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Abstract. Recent advancements in velocity measurements to understand high

Reynolds number (Re) wall-turbulence have pushed the boundaries of sensor size

required to resolve the smallest scales. We present here a framework for studying

the effect of finite sensor size on velocity measurements, and scrutinise in detail the

behaviour of single-wire hot-wires. Starting with a general linear filter, expressions

for the filtered correlation, spectrum and the corresponding variance are derived.

Considering the special case of a box-type filter and a simple model for the two-

point correlation, theoretical results are developed, which compare favourably with the

numerical simulation of hot-wires based on the turbulent channel flow Direct Numerical

Simulation databases. The results clarify the reason why previous studies found the

approximate shape of the spectra not resolved by hot-wires as Gaussian. The length

scale based on the correlation over the sensor length is found to be the appropriate

length scale for characterising averaging due to finite sensor size. The efficacy of the

linear box-filter is established by comparing the numerical simulation of hot-wires with

experiments conducted at matched sensor lengths and Re in a channel flow, at least

for hot-wire lengths less than 40 in viscous scaling. Finally, a model of the streamwise

two-point correlation is presented, which is employed to estimate the filtering effect

on the peak of the streamwise velocity variances for a range of Re, and the model

results compare favourably with that obtained from measurements. Even though the

theoretical results are compared here in the case of wall-turbulence, they are suitable

for hot-wire measurements in turbulent flows in general.

1. Introduction

Eulerian velocity is probably the single-most important field measured to improve

our understanding of any fluid-mechanical system, and the study of turbulence is no

different. From the second quarter of the twentieth century, hot-wire anemometry

(HWA) has remained the main work-horse for Eulerian velocity measurements in

advancing our knowledge of turbulence. Its ubiquitous use in the study of turbulence

is no surprise owing to its high temporal response, relatively low cost, long-time

measurement capability, and most importantly the wealth of information that has

been gathered over years, making it one of the most reliable instruments for velocity
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measurements [Perry, 1982, Bruun, 1995]. Over the past few decades, with the advent

of high speed computers and fast imaging sensors, the technique of Particle Image

Velocimetry (PIV) and its variants are employed at an increasing pace within the

turbulence community and outside due to the ease with which multi-component velocity

measurements can be made instantaneously over a substantial region of space [e.g.

Adrian and Westerweel, 2011]. Both the techniques are complementary; PIV provides

the spatial information that is important for the structural/organized-motion aspects of

turbulence whereas hot-wire anemometry is presently irreplaceable for the statistical

description of turbulence wherein moments of all orders are required to provide a

complete description of turbulence.

The inherent need for a ‘point’ velocity measurement is quite clear when using

either of the techniques. However, the hot-wire length over which heat is transferred is

finite and so is the area of the interrogation window in PIV over which the correlation

is calculated. The finite sensor length must be considered against the smallest scales in

the turbulent flow that need to be resolved. This could be the Kolmogorov length scale

(η) or the viscous length scale (ν/uτ , where ν is kinematic viscosity of the fluid and

uτ , the friction velocity) in wall-bounded flows, both of which decrease with increasing

Reynolds number (Re). One way to approach the ‘point’ velocity measurement is to

make the sensors smaller, which is eventually limited due to the unavailability of smaller

wires and handling issues in HWA, and the compromise that has to be made on the

overall region of velocity measurement in PIV. The nano-scale HWA by Bailey et al.

[2010] has pushed the conventional hot-wire limits. Even so the sensor length can still be

many times larger than the smallest scales of turbulence for the highest Re that can be

obtained in the laboratory. Another alternative for point measurement is to increase the

length scales of the turbulence, while maintaining high Re; this calls for very large wind-

tunnels such as the High Reynolds Number Boundary Layer Wind Tunnel (HRNBLWT)

at the University of Melbourne [e.g., Nickels et al., 2007] and the wind-tunnel at Ecole

Centrale de Lille [e.g., Carlier and Stanislas, 2005]. Even with such small hot-wires

and/or large facilities, the problem of spatial resolution of sensors is unavoidable [see

for example Hutchins et al., 2009].

Spatial attenuation due to the finiteness of the hot-wire was recognized early

on, from Dryden et al. [1937], followed by Frenkiel [1949], Corrsin and Kovasznay

[1949], Uberoi and Kovasznay [1953], Frenkiel [1954] and Wyngaard [1968], wherein the

relationship between the filtered quantities (in particular, the variance of the streamwise

velocity, ũ2
rms and spectrum, ϕ̃11‡) and the unfiltered quantities are presented. (Note

that spatially averaged/filtered quantities are presented with a tilde throughout.) The

relationships are derived following different paths though leading to the same expression,

however, always concentrating on the homogeneous isotropic turbulence (HIT) and

mostly for single hot-wires. For a more recent work concerning the effect of the

anisotropy in the spectra on single hot-wires, see Cameron et al. [2010].

‡ Note that even though ϕ̃11 is the ‘power spectrum’ of ũ1 or the Fourier transform of the two-point

correlation, we refer to it simply the ‘spectrum’ following the usual practice in wall-turbulence.
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For wall-bounded turbulent shear flows, the spatial resolution issues could be

quantified reliably only after the availability of Direct Numerical Simulation (DNS)

databases. Moin and Spalart [1987] marks the first study of its kind at Reτ of 180

(where, Reτ = uτδ/ν, and δ is the turbulent boundary layer thickness). A more

detailed investigation was undertaken by Suzuki and Kasagi [1992] at Reτ = 150 for

both single and cross-wire (however, concentrating primarily on the effect of separation

rather than spatial averaging for cross-wires). More recently Chin et al. [2009] and

Chin et al. [2011] used the database of del Álamo et al. [2003] at a Reτ of 934, wherein

the filtering effect of a single hot-wire is studied. A correction methodology for u2
rms

and ϕ11 are provided with a third order polynomial and a Gaussian fit, respectively,

given the filtered quantities, ũ2
rms and ϕ̃11. A correction scheme for u2

rms has also been

proposed by Monkewitz et al. [2010] and Smits et al. [2011]. Recently Segalini et al.

[2011a] considered a single hot-wire and derived relations for ũ2
rms in terms of the Taylor

micro-scale, studying the effect of averaging using the DNS database at Reτ = 550 in a

channel flow. A more comprehensive review of literature to 2007 is presented by Comte-

Bellot and Foss [2007] regarding hot-wire averaging issues. It should be mentioned

that experimentally, hot-wire spatial resolution issues for single normal wires have been

investigated extensively [e.g., Johansson and Alfredsson, 1983, Ligrani and Bradshaw,

1987, Hutchins et al., 2009, Ng et al., 2011]. While the experimental studies provide

the attenuation in variance and spectrum due to finite hot-wire length, pin-pointing

the sources of errors are considerably more difficult. Their introductions also furnish

other issues related to single hot-wires and a more complete reference for experimental

investigations. However, there are no such detailed experimental investigations available

for guidance in cross-wires. For PIV, Saikrishnan et al. [2006] is probably the first and

the only investigation employing a DNS database to study the spatial averaging issues

for a dual plane PIV. On the experimental side, Lavoie et al. [2007] have developed an

expression for ũ2
rms for planar PIV and used it to correct their measurements in HIT.

1.1. A framework for the study for spatial averaging of sensors

For the purpose of simplifying the investigation of spatial averaging, it is convenient

to concentrate on special regions of the wall-bounded flows separately. Figure 1 shows

one of the walls of the channel flow, or the flat plate of a zero-pressure-gradient-

turbulent-boundary-layer (ZPG-TBL) with the mean velocity only a function of the

wallnormal distance, U(z), and homogeneous in the xy-plane.§ Throughout the paper,

x, y and z represent the streamwise, spanwise and wallnormal directions, and u, v and

w, the corresponding velocities. Length and velocity scales are normalised by ν/uτ and

uτ respectively, and represented by plus, + symbols, e.g., l+ = l uτ/ν and u+ = u/uτ .

§ Note that in a ZPG-TBL the boundary layer is continuously ‘developing’, therefore, the xy-plane is

not homogeneous, however, for our purpose it is sufficient that the variation of the mean flow in x be

much smaller than that in z over a region of approximately the sensor size. This is true for ZPG-TBL.

Therefore, in the present context, any further reference to the difference between a channel flow and

ZPG-TBL is unnecessary.
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3D Volume 

Figure 1. A schematic for the classification of different regions in a wall-bounded

turbulent flow which simplifies the study of averaging effect. Multiple horizontal and

vertical planes indicate locations of cross-wires, where the two wires are generally

situated on two different planes, except the ∨-probe (c.f., figure 2c) which is on a

single plane.

The study of sensors can be separated into three different categories, depending on the

variation of the mean velocity encountered by the sensors namely, the sensors on the

homogeneous plane/s (or the horizontal xy-plane), those on the inhomogeneous plane/s

(or the vertical xz-plane) and the sensors which occupy an entire volume. The different

regions are shown schematically in figure 1.

Note that for the sensors on a single homogeneous plane there is no mean flow

variation, consequently there is no effect of wallnormal shear and the correlation and

the spectrum are well defined. This is the simplest case. A single hot-wire, a PIV plane

(with a very small depth of focus or laser sheet thickness) and a ∨-probe belong to this

category. These are shown as schematics in Figure 2(a), (b) and (c) respectively. Further

complexity can be added if the sensor is located on two (or multiple) homogeneous (xy)

planes. In this case even though the mean flow between the two planes are different,

there is no mean flow variation over the sensor itself. The ×-probe for u-v (streamwise-

spanwise) velocity measurements belongs here, and is shown schematically in figure

2(d).

The next category involves planes with mean shear, i.e. the xz-plane/s. Figure 3(a),

(b) and (c) present a single hot-wire, a PIV plane and an ×-probe for the measurement

of u-w (streamwise-wallnormal) velocities, respectively, which reside on vertical plane/s.

Note that the configuration of single hot-wire shown here is not usual, however, in cases

where there is an inflow from the wall, the use of this type is not uncommon; moreover,

this simple design is a good starting point to understand the effect of mean velocity

shear without complications of multiple wires. Again, the PIV plane is assumed to

be of almost zero thickness. The third category of volume averaging involves a more

realistic PIV measurement plane where the thickness of the laser sheet, or the depth-

of-focus is finite. Other 3D measurement techniques such as tomographic PIV can also
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Figure 2. Sensors in the homogenous plane/s (i.e., fixed z-location/s). (a) A single

hot-wire with the wire placed in the spanwise direction. (b) A PIV interrogation

region in the horizontal plane. (c) A ∨-probe for the measurement of u-v (streamwise-

spanwise) velocity. (d) An ×-probe, again, for u-v velocity measurements. Note that,

in the schematics, the prongs are depicted as inclined to the horizontal plane, in

accordance with the usual experimental configurations.

be assumed to belong to this category.

1.2. Objectives

Consider the schematic of a single hot-wire in figure 4, which is a hypothetical case

wherein the instantaneous velocity field, u, is uniform across the hot-wire, resulting in

the velocity correlation of unity over the entire length of the wire. This is the case where

there is no spatial averaging because the instantaneous velocity at any point on the wire

is perfectly correlated with any other point. Figure 4(b) is the realistic case where the

velocity is non-uniform over the length, correlation drops and consequently the effects

of spatial averaging are present. Therefore, the knowledge of the correlation provides a

clue to the averaging of the velocity. The first objective of the present work is to relate

the variance, ũ2
rms, the two-point correlation and spectrum of the averaged velocity

field to the un-averaged quantities for the case of single hot-wires. These relations can

also be extended for the case of ∨ and × wires without excessive difficulties [see, e.g.

Philip et al., 2013]. Spatial filtering in hot-wires implies ‘line’ averaging of the velocity

field. An extension to two-dimensional planar averaging, relevant for PIV and a three-
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Figure 3. Sensors in the vertical plane (i.e., fixed y-location). (a) A single hot-wire

with wire place in the vertical plane (not necessarily along z). (b) A PIV interrogation

region in the vertical plane. (c) An ×-probe, for uw (streamwise-wallnormal) velocity.
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Figure 4. Schematic of the spatial averaging process in a single hot-wire. (a) An

ideal motion of fluid wherein the instantaneous velocity is constant, correlation is a

constant equal to one, and consequently no averaging effect. (b) A realistic field where

the correlation is not equal to one over the hot-wire and in turn has a filtering effect.
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dimensional case applicable for volume measurement techniques, such as tomographic

PIV is also foreseeable. Since distribution of correlations plays a major role in spatial

averaging, the second objective is to find the various correlations (from the channel flow

DNS of del Álamo et al. [2003] at Reτ of 180, 550, 934 and 2003) that are relevant to

the particular averaging problem. From this we develop simple models of correlations to

understand the effect of averaging analytically for single hot-wires. The final objective

is to assess the efficacy of the linear box-filtering technique applied to the DNS database

in light of actual experimental evidence.

1.3. Organisation of the paper and some detail of the DNS database

The present paper concentrates on the averaging issue related to single wires,

later extendable to other wire configurations where the sensor is located in the

homogeneous plane (wherein the mean velocity is constant) and in the inhomogeneous

plane. Section 2 includes the bulk of the work. This section starts with some analytical

considerations relevant for single-wire averaging, followed by showing the effect of

filtering on correlation and spectrum. A simple model for correlation is built over a small

region (of the hot-wire), from which we can analytically predict the filtered quantities.

Initially a single homogeneous plane, at z+ = 15 at Reτ = 934 is studied in detail,

subsequently the effect of other wall-normal locations and the Reynolds number effect

are also studied. Section 2 ends with a comparison of the DNS filtering with actual

experimental results, some of which are taken from Ng et al. [2011] and some newly

conducted. Finally, section 3 presents a summary of the work and further conclusions.

DNS databases are ideal for studying spatial averaging issues, and in the current

study we employ the database of del Álamo et al. [2003] at Reτ=934, which has a

spatial discretization of Fourier×Fourier×Chebychev with grid points Nx ×Ny ×Nz =

3072×2304×385 in streamwise, spanwise and wallnormal directions. The computational

domain is 8πh units in the streamwise direction and 3πh units in the spanwise direction,

where h is the half channel height. After de-aliasing in the Fourier domain, the equivalent

resolution in the real domain for streamwise and spanwise directions is ∆x+ ×∆y+ ≈
11.46× 5.73. However, due to the 3/2 de-aliasing rule, in the real domain the available

database has a velocity field on an interpolated grid with the resolution ∆x+ ×∆y+ ≈
7.6×3.8, which is the resolution that is presented in figures below, to be consistent with

previous studies, e.g., Chin et al. [2009]. In the wall-normal direction, the grid spacing

increases from ∆z+ ≈ 0.03 at the wall to a maximum 7.6 at the centre of the channel.

2. Single hot-wire in the homogeneous plane

The present analysis concentrates on the single hot-wire due to its importance, and also

because the understanding gained and the analysis performed here can easily be carried

across to other sensors.
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Figure 5. Schematic of a single hot-wire in the xy-plane.

2.1. Some analytical considerations

Consider figure 5, which shows the schematic of a single hot-wire in the xy-plane placed

perpendicular to the mean streamwise velocity with a length l. The origin is at the center

of the wire with a half length of wire, l/2 in both positive and negative y-directions.

Depending on the convention, directions x and y are also sometimes indicated by 1 and

2, respectively. A ‘simple’ averaging of the instantaneous velocity, u along the length of

the wire results in,

ũ =
1

l

∫ l/2

−l/2

u(y + s) ds, (1)

where, s is along the homogeneous y-direction. This is a ‘box’ filter, and is the one

used in previous investigations employing DNS databases. However, there are occasions

where one has to resort to a different filter; for example, when the temperature profile

changes drastically along the wire due to mean shear, or, due to the variations of light

intensity in PIV. Therefore, considering an arbitrary filter, b(s), normalized such that the

area is l, the averaged velocity field becomes a convolution of the un-averaged velocity

field, u, and b,

ũ =
1

l

∫
u(y − s)b(s) ds, (2)

where the integral extends over the domain of the integrands which is typically from

−∞ to ∞, or, in the symbolic form,

ũ =
1

l
u∗ b, (3)

where, ∗ is the convolution integral [e.g., Bracewell, 2000], and its definition is evident

by comparing eqns (2) and (3). Decomposing the instantaneous velocity u into mean

(U) and fluctuations (u), as u = U + u′, results in equations for spatially-averaged or

filtered mean and fluctuation fields as,

Ũ =
1

l
U ∗ b, (4)

and,

ũ′ =
1

l
u′ ∗ b, (5)
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respectively. An important conclusion can immediately be deduced from the above

two equations. The averaged mean velocity from a linear filter is affected only by

the unfiltered mean, and likewise the filtered fluctuating component depends only on

the unfiltered fluctuations and not on the unfiltered mean. This produces non-intuitive

results. For example when considering ×-wires (c.f., figure 2) with wires on two different

xy-planes, where it might seem that the variances may somehow be affected by the fact

that the two wires experience different mean velocities. However, this is not the case

according to eqn (5), which indicates that only fluctuating components dictate filtered

fluctuations and not the mean quantities, at least in the context of linear-filtering.

Once the filtered fluctuating field ũ′ is obtained, the (non-normalized) two-point

correlation between two averaged velocity fields can be defined as,

R̃ij(r) = lim
L→∞

1

L

∫
ũ′

i(s) ũ′
j(r + s) ds,

= ⟨ũ′
i(s) ũ′

j(r + s)⟩, (6)

where, the integral is over the length of the field, L, the subscripts i and j vary from

1 to 3 corresponding to the velocities u, v and w, and the angled brackets, ⟨ ⟩ denote

ensemble averages. This can be rewritten in a more compact form with the ‘usual’

definition of correlation [e.g., Bracewell, 2000] ⋆, as,

R̃ij(r) = lim
L→∞

1

L
(ũ′

i ⋆ ũ′
j). (7)

The substitution of ũ from (5) in the above equation leads to (for details see Appendix

A),

R̃ij(r) =
1

l2
Rij ∗ (bI ⋆ bJ), (8)

where, bI and bJ refer to the filters for ui and uj, respectively.∥
Following the usual definition, spectrum (ϕij) is defined as the Fourier transform

of Rij, i.e., F [Rij] = ϕij (for the definition of Fourier transform and inverse used here,

see eqn (34) in Appendix A), which for the filtered field becomes,

ϕ̃ij(k) =
2π

l2
ϕij F [bI ⋆ bJ ], (9)

after employing eqn (35), where k is the wavenumber in the Fourier space corresponding

to r in the real space. Further simplifying the above expression using eqn (36) leads to

the equation for the filtered spectrum as,

ϕ̃ij(k) =
4π2

l2
ϕij b̂

∗
I b̂J , (10)

∥ After the derivation of eqn (8) it came to our attention that a similar expression has been derived by

Uberoi and Kovasznay [1953]; however, the main difference is that their expression has (bJ ⋆ bI) while

ours has (bI ⋆ bJ). The difference between derivations starts at eqn (2) where instead of taking the

filtered signal as a ‘convolution’ of the filter and the un-filtered signal, they start with a ‘correlation’,

which implies the appropriate assignment of meanings to the filters. The results are equivalent if the

filter functions are symmetric or they are the same for both velocity components, which is usually the

case.
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(a) (b)

Figure 6. Schematic of two functions employed in the text. (a) Box function (with

the maximum value equal to 1). (b) Triangle function (with the maximum value equal

to l).

where, b̂I and b̂J are Fourier transforms of bI and bJ , respectively, and the superscript,
∗ represents complex conjugate.

Of all the statistical quantities of turbulence that is measured, variance of the

velocity field (e.g., u2
rms for streamwise velocity) has been the primary object in

considering the effect of spatial averaging [e.g., Moin and Spalart, 1987, Suzuki and

Kasagi, 1992, Chin et al., 2009, Segalini et al., 2011a]. In terms of the above definitions,

the variance of the streamwise velocity or the normal stress in direction 1 becomes,

ũ2
rms = R̃11(r = 0) =

∫ ∞

−∞
ϕ̃11(k) dk, (11)

and similar expressions hold for ṽ2rms and w̃2
rms.

2.2. Statistics from a single hot-wire with a box-filter

Assuming that the hot-wire is sufficiently long, or that the l/d is greater than 200,

where d is the diameter of the wire, the temperature profile can be approximated to be

a constant over the entire length of the wire. In this scenario, the filter function can

be assumed to be of a ‘box’ type [e.g., Wyngaard, 1968, Chin et al., 2009]. For smaller

l/d, end-conduction effects become important [e.g., Hultmark et al., 2011]. A schematic

of this filter is given in figure 6(a) with an area equal to l. In such a case, since the

hot-wire measures only u-velocity, eqn (8) for the expression of the filtered correlation

can be simplified to,

R̃11(r2) =
1

l2
R11 ∗ ∧l, (12)

where, ∧l is the triangle function, which is the correlation between two box functions

and are shown schematically in figure 6(b). Furthermore, the spectrum of the filtered

signal becomes,

ϕ̃11(k2) = ϕ11 sinc
2(k2l/2), (13)

where, the function sinc(x) is equal to sin(x)/x, and appears in eqn (13) because the

Fourier transform of the box function is (1/(2π)) sin(k2l/2)/(k2/2). Equation (13) has

been derived by Wyngaard [1968] using Fourier-Stieltjes expansion for the work on HIT.

However, the derivation given here is more general, where we start from eqn (10) valid
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for any filter, and only later consider the box-filter. As will be seen shortly, the equation

in real space, i.e. the correlation in (8) or (12) is more significant for understanding and

modelling the physical process of averaging than its counterpart (10) or (13). Finally,

the expression for averaged ũ2
rms can be obtained from (12) by substituting r2 = 0 and

employing the fact that R11(s) = R11(−s) due to statistical stationary nature of the

flow. Starting with,

R̃11(r2) =
1

l2

∫ l

−l

R11(r2 − s) · (l − |s|) ds,

leads to,

ũ2
rms = R̃11(r2 = 0) =

2

l2

∫ l

0

R11(s) · (l − s) ds, (14)

an equation first obtained by Dryden et al. [1937] and later by Frenkiel [1954] employing

different techniques; however, without connecting it with (12).

The correctness of the expressions (12), (13) and (14) can be asserted by using the

DNS database at Reτ = 934. Since we are currently interested only in a single-wire

in the homogeneous xy-plane, any location of z+ would suffice. We select z+ ≈ 15

where the u2
rms has a maximum and the filtering effects are most prominent. All the

other z+ locations are independent homogeneous planes (as far as the single hot-wire is

concerned) and can be tackled similarly, results of which will be presented later.

Figure 7(a) shows the attenuation of u2+
rms at z+ ≈ 15 for the box-filters with

length typical of the hot-wires commonly used. The filled (black) symbol shows the

resolution of the DNS whereas empty symbols are those which are calculated using a

box-filter on the DNS field. The dashed (blue) line is the one calculated using (14)

and the solid (red) line corresponds to its spectral counterpart (c.f., eqns 11 and 13).

The un-averaged spectrum is calculated by averaging spectrum obtained from multiple

DNS fields at z+ ≈ 15 and correlation from its Fourier transform. Figures 7(b) and

(c) show the correlation in the spanwise direction, and the pre-multiplied spectrum

plotted against the spanwise wavelength, 2π/k+
2 , respectively. The DNS results of the

un-averaged distribution are shown in solid (black) lines, and the box-filtered results

with l+ = 19 by dashed (blue) lines and with l+ = 57 by dashed dotted (red) lines.

The symbols correspond to equations (12) and (13) in figures 7(b) and (c), respectively.

Note that, in figure 7(b) the R̃+
11 is not normalized with its value at r+2 = 0, u2+. The

result is that all three methods of averaging (actual box filtering on the DNS field,

using the un-averaged correlation function and spectrum) match each other. This is not

surprising and indicates that expressions (12), (13) and (14) are exact for box-filtering.

However, it is of practical interest to note that if the averaged correlation or

spectrum is obtained from a hot-wire, the relations (12) and (13) can be inverted to

find the corresponding un-averaged distributions from the averaged ones. Even though

figures 7(b) and (c) can be related to each other through the Fourier transform, they

show interesting features by themselves. Figure 7(c) indicates that smaller wavelengths

are attenuated much more than larger ones, corresponding to the sinc2(k2l/2) function in
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(b)

(c)

(a)

19 57

Figure 7. Averaging effect for z+ = 15 at Reτ = 934 using DNS database for

various l+2 . (a) Attenuation in u2+
rms with three different methods, namely, actual

averaging on the velocity field (symbols), using the spectrum (solid, red line) and

with the correlation function (dashes, blue line), c.f. eqn (11). (b) Attenuation in

correlation R+
11 for l+2 = 19 and 57, calculated with the DNS database (solid line) and

using the exact expression, (12). (c) Attenuation in the spectrum ϕ11 for l+2 = 19

and 57, calculated with the DNS database (solid line) and using the exact expression,

(13). The two vertical lines at 19 and 57 indicate the lower cut-off wavelengths, 2π/k+2 .

However, note that attenuation is still significant even for higher wavelengths.
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(13). It shows that wavelengths smaller than l = 2π/k2 (the first zero of sinc
2(k2l/2)) are

almost completely attenuated and the attenuation decreases with increasing wavelength

with zero attenuation occurring only at infinite wavelength. This shows that attenuation

is not localized in spectral space even though the cut-off point can be approximated by

l = 2π/k2 for a hot-wire of length l. On the other hand, expression (14) shows that

u2+
rms depends only on R11 in the range 0 to l. This ‘localization effect’ suggests that

R11 should be the quantity to be focused upon to understand and model the spatial

averaging effects. A starting point in this direction is taken up next.

2.3. A simple model for the spanwise correlation and some consequences

The unfiltered distribution (at the DNS resolution) of R11 was shown in figure 7(b); an

enlarged view of the same, normalized with the value at r2 = 0 is presented in figure 8

with empty symbols connected by solid lines. The correlation attains its second maxima

(after the origin) near r+2 ≈ 100, and oscillates before approaching the zero value due

to the statistical stationary turbulent flow. The particular shape of the correlation is of

interest because of (14) wherein R11 in the range 0 to l governs the spatial filtering of

u2
rms. The physical reason of the dip in R+

11 is the well known near-wall streaky behavior

of the turbulent boundary layer.

It is not difficult to model this small region of the correlation governed by the near-

wall streaks, which does not change with Reynolds number in viscous units. The two

most common models for the normalized R11, denoted by RN are presented in figure 8.

The first is the decaying exponential type, RN = e−r2/λ1 , where λ1 is a constant found

from fitting the data up to r+2 = 100. The second is the Gaussian type model,

RN(r2) = e−r22/λ
2

, (15)

where, λ+ = 26 is the constant found from fitting to the DNS curve at z+ = 15. It is

obvious that the Gaussian curve is a better representation of the correlation near the

origin. In fact, λ+ = 26 is about 1/4 times the streak spacing and it will be shown

later that 4 times the streamwise length scale for a similar correlation model in the

x-direction will correspond closely to the streamwise length of the near-wall streaks of

1000 wall-units. In short, the near-wall streaks dictate the correlation function close to

the wall, especially near r+2 = 0.

Considering (15) as the normalised model for spanwise correlation of streamwise

velocity, the corresponding spectrum can be found from its Fourier transform (ϕN =

F [RN ]) as,

ϕN(k2) =
1

2π

√
π λ e−(k2λ/2)2 . (16)

The filtered correlation (R̃N) can be obtained by substituting (15) into (12) and

evaluating the convolution with ∧l as,

R̃N(r2) =
λ2

2l2

[√
π

λ

{
(r2 + l) erf

(
r2 + l

λ

)
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Figure 8. Two different models for the normalized correlation function up to

r+2 = 100.

−2 r2 erf
(r2
λ

)
+ (r2 − l) erf

(
r2 − l

λ

)}
+
{
e−(r2−l)2/λ2 − e−(r2+l)2/λ2 − 2 e−r22/λ

2
}]

, (17)

where, erf(x) = 2/
√
π
∫ x

0
e−s2ds, is the standard error function. The corresponding

averaged spectrum is,

ϕ̃N(k2) =
1

2π

√
π λ e−(k2λ/2)2 sinc2(k2l/2) (18)

Furthermore, the attenuation in u2
rms can be found from (17) by substituting r2 = 0,

ũ2
rms

u2
rms

= R̃N(r2 = 0) =
λ2

l2

[
l

√
π

λ
erf

(
l

λ

)
+ e−l2/λ2 − 1

]
. (19)

It is noted that the form of the above equation is also obtained by Segalini et al. [2011b],

however, starting from (14) and considering λ as the ‘Taylor micro-scale’ unlike the case

considered here. The issue of relevant length scales for averaging in wall-turbulence will

be discussed later.

Figure 9 shows a comparison between the DNS box-averaging in symbols and the

estimations from the model (i.e. eqn 19) in solid line. The prediction is reasonably good

due to the correct modeling of the correlation which in turn governs the attenuation

in u2
rms. Note that eqn (19) is only a function of l/λ and it can be concluded that the

correct parameter to study attenuation in u2
rms is l/λ and not l alone. The predication

by (19) should be contrasted with that of fitting the DNS averaged points by Chin et al.

[2009] using a third order polynomial with l+ as the parameter. The significance of l/λ

is that as long as the inner-scaled streak spacing does not change (which is known to be

quite a robust phenomenon across a range of Re), the value of λ+ = 26 does not change,

however, as soon as the structures in the flow change (for example by moving away from
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Figure 9. The attenuation in u2
rms calculated by DNS and that estimated from the

model using (19).
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Figure 10. Various approximations for the expression on the extreme right of (19)

for different limits of l/λ.

the wall in TBL, or in a flow with no wall) the value of λ will change. Nevertheless,

(19) will continue to hold but l/λ is now unknown.

It is interesting to note that eqn (19) takes different forms as the parameter l/λ

approaches different limits. These limits not only simplify the expression but also relate

to some of the expressions derived by earlier researchers. In the limit of l/λ approaching

zero,

lim
(l/λ)→0

R̃N(r2 = 0) = 1− 1

6

(
l

λ

)2

. (20)

This is the expression first found by Frenkiel [1949] considering λ as the ‘Taylor micro-

scale’ (unlike here) and later criticized by Corrsin and Kovasznay [1949] as unreliable

for large l/λ. The correct expression for the limit of l/λ approaching large values is,

lim
(l/λ)→∞

R̃N(r2 = 0) =
√
π

(
λ

l

)
. (21)
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Figure 11. Attenuation in the correlation and spectrum, from DNS and the model.

(a) Averaging effect on R11 from DNS (solid line) and (17). (b) Averaging effect on

premultiplied spectrum k2ϕ11 from DNS (solid lines) and (18).

Furthermore, a higher order approximation to this limit is 1/(l/λ)2[
√
π/(l/λ)− 1]. All

the three simplified expressions are plotted in figure 10 for comparison. It can be

observed that different expressions are valid (i.e. matches the eqn 19) in the appropriate

limits of the parameter l/λ. However, the most interesting scenarios from the practical

use of single hot-wires are when l ≈ λ. Unfortunately, in this situation, none of the

three cases is a good representative of (19).

It is worthwhile to test the capability of the model to estimate the entire filtered

correlation and spectrum in the spanwise direction, considering that the model was

derived by fitting to the actual correlation only up to r+2 = 100. Figure 11(a) shows

the actual and two filtered correlations with l+ = 19 and 57 from DNS and the

corresponding un-filtered correlations from (15) and filtered ones from (17). The inset

shows an enlarged view. The model equation follows the filtered correlations quite well

in the region close to the origin (i.e. the inset), however, the model unfiltered/filtered

correlation drops to zero and remains there for increasing r+2 whereas the actual

correlation exhibits a much more complicated distribution. A similar plot for the pre-

multiplied spectrum (= k2ϕ11/u
2
τ ) is shown in figure 11(b) which again shows the good
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Figure 12. An example of the missing spanwise spectrum from DNS at l+ = 19.

comparison between the DNS data (both unfiltered and filtered) in solid lines and the

model from (18) in dashed-dotted lines. The peak at about 100 viscous units is predicted

closely as well as the overall shape of the spectrum. However, the model exhibits some

loss of energy at large wavelengths.

There have been efforts in the past to develop models for the ‘missing spectra’,

especially by Chin et al. [2009, 2011]. The missing spectrum, ϕmis is the difference

between the unfiltered and the filtered spectrum, ϕmis = ϕ− ϕ̃. The model for ϕmis has

been found from observation to be of a Gaussian type. Here it is of interest to see if the

correlation model of (15) can be used to understand this behavior of ϕmis. Figure 12

shows an example of the filtered signal ϕ̃ where l+ = 19 and the difference, ϕmis. Indeed,

the distribution of ϕmis does look like a Gaussian. It can be observed that, using (13)

we can write,

ϕNmis = ϕN − ϕ̃N = ϕN

(
1− sinc2(k2l/2)

)
. (22)

Thus, ϕmis is the product of the un-filtered ϕ and the function,
(
1− sinc2(k2l/2)

)
, which

is also shown in figure 12. We can proceed further by employing the model spectrum of

(16), which leads to,

ϕNmis ≈
1

2π

√
π λ e−(k2λ/2)2

(
1− sinc2(k2l/2)

)
, (23)

where the approximation sign (≈) is used to indicate that the expression for ϕmis is using

the model equation. The effectiveness of this prediction is presented in figures 13(a) and

(b) corresponding to averaging with l+ = 19 and 57, respectively. As observed from the

figure, the predictions of (23) matches reasonably well with that obtained from DNS

(indicated in the figure by ‘ϕmis’) for both the averaging conditions. It is now evident

that even though the shape of ϕmis resembles a Gaussian curve, it is probably a more

complicated function approximated by (23).

Next, we turn to the hot-wire averaging effects on the streamwise spectrum. The

un-averaged pre-multiplied streamwise spectrum (normalized with plus units) is shown
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Figure 13. Predictions of the missing spectrum (plotted in pre-multiplied form) and

comparison with the DNS. (a) l+ = 19. (b) l+ = 57.

Figure 14. Streamwise spectrum from DNS (solid lines) and the model (dashed lines,

from eqn (28)) for two filtering lengths, l+ = 19 and 57.
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in figure 14 by a solid (black) line. Note that the spectrum peaks at a wavelength of

about 1000 viscous units, which has been found to be the average streamwise length

of the near-wall streaks. The averaged spectrum for l+ = 19 and 57 are also shown

with solid lines (blue and red, respectively). The attenuation pattern is very different

from that of the spanwise spectrum (c.f. figure 7 or 11). In the spanwise spectrum

it was observed that the attenuation is highly dependent on the wavelength (2π/k2),

with smaller wavelengths (depending on l/λ) almost completely attenuated and larger

ones much less. For streamwise spectrum the smaller wavelengths are attenuated more

than the large ones (and the explanation is not very different than that given for the

spanwise case), however, the attenuation is more broadband (see for example l+ = 57

case in figure 14). Some understanding of this behavior can be obtained by considering

the equations for streamwise spectrum (which for the sake of simplicity is assumed to

be normalized to have variance of unity), and can be written as,

ϕ11(k1) =

∫
ϕ2D
11 (k1, k2) dk2, (24)

where, ϕ2D
11 (k1, k2) is the two-dimensional spectrum and the integration is over the whole

domain of k2. Furthermore, the average streamwise spectrum becomes,

ϕ̃11(k1) =

∫
ϕ̃2D
11 (k1, k2) dk2. (25)

Since the single hot-wire is averaging in the spanwise direction,

ϕ̃11(k1) =

∫
ϕ2D
11 (k1, k2) sinc

2(k2l/2) dk2. (26)

The difficulty for predicting ϕ̃11(k1) is clear now; one has to know the distribution

of ϕ2D
11 (k1, k2). This is the reason that Chin et al. [2009] employed their Gaussian type

fitting function to predict back ϕ̃11(k1). To make any further progress one has to adopt

some model for ϕ2D
11 (k1, k2). Again, to begin with, we resort to a crude model by writing

the 2D function as a product of individual spectrum in k1 and k2,

ϕ2D
11 (k1, k2) ≈ ϕ11(k1) · ϕ11(k2), (27)

and, this allows us to take ϕ11(k1) out of the integral in (26). Alongside, ϕ11(k2) can be

substituted with the model spectrum employed previously given in (16), which leads to,

ϕ̃11(k1)) ≈ ϕ11(k1)

∫
1

2π

√
π λ e−(k2λ/2)2sinc2(k2l/2) dk2

= ϕ11(k1)
λ2

l2

[
l

√
π

λ
erf

(
l

λ

)
+ e−l2/λ2 − 1

]
= ϕ11(k1)

ũ2
rms

u2
rms

, (28)

where, in the first equation the limits are from −∞ to ∞ and (19). It shows that within

the assumption of the model (27) the averaged streamwise spectrum is simply a constant

in k1 (depending on l/λ) times the un-averaged spectrum, which is only partially correct.

Figure 14 shows (28) with dotted lines for two hot-wire lengths of l+ = 19 and 57.
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The estimations are not as good as they are for the spanwise spectrum due the crude

model in (27). Anyhow it clarifies to some extent why there is less variation of the

averaged streamwise spectrum with the wavelength compared to the averaged spanwise

one. Given that the hot-wire only measures ϕ̃11(k1), multiplication by the factor in (28)

would definitely give a close approximation to the actual un-averaged spectrum. As an

example, for standard hot-wires, l+ = 19 is a good estimate, and the prediction by (28)

for this case in figure 14 is not bad. Note that if we build a model for R2D
11 (r1, r2) over

a small region, it is not difficult to recover the un-averaged spectrum from the averaged

ones; however, this will take us too far into correlation modelling, beyond the scope of

the present work.

2.4. Effect of wallnormal distance (z)

Thus far all the analysis is concerned with a single z-location, namely z+ = 15. This

analysis can be extended to other z-locations in a similar manner. The model for

correlation (15) with λ+ = 26 predicts the attenuation in u2+
rms quite well. However, the

model (15) as well as the particular value of λ would not be expected to be invariant

with the z-location, since it is well known that the correlation function varies with z.

Knowledge of the correlation function at different z-locations would render the problem

of finding the filtered normal stress, ũ2
rms, solved. However, the entire correlation

function need not be known. As discussed above, the function from (0 − l) (where

l is length of the hot-wire) is sufficient to predict the actual u2
rms. To this end, figure

15 shows the correlations¶ normalised with variance (such that the value at r+2 = 0 is

unity) for different z-locations at Reτ = 934. The inset shows a zoomed view of the

correlations close to the origin. Close to the wall the correlations are dominated by the

near-wall streaks whereas further out in the boundary-layer, structures of the order of

the boundary-layer thickness (δ or Reτ in plus units) control the correlation functions.

The correlation remains close to zero beyond r+2 ≈ 2000 and asymptotes to zero in the

limit.

To understand the attenuation in u2
rms only correlations up to r+2 = 100 are

considered (c.f. figure 15-inset) and the model (15) can be fitted to the correlations

at various z-locations to find the characteristic length scale, λ. This is presented in

figure 16 as a function of z+. The value of λ+ remains constant (at approximately 26

as already found earlier) for small z+ consistent with the near-wall streaks and steadily

increases until z/δ ≈ 0.5, and thereafter remains more or less constant.

The effect of z-location of the attenuation in u2
rms is presented in figure 17(a),

wherein the solid (black) line shows the un-attenuated (at the resolution of DNS)

variance and symbols correspond to that obtained from the filtering using the DNS

database. Given the values of λ presented in figure 16, the model (15) can be used to

find the filtered distribution using (17). The dashed lines in figure 17(a) are calculations

¶ The correlations presented in this and the subsequent sections are calculated from the spectra

available online at “ http://torroja.dmt.upm.es/channels/ ”.
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Figure 15. Distribution of the normalized correlation R11/u
2
rms along spanwise

direction, r+2 for Reτ = 934, with z+ = 5, 10, 15, 19, 30, 40, 60, 100, 149, 198,

279, 371, 467, 562, 656, 744, 835 and 934. The inset shows an expanded view, with

some z-locations indicated on the figure itself.

Figure 16. Distribution of λ+ defined in (15) with wallnormal distance, z+, obtained

from the data in the inset of figure 15, i.e., up to r+2 = 100.

from the model (19) and the corresponding hot-wire lengths (l+) are indicated in the

figure. Similar calculations for varying l+ for five different z-locations are presented

in 17(b), with the corresponding values of z+ and z/δ indicated on the figure. The

agreement between the model and the DNS calculations is seen to be good. This is not

much of a surprise because the values of λ were already calculated. The challenge would

be to build a ‘physically’ reasonable model for λ when z varies. This will be one of the

goals later in the paper where we also try to understand the effect of Reynolds number.

At this point we shall digress a little to discuss the relevant length scales in averaging.
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Figure 17. Comparison of model (19) in dashed lines, with the filtering results

obtained from DNS in symbols at Reτ = 934. (a) Variation of u2+
rms with z+ for

l+ of 11, 19, 38 and 57, as indicated in the figure. (b) Variation of u2+
rms with l+

for different wallnormal planes located at z+ =10, 15, 100, 467 and 934, with the

corresponding z/δ indicated in the figure.

2.5. Relevant length scales for spatial averaging

The two most commonly used length scales are the viscous (inner) units, ν/uτ and

the Taylor micro-scale, say λT . Here we have introduced another length scale, the

characteristic correlation length scale λ through the model correlation function, which

we believe to be the representative length scale for the averaging process. It is useful to

understand which of the three length scales is most appropriate and why each has in the

past been considered as probable candidates. On considering the viscous length scale, it

is noted that ν/uτ is only relevant for ‘wall-bounded flows’, therefore inner units cannot

in general be the correct length scale for hot-wire averaging (such as in free-shear flows).

However, they have been found to be appropriate for wall-turbulence, especially close

to the wall. The reason being that, as already shown, λ scales with inner units close to

the wall and therefore, λ and ν/uτ differ only by a constant close to the wall for any
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Figure 18. Instantaneous u at Reτ = 934 for a range of 4500+ (4.8δ) and 2250+

(2.4δ) in x and y-directions. (a) z+ = 15, z/δ = 0.016. (b) z+ = 100, z/δ = 0.12. (c)

z+ = 467, z/δ = 0.5.

Re. Thus there is no difference between λ and inner units close to the wall, where the

turbulent motions and therefore λ scales on ν/uτ .

To further illustrate this, consider figures 18(a), (b) and (c) corresponding to u in

the xy-plane at z+ = 15 (z/δ = 0.016), z+ = 100 (z/δ = 0.12) and z+ = 467(z/δ = 0.5),

respectively at a fixed Reτ of 934, i.e., a fixed value to ν/uτ . It is immediately clear

that a hot-wire placed in the flow field presented in the top panel will have a larger

attenuation than the lower ones, because the spanwise scale of the structures in this

figure are smaller. This implies that the attenuation changes with the structures or the

correlation, characterized by λ, rather than ν/uτ which is the same for all three figures.

The Taylor micro-scale, λT , shares some features with λ in the sense that both are

related to the correlation function. However, since λT depends only on the curvature at

the origin, it is unable to capture critical features of the correlation function related to

spatial averaging (primarily the minima in the R, unlike λ). This is precisely the reason

that Segalini et al. [2011a] could not capture the attenuation with merely λT , and had to

add multiple length scales to match the DNS calculations. Furthermore, physically λT

has little connection with spatial averaging; it instead provides a measure of dissipation

in HIT, and the correspondence to spatial averaging (through the curvature of R) is a

likely coincidence. Probably from a physical point of view, the integral length scales are



Spatial averaging of single component velocity 24

more connected to the averaging issue (c.f., figure 23 in Appendix B) than λT , however,

these too fall short of expectation close the wall. In short, the characteristic correlation

length scale, λ is the appropriate length scale for spatial averaging. This is abundantly

evident from equation 19, which depends only upon l/λ.

Sometimes the Kolmogorov length scale η is employed as the relevant length scale,

most notably after the work of Wyngaard [1968], particularly for HIT. (Note that η+

remains almost invariant with Re in the near wall as well as in the log-region for wall-

turbulence; see, e.g., Yakhot et al. [2010], Marusic and Adrian [2013].) The usual

procedure is to assume a form of energy spectrum (for example Pao’s spectrum) and

employ eqn (13) in conjunction with (11) to calculate ũ2
rms. However, spectral space

is not as appropriate as real space (via eqn (14)) to model spatial averaging because

in spectral space the exact form of spectrum is needed for ‘all’ wave-numbers, which is

not easily possible (since all the wave-numbers are attenuated, except the trivial zero

wave-number), whereas in real space the integral is limited only from 0 to l, and it is

easier to represent R11 in the short domain with a single length scale, λ.

2.6. Effect of Reynolds number

To investigate the effect of Reynolds number (Re) on the spatial averaging, the DNS data

from a channel flow simulation by del Álamo and Jiménez [2003] and del Álamo et al.

[2003] at Re=180, 550, 934 and 2003 are employed. Since it is clear that correlations

control the spatial averaging, figures 19(a-d) show normalized correlations for varying

z-locations for Re=180, 550, 934 and 2003, respectively, in a manner so as to reflect

their inner and outer scaling. Each figure shows the distribution of correlations up to

r+2 = Reτ (or r2 = δ), whereas the inset figure shows the same up to r+2 = 100. Notice

that for small z, i.e., close to the wall (c.f, the inset), the correlations for all Reynolds

numbers have a minimum close to r+2 ≈ 50, dictated by the near wall streak spacing

of 100+. This remains invariant with Re, and represents the inner viscous scaling.

However, correlations far from the wall scale with the outer scaling, as evident from

the main figures at all Re. This is not surprising because, like the mean flow and the

turbulent stresses, close to the wall the correlations seem to scale with inner (or plus)

variables and away from the wall they scale on δ, the outer variable. This provides some

hope for representing correlations in a Re invariant form, which we can then utilize for

the estimation of filtered quantities.

An example of such a model is developed in Appendix B along with an appropriate

length scale and its comparison with other integral length scales. The model reads:

RN(r2) = e−(r2/λm)m , (29)

where, λm is the new length scale and m(z) is a function of z-location:

m(z) = 2− z+/Reτ . (30)

Note that close to the wall, m ≈ 2 and the model (29) represents a Gaussian, whereas

in the outer part of the boundary layer, m ≈ 1, and the model is a simple exponential.
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(a)

(c)
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Figure 19. The normalized correlation, R11/u
2
rms along spanwise direction, r+2 ;

plotted up to r+2 = Reτ . The inset is the expanded view plotted up to r+2 = 100.

(a) Reτ = 180, with z+ = 5, 10, 17, 25, 42, 63, 93, 132, and 186. (b) Reτ = 550, with

z+ = 5, 9, 15, 20, 30, 39, 61, 104, 165, 221, 277, 414 and 547. (c) Reτ = 934, with z+

as shown for figure 15. (d) Reτ = 2003, with z+ = 6, 10, 14, 20, 31, 40, 60, 100, 151,

200, 299, 403, 600, 804, 1002, 1204, 1401, 1606 and 1799.

The length scale λm is defined in viscous scaling close to the wall, and in outer scaling

away from the wall, and connected by a linear function in between:

λ+
m =


26 if z+ < 30,

(z+ − 0.5Reτ ) (26− 0.2Reτ )/(30− 0.5Reτ ) + 0.2Reτ
if 30 ≤ z+, z/δ ≤ 0.5,

0.2Reτ if z/δ > 0.5.

(31)

Substitution of (29) for a given Reτ and z-location into (14) leads to,

ũ2
rms

u2
rms

=
2

l2

∫ l

0

e−(s/λm)m · (l − s) ds, (32)
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Figure 20. Comparison of spatial averaging obtained from DNS and model (33). (a)

Reτ = 180. (b) Reτ = 550. (c) Reτ = 934. (d) Reτ = 2003.

where the integral can be evaluated by substituting (s/λm)
m by another variable say, t.

Note that both m and λm are positive quantities with 1 ≤ m ≤ 2. The resulting form

is,

ũ2
rms

u2
rms

=
2λm

lm

[
γ

(
1

m
,

(
l

λm

)m)
−
(
λm

l

)
γ

(
2

m
,

(
l

λm

)m)]
, (33)

where, γ(a, x) =
∫ x

0
e−tta−1 dt, is the incomplete Gamma function [e.g., Abramowitz

and Stegun, 1964, p. 260]). Note that at the two extremes of m the above expression

simplifies. For m = 2, the above equation reduces to (19), whereas the right hand side

of (33) becomes (2λm/l)[1− (λm/l) + (λm/l)exp(−l/λm)] for m = 1.

The attenuation estimated by the model (29) via (33) is compared with that

obtained from DNS in figure 20(a)-(d) corresponding to Reτ=180, 550, 934 and 2003,

respectively. The solid (black) line is the un-averaged distribution (at the DNS

resolution), symbols are from DNS filtering and the dashed lines represent the model

(29) along with (30) and (31). The predictions for all the higher Re is in general better

than for the lowest one. This is due to the incomplete similarity of structures due to very

low Re (as noted from figure 24 in Appendix B). Even with the crudeness of the model

the overall shape and the peaks are not far from those obtained from DNS. Furthermore,

the model works well for l+ = 19, which is close to the usual hot-wire lengths that are

commonly employed in experiments.
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2.7. Comparison with some experimental data

Thus far, all the analysis were concerned with averaged fields from numerical simulations

or using theoretical models using a linear box-type filter. Though linear box-filters are

commonly employed in studies of spatial resolution, it is not immediately obvious these

accurately model the filtering of hot-wires in real flows. Here we are able to compare box-

type filtering of DNS with experimental data obtained with hot-wires at similar l+ and

Reτ . Figures 21(a) and (b) present a one-to-one comparison of ũ2+
rms from experiments

in a channel flow with the DNS for different l+ and approximately the same Reτ of

1000 and 2000, respectively. The filtered DNS data is shown with empty circles and

experiments with filled symbols. The experimental data is taken from Ng et al. [2011],

except for the highest l+ for both Reτ , which are newly conducted in the same channel

facility as Ng et al. [2011]. Note that the DNS filtering data is somewhat sparse because

the averaging is carried out at only those z-locations where the spectra are available.

No comparison with the model is made here since it is already compared with the DNS

simulations in figure 20. It can be observed that for low l+ the filtered DNS data match

very well with that obtained from the experiments. However for larger l+, say greater

than ≈ 40, small differences emerge between the DNS data and experiments, which

become more prominent at Reτ = 2000, even though the general trend seems to match

for all the data presented. So, it can be safely concluded that for the hot-wires of length,

l+ ≈ 20, the comparison with linearly filtered signals is quite good, whereas for l+ ' 40

even the though overall trend is captured, discrepancies begin to appear.

Now that the efficacy of linear filtering is confirmed by the experiments, at least

for l+ less than ≈ 40, it is worth comparing some high Reτ data with the model

based on the assumptions of linear filtering. Figure 22 presents the peak variance of

the steamwise velocity, (ũ2+
rms|max) occurring at z+ ≈ 15 from the model (33) based

on the linear box-filtering and the correlation model (29) (broken lines), with various

experimental data (symbols), for different Reτ and at various l+. The comparison can

be considered fair considering the scatter in the experimental data involved and the

degree of approximations that has gone into the correlation model (29). This implies

that given the characteristic correlation scale, λ+ = 26, close to the wall, the actual

variances can be back-calculated from the measured variances.

3. Summary and conclusions

Single hot-wires are investigated here under the broader scope of spatial averaging

of velocity measurements due to finite dimensionality of sensors in wall-bounded

turbulence. A general framework for the study of spatial averaging of sensors is

presented, specifically for hot-wires (single and multi-wires) and PIV planes which are

classified depending upon their location, either in the homogeneous (xy) plane, with no

mean shear or in the inhomogeneous (xz) planes. This part of the investigation delves

into a detailed study of single hot-wires placed in the simplest case of homogeneous
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14 - expt, DNS 
22 - expt, DNS 
49 – expt 
49 -        DNS 
98 – expt 
98 -        DNS 

7   - expt, DNS 
12 - expt, DNS 
22 - expt, DNS 
49 – expt 
49 -        DNS 

(a)

(b)

Figure 21. Comparison of averaged ũ2+
rms obtained from the experiments and that

from the DNS using box filtering, (a) at Reτ ≈ 1000, and (b) at Reτ ≈ 2000. Note

that at Reτ ≈ 1000 the experimental data for l+=7, 12 and 22, and at Reτ ≈ 2000 for

l+=14, 22 and 49 are from Ng et al. [2011], whereas the highest l+ data for both the

Reτ are newly obtained. The dashed lines in both the figures are drawn at z+ = 15.

plane, employing theoretical, numerical as well as experimental tools, with the view

of extending the present work to other sensors in the homogeneous as well as

inhomogeneous planes.

Spatial averaging is considered to be a linear filtering process with a generalized

filter, and the averaged or filtered velocity field is represented as a convolution between

the filter and the actual velocity field. It is shown that the averaged mean and

fluctuating velocity components depend only on the corresponding un-averaged ones,

with implications for ×-wires (such results are presented in Philip et al. [2013]). A

general expression for the filtered two point correlation in terms of unfiltered correlation

and the filter function is derived (in eqn (8)), and a corresponding one for the spectrum

(eqn (10)). Thereafter, a simplified filter of the form of a ‘box-filter’ is chosen (which

approximates the actual hot-wires quite well as is confirmed later by experimental data)
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Figure 22. Comparison of model (33), in lines, with the experimental distribution

of the near-wall peak (ũ2+
rms|max ), in symbols, for varying l+ at selected Reynolds

numbers. The symbols, ⋆, for Reτ ≈ 1000, from Ligrani and Bradshaw [1987] and �
from Ng et al. [2011]; ◦ for Reτ ≈ 2000, from Ng et al. [2011]; the symbols, H, for
Reτ ≈ 3000, from Ng et al. [2011], and � for Reτ ≈ 7300, from Nickels et al. [2007]

and Hutchins et al. [2009].

allowing us to proceed with more concrete expressions for the averaged correlation,

spectrum and u2
rms. Some of these expressions are already known, however, here they are

presented in a unified manner starting from a arbitrary linear filter. These expressions

are validated using the DNS channel flow database of del Álamo and Jiménez [2003] at

Reτ = 934 (figures 7 (a), (b) and (c)).

Since the two-point correlation along the wire-length over its distance l dictates

the velocity attenuation, a simple model of correlation is proposed over the length

l, characterized by the correlation length scale, λ. This model has been used to

derive explicit relations for the averaged correlation, spectrum and u2
rms in terms of

the un-averaged ones (equations 17, 18 and 19), and these relations compare well with

the results obtained from the averaging of DNS data, clarifying to some extent the

empiricism involved in the work of Chin et al. [2009]. Furthermore, we have also shown

why the ‘missing spectra’ takes the approximate form of a Gaussian as modelled by

Chin et al. [2009]. The model exemplifies the fact that the appropriate length scale for

investigating the spatial resolution in hot-wires is the characteristic correlation length

scale λ, rather than the Taylor micro-scale or the viscous length scales. However, since

λ scales with the viscous units close to the wall (and outer scaling away from the wall),

there is no difference for spatial resolution studies using λ, or ν/uτ close to the wall; this

is of course not true away from the wall where λ is the only representative length scale.

The model of the correlation is extended for different z-locations and Re, with the cental

purpose of understanding the averaging effects rather than as a technique for ‘predicting’

the un-averaged statistics from the averaged ones. The model agrees reasonably well

with the DNS calculations. Since the analysis is based on the correlations, the expression
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(a) (c)(b)

Figure 23. Different length scales in inner scaling - top panel and outer scaling -

bottom panel. (a) Distribution of λ, (b) Lr and (c) La.

derived here is equally valid for other flows too, laminar or turbulent, and not restricted

to wall-turbulence (the only flow considered in the present work).

Finally, the efficacy of linear filtering is determined by comparing the experimental

data taken in a channel flow at Reτ of 1000 and 2000 with the linearly filtered data from

DNS for different l+. There is sufficient evidence that for l+ / 40, the linear filtering

reproduces the experimental data very well; however, with increasing l+ and Re, small

differences develop. Despite these, there is still an approximate correspondence between

experiments and linearly filtered data for even higher l+ (figure 21). Furthermore, the

approximate correlation model with the characteristic length scale, λ, developed for

low Re seems to estimate the maximum in u2+
rms quite well for experimental data from

various sources at relatively high Reynolds numbers, confirming the suitability of λ as

the appropriate length scale for spatial averaging in hot-wires.
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Appendix A: Some definitions and the expression for R̃ij(r)

Defining Fourier transform of a function F [g(x)] =: ĝ(k) and its inverse g(x) respectively,

as [e.g., Pope, 2000],

ĝ(k) =
1

2π

∫ ∞

−∞
g(x)e−ikxdx, and,

g(x) =

∫ ∞

−∞
ĝ(x)eikx dk, (34)

where, k is the wavenumber, the convolution and correlation theorems take the form

(with f as another function),

F [g ∗ f ] = 2π ĝ f̂ , (35)

and,

F [g ⋆ f ] = 2π ĝ∗ f̂ , (36)

where, the symbol ⋆ is for correlation and the superscript ∗ represents complex

conjugate. Substituting the expression for the averaged field from eqn (5) into eqn

(7), one obtains [also see Bracewell, 2000, chapter 17],

R̃ij(r) =
1

l2
lim
L→∞

1

L
(u′

i ∗ bI) ⋆ (u′
j ∗ bJ)

=
1

l2
lim
L→∞

1

L
(u′

i ∗ bI)r ∗ (u′
j ∗ bJ)

=
1

l2
lim
L→∞

1

L
(u′

ir ∗ bIr ∗ u′
j ∗ bJ)

=
1

l2
lim
L→∞

1

L
(u′

ir ∗ u′
j) ∗ (bI r ∗ bJ)

=
1

l2
lim
L→∞

1

L
(u′

i ⋆ u′
j) ∗ (bI ⋆ bJ)

=
1

l2
Rij ∗ (bI ⋆ bJ),

where, gr(x) is the short notation for the reverse of g(x), gr(x) := g(−x). In the

above derivation, the property that, f ⋆ g = fr ∗ g and the associative property of

convolutions, (f ∗ g) ∗ h = f ∗ (g ∗ h) have been employed.

Appendix B: A model for the spanwise two-point correlation parameterised

for varying z and Re

Here we present an example of a model for the spanwise two-point correlation, extending

the initial model given by eqn (15) such that it is a function of z and Re.

The principle quantity that is of interest in modelling the spatial averaging using

the model (15) is λ. Figure 23(a) presents the distribution of λ+ with inner scaling

(along z+) in the top panel whereas the bottom one shows the same data in outer

scaling, i.e., λ+/Reτ against z/δ. As expected the values of λ for all Re collapse in the

inner scale for small z+, however, there does not seem to be a convincing collapse in
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outer scaling. From the discussion of correlations we would have expected λ to scale

with outer scaling for large z/δ close to the centerline. This casts doubt on the way the

length scale λ is defined, which as already mentioned is by fitting the model (15) to the

correlations up to r+2 = 100. For comparison and to contrast, figures 23(b) and (c) show

the regular integral length scale (Lr) as well as the integral scale based on the absolute

value of the correlation (La), both defined respectively as L+
r :=

∫∞
0

RN(r
+
2 ) dr

+
2 and

L+
a :=

∫∞
0

|RN(r
+
2 )| dr+2 . Note that the upper integration limit, ∞, in reality is limited

by the DNS domain size. The top and the bottom panels are the same data plotted in

inner and outer scaling respectively. Both Lr and La do not scale with plus units at any

z-location. This is expected because the ‘integral’ scale employs limits of integration

which extend to very large scales. However, La at least shows the general shape which

is similar to λ in inner scaling. In the outer scaling both Lr and La show a good

collapse throughout the z-locations and La especially in the outer region, with the

slight exception of the lowest Re.

Physically, the variation of the fluctuating velocity along the hot-wire (in the

spanwise direction) is the cause for attenuation. Close to the wall the fluctuating velocity

patterns are caused by the streaky structures. Further away from the surface these are

due to the larger scale bulges in the outer layer. None of the length scales, Lr, La or

λ capture this phenomenon completely. Though λ does capture the near-wall streaks

it fails in the outer region. A second look at the correlations in figure 19 is helpful in

deciphering the deficiencies in the definition of λ, or the model in (15). Two problems

present themselves. First, even though a Gaussian type model (15) is appropriate for

near-wall z-locations, it fails to capture the distribution in the outer region (c.f. figure

19) which is not of Gaussian type. In fact, a Gaussian model fits close to the wall region

because the near-wall streaks reside there. There are no such ‘dominant’ structures

present in the outer region and the correlation is composed of many such uncorrelated

structures of varying scales. A correlation of the type of decaying exponential represents

such a process well, and this is also observed in figure 19, where for large z-locations the

correlations indeed fall off like e−(r/λ1). In fact, a decaying exponential is the common

model used for correlation in turbulence. In short, the correlation close to the wall is of

the type, e−(r/λ)2 , whereas close to z/δ it is of the form e−(r/λ), which encourages one to

model the correlation as,

RN(r2) = e−(r2/λm)m ,

where, λm is the new length scale and m(z) is a function of z-location, with m = 2 close

to the wall and becoming m = 1 at the centreline. The simplest function to achieve this

is a linear variation, and to this end, m can be written as,

m(z) = 2− z+/Reτ .

This addresses the first problem. Secondly, note that figure 19 is plotted for r+2 up to

Reτ , from which we note similar correlation curves for different Re at large z-locations.

In modelling (15), we restricted the fit up to r+2 = 100; this needs to be relaxed for

correlations close to the centreline. Therefore, the range of correlation in which the
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(a)

(b)

Figure 24. Distribution of λm in (a) inner scaling (b) outer scaling.

model (29) needs to be fitted must vary from about r+2 ≈ 100 close to the wall to

r+2 ≈ Reτ at the centreline, and again, a linear variation is sought such that the range

of fitting the model (29) follows the function, (z+/Reτ )(Reτ − 100) + 100.

With the above considerations of m(z) and the range, figures 24(a) and (b) show

the variation of λm with z in inner and outer scaling, respectively. As observed for λ

before, λm does not change with Re close to the wall for inner scaling, however, unlike λ,

λm does not change with Re far from the wall. Thus the scaling of λm follows the usual

viscous scaling close to the wall and outer scaling away from it. This also implies that

we can model λm with the usual inner-outer scaling. One such proposal is presented

in figure 25, which shows the data from figure 24 plotted in inner scaling for z+ < 30

and the rest of the data in outer scaling. It can be inferred that for z+ < 30, λ+
m

takes on approximately a constant value, say ≈ 26, whereas for z/δ > 0.5, λ+
m/Reτ

(i.e. in outer scaling) is again approximately constant, say ≈ 0.2. The in-between

region, 30 ≥ z+, z/δ ≤ 0.5, can, as a first approximation be represented by linearly

connecting the two extreme regions. In fact the linear variation of spanwise length-

scales of conditional eddies was found by Tomkins and Adrian [2000]. Compactly, the
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Figure 25. A model for λm. (a) Distribution of the same data as in figure 24 with

λm in inner scaling for z+ < 30 and the inset has λm in outer scaling for the rest of

the data. (b) Schematic of the model for λm as a function of z.

distribution of λ+
m can be written as,

λ+
m =


26 if z+ < 30,

(z+ − 0.5Reτ ) (26− 0.2Reτ )/(30− 0.5Reτ ) + 0.2Reτ
if 30 ≤ z+, z/δ ≤ 0.5,

0.2Reτ if z/δ > 0.5.

(37)

This is also shown schematically in figure 25(b). Thus, eqn (29) along with (30) and

(31) furnishes a first model for correlation for any given Reynolds number (at least in

turbulent channel flows). Note that the Taylor microscale λT also scales in inner scaling

close to the wall and in outer scaling away from the wall [e.g. Segalini et al., 2011b]

similar to λm. Furthermore, Segalini et al. [2011b] have shown that λT seem to scale

with
√
Reτ and a similar possibility might exist for λm.
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