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ABSTRACT 

1. Biodiversity indices are widely used to summarise changes in the distribution and abundance of 

multiple species and measure progress towards management targets. However, the sensitivity 

of biodiversity indices to the data, landscape classification and conservation values 

underpinning them are rarely interrogated. There are limited studies to help scientists and land 

managers use biodiversity indices in the presence of fire and vegetation succession. 

2. The geometric mean of species’ relative abundance or occurrence (G) is a biodiversity index 

that can be used to determine the mix of post-fire vegetation that maximizes biodiversity.  We 

explored the sensitivity of G to i) type of biodiversity data, ii) representation of ecosystem 

states, iii) expression of conservation values and iv) uncertainty in species’ response to 

landscape structure. Our case study is an area of fire-prone woodland in southern Australia 

where G is used in fire management planning. We analysed three data sets to determine the 

fire responses of 170 bird, mammal and reptile species. 

3. G and fire management targets were sensitive to the species included in the analysis. The 

optimal mix of vegetation successional states for threatened birds was more narrowly defined 

than the optimal mix for all species combined. G was less sensitive to successional classification 

(i.e. number of states); although classifications of increasing complexity provided additional 

insights into desirable levels of heterogeneity. 

4. Weighting species by conservation status or endemism influenced the mix of vegetation states 

that maximized biodiversity. When a higher value was placed on threatened species the 

importance of late successional vegetation was emphasized. 

5. Representing variation in individual species’ response to vegetation structure made it clearer 

when a decrease in G was likely to reflect a significant reduction in species occurrences. 

6. Synthesis and applications. Data, models and conservation values can be combined using 

biodiversity indices to make robust environmental decisions. Combining different types of 
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biodiversity data using composite indices, such as the geometric mean, can improve the 

coverage and relevance of biodiversity indices. We recommend that evaluation of biodiversity 

indices for fire management verify how index assumptions align with management objectives, 

consider the relative merits of different types of biodiversity data, test sensitivity of ecosystem 

state definitions and incorporate conservation values through species weightings. 

 

Keywords: classification, decision making, fire, geometric mean, indicators, management, 

optimization, policy, relative abundance, weighting  

 

Introduction 

Biodiversity indices are widely used to summarise change in the distribution and abundance of 

multiple species, and measure progress towards policy and management targets (Nicholson et al. 

2012). For example, biodiversity indices are used to assess threatened species (Butchart et al. 2004), 

design protected areas (Loh et al. 2005), manage land and forest resources (Herrando et al. 2010) 

and implement fire management (Giljohann et al. 2015). Because of their growing use in 

environmental decision making there is a need to better understand how biodiversity indices and 

resulting inferences are influenced by the data, models and conservation values that underpin them. 

 

Using biodiversity indices for environmental decision making involves several key steps: identifying 

broad management goals and specific objectives, collecting data, defining the system and its 

biodiversity, choosing an index and modelling biodiversity change, then implementing and 

monitoring actions (Fig. 1; Nicholson et al. 2012 ‘indicator-policy cycle’). Although significant 

progress has been made on choosing appropriate biodiversity indices for different management 

goals (Buckland et al. 2005; van Strien, Soldaat & Gregory 2012) there is little guidance available for 

scientists and fire managers on how to explore and quantify the sensitivity of biodiversity indices. 
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The geometric mean of species’ relative abundance is a widely used index of biodiversity. It reflects 

changes in species richness, abundance and community evenness, and is correlated with extinction 

risk (McCarthy et al. 2014). It also has the advantage that it can combine data from multiple surveys 

and different units of measurement (e.g. counts, biomass, percent cover; Buckland et al. 2011). A 

geometric mean combines values on a multiplicative scale, making it more sensitive to changes in 

the abundance of less common species than an arithmetic mean (Buckland et al. 2005). Because of 

these useful properties, the index is used as an indicator in a range of ecological contexts. At global 

and national scales, the geometric mean of species’ relative abundance underpins the Living Planet 

Index (Loh et al. 2005) and UK Wildbird Indicator (Gregory & van Strien 2010), which calculate 

temporal trends in multiple species’ relative abundances. In regional fire management planning, the 

geometric mean of species’ relative abundance or occurrence (G) is used to determine the mix of 

vegetation successional states that maximize species diversity (Di Stefano et al. 2013; Kelly et al. 

2015).  

 

Using a case study on fire management planning for vertebrate conservation in southern Australia, 

we investigate the sensitivity of G and resulting management inferences to the underlying data, 

landscape classification and conservation values. Fire profoundly influences ecosystems in southern 

Australia and a primary objective of fire management is biodiversity conservation (DELWP 2015). 

One way to quantify this goal is by determining the mix of post-fire vegetation successional states 

that maximize the G of multiple species (Kelly et al. 2015). Because different birds, mammals and 

reptiles are associated with different post-fire successional states, changes in vegetation over time 

are reflected by G. The vegetation structure of a given area that maximizes G varies, depending on 

the number of species and their relative abundance in the different successional states. Fire 

managers in southern Australia use G to set management targets and, in turn, implement and 

monitor fire strategies (DELWP 2014, 2015).  
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There are several ways that data, landscape classification and values can influence biodiversity 

indices and management decisions. Biodiversity data are commonly biased towards a small number 

of taxonomic groups and common species (Baillie et al. 2008). Because fire management strategies 

are sensitive to taxonomic focus (Giljohann et al. 2015), ensuring species of concern are included in 

the analysis is crucial. Yet not all types of data are equivalent in the quality of information they 

provide (e.g. presence-absence, presence-only, expert estimates), so it is important to consider the 

relative merits and trade-offs of using and collecting different types of data. How ecosystem 

dynamics are represented can also influence indices (Keane et al. 2008; Branch et al. 2010). For 

example, indices can be sensitive to the number of classes used to partition a landscape and to the 

size of the landscape (Keane et al. 2008). Although successional states are often used to guide fire 

management, sensitivity to how they are defined is rarely tested. Yet, ensuring successional 

dynamics are represented appropriately is particularly important. If managers seek to prioritize 

endangered or range-restricted species rather than generalist or wide-ranging species, then 

weighting species by their conservation value may be appropriate. Yet as conservation value can be 

measured in multiple ways (e.g. extinction risk or endemism) considering the merits of different 

approaches and how they influence management targets, such as the landscape-wide mix of 

vegetation successional states, is important. 

 

Our overarching question was: how do data, landscape classification and conservation values 

influence biodiversity indices and fire management decisions? Using data on 170 vertebrate species 

from fire-prone southern Australia we ask four key questions: (i) what are the relative merits of 

using different types of biodiversity data? (ii) how does the representation of ecosystem states 

influence evaluation? (iii) how does the value or weighting applied to each species influence 

management targets? and (iv) how does uncertainty in species’ responses to landscape structure 

influence management targets? 
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MATERIALS AND METHODS 

Case study 

The Northern Mallee Parks are a connected system of conservation reserves covering 687 770 ha of 

semi-arid southern Australia. The presence of seven IUCN Red List bird species makes these parks a 

priority for biodiversity management. Naturally occurring wildfires play a dominant role in shaping 

system dynamics (Avitabile et al. 2013). As both canopy and understorey are removed by fire, 

vegetation structural complexity is largely a function of time-since-fire (Haslem et al. 2011). The 

study area predominantly comprises mallee vegetation; open woodland characterised by 

resprouting multi-stemmed Eucalyptus trees (<10 m) and an understorey dominated by either the 

flammable perennial hummock grass Triodia scariosa (hereafter Triodia Mallee) or multiple species 

of the family Chenopodiaceae (hereafter Chenopod Mallee). Triodia Mallee and Chenopod Mallee 

cover 60% and 20% of the parks, respectively (Fig. S1 in Supporting Information). 

 

Overview 

We modelled the biodiversity data to understand how species occurrence and relative abundance 

changes as a function of time-since-fire - a proxy for vegetation structure used to delineate 

successional states. We then determined the proportion of successional states that maximized 

biodiversity (represented by G) across the landscape. Finally, we explored the sensitivity of the 

optimal solution to species data, definition of ecosystem states and species weightings. 

 

Defining biodiversity 

We used three sources of vertebrate data: presence-only data on threatened birds (hereafter PO), 

presence-absence data on birds, reptiles and small mammals (hereafter PA), and expert estimates of 

the relative abundances of birds, reptiles and all-sized mammals (hereafter EE). 
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The PO data are based on bird surveys at 5091 sites collected from 1999 to 2012 in Triodia Mallee 

and Chenopod Mallee in the Murray Mallee region (32.8–35.2° S, 139.7–144.1° E; as defined by 

Haslem et al. 2010) and sourced from Australian government databases, BirdLife Australia and 

surveys undertaken by La Trobe, Monash and Deakin Universities (Clarke, Boulton & Clarke 2005; 

Brown, Clarke & Clarke 2009). The data contain records for 11 threatened bird species across a 

chronosequence of 0–110 years post-fire. 

 

The PA data were collected from 2006 to 2008 as part of a large-scale natural experiment. The data 

are based on surveys of birds, reptiles and small mammals in 28 study landscapes at sites across a 

chronosequence of 0–110 years post-fire within the same region as the PO data (see Kelly et al. 

2011; Watson et al. 2012; Nimmo et al. 2012 for survey details). The PA data record the presence or 

absence of species at each site in Triodia Mallee (61 bird, 54 reptile and 6 small mammal species) 

and Chenopod Mallee (60 bird, 47 reptile and 5 small mammal species). 

 

The EE data are predominantly expert estimates of species’ relative abundance in post-fire 

vegetation successional states combined with published empirical fire responses for a small number 

of species (MacHunter, Menkhorst & Loyn 2009). The EE take one of four integer values (0–3) with 

higher values representing an increase in relative abundance in a given state and zero indicating 

absence in Triodia Mallee (85 species) and Chenopod Mallee (83 species; Table S1). Definitions of 

vegetation state follow Cheal (2010; Appendix S1). 

 

Establishing species time-since-fire relationships 

The different data types required multiple approaches to establish time-since-fire relationships. For 

the PO and PA data we used species distribution models. We used MaxEnt (Phillips, Dudík & 

Schapire 2004) to model the response of PO species to time-since-fire and an interaction with 

vegetation type. The MaxEnt output is the relative likelihood of species occurrence, which in this 
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case provides a measure of relative habitat suitability as the vegetation changes post-fire.  

Generalised additive mixed models (GAMMs) were used to model PA fauna responses to time-since-

fire and an interaction with vegetation type. The GAMM output is a probability of occurrence, which 

is highly correlated with relative abundance when species are at low prevalence; as is the case in the 

PA data set. Detailed description of modelling methods and results are provided in Appendix S2. The 

EE estimates were rescaled to the unit interval (0–1) such that values of 1 represent the highest 

abundance and 0 represents absence. Rescaling put the estimates on the same range as outputs 

from the species distribution models. Hereafter, we use the term ‘relative occurrence’ to describe 

the outputs from presence-absence and presence-only models, and ‘relative abundance’ for the 

expert estimates.  

 

Defining ecosystem states: vegetation structural classifications 

Vegetation successional states define the availability of key structural habitat features and their 

occurrence along a time-since-fire gradient. For each vegetation type we had three alternative 

models of successional dynamics that differed in the number and breadth of states: a simple three-

state model, a four-state model with an additional older category, and a more complex model of 

six/seven states. 

 

The three-state model in Triodia Mallee had: Early (0–10 years), characterised by bare ground, small 

coppicing Eucalyptus species and post-fire ephemerals, Mid (11–35 years), characterised by high 

cover of T. scariosa and Late (36+ years), characterised by larger trees with decorticating bark and 

progressive development of tree hollows. Chenopod Mallee was classified as Early (0–10 years), Mid 

(11–30 years) and Late (31+ years) and differs from Triodia Mallee in that the Mid state is 

characterised by medium cover of Chenopodiaceae shrubs and generally sparser vegetation. 
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The four-state model used updated mapping of longer-unburnt vegetation. This classification is of 

specific interest to park managers. Triodia Mallee was classified as Early (0–10 years), Mid (11–35 

years), Late 1 (36–80 years) and Late 2 (80+ years) and Chenopod Mallee as Early (0–10 years), Mid 

(11–30 years), Late 1 (31–60 years) and Late 2 (60+ years). 

 

The third model had six or seven states depending on vegetation type. This classification used 

structure plus floral composition and maturation rates to define the states (based on Cheal 2010). 

We used seven states in Triodia Mallee: renewal, juvenility, adolescence, vigorous maturity, early 

stasis, late stasis and early senescence, and six states in Chenopod Mallee: renewal, juvenility, 

adolescence, early maturity, mid maturity and late maturity (Appendix S1). 

 

Modelling biodiversity change: calculating G 

Based on species responses to vegetation succession, we determined the optimal combination of 

vegetation states for biodiversity conservation in Triodia Mallee and Chenopod Mallee. We 

calculated the geometric mean of species’ relative occurrence or abundance (G) for each dataset 

separately (PO, PA and EE) and for two combinations of data (PO & PA and All data) in each 

vegetation type. For the PO and PA data, only those species that showed a clear response to time-

since-fire in each vegetation type were included in the optimizations (Appendix S2). 

 

For the PO and PA data, we calculated species’ relative occurrence in each vegetation state by 

averaging model predictions over the period defined by each state (e.g. 11–35 years). For the EE, we 

averaged the estimates of relative abundance to align with the three and four-state models. The 

three data sets each provide information on species’ relative habitat use (scaled 0–1) therefore we 

considered them to be proportional and that combining them was reasonable. The ability to 

combine data sets from different surveys is a major benefit of using G (Loh et al. 2005; Buckland et 

al. 2011). Combined data sets were created by merging individual data sets. When species were 
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present in multiple data sets we retained the entry that maximized information (PA>PO>EE). New 

estimates using data from multiple data sets were not created as data sets were not always 

independent. 

 

The average relative occurrence or abundance of species in a given vegetation type was dependant 

on the proportion of area in each successional state and is given by 

 ௜ܲ = 	 ஼௝,௜ܽ஼௝ݍ + ஼ଶ,௜ܽ஼ଶݍ +⋯+ ஼ௌ,௜ܽ஼ௌ, eqn 1ݍ

where q is the relative occurrence or abundance of species i in successional state C, a is the 

proportion of area in successional state C and C takes values from j to S the total number of states. 

As Pi averages across all successional states, even if a species does not occur in one or more 

successional states (e.g. qC1,i  = 0), its relative occurrence or abundance across the landscape will 

always be greater than 0.  

The geometric mean of the N total number of species is then  

ܩ  = exp൭1ܰ ෍logሺ ௜ܲሻே
௜ୀଵ ൱. eqn 2

 

Exploring alternative ways of valuing species 

To explore how species weights can be used to incorporate conservation values, we use three 

examples. In the first two, species were weighted by their relative risk of extinction and in the third, 

species were weighted on the basis of endemism. To weight species by their relative risk of 

extinction, we used the IUCN Red List Australia threat categories (Cogger 1993; Garnett & Crowley 

2000; Burbidge 2014). Threat categories were weighted using two methods presented in Butchart et 

al. (2004), i) geometric scaling, reflecting the change in relative extinction risk between categories 

and ii) the ‘equal-steps’ approach, which indicates at least one measure of extinction risk has 

become worse with each step. The weights were: Least Concern (0), Near Threatened (0.0005), 
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Vulnerable (0.005), Endangered (0.05) and Critically Endangered (0.5) for the geometric scale, and 0–

5 respectively for the ‘equal-steps’. 

 

To prioritize endemic species, we calculated the proportion of each species' global range falling 

within the parks. Species occurrence records from 1999 to 2015 were sourced from the Atlas of 

Living Australia (ALA 2015); the restricted timeframe minimized the chance of including extirpated 

populations. Species range was defined using a minimum convex polygon and the resulting area 

clipped by extant native vegetation (DSEWPaC 2012). Calculations were undertaken in ArcMap 10.2 

(ESRI 2013). 

 

We used only the combined PO and PA data to calculate a weighted G by weighting the log of each 

species' average relative occurrence as 

ܩ  = expቀଵ௪∑ ሺw௜ሻ logሺ ௜ܲሻே௜ୀଵ ቁ, eqn 3

where wi is the weight given to species i, N is the total number of species, w is the sum of all wi from 

i to N, and Pi is from equation 1. If all species weights equal one, the formula reduces to the standard 

geometric mean.  

 

Optimization procedure 

We used numerical optimization to determine the proportion of area in each vegetation state that 

maximized G, averaging across species in the community. By maximizing G we identify the optimal 

vegetation successional structure for the species in the analysis. We follow the optimization 

procedure presented in Kelly et al. (2015) and maximize G as 

 

G௢௣௧ = 	maxሾGሿ, subject	to		 ∑ ௝ܽௌ௝ୀଵ = 1, 
eqn 4

where aj is the proportional area in state j and S is the number of states. 
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In summary, the vegetation structure that maximized G was calculated for 36 combinations of data, 

state classifications and vegetation types. Optimizations were completed using RStudio version 3.2.2 

with the package Rsolnp version 1.15 (Ghalanos & Theussl 2015). 

 

Assessing change 

For each vegetation type and successional state combination, we compared the optimal vegetation 

structure to the current vegetation structure (i.e. October 2015). We calculated the current 

proportion of the parks in each vegetation type and successional state using digitised spatial 

vegetation (DELWP 2016; Fig. S1) and fire history data. Fire history data were a combination of fire 

scars converted from satellite imagery, 1972–2011 by Avitabile et al. (2013) and 2012–2015 by the 

land management agency. For sites burned prior to 1972 we used predictive mapping by Callister et 

al. (2016; Fig. S2). Calculations were undertaken in ArcMap version 10.2 (ESRI 2013). To compare the 

current structure to the optimal we calculated percent difference in G, and quantified precision in 

the estimate using 95% confidence intervals. We also calculated G for each species individually using 

both the optimized and current successional state proportions for each vegetation type. 

 

Results 

Here we show how data source, vegetation type, representation of successional states and species 

weightings influence G and the optimized mix of successional vegetation. Species responses to fire 

are included as Appendix S2. 

 

Sensitivity to biodiversity data 

The optimal mix of successional vegetation was sensitive to the species included in the analysis. In 

Triodia Mallee, the structure that maximized G for each separate Triodia Mallee data set was 

weighted towards vegetation ≥10 years (Fig. 2a–e & S3–S4). For example, the optimal structure for 

PA data with four states was a combination of Mid (11–35 years; 0.54) and Late 2 (80+ years; 0.46) 
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vegetation (Fig. 2a). For the PO data, the optimal structure was entirely Mid vegetation, reflecting 

the time when the majority of threatened birds attain maximum relative occurrence (Fig. 2b). When 

combining all data sets for Triodia Mallee (PO, PA, EE), the structure that maximized G using four 

states was a combination of Early (0–10 years; 0.09), Mid (0.31), Late 1 (36–80 years; 0.26) and Late 

2 (0.34) vegetation (Fig. 2e). This solution was midway between the optimal solution for PO and EE. 

The requirement for Early vegetation reflects the contribution of some EE species, which are thought 

to be most abundant in the first ten years after fire and are not present in the other data sets (Fig. 

2c). 

 

The successional structure that maximized G for each separate Chenopod Mallee data set was 

weighted towards vegetation >31 years, except for the PO data where the optimal structure was 

entirely Mid (11–30 years; Fig. 2f–j & S5–S6). For all Chenopod data combined (PO, PA, EE) the 

structure that maximized G was also strongly weighted towards vegetation ≥31 years (Fig. 2j). 

 

Sensitivity to vegetation model  

Although the two modelled vegetation types co-occur in geographic space, their differing temporal 

dynamics and species assemblages led to distinct optimal structures. The G optimization based on 

alternative classifications of Triodia Mallee vegetation states yielded broadly similar results. The 

main differences between the Triodia Mallee solutions were due to refinement of the older 

vegetation states. The additional complexity of the four- and seven-state models of system dynamics 

revealed species’ distinct preference for vegetation greater than 80 years post-fire (Fig. 3b–c & S3–

S4), which was not observable from the three-state model (Fig. 3a). 

 

G optimization based on alternative classifications of Chenopod Mallee successional states again 

yielded broadly similar results. As for Triodia Mallee, the main differences between the Chenopod 

Mallee solutions were due to refinement of older vegetation dynamics. Using four states, the 
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optimal structure for all birds, mammals and reptiles was maximized by a combination of Early (0–10 

years; 0.03) and Late 1 (31–60 years; 0.97) vegetation (Fig. 2j & S6). The additional complexity in the 

four- and six-state models of system dynamics clarified a distinct preference for vegetation 31–60 

years post-fire (Fig. S6b–c). 

 

Sensitivity to species weightings 

G and the optimal vegetation structures were sensitive to species weightings. In Chenopod Mallee 

the most range-restricted species (MCP) have maximum relative occurrence in Late 1 vegetation, 

thus the optimal vegetation structure was comparable with the equal weighting scenario (Fig. 4b). 

By contrast, the IUCN ‘equal-steps’ weights shifted the entire allocation to Mid vegetation (Fig. 4d). 

The IUCN geometric weights shifted only 40% of the allocation to Mid, reflecting the priority given to 

Endangered and Vulnerable species that have high relative occurrence in Late 1 vegetation (Fig. 4c). 

This response was midway between equal weighting and the IUCN ‘equal-step’ weights, as the most 

threatened species are also the most range-restricted. In Triodia Mallee the value-based weights 

yielded consistent results; shifting the optimal vegetation structure to 100% Mid (Fig. S7). The 

consistency indicates substantial overlap between threatened and range-restricted species in Triodia 

Mallee. 

 

Evaluating change 

The difference between the current state of the parks and the optimal state varied with data set and 

vegetation type. For Triodia Mallee, the current state of the parks is 18% Early, 31% Mid, 48% Late 1 

and 2% Late 2 vegetation. This was similar to the solution that maximized G for all Triodia Mallee 

data sets combined (Table S2), G decreased by 2.88%, reflecting the small expected change in 

species occurrence or abundance due to the current landscape composition (Fig. 5a). G decreased 

approximately 10% for both PA and PO data (Table S2). For PO data the significance of the change 
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was reflected by minimal overlap of confidence intervals. For PA data the impact of the change was 

not clear. 

 

The current state of Chenopod Mallee across the parks is 25% Early, 4% Mid, 

46% Late 1 and 25% Late 2 vegetation. For three of the five data sets in 

Chenopod Mallee, the current state of the parks induced a decrease of 10% or 

more in values of G. The greatest decrease was 17.2% for PO, which is likely to 

result in a significant reduction in all species occurrences (Fig. 5b). The PA data 

indicated minimal change, which may partly be because the species have a 

wider range of habitat preferences, as reflected in the uncertainty around G 

(Fig. 5b).  

 

Discussion 

Using biodiversity indices in the presence of both fire and succession presents unique challenges. 

We have shown that using biodiversity indices for fire management requires careful consideration of 

the underpinning biological data, the definition of post-fire successional states, and how species are 

valued or weighted. Below, we provide guidance on applying biodiversity indices for management of 

fire-prone ecosystems. 

 

What are the relative merits of using different types of biodiversity data?  

Choices relating to data type were influential on the mix of successional states that maximized 

biodiversity. When using presence-only data for threatened birds the optimal vegetation structure in 

both Triodia and Chenopod Mallee was entirely Mid successional, reflecting the similar habitat 
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preferences of these species and the restricted taxonomic scope of the sample. The greater 

taxonomic breadth and number of species in the presence-absence data and expert estimates 

resulted in more diverse optimal vegetation structures.  

 

A benefit of using G as a measure of biodiversity is that different types of data can be combined 

(Buckland et al. 2011). By combining presence-absence data, presence-only data and expert 

estimates our measure of biodiversity better represented the ecological community. However, this 

potential benefit should be assessed based on the quality of the biodiversity data. Data selection for 

management decisions involves trade-offs between data quality, data coverage and costs (Wilson et 

al. 2005). The largest data set, the presence-absence data, is the result of well-designed systematic 

surveys that can discriminate between habitats the species use (presence) and do not use (absence; 

Kelly et al. 2011; Watson et al. 2012; Nimmo et al. 2012). The presence-only data set is a valuable 

resource, yet as it contains no absence records there is a chance of incorrectly representing species 

habitat associations. To minimize this risk we implemented three bias-correcting approaches and 

found the results to be robust (Appendix S2). The three presence-only models were able to reliably 

rank habitat in terms of the species likelihood of occurrence (AUC >0.8; Pearce, Ferrier & Scotts 

2001), demonstrating the potential usefulness of long-term database records for incorporating 

habitat requirements of less common species into regional fire management plans. The expert 

estimate data set had the least information content, despite consisting of direct estimates of 

species’ relative abundance in successional states. Quantifying uncertainty in the point estimates 

would increase their value. Ultimately, data should have relevant coverage of the biodiversity being 

protected, as an ad hoc selection of a subset of species can bias results. Restricted coverage of 

biological data has also been shown to affect other indicators, such as the Mean Trophic Level, 

where trends differed considerably when small pelagic fish or Atlantic cod were excluded (Branch et 

al. 2010). 
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Future research that incorporates spatial measures and other fire regime characteristics into species 

distribution models, or maps G across the landscape could provide greater understanding of species 

habitat selection. Such an approach could also minimize the chance of misrepresenting the optimal 

landscape, which may occur if species adjust their relative habitat usage in proportion to the 

frequency of those patches in the landscape. 

 

How does the representation of ecosystem states influence evaluation? 

Models of ecosystem dynamics are a fundamental component in correctly representing biodiversity 

change over time. Our results demonstrate the importance of exploring how definitions of 

successional states influence management decisions. Differences in the combinations that optimized 

G show the importance of identifying the level of complexity appropriate for the species and system 

under consideration. For Triodia Mallee and Chenopod Mallee increasing the number of vegetation 

states clarified subtle differences in the mixtures that optimized G. We recommend that post-fire 

successional states are based on demonstrated habitat requirements of the target species and 

clearly linked to changes in vegetation structure over time. 

 

Sensitivity to the system model is important for other indices, such as Sorenson’s index, which is 

sensitive to the number of classes (Keane et al. 2008) and the Mean Trophic Level indicator which is 

sensitive to trophic level estimates (Branch et al. 2010). Determining the best model to represent 

the processes of interest may induce a trade-off between simplicity and complexity. The models 

with over six states provided greatest differentiation but are potentially too detailed to be relevant 

for on-ground management. What are needed are enough categories to capture the fundamental 

needs of different taxa. For example, the three-state model for Triodia Mallee clumps all vegetation 

greater than 30 years in one class. Implementing this on-ground could have an unfavourable effect 

on species that rely on Triodia Mallee greater than 80 years; for example, bird species such as the 

Yellow-plumed Honeyeater (Lichenostomus ornatus) and Striated Pardalote (Pardalotus striatus) 
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that require large eucalypts to provide food and nesting hollows (Nimmo et al. 2012), and reptile 

species such as Boulenger’s Skink (Morethia boulengeri) that utilize accumulated litter and bark 

(Nimmo et al. 2012). For late successional specialists, the four-state model has greater relevance. 

 

How does the value or weighting applied to each species influence management targets? 

Many multi-species indices weight species equally, such as the Living Planet Index (Loh et al. 2005) 

and Natural Capital Index (ten Brink 2000). However, explicit species weightings provide an 

opportunity to incorporate societal or conservation values into biodiversity indices. For example, 

conservation weights are used in global reporting indices such as the Red List Index, which weights 

species by threat status (Butchart et al. 2004), or the Wild Bird Indicator, which weights by 

proportion of the European population of that species in each country (Gregory & van Strien 2010). 

 

We have demonstrated how three example weighting schemes influence the optimal vegetation 

structure in a manner that reflects their underlying priorities. For Chenopod Mallee, the IUCN 

geometric weights and the weights reflecting endemism (MCP) are similar because three of the four 

most threatened species that occur in Chenopod Mallee, Regent Parrot (Polytelis anthopeplus subsp. 

Monarchoides), Black-eared Miner (Manorina melanotis) and Red-lored Whistler (Pachycephala 

rufogularis), have the greatest proportion of their range within the study area. These solutions 

emphasize the importance of late successional Chenopod Mallee for the species listed as 

Endangered and Vulnerable. The remaining three species of high conservation concern that occur in 

Chenopod Mallee have less than 1% of their range in the study area, hence the solution when using 

the IUCN ‘equal-steps’ weights is predominantly mid successional. The ‘equal-steps’ solution is 

similar to the solution when equally weighting only the threatened birds (PO). The optimal 

vegetation structure in Triodia Mallee was similar for all non-equal weights as there was complete 

overlap between endemic species (MCP) and the species facing highest threat, e.g. Mallee Emu-

wren (Stipiturus mallee), despite the different approaches to scaling conservation value. Using 
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weights is a transparent way to incorporate values into the decision-making process and is amenable 

to updating if weights change (e.g. threat status). 

 

How does uncertainty in species’ responses to landscape structure influence management targets?  

We used the optimal G to define a reference state aligned to the objective and assessed how far we 

were from this state by comparing it to the current state of the system. The variation in optimal 

vegetation structure between the five data combinations emphasizes how a reference state is only 

as relevant as the data underpinning it. Depending on the data set, the current state ranged from 

being close to the optimal vegetation structure (e.g. All data in Triodia Mallee) to far from the 

optimal structure (e.g. only threatened bird (PO) data in Chenopod Mallee), highlighting the 

importance of ensuring species data accurately reflect the goals set by decision makers. 

 

Representing variation in species’ responses to vegetation structure provided valuable information 

on how individual species are expected to respond to vegetation change. Using all species combined 

in Chenopod Mallee, G for the current state decreased by 10% from the optimal, yet approximately 

25% of species would be expected to increase in occurrence or abundance under the current 

vegetation structure. Exploring the data that underpins indices is important for assessing robustness 

and understanding how biodiversity is changing (Runge 2011). Whether an index is sensitive to 

change in the state of the system is also of prime importance. Fisheries have invested significant 

effort into understanding how well indices respond to changes in system state (Fulton, Smith & Punt 

2005). In fire management, further work is needed to identify biologically meaningful system-

specific targets, with appropriate levels of confidence, so it is clear when a change should trigger 

action. 
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Recommendations for management 

We make the following recommendations for applying biodiversity indices to fire management: First, 

select an index closely aligned to the management objective (Rice & Rochet 2005; McCarthy et al. 

2014) and has statistical and theoretical support (Buckland et al. 2005, 2011; van Strien, Soldaat & 

Gregory 2012). Second, consider the information content of the biodiversity data and account for 

potential sources of bias. Third, interrogate classifications of ecosystem states, as inappropriate 

categories may disadvantage certain groups of species. Fourth, species weights provide a 

transparent means to incorporate societal values into decision making and can be easily updated. 

And fifth, represent uncertainty in the index as this provides insight into what is a statistically 

important change.  

 

For example, in the Northern Mallee Parks threatened birds are a priority for 

managers and multiple species rely on Triodia Mallee greater than 80 years 

old. Therefore, a relevant indicator would likely incorporate presence-absence 

and presence-only data, employ the four-state model of vegetation change, 

and consider how weighting G by species endemism or geometrically-scaled 

extinction risk influences management targets. A clear understanding of the 

sensitivity of biodiversity indices should enhance their use in environmental 

decision making and increase the likelihood of meeting biodiversity objectives.
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Figure 1. Using biodiversity indices for environmental decision making. Modified from the ‘indicator-

policy cycle’ of Nicholson et al. 2012. This study focuses on steps within the dashed lines. 

 

Figure 2. Optimal vegetation structures that maximize the geometric mean of species’ relative 

occurrence or abundance for three separate data sets and two data combinations in Triodia (dark 

grey; a-e) and Chenopod Mallee (light grey; f-j) using four vegetation states. The data are: presence-

absence (PA), presence-only (PO), expert estimates (EE), combined PA & PO and all data (PA, PO & 

EE). 

 

Figure 3. Sensitivity of the optimal vegetation structure to successional state representation in 

Triodia Mallee using a) three, b) four and c) seven states for the combined presence-absence and 

presence-only data (PA & PO). 

 

Figure 4. Influence of value-based weights on the optimal vegetation structure for combined PA and 

PO data in Chenopod Mallee using four states. Individual species weights are a) all equal, b) 

proportion of global habitat in study area (MCP), and extinction risk using IUCN Red List categories 

with c) geometric scaling or d) ‘equal-steps’. 

 

Figure 5. Comparison between the optimal G (black) and current G (grey) in a) Triodia Mallee and b) 

Chenopod Mallee using four states and all data combinations. Error bars are 95% confidence 

intervals. The point data are G calculated for each species individually. 
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