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Abstract 

Surveillance activities provide only imperfect detection of biosecurity threats, and so 
quantifying detection rates and probabilities is important for making reliable inferences from 
survey data. Furthermore, an understanding of detection rates and probabilities allows for 
effective survey design and resource allocation to address biosecurity threats. Detection rates 
and probabilities can be estimated directly via experiments or indirectly during routine 
surveillance activities. In this chapter we introduce basic presence/absence detection models 
and provide guidelines for designing a detection experiment. We also summarise other methods 
available for estimating detection rates and probabilities when pest abundance, as well as 
presence/absence, affects management. 

Introduction 

Biosecurity surveillance is inevitably imperfect; not all infestations are guaranteed to be 
detected immediately on incursion. Furthermore, the probability of successful detection is 
influenced by the surveillance effort and the  detection rate of the target. 

The detection rate typically describes the frequency of detection events for a species, 
population or individual under a given set of survey conditions. It is context-specific and likely 
to depend on a range of factors such as the targets’ appearance and distribution, the surrounding 
environment and the observation process. Detection rates describe a continuous survey and 
detection process. They can be used to calculate the detection probability for a specific level of 
survey effort, such as a discrete survey design. 

Detection rates and probabilities can have major implications for survey design and 
management decisions. They allow a manager to estimate the risk of detection failure and the 
potential consequences arising from a survey design (for example, see Chapters 4 and 14, this 
volume). The manager can ensure that sufficient effort is allocated to reduce invasion risk or 
consequences to an acceptable level. When they are measured in the same currency, 
surveillance effort and consequences can be traded off directly to determine the survey design 
that minimises overall costs. 



Chapter 10 Page 2 of 16 
 

Detection probabilities have informed survey design for proof of freedom and early 
detection (Mehta et al, 2007; Coulston et al., 2008; Chapter 18, this volume), delimitation and 
containment (Bode et al., 2009; Homans and Horie, 2011; Epanchin-Niell et al., 2012) and 
eradication programs (Regan et al., 2006; Cacho et al., 2007; Ramsey et al., 2009; Rout et al., 
2009; Hester et al., 2010). Detection probabilities can inform prioritisation of effort across 
space (Hauser and McCarthy, 2009; Chadès et al., 2011; Emry et al., 2011) and amongst 
species (Skurka Darin et al., 2011; Chapter 14, this volume), and cost-effective allocation of 
resources amongst surveillance and other activities (Moore et al., 2010; Ndeffo Mbah and 
Gilligan, 2010; Baxter and Possingham, 2011; Rout et al., 2011). 

Nevertheless, it can be difficult to estimate detection rates and probabilities. Many studies 
in the literature rely on expert opinion or nominate values for illustration only. It is possible to 
estimate detection rates or probabilities as part of a broader survey design (D’Evelyn et al., 
2008; Ramsey et al., 2009), but they can be measured more reliably by direct experimentation 
(Bulman et al., 1999; Bulman, 2008; Christy et al., 2010; Britton et al., 2011; Moore et al., 
2011; Stringer et al., 2011). In a detection experiment a range of survey conditions are 
simulated and replicated, and the effort required to successfully detect the target pest is 
measured. 

In this chapter, we will outline basic detection models and provide guidelines for designing 
a detection experiment. We use two case studies – surveys for invasive hawkweeds in the 
Australian alps and serrated tussock in native Australian grasslands - to demonstrate analyses 
of detection data. We also summarise other methods available for estimating detection rates 
and probabilities when pest abundance, as well as presence/absence, affects management. 

Detection at low pest densities 

In many biosecurity circumstances, pests are likely to occur at low densities, if at all. These 
circumstances include using surveillance for proof of freedom, early detection, at the 
boundaries of delimitation and containment efforts, and in the later stages of a successful 
eradication programme (see Chapter 8, this volume). Survey designs must ensure there is an 
adequate probability of detecting the pest where it is present. 

When a pest is considered unlikely to be present or present at a low density, it is reasonable 
to focus simply on pest presence or absence, rather than abundance or density. The first 
detection of the pest is often sufficient to trigger further action. We can model the relationship 
between pest detection and surveillance effort most simply as 

 
(1)  Pr(D|P) = p =1 – (1 – d)X 

 
where D indicates that the pest is detected, P indicates that the pest is present at a specific 
distribution and abundance and p is the probability that the pest is detected given that it is 
present at that abundance (McArdle, 1990).   

Here, surveillance effort X is measured in discrete units and the probability of detecting 
the present pest using one unit of surveillance effort is d. The single-unit detection probability 
d is specific to the nominated population abundance and in general, d increases with population 
size. The probability of detection using X units of surveillance effort is one minus the 
probability that all X units fail to detect the pest population. It can also be thought of as a 
sequence of X binomial surveillance trials with probability d that the pest population is detected 
in a single trial; the overall probability of detection is the probability that the pest is detected 
at least once. Discrete surveillance effort might be applicable when surveillance is conducted 
by making multiple visits to a site (Wintle et al., 2005), laying out traps or baits or conducting 
multiple survey methods simultaneously (Barrett et al., 2010). 
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Equation 1 assumes that the probability of detection from each unit of effort is equal and 
independent of the others (though this can be relaxed, see MacKenzie et al., 2002; Rout et al. 
2009; Chapter 5, this volume). It is common to additionally assume that no false positives 
occur; that is, any detection is a correct identification that the pest of interest is truly present.  

Alternatively, surveillance effort x may be modelled continuously. This may apply when 
effort relates to the number of person hours (Garrard et al., 2008; Moore et al., 2011), trap 
hours (Britton et al., 2011), trap density (Bogich et al., 2008), or distance travelled in search 
(Ramsey et al., 2009). The probability of detection can be expressed as 
 
(2)  Pr(D|P) = p = 1 – exp(-λx).  
 
Equation 2 uses a Poisson assumption, and is one minus the probability that effort x fails to 
detect the pest. Parameter λ is the detection rate, and the mean effort required to detect the 
specified pest population is 1/λ.  

The Poisson assumption means that the detection process is random and that outcomes 
from one moment to the next are independent. Equation 2 can be adapted to accommodate 
variations on this assumption such as abundance and spatial clumping (McCarthy et al., 2012), 
changing encounter rates (Gurarie and Ovaskainen, 2012) and dependence on other covariates 
(this chapter). 

Estimating species detection rates experimentally 

Imperfect detection acts as a filter between the true pest status and the pest surveillance data 
we collect. It can be difficult to disentangle the detection process from pest presence. For 
example, we may visit and survey many sites, some with sparse vegetation and others with 
dense vegetation. We find our target pest species in some sparsely vegetated sites but not in 
densely vegetated sites. Was this because densely vegetated sites are unsuitable for the species, 
or because the species is difficult to detect amongst dense vegetation? Supplementary 
information about habitat suitability and/or detection is needed. 

A powerful method for estimating detection rates is independent controlled 
experimentation (Hauser et al., 2012). This involves simulating surveillance procedures in an 
area where the pest (or a benign mimic) occurs. The experimenter can manipulate the 
underlying conditions, collect data on successful and unsuccessful detections and fit data to a 
detection model (such as 1 or 2 above). We expand upon the principles of experimental design 
discussed in Chapter 4, focussing on particular issues that should be considered when 
embarking on a detection experiment. 

Identifying influential variables 
The experimenter must first identify variables that are expected to influence detection rates. 
These may relate to the targets’ characteristics (e.g. size, maturity), the surrounding 
environment (e.g. dominant vegetation or other visual obstacles, temperature) or the observer 
(e.g. a human searcher’s level of training, a trap’s size).  

It can be useful to measure variables that are thought to influence detection in the 
experiment, even if they do not exist during real surveillance. For example, allowing many 
observers to visit the same plot may result in the trampling of vegetation or other clues leading 
to the easier detection of the pest. Including the number of visits previously made to the plot 
as a covariate should reveal whether detection rates increase. When the detection model is 
applied to real surveillance the rate assuming no prior visit can be used. 

Any potentially influential variables should be controlled where possible and, at the very 
least, measured. Stratification, randomisation and replication will strengthen statistical 
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inference. However, some compromises may need to be made to ensure a detection experiment 
is practicable and sufficiently represents typical surveillance activities.  

Site selection 
The site of experimentation should represent the real surveillance sites as closely as possible. 
The site might be divided into homogeneous plots, each possessing a different combination of 
important environmental variables. For example, 16 sites might be selected to represent 4 
different land uses with each land use represented in 4 replicate plots. Plot and site size should 
be selected to allow for the full range of typical surveillance activities, e.g. allowing human 
searchers to walk with their usual pace and gait, or capturing the full radius of a trap’s potential 
attraction. 

Targets 
In order for a detection experiment to yield informative data, the pest must be detectable at the 
site. An experiment may involve opportunistic use of the target in situ, translocation of 
individuals from outside the study area, propagation of the species, or the use of benign mimics. 
The risks of using a pest species should be carefully assessed, with pest placement, recovery 
and disposal planned to maintain the risk of escape at an acceptable level. 

Variation amongst individuals that might affect detection, such as size or colour, should 
be measured and, where possible, controlled and replicated. Ideally, the number and 
arrangement of targets will be controlled by the experimenter but this is not always feasible. 
The design and analysis of these two types of detection experiment – controlled target 
arrangement and uncertain target arrangement - will be discussed in more detail below.  

Observers 
Variation in observers should also be controlled and measured where possible, applying 
different observer types to the same site scenario. Full control of observer variation is probably 
most challenging when the observers are human searchers: it may not be possible or ethical to 
control the knowledge, behaviour or other characteristics of individual searchers, although 
most variables should be measurable. Often human searchers can be grouped in the design, e.g. 
by identifying highly trained and inexperienced participants. 

The use of human observers requires other extra planning. In addition to issues of health, 
safety and ethics, humans are inclined to act strategically. They may act counter to their usual 
surveillance activities if there are incentives to do so. Strategies may include but not be limited 
to: noticing patterns in the experimental design (e.g. target abundance or placement, variable 
times allocated to tasks) and adjusting behavior to detect more targets, unusually high or low 
motivation to detect targets, and observing fellow participants’ detection successes for 
accelerated detection during their own search. The design of the experiment and experience of 
searchers should be arranged to avoid such changes in behaviour wherever possible. This may 
conflict with idealised sampling designs, which typically replicate target abundances in a 
predictable pattern. The information conveyed to the searchers prior to and during the 
experiment should be carefully considered. For example, do searchers usually see a sample 
pest? Do they have expectations regarding target abundance? 

Testing the design 
A computer-based simulation analysis using realistic parameter values can help identify the 
replication of plots, targets and observers that is sufficient to detect the influence of measured 
variables. In a budget-constrained environment, trade-offs may exist, e.g. many observers 
searching few plots each vs few observers searching many plots each. The former will reveal 
more about the influence of observer variables on detection rates and less about the influence 
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of plot variables. In addition, where target presence is not controlled or known, more visits to 
fewer plots will be useful for estimating occupancy. 

Data collection 
Understanding detection rates is likely to require data collection additional to that made during 
typical surveillance procedures. Much site and target information can be recorded before 
surveillance is simulated. However, detailed information on detection events, such as the time 
and location, observer and target identity must be collected during simulated surveillance 
activities. Disruption to standard procedures should be minimised. Additional staff might be 
required to ‘observe the observers’ in real time and collect these important additional data. 

Controlled target arrangement 
Controlling the arrangement of targets, by managing the location of the pest in situ or by 
introducing targets to the site, offers the best opportunity for strong statistical inference. The 
abundance and arrangement of individual targets should mimic the range of circumstances that 
may be encountered during real surveillance procedures. These circumstances should be 
measured, randomised and replicated throughout the experiment where possible. 

Replication can often be achieved by allocating targets at high abundance, and therefore 
providing observers with many opportunities to encounter the pest. However this approach may 
not be appropriate for pests that occur at low densities; target encounters might no longer be 
independent of each other, and human observers may alter their search behaviour. At the other 
extreme, allocating targets at very low densities will yield few detections and therefore few 
data from which to draw inference. A detection experiment must strike a balance between 
realistic encounters and adequate replication.  

When the pest prefers specific local conditions, plots may need to be stratified by micro-
habitat to ensure that targets are positioned realistically. Regardless of stratification, target 
position should be randomised amongst suitable locations. 

When target arrangement is controlled, the pest is known to be present at each site that a 
model is fitted and its density is known. When X discrete units of survey effort are deployed at 
a site (equation 1) and the pest is detected by n of those units, then the likelihood function for 
our unknown detection probability d is 

 
(3)  L(d | n, X) = dn (1 – d)X-n 

 
The maximum likelihood estimate (MLE) for the detection rate is , that is the number 
of survey units detecting the pest divided by the total number of survey units. 

When continuous survey effort x is applied at a site and n detections are made, we set t1, 
t2, ..., tn to be the units of effort expended at each detection. The likelihood function for 
detection rate λ is 
   
 
(4) 
 
 
The MLE for the detection rate is ; that is, the number of pest detections divided 
by the sum of effort required to detect each pest. This is equivalent to the inverse of the mean 
detection time. 

More complicated likelihood functions are required when detection rates are linked to 
common covariates across sites, as in the first case study below. 
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Case study – estimating detection rates for hawkweed plants 
We undertook a search experiment (Moore et al., 2011) to estimate the detection rates for 
orange hawkweed (Hieracium aurantiacum), an invasive weed in Australia, New Zealand and 
the United States. We carried out our experiment on the recently invaded Bogong High Plains 
in north eastern Victoria, Australia. We planted individual rosettes in a 2 ha area of suitable 
habitat which was then searched by observers. Because we knew the locations of all the plants 
and recorded which individuals were detected by each observer we were able to calculate the 
number of times that each individual was detected or not detected, increasing the power of our 
study. 

Study design 
The trial took place in a 2 ha area. Search teams would typically be allocated areas on this 
spatial scale and conduct parallel line searches across it. We identified influential variables 
likely to affect the detection rate to be the number of rosettes in a single location (i.e. the group 
size), the surrounding vegetation type, and the experience level of the observer. We planted 70 
potted greenhouse-grown Orange Hawkweed rosettes in 34 groups (4 groups of 5 plants, 10 
groups of 3 plants and 20 individuals; Fig. 10.1). Plants were placed using stratified 
randomisation to ensure that they were spread relatively evenly over the trial area, but we did 
not stratify by vegetation type. The study area consisted of a mosaic of grassland, short open 
heath and tall dense heath, representing the range of the vegetation types encountered when 
surveying for new hawkweeds. The vegetation type surrounding the plant groups was recorded 
as grassland (8 plant groups), short open heath (17 plant groups) or tall dense heath (9 plant 
groups).   
 
(a) 

 

(b) 

 

 
Figure 10.1. a) An example of the potted hawkweed rosettes that were used in the experiment and b) the layout of potted plants 
in the 2 ha trial area (black circles). Larger circles indicate larger groups of hawkweeds (1,3,5). Two observer tracks are also 
shown (dark and light grey lines) which illustrate the varying line search intensities used by different observers.  
 
Twelve observers participated in the experiment. All observers were engaged in the 
management of hawkweed to some degree but their level and type of survey experience varied 
widely. To maximise replication and our ability to distinguish observer-level influences on 
detection, we requested that observers search in parallel lines across the plot as individuals 
instead of teams. Observers were taken to a starting location (which differed between 
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observers) and directed to search until they were requested to stop (approximately 1.5 hours). 
Start locations and start-times were staggered to minimise contact between observers, with a 
maximum of three observers searching simultaneously. Each observer was provided with a 
GPS (Garmin GPS60) which tracked their position every 15 seconds. Observers recorded the 
location of any plants found as a waypoint on the GPS. Observers were interviewed directly 
after their search. They indicated their level of experience and were also asked specify any cues 
that they used to find or identify the plants, ways in which the experiment differed from real 
surveys and any other relevant observations. 

Statistical methods 
We used a variation of equation 2 to estimate the detection rate λij for each observer i and plant 
group j. We were unable to record time to detection for each plant group detected. Instead we 
calculated search effort as the average area searched per unit of time for each observer xi and 
modelled each potential detection as a draw from the Bernoulli distribution with parameter pi,j, 
which is the probability of detecting the plant group given it was present (equation 2). We 
modelled ln(λi,j) as a linear function of influential factors: 
 
(5)  ln(λi,j) = a + bs(gj) + bv(hj)+ be(kij)+ obsi,  
 
where a is the intercept term, bs(gj) is the effect of plant group j being of size gj, bv(hj) is the 
effect of the plant group j occurring in vegetation type hj, be(ki) is the effect of observer i having 
experience ki, and obsi is a random effect for observer i. The categorical variables s(gj), v(hj) 
and x(ki) were modelled using a reference class set arbitrarily to zero for plant group size 1, 
grassland and inexperienced observers.  

We fit the model using Winbugs 1.4.2 (Lunn et al., 2000). The model fit to each observer 
track i was described as: 

 
 log(lambda[i]) <- a + bv[veg[i]] + bs[size[i]] + be[exp[i]] + re_obs[obsID[i]] 

p[i] <- 1 - exp(-lambda[i] * effort[i]) 
seen[i] ~ dbern(p[i]) 

 
To represent a lack of prior information, and to ensure that the parameter estimates were driven 
by the data, we used vague prior distributions for the intercept and linear predictors of the 
categorical effects (dnorm(0,0.000001)) and the observer random effect (dunif(0,100)). We fit a 
full model (three levels of vegetation type and group size, two levels for observer experience 
and a random effect for observer) and used DIC analysis to identify a minimum model 
(McCarthy, 2007). Parameter estimates are based on 200,000 samples after a 100,000 sample 
burn-in*.  

Findings 
Overall, each observer searched only a small proportion of the 2 ha experimental area, with 
only two observers covering more than half of the area in the allocated time. All planted 
hawkweed groups were encountered at least twice (median = 4, range 2-6) but the number of 
times that each group was detected was often less (median = 1, range 0-6). The number of plant 
groups encountered also varied considerably between observers from as few as 3 to a maximum 
of 23. Detection also varied widely, with the proportion of encountered groups detected ranging 
from 9-100%.  

                                                                        
* WinBUGS uses a Markov chain to sample from the posterior distribution. Parameter estimates should only be 
estimated from a Markov chain that has converged to the posterior distribution, which may happen immediately 
or after many iterations. The ‘burn-in’ refers to the initial samples from the Markov chain prior to convergence. 
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The most substantial influence on detection in this experiment was the size of the plant 
group, specifically whether there was more than one individual in the group (Table 10.1, Model 
A). There was also weak evidence that vegetation type influenced detection rates, with groups 
in grassland vegetation slightly easier to detect than groups in heath vegetation (Table 10.1, 
Model B). We expected vegetation to have a larger effect and suspect that this was not observed 
because we did not stratify plant group location over vegetation type or ensure that observers 
divided their time between vegetation types. The openness of the vegetation was the most 
common factor cited by the observers as important in affecting the difficulty of the search. 
Other factors mentioned as increasing the difficulty of the search were slope, observer fatigue, 
bad weather, wet grass, walking direction relative to orientation of vegetation, and light levels 
or time of day. 

 
Table 10.1. Parameter estimates for the two best DIC-ranked hawkweed detection models. Lower DIC values indicate a more 
parsimonious model. a is the intercept of the linear predictor, bs is the effect of plant group size > 1 relative to a plant group size 
1, bv is the effect of shrubby surrounding vegetation relative to grassy surrounding vegetation, and sd_obs is the standard 
deviation of a Normally distributed random effect for each observer. 

 
Parameter  Mean 2.5% CI 97.5% CI 

Model A (DIC = 150.747)    

a -1.959 -2.653 -1.348 

bs 1.087 0.4477 1.743 

sd_obs 0.6376 0.09669 1.431 

Model B (DIC = 151.388)  
a -1.734 -2.621 -0.8564 

bs 1.066 0.4219 1.729 

bv -0.3111 -1.081 0.4552 

sd_obs 0.7104 0.15 1.547 

 
We are confident that the planting process did not produce sufficient disturbance to act as 

a cue for detection as none of the observers indicated that they used signs of disturbance as a 
cue to find the plants. However, it was noted that the plants were larger and healthier than those 
observed in the region because they were grown in a green house. Observers indicated that 
while this probably didn’t make them easier to locate, it did make plants easier to positively 
identify once noticed. Since there are a number of other species in the area (e.g. Picris 
hieracioides, Hypochaeris radicata, Taraxacum spp, Microseris lanceolata) that are similar to 
Hieracium aurantiacum rosettes, the usual need to check each rosette in detail would likely 
increase actual search time. Hence, it is likely that this experiment overestimated detection 
rates compared to rosettes grown in field conditions.   

Estimates of detection rate can be used to plan surveillance and to retrospectively assess 
the probability that areas surveyed still contain undetected individuals. The estimates from the 
experiment described here (plus additional unpublished work) have been used by managers of 
the hawkweed eradication program to plan alpine hawkweed surveys using an optimal 
surveillence methodology (Hauser and McCarthy, 2009). 

Uncertain target arrangement 
While it is ideal to experimentally control occupancy, density and arrangement of the target 
species when estimating detection, detection probability may be estimated using targets in situ. 
This scenario poses some particular challenges, the most obvious of which is that pest 
presence/occupancy may not be known.  This situation can be addressed by adding a new 
parameter Ψ to the simple binomial and exponential models described above (equations 1 & 
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2). Ψ is the probability that the target pest is present at the site, and can be modelled 
simultaneously with detection probability (MacKenzie et al., 2002; Tyre et al., 2003; Wintle 
et al., 2005) or detection rate (Garrard et al., 2008). 

Then equation 1 becomes 

(6)    

 
which is known as a zero-inflated binomial model (Wintle et al., 2005). 

Equation 2 becomes 

(7)    

 
So, for each model we now have two probability statements. The first describes the 

situation in which the species is not detected in any survey (n=0); the second describes the 
probability of detections and non-detections for multiple surveys where the species is detected 
(n>0). In the former case, the model allows for two possibilities: that the species was present 
and it escaped detection in every instance; and that the species was truly absent from the site. 

These models have a number of assumptions. Individual visits or surveys are assumed to 
be independent, observer-target encounters are assumed to be independent and random, and 
targets are assumed to occur in equal densities across occupied sites (although density 
covariates can also be included in the model). In practice, it will be difficult or even impossible 
to demonstrate that assumptions about target distribution and density are met, and this may 
have implications for detection rate estimates. It is also assumed that the target population does 
not change over the duration of the study, which means these methods may not be applicable 
to relatively short-lived targets such as some insect pests.  

Occupancy models are typically replicated across multiple scenarios that are linked via 
common covariates, as in the case study below.  

Case study – estimating detection rates for serrated tussock in Australian native grasslands 
Serrated tussock (Nassella trichotoma) is considered one of the worst weeds in Australia 
because of its invasiveness, potential to spread and economic and environmental impacts (CRC 
for Australian Weed Management, 2003). It is a weed of concern in many places outside its 
native range, including New Zealand, South Africa, northern America, parts of Europe, and 
Australia, where it is listed as a Weed of National Significance (Weeds Australia, 2008). This 
species, along with other exotic perennial grasses, is regarded as a significant threat to 
agriculture and remnant native grassland communities in south eastern Australia (Department 
of Sustainability and Environment, 2003). 

In this case study, the detection rate for serrated tussock in native grassland communities 
was estimated in a field trial in which the presence or absence of the species was unknown 
(Garrard et al., 2009). Detection of this species in native grasslands is thought to be hampered 
by the fact that, when it is not flowering, the species is visually similar to a number of native 
tussock grasses, such as Poa species. 

Study design 
Time-to-detection data were collected during a multi-site, multi-observer field study 
undertaken in consecutive Spring seasons in 2006 and 2007. Multiple observers conducted 
flora surveys in 16 one-hectare plots in native grasslands to the west and north of Melbourne, 
Australia. Surveys were 90 minutes in duration, during which time observers were asked to 
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record the time at which they first saw each new species†. Observers searched each site in one 
of two ways: systematic searches were those where the observer followed a repeated pattern 
when covering the full hectare, while observers conducting an unsystematic search were able 
to roam within the site as they pleased, using prior knowledge and intuition to determine their 
search path. In both cases, observers were instructed to cover as much of the site as possible 
during the 90 minutes allocated for the survey. Starting points for each observer were 
randomised around the perimeter of the site to avoid biases towards plants in specific locations, 
and the number of observers surveying each site at any one time limited to two to avoid “copy 
cat” detections. 

Statistical methods 
We fit an exponential time-to-detection model, which assumes that the rate of detection, λ, is 
constant, and allows for uncertain site occupancy, Ψ (equation 7). We modelled ln(λ) as a linear 
function of explanatory variables. (In this model, 1/ λ is equal to the average time to detection). 
Influential factors considered were observer experience (whether or not the observer had 
specific experience in grassland surveys), time of day (morning, midday or afternoon), weather 
conditions (sunny, sunny with cloudy periods, overcast or raining), percentage cover of the 
dominant grass, Themeda triandra, and the date of survey (reported as days since October 1st: 
chosen because it coincides with the beginning of the peak survey period for native grasslands). 
Due to data restrictions, we chose not to include random effects for site or observer, however 
these could be accommodated in the linear predictor as described in the previous example. 
Models were run in WinBUGs 1.4.2 (Lunn et al. 2000).   

The WinBUGS code divides the likelihood into components depending on whether the 
species was detected by any observers at a given site, in which case we know it is present, or 
whether it was not detected by any observers, in which case it may be present or absent. This 
is done by using two indicator functions: dd[i] is 1 if the species is found during survey i and 
zero otherwise, d[site] is 1 if the species was detected at least once at site and zero otherwise.  

 
for(site in 1:16){ 

for(i in 1:visitors[site]) { 
dd[i] <- step(50-x[i])   

} 
d[site] <- step(sum(dd[1:visitors[site]]) - 0.5) 

} 
 

where visitors[site] is the number of observers who surveyed site. In surveys where the 
species is detected, x[i] is set to zero,  50-x[i] is positive using the indicator function step, and 
dd[i] is set to 1. When the species is not detected, x[i] is the total time spent searching site 
without detection – 90 minutes in this case – and so 50-x[i] is negative and dd[i] is set to 0.  

The likelihood function for each site, L[site], uses the indicator variable d[site] to select 
from the two forms in equation 7. Note that t[i] is the time at which an observer successfully 
detects the species, and x[i] is the total time spent searching site if the species is not detected; 
in other words, the duration of the survey. The probability of occurrence is psi, which is 
assumed to be the same across all sites. 

 
for(site in 1:16){ 

 
# Likelihood at each site 
L[site] <- (1-d[site]) * (1 – psi + psi*prod(pn[1:visitors[site])) 
  + d[site] * psi * prod(pp[1:visitors[site]])  
 
for(i in 1:visitors[site])) { 

 

                                                                        
† This study was designed to simulate impact assessment surveys of a site, and required a comprehensive species 
list at each site.  Detection rates for a single species are likely to be higher in a targeted search. 
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# Likelihood if seen at the site (by anyone) and by the observer 
pp1[i] <- lambda[i]*exp(-lambda[i]*t[i]) 
 
# Likelihood if seen at the site (by anyone), but not by this observer  
pp2[i] <- exp(-lambda[i]*x[i]) 
    
# Selects likelihood if seen at this site (by anyone)     
pp[i] <- dd[i]*pp1[i] + (1-dd[i])*pp2[i] 
 
# Likelihood if not seen (by anyone) 
pn[i] <- exp(-lambda[i]*x[i])    
 
# Link detection rate lambda to covariates 
log(lambda[i]) <- alpha + exper[obsr[i]] + search[method[i]] + beta*days[i]  

+ yr[year[i]]  
} 
 

} 

 
We specified vague prior distributions for Ψ (dunif(0,1)), and the intercept and variable 

coefficients of the linear predictor (dnorm(0,0.0001)) to ensure that the posterior estimates were 
driven by the data. We fit a full model and used DIC analysis (McCarthy, 2007) to identify a 
minimum model. Parameter estimates are based on 100,000 samples after discarding a burn-in 
of 10,000 samples.  

Findings 
Serrated tussock was detected at 15 of the 16 sites surveyed.  The naïve-high estimate of 
detection probability (assuming the species was truly absent from the site where it was not 
detected (Wintle et al., 2004) was 0.65, indicating that the species remained undetected during 
35% of surveys undertaken at sites where it was known to be present. 

Multiple models were compared using DIC. Observer experience, search method, date, T. 
triandra cover and year were all included in models with a DIC value within 2 units of the 
DIC-best model (Table 10.2). Detection rate was higher for experienced observers, non-
systematic searches and at later dates in the survey period. Detection rate was lower in 2007 
than in 2006, and there is some evidence that detection rate was negatively affected by 
increasing cover of T. triandra, however this effect is less certain (Fig. 10.2).  

 
Table 10.2.  Candidate detection models and DIC rankings for N. trichotoma in native grassland communities. Lower DIC values 
indicate a more parsimonious model. There is little support for models with a DIC value more than 2 units greater than the best 
model. α is the intercept of the linear predictor, exper is experienced observer, search is a non-systematic search pattern, date 
is the date of survey, year is year of survey, %themeda is the cover of T. triandra, and time of day is the time at which survey 
began. 

 
Model ΔDIC 
A. ln(λ) = α + exper + search + date + year 
B. ln(λ) = α + exper + search + date + year + %themeda 
C. ln(λ) = α + exper + search + date 
D. ln(λ) = α + search + date + year 
E. ln(λ) = α + exper + search + date + year + time of day 
F. ln(λ) = α + exper + date + year 
G. ln(λ) = α + exper + search + year 

0 
1.08 
1.68 
2.99 
3.33 
4.00 
7.74 
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Figure 10.2.  Relative size of the influence of explanatory variables on detection rate of N. trichotoma in native grasslands.  Points 
and error bars represent the mean and 95% credible intervals of the posterior distributions.  Estimates are taken from 100,000 
samples after discarding a burn-in of 10,000 samples. 
 

Using the DIC-preferred model (Model A), the average detection rate under favourable 
conditions (experienced observer, non-systematic survey, late in the 2006 survey season) is 
0.030 plants per minute (1.82 plants per hour). This is equivalent to an average time to detection 
of 33 minutes per hectare. Average detection time increases to 53 minutes for less experienced 
observers and 57 minutes when a systematic search pattern is used. 

Equation 2 can be used to estimate the probability of detecting N. trichotoma at a site 
where it is present after a given survey effort. Under the favourable survey conditions described 
above, the probability of detecting N. trichotoma in a 60-minute survey of a site where it is 
present is 0.84. 

Estimating detection and abundance 

Numerous methods exist for estimating the probability of detecting an individual in a 
population and correcting for bias in abundance estimates. We give a brief description of the 
most commonly used methods, and key references are provided for those readers who wish to 
explore this area further. Mark-recapture (Otis et al., 1978; Nichols, 1992) and N-mixture 
models (Royle, 2004; Joseph et al., 2009) simultaneously estimate population size and the 
detection probability of individuals within the population from observed count data.  These 
methods require temporally- (mark-recapture) and spatially- (N-mixture) replicated sampling 
events. These methods can accommodate variation in detection rates among individuals (both 
methods), sampling events (mark-recapture) and sites (N-mixture). Mark-recapture models are 
extremely popular for monitoring animal populations, and can provide estimates of additional 
parameters including survival, recruitment and growth rate. They can be implemented in the 
program MARK (White and Burnham, 1999). To date, application of these methods to plant 
populations has been limited (but see, for example, Kéry and Gregg, 2003). 

Distance sampling enables the estimation of population density in a known area from 
detection data characterised by distances from a sampling location (Buckland et al., 2001). 
Sampling generally takes place from a point or line transect. A key feature of these methods is 
the recognition that the probability of detecting individuals declines with distance. A detection 
function is used to describe the rate at which detection probability declines with distance. 
Fitting this detection function from distance data may be completed in program DISTANCE 
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(Thomas et al., 2010). In the case of insect trapping, the decline in capture probability with 
distance can be summarised in terms of the “effective sampling area” of a trap (Turchin and 
Odendaal, 1996) which can then be used to estimate the probability of target detection within 
a trapping grid.  

When applied to pest species, it is often beneficial to remove individuals as they are 
detected. Mark-recapture estimation methods and catch-per-unit-effort methods from fisheries 
literature can be usefully adapted to estimate detection probability as the pest is removed and 
simultaneously estimate abundance (D’Evelyn et al., 2008; Ramsey et al., 2009). 

Conclusion 

Determining detection rates or probabilities for a population under the full range of potential 
survey conditions is not trivial. Detection experiments that are designed and controlled 
independently of standard pest surveys offer the greatest potential for quality estimation. In 
this chapter we have discussed how such experiments can be designed, implemented and 
analysed. This approach cannot be realistically implemented for all pest species. Linking 
detection rates to species traits (Garrard et al., 2012) offers some potential for predicting 
detection rates for other related species. 

Methods from other environmental management disciplines such as occupancy modelling, 
mark-recapture, distance sampling and catch-effort modelling can be adapted to estimate 
detection probability during an independent detection experiment or in tandem with standard 
surveillance. We have briefly reviewed these methods and direct the reader to cited references 
for further detail. 

Detection estimates indicate not just what surveillance has detected, but what may continue 
to lie undetected. They are therefore vital for informing surveillance design at all stages of pest 
management. 
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