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Abstract 

We show how a wide range of stochastic frontier models can be estimated relatively 

easily using variational Bayes. We derive approximate posterior distributions and 

point estimates for parameters and inefficiency effects for (a) time invariant models 

with several alternative inefficiency distributions, (b) models with time varying 

effects, (c) models incorporating environmental effects, and (d) models with more 

flexible forms for the regression function and error terms. Despite the abundance 

of stochastic frontier models, there have been few attempts to test the various 

models against each other, probably due to the difficulty of performing such tests. 

One advantage of the variational Bayes approximation is that it facilitates the 

computation of marginal likelihoods that can be used to compare models. We apply 

this idea to test stochastic frontier models with different inefficiency distributions. 

Estimation and testing is illustrated using three examples. 
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1. Introduction 

Variational Bayes is an approximate method for Bayesian inference. It is popular in machine 

learning (see e.g. Bishop 2006, Ch 10) and has recently gained attention in statistics (see e.g. 

Ormerod and Wand 2010 for a review and application to a wide range of models). It can be 

viewed as an alternative to Markov chain Monte Carlo (MCMC) where, in contrast to MCMC, 

posterior distributions and parameter estimates are obtained via an optimization procedure 

rather than by simulating draws from the posterior. Convergence of the optimization procedure 

is usually achieved within a small number of iterations, making it particularly useful for large 

models. It comes at a cost, however. It is based on an approximation whose error is hard to 

quantify. Also, it often tends to underestimate uncertainty in the posterior. The MCMC 

alternative is subject to sampling error, and is more prone to problems of non-convergence, but 

does not rely on an approximation. The objective of this article is to investigate the scope and 

merits of the application of variational Bayes machinery within the context of stochastic 

frontier models.  

Since the seminal article of Aigner et al. (1977) who considered a Cobb-Douglas 

production function and a half-normal distribution for inefficiency effects, the basic stochastic 

frontier model has been extended in many ways, including models with a range of inefficiency 

distributions, extensions to time-invariant and time-varying panel data contexts, extensions that 

incorporate environmental factors that affect efficiencies, and to models with more flexible 

functional forms. Reviews can be found in Kumbhakar and Lovell (2000), Coelli et al (2005) 

and Parmeter and Kumbhakar (2014). In this article we show how several of these models can 

be estimated relatively easily using variational Bayes, and we compare the accuracy of the 

estimates with those obtained using MCMC.  

Most models considered in this article can also be estimated by MCMC. However, we 

find several benefits from application of variational Bayes (VB). First, as we will see from 
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various examples, posterior distributions (in particular posterior means from VB) are good 

approximations to the posterior distributions from MCMC, while VB is considerably faster. 

Second, VB provides an analytical formula for a marginal likelihood lower bound which is 

useful to assess convergence and which provides some guidance for marginal likelihood values 

which can be notoriously difficult to estimate. Third, the VB posterior is a good candidate for 

(reciprocal) importance sampling. In particular, we show that the VB posterior can be used to 

obtain accurate estimates of marginal likelihoods which in turn can be used for model 

comparison. We apply this idea to discriminate between stochastic frontier models with 

different inefficiency distributions. Despite the abundance of alternative stochastic frontier 

models, few studies have tested the alternatives against each other. Fourth, there are situations 

in which stochastic frontier models come with a large number of parameters. In such cases it 

can be difficult to ensure MCMC convergence; VB is less likely to experience convergence 

problems.  

The paper is organized as follows. In Section 2 we briefly review VB inference. In 

Section 3 we show how to use VB to derive posterior distributions and marginal likelihood 

lower bounds for panel data stochastic frontier models with exponential and gamma 

distributions. Derivations for three other commonly used distributions are provided in 

Appendix A. Using three well-known data sets, in Section 4 we estimate all the models 

discussed in Section 3 and Appendix A, and compare them using the model selection 

methodology developed in Section 3. The remainder of the paper considers various extensions 

of the basic model. In Section 5 we show how the model incorporating environmental variables 

can be estimated. Models with time-varying effects are considered in Section 6. In Section 7 

we consider models with more flexible production/cost functions, more flexible distributions 

for inefficiency errors, and more robust error terms. 
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2. Bayesian inference using variational Bayes  

In this section we briefly review a common version of VB known as mean-field variational 

Bayes. It is a faster and deterministic alternative to MCMC in which posterior distributions and 

parameter estimates converge within a limited number of iterations. It was developed as a 

Bayesian method of inference for machine learning in the late 1990s (see e.g., Attias 1999 and 

Jordan et al. 1999), and has been surveyed by Wainwright and Jordan (2008) and Bishop (2006, 

Ch 10), among others. More recently it has found its way into the statistical and econometric 

literature; e.g., McGrory and Titterington (2007), Ormerod and Wand (2010), Wand et al. 

(2011), Braun and McAulife (2010) and Nott et al. (2012). VB software such as Infer.NET 

(Minka et al. 2009) and STAN (Kucukelbir  et al. 2015) has been developed with claims of 

being able to estimate a wide range of statistical models. 

 To introduce the VB framework, suppose we have a vector of observations y and a model 

with likelihood ( | )L y θ . Given a prior density ( )p θ , we wish to learn about the parameter 

vector θ  conditional on the observations. We can use Bayes theorem to derive the posterior 

density as 

( , )
( | ) ( | ) ( )

( )

p
p L p

p
 

y θ
θ y y θ θ

y
                                        (2.1) 

The notation ( )p   is used generically to denote a probability density function. Learning about 

θ  (e.g., finding its posterior moments) usually involves integration of functions involving the 

posterior kernel ( | ) ( )L py θ θ  . For very simple models this can be done analytically or 

numerically. However, for complex models we need to use more elaborate methods, such as 

the very powerful and widely used MCMC methods which rely on techniques for drawing 

random numbers from complex densities. MCMC has been successfully applied to a wide 

range of models, but it can be time consuming and sometimes it is difficult to know whether 

the necessary stochastic convergence has been achieved. In VB the idea is to approximate the 
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posterior ( | )p θ y  with a simpler density ( )q θ  which is more tractable. The optimal ( )q θ  is 

obtained by minimizing the Kullback-Leibler distance between the true posterior and the 

simpler density as follows 

min ( || ) min ( ) log[ ( ) ( | )]q qKL q p q q p d  θ θ θ y θ                              (2.2) 

The word variational comes from the fact that this is a calculus of variations problem. To obtain 

a tractable approximation simplifying assumptions about ( )q θ  are needed. One common VB 

assumption is  

1

( ) ( )
M

k k
k

q q


θ θ                                                      (2.3) 

where  1 2, , , Mθ θ θ  is some partition of θ  and the kq s are probability density functions. 

This factorized form corresponds to an approximation framework developed in physics known 

as mean field theory (Parisi, 1988). When used in this context, it is often referred to as mean-

field variational Bayes (MFVB). Such a factorization might seem drastic. However, it does not 

assume complete independence between the kθ s. Each approximate posterior density ( )k kq   

depends on moments of the other components in θ . Using results from the calculus of 

variations, it can be shown that the optimal kq  are given by the following iterative procedure.  

 An initial  1 1q θ  is found by taking the expectation of the log of the posterior kernel with 

respect to all other elements in θ . That is, we consider 
1

log[ ( )]E p
θ

y,θ  where the subscript 

 1θ  denotes the set of all other components  2 3, , , Mθ θ θ . The various moments of 

 2 3, , , Mθ θ θ  that appear in 
1

log[ ( )]E p
θ

y,θ  need to be assigned initial values. Then, the 

initial distribution for  1 1q θ  is taken as    
11 1 exp log[ ( )]q E p


 θθ y,θ . The moments of 

 1 1q θ  that will be required for the remaining  j jq θ  are then evaluated. Often the densities 

 j jq θ  are of a standard form and their moments are readily attainable, or, alternatively, they 
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are of dimension one or two in which case numerical integration is practical. Next, we take 

   22 2 exp log[ ( )]q E p


 θθ y,θ  where any required moments for 1θ  come from  1 1q θ  and 

those for other components of θ  use the same initial values that were used in step one. The 

process continues for    3 3 , , M Mq qθ θ . When it returns to  1 1q θ , the moments in 

1
log[ ( )]E p

θ
y,θ  are now obtained from     2 2 , , M Mq qθ θ . Iteration continues until 

convergence with the moments in each log[ ( )]
i

E p
θ

y,θ  being updated from each new  j jq θ

. If    1 1 , ,
old old

M Mq qθ θ  are the densities at the end of an iteration, then the updating 

procedure can be described by the following representation  

 
 
 

 
 

 

1

1

1 1
1

exp log[ ( )]

exp log[ ( )]

exp log[ ( )]

exp log[ ( )]
M

M

new

new
M M

M

E p
q

E p d

E p
q

E p d










 




 






θ

θ

θ

θ

y,θ
θ

y,θ θ

y,θ
θ

y,θ θ

                                        (2.4) 

where    log[ ( )] log ( )
i

old new

j j j j j jj i j i
E p p q d q d

  
  y,θ y,θ θ θ θ θ . The terms in the 

denominators are the normalizing constants. The iterative procedure stops when the increase 

in the lower bound of the marginal likelihood (defined below) is negligible. 

 If the ( )j jq θ  are standard densities such as the normal, gamma or Dirichlet, with 

moments that depend on the moments of the remaining parameters, it is sufficient to iterate 

over the moments extracted from the distributions in (2.4). This type of algorithm is known as 

a coordinate ascent algorithm. While cases that lend themselves to this algorithm are common, 

confining the analysis to such cases restricts considerably the type of models that can be 

handled via MFVB. Wand et al. (2011) discuss methods for overcoming obstacles created by 

not having densities which are standard forms. Those that we exploit for some of the models 

considered in this paper are the use of auxiliary variables (relevant for modelling a t-
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distribution), and numerical integration. With numerical integration over an infinite or semi-

infinite region, rather than a compact interval, strategies are needed to determine the effective 

support of the integrand for accurate computation. One also needs to guard against overflow 

and underflow. Where numerical integration is necessary for our illustrative examples, we 

follow the Wand et al. (2011) strategy for dealing with these issues. 

 As our examples demonstrate, there are a wide range of stochastic frontier models that 

lend themselves to estimation via MFVB. There are, however, more complex production 

models that are likely to be less tractable and difficult to fit within the standard MFVB 

framework, particularly when it does not lead to closed-form moments or univariate integrals. 

Examples are models with parameter constraints, endogeneity, and multiple outputs. If VB was 

to be used in such cases, stochastic algorithms or a combination of VB and MCMC methods 

would need to be explored. 

2.1 Model selection 

The Bayesian approach to comparing two models 1M  and 2M  with the same prior 

probabilities, is to use the Bayes factor defined as 

    1

2

( | )

( | )

ML M
BF

ML M


y

y
                                                         (2.5) 

where      | | , |j j j j j jML M L M p M d y y θ θ θ  is the marginal likelihood. Under an 

MFVB framework, it can be shown that the log of marginal likelihood is given by   

ln ln ( ) ln ( ) ( || )q qML E p E q KL q p  y,θ θ                                  (2.6) 



8 
 

 

If we define ln ln ( ) ln ( )q qML E p E q y,θ θ  and note that ( || )KL q p  is always positive, but 

unknown, then ln ML  provides a lower bound for the log of the marginal likelihood.  This 

lower bound is used to monitor convergence of the iterative process in (2.4).1 

 In some instances ML  will provide a good approximation to the true marginal likelihood. 

However, it is limited in its usefulness for model choice because the difference ML ML  can 

be different for different models. Precise estimation of marginal likelihoods can be a 

challenging task, even when using MCMC.2 It can be greatly facilitated by using an MFVB 

posterior as a candidate distribution. Specifically, under a framework proposed by Gelfand and 

Dey (1994), a marginal likelihood can be estimated from  

 
   

1

1

1

|

k
M

k k
k

g
ML

K L p





 
  
  


θ

y θ θ
                                            (2.7) 

where the kθ   s are MCMC draws from ( | )p y  , and  kg θ   is a suitably chosen density 

function evaluated at kθ  . Our proposal is to set ( ) ( )g qθ θ  . The Gelfand-Dey method 

provides accurate estimates if the candidate density ( )g θ   is a good approximation and has 

narrower tails than the true posterior, properties that we can typically expect from ( )q θ . Wang 

and Titterington (2005) have shown, and it is confirmed by our empirical examples, that MFVB 

posterior distributions normally have narrower spread than true posteriors. Thus, we expect 

them to have narrower tails, and they provide an ideal candidate for ( )g θ . In a Section 4 we 

use this methodology to compare several stochastic frontier models. 

 

                                                            
1 Given a sample of MCMC draws 1 2, , , K   , it is also possible to estimate an upper bound for the log of the 

marginal likelihood using 
   

 1

|1
ln ln

k k
K

k
k

L p
ML

K q

 
 
 
 


y θ θ

θ
. This may not be a tight bound, however and is 

calculated by simulation which may be prone to simulation errors (Ji et al. 2010). 
2 See Fruhwirth-Schnatter (2006) for a review of alternative methods. 
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3. Inference for stochastic frontier models using MFVB 

The basic stochastic frontier model with panel data can be written as  

    it it i ity u v x β +                                                      (3.1) 

where 1, ,i N   indexes the firms and 1, ,t T  indexes time, itx  is k-dimensional row 

vector of regressors (e.g., logs of inputs or logs of input prices), ity  represents the logarithm 

of output or cost, itx β  is the log of the frontier production or cost function, β  is a vector of 

unknown parameters, iu  is a non-negative random error reflecting the inefficiency of firm i, 

and vit  represents noise. The negative sign before iu is for a production frontier model and the 

plus sign is for the cost frontier case. Aigner et al. (1977) assumed that the siu  are independent 

and identically distributed (i.i.d.) and follow a half-normal distribution,  20, uN   ; the  sitv  

are usually assumed to be i.i.d. normal random variables with mean zero and constant variance 

2 .  

Several studies have extended the basic model by considering other distributions such as 

exponential (Mueseen and van den Broeck 1977), truncated normal (Stevenson. 1980), gamma 

(Greene 1990), Weibull (Tsionas 2007), generalized gamma (Griffin and Steel 2008) and even 

mixtures of distributions (Griffin and Steel 2008). The Bayesian approach to the estimation of 

stochastic frontier models using Monte Carlo methods is popular and has been described in van 

den Broeck et al. (1994) and Koop and Steel (2001) among others. Griffin and Steel (2007) 

have shown how a wide range of stochastic frontier models can be estimated using the 

WINBUGS software. 

In this section, we show how the stochastic frontier model with two alternative 

distributions can be estimated using MFVB and we refer to Appendix A where another three 

distributions are considered. We first consider a model with an exponential distribution where 

all the optimal MFVB posterior densities turn out to be standard forms. We then consider a 
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gamma distribution, a case where we have to use numerical integration. Details for the half-

normal, truncated normal and lognormal distributions are provided in Appendix A. 

3.1 Exponential inefficiency 

Consider the stochastic frontier model in (3.1), with  2~ 0,itv N   and where iu  follows an 

exponential distribution with parameter   ; i.e.,    | expi ip u u     . We assume the 

following priors  

   2~ ( , ) ~ , ~ ,N G A B G A B
ββ β V       

with the gamma density defined as 1( ; , ) ( )a a bzG z a b b z e a   . These priors are standard 

choices in the Bayesian stochastic frontier literature. In the empirical section we discuss how 

to choose values for the hyper-parameters. Using these priors and Bayes rule, we can write the 

log of the posterior kernel as 

   

 

2
22 2

1 1

1

1

ln , , , , 1 ln 2
2 2

1
( ) ( ) 1 ln

2

N T

it it i
i t

N

i
i

NT
p C A y u B

N A u B

 

 

  

 


 

 





               

         
 



β

y β u x β

β β V β β

       (3.2) 

where  ( ) 2 ln 2 ln ln ( ) ln ln ( ) (ln | |) 2C NT k A B A A B A                V  ; y  

and u  are ( 1)NT   and ( 1)N  vectors containing the ity  and iu , respectively. To use MFVB 

we need an appropriate factorized approximation to the posterior. We consider the following  

   2 2, , , ( ) ( ) ( )q q q q q β u β u                                        (3.3) 

For brevity we have suppressed the subscripts on the q densities. Using (3.2) and (2.4) we can 

derive the iterative procedure for the optimal densities as 
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     
         

 

     

1
1 2 2 1

22

1 1

1

2 2

2
1

( ) , ( )

1
, tr

2 2

( ) ,

1
,

T

N T

it it i i
i t

N

i
i

T

i i i it it
t

q N

NT
q G A B A A B B y u V u

q G A B A N A B u B

q u TN y
T

     

     

 





   



   



 






       

               

    

 
       

 







β β β β β

β

β β V β V V β x y u i V x x V

x β x xV

x β
2

1
(3.4)

T 















 

In (3.4) tr( )  and ( , )TN    denote the trace of a matrix and the truncated normal density 

function, respectively, x is an ( )NT k  matrix with ( , )i t -th row itx , and Ti  is a T-

dimensional vector of ones. The quantities  , 2 , iu ,  , V  and  iV u  are the relevant 

means and variances from the q  densities in (3.4); e.g.,  2

2 2

( )q
E 

 


  . They appear in 

the above distributions when we take expectations of the form  log ( , )
i

E p


y  . Using well-

known results on expectations of normal, gamma, and truncated normal distributions, we can 

show that  

 2
i i i

A A
u m

B B
     

 

                   2 1i i i iV u m m             (3.5) 

where i i    and ( ) ( ) ( )m      ; ( ) and ( )  are the pdf and cdf of the standard normal 

distribution. With this information, we can establish a coordinate ascent algorithm where we 

use initial starting values for some of the moments and then iterate the values of 

  2, , , , ,i iu V u
ββ V    until the change in ln ML  is negligible. 

 To find an expression for this lower bound of the marginal likelihood, we need to evaluate 

the two components of 

   2 2ln ln , , , , ln , , ,q qML E p E q  y β u β u            (3.6) 

It can be shown that the first component in (3.6) is given by 
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               2ln , , , , 1 ln 1 lnqE p C A B A A A B A A               y β u             

where we have used expressions for the mean of the logarithm of a gamma distributed random 

variable and ( ) log ( )x d x dx  is the digamma function. For the second component in (3.6) 

we have 

     2 2

1

ln , , , ln ( ) ln ln ( ) ln
N

q i
i

E q E q E q E q E q u    


   β u β  

Using results on entropy of normal, gamma and truncated normal distributions, after some 

algebraic manipulation we obtain 

      

   
   

   
 

1 1

1

| |( ) ln 2 1
ln ln ln

2 2 | |

( ) ( ) tr( )
ln ln

2 2

A A

A A

N
i i

i
i i

A A B BNT N N k
ML

A A B B

N
 



      
            

           
  



β

β

β β β

V

V

β β V β β V V

 

 

   

   



  
 



      (3.7)              

where k  is the number of regressors.  

3.2 Gamma inefficiency 

The approximate posterior densities in (3.4) are all standard recognizable forms. With an 

assumption that the inefficiency error follows a half-normal distribution, i.e.,  2~ 0,iu N   , 

the resulting approximate posterior densities are again recognizable forms. Details are given in 

Appendix A. The other inefficiency error distributions that we consider, gamma, truncated 

normal, and lognormal, all have one or more approximate posterior densities that are not 

recognizable, making it necessary to use numerical integration to obtain some of the required 

moments. We now consider the gamma case as an example; results for the others are given in 

Appendix A.  
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Suppose ( , )iu G   , and, following Griffin and Steel (2007), we use the priors 

   | ~ ,G B    and  1 ~ ,G A B
  . For the other parameters, we retain the same priors as 

used for the exponential case. Then, the log of the posterior kernel can be obtained as 
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where  ( ) 2 ln 2 ln ln ( ) ln ln ( ) (ln | |) 2 .C NT k A B A A B A          V        From 

(3.8) and (2.4), and using a suitable factorization, it can be shown that the optimal densities are 

given by the following iterative process.  
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(3.9) 

The normalizing constant for ( )q   has been left unspecified as 1C . The results in Beckers and 

Hammond (1987) have been used to find the normalizing constant for  iq u . In this constant 

 D   denotes the parabolic cylinder function. See Beckers and Hammond (1987, p.36) for 

details. The moments of iu  are given by 
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To set up a coordinate ascent algorithm, we have 

2
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where 1( ) ( )q q C   . The optimal densities are obtained by iterating β , βV  and the 

quantities in (3.10) until convergence, with convergence assessed using changes in ln ML .  

The integrals in (3.10) are all univariate integrals and usually straightforward to compute 

numerically. However, two problems may arise: First, sometimes the values of these integrals 

are extremely large or extremely small; in other words, we might face overflows or underflows. 

Second, the integrals are often taken over an infinite or semi-infinite region, rather than a 

compact interval, making it important to determine the effective support of the integrand for 

accurate computation. To avoid such problems that can arise in troublesome cases, in our 

empirical examples we calculate the integrals using the procedure described in Appendix B of 

Wand et al. (2011).  

To calculate the lower bound for the marginal likelihood we first find expressions for 

 2ln , , , , ,qE p   y β u  and  2ln , , , ,qE q   β u . Then, after some algebra, it can be shown 

that 
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4. Applications  

Using three well-known data sets, in this section we estimate stochastic frontier models with 

exponential, half-normal, gamma, truncated normal and lognormal distributions using both 

MFVB and MCMC, and compare the estimated models using the proposed Bayesian model 

selection procedure described in Section 3.  

4.1 Models and data 

The first data set, collected by the International Rice Research Institute (IRRI) consists of a 

panel of 43 Philippine rice farms observed over 8 years from 1990 to 1997 — see Coelli, et al. 

(2005) for further information. Because we are assuming time-invariant inefficiencies, only the 

last 4 years are considered. The model estimated is 

  0 1 2 3 4ln ln( ) ln( ) ln( ) ln( )it it it it it i ity land labor fert others u v                 (4.1) 

where ity , itland , itlabor , itfert  and itothers represent output, land, hired labour, amount of 

fertilizer and other inputs, respectively.  

In the second example six years of observations on 247 dairy farms are used to estimate 

a translog production frontier where milk production ( )y  depends on the inputs feed 1( )x , land 

2( )x , labor 3( )x  and cows 4( )x , and a trend ( )t  for technological change — see Alvarez et al. 

(2005) for further information. The function is 

2 2 2 2
0 1 1, 2 2, 3 3, 4 4, 11 1, 22 2, 33 3, 44 4, 12 1, 2,

2
13 1, 3, 14 1, 4, 23 2, 3, 24 2, 4, 34 3, 4, 1 11

it it it it it it it it it it it

it it it it it it it it it it i it

y x x x x x x x x x x

x x x x x x x x x x t t u v

         

      

         

        
 

The third example uses a cross-sectional data set of 122N   U.S. electric utilities in 

1970. The data were originally analysed by Christensen and Greene (1976) and then by Greene 

(1990) and by Griffin and Steel (2007). Following them, we consider the following frontier 

cost function 

           2
0 1 2 3 4ln ln ln ln lni i i i i i i i i iC pf Q Pl Pf Pk Pf Q u v               (4.2) 
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where output (Q) is produced at cost ( )C  using three factors: labor, capital, and fuel, whose 

respective factor prices are Pl, Pk and Pf. 

4.2 Prior specifications 

The general forms for the priors were those given earlier for the exponential and gamma models 

and those given in Appendix A for the others. For all models, we consider the vague priors 

2( ,0.001 )kNβ 0 I  and 2 ~ (0.001,0.001)v G . Hyper-parameters for the iu  distributions are 

specified as 1a  , ln(0.875)b   for the exponential, 1a  , 1 37.5b   for the half-

normal, ln(0.875)b  , 3a  , 4b   for the gamma, 0a  , 4b  , 1a  , 1 37.5b   for 

the truncated normal, and 2,a    4b  , 1,a   1b   for the lognormal model. For 

exponential, gamma and half-normal, these are values that have been suggested in the literature 

(see e.g., van den Broeck et al. 1994 or Griffin and Steel 2007). For the truncated normal and 

lognormal we have specified values in such a way that the implied marginal prior for iu  

resembles the implied prior for the gamma model. After using simulation to integrate out their 

hyper-parameters, the implied marginal priors for iu  all have similar shapes. See Figure 1. 

4.3 Parameter estimates 

Tables 1, 2 and 3 contain the posterior means of the parameters for the various models and the 

three data sets using both MFVB and MCMC. We wrote R code for MFVB and for MCMC 

we used WINBUGS, following the instructions in Griffin and Steel (2007). Convergence of 

the MFVB algorithms was achieved in less than 500 iterations in all cases except for the gamma 

model applied to the electricity data; it took 1000 iterations. We tried a number of different 

starting values but always reached the same solution. In all MCMC cases we considered 60000 

iterations, discarding the first 50000 as the burn-in period. 

 The signs and magnitudes of the production elasticity estimates for land, labour, fert 

and others given in Table 1 are all consistent with expectations. They are also almost identical 
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across the models and estimation methods. However, the inefficiency parameter estimates are 

somewhat different across the two estimation methods. In the most extreme case, the parameter 

  for the truncated normal model is estimated as 17.689 from MCMC versus 13.096 from 

MFVB. The probability intervals for these parameters are generally very wide, however. For 

example, the 95% probability interval for   from MCMC is (5.210, 47.902), and, as we see 

later, the estimated inefficiency scores, which are often the main item of interest, are reasonably 

close despite such differences. Similar conclusions can be drawn from Tables 2 and 3 that 

contain the results for the dairy and electricity data examples. The estimates for the technology 

parameters are almost identical across the models and estimation methods. Parameters of 

inefficiency distributions differ slightly across estimations methods but are again well within 

95% probability intervals. 

4.4 Inefficiency estimates  

In stochastic frontier analysis, estimation of inefficiency effects is often of primary importance 

and frequently the main objective of the study. It is important, therefore, to investigate the 

accuracy of estimated inefficiency scores from MFVB. In Figures 2, 3 and 4 MFVB and 

MCMC estimates of the inefficiency effects are compared for all models and data sets. In each 

graph, the horizontal axis represents estimated effects from MCMC and the vertical axis 

represents estimates from MFVB. We have also depicted the 45 degree line; if MFVB and 

MCMC estimates are identical they will lie on the 45 degree line. For the rice data and the dairy 

data in Figures 2 and 3, they are extremely close. For the electricity data in Figure 4, there are 

some visible differences, particularly for the half-normal and truncated normal distributions. 

However, even in these cases the ranking of firms is generally preserved. For the case of the 

half-normal model where there is the largest discrepancy, we have also depicted the (25%, 

75%) probability bands from MCMC. The MFVB estimates are well within the interval given 
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by these bands. It is also worth noting that the electricity data are not a panel. Without repeated 

observations on the iu , we expect their estimation to be less precise. 

Using the rice data as an example, other features of the posterior distributions are 

compared in Table 4 and Figure 53. Table 4 contains posterior standard deviations for all the 

parameters. Consistent with other studies such as Wang and Titterington (2005), the standard 

deviations from MFVB are smaller than those from MCMC for all parameters. For the 

technology parameters, the inefficiency effects, and 2  , the difference is not substantial, but 

for the inefficiency parameters there are substantial differences. Marginal posterior densities 

for selected inefficiency effects are compared in Figure 5. Those from the MCMC sample were 

obtained by averaging the conditional distributions of the iu s over the MCMC draws of the 

other parameters. Again we find the differences are not substantial, especially for the effects 

which are smaller in magnitude. Relative to the rice data example, the MFVB and MCMC 

marginal posteriors are closer for the dairy data example and further apart for the electricity 

data. 

4.5 Model comparison  

Despite the wide variety of distributions suggested in the literature for efficiency effects, there 

have been few studies formally comparing these models. The Bayesian exceptions that we are 

aware of are Griffin and Steel (2008) who compare alternative distributions using a 

generalization of the Savage-Dickey method and Ehlers (2011) who uses the DIC statistics 

produced by WINBUGS4. Here we use the methodology described earlier to compute Bayes 

factors which are generally recognized as the preferred Bayesian criterion for comparing 

models. The five distributional assumptions are compared for each of the three data sets.  

                                                            
3 The same general conclusions can be drawn from the other data sets. Comparable tables and figures are available 
from the authors on request. 
4 The DIC (deviance information criterion) is a goodness-of-fit with-penalty measure similar in nature to the 
Akaike and Bayesian information criteria. Because it uses averages rather than maxima as estimates, it is readily 
computed from MCMC output. 
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In Table 5 we report the lower-bounds for the logs of the marginal likelihoods from 

MFVB, the MCMC-estimated logs of the marginal likelihoods, computed using our proposal 

where the MFVB posterior is used in conjunction with the Gelfand-Dey method, and the 

expected mean-squared errors (MSE) of the log-marginal-likelihood estimates5. For all data 

sets, the largest marginal likelihoods are those for the gamma model; the differences between 

the marginal likelihoods for the other four models are much less pronounced. The MSE values 

suggest the log-marginal likelihoods have been estimated with a high degree of accuracy. As 

expected, the MFVB lower bounds for the marginal likelihoods are smaller than the 

corresponding estimates from MCMC. Because these differences are not uniform, the Bayes’ 

factors computed from the lower bound are not necessarily a good guide to the more accurate 

comparison provided by the Bayes’ factors computed from the MCMC estimates. In Table 6 

we report the logs of the Bayes factors against the half-normal model. In each case the first and 

second ranked models are the same irrespective of whether the MFVB lower bounds or the 

MCMC estimates are used, but there is some divergence after that. The gamma model is clearly 

favoured for all data sets. For the rice and electricity data sets the exponential model is ranked 

second, and for the dairy data the truncated normal model is ranked second. 

5. Extensions: models with environmental variables 

It is often of interest to identify and estimate the effects of factors influencing technical 

efficiencies. A standard approach to do this is to make the mean of the inefficiency distribution 

a function of the factors. We follow this tradition and describe MFVB estimation of two 

popular models incorporating environmental factors. MFVB estimation of one model where 

the exogenous environmental variables take the form of 0-1 dummy variables is discussed in 

Appendix B. A second model, the one that we discuss in this section, incorporates general 

                                                            
5 Methods for computing the MSE are described in Chen et al. (2000, p.133-145) and Frühwirth-Schnatter (2006, 
p.152-154). 
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exogenous variables along the lines proposed by, for example, Battese and Coelli (1995) and 

Alvarez et al. (2006). Specifically, we consider the following model with a lognormal 

distribution for the effects6 

            it it it ity u v x β +                                            (5.1) 

The situ  are assumed to be independently but not identically distributed and are drawn from 

 2,it itu LN m   where it itm  z μ ; itz is a 1 M vector of environmental variables; and μ  is 

an 1M   vector of unknown parameters to be estimated. From the lognormal assumption, we 

can write 0exp( )it it itu u z μ  where  0 2~ 1,itu LN   does not depend on itz . Alvarez et al. (2006) 

have argued in favour of this scaling property in the context of models with environmental 

variables. This specification has also the convenient feature that ln ( )j jE u dz    implying 

100 j  can be interpreted as the percentage change in ( )E u  from a one unit change in jz .  

 The priors specified for  2 2, , β    are those used for the lognormal distribution in 

Appendix A, namely ~ ( , )N ββ β V ,  2 ~ ,G A B
  , and  2 ~ ,G A B

  . For μ  we use 

( , ).N μμ μ V  Using a suitable factorization we can derive the optimal densities as  

                                                            
6 It is possible to consider other distributions such as truncated normal. We consider a lognormal distribution 
because it is more convenient for obtaining conditional distributions for the parameters μ  that appear in the 

inefficiency distribution.  
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(5.2) 

where 1,itC is a normalizing constant, z is an ( )NT M  matrix containing the itz , and u  is now 

of dimension NT. All the densities in (5.2) are of a standard form except that for itu  whose 

various moments need to be obtained by numerical integration. The coordinate ascent 

algorithm can be set up by iterating over the moments  

  2 2 2, , , , , , , ln , (ln ) , , 'it it it iu u u V u 
ββ V μ V μμ   

until the change in the following lower bound for the log of marginal likelihood is negligible. 
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(5.3) 

 To illustrate estimation of this model, we apply it to the rice data with the specification 

0 1 2 3 4ln ln( ) ln( ) ln( ) ln( )it it it it it it ity land labor fert others u v            

2
0 1 2( , )it it itu LN edu ban      

where edu  and ban  represent education of the household head in years and the proportion of 

the area classified as bantog (upland) fields, respectively. For a prior on   we specify 
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0 ~ ( 2, 0.25)N   and ~ (0, 10), 1,2i N i  , the latter being relatively vague priors centred 

over zero. The off-diagonal elements in V  were set to zero. Settings for the other hyper-

parameters were the same as those used previously. Posterior means and standard deviations 

for the technology and inefficiency distribution parameters are reported in Table 7. The 

estimate 1ˆ 0.076   suggests an extra year of education leads to a 7.6% percent decrease in 

mean inefficiency, while 2ˆ 1.061   suggests an increase in the proportion of bantog fields by 

one percentage point reduces mean inefficiency by 1.061%. The estimates from MFVB and 

MCMC are similar in magnitude. A similar conclusion can be reached for the estimated 

efficiency effects from both methods compared in Figure 6.  

6. Extensions: a time varying panel data model 

Several authors, for example, Cornwell, et al. (1990), Kumbhakar (1990), Battese and Coelli 

(1992), Lee and Schmidt (1993) and Sickles (2005), have suggested ways of relaxing a strong 

assumption made in model (3.1), that the inefficiency effects are invariant over time. In the 

previous section we considered one of those ways: assume the mean of the inefficiency effects 

depends on environmental factors. In this section we consider another time varying inefficiency 

model: the one proposed by Lee and Schmidt (1993). Using the model it it it ity u v x β + , they 

specify the inefficiency effects as the product of the traditional time invariant component iu  

and a firm invariant component t  . That is, it t iu u   , where 1 1   and 0t   . This 

specification does not require data on the factors causing inefficiency to change over time, but 

it does assume the impact of such factors is the same for all firms in a given time period. A 

value 1t   implies firms in that period are more efficient relative to the base period and vice 

versa. We assume exponential distributions for both components and gamma priors on the 

parameters of the exponential distributions. That is, ~ exp( )iu  ,  ~ expt   , ~ ( , )G A B 
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, and ~ ( , )G A B    . Let u   and α   be vectors containing the components iu   and t  , 

respectively. This specification results in the following optimal densities all of which are 

standard forms. 
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A coordinate ascent algorithm is established by iterating over 

 2 2 2, , , , , , , , , [ ], [ ]i tV u V
ββ u α u α V     

The log of the lower bound of the marginal likelihood used to assess convergence is 
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To illustrate this model, we apply it to the dairy data. For brevity, in Table 8 we report 

only estimates for the parameters of the inefficiency distribution and the t s. The estimates 

ˆ [1, 0.93, 0.88, 0.87, 0.85, 0.82] α  suggest a gradual increase in efficiency over time. The 

posterior means from MFVB and MCMC almost coincide and the posterior standard deviations 
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are close but smaller for MFVB. The estimated iu s for MCMC and MFVB are plotted in Figure 

7; again, they almost coincide.  

7. Extensions: More Robust Models 

The basic model in (3.1) has a linear-in-parameters technology, its efficiency effects are drawn 

from one- or two-parameter distributions, and the error term follows a normal distribution. In 

this section we consider more flexible models under less stringent assumptions and show how 

they can be estimated under a MFVB framework. We first extend the model to a case where 

we have a mixture of distributions for the efficiency effects. Next we introduce nonparametric 

elements into the technology part of the model, and finally we consider more flexible 

distributions for the random error terms.  

7.1 A model with a mixture of distributions for inefficiency effects 

There are a variety of distributions that can be used to create greater flexibility in the modelling 

of the inefficiency effects. Two examples that can be estimated by MFVB using auxiliary 

variable methods are the generalised beta or truncated-t distributions. Another alternative, and 

the one we focus on in this section, is a mixture of distributions. We outline an estimation 

procedure for a general mixture for iu , but give specific formulas for a mixture of exponential 

distributions. Other possibilities such as a mixture of gamma densities could be considered. 

For example, Griffin and Steel (2008) consider a mixture of generalized gamma distributions. 

The density function for iu for a general mixture with K components can be written as 

       
1

|
K

i j i j
j

p u f u


  θ           (7.1) 

where  |i jf u θ  is a particular distribution that, for the moment, we leave unspecified, j  is 

a component weight, and j  is a vector of parameters for the j-th component. It is convenient 
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to introduce an indicator variable ijz  equal to 1 if iu  belongs to the j-th mixture component, 

and 0 otherwise. Then, for  1 2, , ,i i i iKz z z z  , and  , 1,2, ,j j K    , we can write 

   
1

| , |
ij

K z

i i i j
j

p u f u


z θ θ                                                      (7.2) 

 
1

| ij

K
z

i j j
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  z        (7.3) 

Using the Dirichlet prior 
1

1
( ) jK

jj
p 

π  , the priors  2 ~ ,G A B
   and ~ ( , )N ββ β V , 

and the unspecified prior  |j jp θ A , the log of the posterior kernel can be written as  
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(7.4) 

It can be shown that (7.4), along with an appropriate factorization, leads to the following 

optimal densities. 
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In (7.5), Mult(.) refers to the multinomial distribution with probabilities proportional to its 

arguments, and Dir(.) refers to the Dirichlet distribution. The approximate posterior 

distributions for iu  and θ  , as well as the quantities  ln |i jf u θ  , depend on what further 

assumptions are made about iu and θ . For example, for a mixture of exponential distributions 

where  | e j iu

i j jf u θ  , with prior ( , )j j jG A B  , we have 
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We can again set up a coordinate ascent algorithm by iterating over appropriate expectations 

from (7.5) until convergence is achieved. 

7.2 A semiparametric stochastic frontier model 

There are several approaches to nonparametric and semiparametric stochastic frontier 

modelling – see for example Griffin and Steel (2004), and Parmeter and Kumbhakar (2014) for 

a review. One approach which has a nice Bayesian counterpart and which can be easily set up 

within an MFVB framework is one that utilizes spline modelling of the regression function. To 

introduce this approach, we consider the following stochastic frontier model 

           it it i ity f x u v +                                                    (7.6) 

where itx  is a univariate regressor whose impact is to be modelled non-parametrically. 

Extensions to various multivariate settings such as partially linear, additive and fully 

nonparametric models are relatively straightforward (see e.g., Ruppert, et al. 2003). Using 

polynomial splines to approximate  itf x , we can write 

   0 1
1

K
pp

it it p it k it k
k

f x x x w x



                                (7.7) 

where  1 2, , , K    are points known as knots, chosen within the range of x;   p

it kx


  is a 

polynomial term equal to zero when it kx   . Combining (7.6) and (7.7), leads to 

     T  y Xβ u i v                                       (7.8) 
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where X  is a matrix with    11, ,..., , ,...,
p pp

it it it it it Kx x x x
 

    x    in its ( , )i t -th row, and 

 0 1, , , , ,p Kw w β    . In the penalized spline approach, a large number of knots are 

chosen – for example, 20 knots at equidistant intervals – but to avoid over-fitting a constraint 

on the variability of the regression function is imposed, often of the form 2
1

K

kk
w C  . An 

equivalent way of imposing this penalty under a Bayesian framework is to assume the 

following prior (Ruppert et al. 2003) 
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From (7.8) and (7.9) the model becomes a linear-in-the-parameters stochastic frontier model 

with β  having the normal prior in (7.9). Assuming ~ exp( )iu  ,  ,G A B    and 

 ~ ,G A B   we can derive the optimal densities as 
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 and w  is the relevant subvector of  . A coordinate ascent 

algorithm iterates over the moments   2 2 2, , , ln , , , ,i iu V u     
ββ V . Setting i i   , 

the lower bound of the log of the marginal likelihood is 
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In what follows a limited Monte Carlo experiment with 100 replications is conducted to 

investigate the performance of the MFVB semiparametric estimator relative to other 

estimators. We consider a bivariate stochastic frontier model of the form 

 1, 2,,it it it i ity f x x u v   . The errors itv  and inefficiencies iu  are generated from  20,0.1N  

and exp(6)  distributions, respectively. To have data sets close to real applications, values for 

1,itx  and 2,itx  are taken as the logs of area and labor in the Philippine rice data set. We chose 20 

knots and use a space filling algorithm (Nychka et al., 1998) for the location of the knots. For 

f we consider the following two cases depicted in Figures 8(a) and 8(b).  

 Translog model:                  2 2
1 2 1 1 2 2( , ) 0.1 1.5 0.25f x x x x x x     

 Arctan model:                    2
1 2 1 1 2 2( , ) 0.1 arctan(2 0.5) 0.25f x x x x x x      

The first case is a translog function commonly used in production economics; the second 

function has been chosen so that it is not of a translog form with respect to 2x , but is still a 

reasonable candidate for a production function. Four estimators were considered: translog-

MFVB, translog-MCMC, semiparametric-MFVB and semiparametric-MCMC. In Figures 9 

and 10 the posterior means for the iu  and for the input elasticities (derivatives with respect to 

1x  and 2x ) for each of the replications, and using each of the estimators, are compared with 

their true values. The true values for the iu  and for the derivatives at all data points are on the 

horizontal axes; their corresponding estimated values are on the vertical axes. Observations 

scattered evenly around the 45 degree lines drawn in red suggest no bias. A concentration of 

observations above or below a 45 degree line depicts bias. 
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The results for the translog model in Figure 9 show that all estimators perform well. The 

posterior means from MFVB and MCMC are very similar. The semiparametric estimator is 

slightly less efficient than the parametric estimator applied to the true functional form and, as 

is typical with nonparametric spline estimators, for the elasticities it performs poorly at the 

boundary points. For the arctan model in Figure 10, the posterior means from MFVB and 

MCMC are again very similar. However, choosing the incorrect translog functional form has 

led to significant biases in the elasticites, and has increased the variance of the inefficiency 

estimates, relative to the results from the semiparametric estimator. 

7.3 Robust distribution for error term 

All the models considered so far have assumed that the distribution of the error term is 

 2~ 0,itv N  . Using an auxiliary variable method, the analysis can be extended to more robust 

distributions. Estimation of stochastic frontier models with a t-distributed error term has been 

discussed in Griffin and Steel (2007) who used WinBUGS software, and Tsionas (2012) who 

used a fast Fourier transform method. MFVB estimation for a regression model with not only 

t-errors, but also asymmetric Laplace errors has been developed in Wand et al. (2011). 

Extension to stochastic frontier models for all of these distributions is straightforward. Here we 

discuss a model with a t-distributed error. Consider 

   2 2| , , , ~ , ,it i it iy u t uβ x β                                               (7.11) 

To obtain a posterior that is easy to work with we introduce an auxiliary variable " "a  and use 

the following result (see e.g., Wand et al. 2011) 

         2 1 2| ( , ) and ~ ( 2, 2) ~ ( , , )z a N a a G z t                     (7.12) 

Therefore, we can equivalently write (7.11) as  

         2 2 1| , , , ~ , with | ~ 2, 2it i it it i it ity u a N u a a Gβ x β                (7.13) 
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Letting ~ exp( )iu   , and assuming priors ~ ( , )N ββ 0 V  ,  ,  , 

and ( ) exp( )p       , we can derive the optimal densities as 
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where  1
itaD  is a diagonal matrix with the 1

ita  as its diagonal elements. Using the notation 

1a   and 1ln a   to denote vectors containing the 1
ita   and 1ln ita  , respectively, a coordinate 

ascent algorithm can be established by iterating over   2 1 1, , , ln , , , , , iV u  
ββ a a u V   . 

Setting i i i   , the lower bound of the log of the likelihood function is given by 
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8. Conclusion 

In this article we investigated the scope for application of variational Bayes to the stochastic 

frontier context. Our findings can be summarized as follows: Firstly, as is evident by the large 

number of examples that we considered, MFVB can be employed to estimate many of the 

2 ~ ( , )G A B
  ~ ( , )G A B 
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existing stochastic frontier models in the literature. Secondly, by comparing posterior means 

from MFVB and MCMC through three empirical examples, we found that the approximation 

errors from MFVB could be considered negligible. This result is particularly useful for 

instances when MCMC convergence is in doubt. Thirdly, despite the variety of stochastic 

frontier models, there have been few studies comparing alternative models, probably due to 

difficulty of performing the required tests. We showed that MFVB posterior is a convenient 

density for employing the Gelfand-Dey marginal likelihood estimation framework, producing 

accurate estimates of the marginal likelihoods. Thus, MFVB is a useful device for facilitating 

model comparison even when one prefers MCMC estimates to those from MFVB. Fourthly, 

our results based on 3 empirical examples favour the gamma distribution over 4 other 

commonly used distributions. Finally, although it was not explored in this article, MFVB 

posteriors, or modifications of them with fatter tails, are likely to be good potential candidates 

for direct importance sampling. 
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Appendix A: Models with other inefficiency distributions 

Half Normal Inefficiency 
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Truncated-Normal Inefficiency 

Model                                          it it i ity u v x β + ,      2,iu N    

Priors                             2 2 1~ ( , ) , , ,N G A B N A B G A B 
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Optimal densities 
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Lognormal Inefficiency 
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Coordinate ascent algorithm 

Iterate the following quantities until the change in ln ML  is negligible. 
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Lower bound for marginal likelihood 
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Appendix B: Model with zero-one environmental variables 

Here we return to model (3.1), it it i ity u v x β + , and, following Koop et al. (1997), we assume 

iu  has the exponential distribution    | expi i i i ip u u     with 
1

ijm z

i jj  ; the ijz  are 0-

1 dummy variables with the exception of the first, where 1 1iz  . The dummy variables describe 

the presence or absence of some environmental factors. For example, some firms might be 

privately owned and some publicly owned and we might be interested in whether one category 

of firms is more efficient. A value 1j    1j   implies that firms with 1ijz   come from a 

distribution with lower (higher) mean inefficiency. If 1j   for 2,...,j m , then the model 

reduces to the standard stochastic frontier model with exponential inefficiencies. Using the 

priors for  2,β   given in Section 3, and assuming  ~ ,j j jG A B  as suggested by Koop et al. 

(1997), we can derive the following optimal densities: 

     
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Interestingly, all these densities are standard forms; we therefore can easily set-up a coordinate 

ascent algorithm by iterating over  

        2 2, , , , , 1j
j i i i i i i i

j

AA
V u m V u m m

B B


           
  

ββ 



          

where , and (.) (.) (.)i i m      . The marginal likelihood lower bound used to assess 

convergence is 
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Figure 2  Estimated Efficiency Effects ( ˆiu ) for Rice Data - MFVB vs MCMC 
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Figure 3  Estimated Efficiency Effects ( ˆiu ) for Dairy Data - MFVB vs MCMC 
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Figure 4  Estimated Efficiency Effects ( ˆiu ) for Electricity Data - MFVB vs MCMC 
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Figure 5  MFVB vs MCMC Marginal Posterior Distributions of Selected ˆiu s  

Based on Exponential Distribution for Rice Data example 
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Figure 6  Estimated Efficiency Effects based on Lognormal 
 Battese-Coelli model for Rice Data: MFVB vs MCMC 
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Figure 7  Estimated Efficiency Effects based on Time-varying Model  

for Dairy Data: MFVB vs MCMC 
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Figure 9 Posterior Means versus True Values from Translog modela 
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aTrue values are on the horizontal axes; posterior means are on the vertical axes. 
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Figure 10 Posterior Means versus True Values from Arctan Modela  
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aTrue values are on the horizontal axes; posterior means are on the vertical axes. 
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Table 1 Posterior Means for Parameters of Various Models – Rice Data 

Par  EXP  HN  Gamma  TN  LN 

 

MCMC  VB  MCMC  VB  MCMC  VB  MCMC  VB  MCMC  VB 

C  ‐0.945  ‐0.947  ‐0.975  ‐0.981  ‐0.922  ‐0.934  ‐0.980  ‐0.972  ‐0.911  ‐0.910 

Land 0.383  0.383  0.384  0.387  0.386  0.384  0.386  0.387  0.379  0.380 

Labor 0.293  0.293  0.306  0.306  0.296  0.298  0.307  0.304  0.290  0.287 

Fert 0.196  0.196  0.205  0.204  0.196  0.200  0.205  0.203  0.194  0.192 

Other 0.058  0.057  0.051  0.049  0.056  0.054  0.049  0.051  0.059  0.060 

2 
  10.183  10.183  10.122  10.068  10.177  10.125  10.063  10.114  10.147  10.155 

 6.061  5.797  15.288  14.825  7.386  8.073  17.689  13.096  1.393  1.138 

or
       

1.510  1.721  0.015  ‐0.119  ‐2.058  ‐2.104 
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Table 2- Posterior Means for Parameters of Various Models – Dairy Data 

Par  EXP  HN  Gamma  TN  LN 

   MCMC  VB  MCMC  VB  MCMC  VB  MCMC  VB  MCMC  VB 

C  11.6673  11.6679  11.6854  11.6836  11.7981  11.7842  11.7065  11.7037  11.8094  11.8164 

X1  0.6573  0.6573  0.6592  0.6587  0.6634  0.6627  0.6611  0.6606  0.6613  0.6615 

X2  0.0425  0.0434  0.0421  0.0416  0.0421  0.0421  0.0414  0.0408  0.0432  0.0433 

X3  0.0472  0.0474  0.0494  0.0495  0.0461  0.0466  0.0507  0.0505  0.0451  0.0456 

X4  0.3613  0.3603  0.3563  0.3573  0.3514  0.3527  0.3536  0.3543  0.3531  0.3532 

X11  0.3371  0.3377  0.3187  0.3191  0.2710  0.2724  0.3000  0.3003  0.2773  0.2761 

X22  ‐0.1318  ‐0.1277  ‐0.1082  ‐0.1101  ‐0.0808  ‐0.0854  ‐0.0876  ‐0.0873  ‐0.0918  ‐0.0935 

X33  ‐0.1240  ‐0.1196  ‐0.1204  ‐0.1235  ‐0.1453  ‐0.1444  ‐0.1230  ‐0.1269  ‐0.1468  ‐0.1462 

X44  0.1247  0.1258  0.1182  0.1179  0.1116  0.1110  0.1136  0.1128  0.1135  0.1133 

X12  ‐0.0685  ‐0.0663  ‐0.0632  ‐0.0645  ‐0.0408  ‐0.0420  ‐0.0551  ‐0.0572  ‐0.0431  ‐0.0424 

X13  0.0993  0.0984  0.0939  0.0925  0.0929  0.0927  0.0878  0.0876  0.0956  0.0951 

X14  ‐0.1598  ‐0.1603  ‐0.1475  ‐0.1477  ‐0.1290  ‐0.1292  ‐0.1388  ‐0.1383  ‐0.1321  ‐0.1321 

X23  0.0146  0.0149  0.0083  0.0091  0.0038  0.0045  0.0036  0.0029  0.0078  0.0072 

X24  0.0264  0.0252  0.0224  0.0235  0.0103  0.0113  0.0183  0.0189  0.0120  0.0118 

X34  ‐0.0213  ‐0.0217  ‐0.0172  ‐0.0173  ‐0.0148  ‐0.0148  ‐0.0147  ‐0.0140  ‐0.0157  ‐0.0153 

t  0.0304  0.0307  0.0312  0.0311  0.0320  0.0318  0.0317  0.0316  0.0317  0.0317 

2t   ‐0.0028  ‐0.0028  ‐0.0029  ‐0.0028  ‐0.0029  ‐0.0029  ‐0.0029  ‐0.0029  ‐0.0029  ‐0.0029 

2 
  158.866  158.103  162.387  161.671  165.695  165.019  164.486  164.063  164.845  164.557 

 6.2581  6.3281  21.2656  21.7130  18.7577  18.2824  38.6811  38.9029  5.7477  6.0920 

or             5.6250  5.1282  0.9205  0.9158  ‐1.2721  ‐1.2401 
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Table 3- Posterior Means for Parameters of Various Models – Electricity Data 

Par  EXP  HN  Gamma  TN  LN 

   MCMC  VB  MCMC  VB  MCMC  VB  MCMC  VB  MCMC  VB 

C ‐7.543  ‐7.550  ‐7.409  ‐7.411  ‐7.523  ‐7.525  ‐7.426  ‐7.429  ‐7.633  ‐7.636 

Q 0.462  0.459  0.442  0.439  0.457  0.453  0.442  0.442  0.467  0.468 

pl/pf 0.235  0.240  0.220  0.225  0.231  0.235  0.223  0.227  0.243  0.247 

pk/pf 0.040  0.042  0.061  0.065  0.049  0.051  0.060  0.061  0.035  0.034 

Q2 0.028  0.028  0.029  0.029  0.028  0.028  0.028  0.028  0.027  0.027 

2 
  93.055  83.810  95.364  76.142  89.288  82.391  92.320  79.345  91.644  83.202 

 10.486  10.770  48.686  51.020  14.932  15.390  46.732  39.771  2.118  1.666 

or             1.707  1.840  ‐0.167  ‐0.288  ‐2.371  ‐2.504 
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Table 4  Posterior Standard Deviations for Parameters – Rice Data 

 Exp HN Gamma TN LN 

 MCMC VB MCMC VB MCMC VB MCMC VB MCMC VB 

 0.403 0.345 0.405 0.347 0.406 0.346 0.410 0.346 0.403 0.345 

 0.106 0.091 0.105 0.091 0.105 0.091 0.107 0.091 0.105 0.091 

 0.102 0.092 0.103 0.093 0.103 0.093 0.103 0.093 0.103 0.092 

 0.063 0.058 0.063 0.058 0.064 0.058 0.066 0.058 0.063 0.058 

 0.035 0.028 0.035 0.028 0.036 0.028 0.035 0.028 0.035 0.028 

 1.279 1.098 1.275 1.086 1.277 1.091 1.289 1.091 1.269 1.095 

u[1] 0.163 0.146 0.157 0.132 0.168 0.139 0.156 0.134 0.170 0.151 

u[2] 0.057 0.055 0.072 0.068 0.071 0.064 0.073 0.067 0.066 0.051 

u[3] 0.153 0.138 0.151 0.130 0.159 0.132 0.150 0.132 0.158 0.137 

u[4] 0.097 0.092 0.113 0.103 0.112 0.097 0.111 0.104 0.102 0.085 

u[5] 0.098 0.090 0.115 0.104 0.110 0.096 0.115 0.104 0.099 0.081 

u[6] 0.128 0.116 0.135 0.118 0.137 0.114 0.132 0.119 0.133 0.111 

u[7] 0.083 0.078 0.104 0.094 0.096 0.086 0.101 0.094 0.087 0.071 

u[8] 0.128 0.117 0.136 0.121 0.136 0.117 0.134 0.122 0.129 0.111 

u[9] 0.097 0.091 0.114 0.104 0.110 0.097 0.114 0.104 0.100 0.083 

u[10] 0.100 0.093 0.115 0.107 0.112 0.099 0.118 0.107 0.103 0.084 

u[11] 0.159 0.143 0.152 0.131 0.165 0.136 0.153 0.133 0.164 0.146 

u[12] 0.071 0.062 0.083 0.072 0.081 0.070 0.082 0.072 0.074 0.058 

u[13] 0.123 0.114 0.132 0.119 0.131 0.114 0.131 0.120 0.124 0.107 

u[14] 0.081 0.077 0.096 0.090 0.097 0.084 0.098 0.090 0.087 0.070 

u[15] 0.197 0.154 0.174 0.134 0.194 0.145 0.177 0.136 0.205 0.167 

u[16] 0.059 0.057 0.073 0.067 0.072 0.065 0.074 0.067 0.068 0.053 

u[17] 0.067 0.062 0.085 0.078 0.081 0.072 0.084 0.077 0.072 0.057 

u[18] 0.075 0.069 0.095 0.086 0.090 0.078 0.097 0.085 0.081 0.062 

u[19] 0.094 0.087 0.111 0.102 0.106 0.094 0.112 0.102 0.097 0.078 

u[20] 0.091 0.083 0.109 0.098 0.103 0.090 0.108 0.098 0.096 0.075 

u[21] 0.071 0.067 0.089 0.083 0.085 0.076 0.089 0.082 0.076 0.061 

u[22] 0.146 0.135 0.145 0.129 0.152 0.130 0.146 0.130 0.150 0.133 

u[23] 0.128 0.115 0.137 0.122 0.135 0.116 0.137 0.123 0.128 0.106 

u[24] 0.176 0.155 0.165 0.134 0.181 0.148 0.166 0.136 0.187 0.167 

u[25] 0.119 0.111 0.132 0.119 0.131 0.113 0.132 0.120 0.122 0.102 

u[26] 0.084 0.078 0.100 0.090 0.098 0.085 0.099 0.091 0.090 0.072 

u[27] 0.094 0.090 0.113 0.104 0.111 0.096 0.113 0.104 0.100 0.081 

u[28] 0.067 0.061 0.082 0.075 0.079 0.070 0.082 0.075 0.072 0.057 

u[29] 0.164 0.149 0.154 0.133 0.167 0.141 0.158 0.135 0.171 0.157 

u[30] 0.211 0.157 0.197 0.135 0.216 0.152 0.199 0.137 0.213 0.164 

u[31] 0.071 0.066 0.085 0.078 0.084 0.074 0.085 0.078 0.077 0.061 

u[32] 0.091 0.084 0.106 0.096 0.103 0.090 0.105 0.096 0.094 0.077 

u[33] 0.080 0.075 0.097 0.088 0.092 0.082 0.095 0.088 0.085 0.069 

u[34] 0.186 0.156 0.169 0.135 0.189 0.146 0.169 0.137 0.190 0.168 

u[35] 0.102 0.094 0.117 0.105 0.113 0.098 0.117 0.106 0.105 0.085 

u[36] 0.125 0.117 0.133 0.121 0.134 0.117 0.134 0.122 0.127 0.110 

u[37] 0.088 0.081 0.104 0.095 0.100 0.088 0.104 0.095 0.091 0.074 

u[38] 0.074 0.069 0.090 0.082 0.087 0.077 0.089 0.082 0.079 0.064 

u[39] 0.099 0.090 0.111 0.100 0.109 0.094 0.112 0.100 0.101 0.083 

u[40] 0.159 0.142 0.153 0.131 0.163 0.135 0.154 0.133 0.163 0.145 

u[41] 0.078 0.071 0.093 0.083 0.091 0.078 0.094 0.083 0.082 0.065 

u[42] 0.115 0.105 0.127 0.113 0.125 0.107 0.126 0.114 0.114 0.097 

u[43] 0.064 0.062 0.081 0.075 0.080 0.071 0.080 0.075 0.072 0.057 

 1.840 0.874 8.160 3.125 3.018 0.934 9.941 3.598 0.773 0.240 

     0.366 0.140 0.467 0.230 0.384 0.137 
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Table 5 Logs of Marginal Likelihoods 

 

Rice Data  Dairy Data  Electricity Data 

 

MFVB  MCMC       MSE    MFVB  MCMC  MSE    MFVB  MCMC  MSE 

EXP  ‐118.73     ‐117.09      0.0015    1122.95  1133.45  0.234    2.118  4.619  0.0033 

HN  ‐119.17    ‐117.39         0.0039    1139.86  1152.67  0.132    1.100  4.010  0.0067 

Gamma  ‐116.66    ‐116.16      0.0091    1157.04  1163.24  0.663    3.832  5.990  0.0512 

TN  ‐119.78    ‐117.27      0.0045    1142.60  1155.86  0.717    0.305  4.188  0.0143 

LN  ‐119.96    ‐117.31      0.0036    1140.93  1149.62  0.599    0.273  4.238  0.0237 
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Table 6 Logs of Bayes-Factors against Half-Normal Model 

 

 Rice Data  Dairy Data   Electricity Data  

 

MFVB  Bayes  MFVB  Bayes  MFVB  Bayes 

EXP  0.447  0.302  ‐16.907  ‐19.221  1.018  0.609 

HN  0.000  0.000  0.000  0.000  0.000  0.000 

Gamma  2.515  1.232  17.183  10.565  2.732  1.981 

TN  ‐0.606  0.116  2.741  3.186  ‐0.795  0.178 

LN  ‐0.786  0.077  1.068  ‐3.051  ‐0.827  0.228 
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Table 7  MFVB and MCMC Posterior Means and Standard Deviations for  

Lognormal Battese-Coelli Model – Rice Data 

   MFVB  MCMC 

 

Mean  SD  Mean  SD 

C  ‒0.687  0.290  ‒0.709  0.398 

Land 0.468  0.076  0.462  0.100 

Labor 0.264  0.078  0.267  0.098 

Fert 0.174  0.049  0.178  0.060 

Other 0.041  0.024  0.040  0.028 

2 
  14.408 1.554 14.485  3.269 

 0.849 0.091 0.965 0.450 

 ‒2.144  0.303  ‒2.123  0.438 

 ‒0.076  0.037  ‒0.069  0.066 

 ‒1.061  0.272  ‒1.275  0.753 
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  Table 8 MFVB and MCMC Posterior Means and Standard Deviations: 

Time-Varying Model– Dairy Data 

 

MCMC  MFVB 

 

Mean  SD  Mean SD 

 5.7440  0.4670  5.6101 0.3562 

 1.1460  0.5080  1.1506 0.5095 

 0.9290  0.0330  0.9266  0.0217 

 0.8760  0.0320  0.8742  0.0217 

 0.8710  0.0330  0.8679  0.0217 

 0.8530  0.0330  0.8505  0.0217 

 0.8170  0.0330  0.8133  0.0217 
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