one of them as being

superior to the others in terms of the best approximation to Dunn’s literal index. However, one of

the MMRS methods will emerge as "empirically best in class" when we consider the remaining

five datasets.

Table 5.6: Average (10 trials) approximate values of Dunn’s index V11 for six algorithms on seven
datasets.

Dataset V11 (α = 1) αMMRS αnMMRS iMMRS inMMRS QMS+ BEPS+
XG 0.27 0.27±0.04 0.27±0.01 0.27±0.01 0.27±0.00 0.27 0.27

Banana 0.07 0.07±0.01 0.07±0.00 0.07±0.01 0.07±0.01 0.07 0.07
ACTR 0 0±0 0±0 0±0 0±0 0.10 0.10
BigX 1.26 1.32±0.09 1.28±0.04 1.32±0.03 1.26±0.01 1.30 1.43

FOREST 0.002 0.005±0.001 0.003±0.000 0.005±0.001 0.002±0.000 0.006 0.004
HAR 0.09 0.18±0.06 0.11±0.03 0.13±0.06 0.09±0.00 0.14 0.13

MNIST 0.15 0.18±0.08 0.17±0.06 0.20±0.06 0.15±0.01 0.20 0.21

5.6.3.5 Comparison of six algorithms on all datasets

MMRS algorithm (Algorithm 3) is initialized at a random object, so 10 trials with different

initializations may result in different MMRS skeletons. This experiment will determine how sensi-

tive the four MMRS sampling methods are to this parameter. The BEPS+ and QMS+ methods will

produce the same boundary points in all 10 trials, so there is no variance in the estimates of Dunn’s

index based on these two methods. Table 5.6 lists the values of Dunn’s original index and average

(10 trials) estimates of it made by the six algorithms for all seven datasets in our experimental

study. All of the estimates are pretty good, but inMMRS is exact (±0.01 for three of the datasets)

for all six datasets, as shown by the bolded entries in the table. The largest variation in estimates

of DI is 0.09 for BigX with αMMRS, which also shows the largest variations for XG, HAR and

MNIST. The values in Table 5.6 confirm that MMRS is not very sensitive to changes in its initial

index (m0, in the first step of the Algorithm 3). So, on the basis of quality of approximation,

inMMRS algorithm is the clear leader.

5.6 Experiments 145

An interesting and somewhat unexpected result seen in Table 5.6 is that Dunn’s index and its

four MMRS estimates are all 0 for the ACTR dataset, whereas the QMS+ and BEPS+ estimates

of it are greater than 0. This confirms our suspicion that removing points from a crisp partition of

a dataset might increase the estimated value of Dunn’s index. We believe that this cannot happen

when points are added to a crisp partition (at least for the V11 and V21 cases), but we do not pursue

this conjecture in this chapter.

Table 5.7 lists the average (10 trials) CPU times needed by our six approximation methods

(shortest times bolded) and Dunn’s index. Fig. 5.5 is a graphical representation of the column

values in Table 5.7. Dunn’s index is the leftmost bar graph of the seven for each dataset, with an

average computation time of 1.85× 105 = 51.4 hours, as seen in the last row of Table 5.7. How

much time do we save using the six approximation algorithms to estimate this value?

The minimum average time, 63 seconds, is achieved by the αMMRS algorithm, followed by

αnMMRS at 77 seconds, inMMRS at 140 seconds and iMMRS at 203 seconds. So, the four

MMRS methods all represent a speedup on the order of 1000 : 1. The QMS+ method averaged

1.17 hours, while the BEPS+ method averaged 1.87 hours, so the boundary point algorithms (Al-

gorithms 12 and 13) take quite a bit more (several orders more) time and do not provide better

estimates than the MMRS methods.

Table 5.7: Average (10 trials) CPU times (seconds) for six algorithms on seven datasets.

Dataset V11 (α = 1) αMMRS αnMMRS iMMRS inMMRS QMS+ BEPS+
XG 60 0.27 0.65 1.09 1.12 0.19 1.85

Banana 38.8 0.34 0.35 0.16 0.13 0.19 1.587
ACTR 56656 19 24 4.0 4.3 3690 4372
BigX 820788 40 45 276 343 19895 33687

FOREST 208382 101 109 65 207 5679 8630
HAR 614 4.8 5.2 132 28 17 27

MNIST 24320 278 354 946 395 359 539
Average 1.85(105) 63 77 203 140 4234 6751

Graphs of the CPU times in Fig. 5.5 also show that there are two pairs of estimates that are

essentially equal in CPU time, viz., (αMMRS, αnMMRS) and (QMS+, BEPS+), so from the

standpoint of CPU time, either choice from the two pairs will run in about the same amount of

time.

146 Approximating Dunn’s Cluster Validity Indices for Big Data

BigX ACTR HAR MNIST Forest Banana XG
Dataset

10-2

100

102

104

106

C
om

pu
ta

tio
n

T
im

e
(s

)

DI on Full Data
αMMRS
αnMMRS
iMMRS
inMMRS
QMS+
BEPS+

Figure 5.5: CPU times (log scale on y-axis) for six methods and seven datasets.

0 50 100 150 200 250 300 350 400 450 500

No. of MM Points, k'

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
u

n
n

's
 I

n
d

e
x
 (

D
I)

DI on Full MNIST Data

iMMRS

inMMRS

Termination

Figure 5.6: Termination: iMMRS and inMMRS

5.6.3.6 Termination of iMMRS and inMMRS

Recall that the inMMRS algorithm was introduced to overcome the tendency for premature

termination of iMMRS. Fig. 5.6 compares the estimates of Dunn’s index shown in Table 5.7 made

by these two algorithms at successive values of k′ on the MNIST dataset (V11 = 0.1482 ≈ 0.15).

The iMMRS estimate does not approach the target value using the termination criterion (say T 1),

as shown at line 15 of Algorithm 10, even when 500 additional MMRS points are used. On the

other hand, iNMMRS terminates for k′ = 262 at the exact value of 0.1482 using the standard

deviation (std) based termination criterion (say T 2) shown at line 25 of Algorithm 11. This shows

both the necessity for and accuracy of termination criterion (T 2) of Algorithm 11.

5.7 Computational Complexity 147

The next section provides a brief analysis of the asymptotic time complexity for Dunn’s indices

and our six approximation algorithms for computing it when N is very large.

5.7 Computational Complexity

The computational complexity of all 18 generalized Dunn’s indices is derived in [247]. Sixteen

of the GDIs are O(pN2): V43 = O(pN + pk2); V53 = O(pkN). Here are the complexities for the

six approximation algorithms:

MMRS = max{O(c′pN),O(k′N)}= O(k′pN) (5.14a)

αMMRS = max{O(k′pN),O((kp(kk′)2)} (5.14b)

αnMMRS = max{O(k′pN),O(kN),O(p(k(k′+n))2)} (5.14c)

iMMRS = max{O(k′pN),O((p(kk′)2)} (5.14d)

inMMRS = max{O(k′pN),O(k′N),O(p(k(k′+n))2)} (5.14e)

QMS+,BEPS+= max{O(N(K + p)),O(N ln(N))} (5.14f)

The estimate O(k′pN) for MMRS was established in [47]. The four MMRS algorithms have

different complexities, but in all practical cases, they are dominated by the complexity of the

MMRS algorithm. Specifically, for big datasets N is very large, so k, k′, kk′, k′+ n should all be

small relative to N. The value of k′ in (5.14d) is known at termination of iMMRS. The values of k′

and n in (5.14e) are known at termination of inMMRS. It is pretty safe to assume that (K + p) >

lnN, for which (5.14f) becomes O(N(K + p)) for QMS+ and BEPS+. Thus, all six methods for

estimation of Dunn’s index are linear in N, the number of samples in the data.

5.8 Summary

This chapter presented six methods for approximating values of Dunn’s index that all have lin-

ear complexity in N. Four methods used variations of the Maximin Random Sampling (MMRS) to

extract skeletal subsets from crisp partitions of the big data that presumably contain the extremal

148 Approximating Dunn’s Cluster Validity Indices for Big Data

points in the data needed for determination of Dunn’s index. We compared the four MMRS meth-

ods to estimates of Dunn’s index based on two boundary point estimation methods (QMS+ and

BEPS+) borrowed from the field of support vector machine research.

We conducted experiments on seven labeled (hence, partitioned) datasets of varying sizes to

compare approximation accuracy and savings in CPU time using the algorithms developed in this

article. The inMMRS algorithm offered an average speedup of about 1000 : 1, and produced aver-

age values that matched values of Dunn’s index up to ±0.01 on all seven datasets when computed

on the full dataset (cf. Table 5.7). Experiment 6 also demonstrated that randomly initializing Al-

gorithm 3 was not detrimental to the stability of inMMRS approximations. This method was, on

average, 50 seconds slower than the best method for minimum CPU time (cf. Table 5.7), so the

added average expense of less than a minute in CPU time makes the inMMRS algorithm a clear

winner in the competition for approximating Dunn’s index on these seven datasets.

Chapter 6

Cluster Tendency Assessment and
Anomaly Detection in High-Velocity

Streaming Data

This chapter develops an incremental method of scalable iVAT, inc-siVAT, to (visually) detect

evolving structure in high-velocity, streaming data. The inc-siVAT updates the MMRS sample

points and reordered dissimilarity image (RDI) on the fly to track the changes in the data stream

after each chunk. Numerical experiments demonstrate the applicability of the inc-siVAT algorithm

for successfully detecting anomalies and visualizing evolving cluster structure in dynamic streams

of four big datasets, including a real IoT data.

6.1 Introduction

The widespread realization of the IoT infrastructure in smart city networks generates huge

streams of data from various sources, at a high rate. Automatic interpretation of high-velocity,

massive data streams is required for timely detection of interesting or abnormal events, that usually

emerge in the form of clusters. This problem necessitates the needs of visualization and event

detection techniques for high-velocity streaming data.

At present, there is no technique on offer for visual assessment of evolving cluster struc-

ture in high-velocity massive data streams. The inc-VAT/dec-VAT and inc-iVAT/dec-iVAT algo-

rithms [69] (discussed in Chapter 2) provide a fast method for visualizing a point by point cluster

evolution in streaming data. But hardware and software constraints limit incremental VAT algo-

rithms to a maximum window size of about N ∼ 5,000 inputs. When this limit is reached, point by

149

150 Cluster Tendency Assessment and Anomaly Detection in High-Velocity Streaming Data

point deletion and insertion maintains this fixed window size. Thus, incremental VAT presents the

user with a view of possible structure for only the last N points in the input stream. If N = 100,000,

the user will have an image of only the last window at the end of the process. The salient point is

that the history of cluster evolution is not available.

Both sVAT and siVAT are suitable for cluster tendency assessment of big data. However, to

handle streaming data, they also need to be re(applied) each time a new data point or a chunk of

new data points arrives, which is not feasible due to computational complexities associated with

retraining at each instance of the new data point or new chunk arrival.

To address this problem, this chapter proposes an incremental version of the scalable iVAT

algorithm, called inc-siVAT, which deals with the high-velocity, massive streaming data in chunks.

It first extracts a small size smart sample using Maximin Random Sampling (MMRS), then it

incrementally updates the smart sample points on the fly, using our novel incremental MMRS (inc-

MMRS) algorithm, to reflect changes in data streams after each chunk, and finally, produces an

incrementally built iVAT image of the updated smart sample after each chunk, using inc-VAT/inc-

iVAT and dec-VAT/dec-iVAT algorithms. These images (aka cluster heat maps) can be used to

visualize evolving cluster structure and for anomaly detection in high-velocity streaming data.

The inc-MMRS model summarizes the data seen by a fixed (small) size of intelligent samples.

Therefore, when N exceeds 5000, the intelligent sample size will be fixed which also constrains

the size of the iVAT image.

6.2 Related Work

Besides cluster heat-maps, scatterplotting is the main approach for visualizing evolving clus-

ter structure in streaming data. Scatter plots visualize streaming data instances across time, as

points in 2D or 3D spaces. For visualizing high-dimensional data, a typical approach is to project

the data into lower-dimensions (2D or 3D) using a dimensionality reduction method, e.g., multi-

dimensional scaling, principal component analysis [250]. A more sophisticated approach is to

project the data into many 2D scatterplots to get a sense of the relationship between the fea-

tures [251]. For data streams, most of these approaches visualize a sliding window of the data.

However, these methods can fail for clusters having high overlap or shapes that are difficult to dis-

6.2 Related Work 151

tinguish on a scatter plot. When the stream presents a large number of instances, it can be difficult

to distinguish the clusters and data points themselves, as well as the clustering trends. For high-

dimensional data, these methods suffer from all of the difficulties inherent with dimensionality

reduction, such as which projection method to use, loss of structural information, computational

complexity etc.

Cluster partitions on evolving data streams are often computed based on certain time intervals

(or windows). There are three well-known window-based methods: landmark window, damped

window, and sliding window [68]. Landmark window models consider the data stream from the

beginning until now. An example of the landmark window model is the CluStream algorithm [64]

which clusters the data stream over different time horizons in an evolving environment. CluStream

uses a modified k-means algorithm for clustering which requires k as input. Damped window mod-

els associate weights, also called a forgetting or decay factor, with the data in the stream such that

higher weights are given to recent data than those in the past. An example of the damped window

model is the Den-Stream algorithm [68]. Den-Stream uses a density-based algorithm for clustering

with a similar concept as of CluStream algorithm. The sliding-window based approach considers

the data from now up to a certain range in the past. It is the most common approach to visualize

evolving cluster structure in streaming data. Zhou et al. proposed SWClustering algorithm [138]

which introduces a new data structure called Exponential Histogram of Cluster Features (EHCF),

a combination of exponential histograms with temporal cluster features, to record the evolution

of each cluster and to capture the distribution of recent records. In contrast to CluStream, which

uses batch updating and stores the whole snapshot, SWClustering updates EHCF only when new

records are collected.

Most of the existing methods for streaming data clustering require the number of clusters (k) to

be known in advance, but in practice, this is usually unknown. Moreover, one of the main aspects

of streaming data is that the number of clusters changes with time. In some methods, clusters are

determined using some rules or using other parameters which are sensitive to changes in cluster

structure. Moreover, these approaches were originally developed for clustering streaming data.

Once clusters are obtained, the clusters can be visualized across time windows. However, they do

not offer online visualization of evolving cluster structures in streaming data.

152 Cluster Tendency Assessment and Anomaly Detection in High-Velocity Streaming Data

Step 3a: Update current

datapoints after each new

chunk,

 (!"##) = ($#%&) ' (!*)

Step 3b: Apply inc-MMRS to

current datapoints (!"##) to

obtain new MM points and

new k’ partitions of (!"##) ,

+(!"##)

Step 4: Find the datapoints

that need to be deleted,

W (delete) and to be added,

W (add) , from/to the previous

MMRS sample, ,+($#%&)

Step 5: Delete W (delete)

datapoints one by one from
,+($#%&), and update previous

VAT/iVAT outputs using dec-

VAT/dec-iVAT

Step 6: Add W (add) datapoints

one by one to the last

updated MMRS sample, and

update VAT/iVAT outputs

(from the Step 5) using inc-

VAT/inc-iVAT

Current MMRS sample, ,+(!"##), and

VAT/iVAT outputs, -(!"##). /(!"##),

0(!"##). 12
3(!"##)

, 142
3(!"##)

+(!"##)

Previous MMRS

sample, ,+($#%&)

data chunk, (!*)

Step 1: Apply MMRS to initial

buffer (52567) to obtain an

initial MMRS sample ,+ 52567

Initial buffer, (52567)

,+ 52567 8 ,+ $#%&

Step7: Consider the current

datapoints, MMRS and VAT/iVAT

parameters as previous values

for the next incoming chunk,

 (!*)

Dataset:

 $#%& 9 !"##

MMRS outputs

: $#%& 9 :(!"##).

1;<> $#%& 9 1;<>(!"##),

? $#%& 9 ?(!"##)

VAT/iVAT outputs

- $#%& 9 -(!"##).

/ $#%& 9 /(!"##),

0 $#%& 9 0(!"##),

12
3($#%&)

9 12
3(!"##)

.

142
3($#%&)

9 142
3(!"##)

Step 2: Apply VAT followed by

iVAT to the initial MMRS

sample, ,+ 52567 , to obtain an

initial static iVAT image (which

will be updated incrementally

after every new chunk)

Current iVAT Image, @(142
3(!"##)

)

Initial iVAT Image, @(142
3(52567)

)

 ($#%&)

 (!"##)

 (!"##)

Previous MMRS outputs,

:($#%&). ?($#%&), and

1;<>($#%&)

Previous VAT/iVAT

outputs,

-($#%&). /($#%&),

0($#%&). 12
3($#%&)

,

142
3($#%&)

Data Streams

(Chunks)

W (delete) , W (add)

Updated MMRS sample ,
,+(!"##), and VAT/iVAT outputs

 52567 8 $#%&

Incremental block

Incremental visualization of

evolving cluster structure
Anomaly Detection

Incremental visualization of

evolving cluster structure
Anomaly Detection

Figure 6.1: The architecture of our proposed framework.

6.3 Proposed Algorithm 153

6.3 Proposed Algorithm

The architecture of our inc-siVAT algorithm is shown in Fig. 6.1. The inc-siVAT algorithm

deals with the high-velocity, big streaming data in chunks (of configurable size). (Step 1) First,

an initial MMRS sample is obtained by applying the MMRS (Algorithm 3) on an initial buffer (or

first chunk). A static reordered dissimilarity image (RDI) is obtained by applying VAT/iVAT on

the initial MMRS sample (Step 2). At arrival of every new chunk, first, an augmented (current)

dataset is obtained by appending the data points of the new chunk to the previous dataset (Step 3a),

and then, the updated MM points and k′ partitions are obtained by applying our novel inc-MMRS

algorithm (Algorithm 15) to the current dataset (Step 3b). The inc-MMRS algorithm summarizes

the data seen (after each chunk) by a fix (small) size (n << N) of intelligent MMRS sample. Next,

the k′ partitions of the current dataset are compared to the k′ partitions of the previous MMRS

sample, to estimate the number of data points that need to be deleted from or to be added to each

of the k′ partitions of previous MMRS sample to obtain the current (updated) MMRS sample (Step

4). Then, (the estimated number of) data points are deleted from the previous MMRS sample, and

subsequently, the previous VAT/iVAT outputs are updated using dec-VAT/dec-iVAT algorithms

(Step 5). Similarly, (the estimated number of) the new data points are added to the last updated

MMRS sample, and subsequently, the previously computed VAT/iVAT outputs are updated using

inc-VAT/inc-iVAT algorithms (Step 6), to obtain the updated RDI corresponding to the current

dataset. The current dataset, MMRS outputs, and the VAT/iVAT parameters act as the previous

values for the next chunk (Step 7). Steps 3-7 are performed for each new chunk to obtain an

updated RDI. A display of updated RDI provides the visualization of evolving cluster structure

after each new incoming chunk. Next, we discuss each step of our inc-siVAT algorithm in detail.

Let an initial dataset containing initN number of data points be denoted as X (initN) and an

incoming chunk containing Nch number of data points be denoted as X (ch). The inc-MMRS algo-

rithm outputs M, Dmax, R, N , and S̃ are updated everytime a new chunk arrives. For an input

data XN (having N data points) to MMRS algorithm, these outputs are defined as:

• a set of k′ MM points in XN , M = {m1,m2, ...mk′}.

• Dmax = {dmax1,dmax2, ...,dmaxk′}, where dmax j represents the maximum distance of the

j-th MM point in XN , m j, to the previous (j−1) MM points in XN , denoted by M1: j−1.

154 Cluster Tendency Assessment and Anomaly Detection in High-Velocity Streaming Data

Algorithm 14 inc-siVAT
Input: initN- The initial number of points; Nch- Chunk size; k′- desired number of MM (distinguished) points; and n: an
approximate (desired) size of MMRS sample

Step 1: Apply MMRS sampling (Algorithm 3) on the first initN points, X (initN)

(S̃(initN), M(initN), R(initN), N (initN), Dmax(initN)) = MMRS (X (initN), k′, n)

Step 2: Apply VAT and iVAT on Dn (a square distance matrix indexed by S̃(initN) in both rows and columns)
(D′∗

(initN)

n , P(initN), F(initN), h(initN)) = VAT (D(initN)
n)

D∗
(initN)

n = iVAT (D′∗
(initN)

n)
Initialization:
MMRS input: M(prev) = M(initN), Dmax(prev) = Dmax(initN), R(prev) = R(initN), N (prev) = N (initN), and S̃(prev) = S̃(initN)

inc-VAT/dec-VAT input: P(prev) = P(initN); F(prev) = F(initN); h(prev) = h(initN); D′∗
(prev)

n = D′∗
(initN)

n ; and D∗
(prev)

n = D∗
(initN)

n

%%Process each chunk of streaming data in incremental way%%
for each incoming chunk X (ch) or until termination do

Step 3: Apply inc-MMRS to X (curr) with previous MMRS outputs as input
3a. X (curr) = {X (prev)∪X (ch)}
3b. (M(curr),R(curr),Dmax(curr),N (curr),S(curr)) = Inc-MMRS(X (prev),X (chunk), X (curr),M(prev),Rprev), Dmax(prev),Nch,k′, n)

Step 4: Find the data points ∈ X (curr) that need to be deleted from and to be added in S̃(prev) to obtain S̃(curr)

for t← 1 to k′ do
Zt = {S(curr)

t ∩ S̃(prev)
t } . data points in S(curr)

t which are already present in previous MMRS sample, S̃(prev)
t

if |Zt |> nt then . nt = |S̃(curr)
t | (or, the value at t-th index in N (curr)

{w(delete)
t } ← |Zt |−nt random data points to be removed from S̃(prev)

t to obtain S̃(curr)
t

else if |Zt |< nt then
{w(add)

t } ← nt −|Zt | random data points from S(curr)
t (not present in S̃(prev)

t) to be added in S̃(prev)
t to obtain S̃(curr)

t .
end if

end for
W (delete) = {{w(delete)

1 },{w(delete)
2 }, ..., {w(delete)

k′ }} ; W (add) = {{w(add)
1 },{w(add)

2 }, ..., {w(add)
k′ }}

Step 5: Delete W (delete) elements and update previous VAT and iVAT outputs using dec-VAT/dec-iVAT algorithms
for i← 1 to |W (delete)| do

j = arg(P(prev) = S̃(prev)

w(delete)
i

) . Find the position of w(delete)
i in P(prev). where w(delete)

i is the i-th element of W (delete)

(P(curr), F(curr), h(curr), D∗
(curr)

n) = dec-VAT (P(prev), F(prev), h(prev), D∗(prev)
n , j)

D′∗
(curr)

n = dec-iVAT (D′∗
(prev)

n , D∗
(curr)

n , j)
S̃(curr)← S̃(prev)/ w(delete)

i
K = arg(P(curr) > j)
P(curr)

K ← P(curr)
K −1

end for

Step 6: Add W (add) elements and update current VAT and iVAT outputs using inc-VAT/inc-iVAT algorithms
for i← 1 to |W (add)| do
{j}= {S̃(curr)

P(curr)
1

, S̃(curr)

P(curr)
2

, ..., S̃(curr)

P(curr)
n
}

V = {dist(x(curr)

w(add)
i

,x(curr)
j1

), ...,dist(x(curr)

w(add)
i

,x(curr)
jn)} . distance of x(curr)

w(add)
i

to S̃(curr), ordered by P(curr)

(P(curr), F(curr), h(curr), D∗
(curr)

n) = inc-VAT (P(curr), F(curr), h(curr), D∗(curr)
n ,V)

D′∗
(curr)

n = inc-iVAT (D′∗
(curr)

n , D∗
(curr)

n)

S̃(curr)← S̃(curr)∪w(add)
i

end for

Step 7: Update the previous dataset, MMRS and VAT/iVAT parameters assigning with the current dataset, MMRS and
VAT/iVAT parameters, respectively, for the next chunk (or iteration)

Input data: X (prev) = X (curr)

MMRS input: M(prev) = M(curr); Dmax(prev) = Dmax(curr); R(prev) = R(curr); N (prev) = N (curr); and S̃(prev) = S̃(curr)

inc-VAT/dec-VAT input: P(prev) = P(curr); F(prev) = F(curr); h(prev) = h(curr); D′∗
(prev)

n = D′∗
(curr)

n ; and D∗
(prev)

n = D∗
(curr)

n
end for

Step 8 (optional): Obtain k-aligned partition of sample S̃(curr) by cutting the MST using cut threshold magnitudes ordered by
h(curr) in MST, as given Eq. 6.1.

Output: iVAT image I(D′∗
(curr)

n) to estimate k, and (optional) k-aligned partition of sample S̃(curr).

6.3 Proposed Algorithm 155

• an N× k′ (distance) matrix R, whose entry ri j denotes the distance of the j-th MM point in

XN , m j, to the i-th data point in XN , xi.

• N = {n1,n2, ...,nk′} whose entry n j represents the number of local (random) samples for

m j.

• a set of MMRS data points, S̃, whose entry S̃ j contains the indices of the n j local samples

of m j.

The pseudocode of inc-siVAT algorithm is given in Algorithm 14. Below, we explain each

step of inc-siVAT algorithm:

Step 1: First, MMRS algorithm is applied to the initial data X (initN) to obtain an initial set of

k′ MM points, M(initN), and a MMRS sample, S̃(initN) (of size n). MMRS algorithm on X (initN) also

returns Dmax(initN) and R(initN).

Step 2: Then, a static image of reordered dissimilarity matrix D′∗
(initN)

n is obtained by applying

VAT followed by iVAT on a square distance matrix D(initN)
n , which is computed using initial MMRS

sample S̃(initN).

Let X (prev) denotes the previous data points arrived until the last time instant (or last iteration).

After Step 2, X (prev) is initialized with X (initN), so X (prev) = X (initN). Similarly, M(prev) = M(initN),

Dmax(prev) = Dmax(initN), R(prev) = R(initN), and S̃(prev) = S̃(initN). Then, for each incoming chunk

X (ch), following steps are performed to incrementally update the MMRS samples and the RDI.

Step 3: When a new chunk X (ch) arrives, an augmented current dataset X (curr) is obtained

such that X (curr) = {X (prev)∪X (ch)}. Then, our novel incremental MMRS algorithm, inc-MMRS,

is applied to X (curr) with k′, n, X (ch), X (prev) and previous MMRS outputs as input to the inc-

MMRS algorithm. The pseudocode of the inc-MMRS algorithm is given in Algorithm 15. Below,

we explain the inc-MMRS algorithm.

1. Initialization: First, we initialize the current MMRS output (to be computed for X (curr)),

M(curr) and Dmax(curr), with the previous MMRS output i.e., M(curr)←M(prev), and Dmax(curr)←

Dmax(prev). In order to store the distance of each MM point ∈M(currr) to each of the data

points in current dataset X (curr), the distance matrix R(curr) is first initialized with R(prev)

which already contains the distance of each MM point ∈ M(prev) (now, M(curr)) to X (prev),

and then, appended with a zero matrix, Qch (of size Nch× k′), to store the distance of each

156 Cluster Tendency Assessment and Anomaly Detection in High-Velocity Streaming Data

MM point ∈M(curr) to each of the data points in new chunk X (ch), so R(curr)← R(prev)|Qch.

Let Nprev denotes the number of data points in X (prev) (also, the number of rows in R(prev)),

then the size of R(curr) is Ncurr× k′, where Ncurr is the number of data points in X (curr), so

Ncurr = Nprev +Nch.

2. In step 1 of the inc-MMRS algorithm, we identify if there is a new MM point in X (curr), after

a new chunk X (ch) arrives. The change in MM points is identified using a boolean variable,

ChangeMM, which is 1 if we get a new furthest (distinguished) point in X (curr), else it

is 0. Recall that, a (new) MM point is the point which is furthest to the closest element

of the existing MM points. To identify the change in MM points, first, we compute the

distance of the first MM point m(prev)
1 to each of the new data points ∈ X (ch), and store them

at corresponding rows and column of R(curr). Then, for each MM point m(prev)
t ∈ M(prev),

the minimum Euclidean distance of each new data point ∈ X (ch) to the existing (t − 1)

MM points, M(prev)
1:t−1 , is computed, which is denoted by D. If, corresponding to a MM

point m(prev)
t , the maximum distance in D is greater than the previous maximum distance

dmax(prev)
t , then it indicates the presence of a new furthest or MM point in X (curr) i.e.,

ChangeMM = 1.

3. If a change in MM points is identified (say) at t-th MM point of M(prev), then the first (t−1)

MM points of M(prev) are retained in M(curr), but the next k′− t + 1 MM points, denoted

as M(curr)
t:k′ , are recomputed using Step 2 of the inc-MMRS algorithm. The remaining MM

points in X (curr) are computed following the similar steps as mentioned in Step 1 of the

MMRS algorithm.

4. It is possible that the some of the data points in Xprev that were closest to a MM point

(say) m(prev)
t ∈M(prev) may not be closest to the same MM point m(curr)

t ∈M(curr) in current

data (after a chunk arrives), even if m(curr)
t = m(prev)

t . In other words, those data points

may now belong to a different group in Xcurr. Therefore, we again divide the entire dataset

X (curr) into the k′ groups {St}k′
t=1 using NPR, similar to the Step 2 of the MMRS algorithm

(Algorithm 3). Some of these k′ groups in X (curr) may correspond to the new MM points

identified in the previous step.

Step 4: In this step, we identify the data points that were associated with the t-th group of the

6.3 Proposed Algorithm 157

Algorithm 15 inc-MMRS
Input: (X (prev), X (ch), X (curr), M(prev), Rprev), Dmax(prev), Nch, k′, n
Initialization: Boolean variable, ChangeMM = 0 (1, if there is a new (furthest) MM point after adding
X (ch) to (X (prev)), Initialize M(curr) ← M(prev); Dmax(curr) ← Dmax(prev); and R(curr) ← {Rprev)|Qch}
. A zero matrix Qch (of size Nch × k′) is appended to R(prev) to store the distances of existing MM
points, M(prev), to the data points of new chunk, X (ch), hence, the size of R(curr) is Ncurr × k′, where
Ncurr = Nprev +Nch, and Nprev is the number of data points in X (prev) (or the number the rows in R(prev)).

Step 1: Check if there is a change in previous MM points
D= {dist{x(prev)

m(prev)
1

,x(ch)
1 }, ..,dist{x(prev)

m(prev)
1

,x(ch)
Nch
}}

R(curr)
((Nprev+1):Ncurr)1

=D . Store the distances of the first MM point, m(prev)
1 , to the new data points, X (ch),

in R(curr)

for t← 2 to k′ do
D= min(D,R(inc)

((Nprev+1):Ncurr)(t−1)) . See Step 1 of Algorithm 3.

if max(D) > dmax(prev)
t then

ChangeMM = 1; . if there is a new furthest point
break

else
R(curr)
((Nprev+1):Ncurr)t

= {dist{x(prev)

m(prev)
t

,x(ch)
1 }, ..,dist{ x(prev)

m(prev)
t

,x(ch)
Nch
}}

end if
end for

Step 2: If ChangeMM = 1 at tth MM point, m(prev)
t , then recompute next M(curr)

t:k′ , Dmax(curr)
t:k′ , R(curr)

•(t:k′)
if ChangeMM = 1 then

M(curr)
t:k′ ← 0; Dmax(curr)

t:k′ ← 0 ; R(curr)
•(t:k′)← 0

D= min(R(curr)
•(1:t−1))

while t ≤ k′ do
D= min(D,R(curr)

•(t−1))

m(curr)
t = argmax

1≤ j≤Ncurr

{D j}

dmax(curr)
t = d

m(curr)
t

R(curr)
•t = {dist{x(curr)

m(curr)
t

,x(curr)}, ..,dist{x(curr)

m(curr)
t

,x(curr)}}
t← t +1

end while
end if

Step 3: Group each object in X (curr) with its nearest MM point in M(curr)

S(curr)
1 = S(curr)

2 = ...= S(curr)
k′ = /0

for j← 1 to Ncurr do
t = argmin

1≤ j≤k′
{dist{x(curr)

m(curr)
j

,x(curr)
t }}

S(curr)
t = S(curr)

t ∪{l}
end for
nt =

⌈
n∗ |S(curr)

t |/Ncurr

⌉
; N (curr) = {n1, , ...,nk′}

Output: M(curr),R(curr),Dmax(curr), N (curr), and S(curr)

158 Cluster Tendency Assessment and Anomaly Detection in High-Velocity Streaming Data

previous MMRS sample, S̃(prev)
t , and are still associated with the same (t-th) group of the current

dataset X (curr), S(curr)
t (not to be confused with MMRS sample S̃(curr)

t , which is yet to be computed).

Let Zt denotes the data points which are present in both S̃(prev)
t and S(curr)

t . If the number of data

points in S(curr)
t that are already present in S̃(prev)

t , denoted by |Zt |, are greater than the number of

data points required to build the t-group of the current MMRS sample S̃(curr)
t , nt , i.e., if |Zt |> nt

then we require |Zt |−nt random data points to be deleted from S̃(prev)
t to obtain S̃(curr)

t . If |Zt |< nt ,

then we require nt − |Zt | random data points from S(curr), which are not present in S̃(prev)
t , to be

added in S̃(prev)
t to obtain S̃(curr)

t . Let W (delete) and W (add) contain the indices of these (random)

elements in X (curr) which are required to be deleted from or added to S̃(prev), respectively, to obtain

S̃(curr).

Step 5: In this step, we delete the W (delete) elements one by one and update the previous

VAT/iVAT outputs using dec/VAT and dec-iVAT algorithms [69]. For each element w(delete)
i ∈

W (delete), we first find the w(delete)
i -th element of X (curr), in the current sample S̃(curr), and subse-

quently, find its position, j, in the previous VAT reordering indices, P(prev). Then, the dec-VAT

algorithm is used to delete the j-th element in P(prev), and subsequently, to obtain current (updated)

VAT outputs, P(curr), F(curr), h(curr), and D∗
(curr)

n . Then, the current iVAT reordered dissimilarity

matrix D′∗
(curr)

n is obtained using dec-iVAT algorithm. Also, the w(delete)
i -th element is deleted from

S̃(prev) to obtain S̃(curr). Since, the j-th element is deleted, the values of P(curr), which are greater

than j, are decreased by 1.

Step 6: In this step, we insert the new elements W (add) one by one, and update the current

(from the last step) VAT/iVAT outputs using inc-VAT and inc-iVAT algorithms [69]. For each

element w(add)
i ∈W (add), its distances to all the data points in S̃(curr) are computed and reordered

using the indices in P(curr), to obtain L (refer to inc-VAT description in Chapter 2). Then, using L

and VAT outputs from the last step, the inc-VAT algorithm is used to insert w(add)
i -th element of

X (curr) in P(curr) to obtain updated P(curr), F(curr), h(curr), and D∗
(curr)

n . Subsequently, the updated

iVAT reordered dissimilarity matrix D′∗
(curr)

n is obtained using inc-iVAT algorithm. The current

MMRS sample S̃(curr) is updated by adding w(add)
i -th element of X (curr).

Step 7: For the next incoming chunk, the current data X (curr) acts as the previous data X (curr),

so X (curr)← X (prev). Similarly, the current MMRS and VAT outputs computed for X (curr) act as

previous outputs for processing the next incoming chunk.

6.3 Proposed Algorithm 159

The image of the current iVAT reordered dissimilarity matrix D′∗
(curr)

n , I(D′∗
(curr)

n), provides the

visualization of evolving cluster structure in X (curr). For each incoming chunk, Steps 3− 7 are

performed to delete and/or insert the MMRS data points from/to the previous MMRS samples,

and subsequently, to obtain the iVAT image I(D′∗
(curr)

n) for the current data X (curr).

The inc-siVAT algorithm is a landmark window based approach which considers the data from

the beginning until the current time instant. So, the number of data points in current data, Ncurr,

increases with the arrival of each new chunk which may slow down the computation process over

the time due to memory constraints. This problem can be solved by adopting a sliding window

approach with the existing landmark window approach of inc-siVAT. Let Nmem denotes the number

of data points that can be accommodated by an allowable memory without significantly slowing

down the computation process. When Ncurr > Nlm, the oldest Nch (or as per user selection) data

points and corresponding MMRS points are deleted using dec-VAT/dec-iVAT algorithm to accom-

modate new Nch number of data points of X (ch) in the inc-MMRS algorithm.

Anomaly Detection

In data clustering, clusters that are too far from the main clusters, or have only a few data

points, are considered as anomalies or outliers. In inc-siVAT, we use the clustering based concept

as used in [69] for anomaly detection in streaming data. In (optional) Step 8 of the inc-siVAT

algorithm, clusters in S̃(curr) are obtained by cutting the MST using cut threshold magnitudes [252]

ordered by edge distances h(curr) in the MST. The cluster boundaries are defined by those indices

t, which satisfy

hnt > α×mean(h(curr)), (6.1)

where α ≥ 1 is a user-defined parameter that controls how far two groups of data points should be

from each other to be considered as separate clusters. Smaller values of α represent tighter cluster

boundaries, while large values of α create loose cluster boundaries. So, we cut those edges of the

MST, given by h(curr) that satisfy (6.1), to obtain k-aligned partitions of S̃(curr). The k-partitions

of the MMRS S̃(curr) are non-iteratively extended to the remaining (non-sampled) N−n objects in

X (curr) using the NPR.

160 Cluster Tendency Assessment and Anomaly Detection in High-Velocity Streaming Data

A partition in MMRS sample S̃(curr)
t is considered as an anomalous set of points if it satisfies

the following condition:

|S̃(curr)
t |< β ×n, (6.2)

where |S̃(curr)
t | is the number of data points in partition S̃(curr)

t , 0 ≤ β ≤ 1 is a user-defined pa-

rameter, and n is the number of data points in S̃(curr). Large values of β cause even large groups

of data points that are far from other partitions to be regarded as anomalous. As β decreases, the

same anomalous partitions eventually becomes part of the normal partitions, and only isolated data

points or a partition of few data points remain anomalous. The procedure to choose an optimal

value of α and β is described in [69, 252].

6.4 Experiments

We performed three sets of experiments. In the first experiment, we illustrate the efficacy of

the inc-siVAT algorithm to facilitate cluster evolution analysis in high-velocity, big data streams.

In the second experiment, we compare siVAT and inc-siVAT algorithm based on their run-time

performance on the large streams of big data. In the last experiment, we demonstrate the appli-

cability of the inc-siVAT algorithm for anomaly detection in big streaming data. The experiments

were performed using MATLAB on a Windows 7 (64 bit) PC with 16 GB RAM and Intel i7 @3.40

GHz processor.

Unless otherwise mentioned, the inc-siVAT parameters are, k′ = 30, n = 200, and initN =

Nch = 500. Since, the inc-siVAT displays an incrementally built iVAT image every time after a

new chunk arrives, it is not possible to show all the images here.

6.4.1 Cluster Evolution Analysis in Big, Streaming Data

In this experiment, we illustrate the effectiveness of the inc-siVAT algorithm to demonstrate

the evolving cluster structures in streams of the two big datasets that evolve significantly over time.

6.4 Experiments 161

-20 -15 -10 -5 0 5 10 15 20

-20

-15

-10

-5

0

5

10

15

20

(a) X (1:5000)
-20 -15 -10 -5 0 5 10 15 20

-20

-15

-10

-5

0

5

10

15

20

(b) X (1:14500) (c) X (1:48000) (d) X (1:50000) (e) X (1:75000) (f) X (1:100000)

(g) I(D′∗(curr)
5000) (h) I(D′∗(curr)

5000) (i) I(D′∗(curr)
5000) (j) I(D′∗(curr)

5000) (k) I(D′∗(curr)
5000) (l) I(D′∗(curr)

5000)

(m) I(D′∗(curr)
200) (n) I(D′∗(curr)

200) (o) I(D′∗(curr)
200) (p) I(D′∗(curr)

200) (q) I(D′∗(curr)
200) (r) I(D′∗(curr)

200)

Figure 6.2: 2D data scatterplots (first row) and (incrementally built) inc-iVAT (second row) and
inc-siVAT (last row) images of a big, streaming data X at Ncurr = 5000, 12500, 48000, 50000,
75000, and 100000 data points.

6.4.1.1 2D Synthetic Data Experiment

In this experiment, we compare inc-siVAT images to inc-iVAT images to demonstrate the su-

periority of the inc-siVAT to provide visualizations of evolving cluster structures in large data

streams of a 2D synthetic dataset. The inc-iVAT algorithm handles input data streams by con-

sidering one data point at a time, whereas, the inc-siVAT algorithm handles input data streams in

chunks by considering one chunk at a time. Only the most recent 5000 data points are consid-

ered in inc-iVAT to obtain a current iVAT image, due to its limitation for N > 5000, whereas, the

inc-siVAT uses the entire data from the beginning until now, and summarizes it to a small size (n)

MMRS sample, and subsequently, constructs its current iVAT image.

The 2D synthetic dataset X , having 100,000 data points, is constructed by drawing samples

from a mixture of seven Gaussian distributions, as shown in Fig. 6.2 (in the first row). The first

50,000 data points in X are extracted from the five different Gaussian distributions, four of them

having 12,000 points each and one having 2,000 data points, i.e., |X1|= |X2|= |X3|= |X4|= 12,000,

and |X5|= 2,000. These five clusters are shown with different clusters in Fig. 6.2(d). The next

50,000 data points are generated from two different Gaussian distributions, with equal number

(25,000) of data points from each of them, such that they form the bridge between two pairs

162 Cluster Tendency Assessment and Anomaly Detection in High-Velocity Streaming Data

of clusters, X1 and X2, and X3 and X4, respectively, as shown with yellow and dark green color

in Fig. 6.2(f). For a demonstration of evolving clusters, the input data X is taken as data streams,

in which data points are arranged according to the cluster they belong. So, the first 12,000 points

belong to the cluster X1, the next 12,000 points belong to the cluster X2, and so on. Views (a-f)

in Fig. 6.2 show scatterplots of 2D data X at six different instants (in the first row), and views

(g-i) and views (m-r) show corresponding (incrementally built) inc-iVAT (in the second row) and

inc-siVAT images (in the last row), respectively.

Fig. 6.2(a) shows the scatterplot of the first 5,000 data points, all belonging to cluster X1. The

presence of a single dark block in corresponding inc-iVAT and inc-siVAT images in views (g) and

(m) confirm the presence of a single cluster in the current data, X (1:5000). Fig. 6.2(b) shows the

scatterplot of the first 14,500 data points, in which first 12,000 points belong to cluster X1 and

the next 2,500 points belong to cluster X2. Although, both inc-iVAT and inc-siVAT images (views

(h) and (n)), present two dark blocks confirming the two clusters in current data X (1:14500), the

size of the dark blocks in both the images is different. Since the inc-iVAT considers the most

recent 5000 data points, X (9500:14500), its image shows two dark blocks of equal size, proportional

to the (equal) number of points from cluster X1 and X2 i.e., 2,500 points from each cluster in

X (9500:14500). Whereas, the inc-siVAT summarizes the entire data X (1:14500) in its MMRS sample

(n = 200), so its image shows one big dark block corresponding to 12,000 data points of cluster

X1 and one small dark block corresponding to 2,500 data points from cluster X2, in current data

X (1:14500).

Fig. 6.2(c) shows the scatterplot of the first 48,000 points, having 12,000 points from each

of the four clusters, X1, X2, X3 and X4. A single dark block in its inc-iVAT image (view (i))

indicates only a single cluster corresponding to points belonging to cluster X4 in X (43000:48000),

without showing four clusters that evolved over time in data streams of X (1:48000). Whereas, the

four dark blocks (of the same size) in its inc-siVAT image confirms the presence of the four equal

size clusters in the current data.

Fig. 6.2(d) shows the scatterplot of the first 50,000 points, in which 2000 data points of cluster

X5 are added to the previous 48,000 data points. Unlike inc-iVAT image which shows only two

dark blocks corresponding to 3000 data points from cluster X4 and 2000 data points from clus-

ter X5 in X (45000:50000), the inc-siVAT image shows five dark blocks including a tiny dark block

6.4 Experiments 163

corresponding to recently evolved (small size) cluster X5.

Fig. 6.2(e) shows the scatterplot of the first 75,000 points, in which 25,000 new data points

are added (shown in yellow) to X (1:50000) from a different Gaussian distribution such that they

create an overlap between cluster X1 and X2 forming one bigger cluster. The inc-iVAT image in

view (k) indicates only a single cluster corresponding to the recent 5000 data points from the same

distribution. The inc-siVAT image shows one big, one tiny, and two small dark blocks. Two small

dark blocks correspond to cluster X3 and X4, a tiny dark block represents cluster X5, and the big

dark block corresponds to the bigger cluster which formed after adding 25,000 new data points

to the previous dataset. The three small sub-blocks inside the big dark block correspond to the

cluster X1, X2 and the points from the new Gaussian distribution, showing an overlap (similarity)

among them.

Finally, Fig. 6.2(f) shows the scatterplot of all the 100,000 data points, in which 25,000 new

data points are added to X (1:75000) from a different Gaussian distribution such that they form an

overlap between cluster X3 and X4. Similar to the previous example, the inc-iVAT image indicates

only a single cluster corresponding to the last 5000 data points from the same distribution. The

inc-siVAT image shows two big dark blocks and a tiny dark block indicating a total of three

clusters. The two big dark blocks (top left and bottom right in view (r)) correspond to the two big

clusters (in left and right side of view (f)) that evolved after adding last 50,000 data points from

two different Gaussian distribution forming an overlap between two pair of clusters, X1 and X2,

and X3 and X4, respectively. The tiny dark block represents a small cluster X5 containing 2,000

data points.

The overall conclusions that can be made from Fig. 6.2 are: (i) Due to the practical limitations

of inc-VAT for large N, it can consider maximum 5000 most recent data points to form iVAT image

for large data streams, whereas, the inc-siVAT summarizes the entire available data streams to a

small size (typically, n is 100 to 500) MMRS sample to obtain a small size iVAT image; (ii) The

inc-siVAT is superior to the inc-iVAT to provide the visualization of evolving cluster structures

in large data streams. (iii) Another advantage of inc-siVAT over siVAT is that the ordering of

dark blocks in output image may change when you apply siVAT after every chunk. Whereas, in,

inc-siVAT, ordering of dark blocks remain same after every chunk.

164 Cluster Tendency Assessment and Anomaly Detection in High-Velocity Streaming Data

Table 6.1: The number of data points in the four main clusters of KDD Cup’99 dataset.

Number of data points after Normal smurf attack back attack neptune attack
16th Chunk (8,000 pts) 7,787 207 0 2
25th Chunk (12,500 pts) 8,799 3,695 0 2

102th Chunk (51,000 pts) 38,174 11,258 1,037 2
108th Chunk (54,000 pts) 39,298 11,258 2,002 419
150th Chunk (75,000 pts) 41,188 11,258 2,002 20.482
680th Chunk (340,000 pts) 71,225 220,561 2,103 41,122

6.4.1.2 KDD Cup’99 Data Experiment

In this experiment, we illustrate inc-siVAT on the streams of KDD Cup’99 dataset, which has

been used earlier in several studies [64, 67, 68, 138] for streaming data clustering. This dataset

corresponds to an important problem of automatic and real-time detection of cyber attacks, that

evolve significantly over time in the streams of this dataset. Therefore, it is challenging to track

evolving clusters from the dynamic streams of this dataset.

KDD Cup’99 is a big, labeled dataset that specifies attack types (normal or attack). It con-

sists of 494,021 instances of 41 dimensional vectors1, and each vector is labeled to specify the

attack type. It has 23 labeled subsets, a normal subset and 22 simulated attacks that fall into four

main categories: DOS, R2L, U2R, and probing. As a result, data contains a total of five clus-

ters including normal connections. Some of these 22 attacks are neptune, back, smurf, pod, land,

butter-overflow, rootkit, spy, imap, nmap, and so on. Most of the connections in the streams of this

dataset are normal, but occasionally there could be a burst of attacks at certain times.

Fig. 6.3 shows the inc-siVAT images for KDD Cup’99 data streams at six different time in-

stants viz. after 16th, 25th, 102th, 108th, 150th, and after 680th chunk ((each chunk having a size

of 500 data points). We use the ground truth labels of this dataset to validate the cluster structures

suggested by the inc-siVAT images. Table 6.1 shows the number of data points for four dominant

categories of this dataset, namely, normal connections, smurf, back, and neptune attack, after six

different time instants.

After 16 chunks, 7,787 data points belong to the normal connections, 207 data points belong

to the smurf attack, and the remaining 6 points belong to other attacks. The inc-siVAT in view

1We normalized all 41 features to the interval [0;1] by subtracting the minimum and then dividing by the subsequent
maximum so that they all had same scale.

6.4 Experiments 165

(a) After chunk 16 (b) After chunk 25 (c) After chunk 102

(d) After chunk 108 (e) After chunk 150 (f) After chunk 680

Figure 6.3: inc-siVAT images visualizing evolving clusters in KDD Cup’ 99 datastreams at differ-
ent time instant

(a) of Fig. 6.3 confirms this by showing a big dark block (shown at top left in green rectangle)

corresponding to the data points belonging to the normal connections, a small dark block (at

bottom right) corresponding to the smurf attack, and several (hard to see) singleton dark blocks

corresponding to other attacks.

Between the 16th and 25th chunk, most of the data points belong to the smurf attack. The

evolution of a new cluster corresponding to the smurf attack also appears in the inc-siVAT image

in view (b) where the bottom right dark block, whose size has increased considerably after view

(a), suggests an increased number of data points belonging to smurf attack.

After 102th chunk, 1037 new data points belong to back attack while the number of data points

belonging to the normal connection and smurf attack increases to 38,714 and 11,258, respectively.

This evolution can also be seen in the inc-siVAT image in view (c) where the size of the dark block

corresponding to the smurf attack increases and a new small dark block emerges (at the bottom

right) corresponding to the new 1037 data points belonging to back attack.

After 108th chunk, 419 new data points belong to neptune attack, 2002 data points belong to

back attack, and the number of data points belonging to normal connection increases to 39,298.

The inc-siVAT image in view (d) reflects this evolution showing an additional small dark block

corresponding to new 419 data points belonging to the neptune attack, and the increased size of

the top left dark block indicates the increased number of data points belonging to the normal

connection.

166 Cluster Tendency Assessment and Anomaly Detection in High-Velocity Streaming Data

Almost all the data points between 109th and 150th chunk belong to the neptune attack result-

ing in total 20,482 data points belonging to the neptune attack, 41,188 data points belonging to

the normal connection, and 11,258 data points belonging to the smurf attack, after 150th chunk.

This evolution also appears in the inc-siVAT image in view (e) where the biggest dark (at top left)

block corresponds to the data points belonging to normal connections, the second biggest dark

block (at bottom right) corresponds to the neptune attack, and a small dark block (in the middle)

corresponds to the data point belonging to smurf attack.

Between 150th to 680th chunk, the number of data points belonging to smurf attack signifi-

cantly increases to 220,561, surpassing the data points belonging to normal connection (71,225)

and neptune attack (41,122). The biggest dark block in the inc-siVAT image in view (f), which

emerges in the middle, indicates that majority of the data points after 680 chunks belong to the

smurf attack. The smallest dark block in view (e) (after 150th chunk) is now the biggest dark block

in view (f), and the two biggest dark blocks in view (e) now appear as the two small dark blocks

in view (f) suggesting that the cluster structure has drastically changed after 680 chunks. This

illustrates the capability of inc-siVAT to provide the visualization of evolving cluster structures in

dynamic, rapidly arriving data streams.

6.4.2 Time Comparison

To illustrate the time complexities of the siVAT and inc-siVAT algorithm, we perform an ex-

periment on the same two datasets that we considered in the last experiment. We randomize the

rows of the 2D synthetic dataset so that data points belonging to the same cluster are not adja-

cent anymore. At the arrival of every new chunk, the siVAT and inc-siVAT algorithm is applied

on the current data X (curr), and their CPU time to compute the reordered dissimilarity matrices is

recorded.

Fig. 6.4 shows the time comparison between siVAT and inc-siVAT algorithm for 2D synthetic

and KDD Cup’99 datasets. The CPU time of the inc-siVAT increases most with every chunk,

whereas, the CPU-time of the inc-siVAT algorithm is always less than that of siVAT. This is be-

cause siVAT needs to be retrained everytime a new chunk arrives, whereas, the inc-siVAT incre-

mentally updates the MMRS sample after every chunk using the inc-MMRS algorithm. MM points

are updated only when a change in the previous MM points is identified by the inc-MMRS algo-

6.4 Experiments 167

0 20 40 60 80 100 120 140 160 180 200

Chunks (500 datapoints)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

C
P

U
 t

im
e

 (
s
)

siVAT inc-siVAT

(a) Synthetic Data: N = 100,000, p = 2

0 100 200 300 400 500 600 700 800 900 1000

Chunks

0

0.5

1

1.5

2

2.5

3

3.5

4

C
P

U
 t

im
e

 (
s
)

siVAT inc-siVAT

(b) KDD Data: N = 494,021, p = 41

Figure 6.4: Time comparison of siVAT and inc-siVAT for high-dimensional synthetic and KDD
datasets.

rithm after a new chunk arrives. Subsequently, an updated MMRS sample and its (incrementally

built) inc-siVAT image are produced using inc-VAT/dec-VAT and inc-iVAT/dec-iVAT.

The spikes in CPU-time plots for the inc-siVAT algorithm correspond to the changes in the

MMRS sample distribution after a new chunk arrives. A higher number of spikes corresponds

to the higher number of changes in the MMRS sample. And, a high magnitude spike in the

CPU-time plot of inc-siVAT algorithm (usually) corresponds to a significant change in the MMRS

sample distribution after a new chunk arrives. There are more spikes in CPU-time plot of the

inc-siVAT algorithm for 2D synthetic dataset compared to KDD Cup’99, whereas there are high

amplitudes spikes (but, low in numbers) in KDD Cup’99 dataset. This means that there were

frequent changes in the MMRS sample after every chunk of the 2D synthetic dataset, and there

were a few but significant changes in the MMRS sample distribution for the KDD Cup’99 dataset.

This is probably because most of the chunks in KDD Cup’99 dataset belong to either normal

connections, smurf, or neptune attacks that resulted in stable streams, but occasionally there were

a burst of attacks at certain times (chunks), resulting in a sudden change in cluster distribution.

6.4.3 Anomaly Detection

In this experiment, we demonstrate the applicability of the inc-siVAT algorithm for anomaly

detection in large, streaming data. This experiment is performed on three real datasets, including

two unlabeled datasets that have been used in previous studies for anomaly detection [69, 253].

168 Cluster Tendency Assessment and Anomaly Detection in High-Velocity Streaming Data

6.4.3.1 MiniBooNE particle identification data (MPID) experiment

This dataset consists of 130,064 records, and each record has 50 attributes. The samples of

MPID dataset are divided into 36,499 signal events of electron neutrinos and 93,565 background

events of muon neutrinos. For MPID, the parameters chosen for anomaly detection are: α = 50

and β = 0.02.

The streams of this dataset are relatively stable compared to the KDD dataset. So, the inc-

siVAT images do not change much across the chunks. Fig. 6.5 (a) shows the inc-siVAT (incremen-

tally built) image for MPID1:130500 (first 130500 data points). The two dark blocks (one big and

one tiny) along the diagonal indicates the two clusters in MPID data. The MST cut magnitude,

h(curr)
n , plot for MPID dataset is shown in Fig. 6.5 (d) with a red horizontal line showing the cut

threshold value of α ×mean(h(curr)
n). A group of the data point(s), for which h(curr)

n is greater

than the cut threshold, are possible candidates for anomalies. Among them, the cluster whose size

is less than dβ × ne = d0.02× 200e = 2 is declared as anomalous. Therefore, the big dark block

in Fig. 6.5 (a) corresponds to a normal cluster (shown within a green rectangle) and the small dark

block, containing only one data point, corresponds to the anomaly. It is hard to see the single red

pixel at the bottom right corner of the image, so we have circled it for emphasis. Some previous

researches [253, 254] confirmed an anomaly in MiniBooNE dataset correspond to a low neutrino

energy signal in this dataset.

6.4.3.2 US Census 1990 data experiment

The US Census 1990 data is an example of a real-world unlabeled, big data which consists

of 2458285 records. Each record has 68 demographic and employment-related attributes, such as

age, gender, place of birth (POB), income, etc. For this experiment, we have set the parameters:

α = 2 and β = 0.02.

Figs. 6.5 (b) and (e), respectively, show the inc-siVAT image and h(curr)
n plot (with cut thresh-

old) for Census1:2,000,000. The inc-siVAT image suggests three dark blocks along its diagonal,

among them two blocks (one big and one small) correspond to the normal clusters, and the tiny

dark block, shown within the red circle, correspond to anomalies. Since it is an unlabeled data,

it was harder to find what class or attribute these anomalies correspond to in the data. However,

6.4 Experiments 169

(a) I(D′∗
(curr)

n)1:130500 (b) I(D′∗
(curr)

n)1:2000000 (c) I(D′∗
(curr)

n)1:13393

0 30 60 90 120 150 180 210 240
datapoints (n)

0
0.25
0.5

0.75
1

1.25
1.5

1.75
2

D
is

ta
nc

e,
 h

n(c
ur

r)

107

h
n

 mean(h
n
)

(d)

0 30 60 90 120 150 180 210 240
datapoint (n)

0
0.5

1
1.5

2
2.5

3
3.5

4
D

is
ta

nc
e,

 h
n(c

ur
r)

h
n

 mean(h
n
)

(e)

0 30 60 90 120 150 180 210 240
datapoint (n)

0
0.2
0.4
0.6
0.8

1
1.2
1.4

D
is

ta
nc

e,
 h

n(c
ur

r)

h
n

 mean(h
n
)

(f)

Figure 6.5: h(curr)
n plot and inc-siVAT images showing normal and anomalous data points for (a,d)

MiniBoone; (b,e) US Census 1990l and (c,f) Heron Island Dataset

through eyeballing on the attributes of these anomalous data points, we could found out that these

anomalous data points correspond to the place of birth attribute, as out of 2,458,285 total census

records (people), there are only (lowest) 3286 records (or people) whose place of birth is in one of

the African countries, and they were living in the USA (in 1990).

6.4.3.3 Heron Island Data Experiment

This experiment is performed on a real-life dataset collected from the Heron Island weather

station deployed on the Great Barrier Reef, Australia [86]. This is an environmental dataset that

has three variables: air humidity, air pressure, and air temperature. The data were collected from

1st January 2009 to 2nd April 2009, every ten mins. For this experiment, we have set the parame-

ters: α = 2.5 and β = 0.02.

The inc-siVAT finds two anomalies in this data that appear as two tiny dark blocks at the

bottom right corner of the image, as shown in Fig. 6.5 (c). A large zoom is required to see the

smallest dark block in the image in view (c). These two anomalies correspond to the data points

collected on 5th and 9th March 2009. Previous studies [69, 86] on Heron island data identifies

these anomalies correspond to an unusual weather variation on 5th March and to Hamish Cyclone

on 9th March. The big dark block (cluster) in view (c) corresponds to normal weather.

170 Cluster Tendency Assessment and Anomaly Detection in High-Velocity Streaming Data

6.5 Summary

We proposed and developed an incremental version of the scalable iVAT algorithm, inc-siVAT,

for online visual assessment of evolving cluster structures in high-velocity, massive data streams.

The inc-siVAT algorithm uses Maximin Random Sampling (MMRS) scheme on initial data points

to extract a small size smart sample. Then, it incrementally updates the smart sample points on the

fly to reflect changes in data streams, using our novel incremental MMRS algorithm, inc-MMRS,

and subsequently, it produces a reordered dissimilarity image (RDI) which is built incrementally

using inc-VAT/inc-iVAT and dec-VAT/dec-iVAT algorithms.

We have demonstrated the effectiveness of the inc-siVAT to visualize evolving cluster structure

in dynamic streams of a synthetic and KDD Cup’99 dataset. We have also shown that time-

complexity of the inc-siVAT algorithm is less than the siVAT algorithm for each chunk of the

input data streams. The inc-MMRS summarizes the available data points to a fixed (small) size of

an intelligent sample, hence, it requires less memory to store and/or visualize the (small size) RDI

image. We have also shown the applicability of the inc-siVAT algorithm for anomaly detection in

large streams of the three real datasets including an IoT dataset.

Chapter 7

A Scalable Framework for Trajectory
Prediction

This chapter demonstrates big data clustering for a real-world application. Specifically, a

novel, hybrid framework, based on a scalable clustering, called Traj-clusiVAT, and Markov chain

models, is presented for vehicle trajectory prediction, which is suitable for a large number of

overlapping trajectories in a dense road network, typically for major cities around the world. The

proposed framework is compared with a mixed Markov model (MMM)-based and a NETSCAN-

based trajectory prediction model on two real-life, large-scale trajectory datasets. The short-term

and long-term trajectory prediction performance of the proposed framework is found to be better

in terms of prediction accuracy and distance error.

7.1 Introduction

With the widespread use of Global Positioning System (GPS) devices, smart-phones, sensor

network, and wireless communication technology, it is possible to track all kinds of moving objects

all over the world. The increasing prevalence of location-acquisition technologies has resulted in

large volumes of spatio-temporal data, especially in the form of trajectories. These data often con-

tain a great deal of information [184], which give rise to many location-based services (LBSs) and

applications such as vehicle navigation, traffic management, and location-based recommendations.

One key operation in such applications is the route prediction of moving objects.

Vehicle route prediction allows certain services to improve their quality, e.g., if the route of

vehicles is known in advance, intelligent transportation systems (ITSs) can provide route-specific

traffic information to drivers such as forecasting traffic conditions and routing the driver so as to

171

172 A Scalable Framework for Trajectory Prediction

avoid traffic jams. Route prediction also enables location-based advertising, which can advertise

certain products/services and special offers to the target commuters most likely to pass through

business outlets and stores based on their travel trajectory.

Recently, several studies have been carried out on trajectory prediction (TP), particularly after

Song et al. [193] demonstrated a 93% potential for predictability in user mobility, which supplied

the theoretical basis for location prediction methods. These methods mainly focus on two kinds

of prediction models. The first type is the short-term trajectory prediction model, which aims to

predict the next-location or a few locations in the near future. These models usually rely on current

location and one or two previous locations of an object to predict its next location. The second

type is the long-term trajectory prediction model which focuses on location prediction at a more

distant future time or on complete route prediction. These models generally rely on an available

partial trajectory of a moving object to predict the complete trajectory.

In urban areas, vehicle trajectories are usually constrained to a complex road network with

many parallel and perpendicular road segments and intersections, which makes their time progres-

sion very irregular. Due to the uncertainty of moving objects, most of the existing TP methods

only focus on predicting short-term partial trajectories. They have poor prediction accuracy for

long-term trajectory predictions, and they do not work well for estimating continuous and com-

plete trajectories. Moreover, traditional distance-based TP methods can only be applied to predict

possible routes within fixed constrained roadways, and they do not provide optimal routes for

complex road networks.

The sheer amount of vehicle trajectory data, if analyzed effectively, can significantly improve

route prediction performance. However, it is challenging to carry out trajectory prediction from a

large amount of trajectory data. The huge volumes of data to be processed precludes using machine

learning based TP methods. Existing TP methods are hybrid in nature and usually use classical

frequent sequential pattern based algorithms, Markov model-based algorithms, or clustering based

algorithms. Most of them cannot handle a large number of trajectories, especially when they

span a large area of a road network. Therefore, most TP methods demonstrated in the literature

use synthetic or small to medium size real trajectory datasets. Section 7.2 discusses existing TP

methods and their limitations for large-scale trajectory data.

To address these challenges and overcome the drawbacks of existing TP methods, this chapter

7.2 Related Work 173

presents a novel, scalable framework for both short-term and long-term TP, which is suitable for

large numbers of overlapping trajectories in a dense road network, typical for major cities around

the world. First, we cluster the large trajectory data using a modified version of two-stage clusiVAT

(clustering using improved Visual Assessment of Tendency) algorithm [63], which we call Traj-

clusiVAT, implemented for trajectory prediction task. The Traj-clusiVAT algorithm first extracts

a smart sample using the Maximin-Random sampling (MMRS) scheme [41], which provides a

good representation of input cluster structure (present in the original data). Then, it uses the

iVAT algorithm to visually determine the number of clusters (k) in input data, and subsequently, it

partitions the trajectory sample into k clusters which contain different frequent movement patterns

in the trajectory data. Then, the remaining non-sampled trajectories are assigned to one of k

clusters using the nearest prototype rule (NPR). Finally, Markov chain models are constructed

from the trajectories in each cluster. These models quantify the movement patterns within clusters,

and subsequently, can be used for TP.

7.2 Related Work

Several studies address the problem of trajectory prediction, which includes the problem of

short-term prediction such as predicting the next location, and long-term prediction such as future

locations or complete route prediction. These methods mainly focus on discovering frequent pat-

terns using various data mining methods. Many of these methods are hybrid and can be broadly

classified into three categories: (i) Rule-based learning based approaches (ii) Markov model-based

approaches (iii) Clustering-based approaches.

7.2.1 Rule-based learning based approaches

Several rule-based methods have been used for location prediction. Morzy [194] implemented

a modified version of the PrefixSpan algorithm to extract association rules from a moving object

database, and used frequent pattern tree with a matching function to select the best association rule

from the database of movement rules. Jeung et al. [195] proposed a hybrid prediction approach,

which combines association rules in the form of trajectory patterns with the motion functions of

an object’s recent movements, to estimate future locations. Given an object’s recent movement

174 A Scalable Framework for Trajectory Prediction

and predictive queries, the best association rule is chosen for prediction. The query processing

approaches presented in [195] can only support near and distant-time predictive queries, unsuitable

for long-term trajectory prediction. Moreover, with the huge number of trajectories, the number

of association rules is also huge, which makes association-rule based algorithms impractical for

large-scale mobility data.

Monreale et al. [255] built a decision tree that they called a T-pattern Tree, based on the

frequent movement patterns extracted using a Trajectory Pattern algorithm, and predicted the next

location of a new trajectory based on the best matching functions. However, mining of frequent

trajectory patterns is computationally expensive. The method in [255] is similar to the use of

association rules as predictive rules in rule-based classifiers. Therefore, this method [255] may

result in a large number of predictive rules for voluminous trajectories. Qiao et al. [206] proposed

a TP algorithm, called PrefixTP, which examines only the prefix subsequences, and projects their

corresponding postfix subsequences into projected sets. Then, for a partial trajectory, it recursively

finds a postfix sequence based on the minimum support count requirement and then declares the

most frequent sequential pattern as the most probable trajectory. Finding subsets of trajectory

sequential patterns is a recursive mining process, which is also computationally extensive.

7.2.2 Markov model-based approaches

Markov models (MMs) have been widely used to mine frequent patterns for route prediction

problems. Ishikawa et al. [196] proposed a model to extract mobility statistics, called the Markov

transition probability, which is based on a cell-based organization of target space and a Markov

chain model, and employed R-tree spatial indices to compute Markov transition probabilities.

Simmon et al. [197] presented a Hidden Markov Model (HMM) based probabilistic approach

to predict a driver’s intended route and destination through observations of the driver’s habits.

Asahara et al. [87] suggested that standard MM and HMM are not generic enough to encompass

all types of movement behaviour. They proposed a variant of Markov model, called the mixed

Markov-chain model (MMM), as an intermediate model between individual and generic models,

for pedestrian movement prediction. Gambs et al. [198] extended a previously proposed mobility

model, named v-Mobility Markov Chain (v-MMC), to incorporate the v previous visited locations.

They showed that prediction accuracy increases with v, but increasing v beyond two does not

7.2 Related Work 175

compensate for the significant overhead in terms of computation and space for learning and storing

the mobility model. They only considered the sequence of the significant locations, instead of all

locations, to build higher order MM.

Most of the MMs do not consider the discontinuous chain of the hidden states, and there-

fore, the state retention problem can drastically degrade the accuracy of location prediction sys-

tem [206]. For the irregular trajectory data, the movement rules cannot be easily represented by

Markov models, which may cause loss of continuous location information [206]. Moreover, the

HMM approaches use the Baum-Welch algorithm for parameter learning and the Viterbi algo-

rithm to find the most likely sequences of hidden states. These algorithms impose a significant

computation burden for large-scale trajectory datasets.

7.2.3 Clustering based approaches

Some researchers have proposed trajectory clustering based route prediction methods, which

partition the trajectories into several clusters representing different motion patterns based on the

trajectory similarity. Various clustering approaches [201] using different methods and distance

measures between trajectories have been proposed in the literature. Road network constrained

trajectory clustering approaches can be classified into two broad categories. The first type uses

the traditional clustering approaches such k-means and DBSCAN with specially designed distance

measures [185, 188, 202, 203] for trajectories. The second category of algorithms [88, 190] cluster

road segment vehicle frequencies based on density and flow.

Ashbrook et al. [199] presented a system that automatically detected the significant locations

from GPS data using k-means clustering, and then incorporated these locations into an MM to

predict the next location. Mathew et al. [200] presented a hybrid method for human mobility

prediction, which first clusters location histories according to their characteristics, and then trains

an HMM for each cluster. A poor prediction accuracy of 13.85% was obtained on a real, large-

scale trajectory dataset using this method. Chen et al. [256] proposed a next-location prediction

approach combining two clustering models, which cluster the objects based on the spatial locations

and trajectories using a similarity metric, respectively, and then it trains a series of MMs with

trajectories in each cluster.

Ying et al. [257] proposed an approach for predicting the next location based on geographic

176 A Scalable Framework for Trajectory Prediction

and semantic features of user trajectories. This method requires the calculation of a semantic

score for each candidate path, which generally incurs additional overhead when compared with

other methods. A probabilistic TP model was proposed in [204] based on two mixture models, a

Gaussian Mixture Model (GMM) and a Variational Gaussian Mixture Model (VGMM), optimized

using the Expectation Maximization (EM) algorithm. Their method requires the prior selection

of the number of Gaussian components and other distribution parameters. They evaluated their

method on a small dataset, which consists of only 69 trajectories. Qiujian et al. [258] proposed a

spatio-temporal prediction and a next-place prediction model based on an entropy-based clustering

approach and HMMs.

Traditional clustering [185, 188, 202, 203] based prediction methods are not scalable for a

large number of trajectories as distance matrix computation is time and space prohibitive. Most of

them require the number of clusters to be known in advance, but in practice, it is often unknown,

making it difficult for the user to choose the optimal number of clusters for location prediction.

Furthermore, the clusters are determined by fixed rules. Some of the road network based clustering

approaches [88, 190], though scalable, produce clusters having high intra-cluster variance, which

span a large area of a road network.

Most of the work done in the area of trajectory prediction either use synthetic datasets [87,

194, 195, 205] or real datasets with small to medium numbers of data points [255, 256, 259]. Most

of them cannot handle big trajectory datasets. There have been several attempts to demonstrate

trajectory prediction on real data having a large number of samples. For example, [206] uses a

real dataset consisting of 4.9 million trajectories (790 million GPS points) as a population, but

only small subsets having a maximum 30,000 trajectories are used in their experiments. The

largest real dataset used was in [258], consisting of 37 million GPS points. They utilized [258] the

MapReduce model in their implementation to handle large datasets.

In this chapter, experiments were performed on two real-life, taxi trajectory datasets including

a large-scale taxi trajectory dataset consisting of 370 million GPS traces and 3.28 million passen-

ger trips from 15,061 taxis during the period of one month in Singapore. This was the first time

TP has been performed on such a large number of real-life road network trajectories.

7.3 Preliminaries 177

7.3 Preliminaries

In this section, we introduce some basic terms and definitions, which are required in the sequel.

7.3.1 Road Network and Trajectories

The road network is represented as an undirected graph

GRN = (V,E), (7.1)

comprising a set V of intersections or nodes of the road network with a set E of road segments or

edges, Ri ∈ E such that Ri = (ria ,rib), where ria ,rib ∈V and there exists a road between ria and rib .

The edge Ri is given a weight equal to the length of Ri. For such a road network, we define the

following:

Definition 7.1. (Trajectory): A trajectory T of length l is a time ordered sequence of road seg-

ments (RS), T = 〈R1,R2, ...,Rl〉, where R j ∈ E,1≤ j ≤ l, and R j and R j+1 are connected.

Definition 7.2. (Sub-Trajectory): T s = 〈L1,L2, ..,Lp〉 is a sub-trajectory of sequence T = 〈R1,R2, ..,Rl〉,

p ≤ l, if there are integers 〈i1, i2, ..ip〉 (1 ≤ i1 < i2 < ... < ip), 〈 j1, j2, .. jp〉 (1 ≤ j1, j2 = (j1 +

1), ..., jp = (jp−1 + 1) ≤ l), and i1 ≤ j1, Li1 = R j1 , Li2 = R j2 , ..,Lip = R jp . Then T s is called a

sub-trajectory of T , denoted by T s v T .

Definition 7.3. (Frequent Road Segment): A Frequent road segment (FRS), RFRS, in a trajectory

set is a segment that contains at least MinT percentage of trajectories of the set passing through

the segment, otherwise, the segment is labeled as "non-FRS". The percentage MinT is a tunable

parameter, and we call it the FRS threshold.

Definition 7.4. (Partial Trajectory): A partial trajectory T p is a sub-trajectory of a given trajec-

tory T if and only if their sequences start from the same segment.

Definition 7.5. (Source Segment): The segment from which a trajectory T originates is called

the Source Segment (SS), RSS, and the start node of T is called the Source Node (SN) of that

trajectory. For a trajectory T = 〈R1,R2, ...,Rl〉, the road segment R1 is RSS. Node r1a is the SN, if

R2 has node r1b , else r1b is SN, where R1 = (r1a ,r1b), and r1a ,r1b ∈V .

178 A Scalable Framework for Trajectory Prediction

Table 7.1: Notations

Symbol Definition
T The set of trajectories
Ti The ith trajectory of set T
li The length (or number of segments) of trajectory Ti

Ri The ith segment of trajectory Ti

N, n number of trajectories in T and MMSR sample S, respectively
k,K number of non-directional and directional clusters in S
T j Set of trajectories in cluster j
N j Number of trajectories in cluster j
R j Set of points (segments) in cluster j

C (T) Set of cluster of trajectories
RFRS, RFRS Frequent road segment (FRS) and the set of FRSs, respectively

RSS, RSS Source segment and the set of SSs, respectively
RFSS, RFSS Frequent source segment (FSS) and the set of FSSs, respectively

M j Transition probability matrix for cluster j
W j Transition count matrix for cluster j

Definition 7.6. (Frequent Source Segment): The SS which is FRS, is called Frequent source

segment (FSS), RFSS.

Definition 7.7. (Problem Definition): Assume that a historical trajectory database, containing N

trajectories, denoted by T = {T1,T2, ...,TN} is given. Then, for a given partial trajectory T p =

〈L1,L2, ...,Lm〉, the goal is to predict the future road segments Li, where i,m ∈Z and i≥ m+1.

7.3.2 Distance Measure (trajDTW)

Most of the existing distance measures for trajectory similarity are not suitable for a large

number of overlapping trajectories in a dense road network due to the use of either the number of

overlapping road segments or maximum/minimum distance between trajectories in their compu-

tation. In our work, we use the Dijkstra based dynamic time warping (DTW) distance measure,

trajDTW [260] to compute trajectory similarities which is suitable for a large number of overlap-

ping trajectories in a dense road network. The superiority of the trajDTW over the traditionally

used dissimilarity with length (DSL) and Hausdorff distance measures is demonstrated in [260].

The trajDTW is a normal DTW algorithm with a Dijkstra distance matrix based cost function and

a window parameter w, which is set to the half of the length of shorter of two trajectories, to avoid

overestimation of the actual distance. As the road network is static, the distance matrix Dall (of

7.3 Preliminaries 179

size (|E|×|E|) of all the edges E in GRN can be pre-computed and stored.

7.3.3 Non-directional trajDTW

The directionality of trajectories can result in misleading distances among them, which in

turn may cause incorrect clustering results. For example, suppose there are two trajectories T1

and T2, which follow the same route but in opposite directions, then the distance between them

considering their directions in computation will be higher than the distance computed without

considering their directions. Therefore, if their movement direction is considered as part of the

distance computation, T1 and T2 may not be grouped in the same cluster. The problem of incorrect

distance measure due to the movement direction of trajectories is addressed by reversing one of

them (reversing the sequence order so that the starting point becomes the ending point and vice

versa), and taking the minimum distance between the first and second trajectory, and the first

trajectory and second reverse trajectory. This distance is called non-directional trajDTW [260],

and is given as:

(7.2)non-directional trajDTW(T1,T2) = min(tra jDTW (T1,T2), tra jDTW (T1,Reverse(T2))

7.3.4 Markov Chain Model

A Markov chain (MC) is the simplest form of the Markov process in which only the current

state determines the probability of transitioning to the next state. Specifically, a Markov chain

model is defined by the transition matrix M, which contains the transition probabilities associated

with various state changes. In a road network, an MC is constructed by assigning a state to each

node or road segments in the given road network. For any two adjacent road segments Ri and R j

in road network GRN , the transition probability of traveling from Ri to R j in one step is given by

pi j =
#(Ri,R j)

#(Ri)
, (7.3)

where #(Ri,R j) is the number of trajectories that contain the sequence {Ri,R j} and #(Ri) is the

total number of trajectories that passes through Ri. For each pair of adjacent road segments in

the graph network, the transition probabilities can be computed using (7.3), and stored as entries

Mi j of transition probability matrix M (of size |E|×|E|). We also define a transition count matrix

180 A Scalable Framework for Trajectory Prediction

Sample S of n

trajectories

(representative of

the entire dataset)

 ×

reordered

dissimilarity

image

! non-directional

clusters of n

samples

trajectories

"(~2k) directional

clusters of n

samples

trajectories

" directional

clusters of the

trajectory dataset

1. MMSR sampling with k’

and n, and non-directional

trajDTW distance measure

2. iVAT with non-

directional trajDTW

Estimate k from

iVAT image

3. iVAT to trajectories

belonging to each of the

k clusters with trajDTW

Representative

trajectory (RT) of

each of K clusters

of sample S

Updated RT of

each cluster of

the trajectory

dataset

4. Compute RT of

each cluster using

Algorithm 1

5. NPR using

Algorithm 2Trained Markov

Models for each

cluster

6. Compute RT of

each cluster using

Algorithm 1

7. Build Markov model

for each of the K clusters

The best matching

trajectory cluster

for #$

transition matrix %&

corresponding to

cluster

Find the best matching

trajectory cluster using

Algorithm 2
Choose the Markov

model %& corresponding

to cluster

Predict the next location

of #$ using %&

Input

trajectory

data T

Next locations

and complete

trajectory of

#$

Training model

Prediction

model

Traj-clusiVAT block (in grey background)

Query

(partial)

trajectory

#$

Figure 7.1: The architecture of our proposed framework.

W whose i j-th entry Wi j represents the number of trajectories that contain sequence {Ri,R j} i.e.,

Wi j = #(Ri,R j). We utilize W in computing a representative trajectory for each cluster in our work.

7.4 Proposed Framework

This section presents our proposed framework for trajectory prediction. The frequent route

patterns of moving objects can be discovered by clustering their historical trajectories. In our

framework, we employ a modified version of the clusiVAT algorithm (Algorithm 5) that we called

Traj-clusiVAT. In Traj-clusiVAT, we introduce a representative trajectory for each cluster to im-

prove the performance of nearest prototyping rule (NPR) for trajectory clustering. We also modify

the NPR technique in Traj-clusiVAT to improve its performance for trajectory prediction. The Traj-

clusiVAT algorithm partitions the trajectories into different groups of similar trajectories, based on

the trajDTW distance measure. After clustering trajectories, we train a first-order Markov chain

model for each cluster using only the trajectories contained therein. Then, these trained Markov

chain models are used for trajectory prediction. The architecture of our proposed framework con-

sisting of both training and prediction models is illustrated in Fig. 7.1. Below, we explain the

training and prediction model of our proposed TP framework in detail.

7.4.1 Training Model

The essential steps of our training model are: (i) MMRS sampling on input trajectory data, (ii)

VAT/iVAT and clustering the trajectory sample using non-directional trajDTW to obtain k non-

7.4 Proposed Framework 181

directional clusters (iii) VAT/iVAT and clustering the trajectories of each of the k clusters using

trajDTW resulting in K (approx. 2k) directional clusters (iv) Compute representative trajectory

(RT) of each cluster, (v) Assign remaining non-sampled trajectories to K clusters using NPR (vi)

Re-compute the RT of each cluster, and (vii) Train a first-order Markov chain model for each

cluster. The first six steps constitute the Traj-clusiVAT clustering algorithm. Below, we explain

each step corresponding to the steps as shown in Fig. 7.1.

7.4.1.1 MMRS sampling on input trajectory data

The first step consists of extracting a small, representative sample from the large trajectory data

using MMSR sampling with non-directional trajDTW distance measure on input trajectory data

T . The aim of this step is to find the most distinguished vehicle routes in a given road network.

The use of non-directional trajDTW circumvents the selection of more than one trajectory from the

same route. In this way, the Maximin (first) step of MMSR ensures that MMSR samples contain

the k′ MM trajectories of the most distinguished vehicle routes. This divides the trajectory data T

into k′ partitions. Then, additional trajectories are randomly chosen from each of the k′ partitions

to generate a sample S of n trajectories. The MMSR intelligently chooses n trajectories which are

almost equally distributed among the different clusters as the N trajectories in the big trajectory

data, i.e., it obtains a representative sample.

7.4.1.2 Clustering trajectory sample using non-directional trajDTW

The previous step provides a trajectory sample S containing n trajectories. In this step, VAT

followed by iVAT is applied to the distance matrix Dn returning a reordered distance matrix D′∗n,

and the cut magnitudes of the MST links, h. The visualization of D′∗n using I(D′∗n) suggests the

number of clusters k present in the dataset. The k partitions can be obtained by cutting the k− 1

longest edges in the iVAT-built MST of Dn.

If the dataset is complex and clusters are intermixed, cutting the k− 1 longest edges may

not always be a good strategy as the outliers, which are typically furthest from normal clusters,

might comprise most of the k− 1 longest edges of the MST, resulting in misleading partitions.

A useful approach in such a scenario is to manually select the dark blocks, and find the sample

182 A Scalable Framework for Trajectory Prediction

trajectories representing each dark block. Another useful approach [252] to obtain clusters is by

cutting the MST using cut threshold magnitudes ordered by edge distances h in the MST. The

cluster boundaries are defined by those indices z, which satisfy

hz > α×mean(h), (7.4)

where α is a parameter that controls how far two groups of data points should be from each other

to be considered as separate clusters. Smaller values of α represent tighter cluster boundaries,

while large values of α create loose cluster boundaries. The procedure to find an optimal value of

α is described in [252].

The non-directional trajDTW distance measure is used in this step to cluster the n trajectories

in order to avoid incorrect clustering due to the movement direction of trajectories, as mentioned

in Section 7.3.3. From here on, in this chapter, we denote k as the number of non-directional

clusters.

7.4.1.3 Clustering trajectories in each cluster using trajDTW (considers directions)

The previous step clusters the trajectories based on their path similarity computed using non-

directional trajDTW, which ensures that the trajectories that are in opposite directions, but follow

similar routes, are clustered together. Since Markov chain models are used in our framework to

model the trajectories of each cluster, their transition probabilities may be misleading for trajectory

prediction task for clusters in which the number of trajectories in opposite directions is approx-

imately equal. To circumvent this problem, we use the trajDTW (directional) distance measure

for the sample trajectories of each cluster obtained in the previous step to separate the trajectories

going in opposite directions using a second application of the iVAT algorithm, which in turn, gives

K ∼ 2k directional clusters.

7.4.1.4 Computing the RT of each cluster

In the NPR (next) step of clusiVAT, the non-sampled trajectories are assigned to one of the

clusters (found in the previous step) based on their (nearest) distances from each cluster. For a

fast implementation of NPR, we require a representative trajectory (RT) for each cluster that best

7.4 Proposed Framework 183

describes the cluster, much like centroid-based clustering methods identify a representative "cen-

ter" for each cluster. However, it is not possible to compute the centroid of trajectory clusters in

a conventional way due to different lengths of trajectories in each cluster. Existing methods of

calculating RT [261–264] in the literature either compute the mean trajectory using the average of

GPS coordinates [262, 264]; or select a trajectory from each cluster which minimizes the dissim-

ilarity between all the trajectories within the cluster [261, 263]; or pick a random trajectory [263]

from each cluster, and designates it as the RT. These methods incur a large computational cost

to compute an RT that minimizes the dissimilarity among all the trajectories. Additionally, RTs

computed using these methods do not show all the possible variability inside a cluster [265]. The

mean trajectory computed from trajectories of different lengths may be inaccurate; thus, it may

not be a good representative of the cluster.

Our scheme generates an imaginary trajectory (IT) (it may not belong to any of the trajecto-

ries in the cluster) as an RT for each cluster that describes the major movement patterns of the

trajectories belonging to that cluster. The pseudocode of our proposed method to compute RT for

each cluster is shown in Algorithm 16. Below, we explain our RT computing algorithm.

First, we compute the transition count matrix W i for each cluster T i using the trajectories in

that cluster (line 2). Then, for each cluster T i, we compute the set of frequent road segments

(FRSs) R i
FRS using the MinT threshold (line 3). The road segments in cluster T i which contains

at least MinT % of the total trajectories in that cluster are assigned to R i
FRS. Then, a set of frequent

source segments (FSSs) R i
FSS is identified (line 4). A source segment Ri

SS is a FSS, Ri
FSS, if at

least MinT % of total trajectories in the cluster originate from Ri
SS i.e, Ri

FSS ∈R i
SS, Ri

FSS ∈R i
FRS.

Then for each FSS, Ri
FSS ∈ R i

FSS (line 5), an imaginary trajectory IT i(Ri
FSS) is initialized with

Ri
FSS assigning it as current segment, Rcurrent (lines 6− 7). In lines 9− 17, we compute the next

RS, Rnext based on the highest transition count from current RS, Rcurrent using transition count

matrix, W i (refer to Section 7.3.4) . If Rnext ∈R i
FRS, then Rnext is added to current IT i(Ri

FSS), and

assigned as Rcurrent to compute new Rnext . The steps in lines 9−18 are repeated until Rnext is non-

FRS, which means an imaginary trajectory is an ordered sequence of only frequent road segments

in that cluster. A total of |R i
FSS| imaginary trajectories will be generated for each cluster T i,

corresponding to each Ri
FSS ∈R i

FSS. We define a variable Count_score (line 8) for each imaginary

trajectory IT i(Ri
FSS), Ri

FSS ∈ R i
FSS, which is the sum of the total transition counts of each RS

184 A Scalable Framework for Trajectory Prediction

∈ IT i(Ri
FSS) in cluster T i. Among all |R i

FSS| ITs, the one which has the highest Count_score will

be assigned as RT (T i) of cluster T i (line 20). As the RT (T i) is the sequence of FRS with highest

Count_score, it contains major movement behaviour or patterns of the trajectories belonging to the

cluster T i.

Algorithm 16 does not require the computation of dissimilarity among all trajectories in that

cluster to compute RT, which is computationally expensive for large size clusters. In contrast,

Algorithm 16 is a novel algorithm to compute RT based on the transition count matrix of each

cluster.

Algorithm 16 Computing the RT of each cluster

Input: T j- set of trajectories in cluster j, N j- number of trajectories in cluster j, R j- set of road
segments in cluster j, C (T) = {T 1, ...,T K}- set of cluster of trajectories, MinT - FRS threshold

1: for each cluster T i ∈ C (T) do
2: Compute transition count matrix W i for cluster T i

3: Compute FRSs, R i
FRS, from R i, R i

FRS = {R j ∈R i}#(R j)≥MinT×Ni

4: Compute FSSs, R i
FSS from R i

SS = {R j}R j∈Ri
SS∈R

i
FRS

5: for each FSS Ri
FSS ∈R i

FSS do
6: Assign Ri

FSS as current road segment, Rcurrent = Ri
FSS

7: Initialize an imaginary trajectory IT with Rcurrent , IT i(Ri
FSS) = {Rcurrent}

8: Count_score(IT i(Ri
FSS)) = 0

9: while each RS of IT i(Ri
FSS) ∈R i

FRS do
10: Compute next RS, Rnext = argmax

R j∈Ri
{W i

current, j}

11: if Rnext ∈R i
FRS then

12: Append Rnext to existing IT i(Ri
FSS)

13: Rcurrent = Rnext
14: Count_score(IT i(Ri

FSS)) += W i
current,next

15: else
16: break;
17: end if
18: end while
19: end for
20: Select IT i(Ri

FSS) with the highest Count_score(IT i(Ri
FSS)) from all |R i

FSS| IT s of T i, and assign
it as RT for cluster T i

21: end for
Output: RT (T i)- RT for each cluster T i ∈ C (T)

7.4.1.5 Assigning non-sampled trajectories to identified K clusters using NPR

The previous step gives representative trajectory RT (T i) for each cluster T i. In this step,

N − n non-sampled trajectories are assigned to one of the K directional clusters based on the

7.4 Proposed Framework 185

NPR. The NPR method in clusiVAT uses the trajDTW (directional) distance measure to assign

non-sampled trajectories to one of the K clusters based on their nearest distance from (clustered)

sample trajectories. However, trajDTW distance of a non-sampled trajectory to cluster RTs may

not be an appropriate measure for the NPR step due to its dependency on the length of trajectories,

as explained by the following example.

Suppose Ta is a non-sampled trajectory in T , and RT (T i) and RT (T j) are the RT of clus-

ter T i and T j, respectively. Let Ta be a sub-trajectory of RT (T i) i.e., T a is fully contained

in RT (T i). Since the trajDTW distance relies on a warping window size parameter w, the

tra jDTW (Ta,RT (T i)) not only depends on the coordinates of RSs of both trajectories, but it also

depends on the length of Ta and RT (T i). Moreover, tra jDTW (Ta,RT (T i)) also varies depend-

ing on the position of Ta in RT (T i) due to window parameter. Therefore, even if TavRT (T i) and

Ta 6vRT (T j), Ta may be incorrectly assigned to cluster T j instead of T i if tra jDTW (Ta,RT (T i))≥

tra jDTW (Ta,RT (T j)). Here is such an example from T-Drive data. Suppose T1 = 〈70,75,90,89,88〉

is a non-sample trajectory, and RT (T 1)= 〈16,18,68,70,75,90,89,88〉 and RT (T 2)= 〈68,70,75,91,92〉

are RTs of two clusters, where each trajectory is represented by a sequence of road segments’ IDs

of Beijing road network (refer to Section 7.6.1). The trajDTW distances are: tra jDTW (T1,RT (T 1))=

0.3482 and tra jDTW (T1,RT (T 2))= 0.2767. Therefore, although T1 is a sub-trajectory of RT (T 1),

it will be assigned to cluster T 2 based on nearest trajDTW distance. Such assignments of non-

sampled trajectories to (incorrect) cluster may include outlier trajectories or road segments in that

cluster, which may adversely affect Markov chain modeling, and consequently, degrade the per-

formance of trajectory prediction.

To address above issue, we propose a hybrid NPR strategy based on the path probability and

trajDTW distance measure. Hybrid NPR is similar to clusiVAT NPR except for those non-sampled

trajectories, which are sub-trajectory of any of the clusters’ trajectories. The pseudocode of our

hybrid NPR method is shown in Algorithm 17. For a query trajectory T q = {R1,R2, ...,Rl}, we

first compute the path probability Pi(T q) for each cluster T i, which is defined as

Pi(T q) =
l

∏
j=1

p j(j+1)⇔
l

∏
j=1

Mi
j(j+1). (7.5)

Pi(T q) > 0 means that sequence T q appears at least once in cluster T i, whereas Pi(T q) = 0

186 A Scalable Framework for Trajectory Prediction

means that sequence T q is not present in cluster T i. If the sequence T q is present in any cluster

T i i.e., any(Pi(T q)) > 0, then T q is assigned to the cluster with the highest path probability. If

the sequence T q is not present in all clusters T i i.e., all(Pi(T q)) = 0, then T q is assigned to the

cluster based on its (minimum) trajDTW distance from RTs. All non-sampled trajectories in T

are assigned to one of the K clusters using Algorithm 17.

Algorithm 17 Hybrid NPR Method

Input: Tq - query trajectory, M j - transition probability matrix for cluster j, RT (T j)- representative
trajectory for cluster j

1: Compute the path probability Pi(Tq) of query trajectory in each cluster T i using Mi and Eq. 7.5.
2: if any(Pi(Tq)> 0 then . if Tq is present in any cluster T i

3: Select the cluster c with the highest Pi(Tq) i.e., c = argmax
T i∈C (T)

{Pi(Tq)}

4: else
5: Compute the trajDTW distance of Tq from RT (T i), yi = tra jDTW (Tq,RT (T i)), for each cluster

T i ∈ C (T)
6: Select the cluster c with the minimum yi i.e., c = argmin

T i∈C (T)

{yi}

7: end if
8: Assign the Tq with cluster c (or T c).
Output: cluster label for Tq

7.4.1.6 Recompute the RT of each cluster after NPR

The assignment of all non-sampled trajectories to one of the K clusters in the NPR step updates

each cluster with new trajectories. Therefore, the representative trajectory is recomputed for each

updated cluster using Algorithm 16.

7.4.1.7 Train Markov chain model

For each of the K clusters, we build a first-order Markov chain model using the trajectories of

that cluster. Specifically, we compute the transition probability matrix Mi for each cluster T c.

For a basic understanding of Traj-clusiVAT algorithm, we graphically explain its steps on

a small trajectory data T , as shown in Fig 7.2. An input trajectory data T containing N = 9

trajectories is shown in Fig 7.2 (a). The MMSR sampling on T with non-directional trajDTW

in the first step returns a MMSR sample S containing n = 6 sample trajectories {1,4,5,6,7,9},

which are well-distributed in sample S, as shown in Fig 7.2 (b). In the next step, iVAT is applied

7.4 Proposed Framework 187

4

1

2
3

5

6

7

89

4

1
5

6

7

9

4

1
5

6

7

9

4

1

2
3

5

6

7

89

4

1
5

6

7

9

(a) (b) (c) (d) (e)

Figure 7.2: A simple illustration of Traj-clusiVAT for trajectory clustering

to S using the non-directional trajDTW distance measure, which clusters the trajectories based on

the path similarity irrespective of their movement directions. The iVAT image in Fig 7.2 (c) shows

four dark blocks along its diagonal, which indicates four clusters in sample S. Having an estimate

of k = 4, sample S is partitioned into four (non-directional) clusters {{1,4},{5},{6,7},{9}}, as

shown with four different colors in Fig 7.2 (c). Then, the trajectories in each cluster going in

opposite directions are separated using the iVAT with the trajDTW distance measure, which gives

K = 6 directional clusters {{1},{4},{5},{6},{7},{9}}, each cluster is shown with a different

colour in Fig 7.2 (d). Since there is only one trajectory in each cluster in this case, they are the

RTs for corresponding clusters. In the next step, non-sampled trajectories {2,3,8} are assigned

to one of the 6 clusters using NPR (Algorithm 17), which partitions the complete data into 6

clusters {{1,2,3},{4},{5},{6,8},{7},{9}}. Trajectory 4 is in different cluster than {1,2,3} due

to opposite direction. Then, a Markov chain model is trained for each cluster using the trajectories

of that cluster.

7.4.2 Prediction Model

For a given partial trajectory T p = 〈L1,L2, ...,Lm〉, we first estimate the best matching repre-

sentative cluster T c using our hybrid NPR approach, and then choose the corresponding Markov

model of the cluster to predict the next locations Li, i≥ m+1. Using the cluster T c, the location

Lm+1 that the object will arrive at next is given by

Lm+1 = argmax
L j∈Rc

{pm j}⇔ argmax
L j∈Rc

{Mc
m j} (7.6)

The T p is updated with the next predicted location Lm+1. Then, the updated T p is used to estimate

the best matching cluster and the corresponding MM is used to predict the next location. The

188 A Scalable Framework for Trajectory Prediction

complete trajectory is predicted by computing next locations in a sequential manner using these

steps.

7.5 Time Complexity

The first step in Traj-clusiVAT is the selection of k′ distinguished trajectories which are at

maximum distance from each other. This step has the time complexity of O(k′N), where k′ is a

user-defined parameter for an overestimate of the number of clusters in the input trajectory data

and is usually chosen to be (inessentially) large (usually 50 to 200). The next step is to randomly

select n trajectories from k′ NPR groups to get a sample S. The computation of distance matrix Dn

and VAT on a sample S has a time complexity of O(n2). Usually n << N, so the computation of

Dn and VAT on S is pretty fast and takes just a small fraction of the total run time of Traj-clusiVAT.

The trajDTW distance measure uses Dijkstra’s shortest path distance in the standard DTW algo-

rithm. Its best, average case complexity with binary heaps is O(|E|+|V |log|V |) [266]. For two

trajectories of length l1 and l2, standard DTW has time complexity of O(l1l2). Remark- There are

approximate algorithms such as FastDTW [267] which have a linear time complexity in the aver-

age length of trajectories, however, we have not used this implementation in our experiments. The

NPR step in Traj-clusiVAT has complexity of O(n(N− n)). The computation of RTs has linear

time complexity in K. The construction of a Markov model for each cluster is a simple and fast

process, which has O(K) time complexity and O(|E|2) space complexity.

7.6 Experiments

In this section, we conduct an extensive experimental study on two real-life, vehicle tra-

jectory datasets to evaluate the performance of our proposed framework. We first describe the

datasets, their preprocessing, evaluation metrics and computational protocols adopted in our em-

pirical study, and then present the experimental results.

7.6.1 Datasets

We performed our experiments on two real trajectory datasets.

7.6 Experiments 189

(a) T-Drive: Road network in the center of Beijing (b) Singapore road network

Figure 7.3: Road networks used in our trajectory prediction experiments

7.6.1.1 T-Drive taxi trajectory data [89, 90]

This trajectory dataset is obtained from the T-Drive project which contains one-week trajecto-

ries of 10,357 taxis during the period of Feb. 2 to Feb 8, 2008 within Beijing, China. The total

number of points is about 15 million, and the total distance of the trajectories is 9 million kilome-

ters. In our experiment, we have taken a subset of this dataset, which contains trajectories from

a road network in the center of Beijing city, as shown in Fig. 7.3(a). This road network consists

of 100 nodes and 141 road segments (edges). The average sampling interval is 177 seconds with

an average distance of about 623 meters, which is quite large for a city traffic environment as the

length of many road segments is smaller than the average sampling distance.

7.6.1.2 Singapore taxi trajectory data

This dataset consists of the trajectories of more than 15,000 taxis collected over a duration

of 1 month from a road network in Singapore City, as shown in Fig. 7.3(b). This dataset is very

dense as it consists of more than 370 million GPS logs. The general format of each data point

is as follows: {Time Stamp, Taxi Registration, Latitude, Longitude, Speed, Status}. The Status

field contains information about occupation state of Taxi, such as FREE and POB (Passenger on

Board). In order to extract each individual taxi’s trip from the raw data, we detect the following

sequence: starting from FREE to POB and ending from POB to FREE, using the trip extraction

framework presented in [268]. This road network consists of 1641 nodes and 2941 edges, with an

average edge length of 350m.

190 A Scalable Framework for Trajectory Prediction

Table 7.2: Training and test set description

T-Drive Taxi Singapore Taxi
Training Set 35,501 1,955,573

Test Set 7,904 1,303,717
Total trajectories 43,405 3,259,290

Data Pre-processing

To obtain the trajectories as a sequence of road segments, each of which has a common node

with its former and latter road segment, we first map each GPS point to its nearest road segment

(commonly known as the Map Matching Problem). We remove duplicate road segments in a tra-

jectory. After removing duplicate nodes, if two consecutive road segments do not have a common

node, Dijkstra’s algorithm is used to find and insert the minimum length road segment sequence

between the two non-adjacent road segments. We use the popular open source map matching tool

GraphHopper [269], which provides an implementation of the approach presented in [192].

After pre-processing, we have N = 43,405 trajectories in the T-Drive data whose lengths lie in

the range of 5 to 200 road segments and have an average of 14 road segments, and N = 3,259,290

(3.26 million) trajectories in the Singapore data whose lengths lie in the range of 10 to 250 road

segments and have an average of 22 road segments. To prepare training and test sets for both

datasets, we first divided the trajectories into two sets based on the day of week viz., weekdays

and weekends, during which the trip is being made. For the one-week T-Drive data, we considered

trajectories during first 4 weekdays (Monday to Thursday) and first weekend day (Saturday) as the

training set, and trajectories during the remaining days (Friday and Sunday) of that week as the

test set. For the one-month Singapore data, we considered 60% trajectories randomly as training

set and remaining 40% as the test set, for both weekdays and weekend data. The size of training

and test sets for both trajectory datasets is shown in Table 7.2. We split each trajectory in a test

set into two halves. The first half is used as a partial trajectory (or query trajectory) for predicting

its future locations and the second half is used as ground truth to validate our predictions. The

distribution of predicted trajectories (second half) in the T-Drive and Singapore test sets is shown

in Fig. 7.4.

7.6 Experiments 191

1 4 7 10 13 16 19 22 25 28
Length of predicted trajectory

0
200
400
600
800

1000
1200
1400
1600

N
os

. o
f p

re
di

ct
ed

 tr
aj

ec
to

rie
s

(a) T-Drive Taxi

0 5 10 15 20 25 30 35 40 45 50
Length of predicted trajectory

0

1

2

3

4

5

6

N
os

. o
f p

re
di

ct
ed

 tr
aj

ec
to

rie
s

105

(b) Singapore Taxi

Figure 7.4: Trajectory distribution of predicted trajectories based on their lengths.

7.6.2 Evaluation Metrics

In our experiments, we assess the performance of our framework for next location prediction

(also known as one-step prediction) and long-route prediction using following evaluation metrics:

7.6.2.1 Prediction Accuracy (PA)

The PA is the ratio of correctly predicted locations to the total possible number of predicted

locations for each trajectory. Given a predicted trajectory sequence Tpred = {L1,L2, ...,Lm} and a

true (actual) trajectory sequence Ttrue = {R1,R2, ...,Rm}, the prediction accuracy is defined as

PA =
1

|Tpred |

m

∑
j=1

H(L j,R j), (7.7)

where H(L j,R j) is 1 if L j = R j, else 0. The average prediction accuracy is the average of PA for

all predicted trajectories in test set T test .

7.6.2.2 Prediction Rate (PR)

The PR is the number of trajectories that are correctly predicted over the total number of

trajectories in test set. It is defined as

PR =
1

|T test |

|T tr|

∑
j=1

H(Tpred j ,Ttrue j), (7.8)

where H(Tpred j ,Ttrue j) is 1 if Tpred j = Ttrue j , else it is 0.

192 A Scalable Framework for Trajectory Prediction

7.6.2.3 Distance error (DE)

Another important performance metric of the long-term prediction system is the capability

of continuous route prediction. The distance error is defined as the average spatial (Haversine)

distance between predicted and actual routes. Given a route sequence Tpred and Ttrue, the distance

error between them is given as

DE(Tpred ,Ttrue) =
1

|Tpred |

m

∑
j=1

DH(L j,R j), (7.9)

where DH(L j,R j) is the Haversine [270] distance between two locations (road segments).

7.6.2.4 One-step accuracy (OA)

This is the ratio of correctly predicted next locations to the total predicted next locations for

all trajectories in test set.

7.6.2.5 One-step distance error (ODE)

The ODE defined as the average distance error for one-step (or next location) prediction.

7.6.3 Comparison Methods

Among the plethora of MM and clustering based TP methods available in the literature, we

implemented these two approaches for comparison.

1. Mixed Markov model (MMM) based TP [87]: MMM was proposed as an intermediate

model between standard MM and HMM which can encompass all types of movement be-

haviour present in an input trajectory data. It first clusters the trajectories into groups using

the EM algorithm, and then builds an MM for each group, which is subsequently used for

prediction. This approach was tested on synthetic and real datasets in [87], which showed

74.1% accuracy for MMM, in comparison to 16.9− 45.6% for MM and 2.4− 4.2% for

HMM.

7.6 Experiments 193

2. NETSCAN-based TP: The well-known density-based algorithm DBSCAN and its vari-

ants [205, 271–273] have been used extensively as a trajectory clustering method for lo-

cation prediction [195]. However, they are not suitable for a large number of trajectories

as computation of the distance matrix is time intensive. Kharrat et al. [88] proposed a

trajectory clustering relative of DBSCAN, called NETSCAN which first finds dense road

segments based on the moving object counts, merges them to form dense paths on the road

network, and then assigns sub-trajectories to the dense paths based on a measure of simi-

larity. This method requires two user-defined parameters: a density threshold - the minimal

required density for transition, and a similarity threshold- the maximum density difference

between neighbouring road segments. We implement NETSCAN to cluster trajectories into

dense road segments, then built an MM for each cluster, and subsequently used them for TP.

Our proposed method and the baseline methods discussed above are also comparable in terms

of prediction time (which will be discussed shortly). They all require a short prediction time and

satisfy the requirement of real-time prediction.

7.6.4 Computation Protocols

All algorithms were coded in MATLAB on a PC with the following configuration; OS: Win-

dows 7 (64 bit); processor: Intel Core i7− 4770 @3.40GHz; RAM: 16GB. We denote the com-

parison approaches of [87] as MMM, of [88] as NETSCAN, and our Traj-clusiVAT based TP

approach as Traj-clusiVAT. All three algorithms were applied to T-Drive data. The MMM method

requires the computation and storage of an intermediate matrix of size |E|×|E|×N, which is very

large for Singapore data, so we can not apply MMM to the Singapore data. The number of mixed

models of MMM was determined using 10-fold cross-validation. The NETSCAN parameter, den-

sity threshold and similarity threshold, were chosen to get as many dense paths (with at least six

road segments) as the number of clusters we get using the Traj-clusiVAT algorithm, for a fair

comparison. The parameters for Traj-clusiVAT were chosen as follows: k′ = 150, n = 500, and

α = 0.05 for the T-drive data, and k′ = 300, n = 1000, and α = 0.06 for the Singapore data, and

MinT = 30% for both data. It is worth noting that, unlike other clustering algorithms, the clusiVAT

algorithm is relatively insensitive to the choice of k′ and N [63]. Moreover, we study the effect of

α on Traj-clusiVAT performance in our experiments.

194 A Scalable Framework for Trajectory Prediction

1 3 5 7 9 11 13 15 17 19 21 23 25 27
Number of prediction steps

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

A
ve

ra
ge

 p
re

di
ct

io
n

ac
cu

ra
cy

MMM NETSCAN Traj-clusiVAT

1 3 5 7 9 11 13 15 17 19 21 23 25 27
Number of prediction steps

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

A
ve

ra
ge

 d
is

ta
nc

e
er

ro
r

(k
m

)

MMM NETSCAN Traj-clusiVAT

(a) T-Drive Dataset

1 6 11 16 21 26 31 36 41 46 51 56 61 66
Number of prediction steps

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

A
ve

ra
ge

 p
re

di
ct

io
n

ac
cu

ra
cy

NETSCAN Traj-clusiVAT

1 6 11 16 21 26 31 36 41 46 51 56 61 66
Number of prediction steps

0
1
2
3
4
5
6
7
8

A
ve

ra
ge

 d
is

ta
nc

e
er

ro
r

(k
m

)

NETSCAN Traj-clusiVAT

(b) Singapore Taxi Dataset

Figure 7.5: Average prediction accuracy and distance error comparison by prediction steps

7.6.5 Comparison of MMM, NETSCAN, and Traj-clusiVAT for Long-term Predic-
tions

Long-term prediction, also known as continuous route prediction, is a challenging and on-

going research problem in TP. In this experiment, we compare the performance of the MMM,

NETSCAN, and Traj-clusiVAT-based prediction approaches for m-step predictions. Specifically,

this refers to predicting the next m locations for a given partial trajectory. Fig. 7.5 shows the

average prediction accuracy (left panels) and average distance error (right panels) of all three al-

gorithms for increasing prediction steps. The graphs in Fig. 7.5 support these observations:

(i) First, the Traj-clusiVAT outperforms the MMM and NETSCAN-based TP approaches based

on the average PA and DE for the T-Drive data, as shown in Fig. 7.5(a). The higher the num-

ber of prediction steps, the larger the gap between Traj-clusiVAT and the other two approaches.

This means that the Traj-clusiVAT performs better not only for short-term predictions but it per-

forms even better than other two approaches for long-term predictions. This is probably because

Maximin sampling in Traj-clusiVAT finds the trajectories which are furthest from each other. As

the traj-DTW distance measure yields higher distances for longer trajectories, Maximin sampling

tends to pick longer trajectories in its output sample which form separate clusters in subsequent

steps. The Markov models trained on these clusters after the NPR step contain all movement be-

7.6 Experiments 195

haviours similar to those longer trajectory patterns. Therefore, if a query trajectory pattern is not

available in any cluster, which is frequent for longer query patterns, then it is assigned to a cluster

based on its nearest distance from all cluster RTs. This will assign longer query trajectories to

any of the clusters containing longer trajectory patterns, and subsequently, corresponding MMs

trained on these clusters contribute towards better predictions for longer query trajectories during

the prediction phase. On the other hand, the longer movement rules cannot be easily represented

by Markov-based models, especially for irregular trajectory data, due to uncertainty in movement

behaviours of vehicles in a complex road network. As there are only a few prediction trajectories

available for the T-Drive test set whose lengths are greater than 16 as shown in Fig. 7.4 (a), the per-

formance of all approaches cannot be considered conclusive for longer prediction steps (m > 16)

based on their performance on the T-drive data.

(ii) Fig. 7.5 (b) shows that the Traj-clusiVAT model also performs better than the NETSCAN-

based method based on the average PA and DE values for the Singapore data. The gap between

the NETSCAN and Traj-clusiVAT plots increases until 31-th prediction step and then reduces with

longer prediction steps. This may be because the trajectory clusters obtained by NETSCAN are

usually spread over the entire road network [260], which results in longer dense paths. Therefore,

its performance becomes competitive with Traj-clusiVAT for longer prediction lengths compared

to its short-term prediction performance.

(iii) The performance of all three approaches deteriorates as the prediction step increases.

This may be because the number of frequent trajectory patterns obtained is small for long-term

predictions, which do not contain enough information to forecast future locations1.

In our experiments, we find that most of the clusters contain frequent trajectory patterns whose

lengths are less than six or seven. Only a few clusters contain frequent trajectory patterns whose

lengths are longer than seven steps. This finding conforms with the real-world situation, where a

driver usually predicts only next few locations.

The average long-term prediction performance of all three approaches is summarized in Ta-

ble 7.3. The best performance is shown in bold for both datasets. Traj-clusiVAT achieves the

highest PA, 0.62 and 0.59 and the lowest DE, 0.58km and 0.60km, for the T-Drive and Singapore

taxi datasets, respectively. The MMM-based prediction approach is the second best method for

1And the other reason, as Niels Bohr said, is that "it is very hard to predict, especially the future"

196 A Scalable Framework for Trajectory Prediction

Table 7.3: Long-term prediction: Comparison of MMM, NETSCAN and Traj-clusiVAT

T-Drive Data
Average PA Average DE (km) PR (%)

MMM 0.55 0.68 39.9
NETSCAN 0.41 0.87 24.3

Traj-clusiVAT 0.62 0.58 49.8
Singapore Data

NETSCAN 0.34 1.41 5.1
Traj-clusiVAT 0.59 0.60 24.8

Table 7.4: Next location prediction: Comparison of MMM, NETSCAN and Traj-clusiVAT

T-Drive Singapore Taxi
OA ODE (km) OA ODE (km)

MMM 0.77 0.24 - -
NETSCAN 0.67 0.54 0.62 0.29

Traj-clusiVAT 0.80 0.23 0.86 0.05

T-Drive in terms of all three evaluation metrics. Traj-clusiVAT achieves prediction rates of 49.8%

and 24.8% for the T-Drive and Singapore trajectory datasets, respectively. In other words, Traj-

clusiVAT is able to predict complete trips for around 50% of the trajectories in T-Drive, and for

around 25% of the trajectories in Singapore data. In contrast, MMM predicts about 40% of the

total trajectories correctly for the T-Drive dataset. Although NETSCAN performance improved

for longer predictions due to longer dense paths, it only predicted about 5% of the total trajec-

tories correctly. Overall, Traj-clusiVAT based prediction approach outperforms both MMM and

NETSCAN-based prediction approaches based on all three evaluation metrics.

7.6.6 Next location predictions

In this experiment, we compare Traj-clusiVAT to the other two comparison approaches for

predicting next locations. Given a taxi’s current location, the next location prediction is to forecast

the next location where the taxi may go. Table 7.4 shows the one-step accuracy (OA) and one-step

distance error (ODE) on the T-Drive and Singapore trajectory datasets. The Traj-clusiVAT-based

approach predicts next location with more than 80% accuracy and with distance error of less

than a quarter of km for both T-Drive and Singapore data. The long-term prediction performance

(Table 7.3) of NETSCAN and Traj-clusiVAT is better for T-Drive than for the Singapore data.

7.6 Experiments 197

Conversely, the next location prediction performance of both approaches is better for the Singapore

data than the T-Drive data. This may be because Singapore data contains a large number of longer

trajectories that span entire Singapore city, whereas T-drive contains partial trajectories belonging

to small part of the entire road network, hence modeling is not that efficient for T-drive data. In

summary, Traj-clusiVAT outperforms both MMM and NETSCAN for next location prediction.

7.6.7 Effect of latest locations of partial trajectory for prediction

In the prediction step of Traj-clusiVAT, a partial trajectory T p = {R1,R2, ...,Rl} is assigned to

one of the K clusters using our hybrid NPR approach. For a T p, the best cluster is chosen based

on either its path probability Pi(T p) in each cluster or its trajDTW distance from each cluster (if

T p is not fully contained in any cluster). The length of known partial trajectory T p increases after

each next location prediction as T p is updated with a predicted location after each prediction, and

subsequently, the updated T p is used for next location prediction, and so on.

We conduct an experiment in which instead of using full known partial trajectory T p, we use

only the latest movement steps or latest subsequence of T p until prediction to choose the best

matching cluster in the hybrid NPR step. In this regard, we choose a different number of latest

locations of known partial trajectories until prediction and investigate the effect on the performance

for trajectory prediction.

Fig 7.6 shows the average distance error for a different number of latest locations of known

partial trajectories until prediction for the T-drive and Singapore data. It can be inferred from the

figure that the best performance is achieved when only the latest two or three locations of partial

trajectory are used to find the best matching cluster. The average distance error increases if more

than three latest locations are used to find the best cluster in the hybrid NPR step. This is because

as the length of T p increases, its path probability in each cluster decreases, which means that the

chance of sequence T p being fully contained in any cluster decreases. Moreover, if T p is not

fully contained in any cluster representative trajectory, its distance from all the clusters increases

with increasing length. This may result in wrong cluster assignment, which in turn, may degrade

Traj-clusiVAT’s prediction performance.

198 A Scalable Framework for Trajectory Prediction

1 2 3 4 5 6 7 8 9 10
Latest locations of partial trajectory for prediction

0.5

0.55

0.6

0.65

0.7

0.75

0.8
A

ve
ra

ge
 d

is
ta

nc
e

er
ro

r
(k

m
)

T-Drive Singapore Taxi

Figure 7.6: Average DE vs latest locations of partial trajectory used to select best cluster in the
hybrid NPR step.

00.050.10.150.20.250.30.350.40.450.5
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85

A
ve

ra
ge

 d
is

ta
nc

e
er

ro
r

(k
m

)

0

100

200

300

400

500

N
um

be
r

of
 c

lu
st

er
s,

 KDistance error Number of clusters

(a) T-Drive

00.20.40.60.811.21.41.61.7
0.5

0.55

0.6

0.65

0.7

A
ve

ra
ge

 d
is

ta
nc

e
er

ro
r

(k
m

)

400

600

800

1000

1200

1400

N
um

be
r

of
 c

lu
st

er
s,

 K

Distance error Nos. of cluster

(b) Singapore trajecory data

Figure 7.7: Effect of cut threshold α

7.6.8 Effect of Cut threshold α

In this experiment, we study the effect of cut threshold α . The parameter α in Traj-clusiVAT

controls how far two groups of data points should be from each other to be considered as different

clusters. Figure 7.7 shows the average DE and the number of clusters K for different values of α

for the T-Drive and Singapore data. The lower the cut threshold, the tighter the cluster boundaries,

and hence, the higher the number of clusters. As the number of clusters K increases, the average

DE reduces. This is primarily because the higher K corresponds to a larger number of unique

frequent patterns, which improves the prediction performance. Figure 7.7 shows that the Traj-

clusiVAT performance improves with lower cut threshold α or with the higher number of clusters.

However, with large K, more MM needs to be trained, and hence, system complexity increases.

Moreover, Traj-clusiVAT performance does not improve significantly below a certain value of α

for either dataset. The procedure to find an optimal value of α is described in [252].

7.6 Experiments 199

5000 10000 15000 20000 25000 30000 35000
Number of trajectories in training set

0
400
800

1200
1600
2000
2400
2800

C
P

U
 ti

m
e

(s
)

MMM NETSCAN Traj-clusiVAT

(a) T-Drive

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Number of trajectories in training set 104

0

300

600

900

1200

1500

1800

C
P

U
 ti

m
e

(s
)

NETSCAN Traj-clusiVAT

(b) Singapore

Figure 7.8: Training time comparison

Table 7.5: Prediction time in seconds for all three algorithms

MMM NETSCAN Traj-clusiVAT
T-Drive Taxi 0.0014s 0.0011s 0.0012s

Singapore Taxi - 0.063s 0.066s

7.6.9 Time performance analysis

The training time of all three algorithms on different-size training sets is shown in Fig. 7.8.

The CPU-time for MMM increases most with the training data size because the computation of

an intermediate matrix of size |E|×|E|×N incurs high computational overhead and space com-

plexity for large N. On the other hand, NETSCAN incurs the lowest computation time among all

three methods. This is because it just computes dense paths based on the movement counts and

density threshold, and assigns all trajectories to these dense paths based on similarity. Although it

takes less time for training, it suffers from lower prediction accuracy. Traj-clusiVAT scales almost

linearly in the number of trajectories, which make it scalable for big trajectory datasets.

Prediction-time is also an important criterion in real-time trajectory prediction. The average

prediction time for all three approaches is presented in Table 7.5. We can see that all three ap-

proaches take similar times to forecast each trajectory for the T-drive dataset. The response time

is less than 1.5ms for T-drive, which suggests that all three approaches satisfy the requirement for

real-time prediction. The average prediction time is higher for the Singapore dataset due to a large

number of clusters identified by both NETSCAN and Traj-clusiVAT algorithms, but at ∼ 0.06

seconds, it is negligible in terms of real-time prediction utility.

200 A Scalable Framework for Trajectory Prediction

7.7 Summary

This chapter presents a novel, scalable, hybrid architecture for short-term and long-term trajec-

tory prediction, which can handle a large number of trajectories from a large-scale dense road net-

work. The proposed framework is based on a scalable clustering approach, called Traj-clusiVAT,

which is a modified version of clusiVAT for trajectory prediction. In particular, Traj-clusiVAT

develops a novel algorithm to compute a representative trajectory for each cluster. We also pre-

sented a new, hybrid nearest prototyping approach for accurate trajectory assignment to (one of)

the clusters identified in previous steps of Traj-clusiVAT. Finally, we also propose a hybrid pre-

diction framework based on hybrid NPR which can assign a query trajectory to the best-matching

cluster in a robust way to improve prediction performance.

We demonstrated the superiority of our proposed approach by comparing it with mixed Markov

model-based and NETSCAN-based TP approaches on two real trajectory datasets, including a

large-scale trajectory dataset containing 3.28 million trajectories of passenger trips obtained from

15,061 taxis within Singapore over a period of one month. Our experimental results on both trajec-

tory datasets show that Traj-clusiVAT based TP approach outperforms the other two approaches

based on the prediction accuracy and distance error for short-term and long-term prediction for

these two datasets. Our experimental results also suggest that Traj-clusiVAT satisfies the require-

ment for real-time predictions.

Chapter 8

Conclusions

8.1 Summary of Contributions

Everyday an abundant amount of data is generated from various sources such as IoT networks,

smartphones, and social network activities. Making sense of such an unprecedented amount of

data is essential for many businesses, services, and applications, and almost for every domain

such as health care, transportation, finance, and energy sectors. Therefore, scalable and efficient

algorithms are required to manage and extract useful information from a huge amount of data.

This thesis focused on mining information from a large volume of data that is possibly un-

labeled, anomalous, streaming, and high-dimensional. Cluster analysis is the best unsupervised

approach to extract actionable knowledge and timely detection of interesting events from unlabeled

data. This thesis developed a suite of novel algorithms to solve each of the three problems of clus-

ter analysis, namely, cluster tendency assessment, clustering, and cluster validity for large-scale,

high-dimensional data, including a novel scalable framework for vehicle trajectory prediction.

Chapters 3-7 presented the main contributions of this thesis for big data cluster analysis.

In Chapter 3, we introduced a simple and computationally efficient framework, CAFCM, for

high-dimensional data clustering. The CAFCM framework employs FCM clustering on an ensem-

ble of random projections to obtain multiple fuzzy membership matrices and then aggregates them

based on their quality, which is determined using cluster validity indices (CVIs). The CAFCM

algorithm eliminates the complexity involved in dealing with a big affinity matrix and a final

time-consuming clustering step, such as the ones reported in three state-of-the-art approaches,

using a cumulative agreement based aggregation approach. We demonstrated the superiority of

the CAFCM approach by comparing it with three existing approaches on two Gaussian mixtures

201

202 Conclusions

and six real, high-dimensional datasets. Experimental results showed that CAFCM outperforms

the other three approaches in terms of accuracy, stability, space, and time complexity. Moreover,

CAFCM does not require any prior knowledge of the number of clusters that might be present in

the dataset, which makes it attractive for real clustering problems.

Chapter 4 presented a novel hybrid framework, FensiVAT, for fast cluster tendency assessment

and subsequent clustering on large volumes of high-dimensional data. FensiVAT integrates VAT

with an intelligent sampling scheme, called Maximin Random Sampling (MMRS) and a new ran-

dom projection (RP)-based ensemble method, in an efficient and effective manner. FensiVAT was

compared with nine clustering approaches including six big data clustering methods, viz., clu-

siVAT, spkm, MBKM, CLARA, CURE, GARDENkm, FatSpec, and two high-dimensional data

clustering methods, PROCLUS, and RP-EN. Experiments performed on several synthetic and real

(labeled and unlabeled) datasets, which have the large sample size and high dimensions, demon-

strated that FensiVAT provides a reliable estimate of the number of clusters (k) by the number of

dark blocks along the reordered dissimilarity image, in a few seconds. FensiVAT is up to several

order of magnitudes faster than the nine (except MBKM) big data clustering approaches, without

compromising clustering accuracy.

Chapter 5 addressed the cluster validity problem for big data. Dunn’s index is a popular cluster

validity index, but its computation is infeasible for large values of N due to its quadratic complexity

O(N2). In Chapter 5, we presented six novel algorithms including two incremental approaches for

approximating Dunn’s index for big data. First four methods viz., αMMRS, αnMMRS, iMMRS,

and inMMRS, used variations of the MMRS sampling to identify the approximate boundary points

in each cluster, which are used to compute Dunn’s index (DI) for big data. Two additional methods,

QMS+ and BEPS+, were presented that are based on the unsupervised training of one class support

vector machines. We compared our four MMRS methods with two boundary point estimations

methods, QMS+ and BEPS+, based on approximation accuracy and CPU time. Our experiments

on several labeled datasets of varying sizes showed that computing approximations to DI with

MMRS methods are both tractable and accurate. The incremental algorithm inMMRS offered an

average speedup of about 1000 : 1 estimating literal Dunn’s index with an error of±0.01. All four

MMRS methods for estimation of Dunn’s index are linear in N, the number of samples in the data.

Chapter 6 contributed a novel cluster tendency assessment algorithm, inc-siVAT, for incremen-

8.2 Future Research Directions 203

tal and time efficient visualization of evolving cluster structures in high-velocity, data streams.

The inc-siVAT algorithm deals with the big data streams in chunks (of configurable size). First,

it generates a static reordered dissimilarity image (RDI) of an initial smart sample obtained using

MMRS sampling. Then, it incrementally updates the MMRS sample on the fly and produces its

(incrementally built) RDI image, using our novel inc-MMRS algorithm, and inc-VAT/inc-iVAT

and dec-VAT/dec-iVAT algorithms, to track changes in cluster structure after each chunk. The ap-

plicability of inc-siVAT was demonstrated for visualizing evolving cluster structure and anomaly

detection for dynamic streams of four big datasets, including a real IoT dataset.

Chapter 7 demonstrated big data clustering for a real-world application, particularly for in-

telligent transportation systems. In this chapter, we developed a scalable framework for vehicle

trajectory prediction, based on Markov chain models and a big data clustering algorithm, Traj-

clusiVAT, which is suitable for a large number of overlapping trajectories in a dense road network,

typically for major cities around the world. Traj-clusiVAT is a modified version of the clusiVAT,

implemented for trajectory prediction (TP) task, which developed a novel method to compute a

representative trajectory for each cluster and a hybrid nearest prototyping scheme for robust as-

signment of a trajectory to one of the clusters. Experiments performed on two real-life, large-scale

taxi trajectory datasets from the Beijing and Singapore Road networks demonstrated that the Traj-

clusiVAT based TP approach outperforms two current trajectory prediction schemes, based on the

prediction accuracy and distance error for short-term and long-term prediction. Also, the average

prediction time (< 1.5ms) of Traj-clusiVAT based TP method for both the datasets suggests that it

satisfies the requirement for real-time predictions.

8.2 Future Research Directions

This thesis has made significant contributions to knowledge advancement by proposing a suite

of efficient and scalable cluster analysis algorithms for big data. The proposed algorithms were

verified on several real, big datasets that were possibly unlabeled, high-dimensional, noisy and

streaming, which makes our proposed algorithms suitable for various applications. Specifically,

we also demonstrated the utility of big data clustering for trajectory prediction as a smart city

application. Many further interesting work can be built over the scientific contribution of this

204 Conclusions

thesis. Some of them are listed below:

• It is clear from our experiments in Chapter 5 that our approximation methods for Dunn’s

cluster validity index are not so useful for some of the generalized Dunn’s indices, because

they do not depend only on extreme points in the data. Perhaps the most intriguing possi-

bility emerging from this contribution is that other internal CVIs can be usefully estimated

in the manner we computed Dunn’s index for big data. There are many other internal CVIs

such as Davies-Bouldin index, Xie-Beni, Silhouette, Alternative Silhouette, point bi-serial,

McClain-Rao, Gamma, and Tau, that are O(N2) or worse. In the era of big data, where the

number of samples can easily reach N ≥ 108, computation of all of these measures becomes

problematic. A future possibility is to develop approximation algorithms to compute these

CVIs for big data.

• The inc-siVAT model presented in this thesis addresses the first two problems of cluster

analysis, cluster tendency assessment and subsequent clustering (for anomaly detection),

for high-velocity data streams. At present, there is no cluster validation model available in

the literature for high-velocity, streaming data. This can be one of possible future work.

• The inc-siVAT model considers the data from the beginning until current time instant, which

causes an increased number of data points in seen data by inc-siVAT model after each chunk.

This may slow down the computation process over the time due to memory constraints. This

problem can be handled by adapting a sliding window based concept with existing inc-siVAT

algorithm (as discussed in Chapter 6). An alternative and better way to solve this problem

would be to develop an incremental model which uses only the summarized information or

a few selected data points from the past chunks with the new data points (from a new chunk)

to obtain an updated smart (MMRS) sample and its iVAT image.

• Another future line of work would be to adapt incremental siVAT approach for online train-

ing of Traj-clusiVAT based trajectory prediction model to updated clusters and correspond-

ing Markov models in real-time. One more possible extension is to include additional factors

such as speed, time, and user information in our prediction system to improve its prediction

performance.

Bibliography

[1] T. C. Havens, J. C. Bezdek, C. Leckie, L. O. Hall, and M. Palaniswami, “Fuzzy c-means

algorithms for very large data,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 6, pp.

1130–1146, 2012.

[2] R. Chitta, Kernel-based clustering of big data. Michigan State University, 2015.

[3] D. Laney, “3d data management: Controlling data volume, velocity and variety,” META

group research note, vol. 6, no. 70, p. 1, 2001.

[4] H. Chen, R. H. Chiang, and V. C. Storey, “Business intelligence and analytics: from big

data to big impact,” MIS quarterly, pp. 1165–1188, 2012.

[5] R. Kitchin, “The real-time city? big data and smart urbanism,” GeoJournal, vol. 79, no. 1,

pp. 1–14, 2014.

[6] I. A. T. Hashem, V. Chang, N. B. Anuar, K. Adewole, I. Yaqoob, A. Gani, E. Ahmed,

and H. Chiroma, “The role of big data in smart city,” International Journal of Information

Management, vol. 36, no. 5, pp. 748–758, 2016.

[7] S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, “Supervised machine learning: A review of

classification techniques,” Emerging artificial intelligence applications in computer engi-

neering, vol. 160, pp. 3–24, 2007.

[8] X. Zhu, “Semi-supervised learning literature survey,” Computer Science, University of

Wisconsin-Madison, vol. 2, no. 3, p. 4, 2006.

[9] S. K. Halgamuge and L. Wang, Classification and clustering for knowledge discovery.

Springer Science & Business Media, 2005, vol. 4.

205

206 BIBLIOGRAPHY

[10] M. Moshtaghi, S. Rajasegarar, C. Leckie, and S. Karunasekera, “Anomaly detection by clus-

tering ellipsoids in wireless sensor networks,” in 5th International Conference on Intelligent

Sensors, Sensor Networks and Informations Processing (ISSNIP), 2009, pp. 331–336.

[11] J. C. Bezdek, T. C. Havens, J. M. Keller, C. Leckie, L. Park, M. Palaniswami, and S. Ra-

jasegarar, “Clustering elliptical anomalies in sensor networks,” in IEEE international con-

ference on Fuzzy systems (FUZZ), 2010, pp. 1–8.

[12] S. M. Erfani, M. Baktashmotlagh, S. Rajasegarar, S. Karunasekera, and C. Leckie,

“R1SVM: a Randomised Nonlinear Approach to Large-Scale Anomaly Detection,” in Pro-

ceedings of Association for the Advancement of Artificial Intelligence (AAAI), 2015, pp.

432–438.

[13] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra, “Locally adaptive dimensionality

reduction for indexing large time series databases,” ACM SIGMOD Record, vol. 30, no. 2,

pp. 151–162, 2001.

[14] Q. Du and J. E. Fowler, “Hyperspectral image compression using jpeg2000 and principal

component analysis,” IEEE Geoscience and Remote Sensing Letters, vol. 4, no. 2, pp. 201–

205, 2007.

[15] O. Zamir and O. Etzioni, “Grouper: a dynamic clustering interface to web search results,”

Computer Networks, vol. 31, no. 11-16, pp. 1361–1374, 1999.

[16] P. J. Carrington, J. Scott, and S. Wasserman, Models and methods in social network analy-

sis. Cambridge university press, 2005, vol. 28.

[17] W. Wu, H. Xiong, and S. Shekhar, Clustering and information retrieval. Springer Science

& Business Media, 2013, vol. 11.

[18] M. Jakobsson and N. A. Rosenberg, “Clumpp: a cluster matching and permutation program

for dealing with label switching and multimodality in analysis of population structure,”

Bioinformatics, vol. 23, no. 14, pp. 1801–1806, 2007.

BIBLIOGRAPHY 207

[19] A. Ben-Dor and Z. Yakhini, “Clustering gene expression patterns,” in Proceedings of the

third annual international conference on Computational molecular biology. ACM, 1999,

pp. 33–42.

[20] J. C. Bezdek, J. Keller, R. Krisnapuram, and N. Pal, Fuzzy models and algorithms for

pattern recognition and image processing. Springer Science & Business Media, 1999,

vol. 4.

[21] G. Punj and D. W. Stewart, “Cluster analysis in marketing research: Review and suggestions

for application,” Journal of marketing research, pp. 134–148, 1983.

[22] G. Baudat and F. Anouar, “Generalized discriminant analysis using a kernel approach,”

Neural computation, vol. 12, no. 10, pp. 2385–2404, 2000.

[23] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,” ACM computing

surveys (CSUR), vol. 31, no. 3, pp. 264–323, 1999.

[24] Y. Luo, Y. Jiang, S. Khan, S. Peng, Y. Feng, and B. Han, “Analysis of urban heat island

effect using k-means clustering,” in Information Science and Engineering (ICISE), 2010

2nd International Conference on. IEEE, 2010, pp. 3543–3546.

[25] P. Hoffmann and K. H. Schlünzen, “Weather pattern classification to represent the urban

heat island in present and future climate,” Journal of Applied Meteorology and Climatology,

vol. 52, no. 12, pp. 2699–2714, 2013.

[26] Y. Zheng, S. Rajasegarar, C. Leckie, and M. Palaniswami, “Smart car parking: temporal

clustering and anomaly detection in urban car parking,” in Intelligent Sensors, Sensor Net-

works and Information Processing (ISSNIP), 2014 IEEE Ninth International Conference

on. IEEE, 2014, pp. 1–6.

[27] W. Shao, F. D. Salim, A. Song, and A. Bouguettaya, “Clustering big spatiotemporal-interval

data,” IEEE Transactions on Big Data, vol. 2, no. 3, pp. 190–203, 2016.

[28] N. Piovesan, L. Turi, E. Toigo, B. Martinez, and M. Rossi, “Data analytics for smart parking

applications,” Sensors, vol. 16, no. 10, p. 1575, 2016.

208 BIBLIOGRAPHY

[29] D. Kumar, H. Wu, Y. Lu, S. Krishnaswamy, and M. Palaniswami, “Understanding urban

mobility via taxi trip clustering,” in Mobile Data Management (MDM), 2016 17th IEEE

International Conference on, vol. 1. IEEE, 2016, pp. 318–324.

[30] J. Tang, F. Liu, Y. Wang, and H. Wang, “Uncovering urban human mobility from large scale

taxi gps data,” Physica A: Statistical Mechanics and its Applications, vol. 438, pp. 140–153,

2015.

[31] A. Lavin and D. Klabjan, “Clustering time-series energy data from smart meters,” Energy

efficiency, vol. 8, no. 4, pp. 681–689, 2015.

[32] M. Azaza and F. Wallin, “Smart meter data clustering using consumption indicators: re-

sponsibility factor and consumption variability,” Energy Procedia, vol. 142, pp. 2236–2242,

2017.

[33] S. Haben, C. Singleton, and P. Grindrod, “Analysis and clustering of residential customers

energy behavioral demand using smart meter data,” IEEE transactions on smart grid, vol. 7,

no. 1, pp. 136–144, 2016.

[34] S. T. M. Bourobou and Y. Yoo, “User activity recognition in smart homes using pattern

clustering applied to temporal ann algorithm,” Sensors, vol. 15, no. 5, pp. 11 953–11 971,

2015.

[35] C. Lee, Z. Luo, K. Y. Ngiam, M. Zhang, K. Zheng, G. Chen, B. C. Ooi, and W. L. J. Yip,

“Big healthcare data analytics: Challenges and applications,” in Handbook of Large-Scale

Distributed Computing in Smart Healthcare. Springer, 2017, pp. 11–41.

[36] M. Liao, Y. Li, F. Kianifard, E. Obi, and S. Arcona, “Cluster analysis and its application to

healthcare claims data: a study of end-stage renal disease patients who initiated hemodial-

ysis,” BMC nephrology, vol. 17, no. 1, p. 25, 2016.

[37] V. Ramesh, K. Ramar, and S. Babu, “Parallel k-means algorithm on agricultural databases,”

IJCSI International Journal of Computer Science Issues, vol. 10, no. 1, pp. 1694–0814,

2013.

BIBLIOGRAPHY 209

[38] G. Ruß, R. Kruse, and M. Schneider, “A clustering approach for management zone delin-

eation in precision agriculture,” in Proceedings of the Int. Conf. on Precision Agriculture,

2010.

[39] B.-I. Kim, S. Kim, and S. Sahoo, “Waste collection vehicle routing problem with time

windows,” Computers & Operations Research, vol. 33, no. 12, pp. 3624–3642, 2006.

[40] A. Parchitelli, F. Nocera, G. Iacobellis, M. Mongiello, T. Di Noia, and E. Di Sciascio, “A

pre-process clustering methods for the waste collection problem,” in Service Operations

and Logistics, and Informatics (SOLI), 2017 IEEE International Conference on. IEEE,

2017, pp. 242–247.

[41] J. C. Bezdek, Primer on Cluster Analysis: Four Basic Methods that (Usually) Work. First

Edition Design Publishing, 2017, vol. 1.

[42] B. Hopkins and J. G. Skellam, “A new method for determining the type of distribution of

plant individuals,” Annals of Botany, vol. 18, no. 2, pp. 213–227, 1954.

[43] A. Banerjee and R. N. Dave, “Validating clusters using the hopkins statistic,” in Fuzzy

systems, 2004. Proceedings. 2004 IEEE international conference on, vol. 1. IEEE, 2004,

pp. 149–153.

[44] J. C. Bezdek and R. J. Hathaway, “Vat: A tool for visual assessment of (cluster) tendency,”

in Proc. IJCNN, 2002, pp. 2225–2230.

[45] T. C. Havens and J. C. Bezdek, “An efficient formulation of the improved visual assessment

of cluster tendency (ivat) algorithm,” IEEE Transactions on Knowledge and Data Engineer-

ing, vol. 24, no. 5, pp. 813–822, 2012.

[46] L. Wang, X. Geng, J. Bezdek, C. Leckie, and R. Kotagiri, “Enhanced visual analysis for

cluster tendency assessment and data partitioning,” IEEE Transactions on Knowledge and

Data Engineering, vol. 22, no. 10, pp. 1401–1414, 2010.

[47] R. J. Hathaway, J. C. Bezdek, and J. M. Huband, “Scalable visual assessment of cluster

tendency for large data sets,” Pattern Recognition, vol. 39, no. 7, pp. 1315–1324, 2006.

210 BIBLIOGRAPHY

[48] J. C. Dunn, “A fuzzy relative of the isodata process and its use in detecting compact well-

separated clusters,” Journal of Cybernetics, vol. 3, no. 3, pp. 32–57, 1973.

[49] D. L. Davies and D. W. Bouldin, “A cluster separation measure,” IEEE transactions on

pattern analysis and machine intelligence, no. 2, pp. 224–227, 1979.

[50] X. L. Xie and G. Beni, “A validity measure for fuzzy clustering,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 13, no. 8, pp. 841–847, 1991.

[51] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and validation of cluster

analysis,” Journal of computational and applied mathematics, vol. 20, pp. 53–65, 1987.

[52] W. M. Rand, “Objective criteria for the evaluation of clustering methods,” Journal of the

American Statistical association, vol. 66, no. 336, pp. 846–850, 1971.

[53] L. Hubert and P. Arabie, “Comparing partitions,” Journal of Classification, vol. 2, no. 1, pp.

193–218, 1985.

[54] C. J. Van Rijsbergen, “A theoretical basis for the use of co-occurrence data in information

retrieval,” Journal of documentation, vol. 33, no. 2, pp. 106–119, 1977.

[55] E. Bingham and H. Mannila, “Random projection in dimensionality reduction: applica-

tions to image and text data,” in Proceedings of the Seventh ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, 2001, pp. 245–250.

[56] M. Steinbach, L. Ertöz, and V. Kumar, “The challenges of clustering high dimensional

data,” in New directions in Statistical Physics. Springer, 2004, pp. 273–309.

[57] A. S. Shirkhorshidi, S. Aghabozorgi, T. Y. Wah, and T. Herawan, “Big data clustering:

a review,” in International Conference on Computational Science and Its Applications.

Springer, 2014, pp. 707–720.

[58] A. Fahad, N. Alshatri, Z. Tari, A. Alamri, I. Khalil, A. Y. Zomaya, S. Foufou, and A. Bouras,

“A survey of clustering algorithms for big data: Taxonomy and empirical analysis,” IEEE

transactions on emerging topics in computing, vol. 2, no. 3, pp. 267–279, 2014.

BIBLIOGRAPHY 211

[59] H.-P. Kriegel, P. Kröger, and A. Zimek, “Clustering high-dimensional data: A survey on

subspace clustering, pattern-based clustering, and correlation clustering,” ACM Transac-

tions on Knowledge Discovery from Data (TKDD), vol. 3, no. 1, p. 1, 2009.

[60] I. Assent, “Clustering high dimensional data,” Wiley Interdisciplinary Reviews: Data Min-

ing and Knowledge Discovery, vol. 2, no. 4, pp. 340–350, 2012.

[61] A. McCallum, K. Nigam, and L. H. Ungar, “Efficient clustering of high-dimensional data

sets with application to reference matching,” in Proceedings of the sixth ACM SIGKDD

international conference on Knowledge discovery and data mining. ACM, 2000, pp. 169–

178.

[62] M. Halkidi, Y. Batistakis, and M. Vazirgiannis, “On clustering validation techniques,” Jour-

nal of intelligent information systems, vol. 17, no. 2, pp. 107–145, 2001.

[63] D. Kumar, J. C. Bezdek, M. Palaniswami, S. Rajasegarar, C. Leckie, and T. C. Havens,

“A hybrid approach to clustering in big data,” IEEE transactions on cybernetics, vol. 46,

no. 10, pp. 2372–2385, 2016.

[64] C. C. Aggarwal, S. Y. Philip, J. Han, and J. Wang, “A framework for clustering evolving

data streams,” in Proceedings 2003 VLDB Conference. Elsevier, 2003, pp. 81–92.

[65] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan, “Clustering data

streams: Theory and practice,” IEEE transactions on knowledge and data engineering,

vol. 15, no. 3, pp. 515–528, 2003.

[66] L. Tu and Y. Chen, “Stream data clustering based on grid density and attraction,” ACM

Transactions on Knowledge Discovery from Data (TKDD), vol. 3, no. 3, p. 12, 2009.

[67] Y. Chen and L. Tu, “Density-based clustering for real-time stream data,” in Proceedings of

the 13th ACM SIGKDD international conference on Knowledge discovery and data mining.

ACM, 2007, pp. 133–142.

[68] F. Cao, M. Estert, W. Qian, and A. Zhou, “Density-based clustering over an evolving data

stream with noise,” in Proceedings of the 2006 SIAM international conference on data

mining. SIAM, 2006, pp. 328–339.

212 BIBLIOGRAPHY

[69] D. Kumar, J. C. Bezdek, S. Rajasegarar, M. Palaniswami, C. Leckie, J. Chan, and J. Gubbi,

“Adaptive cluster tendency visualization and anomaly detection for streaming data,” ACM

Transactions on Knowledge Discovery from Data (TKDD), vol. 11, no. 2, p. 24, 2016.

[70] A. Katal, M. Wazid, and R. Goudar, “Big data: issues, challenges, tools and good practices,”

in Contemporary Computing (IC3), 2013 Sixth International Conference on. IEEE, 2013,

pp. 404–409.

[71] R. Avogadri and G. Valentini, “Fuzzy ensemble clustering based on random projections

for dna microarray data analysis,” Artificial Intelligence in Medicine, vol. 45, no. 2, pp.

173–183, 2009.

[72] M. Popescu, J. Keller, J. Bezdek, and A. Zare, “Random projections fuzzy c-means (rpfcm)

for big data clustering,” in IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),

2015, pp. 1–6.

[73] M. Ye, W. Liu, J. Wei, and X. Hu, “Fuzzy-means and cluster ensemble with random pro-

jection for big data clustering,” Mathematical Problems in Engineering, 2016.

[74] P. Hore, L. O. Hall, and D. B. Goldgof, “Single pass fuzzy c means,” in 2007 IEEE Inter-

national Fuzzy Systems Conference. IEEE, 2007, pp. 1–7.

[75] P. S. Bradley, U. M. Fayyad, C. Reina et al., “Scaling clustering algorithms to large

databases,” in KDD, 1998, pp. 9–15.

[76] D. Sculley, “Web-scale k-means clustering,” in Proceedings of the 19th international con-

ference on World wide web. ACM, 2010, pp. 1177–1178.

[77] P. J. Rousseeuw and L. Kaufman, Finding Groups in Data. Wiley Online Library, 1990.

[78] S. Guha, R. Rastogi, and K. Shim, “Cure: an efficient clustering algorithm for large

databases,” Information Systems, vol. 26, no. 1, pp. 35–58, 2001.

[79] Y. Lai, R. Orlandic, W. G. Yee, and S. Kulkarni, “Scalable clustering for large high-

dimensional data based on data summarization,” in IEEE Symposium on Computational

Intelligence and Data Mining (CIDM). IEEE, 2007, pp. 456–461.

BIBLIOGRAPHY 213

[80] T. Sakai and A. Imiya, “Fast spectral clustering with random projection and sampling,”

in International Workshop on Machine Learning and Data Mining in Pattern Recognition.

Springer, 2009, pp. 372–384.

[81] C. C. Aggarwal, J. L. Wolf, P. S. Yu, C. Procopiuc, and J. S. Park, “Fast algorithms for

projected clustering,” in ACM SIGMoD Record, vol. 28, no. 2. ACM, 1999, pp. 61–72.

[82] X. Z. Fern and C. E. Brodley, “Random projection for high dimensional data clustering:

A cluster ensemble approach,” in Proceedings of International Conference on Machine

Learning (ICML), vol. 3, 2003, pp. 186–193.

[83] R. L. Thorndike, “Who belongs in the family?” Psychometrika, vol. 18, no. 4, pp. 267–276,

1953.

[84] Z. Ghafoori, S. M. Erfani, S. Rajasegarar, J. C. Bezdek, S. Karunasekera, and C. Leckie,

“Efficient unsupervised parameter estimation for one-class support vector machines,” IEEE

Transactions on Neural Networks and Learning Systems (in review), 2017.

[85] Y. Li and L. Maguire, “Selecting critical patterns based on local geometrical and statistical

information,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33,

no. 6, pp. 1189–1201, 2011.

[86] J. C. Bezdek, S. Rajasegarar, M. Moshtaghi, C. Leckie, M. Palaniswami, and T. C.

Havens, “Anomaly detection in environmental monitoring networks [application notes],”

IEEE Computational Intelligence Magazine, vol. 6, no. 2, pp. 52–58, 2011.

[87] A. Asahara, K. Maruyama, A. Sato, and K. Seto, “Pedestrian-movement prediction based

on mixed markov-chain model,” in Proceedings of the 19th ACM SIGSPATIAL international

conference on advances in geographic information systems. ACM, 2011, pp. 25–33.

[88] A. Kharrat, I. S. Popa, K. Zeitouni, and S. Faiz, “Clustering algorithm for network con-

straint trajectories,” in Headway in Spatial Data Handling. Springer, 2008, pp. 631–647.

[89] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and Y. Huang, “T-drive: driving

directions based on taxi trajectories,” in Proceedings of the 18th SIGSPATIAL International

conference on advances in geographic information systems. ACM, 2010, pp. 99–108.

214 BIBLIOGRAPHY

[90] J. Yuan, Y. Zheng, X. Xie, and G. Sun, “Driving with knowledge from the physical world,”

in Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery

and data mining. ACM, 2011, pp. 316–324.

[91] C. Fraley and A. E. Raftery, “How many clusters? which clustering method? answers via

model-based cluster analysis,” The computer journal, vol. 41, no. 8, pp. 578–588, 1998.

[92] H. H. Bock, “Classification and clustering: Problems for the future,” in New Approaches in

Classification and Data Analysis. Springer, 1994, pp. 3–24.

[93] S. Still and W. Bialek, “How many clusters? an information-theoretic perspective,” Neural

computation, vol. 16, no. 12, pp. 2483–2506, 2004.

[94] G. Claeskens, N. L. Hjort et al., “Model selection and model averaging,” Cambridge Books,

2008.

[95] W. Pan, “Akaike’s information criterion in generalized estimating equations,” Biometrics,

vol. 57, no. 1, pp. 120–125, 2001.

[96] W. S. Cleveland, Visualizing data. Hobart Press, 1993.

[97] J. Czekanowski, Zur differentialdiagnose der neandertalgruppe. Friedr. Vieweg & Sohn,

1909.

[98] R. L. Ling, “A computer generated aid for cluster analysis,” Communications of the ACM,

vol. 16, no. 6, pp. 355–361, 1973.

[99] I. S. Dhillon, D. S. Modha, and W. S. Spangler, “Visualizing class structure of multidimen-

sional data,” Computing Science and Statistics, pp. 488–493, 1998.

[100] R. C. Prim, “Shortest connection networks and some generalizations,” Bell Labs Technical

Journal, vol. 36, no. 6, pp. 1389–1401, 1957.

[101] R. G. Casey and G. Nagy, “An autonomous reading machine,” IEEE Transactions on Com-

puters, vol. 100, no. 5, pp. 492–503, 1968.

[102] R. W. Kennard and L. A. Stone, “Computer aided design of experiments,” Technometrics,

vol. 11, no. 1, pp. 137–148, 1969.

BIBLIOGRAPHY 215

[103] T. F. Gonzalez, “Clustering to minimize the maximum intercluster distance,” Theoretical

Computer Science, vol. 38, pp. 293–306, 1985.

[104] I. Steponavičė, M. Shirazi-Manesh, R. J. Hyndman, K. Smith-Miles, and L. Villanova,

“On sampling methods for costly multi-objective black-box optimization,” in Advances in

Stochastic and Deterministic Global Optimization. Springer, 2016, pp. 273–296.

[105] A. K. Jain and R. C. Dubes, Algorithms for clustering data. Prentice-Hall, Inc., 1988.

[106] A. K. Jain, “Data clustering: 50 years beyond k-means,” in Joint European Conference on

Machine Learning and Knowledge Discovery in Databases. Springer, 2008, pp. 3–4.

[107] R. Xu and D. Wunsch, Clustering. John Wiley & Sons, 2008, vol. 10.

[108] C. C. Aggarwal and C. K. Reddy, Data clustering: algorithms and applications. CRC

Press, 2013.

[109] S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on information theory,

vol. 28, no. 2, pp. 129–137, 1982.

[110] ——, “Least squares quantization in pcm,” IEEE Transactions on Information Theory,

vol. 28, no. 2, pp. 129–137, 1982.

[111] J. C. Bezdek, R. Ehrlich, and W. Full, “Fcm: The fuzzy c-means clustering algorithm,”

Computers & Geosciences, vol. 10, no. 2-3, pp. 191–203, 1984.

[112] D. E. Gustafson and W. C. Kessel, “Fuzzy clustering with a fuzzy covariance matrix,” in

Decision and Control including the 17th Symposium on Adaptive Processes, 1978 IEEE

Conference on. IEEE, 1979, pp. 761–766.

[113] L. Kaufman and P. Rousseeuw, “Clustering by means of medoids [w:] statistical data anal-

ysis based on the ll-norm and related methods, red. y. dodge,” 1987.

[114] H.-S. Park and C.-H. Jun, “A simple and fast algorithm for k-medoids clustering,” Expert

systems with applications, vol. 36, no. 2, pp. 3336–3341, 2009.

[115] B. S. Everitt, The Cambridge dictionary of statistics in the medical sciences. Cambridge

University Press Cambridge, 1995.

216 BIBLIOGRAPHY

[116] H. Seifoddini and P. M. Wolfe, “Application of the similarity coefficient method in group

technology,” IIE transactions, vol. 18, no. 3, pp. 271–277, 1986.

[117] H. K. Seifoddini, “Single linkage versus average linkage clustering in machine cells for-

mation applications,” Computers & Industrial Engineering, vol. 16, no. 3, pp. 419–426,

1989.

[118] R. Sibson, “Slink: an optimally efficient algorithm for the single-link cluster method,” The

computer journal, vol. 16, no. 1, pp. 30–34, 1973.

[119] D. Defays, “An efficient algorithm for a complete link method,” The Computer Journal,

vol. 20, no. 4, pp. 364–366, 1977.

[120] J. H. Ward Jr, “Hierarchical grouping to optimize an objective function,” Journal of the

American statistical association, vol. 58, no. 301, pp. 236–244, 1963.

[121] J. C. Gower and G. J. Ross, “Minimum spanning trees and single linkage cluster analysis,”

Applied statistics, pp. 54–64, 1969.

[122] P. Legendre and L. Legendre, “Numerical ecology: second english edition,” Developments

in environmental modelling, vol. 20, 1998.

[123] F. Murtagh, “A survey of recent advances in hierarchical clustering algorithms,” The Com-

puter Journal, vol. 26, no. 4, pp. 354–359, 1983.

[124] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based algorithm for discovering

clusters in large spatial databases with noise.” in Kdd, vol. 96, no. 34, 1996, pp. 226–231.

[125] H.-P. Kriegel, P. Kröger, J. Sander, and A. Zimek, “Density-based clustering,” Wiley Inter-

disciplinary Reviews: Data Mining and Knowledge Discovery, vol. 1, no. 3, pp. 231–240,

2011.

[126] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “Optics: ordering points to iden-

tify the clustering structure,” in ACM Sigmod record, vol. 28, no. 2. ACM, 1999, pp.

49–60.

BIBLIOGRAPHY 217

[127] A. Hinneburg, D. A. Keim et al., “An efficient approach to clustering in large multimedia

databases with noise,” in KDD, vol. 98, 1998, pp. 58–65.

[128] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data

via the em algorithm,” Journal of the Royal Statistical Society. Series B (methodological),

pp. 1–38, 1977.

[129] M. Meila and D. Heckerman, “An experimental comparison of several clustering and ini-

tialization methods,” arXiv preprint arXiv:1301.7401, 2013.

[130] A. Strehl and J. Ghosh, “Cluster ensembles—a knowledge reuse framework for combining

multiple partitions,” Journal of Machine Learning Research, vol. 3, pp. 583–617, 2002.

[131] R. T. Ng and J. Han, “Clarans: A method for clustering objects for spatial data mining,”

IEEE transactions on knowledge and data engineering, vol. 14, no. 5, pp. 1003–1016,

2002.

[132] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: an efficient data clustering method for

very large databases,” in ACM Sigmod Record, vol. 25, no. 2. ACM, 1996, pp. 103–114.

[133] T. C. Havens, J. C. Bezdek, J. M. Keller, and M. Popescu, “Dunn’s cluster validity index as

a contrast measure of vat images,” in 19th International Conference on Pattern Recognition

(ICPR). IEEE, 2008, pp. 1–4.

[134] T. C. Havens, J. C. Bezdek, and M. Palaniswami, “Scalable single linkage hierarchical

clustering for big data,” in IEEE Eighth International Conference on Intelligent Sensors,

Sensor Networks and Information Processing. IEEE, 2013, pp. 396–401.

[135] D. Kumar, M. Palaniswami, S. Rajasegarar, C. Leckie, J. C. Bezdek, and T. C. Havens, “clu-

sivat: A mixed visual/numerical clustering algorithm for big data,” in IEEE International

Conference on Big Data. IEEE, 2013, pp. 112–117.

[136] M. Charikar, L. O’Callaghan, and R. Panigrahy, “Better streaming algorithms for clustering

problems,” in Proceedings of the thirty-fifth annual ACM symposium on Theory of comput-

ing. ACM, 2003, pp. 30–39.

218 BIBLIOGRAPHY

[137] D. Barbará and P. Chen, “Using the fractal dimension to cluster datasets,” in Proceedings of

the sixth ACM SIGKDD international conference on Knowledge discovery and data mining.

ACM, 2000, pp. 260–264.

[138] A. Zhou, F. Cao, W. Qian, and C. Jin, “Tracking clusters in evolving data streams over

sliding windows,” Knowledge and Information Systems, vol. 15, no. 2, pp. 181–214, 2008.

[139] O. Nasraoui and C. Rojas, “Robust clustering for tracking noisy evolving data streams,” in

Proceedings of the 2006 SIAM International Conference on Data Mining. SIAM, 2006,

pp. 619–623.

[140] P. Hore, L. O. Hall, and D. B. Goldgof, “A fuzzy c means variant for clustering evolving data

streams,” in Systems, Man and Cybernetics, 2007. ISIC. IEEE International Conference on.

IEEE, 2007, pp. 360–365.

[141] J. A. Hartigan, “Clustering algorithms (probability & mathematical statistics),” 1975.

[142] C. C. Aggarwal, Data streams: models and algorithms. Springer Science & Business

Media, 2007, vol. 31.

[143] ——, “A survey of stream clustering algorithms.” 2013.

[144] E. Januzaj, H.-P. Kriegel, and M. Pfeifle, “Dbdc: Density based distributed clustering,” in

International Conference on Extending Database Technology. Springer, 2004, pp. 88–105.

[145] G. Karypis and V. Kumar, “Parallel multilevel series k-way partitioning scheme for irregular

graphs,” Siam Review, vol. 41, no. 2, pp. 278–300, 1999.

[146] ——, “Multilevelk-way partitioning scheme for irregular graphs,” Journal of Parallel and

Distributed computing, vol. 48, no. 1, pp. 96–129, 1998.

[147] G. Andrade, G. Ramos, D. Madeira, R. Sachetto, R. Ferreira, and L. Rocha, “G-dbscan:

A gpu accelerated algorithm for density-based clustering,” Procedia Computer Science,

vol. 18, pp. 369–378, 2013.

[148] W. Zhao, H. Ma, and Q. He, “Parallel k-means clustering based on mapreduce,” in IEEE

International Conference on Cloud Computing. Springer, 2009, pp. 674–679.

BIBLIOGRAPHY 219

[149] A. Ene, S. Im, and B. Moseley, “Fast clustering using mapreduce,” in Proceedings of the

17th ACM SIGKDD international conference on Knowledge discovery and data mining.

ACM, 2011, pp. 681–689.

[150] R. L. Ferreira Cordeiro, C. Traina Junior, A. J. Machado Traina, J. López, U. Kang, and

C. Faloutsos, “Clustering very large multi-dimensional datasets with mapreduce,” in Pro-

ceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and

data mining. ACM, 2011, pp. 690–698.

[151] C. Jin, M. M. A. Patwary, A. Agrawal, W. Hendrix, W.-k. Liao, and A. Choudhary, “Disc:

A distributed single-linkage hierarchical clustering algorithm using mapreduce,” work,

vol. 23, p. 27, 2013.

[152] Y. He, H. Tan, W. Luo, S. Feng, and J. Fan, “Mr-dbscan: a scalable mapreduce-based

dbscan algorithm for heavily skewed data,” Frontiers of Computer Science, vol. 8, no. 1,

pp. 83–99, 2014.

[153] J. Béjar Alonso, “Strategies and algorithms for clustering large datasets: a review,” 2013.

[154] H. Hotelling, “Analysis of a complex of statistical variables into principal components.”

Journal of Educational Psychology, vol. 24, no. 6, p. 417, 1933.

[155] S. Kaski, “Dimensionality reduction by random mapping: Fast similarity computation for

clustering,” in Proceedings of International Joint Conference on Neural Networks, vol. 1,

1998, pp. 413–418.

[156] D. Achlioptas, “Database-friendly random projections,” in Proceedings of the twentieth

ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, 2001,

pp. 274–281.

[157] C. H. Papadimitriou, H. Tamaki, P. Raghavan, and S. Vempala, “Latent semantic index-

ing: A probabilistic analysis,” in Proceedings of the Seventeenth ACM SIGACT-SIGMOD-

SIGART Symposium on Principles of Database Systems, 1998, pp. 159–168.

[158] B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear component analysis as a kernel

eigenvalue problem,” Neural computation, vol. 10, no. 5, pp. 1299–1319, 1998.

220 BIBLIOGRAPHY

[159] J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global geometric framework for

nonlinear dimensionality reduction,” science, vol. 290, no. 5500, pp. 2319–2323, 2000.

[160] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally linear embed-

ding,” science, vol. 290, no. 5500, pp. 2323–2326, 2000.

[161] J. B. Kruskal and M. Wish, Multidimensional scaling. Sage, 1978, vol. 11.

[162] W. B. Johnson and J. Lindenstrauss, “Extensions of lipschitz mappings into a hilbert space,”

Contemporary Mathematics, vol. 26, no. 189-206, p. 1, 1984.

[163] S. Dasgupta, “Experiments with random projection,” in Proceedings of the Sixteenth con-

ference on Uncertainty in artificial intelligence, 2000, pp. 143–151.

[164] J. C. Bezdek, X. Ye, M. Popescu, J. Keller, and A. Zare, “Random projection below the JL

limit,” in Proceedings of International Joint Conference on Neural Network (IJCNN), 2016,

pp. 2414–2423.

[165] W. Wang and Y. Zhang, “On fuzzy cluster validity indices,” Fuzzy sets and systems, vol.

158, no. 19, pp. 2095–2117, 2007.

[166] R. Dubes and A. K. Jain, “Validity studies in clustering methodologies,” Pattern recogni-

tion, vol. 11, no. 4, pp. 235–254, 1979.

[167] O. Arbelaitz, I. Gurrutxaga, J. Muguerza, J. M. Pérez, and I. Perona, “An extensive com-

parative study of cluster validity indices,” Pattern Recognition, vol. 46, no. 1, pp. 243–256,

2013.

[168] N. X. Vinh, J. Epps, and J. Bailey, “Information theoretic measures for clusterings com-

parison: Variants, properties, normalization and correction for chance,” Journal of Machine

Learning Research, vol. 11, no. Oct, pp. 2837–2854, 2010.

[169] J. C. Bezdek and N. R. Pal, “Some new indexes of cluster validity,” IEEE Transactions on

Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 28, no. 3, pp. 301–315, 1998.

[170] Y. Lei, J. C. Bezdek, J. Chan, N. X. Vinh, S. Romano, and J. Bailey, “Generalized in-

formation theoretic cluster validity indices for soft clusterings,” in IEEE Symposium on

BIBLIOGRAPHY 221

Proceedings of the Eighth International Conference on Numerical Taxonomy, 2014, pp.

24–31.

[171] J. C. Bezdek, M. Moshtaghi, T. Runkler, and C. Leckie, “The generalized C index for

internal fuzzy cluster validity,” IEEE Transactions on Fuzzy Systems, vol. 24, no. 6, pp.

1500–1512, 2016.

[172] I. Gath and A. B. Geva, “Unsupervised optimal fuzzy clustering,” IEEE Transactions on

pattern analysis and machine intelligence, vol. 11, no. 7, pp. 773–780, 1989.

[173] J. C. Bezdek, “Objective function clustering,” in Pattern recognition with fuzzy objective

function algorithms. Springer, 1981, pp. 43–93.

[174] M. Roubens, “Pattern classification problems and fuzzy sets,” Fuzzy Sets and Systems,

vol. 1, no. 4, pp. 239–253, 1978.

[175] J. C. Bezdek, “Mathematical models for systematics and taxonomy,” in Proceedings of the

Eighth International Conference on Numerical Taxonomy, 1975, pp. 143–66.

[176] K. Pearson, On the theory of contingency and its relation to association and normal corre-

lation; On the general theory of skew correlation and non-linear regression. Cambridge

University Press, 1904.

[177] D. T. Anderson, J. C. Bezdek, M. Popescu, and J. M. Keller, “Comparing fuzzy, probabilis-

tic, and possibilistic partitions,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 5, pp.

906–918, 2010.

[178] E. Hullermeier, M. Rifqi, S. Henzgen, and R. Senge, “Comparing fuzzy partitions: A gen-

eralization of the rand index and related measures,” IEEE Transactions on Fuzzy Systems,

vol. 20, no. 3, pp. 546–556, 2012.

[179] M. Tlili and T. M. Hamdani, “Big data clustering validity,” in Soft Computing and Pattern

Recognition (SoCPaR), 2014 6th International Conference of. IEEE, 2014, pp. 348–352.

[180] J. M. Luna-Romera, M. del Mar Martínez-Ballesteros, J. García-Gutiérrez, and J. C.

Riquelme-Santos, “An approach to silhouette and dunn clustering indices applied to big data

222 BIBLIOGRAPHY

in spark,” in Conference of the Spanish Association for Artificial Intelligence. Springer,

2016, pp. 160–169.

[181] M. C. Pham, Y. Cao, R. Klamma, and M. Jarke, “A clustering approach for collaborative

filtering recommendation using social network analysis.” J. UCS, vol. 17, no. 4, pp. 583–

604, 2011.

[182] F. Z. Benchara, M. Youssfi, O. Bouattane, H. Ouajji, and M. O. Bensalah, “Distributed c-

means algorithm for big data image segmentation on a massively parallel and distributed

virtual machine based on cooperative mobile agents,” Journal of Software Engineering and

Applications, vol. 8, no. 03, p. 103, 2015.

[183] G. Kerr, H. J. Ruskin, M. Crane, and P. Doolan, “Techniques for clustering gene expression

data,” Computers in biology and medicine, vol. 38, no. 3, pp. 283–293, 2008.

[184] Y. Zheng, Q. Li, Y. Chen, X. Xie, and W.-Y. Ma, “Understanding mobility based on gps

data,” in Proceedings of the 10th international conference on Ubiquitous computing. ACM,

2008, pp. 312–321.

[185] J.-I. Won, S.-W. Kim, J.-H. Baek, and J. Lee, “Trajectory clustering in road network envi-

ronment,” in Computational Intelligence and Data Mining, 2009. CIDM’09. IEEE Sympo-

sium on. IEEE, 2009, pp. 299–305.

[186] D. Guo, S. Liu, and H. Jin, “A graph-based approach to vehicle trajectory analysis,” Journal

of Location Based Services, vol. 4, no. 3-4, pp. 183–199, 2010.

[187] M. R. Evans, D. Oliver, S. Shekhar, and F. Harvey, “Fast and exact network trajectory

similarity computation: a case-study on bicycle corridor planning,” in Proceedings of the

2nd ACM SIGKDD international workshop on urban computing. ACM, 2013, p. 9.

[188] G.-P. Roh and S.-w. Hwang, “Nncluster: An efficient clustering algorithm for road network

trajectories,” in International Conference on Database Systems for Advanced Applications.

Springer, 2010, pp. 47–61.

BIBLIOGRAPHY 223

[189] S. Song, D. Kwak, Y. Kwak, K. Bok, and D. Ko, “Segmentation based trajectory clustering

in road network with location sensing technology,” Sensor Letters, vol. 11, no. 9, pp. 1779–

1782, 2013.

[190] B. Han, L. Liu, and E. Omiecinski, “Road-network aware trajectory clustering: Integrating

locality, flow, and density,” IEEE Transactions on Mobile Computing, vol. 14, no. 2, pp.

416–429, 2015.

[191] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang, “Map-matching for low-

sampling-rate gps trajectories,” in Proceedings of the 17th ACM SIGSPATIAL international

conference on advances in geographic information systems. ACM, 2009, pp. 352–361.

[192] P. Newson and J. Krumm, “Hidden markov map matching through noise and sparseness,”

in Proceedings of the 17th ACM SIGSPATIAL international conference on advances in ge-

ographic information systems. ACM, 2009, pp. 336–343.

[193] C. Song, Z. Qu, N. Blumm, and A.-L. Barabási, “Limits of predictability in human mobil-

ity,” Science, vol. 327, no. 5968, pp. 1018–1021, 2010.

[194] M. Morzy, “Mining frequent trajectories of moving objects for location prediction,” in

International Workshop on Machine Learning and Data Mining in Pattern Recognition.

Springer, 2007, pp. 667–680.

[195] H. Jeung, Q. Liu, H. T. Shen, and X. Zhou, “A hybrid prediction model for moving objects,”

in IEEE 24th International Conference on Data Engineering (ICDE). Ieee, 2008, pp. 70–

79.

[196] Y. Ishikawa, Y. Tsukamoto, and H. Kitagawa, “Extracting mobility statistics from indexed

spatio-temporal datasets.” in STDBM, 2004, pp. 9–16.

[197] R. Simmons, B. Browning, Y. Zhang, and V. Sadekar, “Learning to predict driver route and

destination intent,” in Intelligent Transportation Systems Conference, 2006. ITSC’06. IEEE.

IEEE, 2006, pp. 127–132.

224 BIBLIOGRAPHY

[198] S. Gambs, M.-O. Killijian, and M. N. del Prado Cortez, “Next place prediction using mo-

bility markov chains,” in Proceedings of the First Workshop on Measurement, Privacy, and

Mobility. ACM, 2012, p. 3.

[199] D. Ashbrook and T. Starner, “Using gps to learn significant locations and predict movement

across multiple users,” Personal and Ubiquitous computing, vol. 7, no. 5, pp. 275–286,

2003.

[200] W. Mathew, R. Raposo, and B. Martins, “Predicting future locations with hidden markov

models,” in Proceedings of the 2012 ACM conference on ubiquitous computing. ACM,

2012, pp. 911–918.

[201] G. Yuan, P. Sun, J. Zhao, D. Li, and C. Wang, “A review of moving object trajectory clus-

tering algorithms,” Artificial Intelligence Review, vol. 47, no. 1, pp. 123–144, 2017.

[202] J.-G. Lee, J. Han, and K.-Y. Whang, “Trajectory clustering: a partition-and-group frame-

work,” in Proceedings of the 2007 ACM SIGMOD international conference on Management

of data. ACM, 2007, pp. 593–604.

[203] Y. Wang, Q. Han, and H. Pan, “A clustering scheme for trajectories in road networks,” in

Advanced Technology in Teaching-Proceedings of the 2009 3rd International Conference

on Teaching and Computational Science (WTCS 2009). Springer, 2012, pp. 11–18.

[204] J. Wiest, M. Höffken, U. Kreßel, and K. Dietmayer, “Probabilistic trajectory prediction

with gaussian mixture models,” in Intelligent Vehicles Symposium (IV), 2012 IEEE. IEEE,

2012, pp. 141–146.

[205] P.-R. Lei, T.-J. Shen, W.-C. Peng, and J. Su, “Exploring spatial-temporal trajectory model

for location prediction,” in Mobile Data Management (MDM), 2011 12th IEEE Interna-

tional Conference on, vol. 1. IEEE, 2011, pp. 58–67.

[206] S. Qiao, N. Han, J. Wang, R.-H. Li, L. A. Gutierrez, and X. Wu, “Predicting long-term

trajectories of connected vehicles via the prefix-projection technique,” IEEE Transactions

on Intelligent Transportation Systems, 2017.

BIBLIOGRAPHY 225

[207] E. P. Xing, M. I. Jordan, R. M. Karp et al., “Feature selection for high-dimensional ge-

nomic microarray data,” in Proceedings of International Conference on Machine Learning

(ICML), vol. 1, 2001, pp. 601–608.

[208] L. Parsons, E. Haque, and H. Liu, “Subspace clustering for high dimensional data: a re-

view,” ACM SIGKDD Explorations Newsletter, vol. 6, no. 1, pp. 90–105, 2004.

[209] X. Z. Fern and C. E. Brodley, “Solving cluster ensemble problems by bipartite graph par-

titioning,” in Proceedings of the twenty-first ACM Twenty-first International Conference on

Machine Learning, 2004, p. 36.

[210] A. Topchy, A. K. Jain, and W. Punch, “Clustering ensembles: Models of consensus and

weak partitions,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27,

no. 12, pp. 1866–1881, 2005.

[211] A. L. Fred and A. K. Jain, “Data clustering using evidence accumulation,” in Proceedings

of the 16th International Conference on Pattern Recognition, vol. 4, 2002, pp. 276–280.

[212] S. Dudoit and J. Fridlyand, “Bagging to improve the accuracy of a clustering procedure,”

Bioinformatics, vol. 19, no. 9, pp. 1090–1099, 2003.

[213] E. Dimitriadou, A. Weingessel, and K. Hornik, “A combination scheme for fuzzy clus-

tering,” International Journal of Pattern Recognition and Artificial Intelligence, vol. 16,

no. 07, pp. 901–912, 2002.

[214] H. G. Ayad and M. S. Kamel, “Cumulative voting consensus method for partitions with

variable number of clusters,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 30, no. 1, pp. 160–173, 2008.

[215] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval Research Logis-

tics Quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[216] J. Wall, “Generalized inverses of stochastic matrices,” Linear Algebra and its Applications,

vol. 10, no. 2, pp. 147–154, 1975.

[217] P. Courrieu, “Fast computation of moore-penrose inverse matrices,” CoRR, vol.

abs/0804.4809, 2008. [Online]. Available: http://arxiv.org/abs/0804.4809

226 BIBLIOGRAPHY

[218] M. Tavallaee, E. Bagheri, W. Lu, and A.-A. Ghorbani, “A detailed analysis of the kdd cup

99 data set,” in Proceedings of the Second IEEE Symposium on Computational Intelligence

for Security and Defence Applications, 2009.

[219] K. Altun, B. Barshan, and O. Tunçel, “Comparative study on classifying human activities

with miniature inertial and magnetic sensors,” Pattern Recognition, vol. 43, no. 10, pp.

3605–3620, 2010.

[220] J. A. Blackard and D. J. Dean, “Comparative accuracies of artificial neural networks and

discriminant analysis in predicting forest cover types from cartographic variables,” Com-

puters and Electronics in Agriculture, vol. 24, no. 3, pp. 131–151, 1999.

[221] Y. LeCun, C. Cortes, and C. J. Burges, “The mnist dataset of handwritten digits,” URL

http://yann. lecun. com/exdb/mnist, 1998.

[222] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “A public domain dataset

for human activity recognition using smartphones.” in ESANN, 2013.

[223] A. Krizhevsky and G. Hinton, Learning multiple layers of features from tiny images. Cite-

seer, 2009.

[224] N. Zahid, M. Limouri, and A. Essaid, “A new cluster-validity for fuzzy clustering,” Pattern

Recognition, vol. 32, no. 7, pp. 1089–1097, 1999.

[225] M. G. Kendall, Rank correlation methods. Griffin, 1948.

[226] T. Urruty, C. Djeraba, and D. A. Simovici, “Clustering by random projections,” in Industrial

Conference on Data Mining. Springer, 2007, pp. 107–119.

[227] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, “Automatic subspace clustering of

high dimensional data,” Data Mining and Knowledge Discovery, vol. 11, no. 1, pp. 5–33,

2005.

[228] B. L. Milenova and M. M. Campos, “O-cluster: Scalable clustering of large high dimen-

sional data sets,” in IEEE International Conference on Data Mining (ICDM). IEEE, 2002,

pp. 290–297.

BIBLIOGRAPHY 227

[229] S. Gilpin, B. Qian, and I. Davidson, “Efficient hierarchical clustering of large high dimen-

sional datasets,” in Proceedings of the 22nd ACM international conference on Conference

on information & knowledge management. ACM, 2013, pp. 1371–1380.

[230] E. J. Otoo, A. Shoshani, and S.-w. Hwang, “Clustering high dimensional massive scientific

datasets,” Journal of Intelligent Information Systems, vol. 17, no. 2-3, pp. 147–168, 2001.

[231] L. Wang, C. Leckie, K. Ramamohanarao, and J. Bezdek, “Automatically determining the

number of clusters in unlabeled data sets,” IEEE Transactions on knowledge and Data

Engineering, vol. 21, no. 3, pp. 335–350, 2009.

[232] I. J. Sledge, T. C. Havens, J. M. Huband, J. C. Bezdek, and J. M. Keller, “Finding the

number of clusters in ordered dissimilarities,” Soft Computing, vol. 13, no. 12, pp. 1125–

1142, 2009.

[233] T. C. Havens, J. C. Bezdek, J. M. Keller, and M. Popescu, “Clustering in ordered dissimi-

larity data,” International Journal of Intelligent Systems, vol. 24, no. 5, pp. 504–528, 2009.

[234] T. C. Havens, J. C. Bezdek, J. M. Keller, M. Popescu, and J. M. Huband, “Is vat really single

linkage in disguise?” Annals of Mathematics and Artificial Intelligence, vol. 55, no. 3, pp.

237–251, 2009.

[235] Y. S. Ahmed, Multiple random projection for fast, approximate nearest neighbor search in

high dimensions. University of Toronto, 2004.

[236] A. Asuncion and D. Newman, “Uci machine learning repository,” 2007.

[237] O. Pele and M. Werman, “The quadratic-chi histogram distance family,” in European con-

ference on computer vision. Springer, 2010, pp. 749–762.

[238] K. Chen and L. Liu, “Detecting the change of clustering structure in categorical data

streams,” in Proceedings of the 2006 SIAM International Conference on Data Mining.

SIAM, 2006, pp. 504–508.

[239] ——, “ivibrate: Interactive visualization-based framework for clustering large datasets,”

ACM Transactions on Information Systems (TOIS), vol. 24, no. 2, pp. 245–294, 2006.

228 BIBLIOGRAPHY

[240] S. Mahallati, J. C. Bezdek, D. Kumar, M. R. Popovic, and T. A. Valiante, Interpreting

Cluster Structure in Waveform Data with Visual Assessment and Dunn’s Index. Springer,

2018, pp. 73–101.

[241] R. O. Duda and P. E. Hart, Pattern Elesslfication and Scene Analysis. Wiley, 1973.

[242] S. Theodoridis, A. Pikrakis, K. Koutroumbas, and D. Cavouras, Introduction to pattern

recognition: a matlab approach. Academic Press, 2010.

[243] G. W. Milligan and M. C. Cooper, “An examination of procedures for determining the

number of clusters in a data set,” Psychometrika, vol. 50, no. 2, pp. 159–179, 1985.

[244] I. Gurrutxaga, J. Muguerza, O. Arbelaitz, J. M. Pérez, and J. I. Martín, “Towards a stan-

dard methodology to evaluate internal cluster validity indices,” Pattern Recognition Letters,

vol. 32, no. 3, pp. 505–515, 2011.

[245] E. Dimitriadou, S. Dolničar, and A. Weingessel, “An examination of indexes for determin-

ing the number of clusters in binary data sets,” Psychometrika, vol. 67, no. 1, pp. 137–159,

2002.

[246] J. C. Bezdek, W. Li, Y. Attikiouzel, and M. Windham, “A geometric approach to cluster

validity for normal mixtures,” Soft Computing-A Fusion of Foundations, Methodologies

and Applications, vol. 1, no. 4, pp. 166–179, 1997.

[247] L. Vendramin, R. J. Campello, and E. R. Hruschka, “Relative clustering validity criteria: A

comparative overview,” Statistical analysis and data mining: the ASA data science journal,

vol. 3, no. 4, pp. 209–235, 2010.

[248] “Plexon Neurotechnolgy Research Systems,” http://www.plexon.com/.

[249] M. Lavielle, “Detection of multiple changes in a sequence of dependent variables,” Stochas-

tic Processes and their Applications, vol. 83, no. 1, pp. 79–102, 1999.

[250] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of machine learning

research, vol. 9, no. Nov, pp. 2579–2605, 2008.

BIBLIOGRAPHY 229

[251] N. Elmqvist, P. Dragicevic, and J.-D. Fekete, “Rolling the dice: Multidimensional visual

exploration using scatterplot matrix navigation,” IEEE transactions on Visualization and

Computer Graphics, vol. 14, no. 6, pp. 1539–1148, 2008.

[252] D. Kumar, J. C. Bezdek, S. Rajasegarar, C. Leckie, and M. Palaniswami, “A visual-numeric

approach to clustering and anomaly detection for trajectory data,” The Visual Computer,

vol. 33, no. 3, pp. 265–281, 2017.

[253] H. Song, Z. Jiang, A. Men, and B. Yang, “A hybrid semi-supervised anomaly detection

model for high-dimensional data,” Computational intelligence and neuroscience, vol. 2017,

2017.

[254] S. Gninenko, “Miniboone anomaly and heavy neutrino decay,” Physical review letters, vol.

103, no. 24, p. 241802, 2009.

[255] A. Monreale, F. Pinelli, R. Trasarti, and F. Giannotti, “Wherenext: a location predictor on

trajectory pattern mining,” in Proceedings of the 15th ACM SIGKDD international confer-

ence on Knowledge discovery and data mining. ACM, 2009, pp. 637–646.

[256] M. Chen, Y. Liu, and X. Yu, “Predicting next locations with object clustering and trajec-

tory clustering,” in Pacific-Asia Conference on Knowledge Discovery and Data Mining.

Springer, 2015, pp. 344–356.

[257] J. J.-C. Ying, W.-C. Lee, T.-C. Weng, and V. S. Tseng, “Semantic trajectory mining for lo-

cation prediction,” in Proceedings of the 19th ACM SIGSPATIAL International Conference

on Advances in Geographic Information Systems. ACM, 2011, pp. 34–43.

[258] Q. Lv, Y. Qiao, N. Ansari, J. Liu, and J. Yang, “Big data driven hidden markov model

based individual mobility prediction at points of interest,” IEEE Transactions on Vehicular

Technology, vol. 66, no. 6, pp. 5204–5216, 2017.

[259] L. Chen, M. Lv, and G. Chen, “A system for destination and future route prediction based

on trajectory mining,” Pervasive and Mobile Computing, vol. 6, no. 6, pp. 657–676, 2010.

[260] D. Kumar, S. Rajasegarar, M. Palaniswami, X. Wang, and C. Leckie, “A scalable framework

for clustering vehicle trajectories in a dense road network,” in The 4th International Work-

230 BIBLIOGRAPHY

shop on Urban Computing (UrbComp), Held in conjunction with the 21th ACM SIGKDD,

2015.

[261] G. Yavaş, D. Katsaros, Ö. Ulusoy, and Y. Manolopoulos, “A data mining approach for lo-

cation prediction in mobile environments,” Data & Knowledge Engineering, vol. 54, no. 2,

pp. 121–146, 2005.

[262] J.-G. Lee, J. Han, X. Li, and H. Gonzalez, “Traclass: trajectory classification using hierar-

chical region-based and trajectory-based clustering,” Proceedings of the VLDB Endowment,

vol. 1, no. 1, pp. 1081–1094, 2008.

[263] E. H.-C. Lu, V. S. Tseng, and S. Y. Philip, “Mining cluster-based temporal mobile sequential

patterns in location-based service environments,” IEEE transactions on knowledge and data

engineering, vol. 23, no. 6, pp. 914–927, 2011.

[264] C. Sung, D. Feldman, and D. Rus, “Trajectory clustering for motion prediction,” in Intel-

ligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on. IEEE,

2012, pp. 1547–1552.

[265] N. Ferreira, J. T. Klosowski, C. E. Scheidegger, and C. T. Silva, “Vector field k-means:

Clustering trajectories by fitting multiple vector fields,” in Computer Graphics Forum,

vol. 32, no. 3pt2. Wiley Online Library, 2013, pp. 201–210.

[266] M. Barbehenn, “A note on the complexity of dijkstra’s algorithm for graphs with weighted

vertices,” IEEE transactions on computers, vol. 47, no. 2, p. 263, 1998.

[267] S. Salvador and P. Chan, “Toward accurate dynamic time warping in linear time and space,”

Intelligent Data Analysis, vol. 11, no. 5, pp. 561–580, 2007.

[268] Y. Lu, S. Xiang, and W. Wu, “Taxi queue, passenger queue or no queue?” in Proc. of 18th

International Conference on Extending Database Technology (EDBT). Brussels, Belgium,

2015, pp. 593–604.

[269] “GraphHopper, "Map-matching",” http://www.unhabitat.org/pmss/listItem De-

tails.aspx?publicationID=3387, 2017.

BIBLIOGRAPHY 231

[270] P. C. Besse, B. Guillouet, J.-M. Loubes, and F. Royer, “Destination prediction by trajectory

distribution-based model,” IEEE Transactions on Intelligent Transportation Systems, 2017.

[271] Q. Huang, “Mining online footprints to predict user’s next location,” International Journal

of Geographical Information Science, vol. 31, no. 3, pp. 523–541, 2017.

[272] S. Qiao, N. Han, W. Zhu, and L. A. Gutierrez, “Traplan: an effective three-in-one trajectory-

prediction model in transportation networks,” IEEE Transactions on Intelligent Transporta-

tion Systems, vol. 16, no. 3, pp. 1188–1198, 2015.

[273] H. Jeung, H. T. Shen, and X. Zhou, “Mining trajectory patterns using hidden markov

models,” in International Conference on Data Warehousing and Knowledge Discovery.

Springer, 2007, pp. 470–480.

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:

Rathore, Punit

Title:

Big data cluster analysis and its applications

Date:

2018

Persistent Link:

http://hdl.handle.net/11343/219493

File Description:

Complete PhD Thesis

Terms and Conditions:

Terms and Conditions: Copyright in works deposited in Minerva Access is retained by the

copyright owner. The work may not be altered without permission from the copyright owner.

Readers may only download, print and save electronic copies of whole works for their own

personal non-commercial use. Any use that exceeds these limits requires permission from

the copyright owner. Attribution is essential when quoting or paraphrasing from these works.

