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Abstract

1: Generalised Dissimilarity Modelling (GDM) is a statistical method for analysing and

predicting patterns of turnover in species composition, usually in response to environmental

gradients that vary in space and time. GDM is becoming widely applied in ecology and

conservation science to interpret macro–ecological and biogeographical patterns, to support

conservation assessment, predict changes in species distributions under climate change and

prioritise biological surveys.

2: Inferential and predictive uncertainty is difficult to characterise using current implemen-

tations of GDM, reducing the utility of GDM in ecological risk assessment and conservation

decision making. Current practice is to undertake permutation tests to assess the impor-

tance of variables in GDM. Permutation testing overcomes the issue of data-dependence

(because dissimilarities are calculated on a smaller number of observations) but it does not

give a quantification of uncertainty in predictions. Here, we address this issue by utilising

the Bayesian bootstrap, so that the uncertainty in the observations is carried through the

entire analysis (including into the predictions).

3: We tested our Bayesian Bootstrap GDM (BBGDM) approach on simulated datasets and

two benthic species datasets. We fitted BBGDMs and GDMs to compare the differences in

Preprint submitted to Methods in Ecology and Evolution December 19, 2016



inference and prediction of compositional turnover that resulted from a coherent treatment

of model uncertainty. We showed that our BBGDM approach correctly identified the signal

within the data, resulting in an improved characterisation of uncertainty and enhanced model

based inference.

4: We show that our approach gives appropriate parameter estimates while better represent-

ing the underlying uncertainty that arises when conducting inference and making predictions

with GDMs. Our approach to fitting GDMs will provide more realistic insights into param-

eter and prediction uncertainty.

Keywords: Beta–Diversity, Community Ecology, Bayesian Bootstrap, Generalised Linear

Models, Generalised Additive Models.

1. Introduction

Describing patterns of diversity from biological data and geospatial data has seen a ma-

jor push in the development of statistical methods that link environmental predictors to

biological data. These methods aim to describe patterns of species distributions (Guisan

& Zimmermann, 2000; Leathwick & Elith, 2009), several aspects of biodiversity (Foster &

Dunstan, 2010; Dunstan & Foster, 2011; Dunstan et al., 2011), and infer biogeographical

patterns (Ferrier et al., 2002; Foster et al., 2013). The ability to describe diversity patterns

is increasingly relevant to decision making, especially during planning phases. Improved

understanding of the uncertainty of the information provided allows more confidence in the

decisions that are made (Wintle et al., 2003; Polasky et al., 2011). Here we focus on the

strategy of modelling patterns of diversity, rather than discrete entities such as individual

species or community types. We model compositional turnover of species for the purposes of

describing biogeographical patterns. We base our method on Ferrier et al. (2002) and Ferrier

et al. (2007), and follow the approach of modelling the change in species composition across

spatial and environmental gradients.
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Modelling compositional turnover (beta–diversity) of species is gaining momentum via the

accessibility of methods such as Generalised Dissimilarity Modelling (GDM: Ferrier et al.,

2002, 2007). GDM uses the compositional dissimilarity between all site–pairs (samples) and

models these dependant variables as a function of the difference in environmental and ge-

ographical covariates between site–pairs. GDMs are closely related to Generalised Linear

Models (GLMs), where the explanatory variables are constructed as the absolute value of

the difference in the I–spline basis values (see Ramsay, 1988) at the two site locations, and

the associated parameters are constrained to be positive (Ferrier et al., 2007). I–splines are

monotonic spline functions useful for non–negative and non–decreasing fits (Ramsay, 1988).

Within the GDM framework, the use of I–splines assumes that increasing distance in envi-

ronmental or geographical space will be related to an increased compositional dissimilarity

between sites (Ferrier et al., 2007).

The methodological issues associated with the current implementation of GDM originate

from using dissimilarities as independent observations. This problem of pseudo–replication

also applies to a number of other existing techniques, such as matrix regression (Smouse

et al., 1986) and DISTLM (Anderson, 2004). The observations in these models are not inde-

pendent as each sample is used to calculate more than one dissimilarity. For example, if we

have n = 100 survey sites, for a GDM, we are modelling n(n − 1)/2 = 4950 dissimilarities.

GDM uses these n(n − 1)/2 dissimilarities as independent data, but the likelihood values

obtained, and particularly the curvature of the likelihood, will lead to estimates that are too

precise (underestimated standard errors) and will also lead to poorly selected models (via

information criteria based on the likelihood). The magnitude of the problem will increase

with the number of sites. The issue of non-independence in GDM has been recognised from

the outset, and researchers have used permutation methods to deal with this problem in

hypothesis tests (Ferrier et al., 2002; Anderson, 2004; Fitzpatrick et al., 2013; Jones et al.,

2015). Permutation testing enables hypothesis testing only, and falls short of characterisa-

tion of uncertainty in predictions of dissimilarities (through interval estimation methods).

Despite the previous use of permutation methods to test for significance of variables (Ferrier
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et al., 2002), a more general approach for quantifying uncertainty and dealing with the issue

of non-independence when modelling dissimilarities in statistical inference is required. In

particular, it is important to quantify uncertainty in the predictions of dissimilarity, from

which the model is interpreted. We propose an extension of GDM that characterises un-

certainty with respect to the amount of information in the site data. Our approach is to

incorporate the Bayesian Bootstrap (BB: Rubin, 1981) into the GDM framework. The BB

approach differs from the standard bootstrap (see Davison, 1997) as a site’s data are never

completely removed from the bootstrap sample. This has the fortuitous effect of ensuring

that all dissimilarities are observed in each of the bootstrap samples, that no pair–wise dis-

similarity between bootstrap samples is identically zero, and that the range of biological

and environmental gradients is preserved. Additionally, we can estimate credible intervals

for parameters, and produce improved diagnostics. We refer to this extension to GDM as

Bayesian Bootstrap Generalised Dissimilarity Modelling (BBGDM).

2. Materials and methods

We describe the Generalised Dissimilarity Model (GDM) in terms of a Generalised Linear

Model (GLM)(as formulated in McCullagh & Nelder (1989) and as previously described by

Ferrier et al. (2007)) and define estimation of parameters, diagnostics and interpretation

of GDM in a GLM framework. Within a GLM, we assume the realised dissimilarities, yij

with i, j = 1 . . . n, are independent observations/realisations of a response variable. The

assumption of independence is accounted for in Section 2.1. We take this dissimilarity to

be the number of species not shared between the sites but note that any dissimilarity could

be used with appropriate changes to the GLM set–up. For the purposes of this paper we

assume that the dissimilarities can be well represented using a binomial process, at least for

the first two moments. The working model is

Yij ∼ Bn(nij, πij), (1)
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where Yij is a vector representing the number of species not shared between sites i and j

and nij is the union of species between the two sites i and j, so Yij/nij is the observed

binomial proportion, which is essentially Jaccard’s dissimilarity (Jaccard, 1912), and πij is

the expected dissimilarity.

It was our preference to use the logit link function, as it is the canonical link function

for binomial GLMs and is subsequently used most often for binomial data, and unlike the

negative exponential (negexp) link function it maps the linear predictor to the unit interval

[0,1]. However, a small simulation study in the supporting information (see Supporting

Information Appendix A1 ) shows that there is not much difference between the fits of the

models, and the choice of link function should be assessed on a case-by-case basis.

For a GDM, the expected dissimilarity is modelled as the absolute difference between I–spline

functions (see Supporting Information Appendix A2 ). Like Ferrier et al. (2007), we constrain

I–spline base value parameter estimates to be positive as this reflects the assumption that

dissimilarities will increase with greater environmental and geographical distances. The

constraint is implemented by estimating the log of the parameters. The intercept is not

constrained.

In GLMs generally, the maximised log-likelihood (or minimised deviance) can be used for

many purposes. Most commonly, it can be used to aid model selection, through calculation of

information criteria (e.g. AIC: Akaike, 1974). Also, the curvature of a GLM’s log-likelihood

surface provides information about the sampling distribution of the parameter estimates. If

we are to continue the analogy of GDMs and GLMs then an obvious candidate to estimate

the uncertainty in a GDM is through the curvature of the log-likelihood surface, which is

immediately available through most software routines to calculate GLMs. We return to the

topic of variance in parameter estimates shortly.
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2.1. Bayesian Bootstrap

We extended GDM by adding a Bayesian bootstrapping (BB: Rubin, 1981) step to address

the non–independence of dissimilarities. The BB is used to create new bootstrap datasets

through the re–weighting of the initial data (Rubin, 1981). We re–weight the set of dissimi-

larities based on the number of sites, and so carry forward their inherent correlation through

their dependence on the site data. To achieve this, we generated B sets of bootstrap weight

vectors, {wb}Bb=1, where each weight vector (wb) is a symmetric Dirichlet variable of length n

(the number of sites). A Dirichlet variable is a statistical distribution of a series of numbers

that sum to one (Gelman, 2014). We now have weights for sites and to turn them into

weights for dissimilarities we used the upper triangle of wbw
>
b . This re–weighting scheme is

based on the assumption that the probability of two sites being both sampled in the boot-

strap sample is equal to the product of their individual probabilities. We then fitted a GDM

using these weights, saved all the resulting parameter estimates, and repeated for the B sets

of bootstrap weights. The resulting set of parameter estimates is an empirical average of the

distribution of the estimates (the sampling distribution of the estimates). For example, the

Bayesian bootstrap estimate of µ̂ for a logit regression can be represented as:

µ̂ij =
1

B

B∑
b=1

1

1 + exp(−x>ijβ̂(b))
, (2)

where xij is the vector of differences in I–spline bases for sites i and j and β̂(b) is the estimated

parameter vector. Credible intervals are the relevant quantiles of this distribution. They take

into account the variation in the observed data and do not assume that the dissimilarities,

which are correlated by construction, are independent.

The BB and the case–resampled bootstrap (see Davison, 1997) have very similar properties

– operationally they are similar and the results tend to be similar too (Rubin, 1981). The

main theoretical difference is that the BB draws a sample for the posterior distribution of

the statistic under study, whereas the case re-sampled bootstrap draws from the sampling

6



distribution. This means that in the case–resampled bootstrap some observations (pairwise

dissimilarities) are not included in the bootstrap sample. Hence, they are assigned a zero

weight in the bootstrap sample. This will never happen with Bayesian Bootstrap as there is

zero probability of observing a zero in the weight vector. Practically however, and for GDMs

in particular, having non-zero weights implies that the design matrix for the GLM does not

change and hence there are no abrupt changes to the structure of the GLM, and parameters

are thus identifiable when derived from the Bayesian Bootstrap samples.

2.2. Model Selection and Inference

Model–selection tools such as pseudo–R2 (deviance explained), Akaike Information Criterion

(AIC: Akaike, 1974) and Bayesian Information Criterion (BIC: Schwarz, 1978), are all based

on the log-likelihood. In GDM and BBGDM, the model log-likelihood is based on dissimilar-

ities, which erroneously assumes that dissimilarities are independent. This feature of GDM

means that statistics directly estimated or derived from the log-likelihood are unreliable

(McCullagh & Nelder, 1989). The implication is that model selection needs to be performed

without directly using the log-likelihood value. This subsequently rules out some common

model selection tools, like AIC, BIC and deviance explained. Typically, variable selection is

achieve using permutation significance tests (Ferrier et al., 2007). We proceed by inspecting

the size of a variable’s parameters in relation to its posterior variance (obtained from the

BB). In particular, we use a ‘Wald-like’ test, named due to its similarity with the Wald test

(Kodde & Palm, 1986), to perform such a comparison. The ‘Wald-like’ test can be used to

assess the parameter estimates from a statistical model based on the sample estimate. For

variable p, the test statistic is Wp = β̂>p Σ̂β̂p, where β̂p is the BB estimate of the regression

spline parameters and Σ̂ is the BB estimate of the variance of these parameters. We assume

that this statistic follows a chi-squared distribution with Q degrees of freedom. We suspect

that Q is an upper-bound for the degrees of freedom and, if true, then the test will be

conservative. That is, it will produce p-values that are larger on average than they should

be. In a model-building context (determining which covariates to include in the model) this
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translates to seeing if Wp is greater than the percentile corresponding to the nominal type-1

error rate (generally the 0.95 percentile for the 0.05 type-1 error). This is a two sided test,

picking out both positive and negative coefficients, as the test statistic is a quadratic form.

If it is greater than the percentile, then the covariate is included in the GDM. In our data

analysis, this process is used to select the best subset of parameters that seek to explain

compositional turnover modelled within our geographic region.

2.3. Model Diagnostics

The use of model diagnostics plays a vital role in model building, checking and inference. One

key approach, used in all areas of applied statistics, is assessing the behaviour of residuals.

Due to the non–normal nature of dissimilarities, it is difficult to properly interpret standard

residuals as their finite sampling distribution is not known. Thus, we require residuals

that take into account the non–normality of dissimilarity data, which is assumed to be

binomial (as a working model). We use random quantile residuals (Dunn & Smyth, 1996)

whose distribution is known, when the model provides an adequate fit to the data. We

calculate these residuals based on the mean estimates of the parameters from B BB samples.

However, dissimilarities are algorithmic abstractions of species observations so they are not

true data observations (Warton et al., 2012). This means the mean-variance relationship of

a dissimilarity is unknown. Thus, residuals calculated on dissimilarities could be misleading

due to the correlation between site pairs and their unknown probability distribution.

2.4. Interpretation

BBGDM aims to estimate turnover of species across geographic and environmental space.

The incorporation of a BB enables us to interpret parameters in light of their uncertainty.

Typically, the posterior distribution represents the parameter estimates with respect to the
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data. For GDM and BBGDM we can present a simple example. Consider the model

g (E(yij)) = β0 +
K∑
k=1

|Ik(temperaturei)− Ik(temperaturej)|β1k

+
K∑
k=1

|Ik(oxygeni)− Ik(oxygenj)|β2k,

(3)

where E(yij) is the expectation of the dissimilarity between sites i and j, g(·) is the link

function, and the right hand side of the equation specifies the dissimilarity as a link-linear

function of an intercept β0 and a set of explanatory covariates, temperature and oxygen. The

intercept value is the baseline estimate of species turnover when covariates temperature and

oxygen are equal at both sites. We can interpret the relative contribution of temperature

and oxygen in driving species turnover based on the contribution of the sum of I-spline

differences for each covariate. For example, if the estimates of the temperature coefficients

(β1) had values twice those of the oxygen coefficients (β2), then a two-fold overall change

in oxygen would be required to drive the same amount of turnover as that of temperature.

Since creation of the I-spline basis gives all covariates the same units (within the particular

dataset) this relative increase is in relation to the range of observed covariates and not the

units in which the covariates are measured. The Bk parameters are inferred from the data.

The parameter estimates are those given by the BB; a reasonable point summary is usually

the median of this distribution. GDM is a single realisation of the BB re–sampling (with

weights all equal). A reasonable way to interpret the posterior distribution of regression

coefficient estimates is to visually compare partial effect plots of I-spline contributions and

their associated credible intervals derived from BB posterior estimates. Thus, important

regression coefficients will be ones with larger magnitudes (absolute values) and smaller

credible intervals around these coefficients.
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2.5. Fitting BBGDM in R

As a companion to this paper, we have made available an R package, bbgdm, that is available

on ‘GitHub’ (https://github.com/skiptoniam/bbgdm/) and can fit the models specified in

this article. The method requires the formula for the explanatory variables expected to drive

compositional turnover of species. The approach uses a maximum likelihood estimation, with

the Bayesian Bootstrap to provide an empirical estimation of parameters. For example, this

code will run a simple model:

fm1 <- bbgdm(∼1+x, sp.dat=spdata, env.dat=envdat, link=‘logit’,

nboot=100, geo=FALSE, splinetype=‘ispline’)

The coefficients and their respective uncertainties will be returned from this function call.

We provide an R script that runs the simple model presented here, and includes the use of

functions that run diagnostics, ‘Wald-like’ tests, and plotting of partial response plots (see

our online example at: https://github.com/skiptoniam/bbgdm/).

2.6. Simulation

Thus far, we have discussed the methodological extension and uses of BBGDM. To illustrate

how our BBGDM approach extends on GDM, we consider the following simulated datasets.

Simulation of dissimilarities is quite difficult; unlike species occurrence (on which dissimi-

larities are constructed) we can not directly assign known means and variances. Thus, we

generated species occurrences with known means and variances, and translated these gen-

erated occurrences into a reasonable ecological community with species turnover across a

gradient. To ensure that we had a strong gradient correlated with species turnover, we

generated our community using a mixture of multivariate normal distributions to describe

the species coefficients to the environmental gradient, following a similar approach proposed

in Ovaskainen et al. (2010). We generated a community of n = 200 species inhabiting a

set of m = 50 sites. We generated 1000 random realisations of this dataset and then used
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these simulated datasets to compare the expectation of dissimilarity, as calculated from the

known probability of species at each site, and the sample mean (as derived from BBGDM

and GDM). Comparisons of the sampling mean (BBGDM) and population mean (GDM)

were undertaken to see if either method adequately captures the expectation of dissimilar-

ity. Further details on simulation of species occurrences are presented in the Supporting

Information (see Supporting Information Appendix A3 ).

We further test if incorporating a Bayesian bootstrap into the GDM framework will help

capture the variance in parameter estimates, and if the standard GDM underestimated un-

certainty. Using our simulated datasets we compared the observed variance in parameters

(obtained from taking the standard deviation of the GDM parameters on each of the sim-

ulated datasets) against the estimate of variance obtained from the model (measured by

the mean of the standard errors of the parameters over each of the simulated datasets) for

BBGDM and GDM. If the variance estimates obtained from BBGDM or GDM are appropri-

ate they should match the distribution of means produced during simulation. We generated

the variance for GDM via the covariance matrix of the parameter estimates, which is de-

rived from the inverse of the negative of the Hessian matrix (McCullagh & Nelder, 1989).

We took the standard errors in parameters as the square roots of the diagonal elements of

the covariance matrix and in turn 95% confidence intervals were generated. We refer to this

as the ’naive variance and confidence intervals’, as it treats dissimilarities are independent

(which they are not). Non-independence has been addressed for hypothesis testing (using

permutation tests Ferrier et al., 2002), but not for predictions and not the contributions of

individual environmental gradients. This latter assessment of uncertainty is given by the

BBGDM presented in this work.
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2.7. Case studies

2.7.1. Tasmanian marine invertebrates

We applied our method to a real-world dataset of benthic invertebrates from the continental

margin and seamounts of Tasmania, Australia. Samples of fauna from the megabenthos

(specimens > 5mm in size were retained) were collected with an epibenthic sled (Lewis,

1999). The data was collected via surveys on Australia’s Marine National Facility vessel

Southern Surveyor during 2007 (SS200702). The region sampled is topographically complex,

comprised of distinct continental margin structure (Koslow et al., 2001). Adjacent to the

continental margin are a number of extinct volcano seamounts. Seamount peaks range from

700-1400m depth, and are characterised by elevation ranges of approximately 200-300m from

base to summit.

2.7.1.1. Biological data. A total of 39 sampling sites were used in analyses, 17 sites were

located on the continental slope, within the continental slope surveys, four were on the

upper–slope (200-500m depth) and 13 the mid-slope (600-1200m). The remaining 22 sites

were located on the sides of seamounts that occur away from the continental margin at

depths greater than 700m (Fig. 1)(see Williams et al. (2010b) and Dunstan et al. (2012b)

for further detail). Megabenthos specimens were all identified by taxonomic authorities to

species level (or operational taxonomic units (OTUs), if undescribed species). The most

common taxa were ascidians, decapods, echinoderms, molluscs, octocorals and sponges. A

total of 493 unique species were identified from the 39 samples, a presence–absence matrix

of sites and species was used for the GDM and BBGDM analyses.

2.7.1.2. Environmental and physical datasets. We incorporated a set of environmental and

spatial covariates for the Tasmanian continental margin and seamount data. Two data

sources were used to represent the abiotic environment of the benthos across the study extent:

the CSIRO Atlas of Regional Seas (CARS) climatology (Ridgway et al., 2002) for physical

oceanography and the MARS sediment database (Australia, 2009). The MARS sediment
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database comprises sediment records from over 40,000 samples from around Australia; we

used three interpolated sediment composition layers: sand percentage, gravel percentage and

mud percentage. Ten oceanographic predictors were selected from the CARS data, including:

annual mean and standard deviations of temperature, salinity, oxygen, phosphorus, and

nitrogen. These 13 covariates, plus depth at the sea-floor of survey sites were used in GDM

and BBGDM model building. Both datasets are temporally integrated, and are spatially

interpolated at 0.01◦ grid cells.

2.7.1.3. Statistical analysis. We used GDM and BBGDM to estimate rates of community

composition turnover for the Tasmanian continental margin benthic diversity dataset. To fit

GDMs and BBGDMs, we constructed a site-by-species matrix, where sites were the locations

recorded from epibenthic sled tows on the sea-floor. A site-by-covariate matrix was used to

construct I-splines within the GDM and BBGDM models. GDM analyses were implemented

as a näıve BBGDM, comprising a single BB with all weights set to one. BBGDMs were

implemented using the ‘bbgdm’ R statistical package presented in this paper. For each

BBGDM 1000 BB replicates were generated. Those results included, (i) a fitted I-spline for

each covariate included in the models, which represents the rate of compositional turnover

of species along a spatial or environmental gradient; (ii) a ‘Wald-like’ test to assess I-splines,

and in-turn select the best subset of parameters that seek to explain beta-diversity modelled

within our geographic region; and (iii) diagnostic tools, including random quantile residual

plots.

2.7.2. Western Australian fish surveys

We present a second case study as an independent test of the BBGDM method. This was

undertaken to see if we could detect a signal in covariates to explain turnover using the

BBGDM method. This case study was an analysis of demersal fish species collected along

the coast of Western Australia, and covered 14 latitudinal degrees and 190-1405 metres of

depth. While these imply large environmental gradients, there were only 65 survey sites.
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This means that the amount of information was relatively limited but the changes may

be large. We present the results of this case study to support the validity of our BBGDM

approach. The study extent, methods, results and discussion of this case study are presented

in Supporting Information Appendix A4.

3. Results

3.1. Simulation

Point estimates for BBGDM and GDM were very similar for our simulated species across

a single environmental gradient (Fig. 2). BBGDM and GDM appear to be capturing the

expectation of dissimilarity from simulation. The variance of the mean estimates, from 1000

simulations, is slightly larger for the BBGDM than for the GDM (Fig. 2a & Fig. 3a), but

within sampling variability.

Comparing the variance of means generated from the simulated datasets versus the expected

variance, we can see that the estimated variance in BBGDM closely resembles the variance

generated from simulation (Fig. 3b), at least to within sampling variability. However, the

naive GDM variance does not display this desirable behaviour, displaying estimated variances

(from the model) that are very small (Fig. 3b) and do not match variance of the means,

over simulated datasets (Fig. 3b).

3.2. Case studies

I-spline parameter estimates were slightly higher for GDM than BBGDM in both case studies

(Fig. 4 & Fig. SI 7). Within both studies, the GDM parameter estimates were well within

the sampling variability of the BBGDM (Fig. 4 & Fig. SI 7). Credible intervals of I-splines

derived from BBGDM all display large variances around mean estimates, while the naive

GDMs variance was small or not visible at the scale that plots were reported (Fig. 4 &

Fig. SI 7). Results from the Tasmanian invertebrate case study show that naive GDM
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I-spline parameter estimates fail to capture the uncertainty in parameter estimates to the

same degree BBGDM does (Fig. 4). Results from the Western Australian fish dataset

also demonstrated a greater quantification of uncertainty in parameter estimates despite the

presence of strong environmental gradients (Fig. SI 7). In both case studies the uncertainty

in BBGDM parameter estimates is larger than naive GDM variance and accumulates with

increasing environmental and geographic gradients (Fig. 4 & Fig. SI 7).

Interpreting parameter estimates based on the ‘Wald-like’ test for both case studies showed

that there were differences in which parameters were significant when comparing GDM and

BBGDM models. In the Tasmanian invertebrate case study, depth, percentage composi-

tion of mud, phosphorus SD, temperature and temperature SD, were significant variables

within GDM (Table 1). However, there was no significant spatial or environmental covari-

ate for BBGDM (Table 1). For the Western Australian fish study all covariates were highly

significant within the GDM model (Table SI 4). While for BBGDM, latitude, depth, and

temperature were all significant variables in explaining compositional turnover (Table SI 4).

In both case studies, model diagnostics showed that models of compositional dissimilarity

calculated using our binomial model framework provided an adequate fit to the data (Fig. 5

& Fig. SI 5). This suggests that the binomial working model was capturing the dispersion

of dissimilarities, and providing a reliable model for these data.

4. Discussion

The incorporation of a Bayesian Bootstrap into generalised dissimilarity modelling provides

an assessment of the uncertainty about the fit of the GDM that can be used in inference and

prediction. Simulations showed that the estimated variance for a BBGDM was equivalent to

the variance of means from multiple simulated model runs. Estimated naive variance derived

from GDMs was much lower than expected across simulations (Fig. 3b). This is likely due

to the pseudo-replication of observations in GDM models, resulting in an overly steep log-
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likelihood surface, leading to false confidence about coefficient estimates and highlighting

that the variance estimated from a GDM covariance matrix under-represents uncertainty

(McCullagh & Nelder, 1989). This was the original motivation for undertaking Monte Carlo

permutation tests (Ferrier et al., 2002), where randomisation was undertaken to test if a

variable was significantly different from a null. Here we use the BB to extend GDM methods

and in turn improves our capacity to include realistic uncertainty in our models and improve

inference.

Characterising uncertainty will help improve the robustness of decisions based partly on

GDMs. For example, models predicting shifts in community composition under future cli-

mate scenarios currently use the mean estimates of dissimilarity, but appear to ignore the

variance in predictions (Dunlop et al., 2012). Making decisions that are robust to realistic

levels of uncertainty requires a realistic characterisation of those uncertainties (Diego et al.,

2005; Wintle et al., 2011). Incorporating the Bayesian Bootstrap into the GDM frame-

work makes such a characterisation possible. Capturing model uncertainties, as presented

in BBGDM, will be vital for good model selection and inference. Our solution was to assess

performance of GDMs and BBGDMs based on partial effect plots, ‘Wald–like’ tests and

model diagnostics.

For the Tasmanian marine invertebrate dataset, over-fitting of parameters in GDMs leads

to false confidence about covariates driving compositional turnover (Fig. 4). For BBGDM,

I-spline estimates based on BB weights suggested that the uncertainty in I-spline estimates

was large, making it difficult to produce reasonable inference on the covariates explaining

compositional turnover (Fig. 4). ‘Wald–like’ tests support these findings, suggesting for this

dataset, we can only trust the intercept-only model (Table 1). Previous GDM analyses of this

marine invertebrate data showed that compositional turnover was largely driven by depth

and salinity (Dunstan et al., 2012a). These results are contrary to the findings presented

in this paper. This shows that BBGDM’s capacity to characterise uncertainty alters the

inference made on covariates driving compositional turnover. The capacity for BBGDM to
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not detect trends in the data might reflect: i) the variances in species assemblages for deep–

sea invertebrate benthic communities, ii) a lack of a gradient that shapes these differences at

the spatial scale of this study (Williams et al., 2010a; Dunstan et al., 2012a), or iii) poorly

measured covariates that do not reflect what they are attempting to measure (Foster et al.,

2012; Stoklosa et al., 2015).

For the Western Australian fish data, we demonstrated that BBGDM is capable of captur-

ing a signal when modelling compositional turnover against strong environmental and spatial

covariates (Table SI 4). Compared to GDM, BBGDM had fewer variables that significantly

contributed to driving compositional turnover (Table SI 4), demonstrating that characteris-

ing uncertainty with BBGDM is important (Fig. SI 7). For the Western Australian fish data,

the importance of depth, temperature and latitude appear to be consistent with our existing

knowledge of processes shaping compositional differences across this region (Williams et al.,

2001).

Not taking into account the uncertainty in parameter estimates has ramifications for applied

outcomes of GDM. For this very reason, many applications of GDM have used permutation

tests to assess the significance of variables in their models (Fitzpatrick et al., 2013; Jones

et al., 2015). However, permutation tests assess how a variable differs from a null test, and

does not propagate uncertainty through an analysis like BBGDM achieves. For example,

using predicted dissimilarities in multivariate ordination or clustering is often used to gain

spatial classification or insight into bioregional distributions (e.g. Leathwick et al., 2011).

These post-processing steps should only be undertaken if the underlying models adequately

capture variance in the data. Thus, within the data presented in this manuscript, post–

modelling classification would be inappropriate for Tasmanian benthic invertebrate dataset.

But if so desired, post-processing of predicted dissimilarities could be applied to the Western

Australian fish dataset, which has significant environmental covariates that drive species

turnover.

BBGDMs estimate quasi–likelihoods for modelled dissimilarities, meaning that the error
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distribution of dissimilarities can be fitted without having to strictly conform to a binomial

distribution (McCullagh & Nelder, 1989). Model diagnostics and residuals based on the

GDM and BBGDM working model appear to be appropriate for dissimilarities for both

biological datasets (Fig. 4 & Fig. SI 5). Throughout, we present a specific form of BBGDM

that uses a particular dissimilarity metric. For this metric, analytical results are available

that show that the dissimilarity changes with different expectations in individual species

and autocorrelation between sites (see Supporting Information Appendix A5 ). However,

it is reasonable to think that researchers could test a suite of data, metrics and model

configurations to better understand the model behaviours and uncertainties in their GDM

applications. Like GLMs, it is reasonable to further extend the GDM approaches into Shape

Constrained Additive Models (Pya & Wood, 2014) and Beta–Regression (Ferrari & Cribari-

Neto, 2004). Similar to modelling count data, one would expect different datasets to drive

the choice of model error distributions (Warton et al., 2015).

4.1. Summary

This work highlights how we can characterise uncertainty when modelling dissimilarities

by including a Bayesian Bootstrap extension into GDM. Although this approach can not

resolve the issue of assuming dissimilarities are independent observations in models, we can

better assess uncertainty in GDM and bring the model back to a framework that estimates

the variance in parameters based on available data. We suggest that future applications of

GDM can improve assessment of model uncertainty by using BBGDM.
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Table 1: GDM and BBGDM ‘Wald–like’ tests on the intercept and sum of I–splines
(
∑k

k=1 {βpk}) for Tasmanian benthic invertebrate data. Covariates with low p–values are those that
are likely to be important in capturing the variances in compositional turnover. W = ‘Wald–like’ statistic;
DF = degrees of freedom (number of I–spline bases); SD = standard deviation.

DF W GDM p-value GDM W BBGDM p-value BBGDM
Intercept 1.00 0.00 1.00 23.77 0.00
Depth 3.00 145383.82 0.00 0.00 1.00
Gravel 3.00 0.00 1.00 0.00 1.00
Mud 3.00 1773417.61 0.00 0.00 1.00
Sand 3.00 0.00 1.00 0.00 1.00
Nitrogen 3.00 0.00 1.00 0.00 1.00
Nitrogen SD 3.00 0.00 1.00 0.00 1.00
Oxygen 3.00 0.00 1.00 0.00 1.00
Oxygen SD 3.00 0.00 1.00 0.00 1.00
Phosphorus 3.00 0.00 1.00 0.00 1.00
Phosphorus SD 3.00 51951.26 0.00 1.13 0.77
Salinity 3.00 0.00 1.00 1.46 0.69
Salinity SD 3.00 0.00 1.00 0.00 1.00
Temperature 3.00 131916547.89 0.00 0.50 0.92
Temperature SD 3.00 3838.31 0.00 0.24 0.97

20



−44.75

−44.50

−44.25

−44.00

−43.75

146.0 146.5 147.0 147.5
Longitude

La
tit

ud
e

250

500

750

1000

1250
depth

Figure 1: Seamount and continental shelf survey sites of the study extent off Southern Tas-
mania. Sites are coloured green (shallow) to red (deep). Box in the top left corner shows the study extent
in relation to Tasmania.
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Figure 2: Mean estimates of dissimilarity from BBGDM and GDM simulated datasets. Within each plot the red line depicts the
mean expectation of dissimilarity across all model simulations. The grey lines represent each model realisation from a simulation. Grey points
are the expectation of dissimilarities between all site–pairs (see Supporting Information Appendix A5 )
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Figure 3: Estimating variance in BBGDM and GDM parameters derived from simulated datasets. Variance in the simulation
model parameters for the intercept, and the I–spline bases: x1, x2 and x3 respectively: (a) the variance, over simulations, in parameter
estimates; (b) the mean estimates of BBGDM variance and naive GDM variance for each parameter in our simulation models. If uncertainty
is properly quantified the two plots, (a) and (b) should match.
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Figure 4: Partial response plots of GDM and BBGDM for Tasmanian benthic invertebrate data. The heavy purple line is the
GDM mean estimate and the brown line is the BBGDM mean estimate. The shading is the 95% confidence interval for naive GDM variance
(light purple) and 95% credible interval for BBGDM variance (light brown).
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Figure 5: Model diagnostics from GDM and BBGDM for Tasmanian benthic invertebrate
data. (a) quantile–quantile plot derived for random quantile residuals for BBGDM; (b) scatter plot of
residuals versus the predicted dissimilarity (non–shared species) for BBGDM; (c) a histogram of random
quantile residuals from BBGDM; (d) quantile–quantile plot for random quantile residuals for GDM; (e)
scatter plot of residuals versus the predicted dissimilarity for GDM; and (f) a histogram of random quantile
residuals from GDM.
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