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Abstract
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substantial time variation in the interaction of returns and risk measures, both within and

between currencies. We find that aggregate spillover intensity is countercyclical with respect

to the federal funds rate and increases in periods of financial stress. Cross-currency spillovers

of volatility and especially of skewness increase in times of stress, reflecting greater systematic

risk. Similarly, in such times, returns become more sensitive to risk measures and vice versa.
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1. Introduction

To what extent are currency markets connected to one another? This is a central question

facing foreign exchange (FX) investors as they form and manage portfolios conditional on

the risk-return profiles of a basket of currencies, typically seeking to manage their exposure

to idiosyncratic risk through diversification. Changes in currencies’ risk-return profiles will

often induce portfolio rebalancing. However, in the act of rebalancing, investors’ collective

actions are likely to further change the risk-return profiles. This feedback effect will induce

a complex array of interactions — or spillovers — among currency returns and a variety

of risk measures, both within and between currency markets. Network analysis provides a

natural framework to study such complex dynamic phenomena (Diebold and Yilmaz, 2009,

2014; Billio et al., 2012). However, network models remain scarce in the FX literature. We

therefore develop an empirical network model to study risk and return spillovers within and

between the major global currencies.

Given the importance of portfolio rebalancing in the network dynamics of FX markets,

our model has two salient features. First, since FX portfolios are typically composed of

several currencies, we work with a comprehensive panel dataset covering the G10 currencies.

These currencies are among the world’s most actively traded and liquid, collectively account-

ing for the large majority of turnover in global FX markets.1 This extensive cross-sectional

coverage of FX markets allows us to capture the large majority of investors’ rebalancing

activities. Second, to account for the different types of risk that currency investors face, we

follow the emphasis in the FX asset pricing literature and include both the volatility and the

skewness of changes in the exchange rate within our model. Specifically, since portfolio re-

balancing is forward-looking, our analysis is based on forward-looking measures of volatility

and skewness extracted from FX options data.

1This can be clearly seen in the triennial survey of turnover in foreign exchange markets published by the
Bank for International Settlements, the most recent of which is available at http://www.bis.org/publ/

rpfx13fx.pdf.

2

http://www.bis.org/publ/rpfx13fx.pdf
http://www.bis.org/publ/rpfx13fx.pdf


Volatility has long been used as a measure of uncertainty and a sophisticated literature

has documented the linkage between returns and volatility. For example, Menkhoff et al.

(2012) show that differences in exposure to innovations in an aggregate measure of global FX

volatility play an important role in explaining the cross-sectional differences in the average

excess returns of interest rate sorted currency portfolios and, therefore, in the average excess

return to the carry trade strategy. Changes in global FX volatility have also been shown to

be predictive of carry trade returns in the time series dimension by Bakshi and Panayotov

(2013).

Skewness, meanwhile, measures crash risk, the risk associated with large jumps or crashes

in the exchange rate, whether depreciations or appreciations. Crash risk has gained promi-

nence as a factor underlying the high average excess returns to various currency strategies.

A negative cross-sectional relation between interest rate differentials and currency skewness

has been documented at the individual currency level by Brunnermeier, Nagel, and Peder-

sen (2009) and Jurek (2014). Furthermore, Rafferty (2012) demonstrates that exposure to a

global FX skewness measure explains a large proportion of the high average excess returns

not just to the carry trade but also to currency momentum and value strategies. Rafferty’s

approach captures the risk of a coordinated crash, in which high-yield investment currencies

sharply depreciate and low-yield funding currencies simultaneously appreciate. Coordinated

crashes were observed during the recent global financial crisis (GFC), as funding liquidity

constraints led to the sudden unwinding of carry trades.2

Our use of option-implied volatility and skewness accords with recent developments in

the literature and confers several significant benefits relative to the use of latent or realized

measures of volatility and skewness (Chang, Christoffersen, and Jacobs, 2013; Christoffersen,

Jacobs, and Chang, 2013; Conrad, Dittmar, and Ghysels, 2013). Since they are computed

2In related work, other researchers evaluate the importance of crash risk by comparing the returns to
unhedged versus option-hedged carry trades (e.g., Burnside, Eichenbaum, Kleshchelski, and Rebelo, 2011;
Jurek, 2014). The results indicate that much of the average excess return to the carry trade may be
attributed to crash risk.
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every day using one day of options prices, our option-implied series provide truly conditional

market-based estimates of the risk-neutral expected volatility and skewness that investors

anticipate over the options’ maturity. As such, the option-implied measures capture in-

vestors’ beliefs and risk preferences in a forward-looking manner, thereby providing ex ante

measures of expected volatility and skewness.

To recover the moments of the option-implied (risk-neutral) distribution of future ex-

change rate changes, we use the model-free methodology of Bakshi and Madan (2000), Carr

and Madan (2001), and Bakshi, Kapadia, and Madan (2003).3 In this way, we construct daily

option-implied measures of volatility and skewness for each of the G10 currencies against

the U.S. dollar over the period from January 1999 to October 2014 using a rich dataset of

FX options prices obtained from J.P. Morgan. To account for the autocorrelation structure

of the risk-neutral moments, we follow the precedent established by Menkhoff et al. (2012)

in the FX literature, and Chang et al. (2013) in the equity literature, and extract the in-

novations in the risk-neutral volatility (RNV) and risk-neutral skewness (RNS) of exchange

rate changes based on auxiliary first order autoregressions.

Our empirical results are derived from a generalization of the connectedness framework

developed by Diebold and Yilmaz (2009, 2014), in which one infers the structure of a network

based on forecast error variance decomposition of an underlying vector autoregression. The

generalization that we employ is due to Greenwood-Nimmo, Nguyen, and Shin (2015a),

whose method accommodates arbitrary aggregations of the connectedness matrix. The

benefit of this approach is that it provides a means to transform the connectedness matrix

to directly capture connectedness among groups of variables, as opposed to connectedness

among individual variables. In this way, we are free to focus the analysis at any desired

level of aggregation. For example, we may evaluate connectedness among currency markets,

3There is now a sizeable literature in which researchers have studied the role of option-implied volatility
and skewness in asset pricing, particularly with respect to equity markets (Ang et al., 2006, 2009; Chang
et al., 2013; Conrad et al., 2013). More recently, similar techniques have been applied to FX markets (Chen
and Gwati, 2014; Jurek, 2014).
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where we observe the return, RNV innovations, and RNS innovations for each market.

Our analysis proceeds in two parts. First, we establish a benchmark by evaluating the

connectedness among currencies over the full sample period, from January 1999 to October

2014. This reveals significant spillovers among returns, with particularly strong bilateral

spillovers among currencies that share an underlying linkage (e.g., the European currencies

as well as the commodity currencies). Spillovers of RNV innovations across currencies exert

a strong influence over the evolution of volatility in each market, accounting for as much

as 75% of the ten-days-ahead forecast error variance of RNV innovations. By contrast,

currency-specific or idiosyncratic factors strongly influence the behavior of RNS innovations,

reflecting the importance of market-specific shocks in driving the risk of large jumps or

crashes in exchange rates.

Next, we analyze time variation in the pattern and intensity of spillovers using rolling

samples of 250 trading days. This reveals that aggregate spillover intensity is inversely

related to the federal funds rate, indicating that spillovers strengthen (weaken) as economic

and financial conditions in the U.S. deteriorate (improve). Similarly, spillovers intensify

during periods of illiquidity (captured via the TED spread) and periods of uncertainty in

equity markets (represented by the VIX). Adverse shocks — particularly the GFC and the

European sovereign debt crisis — are associated with a marked increase in spillover intensity.

Spillovers from RNV and RNS innovations to realized returns pick up substantially during

the crises as investors strive to manage their risk exposure through portfolio rebalancing.

Cross-market skewness spillovers intensify particularly markedly at this time, reflecting a

sharp increase in coordinated crash risk, a finding that reflects the well-documented liquidity

constraints that emerged during the crises.

Our paper is a logical development of the literature on volatility spillovers initiated

by Engle, Ito, and Lin (1990). Among the early papers in this literature, Kearney and

Patton (2000) and Hong (2001) use GARCH-type models to construct latent measures of

volatility. More recently, the focus has shifted towards the use of high-frequency realized
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volatility measures (e.g., Melvin and Melvin, 2003; Cai, Howorka, and Wongswan, 2008;

Bubák, Kočenda, and Žikeš, 2011). We are aware of just one study that uses option-implied

volatilities. Nikkinen, Sahlström, and Vähämaa (2006) work with option-implied volatilities

derived from the Garman and Kohlhagen (1983) model to study volatility transmission in

three currency pairs using just two years of data. Network models have not been employed

within this literature, nor has there been any attempt to account for the interaction of returns

with higher-order moments. Consequently, our work significantly extends the frontier of the

existing literature.

This paper proceeds as follows. In Section 2, we outline the methodology. In Section

3, we discuss the dataset, including the computation of the moments of the risk-neutral

distribution of expected exchange rate changes. In Sections 4–6, we present the main findings

and several robustness exercises. We conclude in Section 7. Additional details are provided

in an online technical supplement.

2. Methodology

In this section, we describe our empirical network model. First, we specify a vector

autoregression as an approximating model for the system. Second, we show how this model

can be used to measure connectedness. Third, we demonstrate how this approach can be

generalized to analyze connectedness among groups of variables.

2.1. The model

We consider the bilateral spot exchange rates for i = 1, 2, . . . , N currencies measured in

units of U.S. dollars per foreign currency unit at daily frequency over t = 1, 2, . . . , T trading

days. The daily return for each exchange rate is defined as the log difference of the spot rate.

For each currency, we observe the daily return, rit, the innovation in risk-neutral volatility,

vit, and the innovation in risk-neutral skewness, sit. Section 3 contains more information on

the construction of these variables. The 3× 1 vector yit = (rit, vit, sit)
′ collects the market-
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specific variables for the i-th market and the 3N ×1 vector yt = (y′1t,y
′
2t, . . . ,y

′
Nt)
′ contains

all variables for every market. The total number of variables in the system is d = 3N .

Given our opening premise that ongoing rebalancing activity leads to complex feedback

effects within and between FX markets, we require an approximating model that allows all

variables to be endogenously determined. A finite order vector autoregression (VAR) is a

leading candidate (Diebold and Yilmaz, 2014). Abstracting from deterministic terms for

clarity of exposition, the p-th order reduced-form VAR for the d × 1 vector of variables yt

is as follows:

yt =

p∑

j=1

Ajyt−j + ut, (1)

where the Aj for j = 1, . . . , p are d× d coefficient matrices and ut ∼ N (0,Σu) contains the

reduced-form residuals, which have covariance matrix Σu. Pesaran and Shin (1998) show

that the h-step-ahead generalized forecast error variance decomposition (GVD) for the i-th

variable is given by:

ϑ
(h)
i←j =

σ−1u,jj

∑h−1
`=0 (ε′iB`Σuεj)

2

∑h−1
`=0 ε

′
iB`ΣuB

′
`εi

(2)

for i, j = 1, . . . , d, where σu,jj is the jth diagonal element of Σu, εi is a d×1 selection vector

with its i-th element set to unity and zeros elsewhere, and where the B` coefficient matrices

of the infinite order moving average representation of the VAR are defined recursively as

B` = A1B`−1 +A2B`−2 + . . . for ` = 1, 2, . . . with B0 = Id and B` = 0 for ` < 0. ϑ
(h)
i←j

expresses the proportion of the h-step-ahead forecast error variance (FEV) of variable i,

which can be attributed to shocks in the equation for variable j. GVDs have the benefit

of order invariance, although it will generally be the case that
∑d

j=1 ϑ
(h)
i←j > 1 due to the

non-zero correlation between reduced-form shocks. Following Diebold and Yilmaz (2014),

the percentage interpretation of the FEV shares can be restored by normalizing such that

θ
(h)
i←j = 100×

(
ϑ
(h)
i←j/

∑d
j=1 ϑ

(h)
i←j

)
%.
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2.2. Measuring connectedness using VAR models

Our goal in developing a network model is to estimate an adjacency matrix summarizing

the linkages (edges) among nodes in the network. The adjacency matrix for a d-variable

system is a d× d matrix C whose (i, j)-th element, cij, is non-zero only if there is a linkage

from node j to node i. Ex ante, it is reasonable to believe that each FX market is connected

to every other and that each element of C will be non-zero. Consequently, our task is

to estimate the strength (weight) of each linkage in the network. Also, with no reason

to presume that linkages among FX markets are symmetric, we must estimate a directed

network, in which C is allowed to be asymmetric.

An elegant framework to estimate an adjacency matrix for a weighted directed network

has been proposed by Diebold and Yilmaz (2009, 2014). Their key innovation is to estimate

the adjacency matrix — also known as the connectedness matrix — using forecast error

variance decompositions applied to an underlying VAR model. They construct the h-step-

ahead d× d connectedness matrix among the d variables in yt as follows:

C(h) =




θ
(h)
1←1 θ

(h)
1←2 · · · θ

(h)
1←d

θ
(h)
2←1 θ

(h)
2←2 · · · θ

(h)
2←d

...
...

. . .
...

θ
(h)
d←1 θ

(h)
d←2 · · · θ

(h)
d←d



. (3)

Diebold and Yilmaz show that θ
(h)
i←j measures the pairwise spillover from variable j to variable

i. Furthermore — and importantly in our context — this is a directional measure because

it will generally be the case that θ
(h)
i←j 6= θ

(h)
j←i. We now define the following:

O
(h)
i←i = θ

(h)
i←i ; F

(h)
i←• =

d∑

j=1,j 6=i

θ
(h)
i←j and T

(h)
•←i =

d∑

j=1,j 6=i

θ
(h)
j←i . (4)

The proportion of the h-step-ahead FEV of the i-th variable that can be attributed to shocks
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to variable i itself is known as the own variance share, O
(h)
i←i. The total spillovers from the

system to variable i are given by F
(h)
i←•, which is referred to as the from connectedness of

variable i. Likewise, the total spillovers from variable i to the system are measured by T
(h)
•←i,

which is referred to as the to connectedness of variable i. It follows that O
(h)
i←i+F

(h)
i←• = 100%

by construction but that T
(h)
•←i may exceed 100%. Finally, we define the following aggregate

summary measures:

S(h) =
1

d

d∑

i=1

F
(h)
i←• and H(h) = 100− S(h), (5)

where S(h) denotes the aggregate spillover index and H(h) is the aggregate own-variable

effect.

2.3. Block aggregation of the connectedness matrix

The Diebold-Yilmaz framework can be used either to measure spillovers among indi-

vidual variables or to summarize aggregate spillover activity among all variables in the

system. However, it does not provide a simple way to measure spillovers among groups of

variables. As such, it is not straightforward to measure spillovers among multiple markets,

each of which is represented by three variables: rit, vit, and sit. Consequently, Greenwood-

Nimmo et al. (2015a) develop a generalized framework that exploits block aggregation of

the connectedness matrix. Block aggregation introduces a new stratum between the level of

individual variables and the system-wide aggregate level, thereby enhancing the flexibility

of the Diebold-Yilmaz framework.

Suppose that the variables are in the order yt = (r1t, v1t, s1t, r2t, v2t, s2t, . . . , rNt, vNt, sNt)
′

and that we wish to evaluate the connectedness among the N markets in the model in a

combined manner that encompasses all three variables in each market. We can write the

connectedness matrix C(h) in block form with g = N groups each composed of m = 3
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variables as follows:

C(h) =




B
(h)
1←1 B

(h)
1←2 . . . B

(h)
1←N

B
(h)
2←1 B

(h)
2←2 . . . B

(h)
2←N

...
...

. . .
...

B
(h)
N←1 B

(h)
N←2 . . . B

(h)
N←N




, B
(h)
i←j =




θ
(h)
ri←rj θ

(h)
ri←vj θ

(h)
ri←sj

θ
(h)
vi←rj θ

(h)
vi←vj θ

(h)
vi←sj

θ
(h)
si←rj θ

(h)
si←vj θ

(h)
si←sj


 (6)

for i, j = 1, 2, . . . , N and where the block B
(h)
i←i collects all the within-market effects for

market i while B
(h)
i←j collects all spillover effects from market j to market i. Greenwood-

Nimmo et al. (2015a) stress that, due to the order-invariance of GVDs, the variables in yt

can be re-ordered as necessary to support any desired block structure.4 Using (6), we can

define the total within-market FEV contribution for market i as follows:

W(h)
i←i =

1

m
e′mB

(h)
i←iem, (7)

where em is an m× 1 vector of ones. As such, W(h)
i←i measures the proportion of the h-step-

ahead FEV of yit due to shocks to yit. W(h)
i←i, can be decomposed into common-variable

FEV contributions within market i, O(h)
i←i, and cross-variable effects, C(h)i←i, as follows:

O(h)
i←i =

1

m
trace

(
B

(h)
i←i

)
and C(h)i←i =W(h)

i←i −O
(h)
i←i. (8)

Note that O(h)
i←i measures the proportion of the h-step-ahead FEV of yit that is not at-

tributable to spillovers among the variables within market i nor to spillovers from other

4To provide a clear and concise exposition, the derivation of the block aggregation routine presented here
focuses on connectedness among markets. This is the case that we consider in Table 2 and Figure 3. We also
present results in Table 3 and Figure 4 for the connectedness among groups of common moments (i.e. returns
for all markets, RNV innovations for all markets, and RNS innovations for all markets). It is straightforward
to adapt the method presented here to evaluate the connectedness among groups of common moments.
One first reorders the variables in the VAR to obtain yt = (rt,vt, st)

′
, where rt = (r1t, r2t, . . . , rNt),

vt = (v1t, v2t, . . . , vNt), and st = (s1t, s2t, . . . , sNt), and then aggregates into g = 3 groups of common
moments, each of which is composed of m = N variables. The block structure used in this case is detailed
in the online technical supplement.
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markets to market i. By contrast, C(h)i←i records the total h-step-ahead spillovers between the

return, RNV innovation, and RNS innovation within market i. The total pairwise directional

spillovers from market j to market i at horizon h are given by:

F (h)
i←j =

1

m
e′mB

(h)
i←jem (9)

while the aggregate from and to connectedness of market i are given by:

F (h)
i←• =

N∑

j=1,j 6=i

F (h)
i←j and T (h)

•←i =
N∑

j=1,j 6=i

F (h)
j←i, (10)

respectively. Finally, the aggregate between-market spillover measure and the aggregate

within-market effect are:

S(h) =
1

N

N∑

i=1

F (h)
i←• and H(h) = 100− S(h). (11)

The interpretation of each of these quantities follows easily from the discussion of the

Diebold-Yilmaz method in Section 2.2.

3. Dataset and risk-neutral moments

Our model is estimated using daily returns and the innovations in RNV and RNS for the

G10 currencies, with all quotes against the U.S. dollar.5 We therefore work with the following

nine currencies: the Australian dollar (AUD), the British pound (GBP), the Canadian dollar

(CAD), the euro (EUR), the Japanese yen (JPY), the New Zealand dollar (NZD), the

Norwegian krone (NOK), the Swedish krona (SEK), and the Swiss franc (CHF). Our sample

spans the period since the introduction of the euro, from January 1999 to October 2014.

5We also consider a model including innovations in risk-neutral kurtosis (RNK) but find this to yield little
empirical benefit, as demonstrated in the online technical supplement. RNK is also found to be relatively
unimportant in an empirical sense by Rafferty (2012). In general, to the extent that investors are concerned
about mass in the tails of the expected distribution of future exchange rate changes, their preferences will
tend to be strongly asymmetric and this will be captured by the RNS.
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We compute the daily return for the i-th currency using data on the spot exchange

rate, which is sourced from WM/Reuters via Datastream. We compute the risk-neutral

moments following the model-free framework developed by Bakshi and Madan (2000), Carr

and Madan (2001), and Bakshi et al. (2003) and applied to foreign exchange options by Jurek

(2014). The computation requires appropriate forward exchange rate data, an annualized

domestic interest rate, and a set of at-the-money and out-of-the-money call and put options.

We gather daily one-month forward exchange rate data for each currency quoted against

the U.S. dollar from WM/Reuters via Datastream. For the interest rate, we use daily data

on U.S. eurocurrency interbank money market interest rates with a maturity of one month

collected from the Financial Times and ICAP via Datastream. Finally, daily quotes for

over-the-counter European FX options with a maturity of one month are provided by J.P.

Morgan. The options data are quoted in the form of implied volatilities for portfolios of

out-of-the-money 25δ and 10δ options contracts, as well as an at-the-money delta-neutral

(0δ) straddle. From these, we extract the relevant strike prices and options prices using

the Garman and Kohlhagen (1983) formulae. Using these, we then compute the model-free

risk-neutral moments. Further details of the computation of the risk-neutral moments are

in the online technical supplement.

Following the approach adopted by Menkhoff et al. (2012) and Chang et al. (2013), we

work with the innovations in RNV and RNS rather than their levels. The RNV innovations

for the i-th market, vit, are extracted as the residuals from the following auxiliary first order

autoregression:

vit = VOLRN
it − φ̂ivVOLRN

i,t−1 − µ̂iv, (12)

where VOLRN
it denotes the option-implied risk-neutral volatility for currency i at time t

and where Greek letters denote the estimated model parameters. We compute the RNS

innovations, sit, in the same manner. The use of innovations confers two benefits. First, it

allows us to account for the serial correlation in the risk-neutral moments without including
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a large number of lags in our VAR model. This allows us to work with shorter rolling samples

and, thereby, to achieve richer patterns of time variation. Second, it allows us to focus on

unexpected changes in RNV and RNS, which reflect unexpected changes in the investment

opportunity set facing investors.

4. Full-sample analysis

4.1. Connectedness among variables over the full sample

To establish a point of reference, we first study connectedness over the full sample.

We estimate a VAR(1) model, where the VAR lag length is selected using the Schwarz

criterion. In order to compute the connectedness matrix in (3), one must first choose an

appropriate forecast horizon. However, as there is no simple method to select an optimal

horizon, we experiment with h ∈ {5, 10, 15} trading days, a range that encompasses the

values used in most existing applications of the Diebold-Yilmaz framework to daily data. In

practice, the connectedness matrix is highly robust to the choice of forecast horizon. The

Frobenius norms for C(5), C(10), and C(15) are 277.118, 277.117, and 277.117, respectively,

indicating that the three connectedness matrices are almost identical, an observation that

is substantiated by an elementwise comparison of the matrices (available on request). We

therefore adopt h = 10 throughout our full-sample analysis without loss of generality. We

discuss the issue of robustness in the context of rolling regression analysis in Section 5.

Table 1 presents the full-sample ten-days-ahead 27 × 27 variable connectedness matrix.

This matrix fully quantifies the magnitude of all pairwise linkages among individual vari-

ables in the network. Own-variable effects are contained along the main diagonal, while off-

diagonal elements represent directional spillovers. Several features are noteworthy. Firstly,

consider spillovers affecting returns. Given the premise that portfolio rebalancing in re-

sponse to changes in the risk-return profiles of a set of currencies is an important feature of

FX markets, one may expect to see strong cross-market spillovers among returns. This is

indeed the case over the full sample and is consistent with currency comovements driven by
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investors rebalancing positions in multiple currencies simultaneously in response to shocks,

as documented by Elyasiani and Kocagil (2001), Cai et al. (2008), and Greenwood-Nimmo

et al. (2015b).

— Insert Table 1 about here —

Table 1 shows that cross-market spillovers between the returns on different currencies ac-

count for more than 50% of the return FEV in most cases. Own-variable effects, by contrast,

typically account for only 20%–30% of the ten-days-ahead FEV. Spillovers among returns

are particularly strong where currencies share an underlying linkage. This is especially true

of the European currencies, as well as the commodity currencies (AUD, CAD, and NZD).

Within these groups, many of the bilateral return spillovers are of the order of 10%–15%.

Such strong bilateral return spillovers among a subset of currencies suggests a degree of

common rebalancing activity affecting these currencies. For example, investors may elect to

simultaneously reduce their exposure to the entire set of commodity currencies in the event

of an adverse shock to commodity prices.

While cross-market spillovers between returns dominate for most currencies, the JPY

emerges as a notable special case. Cross-market return spillovers from other currencies

account for a mere 14% of the JPY return FEV. By contrast, the own-variable effect for

JPY returns is 52%, which is considerably stronger than in any other currency market. The

relative disconnect of JPY returns from the returns of other currencies strongly supports

the notion that the JPY is a safe haven currency (Ranaldo and Söderlind, 2010).

In the case of RNV innovations, the literature on volatility transmission furnishes a strong

prior expectation — volatility has been repeatedly shown to spread rapidly and forcefully

among FX markets (e.g., Engle et al., 1990; Fleming et al., 1998). This is readily apparent

in Table 1. Own-variable effects for RNV innovations account for between 17% (EUR) and

27% (JPY) of the ten-days-ahead FEV, with an average value of 20%. By contrast, spillovers

between RNV innovations across currencies are much stronger, ranging from 59% (JPY) to
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77% (EUR), a finding that is also consistent with the role of a global FX volatility factor

in driving the RNV innovations of individual currencies (Menkhoff et al., 2012). As with

return spillovers, strong bilateral volatility spillovers are evident between currencies that

share an underlying linkage. For the commodity currencies, common exposure to commodity

price volatility provides an appealing explanation for this phenomenon. Meanwhile, among

the European currencies, joint exposure to common sources of uncertainty (e.g., related to

geopolitical linkages) is likely to play an important role. Lastly, the safe haven status of

the JPY is again apparent, as the JPY is considerably less susceptible to cross-market RNV

spillovers than other currencies.

From Table 1, it is clear that RNS innovations experience considerably stronger own-

variable effects than either returns or RNV innovations and, by construction, commensu-

rately weaker spillovers from the system. There is marked heterogeneity across markets,

with the own-variable effects for RNS innovations varying in the range 64% (NZD) to 91%

(CAD) and taking an average value of 76%. Currencies’ upside and downside crash risks

are more strongly influenced by currency-specific idiosyncratic shocks than is the case for

either returns or RNV innovations. This is in line with the limited literature on skew-

ness spillovers in equity markets, which emphasizes the role of local factors (Hashmi and

Tay, 2007, 2012). Nevertheless, more closely related currency pairs exhibit stronger bilateral

skewness spillovers (e.g., the NOK-SEK and AUD-NZD pairs), which suggests that exposure

to common shocks may induce a degree of common crash risk.

4.2. Connectedness among markets and among moments over the full sample

Over the full sample, it is possible to meaningfully interpret the 729 elements of the

27 × 27 variable connectedness matrix shown in Table 1. However, this rapidly becomes

burdensome when working with subsamples and is wholly infeasible in the context of rolling

regression analysis. As noted above, block aggregations of the connectedness matrix can be

used to focus the analysis as desired and measure spillovers among groups of variables. We
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outline two cases here, both of which are employed in the rolling-sample analysis below.

Table 2 presents the 9 × 9 market connectedness matrix, which contains total within-

market effects for each currency along the prime diagonal and total directional spillovers

between currency market pairs in the off-diagonal entries. Adopting the nomenclature pro-

posed by Engle et al. (1990), the within-market effects can be thought of as heatwave effects

while the cross-market spillovers are akin to meteor showers. Presenting the market connect-

edness matrix in this way highlights the key interactions among markets. In the majority

of markets, the heatwave effect accounts for less than 50% of the FEV and spillovers from

other markets typically exert a dominant influence. Currencies that share an underlying

linkage experience stronger bilateral spillovers. The safe haven status of the JPY is reflected

in the strong within-market effect and relatively low cross-market spillovers.

— Insert Table 2 about here —

Table 3 reports the 3× 3 moment connectedness matrix, which measures the full-sample

connectedness among groups of returns, RNV innovations, and RNS innovations, aggregated

over all 9 markets. In this case, within-moment effects are recorded along the prime diagonal,

with spillovers across moments occupying the off-diagonal positions. This representation of

the connectedness matrix focuses attention specifically on interactions between returns and

innovations in RNV and RNS. This allows for a clear characterization of risk spillovers onto

returns (as investors rebalance their portfolios in response to changes in risk) and also of

return spillovers onto risk measures (as rebalancing activity and changes in returns feed back

onto the risk measures).

— Insert Table 3 about here —

Close inspection of Table 3 reveals that interactions among variables of the same type

(e.g., interactions among returns or interactions among RNV innovations) are by far the

dominant force in the system over the full sample, accounting for more than 80% of FEV in
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each case. Nonetheless, spillovers between returns, RNV innovations, and RNS innovations

are non-negligible, implying that there exists a bidirectional relation where returns adjust in

response to innovations in the option-implied moments and vice versa. However, as stressed

by Diebold and Yilmaz (2014), the full-sample connectedness measures only characterize

unconditional linkages over the full sample. In practice, it is likely that the linkages between

returns and changes in risk will vary over time, particularly to the extent that currency risk

premia are countercyclical (Lustig, Roussanov, and Verdelhan, 2014). Such issues can be

analyzed using rolling regression to construct conditional connectedness measures.

5. Rolling-sample analysis

Window length is an important choice in the context of rolling regressions. Applications

of the Diebold-Yilmaz method based on daily data have used a range of values — for example,

the main results in Diebold and Yilmaz (2014) are based on w = 100 days while Baruńık

et al. (2016) use w = 200 days. Given this uncertainty, the emergent norm in the literature is

to evaluate the sensitivity of the rolling connectedness measures to several candidate window

lengths. Adopting this approach, we consider candidate values in the set w ∈ {200, 250, 300}

trading days. Furthermore, we consider candidate forecast horizons in the set h ∈ {5, 10, 15}

trading days to verify that the robustness of our full-sample results to the choice of forecast

horizon also extends to rolling-sample analysis. Lastly, for completeness, we investigate the

effect of adopting Diebold and Yilmaz’s (2009) earlier approach to measuring connectedness,

which employs orthogonalized forecast error variance decompositions (OVDs) rather than

GVDs. Consequently, the design of our sensitivity analysis closely follows that of Diebold

and Yilmaz (2014, section 5.3.4).6

Figure 1 reveals that neither the choice of forecast horizon nor of window length exerts

a major influence on our results. The time series behavior of the aggregate spillover index

6Unlike many existing applications of the Diebold-Yilmaz approach, which simply impose the same VAR
lag length in every rolling sample, we select the lag length for the r-th rolling regression from the set
pr ∈ {1, 2, . . . , 5} using the Schwarz criterion. In practice, VAR(1) is selected in every rolling sample.
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defined in (5) is remarkably similar in all cases. Furthermore, the correlation between the

spillover indices based on GVDs and the mean of the spillover indices based on OVDs under

1,000 random variable orderings is no lower than 0.95 in any case, although there is a slight

level shift separating the two sets of results. Diebold and Yilmaz (2014, p. 130) observe the

same effect and note that the aggregate spillover activity computed using OVDs acts as a

lower bound on that derived from GVDs. Overall, the GVD results can be considered more

accurate because they accommodate the full correlation structure of the reduced-form VAR

disturbances.

— Insert Figure 1 about here —

5.1. Aggregate spillover activity over time

In light of Figure 1, the remainder of our analysis focuses on the GVD case with w = 250

trading days and h = 10 trading days without loss of generality. This case corresponds to

the central panel of Figure 1. Figure 2 shows the aggregate spillover index in this case, en-

larged and annotated with the timing of several major events. The figure reveals substantial

time variation. Spillovers begin to rise in late 2000 following the collapse of the dot-com

bubble and the ensuing U.S. recession. They continue to rise during the Federal Reserve’s

monetary accommodation from 2001 to 2004. Spillover activity then gradually recedes with

the normalization of U.S. interest rates until the onset of the subprime mortgage crisis in

2007, with a particularly rapid intensification of spillover activity following the collapse of

Lehman Brothers in September 2008. Spillovers remain at a high level during the GFC and

for several years thereafter during the European sovereign debt crisis before receding in late

2012 with the gradual abatement of the debt crisis.

— Insert Figure 2 about here —

5.2. Connectedness among markets over time

In Figure 3, we summarize the time-varying connectedness among markets. Working

at this level of aggregation allows us to identify which currency markets are more (or less)
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integrated and how this changes over time. The figure is composed of nine panels, one for

each market. The panel for the i-th market contains an upper plot showing the within-market

heatwave effect, W(10)
i←i and a lower plot showing the total inward and outward spillovers for

market i, F (10)
i←• and T (10)

•←i , respectively.

— Insert Figure 3 about here —

Consider the top row of Figure 3, which contains the commodity currencies (AUD, NZD,

and CAD). In each case, the within-market effect is very high at the start of the sample (ap-

proximately 70% of market FEV), indicating strong idiosyncratic variation and relatively

weak integration with the other markets in the system. However, this changes markedly

over the sample period, dropping to around 30% during the GFC. Between-market spillover

activity — both inward and outward — increases markedly at this time, reflecting much

greater integration of the commodity currencies with the system as a whole. Greater inte-

gration of commodity currencies is likely to reflect the marked financialization of commodity

markets during our sample period (Cheng and Xiong, 2014).

The European currencies (EUR, NOK, and SEK) appear on the middle row. Along

with the CHF, this group displays markedly common behavior, with low within-market

(idiosyncratic) effects throughout the sample matched by strong between-market spillovers.

This indicates that the European currencies are closely integrated, while the positive net

spillovers arising from the EUR and the CHF over much of the sample suggest that these are

the leading markets within the group, as one would expect.7 Finally, the JPY and, to a lesser

extent, the GBP exhibit somewhat more idiosyncratic variation than the other currencies,

which is matched by weak between-market spillovers. These two currencies are relatively

weakly integrated with the other markets, indicating that they may offer a safe haven to

FX investors. This is true of the GBP early in the sample and of the JPY throughout the

sample.

7The ten-days-ahead net connectedness of the i-th market is defined as N (10)
i = T (10)

•←i −F
(10)
i←•.
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5.3. Connectedness among moments over time

Figure 4 shows the evolution of connectedness among moments over rolling samples.

The figure contains nine panels, each of which contains two plots. The upper plot shows

the connectedness among moments within the same market and the lower plot shows the

connectedness among moments between markets.8 Consequently, Figure 4 enables us to

investigate the relative importance over time of idiosyncratic currency-specific effects and of

systematic cross-market spillovers affecting returns, RNV innovations, and RNS innovations,

respectively. It also allows us to investigate changes in the interaction between returns and

innovations in RNV and RNS over time. As mentioned above, the countercyclical currency

risk premia described by Lustig et al. (2014) are likely to result in stronger interactions

between returns and innovations in RNV and RNS in bad times over the business cycle as

returns become more sensitive to changes in risk and vice versa.

— Insert Figure 4 about here —

The top row of Figure 4 reports the evolution of the spillovers affecting returns over

our sample period. As with the full-sample results documented above, the own-variable

within-market effect in returns is relatively weak, always remaining below 40% and declining

substantially during the GFC. Spillovers among returns between markets are much stronger

in general, peaking at 68% in 2005 before dipping during the GFC. Meanwhile, spillovers

to returns from RNV and RNS innovations increase substantially during the GFC and

the European sovereign debt crisis, reaching a combined high of nearly 50% in October

2008 shortly after the collapse of Lehman Brothers. This is a clear indication of a marked

increase in investors’ sensitivity to risk during the crises. Furthermore, given that the large

majority of spillovers to returns from RNV and RNS innovations occurs between markets,

8The structure of Figure 4 maps onto the structure of Table 3 except that each element of the table is
decomposed into a within-market and a between-market effect using a similar method to that described in
(8). Full computational details are provided in the online technical supplement.
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one may infer that investors were particularly concerned with systematic risk (aggregate FX

uncertainty and crash risk in particular).

In the second row of Figure 4, we focus on spillovers affecting RNV innovations. As

with returns, the own-variable within-market effect in RNV innovations is relatively weak

and gradually declines across our sample. By contrast, between-market spillovers among

RNV innovations have gradually intensified from roughly 50% at the start of our sample

to more than 65% towards the end of the sample, indicating that systematic volatility

linkages dominate the effect of idiosyncratic volatility. In addition, cross-market spillovers

from returns to RNV innovations strengthen considerably in the aftermath of the GFC and

during the European sovereign debt crisis. Consequently, our results indicate that investors’

expectations of future exchange rate volatility are heavily conditioned on realized exchange

rate movements and vice versa, at least in times of stress. This is a clear manifestation of

the feedback effects between rebalancing activity and risk measures outlined in our opening

remarks and it underscores the value of network models in this context.

The last row of Figure 4 reveals that the own-variable within-market effect in RNS inno-

vations (i.e., the idiosyncratic variation in skewness) is much stronger than is the case with

either returns or RNV innovations. Furthermore, it displays marked time variation, falling

dramatically during the GFC and European debt crisis from 50% of FEV to less than 25%.

This is mirrored by an increase in between-market spillovers among RNS innovations. The

intensification of skewness spillovers across markets during turbulent times suggests that

coordinated crash risk is more prevalent during times of financial stress, as the likelihood of

carry trade positions having to be unwound due to liquidity constraints increases (Brunner-

meier et al., 2009; Rafferty, 2012). Finally, we also observe a large increase in spillovers from

returns to RNS innovations during the GFC and the European sovereign debt crisis, which

indicates that investors’ forward-looking perceptions of crash risk are heavily conditioned

on realized exchange rate movements, as one may expect.
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6. Relation to macroeconomic and financial conditions

Careful consideration of our rolling-sample results suggests two interesting phenomena

that may be discerned most easily in relation to the aggregate spillover index in Figure 2.

First, it appears that FX spillovers evolve countercyclically. Second, FX spillovers intensify

in times of financial stress, most notably during the GFC and the European sovereign

debt crisis. Both effects are demonstrated in Figure 5, where we plot the rolling spillover

index shown in Figure 2 alongside the 250-day rolling average of the federal funds rate, the

TED spread, and the VIX, respectively. The use of rolling averages provides a measure of

the low frequency movements of each series, which lends itself to a medium- or long-term

interpretation.

— Insert Figure 5 about here —

The federal funds rate is a gauge of the cyclical position of the U.S. economy. Figure 5

shows a remarkably strong negative relation between aggregate FX spillovers and the federal

funds rate, indicating a clear countercyclical pattern. The correlation is -0.54 over the full

sample and -0.71 in the period up to December 2008, after which active interest rate policy

was curtailed by the zero lower bound (ZLB). This striking correlation is consistent with

a U.S. dollar factor driving exchange rate dynamics and linkages in FX markets (Lustig,

Roussanov, and Verdelhan, 2011) and is highly suggestive of countercyclical currency risk

premia relative to the U.S. dollar (Lustig et al., 2014). One can envisage a number of

mechanisms underlying the countercyclicality of aggregate spillover activity. For example,

risk-averse investors may become more responsive to changes in the risk environment during

downturns, leading to an intensification of spillovers from risk measures to returns. Such

a change is also likely to be reflected in the options data due to hedging activity, thereby

strengthening spillovers from realized returns to RNV and RNS innovations.

The TED spread is a common proxy for credit risk and funding liquidity in the interbank

money market. It is the spread between the three-month U.S. LIBOR and the three-month

22



U.S. Treasury bill rate. Mancini, Ranaldo, and Wrampelmeyer (2013) show that when the

TED spread increases, market-wide FX liquidity decreases. When the TED spread spikes —

as it did in the GFC, especially after the collapse of Lehman Brothers — funding liquidity

dries up, forcing investors to rapidly unwind their long positions. As described by Rafferty

(2012), this is likely to induce coordinated crashes in the FX markets. Consequently, the

relation between FX spillover activity and the TED spread is likely to be positive, and

strongly so during the GFC. This is exactly what we see in the central panel of Figure 5.

Over the full sample, we observe a modest positive correlation of 0.11, which rises to 0.42

when evaluated over the period since September 2008.

Lastly, the bottom panel of Figure 5 relates to the VIX, which is an option-implied

measure of expected volatility for the S&P 500 that has been widely adopted as a proxy

for investors’ fear and uncertainty. This figure shows an unambiguous positive correlation

between FX spillovers and the VIX. The correlation stands at a moderate 0.33 over the

full sample but rises to 0.75 in the period since September 2008. One would expect such

a strongly positive correlation if risk-averse investors elect to rebalance their portfolios and

adjust their hedging strategies more often and/or more substantially in an uncertain envi-

ronment. This is consistent with the idea that many investors reduce their exposure to risky

assets in periods of elevated uncertainty.

To complement the preceding low frequency analysis, we examine the extent to which

large changes in the spillover index occur in conjunction with large changes to the federal

funds rate, the TED spread or the VIX. To this end, we construct the following binary

indicators to identify periods in which the rolling spillover index, S
(h)
t , reaches a new 250-

day high or low, respectively:

St
(h)

= 1

{
S
(h)
t −max

(
S
(h)
t−1, . . . , S

(h)
t−250

)
> 0
}

& St
(h) = 1

{
S
(h)
t −min

(
S
(h)
t−1, . . . , S

(h)
t−250

)
< 0
}
,

where 1{·} is an indicator function that takes the value one if the condition in braces is
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satisfied and zero otherwise. We apply the same procedure to define 250-day high and low

indicator variables for the federal funds rate (Ft and Ft), the TED spread (Tt and Tt), and

the VIX (Vt and Vt). We then use these indicators to compute an array of pseudo-hit-rates.

For example, the pseudo-hit-rate capturing occasions on which the spillover index records a

new 250-day high and the federal funds rate records a new 250-day low within ±5 days is

given by:

H
(
St

(h)
, Ft

)
=



∑T

t=w+1 1

{(
St

(h) ×
∑5

i=−5 Ft+i

)
6= 0
}

∑T
t=w+1 St

(h)


× 100%. (13)

In light of Figure 5, given that the spillover index is negatively correlated with the fed-

eral funds rate and positively correlated with the TED spread and the VIX, we com-

pute the following pseudo-hit-rates: H
(
St

(h)
, Ft

)
, H
(
St

(h), Ft

)
, H
(
St

(h)
, Tt

)
, H
(
St

(h), Tt

)
,

H
(
St

(h)
, Vt

)
, and H

(
St

(h), Vt

)
. The results are reported in Table 4, while Figure 6 shows

the timing of the respective hits.

— Insert Table 4 and Figure 6 about here —

The hit-rate with respect to the federal funds rate is relatively high over the full sample

despite the ZLB constraint, which has seen relative constancy of the effective funds rate

since December 2008. When considered only over the pre-ZLB period, the hit rate is quite

remarkable, with 62% of spillover highs occurring within ±5 days of a funds rate low and 35%

of spillover lows within ±5 days of a funds rate high. Hence, FX market participants appear

to respond rapidly to signals arising from U.S. monetary policy, particularly where the signal

indicates a deterioration in U.S. macroeconomic and financial conditions. This aligns with

the findings of Fischer and Ranaldo (2011), who demonstrate that global FX trading volume

increases after Federal Open Market Committee meetings, which is suggestive of increased

portfolio rebalancing activity. Figure 6 shows that hits with respect to the federal funds

rate occur throughout the pre-ZLB period. Spillover highs are associated with funds rate
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lows during both the Federal Reserve’s prolonged monetary accommodation between 2001

and 2003 (related to the U.S. recession following the collapse of the dot-com bubble) and

the subsequent monetary easing associated with the GFC. Furthermore, many spillover lows

coincide with federal funds rate highs in the period of increasing U.S. interest rates prior to

the onset of the subprime mortgage crisis in 2007.

Hit-rates with respect to the TED spread and the VIX are relatively low over the full

sample but are much higher in the period of financial turbulence since the collapse of Lehman

Brothers in 2008. This is particularly true of the VIX, where almost half of all spillover

highs in this period occur within ±5 days of a corresponding VIX high and a third of

spillover lows correspond to a VIX low, a finding which confirms that FX trading activity

is strongly associated with investor sentiment. Furthermore, Figure 6 reveals that large

swings in spillover activity may be driven in large part by funding liquidity effects, as hits

with respect to the TED spread occur only during periods where the spillover index is either

rising or falling dramatically.

7. Conclusion

We study the interaction between FX returns and the innovations in the option-implied

RNV and RNS for the G10 currencies. Our use of risk-neutral moments accords with

recent developments in the literature, which stress their benefits over realized risk measures

in terms of their forward-looking nature and their model-free computation (Bakshi and

Madan, 2000; Carr and Madan, 2001; Bakshi et al., 2003). Our analysis employs an empirical

network model derived from a generalization of the connectedness methodology of Diebold

and Yilmaz (2009, 2014).

Several interesting results emerge from our analysis. Firstly, over the full sample pe-

riod, from January 1999 to October 2014, we observe strong spillovers among returns, with

particularly notable bilateral spillovers among currencies that share an underlying linkage,

such as those that are exposed to common shocks. Similarly, spillovers among RNV inno-
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vations across currencies account for as much as 75% of the ten-days-ahead FEV of RNV

innovations, indicating that systematic volatility plays a dominant role while idiosyncratic

volatility is much less important on average. However, over the full sample, the opposite is

true of RNS innovations, where idiosyncratic factors play an important role in driving the

measured risk of large jumps and crashes in exchange rates.

Rolling-sample analysis reveals significant time variation in both the pattern and inten-

sity of spillovers. A general tendency towards increased spillovers among markets during

the GFC and the sovereign debt crisis is apparent. Importantly, we see a large increase

in interactions among returns and innovations in risk measures as investors become more

responsive to risk during times of financial stress. We also observe increased cross-market

connectedness among innovations in RNV and RNS, which implies greater common behavior

of forward-looking measures of risk. Spillovers of RNS innovations between markets intensify

particularly markedly at this time, highlighting the role of coordinated crash risk during the

crises. Finally, we demonstrate that spillover activity among FX markets evolves counter-

cyclically, rising during periods of financial stress and also rising when domestic conditions

in the U.S. deteriorate. One can readily envisage mechanisms that may account for these

changing patterns of spillover behavior, at least in part. The development of models to

formalize such mechanisms represents a fruitful avenue for future research.
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AUD CAD EUR JPY NZD NOK SEK CHF GBP
AUD 42.27 7.68 6.18 3.12 16.52 7.11 6.69 4.22 6.22
CAD 9.79 51.42 5.73 2.47 8.03 6.40 6.27 4.18 5.70
EUR 5.59 4.04 39.02 2.68 5.16 11.73 11.92 11.90 7.97
JPY 4.73 3.05 4.92 64.12 4.15 4.08 4.30 6.54 4.10
NZD 18.17 7.13 6.21 2.94 41.30 6.91 6.91 4.05 6.39
NOK 6.51 4.55 11.55 2.13 5.70 36.33 16.98 9.62 6.64
SEK 6.20 4.46 11.83 2.35 5.65 16.84 36.51 9.65 6.51
CHF 4.37 3.19 13.30 3.64 3.83 11.00 11.00 43.51 6.16
GBP 6.98 4.93 9.63 2.91 6.53 8.19 7.96 6.84 46.01

1

Note: The market connectedness matrix is computed following Diebold and Yilmaz (2014)

under the block aggregation routine devised by Greenwood-Nimmo et al. (2015a) using a

forecast horizon of h = 10 trading days. All values are measured in percentage units and each

row sums to 100%.

Table 2: Full-sample market connectedness matrix
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r v s
r 83.47 13.16 3.37
v 10.00 89.29 0.71
s 10.63 2.90 86.47

1

Note: The moment connectedness matrix is computed following Diebold and Yilmaz (2014)

under the block aggregation routine devised by Greenwood-Nimmo et al. (2015a) using a

forecast horizon of h = 10 trading days. All values are measured in percentage units and each

row sums to 100%.

Table 3: Full-sample moment connectedness matrix

32



Ft Ft Tt Tt Vt Vt

Full Sample St
(h)

32% 6% 13%

St
(h) 26% 4% 21%

Pre-ZLB Period St
(h)

62%

St
(h) 35%

Crisis Period St
(h)

21% 45%

St
(h) 6% 33%

Note: Following the definition in Section 6, xt (xt) is a binary variable indicating periods in

which the variable xt ∈
{
S
(h)
t , Ft, Tt, Vt

}
records a new high (low) relative to its historical

values over the preceding 250 trading days. The table reports pseudo-hit-rates computed as

in Equation (13). A “hit” is defined as a new high/low in the spillover index occurring within

±5 trading days of a new high/low in the named macro-financial variable (Ft, Tt or Vt). The

full sample is from December 8, 2000 to October 14, 2014 (4,571 trading days), the pre-ZLB

period is December 8, 2000 to December 31, 2008 (2,077 trading days), and the crisis period is

September 15, 2008 to October 14, 2014 (1,571 trading days). The aggregate spillover index,

S
(h)
t , is obtained using a rolling window length of w = 250 trading days with the forecast

horizon set to h = 10 trading days.

Table 4: Pseudo-hit-rates over the full sample and selected subsamples
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Note: We consider windows of w = (200, 250, 300) trading days, predictive horizons of

h = (5, 10, 15) trading days, and a variety of randomly drawn Cholesky orderings. In

each panel, the heavy solid line shows the rolling aggregate spillover index using order-

invariant GVDs, the gray band is the [10%, 90%] interval based on 1,000 randomly-

selected Cholesky orderings, and the fine solid line is the mean under the 1,000 Cholesky

orderings. In each case, the correlation between the GVD-based spillover index and the

mean of the Cholesky spillover indices is between 0.95 and 0.96. In each panel, the x-

axis shows time, which corresponds to the end date of the rolling samples. The unit of

measurement on the y-axis is percent.

Figure 1: Sensitivity to window length, forecast horizon, and orthogonalization
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Note: In this figure, we plot the aggregate spillover index obtained using a rolling window

length of w = 250 trading days with the forecast horizon set to h = 10 trading days. The

x-axis shows time, which corresponds to the end date of the rolling samples. The unit of

measurement on the y-axis is percent.

Figure 2: Time-varying spillover intensity
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Note: Results are obtained using a rolling window length of w = 250 trading days with the forecast

horizon set to h = 10 trading days. In each panel, the x-axis shows time, which corresponds to

the end date of the rolling samples. The unit of measurement on the y-axis is percent. Note that

the “to spillover” may exceed 100% by virtue of its construction. The figure is laid out such that

currencies which display similar behavior appear in the same row.

Figure 3: Rolling connectedness among markets
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Note: Results are obtained using a rolling window length of w = 250 trading days with the forecast

horizon set to h = 10 trading days. In each panel, the x-axis shows time, which corresponds to

the end date of the rolling samples. The unit of measurement on the y-axis is percent. Further

details of the block aggregation scheme used to compute these results are in the online technical

supplement.

Figure 4: Rolling connectedness among moments
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Note: In this figure, we plot the aggregate spillover index shown in Figure 2 against the period

averages of the effective federal funds rate, the TED spread, and the VIX, respectively. The

period average of the federal funds rate at time t, for example, is computed as the mean of the

effective federal funds rate over the 250 trading days from t− 249, . . . . , t. This matches the data

window used to compute the value of spillover index reported at time t. The unit of measurement

is percent for all of these variables. In each panel, the aggregate spillover index is shown on the

left-hand scale and the selected financial indicator is shown on the right-hand scale. Data for the

effective federal funds rate, the TED spread, and the VIX are obtained from the Federal Reserve

Economic Data Service (the series IDs are “DFF,” “TEDRATE,” and “VIXCLS,” respectively).

Figure 5: Spillover intensity versus selected financial indicators
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