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Abstract 

To use the GB2 distribution for the analysis of income and other positively-skewed 

distributions, knowledge of estimation methods and the ability to compute quantities of 

interest from the estimated parameters are required. We review estimation methodology that 

has appeared in the literature, and summarise expressions for inequality, poverty, and pro-

poor growth that can be used to compute these measures from GB2 parameter estimates. An 

application to data from China and Indonesia is provided. 
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1. Introduction 

Specification and estimation of parametric income distributions has a long history in 

economics. Much of the literature on alternative distributions can be accessed through the 

book by Kleiber and Kotz (2003), and the papers in Chotikapanich (2008). A series of papers 

by McDonald and his co-authors ( McDonald 1984, McDonald and Xu 1995, Bordley et al 

1997, McDonald and Ransom 2008, McDonald et al 2011) carry details of many of the 

distributions and the relationships between them. Our focus in this paper is on the generalised 

beta distribution of the second kind (GB2). It is a four-parameter distribution defined over the 

support (0, ) , and obtained by transforming a standard beta random variable defined on 

(0,1).  As described by McDonald and Xu (1995), it nests many popular three-parameter 

specifications of income distributions including the generalised gamma, beta2, Singh-

Maddala and Dagum distributions. Two-parameter special cases of these distributions include 

the lognormal, gamma, Weibull, Lomax and Fisk distributions.1 Parker (1999) describes a 

model of firm optimising behaviour that leads to a GB2 distribution for earnings. 

Applications have appeared in Butler and McDonald (1986), Cummins et al (1990), Feng et 

al (2006), Jenkins (2009), Graf and Nedyalkova (2014), and Jones et al (2014). Biewen and 

Jenkins (2005) analyse poverty differences using Singh-Maddala and Dagum distributions, 

with parameters as functions of personal household characteristics, and with their choice 

between the Singh-Maddala and Dagum distributions based on preliminary estimates of GB2 

distributions. Quintano and D’Agostino (2006) use the Dagum distribution and the Biewen-

Jenkins methodology to examine the dependence of inequality and poverty on personal 

characteristics. In an extensive study examining global inequality, Chotikapanich et al (2012) 

estimate special case beta2 distributions for 91 countries in 1993 and 2000. In an application 

involving 10 regions, Hajargasht and Griffiths (2013) find that the GB2 distribution compares 

favourably with the four-parameter double Pareto distribution in terms of goodness-of-fit. 

Estimation of a good-fitting parametric income distribution such as the GB2 facilitates 

further analysis. Once important quantities such as mean income, the Gini coefficient, the 

Lorenz curve, and the headcount ratio have been expressed in terms of the parameters of the 

distribution, they can be readily estimated from those parameters. If interest centres on a 

region which comprises a collection of countries or areas, a GB2 distribution can be 

estimated for each country/area; inequality, poverty and pro-poor growth for the region can 

                                                            
1 McDonald and Xu (1995) and McDonald and Ransom (2008) also consider a five-parameter generalised beta 
distribution which nests the GB2 and a GB1 distribution. 
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be analysed by computing estimates of indicators expressed in terms of the parameters of a 

regional distribution which will be a population-weighted mixture of the GB2 distributions. If 

only grouped data are available, then estimating a distribution such as the GB2 provides a 

means for accommodating within-group variation, an important consideration for assessing 

inequality and poverty.  

The purpose of this paper is to collect results on measures for inequality, poverty, and 

pro-poor growth, expressed as functions of the parameters of the GB2 distribution and its 

mixtures, and to summarise various methods of estimation that have appeared in the literature 

for estimating GB2 parameters from single observations or from grouped data. Expressions 

for the inequality, poverty, and pro-poor growth measures are given in Section 2. Section 3 

contains a description of the various estimation techniques. The results from an application to 

4 years of data for China and Indonesia are presented in Section 4. Some concluding remarks 

are offered in Section 5. 

2. Inequality and Poverty Measures from the GB2 Distribution 

Throughout we assume that income Y , for a given country or area, can be represented by a 

GB2 distribution whose probability density function (pdf) is given by 

  
1

| , , ,

( , ) 1

ap

p qa
ap

ay
f y a b p q

y
b p q

b




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where 0, 0, 0 and 0a b p q     are its parameters and 
1 1 1

0
( , ) (1 )p qp q t t dt  Β  is the 

beta function. The cumulative distribution function (cdf) corresponding to (1) is given by  

 1 1
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1
( | , , , ) (1 ) | ,

( , )

w
p qF y a b p q t t dt B w p q

p q
   B

   (2) 

where    1
a a

w y b y b    . The function ( | , )B w p q  is the cdf for the normalized beta 

distribution, defined on the (0,1) interval, with parameters p  and ,q  and evaluated at w . It is 

a convenient representation because both it, and its inverse, are commonly included as 

readily-computed functions in statistical software. Properties of the GB2 distribution and its 

special cases have been considered extensively by McDonald (1984) and Kleiber and Kotz 

(2003). Three-parameter special cases, which have been popular in the literature, are the 
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Singh-Maddala distribution2 where 1,p   the Dagum distribution where 1,q   and the beta2 

distribution where 1.a   Extension to a 5-parameter GB distribution has been considered by 

McDonald and Xu (1996) and McDonald and Ransom (2008). Some further properties of the 

GB2 distribution are described by Graf and Nedyalkova (2014). In this Section we 

summarize main results from the GB2 distribution that are relevant for computing measures 

of inequality, poverty and pro-poor growth.  

 We envisage a scenario where GB2 distributions have been estimated for a number of 

countries, or for specific areas within a country such as urban and rural, and the objective is 

to evaluate inequality and poverty measures using the estimated parameters of the GB2 

distributions. As well as evaluation of the measures from single GB2 distributions, we are 

interested in evaluating them for mixtures that arise when urban and rural GB2 distributions 

are combined to obtain a distribution for a country, or when country GB2 distributions are 

combined to obtain the distribution for a region. In most instances, we can express measures 

in terms of quantities such as beta and gamma functions that are readily computed by 

available software. Measures whose exact computation proves to be difficult can usually be 

written in terms of expectations which can be estimated by averaging values of the function 

over simulated draws from one or more of the GB2 distributions. Key quantities that are used 

for calculation of many measures, and for estimation of GB2 distributions, are the GB2 

moments and moment distribution functions. We begin by giving expressions for them, as 

well as indicating how the GB2 Lorenz curve can be obtained. We then consider measures for 

inequality, poverty and pro-poor growth. 

 The k -th moment of the GB2 exists for ap k aq    and is given by  

 

   
 

   

( ) ,

,

( ) ( )

k
k k

k

b p k a q k a
E Y

p q

b p k a q k a

p q

 
  

   


 

B

B
     (3) 

where ( )   is the gamma function. The k -th moment distribution function for the GB2 is 

given by3 

                                                            
2 The Singh-Maddala distribution is also commonly known as the Burr distribution, and has been described 
using a variety of other names. See Kleiber and Kotz (2003, p.198). 
3 See, for example, Butler and McDonald (1989). 
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   
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This result, that the GB2’s moment distribution functions can be written in terms of its cdf 

evaluated at different parameter values, is particularly useful for deriving the Lorenz curve 

and for setting up and computing GMM estimates from grouped data. The Lorenz curve, 

relating the cumulative proportion of income   to the cumulative proportion of population u  

is given by 

 

 
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1
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1

1

( ) | , , , | , , ,

| , , , | , , 1 , 1

| , | 1 , 1 0 1
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B B u p q p a q a u
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
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    

    

      

      

where the function  | ,B     is defined in equation (2). 

2.1 Inequality Measures 

Gini Coefficient 

The most widely used inequality measure is the Gini coefficient. McDonald (1984) and 

McDonald and Ransom (2008) use hypergeometric functions to express the Gini coefficient 

in terms of the GB2 parameters. An algorithm for computing these functions has been 

proposed by Graf (2009). It has been our experience that it is easier computationally to 

compute the Gini coefficient via numerical integration than to numerically evaluate the 

hypergeometric functions. Another alternative is to estimate the Gini coefficient by 

simulating from the GB2 distribution. Specifically, noting that the Gini coefficient is given 

by 

  

   
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  
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where        (1) 1 1 ( ) ( )E y b p a q a p q              and  , , , ,a b p q   we can 

draw observations  1 2, , , My y y  from  |f y   and estimate G  from  

   
1

2 1ˆ 1 |
M

m m
m

G y F y
M 

  
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The number of draws M  can be made as large as necessary to achieve the derived level of 

accuracy. To draw observations from  |f y  , we first draw observations  1 2, , , Mw w w  

from a standard beta ( , )p q  distribution, defined on the (0,1)  interval, and then compute 

  1
1 .

a

m m my b w w     If interest centres on one of the special case distributions where 

1,p   1q   or 1,a   then closed form expressions in terms of gamma or beta functions are 

available for the Gini coefficient. They are 

Beta2    1a     
 

 2

2 2 , 2 1

2 ,

p q
G

p q




Β

Β
  

Singh-Maddala 1p     
   
   

2 1
1

1 2

q q a
G

q a q

  
 

  
  

Dagum   1q     
   
   

2 1
1

2 1

p p a
G

p p a

  
 
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 Suppose now we have estimated GB2 income distributions for a number of different 

areas, such as countries within a region or urban and rural areas within a country, and we are 

interested in estimating the Gini coefficient for the combined area. The combined income 

distribution can be written as a population weighted mixture of the individual GB2 

distributions. That is, 

   
1

| |
J

j j
j

f y f y


         (4) 

where  1 2, , , J     , j  is the proportion of the combined population in area ,j  and 

 , , ,j j j j ja b p q   is the vector of parameters of the distribution for area j. As noted by 

Chotikapanich et al (2007), in this case the Gini coefficient for a combination of J  areas can 

be estimated from  

   
1 1

2
1

J J

j j
jC

G
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1

J

C j jj
     is the mean of the combined areas, j  is the mean for area ,j  and ,j my  is the 

m -th draw from pdf  | .jf y   For the empirical work in this paper we estimated separate 

distributions for rural and urban areas in China and Indonesia and then combined them. 

Generalized entropy measures 

Next we consider the generalized entropy (GE) class of inequality measures whose 

expressions in terms of the parameters of the GB2 distribution have been provided by Jenkins 

(2009). The GE index is given by 

 
( )1

( ) 1
1

I




 
       

    for 0,1     (5) 

where, for the GB2 distribution, ( )

0
( | )y f y dy

      is given in (3), and (1)       . For 

large positive ,  the index  I   is sensitive to large differences at the top of the 

distribution; for large negative ,  it is sensitive to differences at the bottom end of the 

distribution. Theoretically,   can range from   to  , but values between –1 and 2 are 

usually considered in applications. Two popular special cases are obtained by taking limits as 

0  and 1.  The case where 0  is known as the mean logarithmic deviation or 

Theil(0) (Theil, 1967, p.127). Its general expression, and the result for the GB2 distribution, 

are4  

 

 

 
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0
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log( ) log( )
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I f y dy
y

E y

b p a q a
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  

 

  

   







       

where ( ) log ( )c d c dc    is the digamma function, computable by most software. The 

index obtained as 1  is known as Theil(1) (Theil, 1997, p.96). Its general expression, and 

result for the GB2 distribution, are 

                                                            
4 See McDonald and Ransom (2008) or Jenkins (2009) for derivations. Equation (4) in Jenkins (2009) should 
read 1(1) logI      . Sarabia et al (2017) give details of the Theil indices for a wide range of distributions 

including the GB2. 
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In the event that software is not available to compute the digamma function, draws 

 1 2, , , My y y  from  |f y   can be used to calculate  1
log

M

mm
y M  and 

 1
log

M

m mm
y y M  as estimators for  log( )E y  and  log( )E y y , respectively.  

 The GE index for a mixture of income distributions and its decomposition into within 

and between group inequality has been considered by Sarabia et al (2017). To obtain the GE 

index for a region whose income distribution is a mixture of GB2 distributions, the quantities

( )  and ,  defined in (5) for the GB2 distribution  | ,f y   are replaced by the 

corresponding moments for the mixture distribution    1
| |

J

j jj
f y f y    given in (4). 

For 0,1,   the resulting index is 
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     (6) 

where  ( )
j jE y    is the  -moment with respect to  | jf y  , the distribution of the j -th 

component. For the case where 0,   we have  
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where, for the GB2 distribution,        log logj j j j jE y p q a b      . For the case 

where 1  , 
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with        log 1 1 log .j j j j j j j j jE y y a p a q a b          

An attractive feature of the GE index from a mixture is that it decomposes into a GE 

measure of inequality within the components of the mixture and a GE measure of inequality 

between components. To establish this decomposition, we write the index for the j-th area as 
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Substituting this expression into (6) yields 
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a discrete version of the GE index for the J areas, measuring between inequality. Note that, 
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Atkinson Index 

The Atkinson index is an inequality index that can be viewed as an ordinal special case of a 

GE index. It is given by 

  
 1 1(1 )1

( ) 1A
     

   for 0 1        

  
  exp log( )

(1) 1
E y

A  


        

The parameter   reflects the degree of aversion to inequality in a social welfare function. As 

0  , there is no aversion to inequality, and ( ) 0.A    As ,  social welfare is 

increased by redistributing income towards complete equality; ( ) 1.A    To compute A  

from the parameters of the GB2 distribution, we note that (1 )  is given in equation (3) and 

   log( ) ( ) ( ) log( ).E y p q a b     Alternatively, and for computing ( ),CA   the Atkinson 

index for a mixture of GB2 distributions, the relationship between ( )A   and the GE index 

( )I   can be exploited. With 1 ,    and 0,   it is given by 

    1( ) 1 ( 1) ( ) 1A I
           for 0 1     

    (0) 1 exp (0)A I     

Pietra Index 

In contrast to the Gini coefficient which is equal to twice the area between the Lorenz curve 

and the line of perfect equality, the Pietra index is equal to the maximum distance between 
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the Lorenz curve and the perfect equality line (Kleiber and Kotz 2003), as well as twice the 

area of the largest triangle within the area between the Lorenz curve and line of perfect 

equality (Butler and McDonald 1989). Details of these results and an extensive analysis of 

the Pietra index, generally, and in terms of several distributions and their mixtures, can be 

found in Sarabia and Gorda (2014). For a single GB2 distribution, we have  

   

 

   

   

0

1

1
|

2

| |

| , , , | , , 1 , 1

P y f y dy

F F

F a b p q F a b p a q a



 


   

     

 

    

For a mixture of distributions, it is given by  

      1
1 1

1J J

C j C j j j C j
j jC

P F F
 

      
     

Quintile Share Ratio 

Inequality is often also expressed in terms of the ratio of the income share of the richest to the 

income share of the poorest in the population. Graf and Nedyalkova (2014) consider the 

quintile share ratio (QSR ) which is the ratio of the income share of the richest 20% relative 

to the income share of the poorest 20%. For the GB2 distribution, it is given by 

 
 

1

1

1 0.8 | , | 1 , 1

0.2 | , | 1 , 1

B B p q p a q a
QSR

B B p q p a q a





    
   

  

Noting that,  

   

   

 

1
1

0

1
1

1
| |

1
|

y
J

j j
jC

J

j j j
jC

F y t f t dt

F y









 


  






 



  

the QSR  for a mixture of GB2 distributions can be computed from  

  
 

 

,0.8
1

,0.2
1

1 | 1 , 1

| 1 , 1

J

j j j j j j j
j

C J

j j j j j j j
j

B w p a q a
QSR

B w p a q a





    


   




  

where    ,0.8 0.8 0.81
j ja a

j j jw y b y b    
 and    ,0.2 0.2 0.21 ,

j ja a

j j jw y b y b    
 with 0.2y  

and 0.8y  being the 20th  and 80th  percentiles from the mixture distribution. To obtain 0.2y  and 
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0.8y , the mixture distribution function needs to be inverted to obtain its corresponding 

quantile function, something that is not possible in closed form. As alternatives, one can (1) 

attempt to solve the required equation numerically, or (2) generate a large number of 

observations from each component, combine and sort these components, choosing the 20th  

and 80th  empirical percentiles as estimates. 

2.2 Poverty Measures 

Expressions for several poverty measures in terms of the parameters of the GB2 distribution 

have been provided by Chotikapanich et al (2013). The first is the headcount ratio which is 

simply the proportion of the population with income less than or equal to a poverty line z   

    ( ) | | ,H z F z B v p q         (7) 

where    1 .
a a

v z b z b     Setting the poverty line at 0.6 times the median gives what 

Graf and Nedyalkova (2014) term the at-risk-poverty rate ( ARPR ). It can be calculated from 

(7) after setting the poverty line at  

  
 
 

11

1

0.5 | ,
0.6

1 0.5 | ,

a
B p q

z b
B p q





 
    

      (8) 

A second poverty measure used extensively in the literature is the ( )FGT   class of 

measures (Foster et al 1984) given by 

  
0

( ) |

z

z y
FGT f y dy

z

    
 





      for 1       

For integer values of ,  this expression can be written in terms of incomplete moments of 

the GB2 distribution as well as in terms of the income gap ratio, defined as the average 

amount of money that must be given to each of the poor to bring them up to the poverty line, 

expressed relative to the poverty line. Working in this direction, we define the k -th 

incomplete moment for the GB2 distribution, relative to poverty line z, as 

 

     

 
 

( )

0

( )

1
| |

|

| ,

| ,

z
k k k

z

k

E y y z y f y dy
F z

B v p k a q k a

B v p q

   

  


 


     

Defining the income gap ratio as  ( ) zg z z z   where (1)
z z    is mean income of the 

poor, we can write 
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     (1) | , | 1 , 1

( ) ( )

FGT B v p q z B v p a q a

H z g z

    


      

and   

 

     
   

     

(2) 2

2
2 2

2

(2) | , 2 | 1 , 1

                     | 2 , 2

( ) 1 ( ) z

z

FGT B v p q z B v p a q a

z B v p a q a

H z g z g z

    

   

 
    

     

where 2 (2) 2
z z z     is the variance of the income of the poor. For non-integer values of   

we can simulate values 1 2, , My y y  from the GB2 distribution and use the estimator 

    
1

1 M
m

m
m

z y
FGT I y z

M z





    
 

        

where ( )I   is an indicator function equal to 1 if its argument is true and zero otherwise. 

 As an alternative to the income gap ratio  ( ) ,zg z z z   Graf and Nedyalkova 

(2014) use a concept known as relative median poverty gap ( RMPG ). It is defined as the 

relative gap between a poverty line which is 0.6 times the median income of the population, 

and the median income of the poor. Specifically, with z  defined as in (8), 

    poorz m
RMPG

z


   

where the median of the poor is defined as  

    
 
 

11

1

2 | ,

1 2 | ,

a

poor

B A p q
m b

B A p q





 
    

  

with A  being the at-risk-poverty rate (the headcount ratio using the poverty line in (8)). 

 Considering the income shortfall in log format leads to the Watts index (Watts, 1968), 

defined as 

   

 

          

0

ln ln |

ln | ,

1
           | , | , | ,p q

W z y f y dy

z
B v p q

b

D B v p q D B v p q B v p q p q
a



 

   
 

     

 

  (9) 
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where  | ,pD B v p q  and  | ,qD B v p q  are the derivatives of the beta cdf  | ,B v p q  with 

respect to p  and ,q  respectively. These derivatives are available in some software (e.g., 

EViews), otherwise (9) can be estimated via simulation.  

 The last poverty measure that we describe is the Sen index (Sen, 1976) where the 

poverty gap is weighted by a person’s rank in the ordering of the poor. This index is given by 

 
 

  
0

( ) ( | )
2 |

( )

( ) ( ) 1 ( ) ( )

z

z y H z F y
S f y dy

z H z

H z g z g z G z

      
  

  








     (10) 

where ( )G z  is the Gini coefficient for the poor given by 

    2
0

2
( ) 1 | |

( )

z

z

G z yF y f y dy
H z

  
           

The last line in (10) shows how the index can be written in terms of the headcount ratio, the 

aggregate income gap ratio and the inequality of the poor measured using ( ).G z  Expressing 

S  in terms of the parameters of the GB2 distribution is more difficult than it was for the 

other indices. In (10) we can use  ( ) | ,H z B v p q  and ( ) 1 ,zg z z   but evaluation of 

( )G z  is more troublesome. If we follow the simulation approach and draw M  observations 

my , 1,2, ,m M   from  |f y  , it can be estimated using 

    2
1

2 1
( ) 1 | ,

( )

M

m m m
mz

G z y B w p q I y z
H z M 

            

where    1 .
a a

m m mw y b y b      

 For aggregating poverty over a number of areas each of which has a GB2 distribution, 

the headcount ratio, FGT , and Watts indexes are simply population-weighted averages of the 

indexes for each area. That is, using obvious notation, 

   
1 1

( ) | | ,
J J

C j j j j j j
j j

H z F z B v p q
 

           

1

( ) ( )
M

C j j
j

FGT FGT


            

1

M

C j j
j

W W


           
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This result does not hold for the at-risk-poverty rate and the relative median poverty gap 

where the poverty line is endogenous, nor does it hold for the Sen index which contains the 

cdf. For ARPR  and RMPG  the median of the mixture is required, and RMPG  also needs 

the median of the poor from the mixture distribution. These values can be estimated by 

simulating observations from the component distributions and ordering them as was 

suggested for the QSR . For the Sen index for the mixture, we have  

   
1 1

0

1 1

2 (1) | |

2 (1)

z
J J

C C j j
j

J J

C j j
j

z y
S FGT F y f y dy

z

FGT

 

 





          
 

 
     

 





 


 


 

    

The term      
0

| |
z

j jz y z F y f y dy        can be estimated from  

   , ,
1

1
ˆ |

M
m

j j m j m
m

z y
F y I y z

M z

    
 

          

where the ,j my  are draws from ( | )jf y  . 

2.3 Measures of Pro-Poor Growth 

In addition to examining changes in poverty incidence over time using measures such as the 

headcount ratio or refinements of it that take into account the severity of the poverty, it is 

useful to examine whether growth has favoured the poor relative to others placed at more 

favourable points in the income distribution. Following Duclos and Verdier-Chouchane 

(2010), we consider 3 such pro-poor measures, namely, measures attributable to Ravallion 

and Chen (2003), Kakwani and Pernia (2000), and a “poverty equivalent growth rate” 

(PEGR) suggested by Kakwani et al. (2003). 

The first step towards the Ravallion-Chen measure is the construction of a “growth 

incidence curve” (GIC) which describes the growth-rate of income at each percentile u of the 

distribution. Specifically, if ( )AF y  is the income distribution function at time A, and ( )BF y is 

the distribution function for the new income distribution at a later point B, then 

   
 

1 1

1
( ) B A

A

F u F u
GIC u

F u

 




         

For computing values of ( )GIC u  from the GB2 distribution, note that 
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   
 

11
1

1

| ,
|

1 | ,

a
B u p q

F u b
B u p q






 
    

        

where  1 | ,B u p q  is the quantile function of the standardised beta distribution evaluated at 

u. When we have a regional distribution or a country distribution which is a mixture of rural 

and urban GB2 distributions, it is no longer straightforward to compute the quantile function. 

In this case we require  1 |F u   which is the inverse function of 

   1
| |

J

j jj
F y F y   . One needs to either solve the resulting nonlinear equation 

numerically or estimate  1 |F u   using an empirical distribution function obtained by 

generating observations from the relevant GB2 distributions in the mixture. We followed the 

latter approach in our applications. 

The GIC can be used in a number of ways. If ( ) 0GIC u   for all u, then the 

distribution at time B first-order stochastically dominates the distribution at time A. If 

( ) 0GIC u   for all u up to the initial headcount ratio AH , then growth has been absolutely 

pro-poor. If  ( ) B A AGIC u      for all u up to the initial headcount ratio AH , that is, the 

growth rate of income of the poor is greater than the growth rate of mean income ( ) , then 

growth has been relatively pro-poor.  

For a single measure of pro-poor growth Ravallion and Chen suggest using the 

average growth rate of the income of the poor. It can be expressed as 

0

1
( )

AH

A

RC GIC u du
H

          

For a GB2 distribution (not a mixture), this integral can be evaluated numerically. 

Alternatively, we can generate observations from a GB2 distribution or a mixture and 

compute 

  
1

11

1 N

i

RC GIC i N
N 

               

where N is the total number of observations generated, and 1 AN H N . 

The Kakwani-Pernia measure compares the change in a poverty index such as the 

change in the headcount ratio, A BH H , with the change that would have occurred with the 

same growth rate, but with distribution neutrality, A B
H H  . Here, B  denotes an income 

distribution that would be obtained if all incomes changed in the same proportion as the 
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change in mean income that occurred when moving from distribution A to distribution B. To 

obtain B  in the context of single GB2 distributions, we can simply change the scale 

parameter b and leave the parameters ,a  p and q unchanged. The Lorenz curve and inequality 

measures obtained from a GB2 distribution depend on ,a  p and q, but do not depend on b. 

Thus, we have 

AB
a a                  AB

p p                AB
q q                B

AB
A

b b
 

   
  

Finding B  for a mixture of GB2 distributions – a situation that occurs when we combine 

rural and urban distributions to find a country distribution – is less straightforward. In this 

case the scale parameters in all components of the mixture change and the other parameters 

are left unchanged. For example, using the superscripts r and u to denote rural and urban, 

respectively, and  ,r u
A A   and  ,r u

B B   to denote the respective population proportions at 

times A and B, we first compute the combined means at times A and B as  

r r u u
A A A A A                                         r r u u

B B B B B        

Then, we obtain the distribution function for B  as follows 

j j
AB

a a                    
j j

AB
p p               j j

AB
q q              j jB

AB
A

b b
 

   
             ,j u r  

     | | |r u r r u u
A AB B B B

F y F y F y                     

Thus, to obtain B  we assume that all incomes in the rural and urban sectors increase in the 

same proportion as their respective mean incomes, and the distributions of income and the 

population proportions in each of the sectors remain the same. 

The Kakwani-Pernia measure is 

A B

A B

H H
KP

H H




 

             

Assuming the growth in mean income has been positive, a value 0KP   implies the change 

in the distribution has been absolutely pro-poor, and a value 1KP   implies the change in 

distribution has been relatively pro-poor.  

The third measure of pro-poor growth is the poverty-equivalent growth rate (PEGR) 

suggested by Kakwani et al (2003). In the context of our description of the Kakwani-Pernia 

measure, it is the growth rate used to construct distribution B  such that B B
H H  . In other 

words, it is the growth rate necessary to achieve the observed change in the headcount ratio 
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when distribution neutrality is maintained. In terms of the GB2 distribution, it is the value g  

that solves the following equation 

   | , | ,B B B A AH B u p q B u p q          

where    1B Ba a

B Bu z b z b     and 

 
 

*
1

1 1

A

A

a

A

a

A

z g b
u

z g b





  
   

        

Thus, to find g  we have  1 | ,B A Au B H p q   and 

1
1

1
Aa

A

z u
g

b u






 
  

 
        

As was the case with previous calculations, for a mixture of GB2 distributions this procedure 

is less straightforward. As an alternative, to find an approximate *g  for a combined rural-

urban distribution, we computed separate growth rates *
rg  and *

ug  for the two sectors and 

found a weighted average of them using weights from period B .  

    * * *r u
B r B ug g g     

If  * 1 ,B Ag g      then, under distribution neutrality, the growth rate required to 

achieve the same outcome for the headcount ratio is less than realized growth rate, implying 

that the change in the distribution has not favoured the poor. Conversely, when *g g , a 

higher growth rate is required under distributional neutrality to equate the two headcount 

ratios. In this case the distributional effect must have favoured the poor. 

3. Estimation 

All the required quantities – the means of the distributions, the density and distribution 

functions, the Gini coefficients, the poverty measures, and the pro-poor growth measures – 

depend on the unknown parameters j  of the GB2 distributions. Potential methods of 

estimation of these parameters depend on whether the available data are in the form of single 

observations or are grouped, and, if they are grouped, whether information on group means, 

as well as the number of observations in each group, is available. 

3.1 Estimation with Single Observations  

For single observations, say a sample of observations  1 2, , , Ty y y , maximum likelihood 

estimation can be used with the log-likelihood given by 
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   
1

log |
T

t
t

L f y


    

For samples where sampling weights are available, a pseudo log-likelihood can be 

maximized to provide consistent parameter estimates, and their precision can be assessed 

with a sandwich covariance matrix estimator. Details of this estimation procedure are 

described by Graf and Nedyalkova (2014). With income equivalized over all household 

members, and sampling weights iw  attached to each household, their pseudo log-likelihood 

is given by 

   
1

log |
h

i i i
i

L w n f y


    

where h  is the number of households and in  is the number of persons in household .i   

 A further estimation method that minimizes a weighted sum of squared distance 

between sample quantities for ( ,ARPR  ,RMPG  ,QSR  Gini), and these quantities expressed 

in terms of GB2 parameters, has been suggested by Graf and Nedyalkova (2014). This 

method has some similarities to the grouped data methods of estimation we describe in the 

next subsection, where a weighted squared distance between empirical and theoretical 

quantiles and group means is minimized. One difference is that, for using quantiles and group 

means, an optimal weight matrix can be derived. Deriving an optimal weight matrix for the 

Graf-Nedyalkova proposal would appear to be a more difficult problem. 

3.2 Estimation with Grouped Data 

Suppose now that the observations  1 2, , , ,Ty y y  have been grouped into N  income classes 

     0 1 1 2 1, , , , , ,N Nx x x x x x  with 0 0x   and .Nx    Let ic  be the proportion of 

observations in the i-th group, let iy  be mean income for the i-th group, and let y  be overall 

mean income. In some instances, where income share data for each group  1 2, , Ns s s  are 

available, the group means may need to be calculated from .i i iy s y c  Choice of an 

estimation method depends on how much of the information just described is available. If the 

ic  and ix  are available, but the iy  are not, then the multinomial likelihood is a natural choice. 

In this case the log-likelihood is given by 

       1
1

log | |
N

i i i
i

L c F x F x 


            
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Another possibility is the minimum chi-squared estimator described in McDonald and 

Ransom (2008). 

 For the scenario where one also has data for the group means ,iy  and when the group 

bounds ix  may or may not be available, estimators based on moment conditions have been 

suggested by Chotikapanich et al (2007), Hajargasht et al (2012) and Griffiths and Hajargasht 

(2015). To describe the objective functions that are minimized to obtain these estimators, we 

need the moments of each group up to order 2, expressed in terms of   and 

 1 2 1, , , N= x x x x  . Working in this direction, we define 

   1| |i i ik F x F x            

   1 1 1| |i i iF x F x               

   (2) (2)
2 2 1| |i i iF x F x               

where  1 |iF x   and  2 |iF x   are the moment distribution functions defined in Section 2. 

Further, we define (2) 2.i i i iv k    Then, Hajargasht et al (2012) show that the GMM 

estimator that uses moments for ic  and ,i iy c y  and the optimal weight matrix, can be 

written as 

        2 2

1 1 2 3
1 1 1

, 2
N N N

i i i i i i i i i i i
i i i

GMM w c k w y w c k y
  

        x            (11) 

where (2)
1 2,i i i i i iw v w k v    and 3 .i i iw v    1 ,GMM x   can be minimized with respect 

to both x  and  , or, if observations on x  are available, with respect to   only. Because the 

weights depend on  ,x  , a variety of estimators can be used, depending on whether 

 1 ,GMM x   is minimized directly or a two-step or iterative procedure is employed. In a two-

step procedure, initial estimates with weights that are not dependent on the parameters are 

obtained, and then estimates that minimize  1 ,GMM x  , with weights computed from the 

initial estimates, are computed. Iterating this process leads to an iterative estimator. 

 An estimator that uses weights that do not depend on  ,x  , and which is useful for 

obtaining starting values for a two-step or iterative estimator from (11), is that proposed by 

Chotikapanich et al (2007). In contrast to (11), they considered moment conditions for ic  and 

iy  instead of ic  and i i iy c y . Although they focused on the special case beta 2 distribution, 
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their results also hold for the more general GB2 distribution. The function that they 

minimized is 

 
2 2

2
1 1

,
N N

i i i i i

i ii i

c k y k
GMM

c y 

    
    

   
 x              (12) 

The weights used for this estimator  2 2andi ic y   are not optimal, but they have the intuitive 

appeal of minimizing the sum of squares of percentage errors. Also, computation of the 

second moment (2)
i  is not required.  

 A third GMM estimator is that described by Griffiths and Hajargasht (2015). Like 

(12), this estimator considers the moment conditions for ic  and iy , but uses the optimal 

weight matrix.5 it is given by 

     2 21 3 1
3

1 1

,
N N

i i i i i i i i
i i

GMM k c k k v y k 

 
    x        (13) 

Relative to the other optimal weight formulation in (11), this objective function avoids the 

term with the cross product of the moment conditions. 

4. Applications 

A major source of data for cross country study of income distributions, inequality and 

poverty is from the World Bank PovcalNet website. We used data on China and Indonesia, 

two Asian countries with relatively large populations. The years considered were 1999, 2005, 

2010 and 2013 for China and 1999, 2005, 2010 and 2016 for Indonesia6. The data available 

are in grouped form comprising population shares and corresponding expenditure shares for a 

number of classes, together with mean monthly expenditure that has been reported from 

surveys, and then converted to purchasing-power-parity (PPP) using the World Bank’s 2011 

PPP exchange rates for the consumption aggregate for national accounts. Also available are 

the data on population size. Throughout the paper we use the generic term income 

distributions although our example distributions are for expenditure. For both countries 

separate data were available for rural and urban populations and so distributions were 

estimated for each of these components. Data for China were in the form of 20 groups, with 

the exception of China-rural 1999 (19 groups) and 2005 (17 groups), while those for 

                                                            
5 It may be better to describe the estimators that minimize  2 ,GMM x   and  3 ,GMM x   as minimum distance 

estimators rather than GMM estimators because the "moment condition" for iy  is p lim i i iy k   not 

 i i iE y k . The asymptotic distribution is the same, however. See, for example, Greene (2012, Ch.13). 
6 The version of the data that was used was downloaded on 9 March 2018 at 
http://research.worldbank.org/PovcalNet/index.html 
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Indonesia were available in 100 groups. To make the data for both countries relatively 

consistent for estimation we aggregated the Indonesian data into 20 groups. The distributions 

were estimated by minimizing the objective function  3 ,GMM x   given in (13). Initial 

estimates were obtained by minimizing 2( , )GMM x  , those initial estimates were used to 

compute the weights for 3( , )GMM x  , the estimates from 3( , )GMM x   were then used to 

compute a new set of weights, and the process was continued for 10 iterations. 

Parameterizing the objective function in terms of ( , , , )a p q  instead of  , , ,a b p q  facilitated 

convergence. 

 Parameter estimates for each of the distributions are presented in Table 1, along with 

corresponding estimates for mean income and the populations for each region. The density 

functions for China and Indonesia, obtained as mixtures of the urban and rural densities, are 

plotted in Figures 1 and 2, respectively. A striking feature of the parameter estimates is the 

very large estimates for p  (and correspondingly small estimates for b ) for Indonesia-urban 

in 2010 and 2016. As ,p   the GB2 distribution approaches the 3-parameter inverse 

generalized gamma distribution7, and so the results suggest this special-case distribution 

would be adequate for these two cases. Its density function is given by 

      
1| , , exp

aaq
aqa

f y a q y
q y

    
     

  

The figures show that, for both countries, there is an improvement over time in the sense that 

the distribution shifts to the right, and mean income increases, with the most dramatic 

improvements being from 1999 to 2005, and after 2010.  

 Inequality measures for the rural and urban areas and their combined distributions are 

presented in Table 2. We computed the Gini coefficient, the Pietra index, ,QSR  (0)I  and 

(1).I  The within and between urban and rural components for (0)CI  and (1)CI  are reported in 

Table 3. Tables 4 and 5 contain poverty measures and pro-poor growth measures, 

respectively. For poverty measures, the headcount, (1),FGT  (2)FGT  and Sen indices were 

computed using a poverty line of $57.8 per month, equivalent to $1.9 per day. Pro-poor 

growth measures, ,RC  KP  and PEGR  were computed for the combined distributions; the 

GIC ’s for each time interval are depictured in Figures 3 to 8. From the tables and figures, we 

can make the following observations about China. 

                                                            
7 See McDonald and Xu (1995, p.139) 
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1. All inequality measures indicate that inequality increased from 1999 to 2010, and 

then declined from 2010 to 2013. The recent decline is attributable to a decline in 

rural inequality; there was an increase in urban inequality in the same period. Also, 

there is no clear conclusion about how rural inequality changed from 1999 to 2005; 

the Gini and (1)I  suggest a slight decrease, whereas QSR, (0)I  and Pietra suggest a 

slight increase. 

2. Inequality is much greater in the combined distribution than in its components, 

reflecting the large discrepancy in mean incomes between the rural and urban areas. 

Within inequality remains greater than between inequality, however. 

3. The changes in inequality have been accompanied by large increases in mean 

income and large decreases in poverty. The decline in poverty was particularly 

dramatic for rural China where the headcount ratio declined from 57% in 1999 to 

3.7% in 2013. Poverty in rural China is uniformly greater than that in urban China. 

4. The GIC curves show that, from 1999 to 2010, growth has favoured the rich more 

than the poor, but from 2010 to 2013, growth has strongly favoured the poor relative 

to the rich, a result consistent with the decline in inequality over this period. The 

scalar measures of pro-poor growth are also consistent with this observation. Growth 

has favoured the poor in an absolute sense from 1999 to 2010 (0 RC g  , 

0 1KP  , )PEGR g , and in a relative sense after 2010 (RC g , 1KP  , 

)PEGR g . 

Examining the results for Indonesia, we find: 

1. Urban inequality changed very little from 1999 to 2005, increased dramatically from 

2005 to 2010, and then increased more moderately from 2010 to 2016. Rural 

inequality increased from 1999 to 2010, but declined thereafter. The combined results 

reflect these changes, with increasing inequality overall, but with Gini coefficients 

approximately the same in 2010 and 2016. 

2. Poverty declined from 1999 to 2005, remained roughly constant from 2005 to 2010, 

when there were large increases in inequality, and then declined again from 2010 to 

2016. From 2005 to 2010 a decline in urban poverty was offset by an increase in rural 

poverty. 

3. The GIC curves show that growth has favoured the rich relative to the poor in all time 

intervals. From 2005 to 2010 the poor faired very badly; the growth rate for the 

bottom 15% of the population was negative. This period was also one where the 
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growth in mean incomes was low relative to that in the other two periods. The scalar 

pro-poor growth measures are in line with the conclusions from the GIC curves. 

Growth was absolutely but not relatively pro-poor in the first and third time intervals; 

in the second interval it was not absolutely pro-poor according to the RC measure, and 

only slightly absolutely pro-poor using the KP measure. 

5. Concluding Remarks 

Studying income distributions can provide valuable information about important aspects of a 

society’s welfare such as the degree of inequality, the incidence of poverty, and whether there 

have been improvements in welfare over time. The GB2 is a popular and versatile 

distribution well suited to this purpose. We have reviewed some of the common indexes for 

measuring inequality, poverty and pro-poor growth, and described how values for these 

indexes can be computed from estimates of the parameters of the GB2 distribution. Optimal 

techniques for estimating the parameters using either single observations or grouped data are 

also reviewed. It is our hope that the bringing together of all these results into a single source 

will facilitate and promote use of the GB2 distribution. 
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 Table 1: Parameter Estimates, Mean Income and Population 

 a  b p q   Population 
(Millions) 

China rural       

 2013 1.5806 101.3579 3.8613 2.1609 190.23 635.69 

 2010 1.2063 21.4069 11.6780 2.2025 131.52 697.21 

 2005 1.3443 32.0352 7.0416 2.3558 100.07 749.35 

 1999 2.0243 30.1693 3.3733 1.3113 67.78 815.97 

China urban       

 2013 1.6455 261.4467 2.3392 1.9792 373.92 721.69 

 2010 1.8842 187.8696 2.3745 1.5884 306.81 658.50 

 2005 1.8294 144.7708 2.4059 1.7919 217.11 554.37 

 1999 1.6302 95.0994 3.2433 2.5261 134.70 436.77 

Indonesia rural       

 2016 2.0275 55.8739 3.8536 1.3660 129.11 118.90 

 2010 2.1389 36.6977 4.4602 1.2132 96.63 121.45 

 2005 2.7720 52.1883 2.5501 1.1926 85.84 122.57 

 1999 3.0994 49.6466 2.0371 1.2727 67.62 123.52 

Indonesia urban       

 2016 0.7417 0.0010 25914.0 4.0699 208.00 142.22 

 2010 0.9107 0.0094 15488.0 3.2802 156.25 121.08 

 2005 2.0275 55.8746 3.8535 1.3660 129.11 104.15 

 1999 2.0737 35.6598 4.7873 1.2719 96.37 85.10 
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Table 2: Inequality Measures 

 Gini QSR I(0) I(1) Pietra 

China rural      

 2013 0.3349 5.4526 0.1903 0.2086 0.2424 

 2010 0.3959 7.1456 0.2664 0.3189 0.2901 

 2005 0.3519 5.8464 0.2097 0.2375 0.2563 

 1999 0.3638 5.6579 0.2083 0.2495 0.2545 

China urban      

 2013 0.3735 6.5286 0.2291 0.2454 0.2628 

 2010 0.3540 5.9757 0.2126 0.2370 0.2545 

 2005 0.3436 5.7017 0.1992 0.2163 0.2460 

 1999 0.3185 4.9247 0.1649 0.1731 0.2246 

China combined      

 2013 0.4010 8.1998 0.2659 0.2864 0.2874 

 2010 0.4323 9.5593 0.3274 0.3451 0.3155 

 2005 0.4052 6.4547 0.2796 0.2979 0.2959 

 1999 0.3941 4.5101 0.2495 0.2683 0.2825 

Indonesia rural      

 2016 0.3343 5.2640 0.1912 0.2270 0.2442 

 2010 0.3502 5.2808 0.1962 0.2412 0.2480 

 2005 0.2756 3.9165 0.1275 0.1448 0.1980 

 1999 0.2352 3.3989 0.1002 0.1087 0.1746 

Indonesia urban      

 2016 0.4154 7.9453 0.2920 0.3409 0.3044 

 2010 0.4070 6.7226 0.2493 0.2930 0.2818 

 2005 0.3444 5.2640 0.1912 0.2270 0.2442 

 1999 0.3368 5.2471 0.1939 0.2370 0.2467 

Indonesia combined     

 2016 0.4027 7.6873 0.2737 0.3286 0.2963 

 2010 0.4042 6.5792 0.2513 0.3013 0.2842 

 2005 0.3297 4.6841 0.1776 0.2117 0.2357 

 1999 0.2959 4.0104 0.1539 0.1879 0.2169 
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Table 3: Between and Within Inequality 

 (0)CI   (0)with
CI   (0)betw

CI  (1)CI   (1)with
CI   (1)betw

CI  

China combined       

 2013 0.2659 0.2109 0.0550 0.2864 0.2340 0.0523 

 2010 0.3274 0.2399 0.0875 0.3451 0.2622 0.0829 

 2005 0.2796 0.2053 0.0743 0.2979 0.2244 0.0735 

 1999 0.2495 0.1932 0.0563 0.2683 0.2101 0.0582 

Indonesia combined      

 2016 0.2737 0.2461 0.0276 0.3286 0.3019 0.0267 

 2010 0.2513 0.2227 0.0286 0.3013 0.2732 0.0281 

 2005 0.1776 0.1568 0.0208 0.2117 0.1910 0.0207 

 1999 0.1539 0.1385 0.0154 0.1879 0.1723 0.0156 
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Table 4: Poverty Measures 

 HC FGT(1) FGT(2) SEN 

China rural     

 2013 0.0374 0.0070 0.0021 0.0099 

 2010 0.2042 0.0489 0.0171 0.0713 

 2005 0.2998 0.0786 0.0296 0.1057 

 1999 0.5702 0.1907 0.0844 0.2568 

China urban     

 2013 0.0077 0.0017 0.0006 0.0020 

 2010 0.0085 0.0017 0.0005 0.0023 

 2005 0.0294 0.0062 0.0021 0.0088 

 1999 0.1064 0.0233 0.0080 0.0324 

China combined     

 2013 0.0216 0.0042 0.0013 0.0083 

 2010 0.1079 0.0256 0.0089 0.0496 

 2005 0.1848 0.0478 0.0179 0.0901 

 1999 0.4084 0.1324 0.0577 0.2289 

Indonesia rural     

 2016 0.1267 0.0243 0.0073 0.0348 

 2010 0.3033 0.0700 0.0234 0.0995 

 2005 0.2917 0.0613 0.0193 0.0883 

 1999 0.4647 0.1117 0.0385 0.1526 

Indonesia urban     

 2016 0.0649 0.0122 0.0035 0.0174 

 2010 0.1142 0.0221 0.0065 0.0313 

 2005 0.1267 0.0243 0.0073 0.0353 

 1999 0.3031 0.0700 0.0234 0.0941 

Indonesia combined    

 2016 0.0931 0.0177 0.0052 0.0345 

 2010 0.2089 0.0461 0.0150 0.0863 

 2005 0.2159 0.0443 0.0138 0.0828 

 1999 0.3988 0.0947 0.0324 0.1659 
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Table 5  Pro-poor Growth Measures 

 
Growth Rate 

Growth rate for 
the poor (RC) 

KP PEGR 

China      

2010 – 2013 0.3218 0.6245 1.4251 0.3245 

2005 - 2010 0.4536 0.2331 0.6503 0.2839 

1999 – 2005 0.6446 0.5281 0.8702 0.4504 

Indonesia      

2010 – 2016 0.3614 0.2836 0.8622 0.2414 

2005 - 2010 0.1956 –0.0107 0.0709 0.0079 

1999 - 2005 0.3323 0.2449 0.8049 0.2575 
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Figure 1  Income distributions for China 

 

 

 

Figure 2  Income distributions for Indonesia 
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Figure 3  Growth Incidence Curve, China 1999-2005 

 

 

Figure 4: Growth Incidence Curve, China 2005-2010 

 

 

Figure 5: Growth Incidence Curve, China 2010-2013 
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Figure 6  Growth Incidence Curve, Indonesia 1999-2005 

 

 

Figure 7  Growth Incidence Curve, Indonesia 2005-2010 

 

 

Figure 8  Growth Incidence Curve, Indonesia 2010-2016 
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