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Abstract 
One of the main characteristics of Income Protection Insurance (IPI) claim duration data, which has not 
been considered in the actuarial literature on the topic, is left-truncation.  Claimants that are observed are 
those whose sickness durations are longer than the deferred periods specified in the policies, and hence 
left-truncation exists in these data. This paper investigates a series of conditional mixture models when 
applying survival analysis to model sickness durations of IPI claimants, and examines the consequence 
of treating the IPI data with lengthy deferred periods as complete data and therefore ignoring the left-
truncation by fitting the corresponding unconditional distributions. It also quantifies the extent of the bias 
in the resulting parameter estimates when ignoring the left-truncation in the data. Using the UK 
Continuous Mortality Investigation (CMI) sickness duration data, some well-fitting survival model results 
are estimated. It is demonstrated that ignoring the left-truncation in certain IPI data can lead to 
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substantially different statistical estimates. We therefore suggest taking left-truncation into account by 
fitting conditional mixture distributions to IPI data. Furthermore, the best fitting model is extended by 
introducing a number of covariates into the conditional part to do regression analysis. 
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1 Introduction 
Income Protection Insurance (IPI) plays a significant role in maintaining the quality of life of individuals, of 
working age, who become unable to work due to a non-work related injury or an illness. It achieves this 
by providing such insured lives with a proportion of their usual salary during the time that they are unable 
to work. Actuaries are often required to assess the future expected cash outflows associated with a 
portfolio of IPI contracts, and to set up a reasonable premium in order to make sure that the insurance 
company can meet its future obligations while remaining solvent. The main uncertainty of the IPI business 
comes from the fact that the likelihood of claim and the resultant claim duration can vary considerably for 
different IPI policies. Therefore having a good understanding of the durations of IPI claims has a 
significant impact on the actuaries' pricing and reserving calculations.  This paper will consider the 
modelling of sickness durations with the use of survival analysis. 

 

We already have some understanding of the level of claim termination rates from existing industry tables 
and other industry level studies. In the UK, the Continuous Mortality Investigation (CMI) is responsible for 
conducting research on mortality and morbidity experience for the UK life insurers. In particular, the CMI 
Report 12 (1991) established a new methodology for the analysis of IPI data in the form of a three state 
model. The recovery intensity estimated was also presented in this report. This model assumed that there 
was only one sick state to represent all causes of sickness, which means all the claims in the same 
portfolio will be subject to the same termination assumption regardless of their different causes of 
sickness.  Ling et al. (2010) extended the model from CMI 12 and estimated recovery intensities by cause 
of sickness using IPI data provided by the CMI. The recovery intensities for each cause of sickness were 
estimated using the Cox proportional hazards regression model (Cox, 1972) and generalised linear 
models. The graduation formulae for the recovery intensity presented in Ling et al. (2010) modelled the 
impact of age at the date of falling sick, duration of disability and the deferred period on the recovery 
intensity.  

 

Besides investigations into recovery intensities, there has also been related research into the modelling of 
claim durations. Pitt (2007) analysed a set of IPI data provided by the Life and Risk Committee of the 
Institute of Actuaries of Australia and suggested modelling claim durations using survival analysis. Pitt 
(2007) reported that there are approximately 7% of claimants who will never return to work, and therefore 
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suggested the use of mixed parametric regression models, which included the prediction of a long-run 
probability of not returning to work, as a description of claim duration. The objective of Pitt (2007) was to 
model claim durations, which were defined as the time since claim onset. This is different from the 
concept of sickness duration that we consider in this paper, which is defined as the time since the 
claimants first become sick. This difference in the objectives arises due to the different lengths of the 
deferred periods specified in the UK and the Australian IPI data. Most Australian IPI data have short 
deferred periods such as 2 weeks and 4 weeks whereas the UK IPI data commonly have lengthy deferred 
periods such as 13 weeks or 26 weeks. To examine the impact of the long deferred periods on the 
sickness durations, we first assume the data were complete, that is, were without left-truncation. We then 
propose a new approach making use of conditional mixture distributions. Thus we are able to quantify the 
extent of bias introduced in the parameter estimates by ignoring the left-truncation in the data. Using the 
UK sickness duration data, some useful survival models are estimated.  It is shown that ignoring the left-
truncation in certain IPI data can lead to substantially over-estimated median and upper quantiles of the 
distribution of sickness duration. When taking left-truncation into account through the conditional 
distributions, the conditional version of the relatively new mixture model, suggested by Shao and Zhou 
(2004), called the Burr XII mixture model fits the data best. Furthermore, the model is extended by 
introducing a number of covariates into the conditional Burr XII part, and the method and results of this 
regression analysis are also presented. 

 

The rest of the paper is organised as follows. Section 2 provides a brief summary of the data. Section 3 
presents a series of conditional mixture models that are used to analyse the left truncated data and the 
performance of these models are examined in this section. The results are also compared with those 
obtained by ignoring the left-truncation. Section 4 demonstrates how to incorporate different covariates 
into the mixture models, and Section 5 concludes the paper. 

 

2 Data 
This set of IPI data is obtained from Continuous Mortality Investigation (CMI), which was set up to carry 
out research into mortality and morbidity experience for the UK life insurers. It contains claim records for 
which payments have been made from record years 1975 to 2002 inclusive. Data are recorded for each 
policyholder based on the information provided in the insurance proposal form.  Most of these claims 
were able to be traced by matching claims from one calendar year to the next on the basis of the birthday 
of the policyholder, date of falling sick, year of entry, sex and occupation category. Therefore we are able 
to calculate the sickness duration as the difference between claim cessation date and date of falling sick. 
Our income protection insurance data are left truncated because if a policyholder fell sick but recovered 
before the end of a specified deferred period, that individual would not be able to claim from the insurance 
company. That is to say, our data does not contain such records of early recovery. The most common 
deferred periods in the UK are 1, 4, 13, 26 and 52 weeks.  

 

This IPI data comprise 70 different causes of sickness. Ling et al. (2010) have previously conducted 
some analysis on the recovery intensities using this same data set and pointed out that cause of sickness 
is an important source of heterogeneity among IPI claimants, and so suggested estimating the recovery 
intensities by cause of sickness. We have chosen cause of claim 21 (benign neoplasms and neoplasms 
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of unspecified nature) because of its high claim volume relative to other causes as an illustration to 
demonstrate the impact of ignoring the left truncation in the data when modelling, and to report our 
conditional mixture model based survival analyses. This method could equally be applied to other causes 
of sickness.  

 

There are a total of 1523 claim records for the chosen cause of sickness, including 689 new claims. The 
remaining 834 claims continued from previous years prior to 1975. Out of the 689 new claim records, 418 
of the claimants recovered during the investigation period. 

• The age profile of claimants ranges from 21 to 65 with an average age of 46. The distribution of 
the ages is approximately bell-shaped. 

• There are only two occupation classes: 758 (90%) are in occupation class 0, and 128 (10%) are 
in occupation class 1. 

• Males account for 82% of the data. 
• The year of entry to the IPI policy for the claimants ranges from 1936 to 2001 with an average 

year of entry being 1976. The distribution of year of entry is also approximately bell-shaped. 
 

3 Model and Results 
Pitt (2007) reported that there were approximately 7% of claimants who will never recover based on the 
Australian IPI data. Maller and Zhou (1995) described this non-zero long-run probability of survival as an 
"immune probability". We will therefore consider a number of mixture models, which take this feature of 
the data into account. For the survival analyses conducted here the event of interest is claim termination.  

 

Define ܶ to be a mixed random variable for the unknown sickness duration of a disabled life. To build a 
mixture model, we need to fit a parametric distribution to the sickness durations from the recorded lives 
that returned to work, and mix it with a point mass probability that one life will never return to work. For 
the case of the Weibull mixture distribution, the density function has the form  ݂ሺݐሻ ൌ ݐ,ሻαሽݐexpሼെሺλߙߣሻఈିଵݐߣሺ  0 , 

and the associated distribution function is  ܨሺݐሻ ൌ ሺ1 െ expሼെሺλݐሻαሽሻ, ݐ  0, where  is the proportion of 
claimants who will eventually recover, ߙ and ߣ are the usual Weibull parameters. The survival function for 
the Weibull mixture distribution is ܵሺݐሻ ൌ ሻαሽݐexpሼെሺλ  1 െ ݐ ,  0.  

 

In order to decide whether there is a significant percentage of claimants who will never recover for our UK 
IPI data, we employed the likelihood ratio test described in Maller and Zhou (1995). The method of Maller 
and Zhou was introduced for the case of the Weibull distribution of claim duration and involved comparing 
the maximum restricted likelihood able to be obtained for a model where the immune probability is set to 
be zero with the maximum likelihood achievable when this restriction is removed. The test statistic is 
based on the usual likelihood ratio test and is written as ݀ ൌ െ2 ቀ݈൫ߠ෨ுబ൯ െ ݈൫ߠෘ൯ቁ, where ߠෘ are the 

maximum likelihood estimates (MLEs) obtained from fitting a Weibull mixture model, ߠுబ are the 
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corresponding MLEs under the null hypothesis of no immunes, and ݈ሺߠሻ is the loglikelihood function 
evaluated at ߠ. Maller and Zhou showed that the asymptotic distribution of ݀୬, under the null hypothesis 
of no immunes, is a 50-50 mixture of a chi-square distribution with one degree of freedom and a point 
mass of 0.5 at zero. Applying this test to our IPI data, we get a test statistic of ݀ ൌ െ2ሺെ3242.651 3224.83ሻ  ൌ  35.64 for the Weibull mixture distribution, which is significant under the chi-square point mass 
mixture distribution.  

 

In addition to the Weibull mixture model, we also considered some other mixture models, including the 
log-logistic mixture model, the log-normal mixture model and the Burr XII mixture model. The long term 
survivor probability was found to be significant under all of these mixture models. The density functions 
and survival functions for these mixture distributions are summarised in Table 1 below. All probability 
functions in the table are defined over ݐ  0. In particular, the Burr XII mixture model introduced by Shao 
and Zhou (2004) is a relatively new model in survival analysis, and was not included in the analysis in Pitt 
(2007). 

 

Table 1: Density functions and survival functions 

Model Density Function Survival Function 

Weibull Mixture ሺݐߣሻఈିଵߙߣexpሼെሺλtሻሽ expሼെሺλtሻሽ  1 െ  

Log-logistic Mxture ߙߣሺݐߣሻఈିଵሼ1  ሺݐߣሻఈሽିଶ 
1  ሺݐߣሻఈ  1 െ  

Log-normal Mixture  ߨ2√ݐߙ exp ൝െαଶ൫log ሺλݐሻ൯ଶ2 ൡ 1 െ  ሻሽݐlogሺλߙΦሼ
Burr XII Mixture ߣߙఈݐఈିଵሼ1  ሼ1 ሻሽି൬ଵାଵఉ൰ݐሺλߚ  ሻሽିଵஒݐሺλߚ  1 െ  

 

If the IPI data that the insurers observe were complete, we could fit the above distributions to the sickness 
durations of claimants directly. We call such a model an unconditional fit to the data. However, in reality, 
the IPI data that insurers have are left-truncated at different deferred periods specified in the policies, and 
hence are incomplete. Cox and Oakes (1984) explained that left truncation arises when individuals come 
under observation only some known time after the natural time origin of the phenomenon under study. In 
the context of IPI, for each of the n claimants we observe a vector ሺܦ ܲ, ܻ ,  ሻ, whereߜ

ܻ ൌ minሺ ܶ, ߜ ሻ andܥ ൌ ൜1 if ܦ ܲ ൏ ܶ  ܦ ,0 ifܥ ܲ ൏ ܥ  ܶ,             ݅ ൌ 1,2, … , ݊. 
Here ܻ is the recorded sickness duration for individual i. Its truncation time is the deferred period ܦ ܲ 
specified in the policy. Had the insured recovered before the deferred period, that individual would not be 
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able to claim from the insurance company and thus this period of sickness would not be recorded in the 
dataset. Figure 1 shows this situation. 

Figure 1 

 

 

Therefore, any contribution to the likelihood must be conditional on the deferred period having been 
exceeded. Our IPI data are also potentially right censored, that is, the individual either recovers at time ܶ 
as shown in Figure 2 or are right-censored at the end of record time ܥ as described in the example 
shown in Figure 3. 

 

 

 

 

 

 

 

 

 

The contribution to the overall likelihood for a portfolio of policyholders is either 

ሻSሺ݀ሻݐሺ݂   1 െ   
for claimants who recovered at time ܶ  before reaching the censoring time ܥ, or 

ሺܿሻܵ   1 െ ሻSሺ݀  1 െ  

for right-censored claimants at time ܥ, where ݂ሺ. ሻ and ܵሺ. ሻ  are the density function and the survival 
function for the fitted model respectively. The proportion of claimants who will eventually recover is 
denoted p. We denote ߜ  as an indicator variable which takes the value 1 when the policyholder is 
observed to recover and takes the value 0 when the policyholder’s sickness duration random variable is 
right censored. We call this a conditional distribution because each contribution to the overall likelihood 
for a portfolio of policyholders is conditional on the policyholder’s sickness duration having exceeded the 
deferred period. The probability of this condition happening for policyholder i is given in the denominator 
of the above two equations as  Sሺ݀ሻ  1 െ  Then, for a sample of ݊ independent and identically .
distributed (ܦ ܲ, ܻ , ݅ ), whereߜ ൌ 1,2, … , ݊, the joint likelihood function is given by 

ܻ 

 

Figure 2 

Figure 3 

 

ܦ 0 ܲ ܶ ܥ time 

 

ܦ 0 ܲ ܶ ܥ time 

ܻ

ܦ 0 ܲ ܶ ܥ time 
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ܮ ൌ ෑ ቆ ሻSሺ݀ሻݐሺ݂  1 െ ቇఋ
ୀଵ ቆ ሺܿሻܵ  1 െ ሻSሺ݀  1 െ  ቇଵିఋ .                            ሺ1ሻ

 

The log-likelihood function is then  

݈ ൌ  ߜ
ୀଵ logሼ݂ሺݐሻሽ  ሺ1 െ ሻߜ

୧ୀଵ logሼܵሺܿሻ  1 െ ሽ െ  log
ୀଵ ሼܵሺ݀ሻ  1 െ  .ሽ

The maximum likelihood estimates of the parameters under different parametric models can be found by 
numerical methods such as the Newton-Raphson procedure.  

 

We demonstrate the significant difference between using conditional distributions and unconditional 
distributions through the survival function plots of the sickness durations. In order to assess which method 
provides a better fit to the data, K-M (see Kaplan and Meier, 1958) survival curves are used to provide a 
non-parametric estimate of the survival function for claim durations. Notice here, the K-M estimator needs 
to be adjusted to reflect the presence of left truncation. This estimator along with a modified estimator of 
its variance was proposed by Tsai, Jewell, and Wang (1987). For each of the ݊ individuals we observe the 
triple ሺܦ ܲ, ܻ ,  ሻ, whereߜ

ܻ ൌ minሺ ܶ, ߜ ሻ andܥ ൌ ൜1 if ܦ ܲ ൏ ܶ  ܦ 0 ifܥ ܲ ൏ ܥ  ܶ. 
Let ݐሺଵሻ, ݎ ሺሻ denote theݐ ,ڮ  ݊ distinct ordered and uncensored recovery times, so that  ݐሺሻ is the jth 
ordered recovery time. We now define the modified risk set R൫ݐሺሻ൯ at ݐሺ୧ሻ by R൫ݐሺሻ൯ ൌ ൛݆| ݀  ሺሻݐ  ,ൟݕ ݆ ൌ 1, ڮ , ݊, ݅ ൌ 1,2, ڮ ,  ,ݎ
where ݀ denotes the number of left-truncated claimants before ݐ but recovered at ݐ. 
The modified K-M estimator of the survivor function has the form  

Sሺݐሻ ൌ ෑ ൬݊୧ െ ݀୧݊୧ ൰
୧ୀଵ , 

where ݐሺሻ  ݐ ൏ -ሺሻ൯, which is the number of leftݐሺାଵሻ. Let ݊ denote the number of claimants in ܴ൫ݐ
truncated claimants that are alive, but not censored, just before time ݐሺሻ.  The fitted conditional and 
unconditional survival functions identified above were compared with the modified Kaplan-Meier estimate 
of the survival function.  

 

The results of fitting each of the conditional and unconditional versions of the mixture models summarised 
in Table 1 are given from Figure 4 to Figure 11Error! Reference source not found.Figure 4. The left 
column of Figure 4 to Figure 11 show the graphs of the survival functions by fitting the mixture 
distributions compared with the modified K-M estimates. The right column of these figures show the P-P 
plots for these fits. Comparing Figure 4 with Figure 5, Figure 6 with Figure 7, Figure 8 with Figure 9, and 
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Figure 10 with Figure 11, it is very clear that treating the data as complete by fitting the unconditional 
distributions will lead to results that are far off track from the true data whereas treating the data as left-
truncated by fitting the conditional distributions give us much better results in terms of a closer fit. It is 
demonstrated that ignoring the truncation data will result in survival functions that are significantly 
overestimated for claims of all different durations. The PP plots highlight this deficiency very clearly. Using 
the conditional distributions improves the fitness substantially, especially for claims with short durations. 
This improvement in fit is also clearly evident when we look at the maximum log-likelihood results 
provided in  

Table 2. The maximum log-likelihood values calculated from using the conditional distributions are always 
higher compared to using the unconditional ones. We have also calculated AIC values in Table 2 for all 
the models considered, and the one that achieved the lowest value is the conditional Burr XII mixture 
model. This result is consistent with the graphs, where we can see that the right bottom corner is the P-P 
plot for the conditional Burr XII mixture model, and it is the closest to the 45 degree straight line compared 
to the other traditional models in survival analysis. We are going to use the conditional Burr XII mixture 
model in next section to do our regression analysis. 
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Figure 4: Conditional model fitting a) 

 

Figure 5: Unconditional model fitting a) 
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Figure 6: Conditional model fitting b) 

 

Figure 7: Unconditional model fitting b) 
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Figure 8: Conditional model fitting c) 

 

Figure 9: Unconditional model fitting c) 
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Figure 10: Conditional model fitting d) 

 

Figure 11: Unconditional model fitting d) 
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Table 2: Model Comparison 

 Unconditional  Conditional  
 MLL AIC MLL AIC 
Mixture Log-logistic -3610.96 7227.92 -3190.67 6387.35 
Mixture Log-normal -3596.15 7198.30 -3200.29 6406.57 
Mixture Weibull -3652.01 7310.02 -3224.83 6455.67 
Mixture Burr XII -3562.54 7131.08 -3155.02 6318.04 

 

In Table 3, we show the change in the parameter values when the conditional mixture models are 
employed instead of the unconditional ones. 

  

For the log-logistic distribution, log-normal distribution and Weibull distribution, they can all be expressed 
in the form log ܶ ൌ ߤ   ,ܼߪ
where ܼ is a standard member of a location and scale family of distributions (ߤ ൌ 0 and ߪ ൌ 1). For log ܶ, 
the location parameter is ߤ ൌ ݈݃ ߪ and the scale parameter is  ߣ ൌ ଵఈ. From Table 3, we can see that 
under the correct data specification, that is, considering left-truncation, the location parameters are lower 
and the scale parameters are higher. The estimated fraction of claimants who recovered before the 
deferred period, denoted by ܨሺ݀ሻ is larger under the conditional fit for any value of deferred periods. This 
is what we expected since the conditional estimation accounts for the true information loss while the 
unconditional fit assumes all instances of sickness persisted for a duration at least equal to the deferred 
period in the policy. The results are consistent with findings in Chernobai et al. (2006) with the 
catastrophe claims data. It is also clearly demonstrated in the table that ignoring the left-truncation would 
result in over-estimated median and upper quantiles of sickness durations. This may have serious 
consequences. Suppose the insurance company sets up premium and reserve levels based on the 
results from fitting the unconditional distribution to the incomplete data, they would over-estimate the 
future claim payments as a result of over-estimating the claimants' sickness durations, especially so for 
those claimants with long sickness durations. Therefore it is essential to set up likelihood functions that 
incorporate left-truncation and to estimate parameters on this basis. 
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Table 3: Model Summary Statistics 

    Conditional Unconditional   Conditional Unconditional Conditional Unconditional Conditional Unconditional
Mixture 
Log-logistic α 0.9337 1.1047 F(1W) 31.83% 5.11% median median 90-

percentile 
90-

percentile λ 0.0632 0.0101 F(4W) 63.02% 19.94% 15.05 83.3 158.27 608.74 0.8304 0.9542  F(13W) 83.67% 47.80%   

   F(26W) 90.73% 66.32%   

   F(52W) 94.92% 80.90%   
Mixture 
Log-
normal 

α 0.5174 0.6262 F(1W) 35.22% 3.67% median median 90-
percentile 

90-
percentile λ 0.0686 0.0082 F(4W) 63.23% 17.83% 2.81 6.39 35.95 56.38 0.8966 0.9488  F(13W) 82.84% 42.71%   

   F(26W) 90.43% 59.89%   

   F(52W) 95.20% 75.32%   
Mixture 
Weibull α 0.3539 0.7298 F(1W) 55.89% 7.96% median median 90-

percentile 
90-

percentile λ 0.0811 0.0047 F(4W) 73.73% 20.40% 0.64 4.30 2.92 9.82 0.8537 0.9622  F(13W) 86.85% 41.68%   

   F(26W) 92.52% 59.11%   

   F(52W) 96.36% 77.31%   
Mixture 
Burr XII α 8.7320 6.3709 F(1W) 0.72% 0.29% median median 90-

percentile 
90-

percentile λ 0.0818 0.0575 F(4W) 49.92% 23.50% 26.79 130.56 374.35 44200.00 β 14.3093 23.0594 F(13W) 75.60% 44.76%   1.0000 0.9719  F(26W) 84.02% 54.38%   

   F(52W) 89.53% 62.33%   
 

 

4 Conditional Burr XII Regression for Left-Truncated and Right 
Censored Data 
Shao and Zhou (2004) first introduced the Burr XII mixture model for survival analysis, but they did not 
include any covariates in the model. Since there are a number of covariates associated with our data, 
such as age, gender, and year of entry, we are going to extend the conditional Burr XII mixture model in 
this section to incorporate such covariates into this parametric model. Beirlant et al. (1998) proposed two 
regression models for the Burr distribution. We begin by following the same approach as Beirlant et al. 
(1998) in their so-called parametrisation I. However, we need to modify their approach to cater for our 
jointly left-truncated and right-censored data. In order to be consistent with our previous notations used 
for the parameters, our notation used for the Burr XII distributions are different from that used in Beirlant 
et al. (1998). The shape parameter α is allowed to vary with covariates ݔ, that is, ܶ|ݔ follows a Burr ൫λ, β, αሺݔሻ൯. An exponential link-function is used for positive parameter α: 

αሺݔሻ ൌ expሼγॻݔሽ, 
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where ݔ is a covariate vector and γ is a vector of regression coefficients. The model is fitted using 
maximum likelihood estimation. The log-likelihood function for the model is given below, and it is similar to 
Equation (1). However, we now relax the assumption of (ܦ ܲ, ܻ ,  ) being identically distributed in order toߜ
model the potential impact of different covariates on sickness duration.  

݈ ൌ  ߜ
ୀଵ log൛݂൫ݐ;ݔ, ,ߛ ,ߣ ൯ൟߚ  ሺ1 െ ሻߜ

୧ୀଵ logሼܵሺܿ; ,ݔ ,ߛ ,ߣ ሻߚ  1 െ                  ሽ
െ  log

ୀଵ ሼܵሺ݀; ,ݔ ,ߛ ,ߣ ሻߚ  1 െ  .ሽ
where ݂ሺ. ሻ and ܵሺ. ሻ are the density function and the survival function for the fitted Burr XII mixture model 
respectively. The covariates age, sex, year of entry, dp0 (indicator variable for deferred period 0), dp1 
(indicator variable for deferred period 1), dp13 (indicator variable for deferred period 13) and dp26 
(indicator variable for deferred period 26) were tested. Covariates age and year of entry are scaled as 
follows ݔୟୣ ൌ ሺage െ 43ሻ26 , ୬୲୰୷ୣݔ ൌ ሺentry െ 1988ሻ13 , 
so that ݔୟୣ ranges from -1 to 1 when age ranges from 17 to 69 and ୣݔ୬୲୰୷ ranges from -1 to 
approximately 1 when entry year ranges from 1975 to 2002. Two-way interaction variables were also 
considered as possible regression covariates. The regression model that produced the smallest AIC 
value was chosen to be the final model. A summary of the final fitted model is given in  

 

Table 4. It is not surprising that after taking these covariates into account, we have achieved a higher 
maximum log-likelihood value compared with the results we obtained in Section 3 for all the models 
without taking any covariate into account. The AIC value for the conditional Burr XII mixture regression 
model is 6236.026. This is lower than the AIC value achieved by the general model, which was 6318.04. 
Notice that, it is also possible to link the long term survivor proportion  to the covariates by a logistic 
function if we are interested in the covariates effects on proportion . However, Table 4 shows that  ൌ1 after taking the covariates into account for the Burr XII distribution, hence there is little point to 
complicate the model further by introducing more covariates into the description of the ultimate recovery 
probability, . 
 

All of the covariates shown in  

 

Table 4 have statistically significant effects on sickness durations at the 5% significance level except 
interaction term age*dp13. There are 5 different levels of deferred period, the statistical significance of the 
variables dp0, dp1, dp4, dp13, dp26 and dp52 are strongly affected by the amount of data for that 
particular deferred period category. For that reason, we only observe that dp0, dp1 and dp13 appear to 
have significant impacts on sickness durations. To interpret these covariate coefficients, we take 
covariate age as an example. The covariate coefficient for age is -0.4121, this means as age increases 
by 1 unit, the shape parameter α decreases by expሺെ0.4121ሻ ൌ 0.66. In order to visualise this effect, we 
have plotted the survival functions for two different age groups in  
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Figure 12. The shape parameter α is calculated for claimants who are aged 22 and 64 respectively, just 
as an illustration for young and old groups, all the other covariates are holding constant at a set of 
following values: deferred period is 1 week, gender is male, and entry year is 1988. As illustrated in  

Figure 12, the age covariate has an impact on the shape of the fitted survival functions. The young group 
has a higher recovery rate compared with the old group. The difference in the recovery rates between the 
two groups are negligible at very short sickness durations and becomes more apparent as the duration 
increases. When the difference between the two age groups reaches its maximum at around 200 days, it 
starts to decrease as time goes on. Similar or opposite conclusions can be drawn for all the other 
covariates according to the signs of their coefficients. These graphs are useful to visualise the impact of 
each covariate on the shape parameter of Burr XII mixture distribution and give us a better understanding 
of the survival functions for different groups of claimants.   

 

Table 4: Regression Model Results 

MLL AIC 
-3105.013 6236.026

Final model Coefficients Std.err Z-score p-value λ 0.0527 0.0029 18.0735 0.0000 β 1.8043 0.0954 18.9216 0.0000 162.7580 0.0061 1.0000  0.0000 
age -0.4121 0.0995 -4.1409 0.0000 
sex -0.0784 0.0460 -1.7064 0.0440 

entry 0.3615 0.0928 3.8971 0.0000 
dp0 1.1715 0.1494 7.8401 0.0000 
dp1 0.9729 0.0682 14.2709 0.0000 
dp13 -0.3935 0.0987 -3.9971 0.0000 

age*sex -0.2607 0.1096 -2.3778 0.0087 
sex*entry -0.3074 0.1092 -2.8158 0.0024 
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Figure 12: Comparison of Yong and Old Groups Survival Functions 

 

In order to assess the quality of the fit of the model, we can divide the data into groups according to the 
values of the covariates included in the final model. There were 22 claimants found to possess all of the 
following characteristics: aged between 38 and 48, deferred period of 13 weeks, entry year is between 
1985 to 1990 and male. For these 22 claimants, the modified Kaplan-Meier fit to the survival function is 
compared to the conditional survival function predicted by the mixture Burr XII model. The result of this 
comparison is shown in Figure 13, where 95% confidence bands have been included around the modified 
Kaplan-Meier fit. It is very clear from Figure 13 that the fit of the Conditional Burr XII mixture regression 
model is very good even for a specific group of data. Therefore the regression model could be useful for 
prediction of sickness durations of future claims. 
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Figure 13: Comparison of Actual and Fitted Survival Functions 

 

 

5 Conclusion 
In this paper, we brought our attention to one important characteristic of IPI data, which has not been 
modelled in this context in the actuarial literature. We focused on the fact that the IPI data available to 
insurance companies are left‐truncated at different deferred period levels, and demonstrated that using 
conditional distributions instead of unconditional distributions provides more accurate parameter 
estimates especially for the IPI data that contain some very lengthy deferred periods. It was shown that 
treating the available IPI data as complete can lead to substantially over‐estimated median and upper 
quantiles of sickness durations, which could lead to serious consequences for providers of IPI.  We 
identified some useful survival model results discovered using the UK sickness duration data. We 
demonstrated that if the insurance company sets up premium and reserve levels based on the results 
from fitting the unconditional distribution to the incomplete data, they would over‐estimate the future 
claim payments as a result of over‐estimating the claimants' sickness durations, especially so for those 
claimants with long sickness durations. Therefore it is essential to realise that the IPI data are left 
truncated and conditional distributions should be used.  This point becomes crucial for the UK IPI data 
where long deferred period of 26 and 52 weeks are quite common. We have demonstrated that after 
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taking left‐truncation into account, the conditional version of the relatively new mixture model called 
Burr XII mixture provided most flexibility, and was capable of improving data fitting substantially over 
the other well‐known traditional models. We have therefore extended this model by introducing a 
number of covariates into the conditional Burr XII mixture model, and presented the method and results 
of this regression analysis. This paper will be of value to insurers considering both pricing and the 
valuation of their IPI policies. 
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