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Abstract

Cryptococcus neoformans, an AIDS-defining opportunistic pathogen, is the leading cause

of fungal meningitis worldwide and is responsible for hundreds of thousands of deaths annu-

ally. Cryptococcal glycans are required for fungal survival in the host and for pathogenesis.

Most glycans are made in the secretory pathway, although the activated precursors for their

synthesis, nucleotide sugars, are made primarily in the cytosol. Nucleotide sugar transport-

ers are membrane proteins that solve this topological problem, by exchanging nucleotide

sugars for the corresponding nucleoside phosphates. The major virulence factor of C. neo-

formans is an anti-phagocytic polysaccharide capsule that is displayed on the cell surface;

capsule polysaccharides are also shed from the cell and impede the host immune response.

Xylose, a neutral monosaccharide that is absent from model yeast, is a significant capsule

component. Here we show that Uxt1 and Uxt2 are both transporters specific for the xylose

donor, UDP-xylose, although they exhibit distinct subcellular localization, expression pat-

terns, and kinetic parameters. Both proteins also transport the galactofuranose donor, UDP-

galactofuranose. We further show that Uxt1 and Uxt2 are required for xylose incorporation

into capsule and protein; they are also necessary for C. neoformans to cause disease in

mice, although surprisingly not for fungal viability in the context of infection. These findings

provide a starting point for deciphering the substrate specificity of an important class of

transporters, elucidate a synthetic pathway that may be productively targeted for therapy,

and contribute to our understanding of fundamental glycobiology.

Author summary

Cryptococcus neoformans, the leading cause of fungal meningitis, kills almost a quarter of a

million people each year. Carbohydrate structures, including a complex polysaccharide

capsule, enable this microbe to resist host defenses and cause disease. The machinery to

build these structures is located inside of specific subcellular compartments. However,

most of the reactions require as precursors activated sugar molecules that are made in the

cell cytosol. To bring these compounds, called nucleotide sugars, to the site of synthesis,

the cell expresses specific transporters. One precursor of particular interest is UDP-xylose,

which is the donor of the sugar xylose for the synthesis of cryptococcal capsule, proteins,
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and lipids. We have identified two UDP-xylose transporters, the first discovered in a fun-

gal organism, and characterized their biochemical properties and role in biology and

infection. We found that although this pair of proteins shares biochemical functions,

including additional transport of UDP-galactofuranose, the two transporters differ in

terms of where they are in the cell, when they are expressed, and their transport proper-

ties. Cryptococcal cells lacking both proteins do not cause disease in mice, demonstrating

the importance of this synthetic pathway. These findings elucidate fundamental biology as

well as fungal pathogenesis.

Introduction

Glycans are critical for the normal development, growth, and viability of organisms across all

kingdoms of life. The extensive glycoconjugate repertoire of Cryptococcus neoformans, a ubiq-

uitous environmental fungus, enables this pathogen to cause serious respiratory disease in the

setting of immune compromise. This pulmonary infection often progresses to a lethal menin-

goencephalitis, even with treatment, leading to several hundred thousand deaths each year [1–

3].

The major virulence factor of C. neoformans, a polysaccharide capsule, acts as a physical

barrier against host defenses when associated with the cell wall and as an immune modulator

when shed into the extracellular space [4,5]. This material consists primarily of two complex

polysaccharides, glucuronoxylomannan (GXM) and glucuronoxylomannanogalactan

(GXMGal) [4]. The more abundant capsule component, GXM, is a linear mannose (Man)

polymer with single glucuronic acid (GlcA) and xylose (Xyl) side chains [6]. The second poly-

saccharide, GXMGal, consists of a galactose backbone modified with single galactofuranose

(Galf) residues and galactomannan side chains bearing a variable number of GlcA and Xyl res-

idues [7–9].

Beyond the capsule, C. neoformans glycoconjugates include proteins with N- and O-linked

glycans that resemble the corresponding mannose structures of the model yeast Saccharomyces
cerevisiae, although they are further modified with Xyl or Xyl-phosphate residues [10–13].

Cryptococcal glycosphingolipids range from simple mannose modification of lipids to more

complex structures that also incorporate galactose (Gal) and Xyl [14], and the cryptococcal cell

wall consists of glucans, chitin, chitosan, and mannoproteins, many of which bear GPI anchors

[15]. These glycans play integral structural and regulatory roles to facilitate fungal survival and

pathogenesis [16].

Consistent with the abundant glycosylation of C. neoformans, a significant portion of its

genetic machinery and metabolic energy is dedicated to glycan synthesis. These synthetic reac-

tions typically occur in the secretory pathway, although they rely on nucleotide sugar donors

that are synthesized in the cytosol [17]. The charged donors enter the luminal space via nucleo-

tide sugar transporters (NSTs), which exchange activated sugars for the corresponding nucleo-

side monophosphates [18,19]. NSTs thus mediate a limiting step in glycan biosynthesis, and

are consequently required for cryptococcal viability and pathogenicity [20–22].

Our focus is on defining glycan synthesis in C. neoformans, motivated by its unique biology

and critical role in a deadly disease. Cryptococcal NSTs comprise a key subset of this machin-

ery, which has stimulated us to identify these proteins and their functions. This effort is com-

plicated by the observations that NST homology is not always a reliable predictor of substrate

specificity and that NSTs may be functionally redundant. Individual NSTs also range from

highly specific single-substrate transporters to more promiscuous, multi-substrate proteins

UDP-Xyl/UDP-Galf transport in C. neoformans virulence
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[23–28]. NST substrate specificity may also be modulated by localization to a particular cellular

compartment and/or association with other glycan biosynthetic enzymes [21,29].

In prior work, protein structure predictions and homology facilitated identification of the

cryptococcal NSTs responsible for GDP-Man [21,30] and UDP-Gal [20,22] transport. We

have now used product analysis and mass spectrometry based assays to discover Uxt1 and

Uxt2, which both transport UDP-Xyl and UDP-Galf although they exhibit distinct subcellular

localization, expression patterns, and kinetic parameters. Cells without these two proteins lack

Xyl in all analyzed glycoconjugates and exhibit growth defects and metabolic abnormalities

that are present to a lesser extent in single mutant strains. We further made the unexpected

finding that transporter function is required for virulence in a mouse model of disease, but not

for persistence in that context.

Results

In examining the cryptococcal genome for genes encoding putative NSTs, we discovered a

pair of sequences (CNAG_02036 and CNAG_03695) that encoded closely related proteins

(57% identity at the amino acid level; S1A Fig). We were interested in these sequences because

the level of identity could indicate functional redundancy to ensure the transport of a key gly-

can precursor, or, in the absence of shared activity, could shed light on mechanisms of sub-

strate specificity.

To assess the biological role of the novel protein pair we had identified, we generated single

and double deletion strains. We first tested whether these mutations affected the major cryptococ-

cal virulence factor, its polysaccharide capsule. Composition analysis of capsule GXM showed

complete loss of Xyl from the double mutant, while single mutants were less affected (Fig 1A).

This suggested that both proteins transported the Xyl precursor UDP-Xyl, so we designated them

as UDP-Xyl transporters 1 and 2 (Uxt1 and Uxt2). uxt1ΔGXM had only 20% of the Xyl found in

WT material, while uxt2Δ exhibited no defect in composition. Consistent with these results, link-

age analysis of GXM mannose residues showed a dramatic shift to less substitution of the man-

nose backbone in the double mutant, with a slightly lesser shift in uxt1Δ (S1 Table).

To further examine the mutant capsules, we used a Xyl-dependent monoclonal antibody to

GXM [31]. This antibody, F12D2, labeled both single mutant strains, but not uxt1Δ uxt2Δ (Fig

1B). In this respect the double mutant resembled uxs1Δ, a strain that does not synthesize

UDP-Xyl [32]. Both uxt1Δ uxt2Δ and uxs1Δ still bind Xyl-independent anti-GXM monoclonal

antibodies (S2 Fig, S2 Table).

We next used an unbiased approach to directly measure UDP-Xyl transport activity and

assay for additional transport substrates. To do this, we prepared proteoliposomes from S. cere-
visiae heterologously expressing Uxt1 and Uxt2 (Fig 2A). When these were preloaded with

UMP we observed import of UDP-Xyl (Fig 2B–2D), consistent with our composition studies

and antibody binding results. Transport of UDP-Xyl by both proteins was saturable with sub-

strate concentration (Fig 2E) and time (Fig 2F). Uxt1 had an apparent KM of 1.0 ± 0.2 μM and

Vmax of 20.4 ± 0.6 nM s-1 (mean ± SEM of n = 4) with a turnover rate of 0.9 s-1, while Uxt2

exhibited lower affinity and catalytic efficiency with an apparent KM of 2.2 ± 0.5 μM, Vmax of

2.2 ± 0.1 nM s-1, and a turnover rate of 0.4 s-1. These KM values were consistent with the

estimated μM physiological concentration of UDP-Xyl (S3 Table).

We further observed transport of UDP-Galf, the donor of a known capsule component,

although assessment of its transport kinetics was hindered by its instability, which necessitates

simultaneous synthesis and assay. We also observed transport of UDP-Arap and UDP-Araf
(Fig 2C and 2D; S3 Fig), although arabinose has never been reported in C. neoformans. Neither

of these donor molecules was detected in our nucleotide sugar analyses (S3 Table).

UDP-Xyl/UDP-Galf transport in C. neoformans virulence
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Surprisingly, Uxt2 was almost as efficient in using GMP as UMP as an antiport substrate

for UDP-Xyl and UDP-Galf. In contrast, we observed minimal transport activity over control

when Uxt1-bearing proteoliposomes were preloaded with GMP (Fig 2G, S3E Fig). Although

Uxt1 and Uxt2 have similar activity, they are clearly not functionally identical at the enzymatic

level.

Fig 1. Capsule characteristics of uxt mutants. (A) Glycan composition of GXM. (B) Cell wall and capsule staining with Calcofluor white (CFW; blue)

and anti-GXM mAb F12D2 (green), respectively. Bright field, single channel, and merged images are shown; scale bar = 10 μm.

https://doi.org/10.1371/journal.ppat.1006765.g001
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Fig 2. Uxt1 and Uxt2 in vitro transport activities. (A) Immunoblot analysis of microscomes (M) and

proteoliposomes (P) prepared from S. cerevisiae expressing vector alone (Control) or V5-tagged Uxt1 or Uxt2

(2.5 μg protein per lane; S, standards; C, control; 1, Uxt1; 2, Uxt2). (B and C) Representative LC-MS/MS

spectra of proteoliposomes prepared from (B) control or (C) Uxt1-expressing S. cerevisiae cells, preloaded

with 30 mM UMP, and incubated with a mixture of 16 nucleotide / nucleotide sugar substrates (50 μM each, 10

min, 37˚C); Peak 1, UDP-Arap; Peak 2, UDP-Xyl; Peak 3, UDP-Araf. (D) Nucleotide sugar uptake into

proteoliposomes preloaded with 30 mM UMP. Values were normalized to the total protein content of the

proteoliposome preparations. Data represent the mean ± SD of n = 4 assays. *, mixture of UDP-GalNAc and

UDP-GlcNAc. (E and F) Proteoliposomes preloaded with 10 mM UMP were incubated for 2 min with UDP-Xyl

(E) at variable concentrations (0–100 μM) or (F) for the indicated times with 50 μM UDP-Xyl. Values were

normalized to the actual NST content in proteoliposome preparations (S4 Table). Data are the mean ± SEM of

n = 4 assays. (G) Nucleotide sugar uptake into proteoliposomes preloaded with 30 mM GMP analyzed as in

(D).

https://doi.org/10.1371/journal.ppat.1006765.g002
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We wondered how Uxt1 and Uxt2, the first reported fungal UDP-Xyl/UDP-Galf transport-

ers, compared to other NSTs with similar substrate specificities. Phylogenetic analysis with

known transporters of UDP-Xyl and UDP-Araf placed Uxt1 and Uxt2 closest to the A. thali-
ana UDP-Araf transporters (UAfT1-4) even though, as mentioned above, arabinose has never

been detected in C. neoformans (S1B Fig). Interestingly, Uxt1 and Uxt2 were more divergent

from known UDP-Xyl transporters, such as those from human and A. thaliana (S1B Fig),

which may be of therapeutic relevance.

Our biochemical and phylogenetic studies did not explain why C. neoformans has two

transporters for UDP-Xyl and UDP-Galf, and raised the question of whether they have distinct

roles in vivo. To define the physiological roles of Uxt1 and Uxt2, we first examined the expres-

sion of UXT1 and UXT2 under nutrient rich and deficient (capsule-inducing) conditions; the

latter was tested because of the central role capsule plays in virulence and the differences we

had noted in capsule composition. We found that UXT1 expression was not affected by capsule

induction, while UXT2 had a lower basal level of expression in rich media (0 h) that was upre-

gulated 15-fold upon capsule induction (Fig 3).

When we expressed FLAG-tagged Uxt1 and Uxt2 in S. cerevisiae to assess their subcellular

localization, we found that Uxt2 localized to the ER (Fig 4A). In contrast, Uxt1 exhibited a

Golgi distribution (Fig 4B), consistent with its predicted N-terminal ER export signal (two di-

acidic motifs). Swapping the N-terminal cytosolic domains of the two proteins caused each to

shift to the other secretory compartment (Fig 4, bottom row of each panel).

We wondered if the observed differences in protein expression and localization had pheno-

typic consequences beyond alterations in GXM. All of the mutants grew normally at 37˚C,

except for a modest increase in the doubling time of uxt1Δ uxt2Δ, which was further exacer-

bated by nutrient limitation (S4 Fig). We saw no changes in growth when these strains were

challenged with stressors that target the cell wall, consistent with their wild-type patterns of

cell wall staining (S2 Table). At this temperature, however, uxt1Δ uxt2Δ growth was abolished

by SDS (that of uxt1Δwas slightly inhibited), and the growth of both of these strains was

slightly inhibited by high salt (Fig 5A).

Both single uxt mutants showed normal capsule thickness (Fig 5B; S5A Fig), cell diameter

(Fig 5B, S5B Fig), and GXM shedding (S5C Fig). The uxt1Δ cells, however, aggregated more

than wild type (Fig 5B), and differed from wild-type cells in capsule organization, despite the

similarity in overall capsule radius: individual fibers seemed thicker and appeared to form a

Fig 3. Transcription of UXT2 but not UXT1 increases during capsule induction. Reads from RNA-Seq

data (mean ± SD) during capsule induction (see Materials and Methods) were compiled from three

independent experiments, each with RNA prepared from three biological replicates as in [56].

https://doi.org/10.1371/journal.ppat.1006765.g003
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sparser network over the cell surface (Fig 5C, S5D Fig). The capsule changes were more strik-

ing in uxt1Δ uxt2Δ cells; these showed significantly thinner capsules (S5A Fig) and reduced

GXM shedding (S5C Fig). Their capsule fibers also appeared shorter and coarser than those of

uxt1Δ, resembling those of uxs1Δ cells, which do not synthesize UDP-Xyl (Fig 5C, S5D Fig).

Fig 4. Subcellular localization of Uxt1 and Uxt2. Sec7-3xGFP S. cerevisiae cells transformed with vector alone (Vector) or vector

expressing FLAG-tagged Uxt1, Uxt2, or chimeras of Uxt1 and Uxt2 were stained with DAPI and probed with the indicated antibodies. Bright

field, single channel, and merged images are shown (scale bars, 1 μm). Blue, DAPI; red, α-Kar2p/BiP to mark the ER (A) or α-GFP to

localize the Golgi marker Sec7 (B); green, α-FLAG. Images are representative of three independent studies.

https://doi.org/10.1371/journal.ppat.1006765.g004

UDP-Xyl/UDP-Galf transport in C. neoformans virulence

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006765 January 18, 2018 7 / 20

https://doi.org/10.1371/journal.ppat.1006765.g004
https://doi.org/10.1371/journal.ppat.1006765


The observed differences in capsule did not explain the increased sensitivity of uxt1Δ and

uxt1Δ uxt2Δ to stress, because even acapsular cells grow normally under these conditions

[33,34]. We hypothesized that this sensitivity instead results from reduced Xyl in other glyco-

conjugates, such as protein-linked glycans. In support of this idea, the Xyl content of glycopro-

teins isolated from uxt1Δ and uxt2Δwas 15% and 90% of their respective complements. We

detected no Xyl in samples purified from uxt1Δ uxt2Δ or the control uxs1Δ.

We wondered whether the stress sensitivity and altered glycoconjugate xylosylation of the uxt
mutants would translate into aberrant interactions with host cells. Since host macrophages are

critical for determining the outcome of cryptococcal infection [35], we investigated the ability of

our mutants to interact with bone marrow macrophages (BMM) in vitro. We found that the level

of internalization by BMMs was inversely related to the degree of xylosylation: uxt1Δ uxt2Δwas

taken up more readily than WT cells while uxt1Δ exhibited an intermediate phenotype (Fig 6A).

Notably, while WT and the single deletion strains replicated ~2-fold over 24 h after internalization

by BMM, the level of uxt1Δ uxt2Δ did not change (Fig 6B). This reflected both decreased replica-

tion and increased clearance, which negated the small growth that occurred (Fig 6C).

The altered host interactions we observed in vitro suggested a potential defect in pathoge-

nicity of the uxt strains. Studies using an inhalational model to mimic the natural route of

infection showed that uxt2Δ and, more surprisingly, uxt1Δ, caused disease with normal

Fig 5. uxt1Δ and uxt1Δ uxt2Δmutants exhibit growth and capsule defects. (A) 5-fold serial dilutions of the indicated strains, grown on the indicated

media at 37˚C and photographed after three days. uxs1Δ is included as a control. (B and C) The indicated strains were placed in capsule-inducing

conditions (see Materials and Methods) for 24 h, and then visualized by light microscopy after negative staining with India Ink (B, scale bar = 5 μm) or by

electron microscopy (C, scale bar = 0.5 μm). Additional EM images are provided in S5D Fig.

https://doi.org/10.1371/journal.ppat.1006765.g005
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kinetics (Fig 6D) and organ burdens (Fig 6E, S7 Fig). In contrast, uxt1Δ uxt2Δwas attenuated

for virulence in both A/JCr and C57BL/6 mice (Fig 6D, S6 Fig). More detailed studies using A/

JCr mice showed that the double mutant was unexpectedly detectable in the lungs out to 100

days post infection (dpi), when the experiment was terminated (Fig 6E). Despite the persistent

pulmonary burden, uxt1Δ uxt2Δ failed to disseminate from the lungs; it was never detected in

the spleen and was only transiently detected in the brain (S7 Fig).

Discussion

C. neoformans encodes an unusual pair of highly homologous UDP-Xyl/UDP-Galf transport-

ers, which together are critical for virulence. Uxt1 and Uxt2 are unique for their high affinity

Fig 6. UDP-Xyl transport is required for host interactions and virulence. (A) Percent phagocytosis (engulfed fungi/initial inoculum) of opsonized

fungi. (B) Fold-change in colony-forming units (CFU) 24 h:0 h after internalization. (C) Proportion of daughter cells in the population of WT (dashed line)

and uxt1Δ uxt2Δ (black line) cells incubated with BMMs for 0, 24, and 48 h. Data are the mean ± SEM of three independent experiments. *, p < 0.05 by

(A, B) one-way ANOVA with Tukey’s post hoc test or (C) Student t-test. (D) Survival of A/JCr mice after intranasal inoculation with 5 × 104 cells of the

indicated strains (n = 8–9). (E) Lung CFU of infected mice at the time of death (for WT, uxt1Δ, uxt2Δ, and complemented mutants; n = 8) or at the

indicated time points (for uxt1Δ uxt2Δ; n = 3). Open circles, individual mice; black bar, mean; dashed line, initial inoculum. **, p < 0.01 by one-way

ANOVA with Tukey’s post hoc test.

https://doi.org/10.1371/journal.ppat.1006765.g006
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for UDP-Xyl (Fig 2), with KM values almost two orders of magnitude lower than those of the

Arabidopsis UDP-Xyl transporters [36]. Despite transporting the same nucleotide sugars, the

two proteins are not completely functionally redundant, likely due to differences in expression,

enzyme kinetics, and localization.

Beyond nucleotide sugars known to occur in C. neoformans, in vitro Uxt1 and Uxt2 also

transport UDP-Arap and UDP-Araf (Fig 2), potentially enabled by the similar structures of

Xyl and Ara (D-Xyl and L-Ara are epimers). While the NSTs most closely related to Uxt1 and

Uxt2 (At UAfT1-4) are highly specific for UDP-Araf [37], the substrate range of the cryptococ-

cal proteins most closely resembles that of plant UDP-Xyl transporters (UXT1-3;[36]) despite

their sequence divergence (S1B Fig). These observations highlight the importance of using rig-

orous biochemical analysis to test functional assumptions based on homology.

Since UDP-Ara is not found in cryptococcal cells and abrogating UDP-Galf synthesis does

not alter cryptococcal growth or virulence [8], the phenotypes associated with loss of Uxt1 and

Uxt2 likely result from disruption of UDP-Xyl transport into the secretory compartment.

Notably, capsule material was still produced (Fig 5) even when no Xyl was detected in GXM

because both transporters were absent (Fig 1A). This suggests that Xyl incorporation is not

required for GXM backbone synthesis or elongation, or for incorporation of GlcA. However,

lack of the Xyl donor did reduce the amount of shed capsule material by over 75% (S5C Fig).

Since Xyl constitutes only 20–30% of the capsule mass, loss of this moiety alone does not

explain this reduction. Instead, it may be a direct effect of the reduced Xyl incorporation, if

these side chains are needed for capsule recognition by synthetic or trafficking machinery, or

an indirect effect, for example if synthetic enzymes must be xylosylated to function efficiently.

Lack of UDP-Xyl transport also yielded thinner capsules (Fig 5B, S5A Fig) with abnormal fiber

morphology (Fig 5C, S5D Fig); this presumably results from the lack of Xyl substitution, which

may be required for proper conformation or organization of capsule polysaccharides.

Why does C. neoformans express two UDP-Xyl transporters? Judging by the severity of

mutant phenotypes (Fig 5) and the gene expression levels (Fig 3), Uxt1 is the major transporter

of the pair, but loss of both is required to eliminate Xyl incorporation (Fig 1). These data

exclude the possibility of a third UDP-Xyl transporter of any significance, while highlighting

the unequal contribution of these two proteins. One factor in this inequity is likely the higher

affinity and catalytic efficiency for UDP-Xyl transport of Uxt1 compared to Uxt2 (Fig 2).

Another is probably their distinct regulatory patterns, with UXT1 expressed constitutively,

while UXT2 expression levels is upregulated in response to greater glycan biosynthetic

demands (Fig 3). Curiously, expression of the two genes was not optimally regulated to enable

compensation in the single mutants: expression of UXT1 did not change in response to the

loss of UXT2 even in capsule-inducing conditions, and the normal UXT2 induction was muted

in the absence of UXT1 (S8 Fig). Future studies will address this regulatory relationship.

The distinct roles of Uxt1 and Uxt2 also potentially reflect their association with other gly-

can synthetic proteins, such as glycosyltransferases. We found no evidence of association with

specific xylosyltransferase(s), as for example preferential loss of β-1,2 or β-1,4 linked Xyl in the

GXM of either mutant (S1 Table). However, the full cryptococcal glycan repertoire is not

known; future studies may enable us to identify specific protein or lipid modifications enabled

by each enzyme. Another factor in the dominant role of Uxt1 is likely its localization to the

Golgi (Fig 4B), the probable site of capsule and protein xylosylation [10,11,14], in contrast to

the ER localization of Uxt2 (Fig 4A). The latter is intriguing, as this compartment is upstream

of most glycan synthesis. It is possible that Uxt2 has transport-independent functions, or that

it supplies novel synthetic processes that have yet to be described. These will be exciting areas

for future investigation.

UDP-Xyl/UDP-Galf transport in C. neoformans virulence
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The increased sensitivity to stress (Fig 5A) and greater uptake by host phagocytes (Fig 6A)

of uxt1Δwere insufficient to alter its behavior in animal infection (Fig 6D). We expected the

highly impaired double mutant uxt1Δ uxt2Δ, which cannot transport UDP-Xyl into the secre-

tory pathway, to behave like strains that cannot synthesize UDP-Xyl (uxs1Δ), which are aviru-

lent and completely cleared by 7 days post-infection [38]. Surprisingly, this mutant persisted

in the lungs (Fig 6E), suggesting either a cytosolic role for UDP-Xyl or a UDP-Xyl-indepen-

dent role for Uxs1; these possibilities remain to be investigated.

The double mutant population increased very slowly in both A/JCr and C57BL/6 mice,

likely due to its slower growth rate under stress (Fig 6C, S4 Fig) and reduced ability to resist

host defenses (Fig 6A and 6B). Xyl modifications have been identified as immunodominant

epitopes in antibody responses to allergens and pathogens [39,40], and the absence of Xyl

modifications in uxt1Δ uxt2Δ did increase immune detection and clearance of the pathogen in
vitro (Fig 6A and 6B). The mutant also remained confined to the lungs of A/JCr mice (S7 Fig)

and was slow to cause lethal meningoencephalitis in C57BL/6 mice (S6 Fig). This may reflect

an inability to disseminate or to efficiently establish infection at distal sites, or may be the result

of active restriction by the immune system. Notably, phagocytes have a multifaceted role in

cryptococcal infection, potentially aiding and/or inhibiting fungal survival and dissemination

depending on the circumstance [35]. Elucidating the complex interplay between Uxt mutants

and the infected host will be the focus of future work. Further studies may also uncover facets

of this infection that could be exploited for therapeutic intervention and potentially inform

vaccine design.

C. neoformans is unusual among yeast for its extensive utilization of Xyl, in capsule polysac-

charides, N- and O-linked glycans (including a unique Xyl-phosphate modification), and gly-

coplipids. By elucidating UDP-Xyl transport, we have expanded our understanding of this

aspect of cryptococcal glycan biosynthesis, including the sequence and localization of capsule

synthetic events, and of NSTs as a protein family. We have identified the first fungal UDP-Xyl/

UDP-Galf transporters and also set the stage for studies of an unusual mutant that may help

elucidate mechanisms of cryptococcal pathogenesis and host response.

Materials and methods

Sequence and phylogenetic analysis

Uxt1 and Uxt2 were identified by BLASTP searches of known NSTs against C. neoformans pre-

dicted proteins (Broad Institute; Cryptococcus neoformans var. grubii H99 database); the closest

related sequence was that of the Aspergillus fumigatus UDP-Galf transporter (ACR56866.1).

The online Phylogeny.fr program (http://www.phylogeny.fr/.version2_cgi/index.cgi) with

default settings [41,42] was used for multiple sequence alignment (MUSCLE; [43]), phyloge-

netic analysis (PhyML; [44]), and tree rendering (TreeDyn; [45]) of Uxt1 and Uxt2 and other

NSTs. These included transporters of UDP-Galf (Aspergillus fumigatus, Af), UDP-Xyl (Homo
sapiens, Hs, UXT NP_116215.1; Arabidopsis thaliana, At, UXT1 NP_850120.3 (At2g28315), At
UXT2 NP_180604.4 (At2g30460), and At UXT3 NP_172172.2 (At1g06890)), and UDP-arabi-

nofuranose (At UAfT1 NP_568469.1, At5g25400; At UAfT2 NP_196684.1, At5g11230; At
UAfT3 NP_194965.1, At4g32390; At UAfT4 NP_180122.1, At2g25520), as well as other cryp-

tococcal (Cn) NSTs.

Sequence alignment between Uxt1 and Uxt2 was analyzed using T-coffee (http://tcoffee.

crg.cat/apps/tcoffee/do:regular) and formatted using Boxshade (http://www.ch.embnet.org/

software/BOX_form.html). The protein sequences were analyzed for predicted localization sig-

nals using LocSigDB (http://genome.unmc.edu/.LocSigDB/; [46]).
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Cell growth

C. neoformans strains were grown in YPD medium (1% w/v BactoYeast Extract, 2% w/v Bacto-

Peptone, 2% w/v dextrose) at 30˚C with shaking (230 rpm) unless otherwise noted. For pheno-

typic analysis, cells were grown overnight (O/N), washed in sterile phosphate buffered saline

(PBS), and diluted to 106 cells/mL in PBS. 4 μL aliquots of serial 5-fold dilutions were plated

and grown at 30 or 37˚C as indicated. The stress conditions tested included YPD containing

0.01% SDS, 1.2 M NaCl, 1.2 M KCl, Tris pH 8.8, 1.5 M Sorbitol, 0.05% Congo Red (CR), or 2%

Calcofluor White (CFW). To test oxidative and nitrosative stress sensitivity, dilutions were

spotted onto solid YNB medium (0.67% w/v yeast nitrogen base without amino acids, 2% w/v

glucose, 2% w/v agar, 25 mM sodium succinate, pH 4.0) supplemented with 0.5 mM hydrogen

peroxide (H2O2) or 0.5 mM sodium nitrite (NaNO2). To assess cell-associated melanin

production, 5 μL of a 106 cells/mL solution was plated on agar plates containing 8 mg/mL

KH2PO4, 2 mg/mL glucose, 2 mg/mL L-glycine, 1 μg/mL D-biotin, 1μg/mL thiamine, 0.92

mg/mL MgSO4 7H2O, and 0.4 mg/mL L-3,4-dihydrohyphenylalanine (L-DOPA; Sigma-

Aldrich). To assay growth, cells were cultured O/N; washed in sterile PBS; resuspended at 105

cells/mL in 30 mL of YPD, YNB, DMEM, or RPMI; and incubated at 37˚C for 120 h, with trip-

licate samples counted by hemocytometer at various times.

C. neoformans strains

We replaced UXT1 in KN99α (WT) with a nourseothricin (NAT) resistance marker using a

split marker strategy [47]. Transformants of interest were identified by resistance to NAT and

validated by PCR verification of gene replacement. We used a similar strategy to complement

the uxt1 deletion strain at the endogenous locus by replacing the deletion cassette with UXT1
in tandem with a G418 resistance marker. Transformants resistant to G418 and sensitive to

NAT were verified by PCR and assessed for reversal of mutant phenotypes (see Results). We

generated uxt2Δ and UXT2 with an identical approach, using G418 and NAT markers in the

deletion and complement constructs, respectively. To obtain an uxt1Δ uxt2Δ double mutant,

we crossed the single mutants on V8 agar plates [48]. Double mutants were selected for by

resistance to both drugs and verified by PCR amplification.

Capsule induction and visualization

O/N cultures of C. neoformans were collected by centrifugation, washed twice with sterile PBS,

diluted to 106 cells/mL in DMEM and incubated at 37˚C in 5% CO2 for 24 h in T-75 tissue cul-

ture flasks or 24-well plates. The cells were then washed and resuspended in PBS, mixed with

1.5 parts India Ink, and viewed by light microscopy with a ZEISS Axioskop2 MOT Plus micro-

scope (Carl Zeiss Microscopy, LLC).

For antibody detection of cell wall-associated GXM, strains were induced as above for 24 h,

fixed for 1 h in 3.7% formaldehyde, washed in PBS, and then incubated for 1 h at room tem-

perature (RT) with 1 mg/mL of anti-GXM monoclonal antibody (mAb) F12D2 or 302 (from

Dr. Thomas R. Kozel, University of Nevada School of Medicine) conjugated to AlexaFlour

488. Stained cells were washed twice with PBS, resuspended in PBS, and examined on a ZEISS

Axioskop 2 MOT Plus microscope.

GXM ELISA

GXM content of supernatant fractions from cell cultures was quantified by ELISA according

to previous methods [49], using anti-GXM mAb 339 (from Dr. Thomas R. Kozel, University

of Nevada School of Medicine).
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Glycan isolation and analysis

GXM was isolated from strains of interest by selective precipitation of culture supernatants

with hexadecyltrimethylammonium bromide (CTAB) as detailed in [11]. For isolation of solu-

ble glycoproteins, O/N cultures were diluted into YPD and grown to 107 cells/mL. 2 x 107 cells

per strain were collected, washed in Tris-EDTA buffer (100 mM Tris pH 8.5, 0.1 mM EDTA

pH 8.0), and resuspended in 40 mL Tris-EDTA buffer with protease inhibitors. Samples were

then subjected to 15 cycles of bead beating (3 min) alternating with 3 min on ice, which yielded

~75% cell lysis (as judged by microscopy). All subsequent steps were performed at 4˚C. Lysates

were collected, pooled with three 10 mL rinses of the beads, and subjected to a clearing spin

(1000 x g; 25 min). Supernatant fractions were then transferred to fresh tubes, adjusted to a

final concentration of 1% CHAPS, incubated with rocking for 2 h, and subjected to ultracentri-

fugation (75000 x g; 45 min). The CHAPS extract was then dialyzed (8000 Mr) against 2 L of

50 mM NH4HCO3 with three buffer changes over 48 h, lyophilized, and washed with 80% ace-

tone to reduce detergent and polymeric contaminants.

For compositional analysis, per-O-trimethylsilyl (TMS) derivatives of monosaccharide

methyl glycosides were produced from the GXM samples by acidic methanolysis using methods

described in [50,51]. Glycosyl composition was then determined by combined gas chromatog-

raphy/mass spectrometry (GC/MS) on an Agilent 7890A GC interfaced to a 5975C MSD (mass

selective detector, electron impact ionization mode; Agilent Technologies) with a Supelco EC-1

fused silica capillary column (30 m × 0.25 mm ID; Sigma-Aldrich). For linkage analysis, GXM

samples were permethylated, depolymerized, reduced, and acetylated as described in [7]. The

resultant partially methylated alditol acetates (PMAAs) were then analyzed as above but using a

30 m Supelco SP-2331 bonded phase fused silica capillary column (Sigma-Aldrich).

Heterologous expression, reconstitution, and transport assays

The UXT1, UXT2, GMT1, and GMT2 coding regions were amplified from WT cDNA and

introduced into the pENTR/SD/D-TOPO vector (Life Technologies) according to the manu-

facturer’s protocols to generate pENTR-UXT1, pENTR-UXT2, pENTR-GMT1, and pENTR-

GMT2. Recombination of each entry clone with destination vector pYES-DEST52 (Life Tech-

nologies) using LR clonase II (Life Technologies) produced a C-terminal His/V5 epitope

fusion that was verified by sequencing before transformation into S. cerevisiae strain INVSc1

(Thermo Fisher Scientific). Heterologous expression, reconstitution into proteoliposomes,

and transport assays were performed as previously described [52]. UDP-Galf was prepared

from UDP-galactopyranose (UDP-Galp) according to [53]. Protein expression and incorpo-

ration was verified by polyacrylamide gel electrophoreses and immunoblot analysis of 2.5 μg

of microsomes or proteoliposomes using anti-V5 antibody (Thermo Fisher Scientific), also as

previously described [52]. Kinetic parameters were calculated by non-linear regression using

the Prism 6 application (GraphPad Sofware). The assay was validated and its sensitivity con-

firmed using the well-characterized GDP-Man transporters Gmt1 and Gmt2 (S9A Fig). Both

proteins transported GDP-Man and smaller amounts of other GDP-sugars in exchange for

GMP and, significantly less efficiently, UMP (S9D and S9E Fig).

Nucleotide sugar measurement

Nucleotide sugars were extracted from approximately 50 mg of ground cells (wet weight) as

previously described [54]. Four biological replicates were processed per strain and condition,

and then analyzed in duplicate by LC-MS/MS using porous graphitic carbon as the stationary

phase on an 1100 series HPLC system (Agilent Technologies) and a 4000 QTRAP LC/MS/MS

system (Sciex) equipped with a TurboIonSpray ion source as in [55]. Results in pmol mg-1 wet
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weight were converted to concentrations using a cell volume of 47.7 μm3 (based on the average

radius of 107 cells, measured by cellometer (Nexcolom Bioscience LLC; n = 3)) and a mass of

4.35 x 10−8 mg/cell (based on weighing a known number of cells; n = 3).

Protein localization

For expression in S. cerevisiae, UXT1 and UXT2 were amplified from WT cDNA, cloned into

the copper-inducible expression vector pYEScupFLAGK [26], and transformed using lithium

acetate into S. cerevisiae strain Sec7-3xGFP (from Dr. Benjamin S. Glick, University of Chi-

cago). To generate N-terminal swaps of Uxt1 and Uxt2, we amplified both genes from the start

codon to the beginning of the first predicted transmembrane domain (UXT1 bp 1–135, UXT2
bp 1–180) and from the first transmembrane domain until the stop codon (UXT1 bp 136–

1032; UXT2 bp 181–1068), using WT cDNA as a template. We then PCR amplified to fuse the

N-terminal region of UXT1 to the transmembrane region of UXT2 and vice versa, cloned each

construct into pYEScupFLAGK, and transformed into S. cerevisiae Sec7-3xGFP as above. All

constructs were verified by sequencing.

For localization, cultures were grown O/N in synthetic complete media without uracil

(SC-URA), adjusted to OD 0.5 and 0.5 mM CuSO4, and cultured for an additional hour. The

cells were then fixed for 30 min in 1% paraformaldehyde, washed and resuspended in 0.1M

KPO4/1.2 M sorbitol, and incubated for 15 min in the same buffer containing β-mercaptoetha-

nol and zymolase (100 μg/mL). 15 μL of the cells were then spotted onto polylysine-coated

slides (Electron Microscopy Sciences), incubated for 10 min, and plunged into methanol for

5 min followed by acetone for 30 sec. The samples were blocked with 5% goat serum in PBS

for 30 min, and stained O/N at 4˚C with anti-FLAG (Mouse, 1:1000; Invitrogen) and anti-

Kar2p/BiP antibody (Rabbit, 1:1000; from Dr. Jeff Brodsky, University of Pittsburgh). Finally,

cells were incubated for 2 h with AlexaFluor 594-tagged goat anti-mouse IgG, AlexaFluor

488-tagged goat anti-rabbit IgG (Thermo Fisher Scientific), and DAPI (Thermo Fisher Scien-

tific), and viewed with a ZEISS Axioskop2 MOT Plus microscope.

Fungal gene expression

Wild-type cells cultured O/N in YPD were placed in DMEM capsule-inducing conditions and

sampled at 0, 1.5, 3, 8, and 24 h for RNA isolation and sequencing as in [56]. Additional sam-

ples were collected at 0 and 24 h for qPCR analysis. Levels of UXT1, UXT2, and the reference

gene ACT1 were quantified using the CFX96 Real Time System (BioRad). All sample reactions

contained 1 μL cDNA (100 ng), 4 μL of each primer (200 nM), and 10 μL SYBR Select Master

Mix (Applied Biosystems). qRT-PCR was performed in triplicate for each sample and non-

template controls (for each set of primers) using 15 min activation and denaturation at 95˚C

followed by 40 cycles of 15 sec at 95˚C, 30 sec at 60˚C, and 30 sec at 72˚C. Baseline and thresh-

old values were determined for all reactions using CFX manager software (BioRad) and

exported to Microsoft Excel for additional analysis using the ΔCq method.

Electron microscopy

Strains were induced for capsule (as above), collected by centrifugation, fixed for 1 h at RT

with 2% glutaraldehyde (Polysciences Inc.) in 100 mM phosphate buffer (pH 7.2), and incu-

bated for 1 h in 1% osmium tetraoxide (Polysciences Inc.). Cells were then dehydrated with

ethanol and propylene oxide and embedded in Eponate 12 resin (Tel Pella Inc.). 70 to 90 nm

sections were cut with an UCT ultramicrotome (Leica Microsystems Inc.) and stained with

uranyl acetate and lead citrate for visualization with a JOEL 1200EX transmission electron

microscope (Joel Inc.).
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Macrophage assays

Bone marrow (BMMs) from the femurs and tibiae of C57BL/6 mice (Jackson Laboratory)

was incubated for one week at 37˚C and 5% CO2 in BMM medium (20% FBS, 30% L-cell

supernatant, 1% Penicillin-Streptomycin in RPMI), which was refreshed 4 and 6 days after

plating. Cells were harvested on day 7 by incubation in ice-cold PBS for 10 min and BMM

were purified from the population by positive selection using biotinylated α-F4/80 antibody

(eBioscience) and anti-biotin conjugated magnetic beads (Miltenyi Biotec). BMMs were then

plated in 24-well plates at 3.5 x 105 cells/mL of R10 media, and incubated O/N at 37˚C and 5%

CO2. On the following day, log-phase fungi were collected by centrifugation, washed, and

opsonized with mouse serum (40%) for 30 min at 37˚C. The strains were then washed with

PBS, resuspended at 3.5 x 104 cells/mL in DMEM, and incubated with macrophages for 1 h.

Samples were washed twice with PBS, and lysed using water either immediately or after 24 h

incubation in DMEM at 37˚C and 5% CO2. For CFU quantification, the lysates and initial

inocula were plated on YPD agar. Results were analyzed using one-way analysis of variance

(ANOVA) with Tukey’s post-hoc test. For assays distinguishing parental and daughter cells,

fungi were also stained with Oregon Green 488 dye (2 μg/mL; ThermoFisher) in 0.1 M sodium

bicarbonate (pH 8.0) for 1 h at room temperature prior to opsonization and then treated as

described above. Following lysis, cells were stained with calcofluor white (2 mg/mL PBS) for

30 min before flow analysis with a BD LSRFortessa X-20 using OneComp eBeads (eBioscience)

for compensation controls. Data were analyzed using FlowJo (Treestar) and compared using

Student’s t-tests.

Animal studies

Fungal strains were cultured O/N in YPD, washed, and diluted to 106 cells/mL in sterile PBS.

50 μL aliquots of each strain were inoculated intranasally into groups of eight 6- to 8-week-old

female A/JCr (National Cancer Institute) or C57BL/6 (Jackson Laboratory) mice. Infected

mice were weighed daily and sacrificed if they lost>20% relative to peak weight, or on day 49,

63, or 100 post infection, whichever came first. Lung, brain, and spleen homogenates were har-

vested and plated for CFU at time of death or indicated time points, and organ burdens were

analyzed by ANOVA with Tukey’s post-hoc test.

Ethics statement

All animal studies were approved by the Washington University Institutional Animal Care

and Use Committee (Protocol #20140184). All research involving animals was carried out in

strict accordance with the “Guide for the Care and Use of Laboratory Animals” published by

the National Research Council and endorsed by the Association for the Assessment and

Accreditation of Laboratory Animal Care.

Supporting information

S1 Fig. Conservation of cryptococcal nucleotide sugar transporters. (A) Protein sequence

alignment of Uxt1 and Uxt2 (CNAG_02036 and CNAG_03695) with conserved residues

highlighted (black, identical residues; grey, conserved substitutions). (B) Phylogenetic relation-

ships of C. neoformans (Cn) NSTs (including Uxt1 and Uxt2, in bold), and UDP-Xyl, UDP-

Galf, and UDP-Arap transporters from other organisms (Hs, Homo sapiens; Af, Aspergillus
fumigatus; At, Arabidopsis thaliana) using MUSCLE, PhyML, and TreeDyn software (see

Materials and Methods). Branch lengths are drawn to scale.

(PDF)
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S2 Fig. uxt1Δ uxt2Δ is recognized by Xyl-independent capsule antibodies. Cells from the

indicated strains were incubated with calcofluor white (CFW; blue) to stain the cell wall and

anti-GXM mAb 302 to visualize the capsule (green). Bright field, single channel, and merged

images are shown; scale bar = 10 μm. cap59Δ is an acapsular strain included as a control.

(PDF)

S3 Fig. Uxt1- and Uxt2-mediated UDP-Galf uptake into proteoliposomes. (A) LC-MS/MS

analysis of UDP-Galf prepared from UDP-Galp utilizing E. coli UDP-galactopyranose mutase

(GLF). (B–D) Proteoliposomes prepared from S. cerevisiae expressing vector alone (B), Uxt1

(C), or Uxt2 (D) were preloaded with 30 mM UMP, and analyzed by LC-MS/MS after a 10

min incubation with 700 μM UDP-Galp and 10 μg purified GLF. Based on mass and retention

time, the minor peak between UDP-Galp and UDP-Galf is likely UDP-Glc, presumably pres-

ent in the reaction starting material. (E and F) Quantification of nucleotide sugar uptake into

proteoliposomes preloaded with 30 mM UMP (E) or 30 mM GMP (F). Amounts were calcu-

lated using a UDP-Galp standard and normalized to the total protein content of the proteoli-

posome preparations and the mean ± SD of four assays are plotted. All assays were performed

at 37˚C.

(PDF)

S4 Fig. uxt1Δ uxt2Δ growth is restricted at 37˚C. The indicated C. neoformans strains were

grown overnight at 30˚C in YPD, diluted to 105 cells/mL in the media indicated, and incubated

at 37˚C with 5% CO2. The results shown are the averages of three measurements. Black, WT;

red, uxt1Δ; green, UXT1; purple, uxt2Δ; blue, UXT2; grey, uxt1Δ uxt2Δ (continuous and

dashed lines, representing three independently obtained double deletion strains).

(PDF)

S5 Fig. Morphological defects of uxt1Δ uxt2Δ. Induced cells were stained with India Ink, and

the radius of the capsule (A) and diameter of the cell body (B) were measured using ImageJ

(100 cells counted per strain; mean ± SEM of three biological replicates). (C) GXM shed from

equal numbers of each of the indicated strains was quantitated by ELISA (see Materials and

Methods). Data is the mean ± SEM of three independent experiments. �, p< 0.05, one-way

ANOVA with Tukey’s post-hoc test. (D) Electron micrographs of the indicated strains induced

for capsule as in Fig 5. Two representative images are displayed for each strain. Scale

bar = 0.5 μm.

(PDF)

S6 Fig. uxt1Δ uxt2Δ is severely attenuated for virulence in C57BL/6 mice. Survival of

C57BL/6 mice after intranasal inoculation with 5 × 104 cells of WT (n = 5) or uxt1Δ uxt2Δ
(n = 19). C57BL/6 mice naturally skew towards a non-protective Th2-type response, which

increases their susceptibility to cryptococcal infection compared to A/JCr mice [57].

(PDF)

S7 Fig. uxt1Δ uxt2Δ does not colonize extrapulmonary sites. Brain (A) and spleen (B) CFU

of infected A/JCr mice at the time of death (for WT, uxt1Δ, uxt2Δ, and complemented

mutants; n = 8) or at the indicated time points (for uxt1Δ uxt2Δ; n = 3). Open circles, individ-

ual mice; black bar, mean; dashed line, initial inoculum. ��, p< 0.01 by one-way ANOVA with

Tukey’s post hoc test.

(PDF)

S8 Fig. UXT1 and UXT2 transcription levels. Expression of UXT1 and UXT2 measured by

qRT-PCR with RNA prepared from the indicated strains after growth in nutrient rich (YPD)

or capsule-inducing conditions (DMEM, 37˚C and 5% CO2). Values are normalized to the
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WT sample grown in YPD and are the mean ± SEM of six biological replicates.

(PDF)

S9 Fig. Nucleotide sugar uptake into Gmt1- and Gmt2- containing proteoliposomes. (A)

Immunoblot analysis of microsome (M) and proteoliposome (P) preparations from S. cerevi-
siae expressing vector only (Control) or V5-tagged Gmt1 or Gmt2 (2.5 μg protein per lane; S,

molecular weight standards; C, control; 1, Gmt1; 2, Gmt2). (B and C) Representative LC-MS/

MS spectra of GMP-preloaded proteoliposomes (B, Control; C, Gmt1) incubated for 10 min

at 37˚C with a mixture of 16 nucleotide / nucleotide sugar substrates, each 50 μM. Peak 1,

GDP-Man; Peak 2, GDP-Glc; Peak 3, GDP-fucose (D and E) Quantification of nucleotide

sugar uptake into proteoliposomes preloaded with (D) 30 mM GMP or (E) 30 mM UMP. Data

were normalized to the total protein content of the proteoliposome preparations and show the

mean ± SD of four assays. These results are consistent with prior studies [21,30] and yield new

information about Gmt substrate specificity.

(PDF)

S1 Table. Methylation analysis of GXM for the indicated strains.

(PDF)

S2 Table. Staining and stress sensitivity of Cryptococcus neoformans strains.

(PDF)

S3 Table. Nucleotide sugar contents of Cryptococcus neoformans strains.

(PDF)

S4 Table. Uxt1 and Uxt2 content of proteoliposomes used for transport assays.

(PDF)
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