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Abstract

Process mining techniques aim at analysing records generated during
the execution of a business process in order to provide insights on the
actual performance of the process. Detecting concurrency relations be-
tween events is a fundamental primitive underpinning a range of process
mining techniques. Existing approaches to this problem identify concur-
rency relations at the level of event types under a global interpretation.
If two event types are declared to be concurrent, every occurrence of one
event type is deemed to be concurrent to one occurrence of the other.
In practice, this interpretation is too coarse-grained and leads to over-
generalization. This paper proposes a finer-grained approach, whereby
two event types may be deemed to be in a concurrency relation relative to
one state of the process, but not relative to other states. In other words,
the detected concurrency relation holds locally, relative to a set of states.
Experimental results both with artificial and real-life logs show that the
proposed local concurrency detection approach improves the accuracy of
existing concurrency detection techniques.

1 Introduction

Process mining is a body of techniques that help analysts understand business
processes based on their event logs. In this context, an event log is a set of
traces, each consisting of a sequence of events with associated attributes. Each
event is an instance of an event type, corresponding to an activity in the business
process. For example, an event log of an order-to-cash process may include event
types such as “Goods shipped” and “Payment collected”. An event of type
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“Payment collected” may include additional attributes such as the confirmation
number and the amount. Given an event log, process mining tools can extract a
process model (automated process discovery), check the conformance of a given
process model against the log (conformance checking), compare two event logs
(log delta analysis), or detect changes in the execution of a process over time
(drift detection), among other analysis operations.

A number of process mining techniques abstract the observed behavior as
descriptive models reflecting how the actual work is being carried out. Some
of those models focus on the description of the dependencies between events
as behavioral relations, most notably causality relations (the occurrence of an
event entails the subsequent occurrence of another one), conflict relations (the
occurrence of an event excludes the occurrence of another) and interleaved con-
currency relations (two events co-occur in any order). A key challenge in this
context is how to accurately distinguish between events that always occur in a
given order (the execution of an event depends on the execution of another) and
events that can occur in any order (independent events) – causality vs. con-
currency. This challenge arises in particular in the context of knowledge-driven
processes, which are characterized by high levels of variation in the ordering
of activities. In these processes, it is common to find states where multiple
activities can be executed in any order and any number of times [6, 17]. At
the same time, there are constraints and norms that result in some activities
being performed (almost) always in a given order under certain conditions. For
example, in a process for handling permitting applications, a number of verifi-
cations and approvals need to take place. When the application is of a certain
type and is lodged in a given jurisdiction, some of these verifications always
occur in a given order, while for other types of applications and jurisdictions,
the order of these activities is unconstrained. Similarly, in a clinical process,
when a patient is diagnosed with a common condition, a number of tests and
treatments take place in a relatively fixed order. But for other diagnoses or
in the absence of a definitive diagnosis, these tests and treatments are applied
in any order. Existing process mining techniques are not designed to take into
account these variations in causality and concurrency relations. Instead, when
such variations exist, the activities in question are declared as parallel activities
without further refinement.

Indeed, existing approaches to discovering concurrency – e.g. those embed-
ded in the α process discovery algorithm and its variants [3, 23, 33, 20] – detect
global concurrency relations at the level of pairs of event types. The semantics of
a global concurrency relation between two event types is that an instance of the
first type must be either followed or preceded by an instance of the second type
regardless of where in the log these instances occur. In practice, this property
does not always hold. For example, consider a log recording the executions of
the process for plan lodgement and document registration in two different Aus-
tralian states, South and Western Australia, whose model is shown in Fig. 1.1

A global concurrency discovery approach – herein called a global concurrency
oracle – would assert that event types “Update register” and “Update DCDB”,

1This model forms part of a collection of real-life process models for handling land devel-
opment applications in Australia.
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and event types “Approve plan” and “Update register”, among others, are con-
current. However, “Approve plan” and “Update register” are concurrent only
in the case of Western Australia (i.e. when the WA path after the decision point
is taken), while “Update register” and “Update DCDB” are never concurrent.
This approximation then affects the precision of the process mining techniques.
For example in the context of automated process discovery, the result is likely to
be a model where activities “Update register” and “Update DCDB” can always
occur in any order regardless of the state.

LodgeProc
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transactions
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Examine
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Figure 1: Process model for plan lodgement and document registration in West-
ern Australia (WA) and South Australia (SA).

Two event types may erroneously be considered as concurrent, not only if
they occur in conflicting traces as in the example of Fig. 1, but also if they occur
in different execution states within traces. For instance, consider the traces
⟨C,D,E,F,G,H,L,A,B⟩ and ⟨B,A,C,D,E,F,G,H,L⟩. These traces have the
same event types and even the same order between C,D,F,G,H,L, but the
order between A and B depends on where these two events occur. Specifically,
A occurs before B only if they are executed after L, and vice-versa B occurs
before A if they both occur at the beginning of the trace. While A and B
are clearly not concurrent in this example, they will still be considered as such
under the semantics of a global concurrency relation. This situation arises even
within a single trace, for instance if the trace contains two pairs of events of the
same type, occurring in a different order in two different locations of the trace
(e.g. any trace of the form ⟨. . .A B . . .B A . . . ⟩).

As shown in the above examples, a global concurrency oracle tends to over-
generalize the behavior captured in a log by allowing the execution of sets of
event types (and so process activities) in any order throughout the log, even
when such activities are in fact not concurrent, or are such only in certain
scopes of the log. This leads to a more permissive representation of the log
behavior.

This paper advocates an alternative local concurrency detection approach
whereby a concurrency relation between two event types is scoped to certain
execution states of the process. The main contribution is an approach that
turns any global concurrency oracle into a scoped (local) one. The key idea is
to construct a state transition graph from the event log and to traverse this
graph in order to discover concurrency relations (using an existing concurrency
oracle) in-between pairs of states. The accuracy of the proposed local concur-
rency detection approach is compared against the α global concurrency oracle
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and inductive miner [18], a well-known process discovery algorithm, based on a
synthetic testbed comprising a range of combinations of control-flow structures,
as well as seven real-life logs. We also show on a real-life process model that the
proposed concurrency oracle can improve the accuracy of an existing business
process drift detection technique.

The rest of the paper is structured as follows. Section 2 discusses existing
approaches to construct concurrency oracles and their limitations. Section 3
introduces the proposed approach, while Sections 4-6 present its experimental
evaluation and Section 7 discusses threats to validity. Finally, Section 8 sum-
marizes the results and outlines future work directions.

2 Related work

Several techniques have approached the problem of discovering behavioral re-
lations (in particular concurrency relations) between pairs of event types. For
instance, [8] outlines a technique based on statistical measures to discover event-
based models that capture the concurrent execution of events types. This latter
technique is however highly dependent on the quality of the log. In particular,
it assumes that concurrency is embedded in blocks that have a single split and a
single join event, and that the order of occurrence of the concurrent event types
is uniformly distributed. The α-algorithm [3] and its variants [23, 33, 20] detect
concurrency relations (among other behavioral relations) between event types.
The α-algorithm itself declares a pair of event types to be concurrent if one
immediately precedes the other and vice-versa. Both mentioned approaches,
α-algorithm and that presented in [8], lead to global concurrency oracles, which
as stated before, disregard the context where the events occur, thus leading to
false positives.

Extensions of the α-algorithm such as α+ [23] are designed to prevent the α-
algorithm from confusing concurrency with (short) loops and other limitations,
however, they still suffer from the limitation of being global.

In [10], the relations computed by the α-algorithm (referred to as α relations
hereinafter) are used as a concurrency oracle to construct a partially ordered run
(therein called an instance graph) from each trace in an event log. The resulting
set of runs can be used to synthesize a process model (e.g. a Workflow net) [11].
This latter approach however inherits the limitations of the α-algorithm as a
method for constructing concurrency oracles. A more recent approach to con-
struct partially ordered runs [9] from traces addresses the issue of discovering
concurrency in the presence of infrequent event types. The starting point is
still a process discovery algorithm that incorporates a global concurrency ora-
cle. Traces are turned into partially ordered runs based on the global oracle and
then adjusted to take into account infrequent event types.

In the context of process model synthesis, some techniques require additional
data for computing concurrency relations. For example, the approach in [19]
requires that a log contains the start and end timestamps of every event, and
then a pair of events are concurrent if they overlap in time. However, the data
about the start and end timestamps of an event is not always available in the
event logs.
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A technique to discover scoped concurrency relations between events is pro-
posed in [25]. Given an event log, this technique produces a conditional partial
order graph [26]. In this graph, a concurrency relation is scoped by means of
(data) conditions, i.e. the concurrency relation only holds when the condition
evaluates to true at a given point in the process. A condition is determined by
the execution of an event, e.g. a and b are concurrent if c is executed, noting that
c does not necessarily need to occur before a and b. However, this technique
makes the highly restrictive assumption that there are no two events of the same
type in the same trace, since when a duplicate event is found in a trace, the
trace is split and the two sub-traces are treated as two different traces, leading
to the possibility of identifying concurrency across these traces.

In principle, an alternative approach to detecting local concurrency from a
log could be to use trace clustering techniques to group traces into clusters, and
apply a global concurrency oracle within each cluster. In the context of pro-
cess mining, there exist several techniques that have approached the problem of
clustering traces in an event log according to different notions of similarity, e.g.
[5, 4, 28, 29, 24, 15, 32]. However, there are two issues with this approach. First,
trace clustering is very heuristic in nature (e.g. [28, 29, 24] implement k-means
and self-organizing maps), thus the discovered clusters can contain traces of dif-
ferent executions, which may lead to compute non-existent concurrency relations
(false positives). As an example, one of the latest trace clustering techniques,
ActiTraC [32], applied over the log generated by the land development model of
Fig. 1, cannot distinguish all the traces related to Western Australia from those
related to Southern Australia (specifically, three traces of Western Australia are
put in the same cluster with all the traces of South Australia), leading to the
detection of spurious concurrency relations.2

The second issue is that trace clustering disregards the scopes where event
types occur. Consider the log {⟨C,D,E,F,G,A,B,H,L⟩, ⟨C,D ,E,F,G,H,
L,A,B⟩, ⟨B,A,C,D,E,F,G,H,L⟩, ⟨V,W,T,S,H,L,A,B⟩, ⟨V,W,T,S,A,B,H,L⟩},
which is a more elaborated example of the one shown in the Introduction. In
this log, the first three traces contain the same event types and are part of
the same clusters according to [32],[28, 29] and [16]. If we used a global oracle
like the α, this would regard A and B as concurrent, since both interleavings
are present in the first three traces. However, the occurrence of B followed
by A only occurs at the beginning of a trace while that of A followed by B
occurs after G in the rest of the traces. Thus, the scope where each of the
interleavings occur is different, and the event types should not be diagnosed
as concurrent. This is because trace clustering techniques and our approach
are fundamentally different. Trace clustering is slicing operation over a log [1],
which divides the log into groups of traces that can be analyzed as a whole,
while our approach can be seen as a dicing operation over the log [1], where the
log is divided vertically into different scopes across groups of traces or within
the same trace, within which local concurrency is identified.

2The settings used for this ActiTrac in ProM were Distance metric = Euclidian and Clus-
tering Algorithm = Quality Threshold Clustering, while the rest of the parameters were left
with their default values.
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Figure 2: Proposed approach.

3 Discovering local concurrency

An overview of the proposed approach is given in Fig. 2. The first step consists
in creating a transition graph that represents the information captured in an
event log. This graph has one initial state and at least one final state, and every
path from the initial to a final state is a trace in the log. The step requires an
equivalence relation (≡) to find similar execution states in the process. Given
the transition graph, the second step identifies concurrency relations that hold
between two states. This step takes as input a global concurrency oracle (C)
and a validation function (F). C can be for example the α-algorithm or other
oracles mentioned in the previous section. Since a given concurrency relation
may hold to various degrees in multiple scopes, including pairs of scopes such
that one contains the other, it is necessary to select its most suitable scope.
To this end, F is used to assess the likelihood of the computed concurrency
relations. Note that the equivalence relation, the global concurrency oracle and
the validation function can be customized; however, in this paper we present a
single configuration of these three elements.

This section starts by presenting the construction of the transition graph
and then the computation of the scopes.

3.1 Transition graph of an event log

The first step of our approach consists in constructing a transition graph repre-
senting the behavior captured in the event log, such that every transition in the
graph represents the execution of an event type (event) and every state repre-
sents the occurrence of some events. This event log abstraction has been widely
used in the context of process mining. For instance, [2] presents several strate-
gies for the construction of a transition graph that can be modified to vary the
degree of generalization. However, the approach presented in [2] aims at con-
structing a transition graph from which a model is synthesized using the theory
of regions, and considers steps where transitions are added to or removed from
the transition graph. Different from [2], our approach neither adds nor removes
transitions in such graph.

Before presenting the construction of a transition graph, we define some
notations on sequences, traces and event logs.

Definition 1 (Sequences, subsequences and extension). Let X be a set of ele-
ments. A sequence of length n ∈ N over X is denoted as σ = ⟨a1 a2 a3 . . . an⟩ ∈
X∗, whereas an empty sequence is denoted as ε. The length of a sequence σ is
represented as ∣σ∣.

Given a sequence σ = ⟨a1 a2 a3 . . . an⟩, the prefix subsequence of length m,
shorthanded as σ[1...m], is another sequence composed by the first m elements,
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i.e., σ[1...m] = ⟨a1 a2 a3 . . . am⟩ such that 1 ≤ m ≤ n; whereas the prefix of an
empty sequence ε is another empty sequence ε′. The set of all prefix subsequences
of σ = ⟨a1 a2 a3 . . . an⟩ is represented as φ(σ) = {σ[1...k] ∣ 1 ≤ k ≤ n}. A prefix
subsequence σ′ = ⟨a1 . . . al⟩ of a sequence σ can be extended with an element ex,
denoted as σ′ ⊕ ex, if σ′ ⊕ ex = ⟨a1 . . . al ex⟩ is another prefix subsequence in
φ(σ).

The suffix subsequence of length m is the sequence composed by the last m
elements of σ, and it is denoted as σ[m,n] = ⟨a(n−m)+1 . . . an−1 an⟩, 1 ≤ m ≤ n.
⌟

An event log is a set of sequences of event types occurrences, a.k.a. traces.3

Definition 2 (Trace, Event log). Let E be a set of events, Λ be a set of event
types, and λ ∶ E → Λ be a labelling function. A trace is a sequence of events
σ = ⟨λ(e1), λ(e2), . . . , λ(en)⟩ for ei ∈ E, 1 ≤ i ≤ n, while an event log L is a set
of traces. ⌟

A trace σ can contain several events of the same type and, in order to dis-
tinguish one another, we adopt the following convention: every event is unique
within a trace and identified by a label and an index. The type of the event
is the label, and the occurrence number of this event type within the trace is
the index. For instance, the trace ⟨a b b⟩ is composed by one occurrence of
activity a and two occurrences of activity b, thus the events in the trace would
be ⟨a1 b1 b2⟩. By the abuse of notation, we refer to any generic event as ei
where i ∈ N. If the order amongst the events is of no interest, then a trace can
be represented as a set, thus we use σ̂ to denote the set representation of σ.

Definition 3 (Event and trace equivalence). Let σ = ⟨e1 e2 . . . em⟩ and σ′ =
⟨e′1 e

′

2 . . . e
′

n⟩ be a pair of traces, ei be an event in σ, for 1 ≤ i ≤ m, and e′ be
an event in σ′, for 1 ≤ j ≤ n. The events ei and e′j are equivalent, denoted as
ei ∼ ej, iff they represent the same occurrence of the same event type, i.e., i = j
and λ(ei) = λ(ej). Two traces are equivalent, denoted as σ ∼order σ

′, iff m = n
and for every 1 ≤ i ≤ n then ei ∼ e′i. Finally, two traces are set equivalent,
denoted as σ ∼set σ

′, if their two set representations contain equivalent events,
i.e., ∀ei ∈ σ̂ ∃e′j ∈ σ̂

′ ∶ ei ∼ e
′

j and ∀e′j ∈ σ̂
′ ∃ei ∈ σ̂ ∶ ei ∼ e

′

j.

Intuitively, a pair of traces are order equivalent if they have equivalent events
and the order among them is the same; whereas they are set equivalent if they
contain equivalent events but not necessarily in the same order.

Every event in a trace has a past and a future. Consider a trace σ =

⟨e1 e2 . . . en⟩ and an event ei where 1 < i ≤ n, ⌊ei⌋ signifies the past of ei and is
the prefix subsequence of σ up to i, i.e., ⌊ei⌋ = σ[1...i−1], while ⌈ej⌉ signifies the
future of an event ej , where 1 ≤ j < n, and is the suffix subsequence after j, i.e.,
⌈ej⌉ = σ[j+1,n]. The prefix (suffix) subsequence of the event e1 (resp. en) is the
empty sequence ε. For instance, given the trace ⟨i1 b1 c1 d1 o1⟩, the past of b1
is ⌊b1⌋ = ⟨i1⟩ and its future is ⌈b1⌉ = ⟨c1 d1 o1⟩.

3Generally speaking, an event log is a multiset of traces, however we focus simply on the
ordering of events and disregard the information about the number of times each trace occurs
in the log. Furthermore, for simplicity, we assume that every trace is a complete execution
and the log is noise free.
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A trace describes the evolution of an execution of a system by means of its
prefix subsequences and their extensions. Thus, a trace can be represented as
a transition graph every pair of execution states (set representation of a prefix
subsequence) are linked by an extension, which transforms one state into the
other. Formally, a transition graph is the tuple ⟨V, vi,W,E,T ⟩, where V is the
set of states, vi is the initial state, W is the set of final states, E is the set
of events, and T is a transition relation. The next definition suggests how to
construct a transition graph from a trace.

Definition 4 (Transition graph of a trace). Let σ = ⟨e1 e2 . . . en⟩ be a trace.
The transition graph representing σ is defined as ⟨V,∅,{σ̂},E, T ⟩, where

V = {σ̂′ ∣ σ′ ∈ φ(σ)}
E = σ̂
T = {(σ̂1, ei, σ̂2) ∣ ei ∈ E ∧ σ1 = ⌊ei⌋ ∧ σ2 = ⌊ei⌋⊕ ei} ⌟

Consider the log L = {⟨i1 b1 c1 d1 o1⟩, ⟨i1 a1 c1 d1 f1 o1⟩, ⟨i1 a1 d1 c1 f1 o1⟩},
the transition graphs representing the traces in L are shown in Fig. 3.
Observe that some traces can represent interleavings of the same execu-
tion and thus similar execution states. For instance, the two transition
graphs at the bottom of Fig. 3 can be seen as interleavings of an execu-
tion where c1 and d1 are concurrent, which would imply that the states
{i1},{i1, a1},{i1, a1, c1, d1},{i1, a1, c1, d1, f1} and {i1, a1, c1, d1, f1, o1} are some-
how similar. Indeed by treating these states as similar executions, the concur-
rency relation between c1 and d1 would appear as a diamond in the correspond-
ing transition graph – see grayed out states in the transition graph depicted in
Fig. 4 – denoting the possible (interleaved) concurrent execution of such events.

∅ {i1} {i1, b1} {i1, b1, c1} {i1, b1, c1, d1} {i1, b1, c1, d1, o1}
o1d1c1b1i1

∅ {i1} {i1, a1} {i1, a1, c1} {i1, a1, c1, d1} {i1, a1, c1, d1, f1} {i1, a1, c1, d1, f1, o1}
o1f1d1c1a1i1

∅ {i1} {i1, a1} {i1, a1, d1} {i1, a1, d1, c1} {i1, a1, d1, c1, f1} {i1, a1, d1, c1, f1, o1}
o1f1c1d1a1i1

Figure 3: Transition graphs representing three different traces.

We do not require the transition graph to meet any specific property, nor do
we assume the log to be complete with respect to the α relations (i.e. we do not
expect all concurrency interleavings to be present). Instead, we extract all the
behavior represented in the log and detect patterns of concurrency from within
this behavior.

We now turn our attention to the definition of an equivalence relation be-
tween states of transition graphs. As hinted previously, the equivalence rela-
tion collapses sets of “similar” states, which can introduce some generalization
and, by the same token, discover patterns reflecting the concurrent execution
of events. The equivalence relation between states defined in this section is
grounded on the most primitive interpretation of the (interleaved) concurrent
execution of a pair of events. Specifically, starting from an execution state, a
pair of concurrent events can occur in any order and lead to the same execu-
tion state. The latter is the essence of the results presented in [27], where the
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authors show that a transition graph-like representation (domain of configu-
rations) can represent the true-concurrency semantics of a system, where the
concurrent execution of a pair of events is manifested as diamond-like shapes.

The main idea of the equivalence relation presented below is to construct
a transition graph where every state is associated to a unique set of events:
the events that have occurred before the state is reached. Each transition is
labeled by an event and connects a pair of states, such that the set of events in
the source state is a strict subset of the set of events of the target state. We
distinguish two special types of nodes in a transition graph, a unique initial state
∅, and at least one final state (state with no outgoing transitions) representing
an execution of a process.

Figure 4 shows an example of the type of transition graph that we seek to
extract from a log. The graph represents two executions: {i1, a1, c1, d1, f1, o1}

and {i1, b1, c1, d1, o1}. In the graphical representation, the sets of events denote
states and the events associated to the transitions are displayed aside. Note
that in the case of {i1, a1, c1, d1, f1, o1}, there is a diamond (cf. gray nodes
in Fig. 4) representing the possible concurrent execution of events c1 and d1.

∅

{i1}

{i1, a1}

{i1, a1, c1}

{i1, a1, c1, d1}

{i1, a1, c1, d1, f1}

{i1, a1, c1, d1, f1, o1}
o1

f1

d1

c1

{i1, a1, d1}

d1

a1

{i1, b1}

{i1, b1, c1}

{i1, b1, c1, d1}

{i1, b1, c1, d1, o1}
o1

d1

c1

b1

i1

c1

Figure 4: Transition graph of the log
L = {⟨i1 b1 c1 d1 o1⟩, ⟨i1 a1 c1 d1 f1 o1⟩,
⟨i1 a1 d1 c1 f1 o1⟩}

These diamonds define the scopes
where pairs of events are executed
concurrently, and thus give place to
a notion of local concurrency rela-
tions. The bottom and top states
of a diamond are referred to as
start and end of the scope, and
they represent the states where no
concurrent event has been executed
and the state where all the concur-
rent events have taken place, respec-
tively. For example, in Fig. 4, the
states {i1, a1} and {i1, a1, c1, d1} de-
fine the start and end of the scope,
respectively, where c1 and d1 are
concurrent. Note that the concur-
rency relation between c1 and d1 does not hold for the other occurrences on the
right hand side.

The equivalence relation defined below deems a pair of states as equivalent if
they represent the occurrence of equivalent events and, either they were executed
in the same order (they are essentially the same event type occurrences) or the
same set of events (in the same order) can occur from both states.

Definition 5 (Transition graph equivalence). Given a pair of traces σ and
σ′ and their corresponding transitions graphs G = ⟨V, vi,{σ̂},E, T ⟩ and G′ =

⟨V ′, v′i,{σ̂
′},E′, T ′⟩. Let σ1 = σ[1...m] and σ′1 = σ′

[1...m]
be a pair of subtraces,

such that v = σ̂1 and v′ = σ̂′1 are the corresponding states in the graphs. The
states in the transition graph are equivalent — shorthanded as v ≡ v′— if σ1 ∼set
σ′1 and either of the following hold: (i) σ1 = σ

′

1 = ε, (ii) σ1 ∼order σ
′

1, or (iii) n =

∣σ∣ = ∣σ′∣ ∧ (m = n ∨ σ[m+1,n] ∼order σ
′

[m+1,n]).
The equivalence relation between states gives place to an equivalence rela-
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tion between events in the transition graph. Consider a pair of transitions
(v′1, ei, v

′′

1 ) ∈ T and (v′2, ej , v
′′

2 ) ∈ T
′. Then, ei ≡ ej iff v′1 ≡ v

′

2 and v′′1 ≡ v′′2 .
The equivalence class of a state v is defined as ⟨v⟩≡ = {v′ ∣ v ≡ v′} and,

similarly for events, the equivalence class of an event ei is ⟨ei⟩≡ = {ej ∣ ei ≡ ej}.
⌟

For example, consider the transition graphs at the bottom of Fig. 3, by
Definition 5, the states ∅ are equivalent by rule (i); states {i1} and {i1, a1}

are equivalent by rule (ii); and states {i1, a1, c1, d1},{i1, a1, c1, d1, f1} and
{i1, a1, c1, d1, f1, o1} are equivalent by rule (iii). Then, the equivalent events
are i1, a1, f1 and o1.

∅

{i1}

{i1, a1}

{i1, a1, b1}

{i1, a1, b1, c1}
c1

b1

a1

{i1, b1}

{i1, a1, b1}

{i1, a1, b1, d1}
d1

a1

b1

i1

(a) Transition graph for
⟨i1, a1, b1, c1⟩ and ⟨i1, a1, b1, d1⟩

∅

{i1}

{i1, a1}

{i1, a1, b1}

{i1, a1, b1, c1}
c1

{i1, a1, b1, d1}
d1

b1

a1

{i1, b1}
b1

i1

a1

(b) Transition graph for
⟨i1, a1, b1, c1⟩, ⟨i1, a1, b1, d1⟩
and ⟨i1, b1, a1, c1⟩

Figure 5: Transitions graphs produced by Def. 5

The conditions
(ii) and (iii) in the
equivalence relation
between states (Defini-
tion 5) allow us to cope
with possible over-
generalization during
the construction of the
transition graph of a
log, while condition (i)
aims only at merging
the initial states of the
graphs. On the one
hand, condition (ii) merges states representing the execution of events that
occurred in the same order, even if those states stem from different traces. On
the other hand, condition (iii) merges all states that lead to the same final
state. The latter condition targets the cases when the order of a set of events
is defined by the execution where they occur. For example, consider the traces
⟨i1, a1, b1, c1⟩ and ⟨i1, b1, a1, d1⟩: the order between a1 and b1 could depend on
the occurrence of either c1 or d1. The transition graph constructed out of these
two traces is displayed in Fig. 5a. Observe that in order to merge the states
{i1, a1, b1}, it is necessary to have the trace ⟨i1, b1, a1, c1⟩, in which case the
transition graph of the three traces would be the one shown in Fig. 5b.

Given an equivalence notion ≡, e.g., the one presented in Def. 5, the con-
struction of a transition graph from an event log is presented next.

Definition 6. Let L be an event log. The transition graph of L is defined as
G = ⟨V, vi,W,E,T ⟩, where

V = {⟨v⟩≡ ∣ v = σ̂′ ∧ σ′ ∈ φ(σ)}
vi = ∅

W = {⟨σ̂⟩≡}
E = {⟨ei⟩≡ ∣ 1 ≤ i ≤ ∣σ∣}

T = {(⟨v1⟩≡, ⟨ei⟩≡, ⟨v2⟩≡) ∣ ∃σ′, σ′′ ∈ φ(σ), e′ ∈ ⟨ei⟩≡ ∶ v1 = σ̂′ ∧ v2 = σ̂′′ ∧
v2 = v1 ∪ {e′}}

for all traces σ in L. ⌟
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The transition graph representing the event log L = {⟨i1 b1 c1 d1 o1⟩,
⟨i1 a1 c1 d1 f1 o1⟩, ⟨i1 a1 d1 c1 f1 o1⟩} constructed with the equivalence in Def. 5
is that of Fig. 4.

3.2 Discovering scopes of concurrency

Once the transition graph is constructed, the second step consists of turning an
existing global concurrency oracle into a scoped (local) one. Specifically, the aim
is to discover parts of a transition graph where concurrency relations between
events are likely to hold. We refer to this parts of the transition graph as scopes
and denote them as S. The approach requires a (global) concurrency oracle C,
which computes a set of relations from a given set of traces, and a validation
function F ∶ S × (E ×E)→ {true, false} that, given a concurrency relation in a
scope, retrieves a boolean value representing the outcome of the validation.

In a transition graph there is a path between a pair of states v1 and v2

iff there is a sequence of transitions ⟨(v1, e1, va) (va, e2, vb) . . . (vx, ex, v2)⟩. Let
π(v1, v2) = ⟨(v1, e1, va) (va, e2, vb) . . . (vx, ex, v2)⟩ represent a path between v1

and v2, π(v1, v2)∣E = ⟨e1 e2 . . . ex⟩ represent the sequence of events in the
path, and π(v1, v2)∣λ(E) = ⟨λ(e1) λ(e2) . . . λ(ex)⟩ represent the sequence of
event types. The set of all distinct paths, distinct sequences of events and
distinct sequences of event types are represented as Π(v1, v2), Π(v1, v2)∣E and
Π(v1, v2)∣λ(E), respectively. A state vx is in π(v1, v2), denoted as vx ∈ π(v1, v2),
if there is a transition (vi, ek, vj) in π(v1, v2), such that vx = vi or vx = vj . By the
abuse of notation, let ex ∈ Π(v1, v2) denote the existence of a path between v1

and v2 that includes ex and, similarly for transitions, let (va, ei, vb) ∈ Π(v1, v2)

denote the existence of a path including the transition (va, ei, vb).
A scope S is a pair of start vs and end ve states, such that there is at least

one path from vs to ve, i.e., ∣Π(vs, ve)∣ >= 1. A scope S is called a concurrency
scope for a pair of events e1 and e2, if the given global concurrency oracle C
and validation function F recognize a valid concurrency relation between such
events.

Definition 7 (Concurrency scope). Let G = ⟨V, i,W,E,T ⟩ be a transition graph,
λ ∶ E → Λ be a labelling function, C be a concurrency oracle, and F be a val-
idation function. A concurrency scope S is the tuple ⟨vs, ve, (e1, e2)⟩, where
vs ∈ V is the start state, ve ∈ V is the end state and (e1, e2) ∈ E × E is a pair
of events, such that (λ(e1), λ(e2)) ∈ C(Π(vs, ve)∣λ(E)), e1, e2 ∈ Π(vs, ve) and
F(S, (λ(e1), λ(e2))) = true. ⌟

Intuitively, a concurrency scope for a pair of events (e1, e2) is valid if their
types are deemed concurrent by the global concurrency oracle, they appear at
least in one path in the scope, and the validation function asserts such rela-
tion. We turn our attention to the computation of the scopes where we rely on
well known concepts of graph theory, dominator and post-dominator relations.
Intuitively, in any directed graph, a vertex a is the dominator of a vertex b if
every path from an initial node i to b contains a. For directed graphs with a
final vertex f , we say that a vertex z is the post-dominator of a vertex y if all
paths from y to f contain z. Both, dominator and post-dominator relations are
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reflexive and transitive, and their transitive reduction are rooted trees referred
to as dominator tree Tdom and post-dominator tree Tpost, respectively.

As shown in the example displayed in Fig. 4, the concurrency relations be-
tween a pair of events can hold only in certain executions. Thus, our approach
will decompose a transition graph with many final states (each of them repre-
senting an execution) into subgraphs from the initial state ∅ to each of the final
states, and then compute the concurrency scopes for each of those subgraphs.

The algorithm for the computation of the concurrency scopes is displayed in
Algorithm 1. Consider the transition graph G, a global concurrency oracle and
a validation function. Then it starts by iterating over the subgraphs G′ from
the initial state to one of the final states v in G (Line 3). For each subgraph G′,
the dominator and post-dominator tree are constructed (Lines 4 and 5). In a
postorder manner in the dominator tree, the start of a scope is selected ve (Line
6), while the end of the scope is the parent of ve in the post-dominator tree
(Line 8). In Line 10, each of the concurrency relations retrieved by the local
concurrency oracle is checked in the scope (vs, ve). If the validation function
asserts the concurrency relation between a pair of event types (a, b) in a scope
(vs, ve), then it is added as a concurrency scope associated to a final state v
(Line 19). The algorithm considers two operations for expanding a concurrency
scope whenever a concurrency relation holds (Line 20-22), or restricting the
scope when the validation function fails and smaller concurrency scopes could
be detected (Line 25-28). The output of the algorithm is a set of tuples (v,S),
where v is a set of events representing a final state, and S is a concurrency
scope. Observe that a single final state v can be associated to many concurrency
scopes. Thus, given an event log, the concurrency scopes for a trace σ are those
in {(σ̂,S)}.

We observe that the data structures in the Algorithm 1 are all finite. In par-
ticular, the log used to construct G contains a finite number of traces and events,
thus there is a finite number of final states and the loop in line 3 terminates.
Every subgraph from the initial to a final state is finite, since every trace in the
log contains a finite number of events, and as a result the dominator and post-
dominator trees are finite as well, which implies a finite number of iterations
over the loop in line 6. The loop in line 9 iterates over the set of concurrency
relations computed by the oracle which, by the finiteness of the events, is finite.
As for the procedure computeScope, if a concurrency scope is valid (line 17),
then a recursive call of the method occurs and ve becomes its parent in the
post-dominator tree. Given that this is a tree, every node has a unique parent
with exception of the root, which has none, hence for each node except for the
root, there is only one option to move up. Finally, if ve is not a leaf (line 27),
then ve becomes the unique child of the node. In this case, if the scope has not
been added to O and a concurrency relation exists between the analyzed events
(tuple a, b in the algorithm), a recursive call to procedure computeScope is done.
The algorithm terminates since a valid concurrency scope is only checked once,
and the value for ve to expand or restrict a scope is, at most, equivalent to the
total number of nodes in the tree.

Next, we present an example of a concurrency oracle and a validation func-
tion that could be plugged into the algorithm.

12



Algorithm 1: Computing concurrency scopes

1 Algorithm
Input: Transition graph G = ⟨V,∅,W,E,T ⟩, concurrency oracle C and validation

function F
Output: Concurrency scopes O = {(v,S) ∣ S is a concurrency scope, and v ∈W}

2 O ← ∅

3 for G′ = ⟨V ′,∅, v,E′, T ′⟩ such that v ∈W do
4 Tdom ← dominator tree of G′
5 Tpost ← post-dominator of G′
6 for vs in Tdom in postorder do
7 if vs ≠ v and vs has a parent in Tpost then
8 ve ← parent of vs in Tpost
9 foreach (a, b) ∈ C(Π(vs, ve)∣λ(E)) do

10 computeScope(v, (vs, ve), (a, b))
11 end

12 end

13 end

14 end
15 return O

16 Procedure computeScope(v, (vs, ve), (a, b))
17 if F((vs, ve), (a, b)) then
18 O ∪ {(v,S)}, such that
19 S = ⟨vs, ve, (ai, bj)⟩ and ai, bj ∈ Π(vs, ve) ▷ Add as concurrency scope
20 if ve has a parent in Tpost then
21 ve ← parent of ve in Tpost ▷ Expand
22 computeScope((vs, ve), (a, b))

23 end

24 else
25 if ve has a child in Tpost then
26 ve ← child of ve in Tpost ▷ Restrict
27 if {(v,S′)} ∉ O and (vs, ve) is a scope and (a, b) ∈ C(Π(vs, ve)∣λ(E) then
28 ▷ where S′ = ⟨vs, ve, (ai, bj)⟩
29 computeScope((vs, ve), (a, b))

30 end

31 end

32 end
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3.2.1 Global (baseline) concurrency

We rely on existing concurrency oracles for the computation of the concur-
rency relations between pairs of events, e.g. [3, 25, 8], and assume that no two
events with the same label can be executed concurrently. As a baseline we
use the concurrency relation introduced in [3], herein referred to as α concur-
rency. Intuitively, a pair of labels a, b are concurrent if a is sometimes observed
immediately after b and vice-versa. The definition of α concurrency is given
next.

Definition 8 (α concurrency [3]). Let σ be an event trace. A pair of tasks with
labels a, b ∈ L are said to be in α directly precedes relation, denoted a ≺ b, iff
there exists a trace σ = ⟨e1 e2 . . . en⟩ in L, such that a = λ(ei) and b = λ(ei+1),
1 ≤ i < n. A pair of tasks a, b are α concurrent, denoted a ∥ b, iff a ≺ b∧ b ≺ a. ⌟

Oftentimes the concurrency relations computed by the concurrency oracle,
and in particular by the α concurrency, can be spurious. For instance, consider
the trace ⟨a1 b1 c1 d1 b2 a2⟩, where the α concurrency would deem events with
labels a, b as concurrent. Thus, the validation function is used to refine the
results of the concurrency oracle and filter out spurious concurrency relations.

3.2.2 Validation of concurrency relations

As an example, we define a validation function based on the proportion of events
deemed as concurrent that can be executed from the same states in the scope.

Definition 9 (Validation function). Let co(a, b)∣(vs,ve) = {v ∈

Π(vs, ve) ∣ (v, ai, v
′), (v, bj , v

′′) ∈ Π(vs, ve)} be the set of states within
the paths Π(vs, ve) where events with labels a and b can occur. Addition-
ally, let #(a) = {(v, ai, v

′) ∈ Π(vs, ve)} be the set of transitions associated
to the occurrence of an event with label a in Π(vs, ve). Then, the occur-

rence of a, b w.r.t. to a is f(a) =
∣co(a,b)∣(vs,ve)∣

∣#(a)∣
and, similarly w.r.t. b,

f(b) =
∣co(a,b)∣(vs,ve)∣

∣#(b)∣
. The event types a, b are concurrent in (vs, ve) iff the

following three conditions hold 1. f(a) > tOccurrence, 2. f(b) > tOccurrence,
and 3. abs(f(a) − f(b)) < tBalance, for some thresholds tOccurrence and
tBalance. ⌟

Intuitively, the validation function checks that the number of events with
labels a, b can often be executed from the same state w.r.t. to their total number
of occurrences (i.e., the proportion is higher than a given threshold tOccurrence)
and that the proportions between those events are similar enough (i.e., not
bigger than tBalance).

As an example, let G, C and F be the transition graph displayed in
Fig. 4, the α concurrency oracle (Def. 8) and the validation function pre-
sented above (Def. 9), respectively. Algorithm 1 starts by computing a sub-
graph G′ for each of the final states. Assume G′ is the subgraph displayed
in Fig. 6a and v = {i1, a1, c1, d1, f1, o1} is the final state. The dominator
and post-dominator tree of G′ are displayed in Figs. 6b and 6c, respectively.
The numbers next to the nodes in Fig. 6 correspond to the order in which
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they will be processed (postorder computed over the dominator tree). The
first processed node is vs = {i1, a1, c1, d1, f1, o1} (observe that the if condition
(line 7 in the algorithm) will evaluate to false, since vs has no parents in the
post-dominator tree). Then, in the next iteration vs = {i1, a1, c1, d1, f1} and
ve = {i1, a1, c1, d1, f1, o1}, the latter since {i1, a1, c1, d1, f1, o1} is the parent of
vs in the post-dominator tree; however, C would not detect any concurrency
relation in the paths from vs to ve. Consider the case when vs = {i1, a1}

and thus ve = {i1, a1, c1, d1}, where (c, d) are concurrent according to C, and
this pair is passed to computeScope(v, (vs, ve), (c, d)) to verify if it is a con-
currency scope. Then, for the validation function, co(c, d)∣(vs,ve) = {{i1, a1}},
#(c) = {({i1, a1}, c1,{i1, a1, c1}), ({i1, a1, d1}, c1,{i1, a1, c1, d1})} and #(d) =

{({i1, a1}, d1,{i1, a1, d1}), ({i1, a1, c1}, d1,{i1, a1, c1, d1})}, so f(a) = 1
2
, f(b) =

1
2

and abs(f(a)−f(b)) = 0. Therefore, for any pair of thresholds tOccurrence <
0.5 and tBalance > 0.0, the scope (v, (vs, ve), (c, d)) will be detected as a con-
currency scope by F , in which case the algorithm will attempt to expand it to
the parents of ve.

∅8

{i1}7

{i1, a1}6

{i1, a1, c1}5

{i1, a1, c1, d1}3

{i1, a1, c1, d1, f1}2

{i1, a1, c1, d1, f1, o1}1

o1

f1

d1

c1

{i1, a1, d1} 4

d1

a1

i1

c1

(a) Subgraph

∅8

{i1}7
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5
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4
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{i1, a1, c1, d1, f1}2

{i1, a1, c1, d1, f1, o1}1

(b) Dominator tree

{i1, a1, c1, d1, f1, o1} 1

{i1, a1, c1, d1, f1} 2
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{i1, a1, c1}

5

{i1, a1, d1}

4
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6

{i1} 7

∅ 8

(c) Post-dominator tree

Figure 6: Computation of example concurrency scopes for the transition graph
in Fig. 4

3.2.3 Complexity analysis

The worst-case time complexity of our algorithm is dominated by the complexity
of constructing the transition graph of an event log, and the complexity of
computing the scopes and the traces within them. The complexity of these
steps is polynomial. Given a log with n number of events, the construction of

the transition graph is done in O(
n(n+1)

2
). This is because for every event ei

in the log, 1 ≤ i ≤ n, it is necessary to spot the state in the transition graph
that reflects the execution of ei with respect to the given equivalence relation.
If there is no equivalent state then a new state is added. Thus, the number of
comparison operations for finding equivalent states increases, at most, together
with the number of events analysed.

The complexity of the computation of scopes and traces within a scope
is as follows. Given a transition graph with V states, T transitions and a
unique final state, the dominator and post-dominator trees can be computed in
O((∣T ∣+ ∣V ∣)log(∣T ∣+ ∣V ∣)) with the Lengauer-Tarjan algorithm. Independently
of the traversals of the dominator and post-dominator trees, there can be at
most ∣V ∣2 scopes (all possible combinations of start-end states). Then, given a
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scope S with E′ events and V ′ states, there can be up to a factorial number of
paths (i.e., all interleavings of the concurrent execution of the events E′) in S.
However, using dynamic programming techniques and given that the transition
graphs are directed and acyclic, the computation of the paths can be done in
O(∣V ′∣ + ∣T ′∣), where T ′ is the number of transitions in S.

The next section presents the evaluation with a set of synthetic logs and uses
the concurrency oracle and validation function presented above.

4 Evaluation of accuracy and time performance

We implemented our local concurrency oracle in a Java tool called ProLoCon4

and used it to evaluate the approach’s accuracy and time performance. The tool
takes as input a log in MXML or XES format, a concurrency oracle (currently
the α oracle [3] and the oracle in [25] are supported), as well as the values of
the thresholds tOccurrence and tBalance for the validation function.

4.1 Datasets generation

In order to evaluate the accuracy of our approach, we generated a gold standard
consisting of a set of synthetic process models, which are single-entry single-
exist (SESE) and capture a wide combination of control-flow constructs. These
models were obtained by randomly composing the following SESE fragments:
AND, XOR, Loops, Sequences and Z-blocks (see Fig. 7 for the BPMN notation
of each fragment). The models were generated as trees of height two, where
every internal node is a fragment either containing nested fragments or atomic
activities, and every leaf is an activity. The leaves of the trees are activities
randomly chosen and duplicate activities are allowed as long as they do not
introduce auto-concurrency, i.e., pairs of activities with the same label cannot
belong to the same parallel block. This led to a total of 82 models, ranging
from a minimum size of 10 nodes to a maximum size of 20 nodes (avg. = 15.5
nodes). Out of these models, ten are cyclic and all include at least one pair of
concurrent activities.BlockPatterns

Block 1

Block 2

Block 1

Block 2

Block 1
Block 1 Block 1

Block 1

Block 2

Block 3

Block 4
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Block 1
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BlockPatterns
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(e) Z block

Figure 7: Fragments used for the generation of synthetic process models.

The logs were generated from the synthetic models using the ProM plugin

4Available at http://apromore.org/platform/tools
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“Generate Event Log from Petri Net” [31].5 The obtained logs vary from a
minimum of 4 to a maximum of 300 traces (avg. = 24 traces), with a total
number of events ranging from 24 to 2,400 (avg. = 173 events).

4.2 Setup

Using the model-log pairs in our dataset, we computed the F-
score between the concurrency relations identified in the log
and those extracted from the respective model (gold standard).
The computation of the F-score is divided into three steps:

Figure 8: Evaluation framework (artificial logs).

1. create the local concur-
rency oracle from the log,
2. encode the behavior a
model and, using the ora-
cle, of a log as a model of
true concurrency, and 3. com-
pare the expected concur-
rency (the one occurring in
the model) with the one ob-
served in the log. The evalu-
ation framework is shown in
Fig. 8. For the encoding of
the behavior of models and

logs, we reuse the transformation proposed in [14]. Generally speaking, [14] puts
forward a technique for conformance checking which considers the encoding of
the behavior of both models and logs as Prime Event Structures (PESs) [27], a
well-known model of true concurrency. In fact, the mentioned formalism, PES,
has been suggested as a suitable formalism for a unified behavioral representa-
tion of a log and a process model in the context of process mining [12].

Prepare plan Prepare transactions

Lodge plan Lodge transactions

Examine plan Examine
transactions

Examine plan Examine
transactions

Approve plan Planning approval

Update DCDB Approve plan
Update
register

Update register Update DCDB

Figure 9: PES of model in Fig. 1

A PES captures the set
of traces of a log or process
model by means of events
which are related via three
different binary relations:
conflict, causality and con-
currency. Events in a con-
flict relation cannot oc-
cur in the same execution,
hence, all events in a trace
are conflict-free. The order
between events is defined
via the causality relation,
i.e., an event e is causal to
e′ if e′ can only occur after e. Finally, concurrency is the absence of an order
between events, thus a pair of events in a concurrency relation can occur in

5Parameters of the simulation: complete generation; min./max. traces to add for each
generated sequence: 1; max. times marking seen: 2; only include traces that reach end state;
only include traces without remaining tokens.
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any other. For example, Fig. 9 shows the PES for the land development model
of Fig. 1: the arrows represent causality relations, while the red dotted lines
represent conflicts. In a PES, if two events are neither in conflict nor in causal
relation, they are concurrent. A configuration is a set of events that are conflict-
free and partially-ordered. An event, or set of events, that can occur at a given
configuration is an extension of a configuration; thus, if two events are concur-
rent, they are extensions of at least one configuration. In Fig. 9, the events
in the shaded area are an example configuration, and the two events Approve
plan and Update register are its two possible extensions. These two notions,
configurations and extensions, describe the execution semantics of a PES.

[14] extends the classical notion of PES to represent the behavior of both
acyclic and cyclic process models, as well as the behavior encoded in a log. In
the latter case, it requires as input any concurrency oracle for transforming the
traces in the log into partially-ordered sets of events which are then used to
build the PES. According to [14], given a pair of PESs Plog, Pmodel from a log
and a model, respectively, a pair of configurations s1 of Plog and s2 of Pmodel
are equivalent if they represent equivalent events (i.e. with abuse of notation
the two configurations are set equivalent as per Def. 3). Then, let TP (true
positives) be the set of equivalent configurations s1, s2 where for any pair of
concurrent events a, b which are extensions of s1 in Plog, there is a pair of
concurrent events a′, b′ extending s2 in Pmodel, such that a ∼ a′ and b ∼ b′. Let
FP (false positives) be the set of equivalent configurations s1, s2, where there
is a pair of concurrent events a, b that are extensions of s1 in Plog and for which
there is no equivalent events extending s2. Finally, let FN (false negatives) be
the set of equivalent configurations s1, s2, such that there is a pair of concurrent
events a′, b′ extending s2 in Pmodel and for which there is no equivalent events
extending s1.

Having defined the sets of true positives, false positives and false negatives,
we can compute Precision and Recall, and their F-score.

4.3 Results

Before measuring the accuracy of our approach, we did a sensitivity test on the
thresholds tOccurrence and tBalance. This test was performed using the syn-
thetic dataset and consisted in trying different configurations for both thresh-
olds; the values used for tOccurrence were between [0.0,0.5], with increments
of 0.1, and for tBalance were between [0.0,1.0] with increments of 0.2. In the
case of tOccurrence > 0.5, the validation function resulted too strict and no
concurrency relation could be detected, leading to a very low F-score. Each
combination of the thresholds was used to measure the F-score over each of
the model-log pairs in the dataset and, finally, all values for the F-score were
averaged for each configuration of thresholds. Figure 10a shows how the F-score
varies according to three different combinations of tOccurrence and tBalance.
The rest of the combinations gave similar values to either of the trends pre-
sented in the chart and thus were omitted. Observe that the F-score plateaus
at a value of 0.977 with tOccurrence=0.4 and tBalance=0.2. The same result
was obtained with a tOccurrence=0.5. Therefore, we chose tOccurrence=0.4
and tBalance=0.2 for our experiments.
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Figure 10: Sensitivity test and accuracy for the synthetic dataset.

The other parameters used for the evaluation are the state equivalence of
Def. 5, and the α concurrency as the global baseline concurrency oracle (Def. 8).
The concurrency oracle derived from [25] was also used as a global baseline
oracle; however, the identified concurrency relations were exactly the same as
those retrieved by the α concurrency.

First, we computed the precision, recall and F-score for each of the model-
log pairs using both the global and the local concurrency oracle. Then, for
each of the oracles, we averaged the values for precision, recall and F-score
across all model-log pairs. Figure 10b reports the average results for all 82
model-log pairs. The bar diagram shows a sensible increment in F-score (from
0.82 to 0.92), mostly determined by the increase in precision when using our
local concurrency oracle instead of the global one (from 0.78 to 0.92). The
lower precision of the α oracle is due to its over-generalization, given that local
concurrency relations are identified as global relations. The lower recall of the
α oracle is due to the assumption that the log is complete w.r.t. the direct
follows relation, meaning that all possible such relations are expected to be
present in the log, for the oracle to accurately detect the α-relations. However,
this assumption hardly holds in real-life datasets, hence we did not enforce log
completeness when generating the logs for our experiments.

Global (ms) Local (ms)
Max 0.788 172.064
Min 0.006 0.392
Avg 0.060 6.867

Table 1: Execution times of our or-
acle against the α oracle.

There were two problematic constructs
where the local concurrency oracle failed
to accurately determine the scope of a
pair of concurrency relations. One con-
struct is when there are two AND blocks
containing the same tasks and following
each other. For example, given a log
{⟨a b a b⟩, ⟨b a a b⟩, ⟨a b a b⟩, ⟨a b b a⟩},
the local concurrency oracle identifies as concurrent every pair of a and b from
the beginning to the end of every trace, and thus fails to identify that the second
occurrence of a and b depends on the first occurrence. The other problematic
construct is a sequence of a loop of an activity a, followed by a concurrent block
of activities a and b. In this case, the concurrency oracle identifies the event in
the loop as concurrent with b. These cases are however also misclassified by the
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global baseline oracle.
Table 1 reports the statistics on the execution time (in milliseconds) for the

computation of the concurrency relations using the global α oracle and its local
counterpart. Even though the execution times for the computation of our local
concurrency oracle are sensibly higher than those of the global one, the overall
time taken is still quite low, in the order of milliseconds (average of 6.9 ms).

5 Evaluation of generalization effects

As a second experiment, we evaluated the effects of using a local concurrency
oracle on the generalization of the process behavior captured in the event log.
First, we compared the generalization introduced by the local concurrency oracle
with that introduced by the global concurrency oracle. Second, in order to in-
vestigate the possible over-generalization inherent to existing process discovery
algorithms, we compared the generalization introduced by the local concurrency
oracle with that of the Inductive Miner [18], which is a state-of-the-art auto-
mated discovery technique. Specifically, given that the Inductive Miner can
generate a Petri net out of an event log, which is able to replay every trace
in the log, we used such model as an oracle (referred to as “inductive” oracle
hereinafter) that transforms a trace into a partial order (process induced by
replaying the trace on the net).

For this second experiment we used seven real-life logs. The first log is that
distributed with the BPI Challenge (BPIC) 2012; it captures executions of a
personal loan origination process at a Dutch financial institute.6 The second
log captures executions of an IT service desk process at an Italian IT Vendor,
for handling both service requests and incidents. The third log captures execu-
tions of a business process for plan lodgement and document registration in two
Australian states, as recorded by a land development company, whose model
is depicted in Figure 1. The fourth, fifth and sixth logs capture executions of
a process for handling motor glass claims at an Australian insurance company.
Finally, the last event log is extracted from an information system for managing
road Traffic fines in Italy.7 The characteristics of these logs are reported in the
first part of Table 2.

In this experiment the gold standard (normative model of the process) is
unknown, thus it is not possible to perform a sensitivity test to obtain the
best values for tOccurrence and tBalance, which are used by the local concur-
rency oracle. Therefore, we reuse the thresholds chosen for the experiments
in Section 4, i.e., tOccurrence=0.4 and tBalance=0.2, assuming that the level
of completeness of the log is comparable to that of the synthetically generated
logs. The state equivalence and the concurrency oracle are those of Def. 5 and
Def. 8, respectively.

To measure the effects of generalization, we first transformed each trace of
each real-life log into a partial order run using the local, global and inductive or-
acles. Next, we measured the number of true global (TG) concurrency relations,
i.e. a concurrency relation between events a1, b1 is considered true global if there

6doi:10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
7doi:10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
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is a scope computed by the local oracle for every occurrence of the event types
a, b; the number of true local (TL) relations (or false global), i.e. those relations
that were identified by the global (inductive) oracle, for which our oracle found
a local scope; and the number of false concurrent (FC ) relations, i.e. those pairs
of events which the global (inductive) oracle identified as being concurrent, but
were not found to be concurrent at all by our local oracle. As an example,
with reference to Fig. 1, the concurrency relation between “Update register”
and “Update DCDB” is a case of false concurrency, since these two event types
are actually never concurrent, while the concurrency relation between “Approve
plan” and “Update register” is an example of true local concurrency.

Using these measures, we then computed the concurrency over-generalization
ratio as the ratio between the number of false global and false concurrent re-
lations, and the total number of concurrency relations found by the global (in-
ductive) oracle, i.e. cog = TL+FC

TG+TL+FC
. In essence, this formula measures how

much the global oracle over-generalizes the behavior captured in the log, either
by identifying a local concurrency relation as being global, or by identifying a
pair of events as being (globally) concurrent when they are not. The results are
reported in the second part of Table 2 for both the global and the inductive
oracles.

Observe that the global and inductive oracles have a concurrency over-
generalization ratio ranging from 25% in the case of one of the insurance com-
pany logs, to 100% in the case of the BPIC 2012, IT vendor and Traffic fines
logs. The high value obtained in these latter logs suggests that many such con-
current relations are indeed authentically local. This observation is supported
by the average number of repeated events per trace in these three logs, i.e. the
ratio between the number of events in a trace and the number of event types in
that trace, averaged across all traces. This ratio is 1.3 in the Traffic fines log
(30% of events are repeats of other events) and as high as 4.3 in the IT Vendor
log and 4.4 in the BPIC log (i.e. an event type appears on average four times
in a trace). However, some of these local relations may actually be due to the
incompleteness of the log. Thus, the validation function of our oracle may turn
out to be too strict because not all the interleavings of concurrent tasks are
captured in the log, leading to a reduced scope of the relation, hence to local
concurrency.

Log Events Event
types

Traces Distinct
traces

Avg
trace

TG
Alpha

Conc. relations
Inductive

Conc. relations

length TL FC cog TL FC cog
BPIC 2012 262,200 23 13,087 4,336 42 0 44 35 1 15 0 1
IT Vendor 75,353 9 12,720 1,026 13 0 8 1 1 7 0 1
Land dev. 18,240 14 1,440 36 12.6 5 1 1 0.28 1 1 0.29
Insurance

1
19,544 12 4,954 74 4.39 6 11 1 0.67 11 0 0.65

Insurance
2

7,606 11 1,853 38 4.63 6 2 0 0.25 2 0 0.25

Insurance
3

52,361 12 13,302 102 4.50 5 15 1 0.76 15 1 0.76

Traffic
fines

561,470 11 150,370 231 8.18 0 26 2 1 26 0 1

Table 2: Statistics on real-life logs and their concurrency relations.
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Figure 11 shows an example of a trace extracted from the Traffic fines log,
that resulted in two non-isomorphic partial order runs, after relaxing the order
relations of the events in the trace according to the local oracle and to the global
oracle. As we can see, the run obtained with the global oracle identifies the
“Payment” event as being concurrent with all other events. This is a clear case
of concurrency over-generalization because logically the payment for a fine can
only be done after the fine has actually been sent to the citizen. Similarly, event
“Receive result appeal from prefecture” is concurrent to “Insert date appeal to
prefecture”, which again is logically not possible. This is due to the repetition of
such events within the same traces in the log. On the other hand, our local oracle
identifies the correct order of these events, by placing “Payment” at the end of
the run, and “Insert fine notification” and “Add penalty” in a local concurrency
relation with “Inser date appeal to prefecture”, with the latter event always
preceding “Receive result appeal from prefecture”.

Create fine

Send fine

Insert date appeal
to prefecture

Insert
fine notification

Add penalty

Receive result appeal from prefecture

Payment

(a)

Create fine

Send fine

Insert
fine notification

Receive result appeal
from prefecture

Add penalty

Insert date appeal
to prefecture

Payment

(b)

Figure 11: Traffic fines log: partial order runs derived from the same trace using
the local oracle (a) and the global oracle (b).

6 Application to process drift detection

This section presents the results of an experiment conducted to study the impact
of using our local concurrency oracle instead of the global one for process drift
detection.

Early detection of business process changes based on event logs, also known
as process drift detection, enables analysts to identify and act upon changes that
may otherwise affect process performance. A drift is a statistically significant
change observed in an event log or in a stream of traces. In [21, 22], we intro-
duced a drift detection technique where the basic idea is to perform a statistical
test over the distributions of partially-ordered runs observed in two consecutive
time windows sliding over a log or a stream of traces. A run represents a set of
traces that are equivalent to each other modulo a concurrency relation between
event types. First, a pair of sets of completed process traces, which are extracted
from two juxtaposed time windows, are transformed into runs with the use of
a concurrency oracle. Then, in order to detect a process drift, we evaluate the
hypothesis of whether the statistical distributions of the distinct runs extracted
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from the two juxtaposed windows are similar, using the Chi-square test on the
contingency matrix built from the frequencies of the distinct runs in the two
windows. A drift is detected when the P-value outputted by the statistical test
is less than the significance level (the test threshold is typically set to 0.05).

In [21, 22], we used the global α concurrency oracle to build runs from traces.
In this experiment we replace this oracle with our local oracle and re-assess the
drift detection accuracy, to see if there is any noticeable improvement. To do
so, we applied both versions of the technique on an event log recording 2,259
execution traces of a commercial claims handling process at an Australian in-
surer. This log spans over a period of one year and contains 13,454 events of
which twelve are distinct. Similar to the experiments presented in Section 5,
the normative model of the log is unknown, so we use the same settings for the
local concurrency oracle as those used in Section 5 (tOccurrence=0.4 and tBal-
ance=0.2, with the state equivalence as defined in Def. 5 and the concurrency
oracle as defined in Def. 8).

Figure 12 reports the P–value of consecutive statistical tests based on the
two oracles. Overall, the two plots reveal similar behavior. Indeed, two drifts
were detected at the same position by the detection method when using either
oracle. Nevertheless, the use of the global oracle led to detecting a further drift
at trace 386 which was not detected when using the local concurrency oracle.
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Figure 12: Plot of the P–value of the statistical test for drift detection, using
both the global and local concurrency oracles.

Upon inspection of the runs underpinning the only drift not detected by the
local oracle, we found that the global oracle discovered a concurrent relation in
the window before the drift, but not in the window after the drift. This false
concurrency relation was discovered even if one of the interleavings between the
two events involved in the relation (from “ReviewApprovePayment” to “Re-
viewInvoice”) was much less frequent than the other interleaving. Figure 13
plots the relative frequency of the two interleavings over the log. The use of
a local concurrency oracle can then detect process drifts more accurately, for
instance, by filtering out cases of spurious concurrency relations, like in our ex-
periment above, or by detecting finer-grained changes in concurrency between
time windows, hence avoiding generalization.
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Figure 13: Plot of the number of occurrences of the interleaved event labels over
a sliding window (initialized with 100 traces).

7 Threats to validity

The evaluation of our approach is subject to some threats to validity. First,
we assume that every trace in the log is a complete execution, and the log is
noise-free. The computation of the local concurrency oracle assumes that the
data received as input shall be faithfully preserved throughout the interme-
diate representations used by our technique. Thus, the pre-processing of the
log – for instance to remove noise or incomplete behavior – is considered as
an orthogonal problem. An example of a noise filtering technique which could
be used before the computation of the local concurrency oracle, is presented
in [7]. Second, we assume the real-life logs used in the experiments in Section 5
are somewhat complete. Specifically, we assume they contain enough observa-
tions of possible interleavings between concurrent event labels (tasks). Given
that the normative process models for these real-life logs are non-existent, it
was not possible to compute the accuracy of our technique with respect to a
gold standard. Instead, we used a notion of concurrency over-generalization
ratio to measure the level of potential over-generalization induced by a global
concurrency oracle assuming that the log contains enough observations of the
possible interleavings between concurrent event labels. The use of this ratio
in the experimental evaluation constitutes a threat to construct validity. We
mitigated this threat by considering sufficiently large event logs (1000+ traces)
such that if multiple event labels are concurrent, we would expect to observe
a significant percentage of their possible interleavings. If the latter assumption
holds, the concurrency over-generalisation ratio provides a reliable measure of
the potential over-generalization of the global concurrency oracle.

Another implication of the absence of the normative process models for the
real-life logs is that it was not possible to make a sensitivity test to obtain the
best values for the thresholds tBalance and tOccurrence. For the experiments in
Sections 5 and 6, we reused the values computed in Section 4. Although these
thresholds were computed over a synthetic dataset, the values are not too strict
and allow some flexibility in the presence of incompleteness w.r.t. all possible
interleavings of concurrent behavior.

Finally, the use of only seven real-life event logs in the evaluation, limits,
to some extent, the generalizability of the conclusions. However, the event logs
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included in the evaluation are of different sizes and characteristics, and originate
from different application domains.

8 Conclusion and future work

This paper presented an approach to turn any algorithm for constructing a
global concurrency oracle from an event log into one that constructs local ora-
cles. By scoping the concurrency to a set of states in a state transition graph
constructed from the event log, the approach effectively increases the accuracy
of the detected set of concurrency relations, while avoiding over-generalization of
the process behavior captured in the log. Experimental results have shown that
the local concurrency oracles derived from the proposed approach outperform
the corresponding global oracles when applied to the task of extracting par-
tially ordered runs from an event log. An application in the context of business
process drift detection has shown the ability of the derived local concurrency
oracles to enhance the accuracy of existing process mining methods.

The experimental evaluation suggests that there is room for improvement
in the proposed method, particularly the local concurrency oracle fails to find
accurate scopes in cases where two blocks of concurrency — including the same
event types — precede each other, which leads to detecting bigger scopes than
the actual, and when loops and concurrency blocks with common event types
precede each other, in which case the event in the loop is detected as concurrent
with the event types of the concurrent block. A more extensive evaluation with
other (global) concurrency oracles and other parameters for constructing the
transition system could inform the development of more robust variants of the
proposed method. Additionally, we would like to explore the effects of different
values for the thresholds used in our local concurrency approach, given different
levels of incompleteness of real-life logs.

Another direction for future work is to explore other applications of the
proposed concurrency oracle, for example by combining it with techniques for
conformance checking [14], log delta analysis [30] and automated process discov-
ery [13], which are based on models of concurrency based on partial orders, and
may thus potentially benefit from a finer-grained distinction between causality
and concurrency relations. These techniques need to be adapted to take as in-
put not only a pair of events for which concurrency needs to be determined, but
also a state of execution for this pair.

In particular, in the context of automated discovery, it is also worth exploring
the trade-off between model accuracy and simplicity when comparing a model
discovered using a global concurrency oracle with one discovered using a local
oracle. Our hypothesis is that the over-generalization of log behavior induced by
a global concurrency oracle will result in models exhibiting more behavior than
what is actually recorded in the log, hence less precise models. Meantime, a local
concurrency oracle will lead to label duplication, and so to models of higher size
than those discovered using a global concurrency oracle. However, higher size
may be counterbalanced by simpler control-flow structures given that labels are
duplicated. So ultimately the complexity of the models discovered with the two
different concurrency oracles may be comparable.
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