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ABSTRACT 

Population viability analyses (PVAs) contribute to conservation theory, policy, and 

management. Most PVAs focus on single species within a given landscape and address a 

specific problem. This specificity often is reflected in the organization of published PVA 

descriptions. Many lack structure, making them difficult to understand, assess, repeat, or 

use for drawing generalizations across PVA studies. In an assessment comparing 

published PVAs and existing guidelines, we found that model selection was rarely 

justified; important parameters remained neglected or their implementation was described 

vaguely; limited details were given on parameter ranges, sensitivity analysis, and 

scenarios; and results were often reported too inconsistently to enable repeatability and 

comparability. Although many guidelines exist on how to design and implement reliable 

PVAs and standards exist for documenting and communicating ecological models in 

general, there is a lack of organized guidelines for designing, applying, and 

communicating PVAs that account for their diversity of structures and contents. To fill 

this gap, we integrated published guidelines and recommendations for PVA design and 

application, protocols for documenting ecological models in general and individual-based 

models in particular, and our collective experience in developing, applying, and 

reviewing PVAs. We devised a comprehensive protocol for the Design, Application, and 

Communication of PVAs (DAC-PVA), which comprises 3 primary elements. The first 

defines what a useful PVA is; the second element provides a workflow for the design and 

application of a useful PVA and highlights important aspects that need to be considered 

during these processes; and the third element focuses on communication of PVAs to 

ensure clarity, comprehensiveness, repeatability, and comparability. Thereby, DAC-PVA 
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should enhance communication and repeatability of PVAs, strengthen the credibility and 

relevance of PVAs for policy and management, and improve the capacity to generalize 

PVA findings across studies. 

INTRODUCTION 

Population viability analysis (PVA) is a process of identifying and evaluating threats to a 

species and estimating the (relative) probability of a population persisting for a given 

time into the future (Akçakaya et al. 1998). Population viability analyses are used to 

address a broad range of conservation questions, including identifying the relative 

importance of factors affecting population dynamics and viability (Gilpin & Soulé 1986), 

assessing extinction risk and conservation status (Reed et al. 2002; IUCN 2010), 

identifying critical habitats, weighing ecological and socioeconomic trade-offs (e.g., 

Curtis & Vincent 2008; Johst et al. 2011), prioritizing management alternatives (Bekessy 

et al. 2009), communicating conservation problems to stakeholders (Shaffer et al. 2002), 

and identifying information gaps to direct further research (Akçakaya & Sjögren-Gulve 

2000; Akçakaya et al. 2004). The application of PVAs to species conservation has been 

facilitated by growing computational capacity and the availability of software programs 

such as VORTEX (Lacy 1993), ALEX (Possingham & Davies 1995), the RAMAS family 

of models (Akçakaya 1994, 2002; Akçakaya & Root 2003), METAPHOR/METAPOP 

(Verboom et al. 2001), and SPOMSIM (Moilanen 2004). 

Most PVA studies focus on the dynamics of a single species in a given landscape 

in relation to particular threats or management options and entail a case-specific set of 

performance criteria. Consequently, recent attempts to synthesize and generalize the 
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results of multiple PVA studies have failed to overcome the methodological 

idiosyncrasies and find meaningful generality in meta-analysis (e.g., Naujokaitis-Lewis et 

al. 2009). This study highlights the problem of case specificity in PVA methods and 

reporting and identifies a need for standardization.  We   examined whether PVA 

implementation and reporting have changed or improved over time, assessed whether 

published guidelines for PVA design and implementation have been used or offer 

solutions, and devised a comprehensive protocol for design, application, and 

communication of PVAs. To achieve our objectives, we reviewed individual PVA studies 

and synthesized literature that provided specific advice on PVA design and 

implementation and more general guidance on documenting ecological models. 

DATABASE CONSTRUCTION  AND LITERATURE REVIEW 

This study was instigated by challenges that arose while assembling and analyzing 2 

databases of published PVAs. The first database was assembled to identify general 

properties across taxa on the relative influence of demographic and spatial parameters on 

population viability (Naujokaitis-Lewis et al. 2009). The second database was developed 

within the EU project SCALES (Henle et al. 2010), the goal of which was to generalize 

viability requirements across species and ecosystems. The SCALES database synthesized 

PVAs for terrestrial animals; it summarizes 260 parameters from 78 published PVA 

studies. The database includes metadata; information on model design and parameter 

values, including those related to life history, population growth, population structure, 

landscape attributes, dispersal patterns, and sources of stochasticity; and qualitative and 

quantitative results of simulations and sensitivity analyses (details available in Supporting 

Information).  
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Among the many published recommendations on aspects of design, application, and 

communication of PVAs, we synthesized 9 publications that offered relatively 

comprehensive guidelines: Boyce (1992), Beissinger and Westphal (1998), Akçakaya and 

Sjögren-Gulve (2000), Burgman and Possingham (2000), White (2000), Morris and Doak 

(2002), Ralls et al. (2002), Shaffer et al. (2002), and International Union for Conservation 

of Nature (IUCN) (2010). We identified 214 guidelines for PVA design, implementation, 

and communication. Because some guidelines addressed more than one topic, we 

distinguished 318 pieces of specific advice from these 9 sources (Supporting 

Information). 

In addition to guidelines specific to PVAs, we sought protocols that could offer 

structural advice on reporting. Such advice was lacking from within the PVA literature. 

However, we identified 2 relevant protocols that provide advice on how to structure 

model reports. The ODD (“overview, design concept, details”) protocol was designed to 

describe individual-based and agent-based models, but is also useful for directing model 

design and implementation (Grimm et al. 2006; Grimm et al. 2010). The TRACE 

(transparent and comprehensive ecological modeling [Schmolke et al. 2010]) protocol 

aims to improve the documentation of ecological models, especially applied models, 

throughout the process from model development to application. Using the general 

reporting recommendations of ODD and TRACE, we integrated these guidelines into our 

PVA-focused protocol (Supporting Information). 

Methods 
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In a recent analysis of trends in plant ecology and conservation, Crone et al. (2011) 

identified a tendency of PVAs to increase in complexity, become more spatially explicit 

or spatially realistic, and increasingly oriented toward management issues over time. 

Based on a search of publications listed in the ISI web of knowledge we also found that a 

large number of recent PVA studies address land-use change (58 studies as of October 

2012) and climate change (113 studies, of which 44 were published since January 2011). 

These values suggest a growing responsiveness to threats, policy, and management needs. 

But do they also indicate improvements in PVA design, application, and communication 

over time? 

 

JUSTIFICATION OF PVA DESIGN Modeling approaches differ in applications, advantages, 

and limitations and explore different questions on the basis of different model structures 

and parameter sets (Ralls et al. 2002) (Fig. 1). Accordingly, PVA models differ along a 

continuum of complexity from, in order of increasing complexity,  occupancy models, to 

spatially structured population and metapopulation models, to complex individual-based 

models (IBM)  (Akçakaya & Sjögren-Gulve 2000). The addition of spatially explicit 

information introduces further complexity. Software packages for PVAs use different 

structures and models specifications, such that even when used for the same purpose 

different PVA software can yield different outcomes (e.g., Mills et al. 1996; Brook et al. 

1999; Lindenmayer et al. 2003). As computational capacity improves and modeling 

techniques advance, increasingly complex models can be used to perform a PVA. 

However, parameterizing such complex models with sufficient field data remains a 
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challenge and does not always yield substantially greater capacity to answer specific 

goals.  

The need to carefully select and justify model structure, methodological approach, 

and software was repeatedly raised in the 9 publications we examined: 35 of 318 (11.7%) 

guidelines addressed this topic. Authors generally suggested building the simplest model 

that encompasses the most important parameters or the most complicated model that 

could be supported by available data of sufficient quality. Through the SCALES database 

we observed an increase in the application of IBMs compared with other model types (on 

the basis of logistic-regression model outcomes, effect of year = 0.09, p = 0.04) (see 

Supporting Information for analysis methods), but we did not observe a significant 

increase in model complexity (Fig. 2) as reported elsewhere (Crone et al. 2011). This was 

partly because authors often provided incomplete information regarding model structure. 

More generally, both Naujokaitis-Lewis et al. (2009) and the SCALES review indicated 

that authors rarely justified model selection or described how model structure related to 

species attributes, the system in question, data constraints, or the functionality of the 

software used. Lack of such justifications impedes the capacity of readers to assess the 

appropriateness of methodological approaches. Some exceptions within the SCALES 

database included Lindenmayer et al. (1995), Akçakaya and Raphael (1998), Forys and 

Humphrey (1999), and Grimm et al. (2003). 

PROCESSES AND PARAMETERS INCLUDED IN PVA APPLICATION  

We found a marked discrepancy between parameters identified by previous authors as 

affecting PVA outcomes, and those that were incorporated and explored in practice. 

Specifically, underrepresented parameters in PVA sensitivity analyses related to density 
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dependence, catastrophes, and landscape attributes such as connectivity and number of 

patches (Naujokaitis-Lewis et al. 2009) (Fig. 3). 

Density-dependent processes often have strong effects on population dynamics 

and extinction risk, and numerous authors endorsed  better inclusion of these processes in 

PVAs (e.g., Boyce 1992; White 2000; Sæther & Engen 2002; Henle et al. 2004; IUCN 

2010). However, we could not find an increase over time in the inclusion of density 

dependence in PVA studies (logistic regression with the inclusion of density dependence 

as a binary response variable; effect of time (years) = 0.02, p = 0.69). Of the PVA models 

that included density dependence (28 studies in the SCALES  database), only 2 studies 

incorporated Allee effects (7%) and 15 assumed a simple ceiling-type behavior (54%), 

which may lead to overestimating extinction risks (Regan et al. 2003; Henle et al. 2004; 

Münkemüller & Johst 2006). Often it was difficult to discern how density-dependent 

processes were modeled.  

Sources of stochasticity and catastrophes received attention in many published 

guidelines, and there were repeated calls to distinguish among environmental, 

demographic, and genetic sources of stochasticity (e.g., Morris & Doak 2002) and to 

address all sources of stochasticity, including catastrophes, in sensitivity analyses (White 

2000). Catastrophes and disturbances (e.g., fires or floods) may differ from regular 

environmental stochasticity (e.g., fluctuations in temperature or rainfall) in amplitude, in 

the processes involved, and the nature of their effects on different life stages, individuals, 

populations, and the recovery of the environment itself (White 2000; Morris & Doak 

2002). Our analyses verified that catastrophes and environmental stochasticity exerted 

strong effects on PVA outcomes (Fig. 3a), but we did not observe an increase over time 
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in the proportion of studies that examined their effects (Fig. 4a) or considered a larger 

number of sources of stochasticity in a given study (Fig. 4b). 

Landscape attributes, such as structural connectivity, and spatial processes, such 

as dispersal, have strong effects on population viability as well (e.g., Taylor et al. 1993; 

Beissinger & Westphal 1998; Tischendorf & Fahrig 2000). More than one-third of the 

PVA models in the SCALES database (38%) were either without spatial structure or 

spatially implicit (i.e., landscape structure and configuration ignored). The use of 

spatially explicit PVA approaches did not increase significantly over time (logistic 

regression with spatial representation as a binary response variable, effect of year = 0.08, 

p = 0.13). Of the models that included landscape features, 7 studies (33%) included 

spatial heterogeneity, but there was no temporal trend in its inclusion. Sixty percent of the 

studies addressed dispersal, but the level of details, or explanation of the details, differed 

substantially among studies. In general, spatial structures and processes included in PVA 

models were poorly described and would not allow evaluation of the approaches taken. 

DETAIL ON PARAMETER RANGES AND SENSITIVITY ANALYSES 

When preparing and running PVA simulations, one should  carefully consider 

assumptions as well as parameterization of baseline values, ranges, and distributions used 

to represent all processes and parameters. A well-designed sensitivity analysis is further 

required to identify parameters that are likely to have a strong effect on the system, 

characterize interactions between parameters, and quantify the effects of various sources 

of uncertainty (Cross & Beissinger 2001). Because these explorations strongly affect 

interpretation and recommendations that are based on PVA outcomes, it is important to 

distinguish between parameters that affect model behavior, those that affect population 
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dynamics in nature, and those that relate to management actions (Cross & Beissinger 

2001; Mills & Lindberg 2002). Yet both databases ([SCALES] Naujokaitis-Lewis et al. 

2009) found the majority of PVA studies provided insufficient detail on model 

assumptions and parameter values and their ranges, and rarely reported complete 

information about initial conditions. These shortcomings hinder verification, validation, 

and especially replication of such studies. 

Furthermore, authors rarely applied recommended methods for sensitivity analysis where 

multiple parameters are varied simultaneously in order to identify interactions and 

quantify relative effects (i.e., whole-model sensitivity analyses [Naujokaitis-Lewis et al. 

2009]). 

COMMUNICATION OF PVA RESULTS  

Population Viability Analyses vary widely in the kinds of outputs produced and reported, 

time horizon over which population dynamics are projected, and viability measures used. 

Regardless of model structure and complexity, a systematic approach to reporting would 

facilitate interpretation of PVA model results and comparability among scenarios, 

models, and studies. However, in most studies we examined, PVA results were not 

reported systematically across scenarios and populations. Rather, examples were usually 

provided from 1 or 2 populations or from a selection of scenarios. Moreover, the 

presentation of a baseline scenario was often lacking.  

A particular challenge was identified with respect to the selection of time horizon 

and viability measures. Factors that may affect the choice of time horizon include study 

goals, species’ characteristics, relevant time horizon for informing or assessing 

conservation actions, need to differentiate between the outcomes of alternative scenarios, 
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and propagation of uncertainty over time. Reported time horizons varied considerably 

among studies; half the papers reported the probability of extinction P(t)  for a time 

horizon (t) of 100 years – a value established by listing authorities (e.g., IUCN 2010) 

primarily for the sake of standardization. The choice of viability measures often relates to 

the time horizon, but it also reflects different aspects of population behavior over time. 

Guidelines on both are found in many publications, but as we discuss later, there is no 

consensus and some of the guidelines are contradictory. Accordingly, within the 

SCALES review we encountered various measures of viability. Probability of extinction 

(P(t)), time to extinction (T0), and population size at a given time were most commonly 

reported (Table 1). Although differences in viability measures among studies increased 

over time, there was no clear shift in the viability measures reported (Fig. 5a). There was 

also no apparent increase in the number of viability measures reported for a given PVA, 

as recommended by Ralls et al. (2002) and possibly in response to the on-going debate 

regarding appropriate metric selection (Fig. 5b). 

Based on our literature review, the lack of consistent communication of PVAs and 

their outcomes is an impediment to meta-analysis and collective learning. The logical 

progression from analysis of field data to model development and presentation of results 

was incomplete and disorganized, and our analyses revealed little progress in the 

presentation of standardized PVA results. In practice, inconsistent reporting and a variety 

of time horizons and viability measures reported in the 2 databases of PVA studies 

(Naujokaitis-Lewis et al., 2009; SCALES database) rendered any quantitative analyses on 

the basis of model results impossible. 
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WHAT IS OFFERED BY EXISTING GUIDELINES AND PROTOCOLS 

PVA guidelines in the literature emphasize issues related to model selection; parameter 

estimation based on empirical data; model parameterization; validation; presentation of 

results; management-relevant interpretation; and a recurrent request to analyze and 

discuss model assumptions and limitations. By contrast, far less attention is given to 

details relating to model description (Supporting Information). None of the published sets 

of guidelines are structured according to a natural sequence of tasks, and none tackled the 

question of how to ensure that descriptions are reported in an orderly and consistent 

fashion. For instance, general suggestions such as describe the model “clearly and in 

enough detail that someone else could replicate it” (Ralls et al. 2002) or list all 

assumptions and formulas (Burgman & Possingham 2000; Ralls et al. 2002; IUCN 2010) 

are not detailed enough to delineate exactly which elements should be documented and in 

which order or how.  

In terms of adherence to existing standard protocols for reporting, the ODD has 

not been adopted by PVA developers. For instance, of 705 PVAs listed by ISI web of 

science 2008-2011 (search words population viability analysis model and ecology or 

conservation [February 2012]), only 9 cited the ODD. Thus, although the ODD offers a 

useful template for describing ecological models (Supporting Information), it has seen 

limited application in PVA, perhaps because most PVAs are not individual or agent 

based. The ODD does not explicitly address issues specific to many PVAs, such as the 

projection matrix for stage-based models or the effects of density dependence. Users of 

existing PVA software may also see little reason to apply the ODD to describe the 
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structure of a model that is described elsewhere, although this may be a misconception 

because the ODD can nevertheless be used to organize documentation and to consider 

and justify assumptions. The most important deficiency of the ODD, however, is that it 

focuses on model description, whereas standardized documentation of PVAs requires a 

protocol that encompasses the entire modeling process, from problem formulation to 

application to interpretation and recommendations. This is partially addressed by the 

TRACE protocol, but due to its generality, TRACE does not offer recommendations that 

are precise enough to facilitate its application for PVAs (Supporting Information). 

Furthermore, for a protocol to be relevant for PVAs, we found a need to extend beyond 

the ranges of TRACE – which primarily ends with communication of model results – and 

define more explicitly how a PVA can direct monitoring, management, model validation, 

and collective learning (see below).  

PROTOCOL FOR PVA DESIGN, APPLICATION, AND COMMUNICATION 

Our results demonstrate that despite the existence of guidelines for the design of PVAs 

and protocols for model description and documentation, a systematic and comprehensive 

protocol is lacking that could standardize the design, application, and communication of 

PVAs without limiting the flexibility and variety of PVA structures and contents. To 

overcome this gap, we propose the use of DAC-PVA as a comprehensive protocol for 

PVA design, application, and communication. The protocol draws on and integrates 

solutions from 5 sources: the TRACE protocol as a canvas for structuring overall 

documentation; the ODD protocol for describing the model itself; factors, processes, and 

parameters that are routinely included in PVAs (as identified through building the 



 

 

15 

abovementioned databases); the 9 published collections of PVA guidelines; and our 

collective experience with PVAs. 

The DAC-PVA protocol has 3 primary elements. The first defines a useful PVA: 

This element can be considered an introduction for a newcomer to the world of PVA or a 

quality checklist for those already working with PVAs. This element may further help 

one evaluate PVA studies. The second element addresses the design and application of a 

useful PVA. This element provides a workflow and highlights important aspects that 

need to be considered during the analytical process. The third element focuses on 

communication of PVAs to ensure clarity, comprehensiveness, repeatability, and 

comparability.  

ELEMENTS OF A USEFUL PVA MODEL  

Schmolke et al. (2010) defined a set of “elements of [any] good model” (Table 2) that can 

be aligned with the design, application, and communication of a model. Furthermore, a 

PVA should build on past experience and knowledge and direct future monitoring, 

research, management, and learning. Shaffer et al. (2002) propose 5 ways to improve 

PVAs: develop standards for PVA application, perform long-term field studies of 

population dynamics, experiment and validate PVA models, create easily accessible 

databases, and formulate rules of thumb. A useful PVA model can therefore be defined as 

one that addresses these issues and supports such improvements. Table 2 contains an 

outline of critical elements of good PVA practice.  A checklist and guidelines appear in 

Supporting Information and can be used for ensuring that a PVA comprehensively covers 

important processes, parameters, and knowledge gaps. 
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DESIGN AND APPLICATION OF A USEFUL PVA MODEL 

An informative PVA is not only a rigorous process of development and analysis, but it is 

also amenable to supporting management decisions, guiding research, and contributing to 

collective learning. In the following sections we discuss important decisions that need to 

be made in order to ensure reliable model design and application (see Supporting 

Information for further guidelines).  

 

Decisions on model complexity and approach: A first stage in model design is to ensure 

that model complexity corresponds appropriately to data availability and that relevant 

processes and parameters are included (Ralls et al. 2002). Processes and parameters that 

are not data supported may be carefully investigated through sensitivity and uncertainty 

analyses. We recommend scanning the checklist in Supporting Information to determine 

whether a given model component is relevant or important and whether the means to 

parameterize the component are available.  

Uncertainty, stochasticity, and parameter estimation: Uncertainty is an 

inherent feature of PVAs that affects the reliability of PVA predictions (Beissinger & 

Westphal 1998; Shaffer et al. 2002). Beissinger and Westphal (1998) listed 4 sources of 

uncertainty: poor quality or low quantity of data, difficulties in parameter estimation, 

weak ability to validate models, and effects of alternate model structures. The first 2 

issues are strongly related to sampling methods and temporal and spatial extents of the 

studies from which data are obtained and should be considered during model design as 

well as during the selection of methods for parameter estimation and parameterization. 

One must obtain estimates of demographic parameters in a manner that addresses and 
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captures the limitations of the field data and translate uncertainty into parameter ranges, 

variances, or statistical distributions. During parameter estimation, one needs to 

distinguish and quantify different sources of variability and potential biases, especially 

between sampling versus process variability. Sampling variability and errors may lead to 

poor estimates of population parameters, which should be accounted for, whereas process 

variability, as manifested for instance as variance in vital rates, may reflect true attributes 

of population dynamics that should be carried forward into a PVA. Similarly, the 

existence and form of density dependence and the degree of spatial autocorrelation 

among local population dynamics, incorporate spatiotemporal sources of variance that are 

difficult to discern without detailed, often long-term data. 

Another important distinction to make is between uncertainty and stochasticity or 

between lack of knowledge (epistemic uncertainty) and natural variation (Regan et al. 

2002). Uncertainty emerges from various sources, stochasticity being only one of them, 

and not all sources of uncertainty can be handled by having more or better data (Boyce 

1992; Ruggiero et al. 1994). In Supporting Information we provide various guidelines 

relating to uncertainty during all stages of model design, application, and communication. 

We also provide separate guidelines for the different types of stochasticity. 

Decisions concerning calibration, verification, and validation: Beissinger and 

Westphal (1998) and Burgman and Possingham (2000) note that model validation, 

especially field validation of PVA predictions, is rarely undertaken. They consider this a 

violation of a basic principle in the use of  model outcomes in decision making (Bart 

1995). Verification should involve consideration of omissions and errors in both model 

design and parameter estimation (White 2000). Even when using existing software, PVA 
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users should ensure that the model performs qualitatively and quantitatively as expected . 

Schmolke et al. (2010) differentiate among calibration, verification, and validation, and 

we emphasize that the latter may be an iterative process, for example, through the use of 

newly accumulated data or monitoring of management outcomes.  

 

Sensitivity analyses are of utmost importance in PVAs because they facilitate 

identification of parameters that have a strong effect on viability assessment. However, 

cautious interpretation of the results of sensitivity analyses is encouraged because 

dependencies between model parameters may be artifacts of model structure rather than a 

reflection of important ecological processes.  Moreover, synergistic effects may prevent 

sensible interpretation of model sensitivity if parameter sensitivities are analyzed 

individually (Saltelli et al. 2006; Saltelli & Annoni 2010). It is therefore advisable to 

assess the importance of interactions among model parameters and of nonlinearities in 

model response to parameter variation (see also Cross & Beissinger 2001). 

Decisions concerning simulation duration and time horizon: To avoid 

mismatches between the temporal scales of ecological processes, management decisions, 

and ecological studies (Henle et al. 2010; Crone et al. 2011), we believe careful 

consideration of simulation duration and reported time horizon is needed. The latter 

relates to the choice of viability measures (discussed below). The former, however, 

requires consideration of various trade-offs during model application. Identification of 

long-term population trends, avoiding transient dynamics due to initial conditions and 

distinguishing among outcomes of alternative management scenarios all tend to favor 

long simulation duration. Short simulation duration, however, is favored by the 
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propagation of uncertainty over time, as well as relevance to specific, often pressing 

conservation decisions. 

 

PVA to support decision making: The utility of a PVA in decision making 

depends on how well the range of decision options and their effects on species 

persistence can be captured within the structure of a PVA. Ensuring that management 

scenarios represented within a PVA are realistic and relevant, that the most salient 

uncertainties are characterized, and that criteria for evaluating differences among 

management outcomes can be identified is a challenging process that has been achieved 

in few real management situations (Burgman & Possingham 2000). A notable exception 

is the case of the Northern Spotted Owl (Strix occidentalis caurina), where multiple 

PVAs of different types and approaches, addressing various factors, were conducted in a 

management context, evaluated, and used to rank alternative scenarios to support 

conservation decisions over a large area (Noon & McKelvey 1996). There is ample 

advice on performance criteria for ranking management options (Possingham et al. 1993; 

Lindenmayer & Possingham 1996; Beissinger & Westphal 1998; McCarthy et al. 2003; 

Bakker & Doak 2009) but few examples where trade-offs between management options 

have been quantified (e.g., Curtis & Vincent 2008; Johst et al. 2011; Wintle et al. 2011). 

In general, for PVA to be accepted as a useful tool by managers, model results should 

correspond to multiple management options (Pielke 2007) and its application would be 

greatly strengthened by considering the costs and benefits of those actions (e.g., 

Sebastian-Gonzalez et al. 2011). A PVA report should also be transparent about model 

limitations (see below where elements of an informative discussion are described).  
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COMMUNICATION OF PVAS 

To enhance standard and comprehensive communication of PVAs, the DAC-PVA 

protocol recommends that researchers design their report according to 5 sections 

(Supporting Information): Background, model description, model application, outcomes, 

and discussion. The background section delineates the context, motivation, and aims for 

PVA development. This section establishes links between the real world and model. 

Model description follows the general structure of the ODD protocol (model overview, 

design concepts, and model details).Model application includes details on 

parameterization, selection of time horizons and viability measures, analytical methods, 

and means for interpretation. Outcomes include baseline and systematic coverage of 

model results, sensitivity and uncertainty analyses, and management ranking. Discussion 

covers key recommendations, limitations, practical outcomes, and outlook.  

We identified a standard, comprehensive PVA report as one that follows the 

checklist and considers the elements and guidelines in Supporting Information. We do 

not anticipate one to report on every component within the checklist; some may be 

irrelevant (e.g., when users employ a published model). However, one should 

demonstrate that all elements and components of the DAC-PVA were at least considered 

and that decisions made were well justified. Among the issues to address in a 

comprehensive report, we selected a number that are particularly important for clear and 

comprehensive communication of PVAs: delineation of assumptions, communication of 

important processes and emergent properties, communication of initial conditions, 
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systematic reporting of results, selection of viability measures, and coverage of the main 

elements of an informative discussion. 

 Some authors emphasize the importance of carefully communicating all underlying 

assumptions in terms of model structure, parameterization, and analyses. Although the 

IUCN (2010) recommends summarizing model assumptions in a separate file, 

assumptions are made throughout the process of model conception, development, and 

implementation and therefore communication may be most effective if associated with 

relevant components of the model description. Examples and guidelines on important 

assumptions are listed in Supporting Information. 

Our communication checklist and guidelines favor a detailed structure that ensures the 

complexity of PVA elements does not cause ambiguity or omission of important 

descriptions. Examples of key attributes  specific to PVAs but not addressed in more 

general protocols such as TRACE and ODD include population dynamics, movement and 

dispersal, and environmental processes (see Supporting Information). Another example is 

the communication of density dependence, which can be described in the section 

population processes if it is applied through a formula or as a subcomponent in the 

section emergence if density dependence emerges from the behavior of individuals in an 

IBM. 

Grimm and Wissel (2004) stressed the importance of distinguishing an initial transient 

phase, where the simulated population dynamics depend on initial conditions from an 

established phase (quasi-stationary state) in which population dynamics are driven 

primarily by the inherent attributes of the simulated population, such as vital rates and 
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stochasticity. It is important to separate these 2 phases. We further recommend that the 

relation between initial conditions and carrying capacity (K) be reported. 

To ensure repeatability of PVA studies, it is important to depict results fully and 

systematically. Results for a baseline scenario should be reported first, , followed by the 

outcomes of sensitivity and uncertainty analyses and finally by management-relevant 

results such as ranking of scenarios. Results should be reported in consistent units and for 

a consistent selection of populations if it is not possible to report on all populations. 

Authors should strive to describe all input and output parameters and provide means, 

ranges, and distributions. Although publication space is typically limited, online materials 

allow such systematic reporting of parameters and scenarios as explored in sensitivity 

analyses, as well as systematic reporting of their effects on model outcomes. 

The selection of viability measures should be made in accordance with the time frame 

analyzed, the purpose of the study, comparability with other studies, and the audience. 

Different viability measures reveal different aspects of the behavior of populations and 

thus affecting communication of PVA results to relevant stakeholders. There is no 

consensus on which viability measures are most suitable. For example, Akçakaya and 

Sjögren-Gulve (2000) suggest focusing on risk of decline instead of extinction risk, 

McCarthy and Thompson (2001) suggest the expected minimum population size (EMP) 

serves as an effective indicator for the propensity of decline, and Grimm and Wissel 

(2004) propose the intrinsic mean time to extinction (Tm) as a measure independent of 

initial conditions or time horizon. None of these measures has been broadly adopted 

(Table 1). It is beyond the scope of our study to review and evaluate them. Instead, we 

outlined important or commonly used measures that may be favored when 



 

 

23 

communicating PVA results, the means for calculation, and their potential applications 

(Table 3). We recommend authors report on several viability measures for every scenario 

examined (Ralls et al. 2002), including  the extinction probability by year 100 where 

possible to promote comparability and consistency with international listing thresholds 

(e.g. IUCN 2010). 

To strengthen the use of PVAs to direct management and further research, we suggest 

elements of an informative discussion include a summary of important results, 

including assessment of alternative management scenarios; recommendations for 

management, monitoring, and (iterative) validation; discussion of limitations, including 

potential sources of uncertainty (e.g., model errors, assumptions or parameters that were 

not addressed); report on on-the-ground actions which may have emerged from the study; 

and outlook for advancing collective learning, for instance by setting the PVA in the 

context of other studies and discussing potential applications of the model or its outcomes 

to other circumstances or species. 

DISCUSSION  

The complexity of PVA studies and their tendency toward specificity, combined with 

poor communication and lack of comprehensiveness, may have contributed to the lack of 

generalizable results of PVAs (Burgman & Possingham 2000; Naujokaitis-Lewis et al. 

2009). Common use of a standardized protocol may assist in identifying general solutions 

to this and other challenges outlined here (Pullin & Stewart 2006; Grimm et al. 2010; 

Schmolke et al. 2010). Despite efforts to improve the documentation and communication 
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of ecological models, the development of a protocol specific to PVA models is important 

to address the specific needs and wide range of applications of PVA studies. 

Our protocol makes several contributions, not only for modelers but also for those 

using existing, well-documented software. First, any protocol that follows a logical 

sequence and allows users to encounter a familiar structure, will facilitate understanding 

by readers (Gopen & Swan 1990). Second, transparent and comprehensive 

communication is particularly important when the concepts are diverse and complex, as 

clearly is the case in the PVA context. Clear communication bolsters understanding of 

models by the scientific community, decision makers, and stakeholders and allows them 

to assess their suitability to answer questions at hand. Third, following a common 

protocol allows authors and readers to perform a quality check to verify that all 

components were considered when designing, applying, and communicating a model 

(Akçakaya et al. 2004; Grimm et al. 2010). Lastly, systematic reviews and meta-analyses 

that are based on published material are facilitated by standardized structures and units 

(Pullin & Stewart 2006). Given the rarity of generalizations and rules of thumb 

originating from PVAs (e.g. Shaffer et al. 2002), use of a standardized protocol may 

enhance reviews of PVAs and their applicability in ecological systems and thus 

strengthen the value of single PVA studies for inclusion in such reviews. Here, our 

discussion of time horizons and viability measures, issues that clearly remain unresolved, 

may offer additional guidance to improve comparability en route to obtaining 

generalizations and rules of thumb.  

The DAC-PVA protocol further offers the means to enhance the relevance of 

PVA studies to policy and management and to ensure their use to evaluate relative 
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efficacy of different conservation options in light of uncertainty (Possingham et al. 1993). 

We anticipate our protocol will aid in identifying challenges and next steps to further 

facilitate collective learning. As with any other standard protocol, it is open to the 

scientific community to choose whether or not to use it, and critiques and improvements 

are to be expected. We welcome such critiques; they will contribute to the many efforts to 

generate synergies from cumulative conservation evidence (Pullin & Stewart 2006; Pullin 

& Knight 2009). 
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TABLE 1:  

Viability measures provided by authors of PVAs covered by the SCALES database, 

based on 78 studies covering 82 species.  

 

 

* including 4 cases reporting the intrinsic mean time to extinction 

 

 

Code Viability measure Number of cases 

a Probability of extinction 39 

b Population size at a given time 19 

c Time to extinction* 18 

d Probability of quasi-extinction 7 

e Occupancy 7 

f Probability of decline 6 

g Growth rate 6 

h Time to quasi-extinction 5 

i Minimum Viable Population (MVP) 5 

j Minimum Area Requirement (MAR) 2 

k Relative population size 2 

l Expected minimum total abundance 1 

m Minimum patch number 1 

n Mean density 1 

o Mean number of breeding individuals 

per year per flock 

1 

 Other measures 7 
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TABLE 2:  

Elements of a good model in general (Schmolke et al. 2010), and elements of a useful 

PVA, delineated along the steps of model design, application and communication. 



 

 

37 

 

Elements of a good model Elements of a good PVA 

D
u

ri
n

g
 

d
es

ig
n

 • includes stakeholders 

 

• formulates objectives; justifies choice of 

model approach & complexity 

• includes stakeholders  in model design, validation and interpretation 

• builds on (long-term) high quality data 

• performs and justifies a careful model selection 

D
u

ri
n

g
 a

p
p

li
ca

ti
o
n

 

 

 

• careful parameterization 

• calibration, verification, validation 

 

• quantification of uncertainties 

 

 

• applies multiple models 

• includes relevant parameters based on knowledge of the system and 

the literature and in consideration of gaps 

• applies careful parameter estimation and parameterization 

• performs calibration, verification and validation or directs further 

monitoring and validation efforts 

• performs sensitivity analyses and addresses uncertainty in a systematic 

and transparent way 

• compares the outcomes of alternative models where possible 

• differentiates among parameters affecting i) the model, ii) the real 

world and iii) those that are management relevant 

• ranks management scenarios to support decision-making 

D
u

ri
n

g
 c

o
m

m
u

n
ic

a
ti

o
n

 

• formulates assumptions 

 

• effective documentation and transparency 

 

 

 

 

• peer reviewed 

• communicates the entire modeling cycle and justifies decisions and 

assumptions along the way 

• reports all inputs and outputs systematically to allow repeatability 

• uses carefully selected time horizon and viability measures and reports 

using consistent units to allow comparability 

• demonstrates that the PVA serves its purpose by, e.g., leading to on-

the-ground actions 

• enhances collective learning and potential generalization 

• both the model (design, code, application) and the report are peer 

reviewed 
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TABLE 3:  

(Next page): 

Important viability measures, their meaning, potential application, and recommendations 

for usage. 
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Viability 

measure 

Meaning Calculation  Recommendations for PVA 

P0(t) 

 

Probability of 

extinction by 

time horizon t 

 

 

Count extinction events 

over multiple simulations 

versus the time at which 

they occur and plot their 

cumulative distribution 

over time.  

Report P0(t) for several time horizons; for 

consistency with international listing 

thresholds and to facilitate comparison across 

studies, report P0(100) as one of these time 

horizons. 

PN 

 

Quasi-extinction 

risk 

 

Plot the minimum 

population size N observed 

during the course of each 

simulation iteration, 

against their cumulative 

distribution. 

Can be used when global extinction is not 

possible (Burgman et al. 1993); to advance 

comparability report outputs for multiple 

values of N, including N = 0 if possible, for 

comparison with P0(t). 

Tm Intrinsic mean 

time to 

extinction 

Plot ln(1 - P0(t)) versus 

time t. The plot yields a 

straight line with slope 

1/Tm (Grimm & Wissel 

2004). 

Use Tm to enable approximating  P0(t)  for any 

time horizon based on P0(t) ≈ t/Tm; it is 

insensitive to initial simulation conditions, 

and may reveal generic information about 

extinction risk and viability. 

EMP Expected 

minimum 

population size  

Record the smallest 

population size obtained in 

each simulation iteration.  

Rarely reported in PVA studies; a simple and 

effective measure which should be more 

frequently used especially for sensitivity 

analyses and when the risk of extinction is 

small (McCarthy & Thompson 2001).  

Ne Expected 

population size 

Plot Ne over time to 

provide a simple and 

intuitive visualization of 

An important “currency” for decision makers, 

but the tails of distribution must be depicted 

to account for the range of potential 
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  0 

population behavior and 

comparison between 

scenarios.  

outcomes; should be considered in 

conjunction with other measures of risk. 

λ Mean intrinsic 

growth rate of a 

population   

Provides a simple measure 

of the potential for 

population growth.  

Useful for differentiating alternative 

population trends (Caswell 2002); should be 

reported in conjunction with viability 

measures that provide a measure of risk. 

MVP Minimum Viable 

Population  

 

Run simulations with a 

range of initial population 

sizes to define the lowest 

threshold that maintains a 

viable population (i.e., 

predefined probability of 

survival over a given time 

horizon). 

Strictly speaking, not a viability measure but 

a measure of what would be required to 

achieve viability. Often relevant for policy 

decisions; provides intuitive information for 

communication; however oversimplifications 

may yield misinterpretation, therefore 

interpret and communicate carefully. 

MAR Minimum Area 

Requirement   

Run simulations with a 

range of initial area (or 

other spatial attributes) to 

identify the area necessary 

to support a viable 

population.   

See MVP. 
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Figure 1: The frequency of papers reviewed in the SCALES project that explored the 

effect of key parameters on viability on the basis of individual-based (white) or 

population-based (shaded) models.  

Figure 2: Results of an analysis of model complexity versus time on the basis of 3 

approaches: (a) number of parameters considered among a predetermined list, (b) number 

of variables used to parameterize important processes, and (c) number of stages used in 

the models. 

Figure 3: Of the papers in the SCALES database that quantified the relative effect of a 

given parameter (a) the proportion in which the parameter had a strong effect, weak 

effect, and no effect  on viability and (b) the proportion in which the effect of each 

parameter was tested (correlation between [a] and [b], 0.434, p = 0.09). 

Figure 4:  (a) The proportion of studies in the SCALES database that included 

environmental stochasticity and catastrophes  over time and (b) the proportion of studies 

that included 2 or >2 types of stochasticity.  

 

Figure 5: (a) Viability measures reported by authors of PVA studies in the SCALES 

database  plotted against time. Letter codes on the y-axis are defined in Table 1. Shading 

represents different proportions of studies reporting a given viability measure. (b) 

Number of viability measures reported per study plotted against time. 
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