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Abstract: Sulphated polysaccharides with anti-thrombotic and anti-coagulant activities have been
found in various marine biota. In this study, a previously characterised anti-thrombotic and
anti-coagulant extract from blacklip abalone was fractionated by anion exchange chromatography
(AEC), pooled (on a sulphated polysaccharide basis) and administered to Wistar rats via oral gavage
(N = 8) for assessment as an oral therapeutic. To ensure that the preparation had anti-coagulant
activity prior to oral administration, it was assessed in rat blood by thromboelastography (TEG)
significantly increasing reaction (R) time (or time until clot formation). Following in vitro confirmation
of anti-coagulant activity, 40 mg of the preparation was orally administered to rats with blood
samples collected at 2, 4, and 6 h post-gavage. Assessment of all blood samples by TEG showed some
prolongation of R time from 355 to 380 s after 4 h. Dosing of the post-gavage blood samples with
the abalone preparation to confirm anti-thrombotic activity in vitro revealed residual anti-coagulant
activity, further suggesting that oral administration did increase anti-coagulant potential in the
collected blood but that bioavailability was low. Assessment of tissues and haematological parameters
showed no obvious harmful effects of the abalone preparation in animals. In summary, even though
oral administration of fractionated and pooled blacklip abalone extract to rats delayed clotting
after 4 h, bioavailability of the preparation appeared to be low and may be more appropriate for
intravenous administration as an anti-thrombotic or anti-coagulant therapeutic.
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1. Introduction

Thrombosis and related disease states are increasing globally and require anti-thrombotic and
anti-coagulant therapy. Heparin, one of the most widely available intravenous anti-coagulant
therapeutics and the second most abundant, naturally-occurring drug after insulin [1], is a potent
anti-coagulant because of its unique binding to anti-thrombin III [2].

Heparin has been the most clinically exploited anti-coagulant for the last 50 years [3]; however,
the use of this therapeutic is limited because of its hemorrhagic effect, poor bioavailability, multiple
daily dosing, and side effects such as heparin-induced thrombocytopenia (HIT) [4]. Heparin is usually
isolated from mammalian sources such as porcine intestinal mucosa and bovine lung, however, isolates
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from these sources are often comprised of more than one type of glycosaminoglycan that can appear as
contaminants with detrimental effects [5]. Also, the disaccharide composition of heparin from different
sources displays complexity in sulphation that can result in different coagulation, thrombosis, and
bleeding. In a study from Brazil, uncontrolled bleeding occurred when porcine intestinal heparin
was replaced by bovine intestinal heparin [6]; even though bovine intestinal heparin displayed half
the coagulant activity compared to porcine intestinal heparin, the bleeding side effects were similar.
To overcome some of these issues, different low molecular weight heparins, such as Clexane [7], have
been developed and modified using an array of techniques including chemical depolymerisation
and enzymatic digestion followed by purification targeted to oligosaccharides with high charge
densities [4].

Alternatives to heparin therapy have been also sought and used to overcome the side effects
associated with this therapeutic. The best-known alternative is warfarin; others include lepirudin,
argatroban, and bivalirudin [8]. The long half-life and irreversible binding of some of the heparin
alternatives, namely lepirudin and argatroban, make the use of these alternatives challenging. Warfarin
is a reversible anti-coagulant therapy, but it has similar contraindications for human therapy as
heparin. Therefore, alternatives to heparin are still being sought, with a number of new oral low
molecular weight anti-coagulants recently approved by the Food and Drug Administration (FDA)
including rivaroxaban, dabigatran, apixaban, and fondaparinex (IV; Arixtra). However, these approved
formulations all have contraindications that can cause issues in various patients [9].

In the last few decades, there has been a gradual increase in processed marine products with
a concomitant increase in waste streams. In 2010, these waste streams were equal to approximately
24 million tonnes. These marine processing streams are also enriched with structurally diverse molecules,
especially sulphated polysaccharides that possess a broad panel of bioactivities including anti-coagulant,
anti-thrombotic, anti-oxidant and anti-inflammatory activities [10]. Sulphated polysaccharides from
marine organisms may provide an alternative source of heparin-like molecules [11]. Marine sulphated
polysaccharides may offer some advantages over mammalian heparin, as they show considerably
less contamination with viruses and/or prions and have the potential to be useful clinical reagents
due to their regular and well-defined structures [12]. An early study in 1977 revealed that there
were various glycosaminoglycan (GAG)-like molecules in molluscs [13]. Since then, GAG-like
molecules or glycoproteins, have been separated and extracted from molluscs such as pearl oysters
and scallops [14]. Abalone is also being investigated as a source of anti-thrombotic and anti-coagulant
molecules, as it contains structurally diverse, bioactive components including GAG-like molecules [15].
Recently, several studies have focused on the nutritional and pharmaceutical values of abalone extract.
In particular, different types of sulphated polysaccharides obtained from abalone viscera and gonads
have shown anti-thrombotic and anti-coagulant activity in vitro [16]. However, in vivo studies are
necessary for investigating the suitability of these new molecules as therapeutic candidates.

To the best of our knowledge, only one study has been published regarding anti-coagulant and
anti-thrombotic activity of abalone viscera extract in vivo using rat models [17]. In the proposed
research, a preparation from blacklip abalone (H. rubra), with confirmed anti-thrombotic and
anti-coagulant activity, was provided to Wistar rats by oral gavage. Following oral administration,
blood coagulation parameters were assessed to determine if the fractionated abalone extract was
bioavailable and whether it could delay clotting time in vivo.

2. Results and Discussion

According to the World Health Organisation (WHO), cardiovascular diseases, including heart
disease and stroke related to thrombosis, are the main causes of death globally with predictions that
by 2030, almost 3.6 million people will die from these diseases [18]. Heparin has been the most widely
used anti-coagulant drug for the last 50 years [19]. Heparin, and other anti-coagulant drugs such
as lepirudin and argatroban, have side effects including long half-life, excessive bleeding, and HIT.
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For these reasons, it is important to look for alternative sources of anti-coagulant agents other than
mammalian sources [20].

Marine organisms are increasingly being investigated as sources of bioactive molecules with
therapeutic applications as nutraceuticals and pharmaceuticals. In particular, the retrieval and
characterisation of these bioactive molecules from marine processing waste contributes valuable
information to the vast field of marine natural product discovery [21]. Heparin-like molecules have
been identified form various molluscs, and some have less bleeding side effects compared to heparin [22].
Fourteen species from eight families of molluscs contain various sulphated polysaccharides and
heparin-like molecules with different disaccharide compositions, molecular weights, and anti-coagulant
activities ranging from 5 to 365 IU/mg [23]. The approximate average molecular mass of heparin-like
molecules in molluscs is 27,000 Da, and is higher than that of mammalian heparin [24].

In our previous studies, an extract prepared from wild caught blacklip abalone viscera [25,26]
using different proteolytic enzymes followed by anion exchange chromatography also showed
significant anti-thrombotic and anti-coagulant activity. In vitro prothrombin time (PT), activated partial
thromboplastin time (aPTT), and TEG were prolonged by all abalone extracts, with PT increasing in
response to anionic fractions. In current research, previously prepared fractions from blacklip abalone
extract with confirmed anti-thrombotic and anti-coagulant activity [27] were pooled and provided to
Wistar rats by oral gavage.

2.1. Freeze Drying of AEC Pool 4 and Anti-Thrombotic Assessment In Vitro

Prior to animal modelling, an aliquot of freeze dried AEC pool 4 was reconstituted and assessed
for anti-thrombotic activity in vitro using PT and aPTT assays performed in rat plasma to ensure
bioactivity prior to oral administration. As shown in Table 1, freeze drying did not adversely affect
bioactivity as evidenced by the significant prolongation of PT and aPTT in rat plasma. In vitro
anti-thrombotic activity using PT and aPTT is almost comparable to heparin standard, as we published
previously in Suleria et al. [25]. For comparison, the international normalised ratio (INR) was calculated
for each PT and aPTT assay using an international sensitivity index (ISI) of 1.2. The INR is used to
monitor individuals who are being treated with an anti-coagulant. Overall, both PT and aPTT were
significantly prolonged by increasing the sulphated polysaccharide concentrations.

Table 1. In vitro anti-thrombotic assessment of freeze dried and reconstituted fractionated and pooled
abalone extract (AEC pool 4) using prothrombin time (PT) and activated partial thromboplastin time
(aPTT) assays performed in rat plasma.

Sample Descriptions SP (µg/mL) Time (s) INR

PT

Rat plasma (Before freeze drying)

0 9.7 ± 0.02 1.0
50 12.1 ± 0.08 * 1.2

100 13.3 ± 0.04 * 1.4
150 15.2 ± 0.01 ** 1.6

Rat plasma (After freeze drying)

0 9.1 ± 0.01 1.0
50 11.2 ± 0.06 * 1.2

100 12.4 ± 0.08 * 1.4
150 14.8 ± 0.06 ** 1.6

aPTT

Rat plasma (Before freeze drying)

0 31.4 ± 0.3 1.0
5 39.2 ± 0.7 * 1.2

10 50.1 ± 0.2 ** 1.6
20 71.5 ± 0.3 *** 2.3

Rat plasma (After freeze drying)

0 30.4 ± 0.01 1.0
5 38.4 ± 0.2 * 1.3
10 52.0 ± 0.2 ** 1.7
20 73.8 ± 0.03 *** 2.4

Note: Statistical significance determined using a one-way ANOVA with Dunnett’s Multiple Comparison Test
compared to saline control with * p < 0.05, ** p < 0.01 and *** p < 0.001. SP stands for sulphated polysaccharide
concentrations and INR stands for international normalised ratio.
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2.2. Oral Administration of Fractionated and Pooled Abalone Extract (AEC Pool 4) to Rats and Analysis of
Whole Blood

Freeze dried AEC pool 4 (40 mg determined on a sulphated polysaccharide basis) in 2.0 mL water
was delivered to rats via oral gavage. The dosage was determined by the extrapolation of results
from in vitro experiments. In our previous research [26], we concluded that clotting time was delayed
by increasing the concentration of sulphated polysaccharides. To determine the oral dose of AEC
pool 4, we observed that 25 µg/mL AEC pool 4 (based on sulphated polysaccharide concentration)
in blood delayed in vitro clotting by almost two-fold compared to a saline control. Using a predicted
bioavailability of 10%, a dose of AEC pool 4 equivalent to 40 mg sulphated polysaccharides was
provided to rats with an average body weight of 250 g and a predicted blood volume of 16 mL.
Blood samples were taken at one-time point per rat either at 2, 4, or 6 h post-gavage, and subjected
to blood hematological, histopathological and TEG. Blood haematology showed no obvious toxicity
in control or AEC pool 4 administered groups (Table 2). Tissues including the liver, kidneys, small
intestine, and large intestine were also fixed, stained, and examined under a microscope, revealing no
obvious changes in morphological characteristics including hydropic change, apoptosis, and necrosis.
Subsequently, it appeared that the oral administration of 40 mg AEC pool 4 had no obvious harmful
effects on animals in this study. Thromboelastography showed a significant increase in R time in the
4 h post-administration blood samples (Table 3 and Figure 1).

Table 2. Baseline characteristics of hematological parameters in both control and rats orally
administered fractionated and pooled abalone extract (AEC pool 4).

Blood Parameters Normal Range Control Test,
2 h Post-Gavage

Test,
4 h Post-Gavage

Test,
6 h Post-Gavage

White blood cells (10 × 9/L) 5.10–12.16 8.66 11.19 9.2 10.09

Red blood cells (10 × 12/L) 5.79–7.14 6.46 7.54 6.4 7.36

Hemoglobin (g/L) 122–148 135 142 131 139

Hematocrit (Ratio) 0.30–0.50 0.36 0.479 0.37 0.384

Mean corpuscular volume (fL) 53–59 56 63.5 57.8 52.2

Mean corpuscular hemoglobin (pg) 18–22 20 18.8 20.5 18.9

Mean corpuscular hemoglobin
concentration (g/L) 330–410 370 296 354 362

Platelet count (10 × 9/L) 600–700 700 603 641 680

Platelet large cell ratio (%) 3.8–4.5 4.1 4.6 3.6 4.4

Platelet count (%) 0.4–0.6 0.47 0.52 0.42 0.45

Note: ranges obtained from Wistar Rat—Charles River Laboratories: http://www.criver.com/files/pdfs/rms/
wistar-rats/rm_rm_r_hematology_crl_wi_br_sex_age.aspx, http://www.doiserbia.nb.rs/Article.aspx?id=0354-
46640903353B#.V4IL0fl96M8.

Table 3. Assessment of anti-coagulant activity by TEG in rat blood samples following oral
administration of fractionated and pooled abalone extract (AEC pool 4).

Sample Description SP (mg) R (Sec) Angle (α) MA (mm)

Control 0 355 ± 5 66.1 ± 2.2 71.9 ± 13.7
Test 1—2 h post gavage 40 335 ± 7.5 67.1 ± 1.2 83.5 ± 14.7
Test 2—4 h post gavage 40 380 ± 10 * 71.1 ± 3 * 60.1 ± 2.4
Rat 3—6 h post gavage 40 360 ± 15 80.2 ± 0.2 ** 75.1 ± 14.5

Note: Results are expressed as the mean of two animals (n = 2) ± standard deviation. Statistical significance
determined between control and test animals using unpaired t-tests with * p < 0.05 and ** p < 0.01. (SP stands for
Sulphated polysaccharides concentration and MA stands for maximum amplitude).

http://www.criver.com/files/pdfs/rms/wistar-rats/rm_rm_r_hematology_crl_wi_br_sex_age.aspx
http://www.criver.com/files/pdfs/rms/wistar-rats/rm_rm_r_hematology_crl_wi_br_sex_age.aspx
http://www.doiserbia.nb.rs/Article.aspx?id=0354-46640903353B#.V4IL0fl96M8
http://www.doiserbia.nb.rs/Article.aspx?id=0354-46640903353B#.V4IL0fl96M8
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Figure 1. Thromboelastographs of rat blood from control and treatment animals following oral 
gavage of fractionated and pooled abalone extract (AEC pool 4). The black graph represents the 
control. The brown, green, and pink graphs show the results of 2, 4, and 6 h post oral delivery, 
respectively. 

Recently, Li et al. [17] reported that oral gavage of 200–400 mg abalone (H. discus hannai) visceral 
extract/kg rat body weight prolonged aPTT and tail bleeding time (TT) in a dose-dependent manner, 
but did not increase PT or TT compared to the control group. This study also showed no effect on 
platelet aggregation or number. Taken together, these results suggest that an increase in aPTT reflects 
the involvement of the H. discus hannai extract in the intrinsic coagulation pathway as opposed to the 
extrinsic and common pathways that are usually implicated by changes in PT and TT [27,28].  
Cui, Wang, and Yuan [14] also reported the beneficial effect of a glycosaminoglycan-like molecule, 
isolated from the mollusc Mactra veneriformis, on deep venous thrombosis in a rat model. In this study, 
the anti-thrombotic effect was dose-dependent following intravenous administration (0.1, 0.4, and  
1.6 mg/kg), resulting in a significant increase in aPTT with no change in PT. Overall, the  
anti-thrombotic and anti-coagulant effect from M. veneriformis was weaker than that of mammalian 
heparin; however, the bleeding risk was greatly decreased. 

2.3. In Vitro Anti-Coagulant Assessment of AEC Pool 4 Dosed into Rat Blood 

Clotting time was only delayed by 25 s in the 4 h post-gavage blood samples. To investigate the 
lack of anti-coagulant effect achieved following the oral administration of AEC Pool 4, rat blood 
collected after oral administration was dosed with AEC pool 4 and assessed again by TEG. In Table 
4, R time was prolonged significantly by increasing the concentration of AEC pool 4 compared to the 
control. It is clear from the TEG traces in Figure 2 and the TEG data in Table 4 that AEC pool 4 has 
anti-coagulant activity in vitro. With respect to the α angle and maximum amplitude (MA) value, 
AEC pool 4 decreased these parameters significantly as compared to control. Interestingly, the 
addition of 34 µg/mL AEC pool 4 to blood samples taken from the treatment animals 2, 4, and 6 h 
post-gavage produced varying R times. Dosing 34 µg/mL AEC pool into blood collected 2 h post-
gavage extended R time by 810 s, significantly longer than AEC pool 4 added to blood collected 4 h 
(720 s, p = 0.0151) and 6 h post-gavage (668 s, p = 0.002). Clot strength (MA) values and angle followed 
a similar pattern. This suggests that the oral administration did provide some anti-coagulant and 
anti-thrombotic molecules that persisted in different levels post-gavage. 
  

Figure 1. Thromboelastographs of rat blood from control and treatment animals following oral gavage
of fractionated and pooled abalone extract (AEC pool 4). The black graph represents the control.
The brown, green, and pink graphs show the results of 2, 4, and 6 h post oral delivery, respectively.

Recently, Li et al. [17] reported that oral gavage of 200–400 mg abalone (H. discus hannai) visceral
extract/kg rat body weight prolonged aPTT and tail bleeding time (TT) in a dose-dependent manner,
but did not increase PT or TT compared to the control group. This study also showed no effect on
platelet aggregation or number. Taken together, these results suggest that an increase in aPTT reflects
the involvement of the H. discus hannai extract in the intrinsic coagulation pathway as opposed to
the extrinsic and common pathways that are usually implicated by changes in PT and TT [27,28].
Cui, Wang, and Yuan [14] also reported the beneficial effect of a glycosaminoglycan-like molecule,
isolated from the mollusc Mactra veneriformis, on deep venous thrombosis in a rat model. In this study,
the anti-thrombotic effect was dose-dependent following intravenous administration (0.1, 0.4, and
1.6 mg/kg), resulting in a significant increase in aPTT with no change in PT. Overall, the anti-thrombotic
and anti-coagulant effect from M. veneriformis was weaker than that of mammalian heparin; however,
the bleeding risk was greatly decreased.

2.3. In Vitro Anti-Coagulant Assessment of AEC Pool 4 Dosed into Rat Blood

Clotting time was only delayed by 25 s in the 4 h post-gavage blood samples. To investigate
the lack of anti-coagulant effect achieved following the oral administration of AEC Pool 4, rat blood
collected after oral administration was dosed with AEC pool 4 and assessed again by TEG. In Table 4,
R time was prolonged significantly by increasing the concentration of AEC pool 4 compared to the
control. It is clear from the TEG traces in Figure 2 and the TEG data in Table 4 that AEC pool 4 has
anti-coagulant activity in vitro. With respect to the α angle and maximum amplitude (MA) value, AEC
pool 4 decreased these parameters significantly as compared to control. Interestingly, the addition of
34 µg/mL AEC pool 4 to blood samples taken from the treatment animals 2, 4, and 6 h post-gavage
produced varying R times. Dosing 34 µg/mL AEC pool into blood collected 2 h post-gavage extended
R time by 810 s, significantly longer than AEC pool 4 added to blood collected 4 h (720 s, p = 0.0151)
and 6 h post-gavage (668 s, p = 0.002). Clot strength (MA) values and angle followed a similar pattern.
This suggests that the oral administration did provide some anti-coagulant and anti-thrombotic
molecules that persisted in different levels post-gavage.
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Table 4. In vitro anti-coagulant assessment of fractionated and pooled abalone extract (AEC Pool 4)
dosed into rat blood.

Sample Description SP (µg/mL) R (Sec) Angle (α) MA (mm)

Control 0 375 ± 5 66.1 ± 2.2 71.9 ± 13.7

Test 1—2 h post-gavage
8.5 427 ± 2.2 ** 64.2 ± 4.1 69.8 ± 7.5
17 552.5 ± 3.5 *** 62.25 ± 6.6 57.1 ± 10.1
34 810 ± 5 *** 29 ± 1 ** 37.75 ± 3.4 **

Test 2—4 h post-gavage 17 357.5 ± 7.5 70.65 ± 0.7 67.35 ± 13.4
34 720 ± 15 ** 28 ± 4.6 ** 52.4 ± 7.1 *

Test 3—6 h post-gavage
17 467.5 ± 12.5 * 64.85 ± 2.2 73.65 ± 10.8
34 667.5 ± 7.5 *** 50.4 ± 6.9 72.85 ± 5.2
50 No blood clot

Note: Results are expressed as the mean of two animals (n = 2) ± standard deviation. Statistical significance
determined between control and test groups using unpaired t-tests with * p < 0.05, ** p < 0.01, and *** p < 0.001.
No blood clot indicated that no clot formation was observed at 50 µg/mL sulphated polysaccharide.
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Figure 2. Thromboelastographs of rat blood dosed with fractionated and pooled abalone extract (AEC
Pool 4). The black graph represents the control. The green, pink, and brown graphs show blood clotting
activity after the addition of 8.5, 17, and 34 µg/mL sulphated abalone polysaccharide, respectively.

The use of marine sulphated polysaccharides as anti-thrombotic drugs appears to be limited
to intravenous administration given the high oral dosing required to produce anti-thrombotic and
anti-coagulant effects. Some of the new oral anti-thrombotic drugs, such as direct thrombin or factor
Xa inhibitors, have overcome this limitation but can still cause bleeding or sometimes unpredictable
responses [29]. The oral administration of sulphated polysaccharides is complicated by their size and
composition, which makes them resistant to degradation by enzymes produced by vertebrates, or by
the bacteria of intestinal flora, reducing intestinal absorption and thus limiting oral administration [30].
An assessment of sulphated polysaccharide concentration in blood following oral administration is
needed to determine whether bioavailability is in fact low and whether absorption enhancers such
as poly lactic-co-glycolic acid (PLGA) [31], or whether introducing nanoparticle technology [32] or
modifications to the sulphated polysaccharides such as depolymerisation and selection of anionic
oligosaccharides, may help to overcome the apparent limitations of these molecules as oral therapeutics.

In finding ways to improve the oral bioavailability of marine sulphated polysaccharides, it must
be considered that anti-thrombotic and anti-coagulant activity is not only a consequence of negative
charge density, but also varies with the position of sulphated residues and type of constituent sugar
(e.g., α-L-Fucp unit or α-L-galactopyranosyl (Galp)) [1]. For this reason, the specific structure of
the oligosaccharide fragment of the sulphated polysaccharide that interacts with proteins and other
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complexes in the blood coagulation system must be characterised. By determining this, efforts can be
made to decrease the size of the parent molecule and purify target oligosaccharides in order to produce
more bioavailable and active anti-thrombotic and anti-coagulant therapeutics. Special attention must
also be paid to the mode of action of these sulphated polysaccharides that will assist in the design of
molecules with enhanced bioavailability.

3. Material and Methods

3.1. Preparation of Fractionated Abalone Extract with Anti-Thrombotic and Anti-Coagulant Activity In Vitro

Australian wild caught blacklip abalone (H. rubra) visceral samples were provided by Tasmanian
Seafoods, Hobart, Australia. Abalone extract was prepared according to the method described by
Suleria et al. [33]. The extract was then fractionated by anion exchange chromatography (AEC),
pooled, and de-salted according to the protocol in Suleria et al. [26]. In vitro HCII-mediated thrombin
inhibition was measured in all pooled fractions using a kinetic assay as previously described [34], with
modifications [35]. In vitro anti-coagulant activity was also confirmed using prothrombin time (PT),
activated partial thromboplastic time (aPTT), and thromboelastography (TEG) assays, using previously
published methods in Suleria et al. [25]. From all pooled fractions, AEC pool 4 produced the highest
anti-coagulant activity as measured by PT, aPTT, and TEG and was selected for in vivo investigations
following oral administration.

3.2. Freeze Drying of AEC Pool 4

To prepare AEC pool 4 for oral gavage, freeze drying was carried out using a Christ Freeze Dryer
EPSILON 2–6D LSCplus (Martin Christ, Osterode am Harz, Germany) by freezing at −50 ◦C for
4 h prior to drying at −10 ◦C and 1.03 mbar for 4 h, followed by −5 ◦C at 1.03 mbar for 12 h, and
0.001 mbar for 6 h.

3.3. In Vivo Anti-Coagulant Effect of AEC Pool 4 Following Oral Administration in a Rat Model

Ethics approval was acquired from the University of Queensland Animal Experimentation
Ethics Committee (Ethics approval number MED/TRI/519/15/CKDR/MED). Eight Wistar rats (male)
were sourced from the Australian Resources Centre (Western Australia), delivered to the Biological
Resources Facility of the Translational Research Institute (TRI, Brisbane, Australia), and acclimatised
for at least a week prior to experimentation. Rats were housed in the Biological Resource Facility at
the Princess Alexandra Hospital, where temperature was maintained at 20 ± 1 ◦C and humidity kept
between 60% and 75% with artificial light for 12 h (7 a.m.–7 p.m.) daily. All animals had unlimited
access to food and water. Rats were fully matured with a body weight range of 200–300 g (average
250 g). Oral administration of 40 mg AEC pool 4 (on a sulphated carbohydrate basis as determined
by Blyscan Sulfated Glycosaminoglycan Assay (Biocolor Ltd., Carrickfergus, County Antrim, UK))
in 0.2 mL water was performed via oral gavage. The animals were then monitored and one blood
sample was taken from each animal at either 2, 4, or 6 h post-gavage (with two animals sampled per
time point, n = 2). Blood samples were also taken from control animals (n = 2) that did not receive any
oral extract administrations.

All animals were anaesthetised with a regimen of 2.3% isofluorane with 2 L per min of
oxygen. This regimen was found to provide the deepest anaesthesia over the experimental period.
This anaesthetic regimen was developed in past experiments and was found not to interfere with
coagulation [36]. After immobilisation, monitoring of anaesthesia levels was carried out through
vital signs and paw pressure stress tests. When it was confirmed that adequate anaesthesia was in
place, animals were weighed and positioned for surgery for blood collections. The surgical procedure
was carried out using aseptic techniques. Blood samples were collected from the posterior vena
cava by opening the abdominal cavity of anaesthetized rat and making a V-cut through the skin and
abdominal wall 1 cm caudal to the rib cage. For access to the posterior vena cava, normally positioned
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between the kidneys, intestines were gently shifted to the left and the liver held forward with a gauze
pad. An angled 23–25 gauge needle and a 5 mL syringe were used to collect the blood samples.
The needle was inserted into the widest portion of the vein and blood was drawn slowly and gently.
Three millilitres of blood were taken from each rat at one time point only and collected into 1 mL
citrate tubes (3.2% trisodium citrate blood collection tubes, Greiner Bio-One) prior to TEG analysis.

The animals were then humanely euthanised under anaesthesia. After completion of the
experiment, samples of liver, kidney, and small and large intestines were fixed in 4% buffered formalin
overnight, then prepared routinely for histology sectioning and staining, for blinded assessment of
any pathological changes. Tissue were blocked in paraffin as a tissue array per animal, sectioned at
4 µm, and stained using haematoxylin and eosin. No histological changes were seen with low and
high-power microscopy of the sections (data not shown). Blood was either centrifuged to prepare
plasma, or was kept as whole blood. Blood coagulation tests were carried out immediately after
blood collections.

3.4. Histopathological and Hematological Parameters

At the completion of each experiment, samples (n = 2) of liver, kidney, and small and large intestines
were removed, bisected in an equatorial plane, fixed in buffered formalin at 4 ◦C and prepared routinely
for histopathology. Formalin-fixed tissue was embedded in paraffin using routine methods, and 4 µm
sections were cut onto Superfrost Plus histology slides and stained with hematoxylin and eosin (HE;
routine histology), as well as periodic acid-Schiff reagent (PAS; identification of glycogen). All HE
and PAS-stained tissue sections were viewed using light microscopy and assessed for morphological
characteristics, including hydropic change, apoptosis and necrosis, in 10 microscope fields per section
at ×200 magnification by the protocol of Wunnapuk et al. [37]. Hematological parameters were
measured for each sample (n = 1) in the Chemical Pathology Department at the Princess Alexandra
Hospital (Brisbane, Australia) by the Jaffe method using a Beckman DxC800 general chemistry analyser
(Beckman Coulter, Brea, CA, USA), following the protocol of Korenkova et al. [38].

3.5. Statistical Analyses

All statistical analyses were conducted using a one-way ANOVA with Tukey’s multiple and
Dunnett’s comparison tests. These calculations were carried out using GraphPad Prism 5 Software for
Windows (GraphPad Software, San Diego, CA, USA, www.graphpad.com). Significance was observed
at p < 0.05.

4. Conclusions

In summary, we investigated the anti-coagulant and anti-thrombotic activity of a fractionated
and pooled abalone extract following oral administration to rats via gavage. Some anti-coagulant
activity was observed 4 h post oral administration. Dosing studies involving post-gavage blood
samples revealed residual anti-coagulant activity, confirming the absorption of some abalone molecules
following oral administration. Promisingly, there was no evidence of toxicity in blood or tissues
following oral administration. These results suggest that abalone extract should be investigated in vivo
following intravenous administration. Overall, the present work confirms the in vitro anti-thrombotic
and anti-coagulant activity of sulphated polysaccharides from blacklip abalone extract in rat blood,
and demonstrates oral bioavailability and anti-coagulant effect in an animal model, albeit low.
Taken together, these findings increase the knowledge of potential sources of therapeutic alternatives
to heparin.
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