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The neural encoding of information 
prediction errors during non-
instrumental information seeking
Maja Brydevall1,2, Daniel Bennett1,2, Carsten Murawski   2 & Stefan Bode1

In a dynamic world, accurate beliefs about the environment are vital for survival, and individuals 
should therefore regularly seek out new information with which to update their beliefs. This aspect of 
behaviour is not well captured by standard theories of decision making, and the neural mechanisms 
of information seeking remain unclear. One recent theory posits that valuation of information results 
from representation of informative stimuli within canonical neural reward-processing circuits, even 
if that information lacks instrumental use. We investigated this question by recording EEG from 
twenty-three human participants performing a non-instrumental information-seeking task. In this 
task, participants could pay a monetary cost to receive advance information about the likelihood of 
receiving reward in a lottery at the end of each trial. Behavioural results showed that participants 
were willing to incur considerable monetary costs to acquire early but non-instrumental information. 
Analysis of the event-related potential elicited by informative cues revealed that the feedback-related 
negativity independently encoded both an information prediction error and a reward prediction error. 
These findings are consistent with the hypothesis that information seeking results from processing 
of information within neural reward circuits, and suggests that information may represent a distinct 
dimension of valuation in decision making under uncertainty.

Seeking information is an important drive of behaviour, and a key component of effective decision making 
under uncertainty1. However, normative decision theory, which assumes that the value of information resides 
in its instrumental utility for acquiring future rewards2–4, provides a poor description of information seeking 
in humans and other animals. In particular, such theories cannot account for findings showing that animals 
place a positive value on information that resolves uncertainty but which cannot be used to affect future tangi-
ble outcomes (termed non-instrumental information). Human participants, for instance, display a clear prefer-
ence for acquiring non-instrumental information about both aversive and appetitive future events5–7 and many 
species, including humans, exhibit a willingness to sacrifice part of an uncertain future reward in exchange for 
non-instrumental information about the reward’s likelihood6,8–10. These behavioural findings indicate that ani-
mals treat information as though it were of intrinsic value (cf. Grant, Kajii and Polak11).

One recent proposal, the ‘common currency’ hypothesis, is that the intrinsic value of information might result 
from common neural substrates for processing of rewarding and informative stimuli12. Neural recordings from 
non-human primates have demonstrated that non-instrumental information is encoded within brain regions 
typically associated with reward processing, such as the dopaminergic midbrain13, lateral habenula12 and orbitof-
rontal cortex9. Notably, Bromberg-Martin and Hikosaka12 reported that in response to informative stimuli, neu-
rons in macaque lateral habenula encoded both reward prediction errors (RPEs; the signed difference between 
expected and actual reward) and information prediction errors (IPEs; the signed difference between expected and 
actual information). Similarly, functional magnetic resonance imaging (fMRI) in humans has revealed that the 
delivery of information is associated with increased blood-oxygen-level dependent signals within brain regions 
typically associated with reward processing, such as the striatum14,15. This resemblance suggests a common neural 
coding scheme for information and primary reward, which might result from mechanisms such as an intrinsic 
reward value of information12 or boosting of anticipatory utility by reward prediction errors associated with 
informative stimuli16.
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To date, many predictions of the common currency hypothesis of information valuation have not been inves-
tigated in humans. To address this question, the present study recorded the electroencephalogram (EEG) from 
human participants completing a non-instrumental information seeking task, assessing willingness-to-pay for 
non-instrumental information6. On each trial, a lottery was drawn in which participants had an equal proba-
bility of winning (receiving 20 cents) or losing (receiving 0 cents). Prior to the lottery draw, participants could 
choose to view either an informative stimulus, which imparted early information about the lottery outcome, or a 
non-informative stimulus, which was perceptually identical to the informative stimulus but imparted no informa-
tion about the lottery outcome (see task schematic in Fig. 1). Information was imparted in the form of five-card 
arrays of red and black cards; participants were informed that, should they choose to observe the informative 
stimulus, the relative proportions of red and black cards would provide information about the outcome of the 
lottery. Specifically, participants were informed that a majority of red cards would predict a loss in the lottery, 
whereas a majority of black cards would predict a win in the lottery. In the non-informative stimulus, by contrast, 
relative proportions of red and black cards were determined at random and therefore provided no information 
about the outcome of the subsequent lottery. This ensured that the informative and non-informative stimuli were 
perceptually identical to one another and differed only in terms of the degree to which they imparted informa-
tion about the subsequent lottery. To assess participants’ willingness to pay for non-instrumental information, a 
variable cost was associated with viewing the informative stimulus, to be deducted from participants’ winnings 
in the case of a win outcome only.

The structure of trials in this task was tripartite: first, a choice between an informative stimulus and a 
non-informative stimulus; second, presentation of cards in the chosen stimulus; third, the presentation of the 
trial outcome in the form of monetary winnings. In order to investigate the neural correlates of the processing of 
non-instrumental information, we assessed event-related potentials evoked by the presentation of informative 
cards. This allowed us to distinguish between the neural correlates of information (cards which increased cer-
tainty about the outcome of the lottery, independent of whether certainty pertained to a win or a loss) and the 
encoding of the likelihood of winning the lottery (red versus black cards). Specifically, we investigated whether 
IPEs associated with non-instrumental information were encoded in the feedback-related negativity (FRN) com-
ponent of the event-related potential (ERP). According to one prominent theory, FRN amplitude reflects RPEs 
following the disinhibition of neurons in anterior cingulate cortex by mesencephalic dopamine neurons17. In sup-
port of this contention, it has been shown that FRN amplitudes are greater following negative RPEs than positive 
RPEs18,19. Indeed, it has been proposed that the FRN could be reconceptualised as a ‘reward positivity’20 encoding 
the hedonic value of stimuli relative to expectations. Premised upon this dopaminergic RPE model of the FRN, 
the common currency hypothesis of information valuation therefore predicts that IPEs should also be encoded 
in the FRN, in a comparable fashion to RPEs. In addition, we also conducted two sets of exploratory analyses to 
explore the encoding of IPEs and RPEs in two ERP components temporally adjacent to the FRN: the N121, and 
the late positive potential22 (LPP).

Results
Behavioural results.  One participant failed an attention check and was therefore excluded from further 
analysis (see Methods). Behavioural results (Fig. 2) replicated the overall findings of Bennett et al.6. A repeat-
ed-measures analysis of variance (ANOVA) revealed that preference for information was modulated by the cost 
of information (F(1.76, 36.99) = 58.02, p < 0.001, p

2η  = 0.42). Participants displayed a strong preference for the 
informative stimulus when it was available at no cost (t-test against 0.5: t(21) = 16.96, p < 0.001), and a non-neg-
ligible preference for this stimulus when it was available at a cost (t-test against zero: t(21) = −3.55, p = 0.01). 
Preference for information decreased with increasing information cost (single-sample t-test of coefficients from 
a linear regression against zero: t(21) = −9.98, p < 0.001). There was also considerable inter-individual variability 
in preference for information as measured by overall proportion of choices to observe the informative stimulus 
(M = 0.39, range = 0.15 to 1). These results suggest that participants assigned an intrinsic value to the non-instru-
mental information imparted by the informative stimulus.

Figure 1.  Illustration of trial structure. Participants chose to observe either an informative or a non-
informative stimulus concerning the outcome of a monetary lottery. Stimuli were arrays of red and/or black 
cards. In the informative stimulus, the relative proportion of red and black cards perfectly predicted the lottery 
outcome (majority black cards: win; majority red cards: loss). In the non-informative stimulus, the relative 
proportion of card colours was unrelated to the lottery outcome. These options were presented to participants as 
a choice between Set A and Set B, with the identity of the informative stimulus pseudo-randomised across trials. 
Participants were also informed of the cost of observing the informative stimulus. After the participant’s choice, 
cards were drawn one-by-one at a constant rate. Once all cards were drawn, the outcome of the monetary lottery 
was revealed to participants.
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ERP results.  We investigated how RPEs and IPEs were encoded in the amplitude of the feedback-related 
negativity elicited by the presentation of informative cues (both card presentation and trial outcome screens; 
see Method for further information regarding trial structure). RPEs were calculated as the discrepancy between 
expected lottery winnings prior to observing the stimulus and actual expected lottery winnings after observing 
the stimulus.

RPE Pr win Pr win20( ( ) ( ) ) (1)post prior= −

The number 20 in Equation 1 refers to the number of cents associated with a win outcome. Similarly, IPEs 
were calculated as the difference between the actual information content of a stimulus I and its expected infor-
mation content Iexpected:

IPE I I (2)expected= −

Information content was itself calculated as the reduction of belief entropy, as per information theory (see 
Method for further information regarding the computation of these variables). Analogous to RPEs, a positive IPE 
occurred upon presentation of stimuli that conveyed more information than expected, and vice versa for negative 
IPEs. Crucially, the equiprobability of red and black cards meant that IPEs and RPEs were statistically independ-
ent of one another by design.

Reward prediction errors.  We first examined whether the amplitude of the FRN evoked by the presentation of 
informative cards encoded RPEs, as predicted by a prominent reinforcement learning theory17. In line with pre-
vious studies19,23, we analysed FRN amplitudes using a 2 × 5 repeated-measures ANOVA with factors of RPE 
(positive, negative) and electrode (Fpz, AFz, Fz, FCz, Cz), which revealed a significant main effect of RPE on FRN 
amplitude (F(1, 14) = 6.09, p = 0.03, ηp

2 = 0.30), with negative RPEs (M = 3.08, SEM = 0.55) associated with a 
more negative FRN amplitude compared to positive RPEs (M = 4.49, SEM = 0.55; see Fig. 3A). This indicates that 
the FRN encoded RPEs in a typical fashion in the present study.

We also observed a significant main effect of electrode on FRN amplitude (F(1.62, 22.61) = 53.66, p < 0.001, 
ηp

2 = 0.49); however, this effect did not interact significantly with the effect of RPE (F(1.83, 25.55) = 0.98, p = 0.43).
In our exploratory analyses, we found a significant modulation of N1 amplitude by RPE sign (F(1, 14) = 6.78, 

p = 0.02, ηp
2 = 0.33), driven by a larger N1 component in response to negative RPEs (M = −1.81, SEM = 0.47) than 

to positive RPEs (M = −0.53, SEM = 0.14). There was no significant modulation of LPP amplitude by RPE sign 
(F(1, 14) = 1.24, p = 0.28).

Information prediction errors.  As with the RPE analysis, we used a 2 × 5 repeated-measures ANOVA to investi-
gate the effects of IPE (positive, negative) and electrode (Fpz, AFz, Fz, FCz, Cz) on FRN amplitude. Analogous to 
the effect of RPE, we observed a significant main effect of IPE on FRN amplitude (F(1, 14) = 7.75, p = 0.01, 

p
2η  = 0.36), driven by significantly more negative FRN amplitudes in response to negative IPEs (M = 2.80, 

SEM = 0.66) than to positive IPEs (M = 4.94, SEM = 0.70; see Fig. 3B). These results indicate that both IPEs and 
RPEs were encoded by the FRN: negative prediction errors—both RPEs and IPEs—elicited more negative FRN 
amplitudes relative to positive prediction errors. As for the RPE analysis, we also found a significant main effect 
of electrode on FRN amplitude (F(1.71, 23.90) = 37.83, p < 0.001, ηp

2 = 0.43), but no interaction between electrode 
and RPE (F(4, 56) = 0.19, p = 0.93).

Figure 2.  Behavioural results. Full distributions of proportion of informative stimulus choices (denoted 
Pr(Info)) are presented as a function of information cost. Black datapoints represent individual participants.
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To assess the generality of these findings, we next conducted an additional control analysis to determine 
whether a similar modulation of FRN amplitudes was observed when zero IPE events were also included in anal-
ysis. To this end, a 5 × 3 repeated-measures ANOVA was used to assess the within-participants effects of IPE 
(positive, negative, zero) and electrode on the amplitude of the FRN. As above, this new analysis revealed a main 
effect of IPE for the informative stimulus (F(2, 28) = 6.03, p < 0.01, ηp

2 = 0.15). Consistent with the results of the 
main analysis, post-hoc paired-sample t-tests with Bonferroni correction for multiple comparisons indicated that 
this main effect was driven by a significantly more negative FRN for negative IPEs (M = 2.81, SEM = 0.66) than 
for positive IPEs (M = 4.94, SEM = 0.71; p = 0.04), as well as for negative IPEs relative to zero IPEs (M = 4.28, 
SEM = 0.59; p = 0.02). ERP waveforms for this analysis are presented in Supplementary Fig. S1.

In our exploratory analyses, we found a significant modulation of N1 amplitude by IPE (F(1, 14) = 4.85, 
p = 0.045, ηp

2 = 0.26), driven by a larger N1 component in response to negative IPEs (M = −1.87, SEM = 0.48) 
than to positive IPEs (M = −0.76, SEM = 0.20). There was no significant modulation of LPP amplitude by IPE 
sign (F(1, 14) = 3.83, p = 0.07).

Amount of information.  We also examined whether the absolute amount of information delivered by stimuli was 
also encoded in the FRN. This involves looking at information independent of expectations; positive information 
can be defined as becoming more certain of the trial outcome (both more certain of winning and more certain 
of losing), whereas negative information involves becoming less certain of the trial outcome. It is important to 
note that amount of information will tend to be positively correlated with the sign of IPEs, since trials with a 
positive IPE are a subset of all trials with a positive amount of information, and vice versa for negative IPEs. As 
such, this analysis should be considered an incremental modification of the IPE analysis presented above, rather 
than a discrete inquiry. In addition, since participants always learned the outcome by the end of the informative 
stimulus, relatively more cards decreased uncertainty than increased it, meaning that trial numbers were not 
balanced between positive and negative information. As such, trial numbers were not balanced between positive 
and negative information in this analysis.

Using a 2 × 5 repeated-measures ANOVA, we assessed the effect of information (positive, negative) and elec-
trode (Fpz, AFz, Fz, FCz, Cz) on FRN amplitude. We found a significant main effect of information (F(1, 
14) = 9.59, p < 0.01, ηp

2 = 0.41), with more negative FRN amplitudes for negative information (greater uncer-
tainty; M = 2.80, SEM = 0.66) relative to positive information (greater certainty; M = 4.35, SEM = 0.45). Again, 
we observed a significant main effect of electrode (F(1.69, 23.66) = 61.30, p < 0.001, ηp

2 = 0.48), but no interaction 
effect between information and electrode (F(2.36, 32.97) = 0.87, p = 0.49). ERP waveforms for this analysis are 
presented in Supplementary Fig. S2.

In our exploratory analyses, we found a significant modulation of N1 amplitude by amount of information 
(F(1, 14) = 13.52, p < 0.01, p

2η  = 0.49), driven by a larger N1 component in response to negative information 

Figure 3.  ERP waveforms and scalp maps. Grand average ERP waveforms and scalp maps for positive and 
negative reward prediction errors (A) and positive and negative information prediction errors (B) at electrode 
Cz. The dark blue waveform denotes a difference wave (negative - positive prediction errors), and the teal 
rectangle denotes the FRN measurement window (200–350 ms). Scalp maps display the topography of the 
mean difference wave over this measurement window. Circled frontocentral electrodes are those at which FRN 
amplitude was calculated for analysis. In both grand average waveforms and scalp maps, negative voltages are 
plotted upwards.
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(greater uncertainty; M = −1.87, SEM = 0.48) than to positive information (greater certainty; M = −0.71, 
SEM = 0.18). There was no significant modulation of LPP amplitude by amount of information (F(1, 14) = 3.16, 
p = 0.10).

Non-informative stimuli.  As an additional control analysis, we next investigated whether the modulation of the 
FRN in response to RPEs and IPEs was unique to cards following a decision to view the informative stimulus, or 
whether similar patterns were observed for cards following a decision to observe the non-informative stimulus. 
To do this, we calculated pseudo-RPE and IPE variables for cards in each non-informative stimulus as though 
they had instead been an informative stimulus (because technically, according to the formulae set out in the 
Method section, IPEs and RPEs were always zero for cards in the non-informative stimulus).

We observed no modulation of the FRN by RPEs for the non-informative stimulus (F(1, 18) = 0.02, p = 0.90; 
see Supplementary Fig. S3). However, in an in interesting parallel to the effect of IPE in the informative stimulus, 
we also observed a small effect of IPE (F(1, 18) = 4.58, p = 0.046, p

2η  = 0.20), with a more negative FRN for nega-
tive pseudo-IPEs (M = 2.82, SEM = 0.67) than for positive pseudo-IPEs (M = 4.08, SEM = 0.42; see 
Supplementary Fig. S4). There was no significant effect of absolute amount of information on FRN amplitude for 
non-informative stimuli (F(1, 18) = 0.47, p = 0.50; see Supplementary Fig. S5).

In our exploratory analyses, we observed no significant modulation of N1 amplitude in the non-informative 
stimulus by IPEs (F(1, 18) = 1.97, p = 0.18), RPEs (F(1, 18) = 0.42, p = 0.53), or amount of information (F(1, 
18) = 0.20, p = 0.66). Similarly, we observed no significant modulation of LPP amplitude in the non-informative 
stimulus by IPEs (F(1, 18) = 1.29, p = 0.27), RPEs (F(1, 18) = 0.93, p = 0.35), or amount of information (F(1, 
18) = 0.61, p = 0.45).

Outcome screen ERPs.  There was no significant difference in FRN amplitudes between win and loss outcomes, 
either when analyses were conducted on all trials pooled together (F(1,18) = 3.54, p = 0.08), or when analyses 
were conducted separately for outcome screens following an informative stimulus (F(1, 18) = 3.74, p = 0.07; see 
Supplementary Fig. S6) and for outcome screens following a non-informative stimulus (F(1, 17) = 0.11, p = 0.74; 
see Supplementary Fig. S7).

Similarly, in our exploratory analyses, we observed no significant modulation of N1 amplitude by outcome 
when all trials were pooled (F(1, 18) = 0.002, p = 0.96), or in trials following either informative stimuli (F(1, 
18) = 0.07, p = 0.79) or non-informative stimuli (F(1, 17) = 0.82, p = 0.65). Finally, we also no significant modu-
lation of LPP amplitude by outcome when all trials were pooled (F(1, 18) = 1.65, p = 0.22), or in trials following 
either informative stimuli (F(1, 18) = 1.28, p = 0.27) or non-informative stimuli (F(1, 17) = 0.06, p = 0.81.

Source localisation analyses.  Finally, in order to assess whether differences in encoding of RPEs and IPEs were 
likely to reflect differences in the FRN, rather than in other ERP components that might be coactive with the FRN, 
we conducted an additional source-localisation analysis. In this analysis, we tested whether a candidate cortical 
generator for the FRN, the anterior cingulate cortex (ACC)24, displayed differential estimated activation as a 
function of prediction error sign, based on a reconstruction of ACC activation from EEG voltage recorded at the 
scalp (see Methods for further information).

Consistent with our identification of differences in frontocentral EEG activity as an FRN, we found that recon-
structed ACC activity significantly differed as a function of prediction error sign, both for positive reward pre-
diction errors relative to negative reward prediction errors (t(14) = 2.29, p = 0.04) and for positive information 
prediction errors relative to negative information prediction errors (t(14) = 2.53, p = 0.02). These findings give us 
further confidence in our accurate identification of an FRN in the present study.

Discussion
This study used an information seeking task to investigate human participants’ preference for non-instrumental 
information in decision making under uncertainty. Using EEG, we assessed how both reward prediction 
errors and information prediction errors were reflected in the feedback-related negativity component of the 
event-related potential. Behavioural results replicated the overall pattern of findings previously reported by 
Bennett and colleagues6, consistent with an intrinsic valuation of information (cf. Grant et al.11). That is, partic-
ipants displayed a clear preference for acquiring non-instrumental information, despite the fact that this infor-
mation was at times associated with a direct monetary cost. Analyses of the ERP evoked by informative stimuli 
revealed that RPEs and IPEs were both encoded in a comparable fashion in the amplitude of the FRN component.

ERP analyses showed that the modulation of the FRN during task events that elicited positive and negative 
IPEs was consistent with FRN modulation by positive versus negative RPEs. The FRN has traditionally been 
considered to encode correct and incorrect responses in tasks17,25, as well as rewarding outcomes23,26. As such, our 
ERP analyses show a striking parallel in FRN encoding of informative and rewarding outcomes. This is concep-
tually consistent with the finding that firing rates of single neurons in primates respond in the same manner to 
positive/negative IPEs as to positive/negative RPEs12. Since FRN amplitude is thought to be related to dopamin-
ergic projections to the anterior cingulate cortex24, the modulation of the FRN by positive and negative RPEs has 
been suggested as an index of dopaminergic reward processing17. As such, the finding that IPEs and RPEs were 
both reflected in a similar fashion in the FRN provides evidence in favour of the common currency hypothesis12, 
according to which the intrinsic value of information might result from its representation within canonical neu-
ral reward-processing circuits. It is important to note that IPEs and RPEs were encoded independently of one 
another for the task design employed in the present study. A positive RPE—that is, viewing a black card in the 
informative stimulus—could therefore be associated with either a positive, negative, or null IPE depending on the 
composition of cards preceding and succeeding the event.
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Interestingly, our analyses of ERPs elicited by trial outcome screens revealed no significant modulation of the 
FRN by wins versus losses, only a non-significant trend. This is inconsistent both with previous FRN research 
showing that rewarding outcomes modulated the FRN23,26, and also with the modulation of the FRN by reward 
prediction errors in response to informative stimuli in the present study. These findings are likely to be due 
to underpowered statistical analyses, since the task employed in the present study the task only included one 
outcome screen event per trial, compared to five card stimuli per trial. In this light, we consider it likely that an 
experiment designed specifically to study outcome screens (utilising a higher overall number of trial outcome 
events) would detect a statistically significant modulation of FRN amplitudes by outcome screens. Alternatively, 
we note that according to one model of information-seeking behaviour, the value of reward-predictive stimuli 
may exceed the value of the rewarding outcome itself, as a result of the increase in anticipatory utility associated 
with positive predictive cues16.

We also conducted two sets of exploratory analyses to investigate the encoding of reward prediction errors 
and information prediction errors in two ERP components temporally adjacent to the FRN: the N1 and the LPP. 
Results of these exploratory analyses suggest several interesting lines of inquiry for future research. N1 analyses 
revealed a modulation of N1 amplitude by the sign of both RPEs and IPEs, with negative prediction errors of both 
kinds associated with a larger (more negative) N1 component than positive prediction errors. This finding is in 
line with a large body of literature demonstrating that the N1 component is modulated by the hedonic value and 
task salience of stimuli21,27,28, and is therefore in line with the broader claims of this paper concerning the reward 
value of information in decision making under uncertainty. In the case of the LPP, a prolonged positive-going 
deflection elicited by the presentation of affectively charged stimuli such as emotive images22,29, results of the 
present study were more circumstantial. We observed a non-significant trend toward an effect of IPE sign on LPP 
amplitude, which may suggest a differentiation in affective responses to positive versus negative prediction errors. 
Given the marginality of this statistical result and its status as an exploratory analysis, however, further research 
is required before any substantive conclusions can be drawn regarding this hypothesis.

Several recent findings have challenged the RPE-FRN model of Holroyd and Coles17. For instance, Talmi, 
Atkinson and El-Deredy30 found that FRN amplitude, in addition to increasing when reward was unexpect-
edly withheld, also increased when aversive outcomes were unexpectedly withheld30. Since unexpectedly with-
held aversion represents a positive RPE, the Holroyd and Coles17 model predicts the opposite pattern. Similarly, 
Hauser and colleagues31 reported that the FRN was more strongly associated with the absolute value of RPEs, 
rather than signed RPEs, and therefore concluded that FRN amplitudes were driven more by surprise than by out-
come valence31. The results of the present study may suggest an alternative interpretation of these past findings. 
Our findings demonstrate that the FRN encodes information as well as reward; this finding cannot be explained 
as a form of surprise encoding, since black and red cards were equally probable for each card draw, and therefore 
equally surprising according to standard operationalisations of stimulus-bound surprise32. Rather, it is possible 
that past findings demonstrating surprise encoding in the FRN may reflect a complex interaction between RPEs 
and IPEs. The present study, which averaged across positive and negative IPEs when analysing RPEs, and vice 
versa when analysing IPEs, had insufficient power to investigate the factorial interaction of RPEs and IPEs. This is 
an important subject for future research, which could thereby investigate whether there is any asymmetry in IPE 
encoding as a function of RPE sign, or of RPE encoding as a function of IPE sign.

Under the hypotheses set out above, we did not expect to find any effects of prediction errors on the FRN 
during non-informative task events. As expected, for these events there was no effect of RPEs on FRN amplitude, 
as well as no effect of the amount of outcome-relevant information. However, we did find a small but significant 
difference in amplitude of the FRN elicited by non-informative stimuli during the equivalent of positive and neg-
ative IPEs, and this effect was in the same direction as that observed in informative stimuli. One possible expla-
nation for this finding is that, although participants did not receive information about the lottery outcome in the 
non-informative stimulus, this stimulus may have imparted incidental distributional information. That is, the 
relative proportions of red and black cards in the non-informative stimulus may have allowed participants to 
update their beliefs regarding the generative binomial rate of card colours. It is noteworthy in this respect that the 
effect of IPE in the non-informative stimulus was considerably smaller than the effect in the informative stimulus 
(ηp

2 of 0.20 compared to 0.36), and that this non-informative stimulus effect was reduced to a non-significant 
trend when trials with zero IPEs were included in analysis. Alternatively, given the simple and repetitive task 
design of the present study, another possible explanation for this finding is that participants might also have been 
unable to suppress tracking the cards ‘as if ’ they contained outcome-relevant information. This might have 
reflected participants’ attempts to assess the generality of the learned associations of card colours. Although we 
instructed participants that cards in the non-informative stimulus were not predictive of outcomes, participants 
may nevertheless have attempted to ascertain whether this was truly the case in trials when they chose the 
non-informative stimulus.

The current study is the first to investigate similarities between information and reward processing in human 
participants using EEG. Our primary finding, that IPEs and RPEs are both reflected in the FRN, is conceptu-
ally consistent with previous studies showing that informative stimuli are encoded in brain regions traditionally 
associated with reward processing. These include the dopaminergic midbrain and lateral habenula12,13, the orb-
itofrontal cortex9, regions of the striatum14,15 and anterior insula33. Under the common currency hypothesis, and 
premised upon the assumption that the FRN denotes a reward positivity20, these findings suggest that acquiring 
information may be inherently rewarding, regardless of the instrumental use of the information provided. An 
expected-reward-maximising agent would not give up monetary reward for information that cannot be used to 
affect task outcomes. However, if information itself has an inherent motivational value, then this value can offset 
the monetary cost to the participant. It is important to note, however, that we are not able to conclude on the 
basis of these data alone that midbrain dopaminergic structures or the orbitofrontal cortex played a role in the 
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processing of non-instrumental information. This degree of spatial resolution is beyond the scope of the scalp 
EEG recordings which we acquired in the present study. Instead, we note that the involvement of these structures 
in the encoding of information prediction errors has been established elsewhere, using single-neuron studies in 
macacque monkeys9,12 and fMRI studies in humans14. The primary contribution of the present study is to show 
that among human participants who displayed a preference for non-instrumental information, an ERP compo-
nent thought to reflect processing of a neural reward prediction error also encoded an information prediction 
error, consistent with past findings in monkeys and humans.

Two distinct neural mechanisms have been proposed which can account for this ‘common currency’ of infor-
mation and reward. Bromberg-Martin and Hikosaka12 posited that the resolution of uncertainty may itself be 
inherently rewarding, meaning that information has an explicit value unrelated to its instrumental utility for 
future planning. This explicit value was proposed to manifest in the encoding of IPEs in dopaminergic midbrain 
neurons. Alternatively, Iigaya and colleagues16 noted that animals awaiting the outcome of a lottery might experi-
ence anticipatory utility (dread of expected losses and savouring of expected wins). In such a scenario, Iigaya and 
colleagues16 proposed that the absolute value of reward prediction errors elicited by informative stimuli might 
provide an additive boost to this anticipatory utility. Such a mechanism could result in an apparent encoding of 
IPEs within canonical reward-processing neurons without the necessity of assuming an explicit value of informa-
tion, since the card transitions that would be associated with increased/decreased utility in this way are the same 
as those associated with positive/negative information prediction errors (see Fig. 4C). As such, the findings of the 
present study are consistent with the mechanisms proposed by both Bromberg-Martin and Hikosaka12 and Iigaya 
et al.16. ERP components recorded at the scalp do not measure the activity of dopaminergic midbrain neurons 
directly, and even direct measures from these brain regions have proven insufficient to distinguish between these 
two accounts. As such, both models propose viable candidate physiological mechanisms for the observed findings 
of the present study. More broadly, the role of anticipatory utility in the valuation of information is an important 
topic for future study. Theories of anticipatory utility can describe individuals’ preferences over deterministic out-
comes34, sequences of positive outcomes35, and two-period decision problems36. In determining the relationship 
of these theories to human information-seeking behaviour, an important topic for future study is the nature of 
individuals’ preference for non-instrumental information about losses (rather than gains, as in the present study).

Figure 4.  Schematic overview of task events. Segment colours within each circle denote the number of 
black and red cards visible at any point in time, whereas lines denote transitions between states (card draws). 
(A) Overall schematic including both informative (left) and non-informative (right) stimuli. Stimuli were 
perceptually identical, and differed only in that the majority colour in the informative stimulus perfectly 
predicted lottery outcome (win, W; loss, L). (B) Informative stimulus schematic, with positive reward 
prediction errors (RPEs) denoted by solid lines, negative RPEs by dashed lines, and zero RPEs by grey lines. 
(C) Informative stimulus schematic, with positive information prediction errors (IPEs) denoted by solid lines, 
negative IPEs by dashed lines, and zero IPEs by grey lines.
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In sum, the present study found that human participants exhibited a clear preference for acquiring 
non-instrumental information about future outcomes. Moreover, the neural encoding of information prediction 
displayed striking similarities to patterns of encoding of reward prediction errors. An updated decision theory 
in which information itself is a dimension of stimuli which contributes to their hedonic value—whether directly, 
via an explicit valuation of information, or indirectly, via an anticipatory boosting mechanism—may assist in 
explaining and predicting patterns of decision making in the presence of reducible uncertainty.

Methods
Participants.  Participants were 23 healthy, right-handed participants (14 female, 9 male) aged between 18 
and 32 years of age (M = 23.04, SD = 4.15). Participants completed two sessions of a non-instrumental informa-
tion seeking task (see Fig. 1): a preliminary behavioural training session, and an EEG testing session. The present 
study reports behavioural and EEG results solely from the EEG testing session; behavioural results from the 
preliminary training session were previously reported as Experiment 2 in Bennett et al.6. Participants received 
monetary compensation of AUD $10 per session, as well all task winnings up to a maximum of $15 (M = $11.48, 
SD = 1.18). All participants provided written informed consent, and research was conducted in accordance with 
the Declaration of Helsinki. All study protocols were approved by The University of Melbourne Human Research 
Ethics Committee (ID 1341084).

Protocol and apparatus.  Before commencing the preliminary behavioural session, participants received 
verbal and written instruction of the task and were permitted to complete a practice task. Participants were 
informed that their choice of stimulus on each trial would not affect the likelihood of winning the lottery, and that 
the probability of winning and losing was equal on each trial.

The task was presented on a Dell P2210 LCD monitor (1680 × 1050 screen resolution; refresh rate 60 Hz) using 
the Psychophysics Toolbox37. On each trial, the participant chose between an informative and a non-informative 
stimulus by using the index finger of their right hand to press either the left or the right button of a five-button 
Cedrus response box. The left-right response mapping was pseudo-randomised across trials. Participants 
completed 7 blocks of 16 trials each while EEG was recorded, with a total testing duration of approximately 
50 minutes.

In order to ensure that participants maintained attention on the chosen stimulus as it was revealed, a small 
number of trials (approx. 10%) were ‘catch trials’, in which one card in the chosen stimulus was drawn to reveal a 
white X rather than a red or black card. Participants were instructed to respond to this attention check by press-
ing any button within 1.5 seconds. Failure to do so resulted in the deduction of $1 from overall winnings. This 
ensured that participants did not disengage from the task during stimulus presentation, and attended equally to 
both stimulus types.

In line with previous research using this task6, it was determined a priori that participants who failed to 
respond to more than two catch trials would be deemed to have failed an attention check. One participant failed 
to respond on four catch trials, and was therefore excluded from all further analysis. The remaining partici-
pants showed good levels of task engagement as measured by successful responses to catch trials (M = 98.11%, 
SD = 3.57%).

EEG data acquisition and preprocessing.  EEG data were acquired from 64 Ag/AgCl active scalp elec-
trodes located according to the International 10–20 system. Data were recorded at a sampling rate of 512 Hz 
using a BioSemi ActiveTwo system using an implicit reference during recording, and were linearly detrended 
and re-referenced offline to an average of left and right mastoids. The electrooculogram was recorded from two 
infraorbital electrodes horizontally adjacent to and below the left eye.

EEG data were preprocessed using EEGLAB38, according to a semi-automated preprocessing pipeline39,40. 
Data were high- and low-pass filtered at 0.1 Hz and 70 Hz respectively, and notch filtered from 45–55 Hz to 
remove background electrical noise. Data were segmented into epochs from 1000 ms before to 1000 ms after 
events of interest, and baseline corrected using a 100 ms pre-stimulus baseline. An Independent Component 
Analysis (ICA) using an infomax algorithm as implemented in EEGLAB was used to identify and remove com-
ponents of the data related to eyeblink and saccade artefacts. The mean number of components removed per par-
ticipant was 1.78 (range = 1 to 3). Components were identified by trained observers on the basis of their frontal 
scalp topography and symmetry in the sagittal plane. Data were inspected before and after eyeblink correction to 
evaluate the effectiveness of this correction, and any epochs for which eyeblink correction failed were manually 
excluded from further analysis. Noisy data channels were interpolated using a spline interpolation routine; no 
interpolated data channels were included in final ERP analyses. Finally, an impartial artefact screening procedure 
automatically excluded all epochs in which maximum/minimum amplitudes exceeded 200 mV.

EEG data analysis.  ERP analyses.  ERP analyses were conducted using ERPLAB41. In line with previous 
research, FRN amplitudes were calculated for each condition as the mean amplitude from 200 to 350 milliseconds 
post-stimulus at the five fronto-central channels Fpz, AFz, Fz, FCz, and Cz26. These five channels are located above 
the medial frontal cortex, a candidate generator for the FRN17,23. The decision to use a 200–350 ms analysis win-
dow was motivated by identification of the FRN with this time period in several recent reviews24,42. The N1 was 
quantified as the mean amplitude from 150–200 milliseconds post-stimulus at electrodes Fz, F3, F4, Cz, C3, and 
C421. The late positive potential was quantified as the mean amplitude from 400–700 milliseconds post-stimulus 
at electrodes Cz, CPz, CP1, CP2, and Pz22,29.

For all analyses, ANOVA degrees of freedom were adjusted using the Greenhouse-Geisser correction where 
the assumption of sphericity was violated.
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Finally, since behavioural results showed large differences in strategies between individuals, the number of 
epochs available for different ERP analyses differed between participants. ERP analyses therefore only included 
data from participants who had at least 20 epochs of each event type under consideration19. See Table S1 in the 
Supplementary Materials for a summary of the number of participants and trials included in each analysis.

Source localisation analyses.  Source localization was conducted on averaged FRN waveforms separately for each 
participant and each condition using the Brainstorm software package43. Activations were calculated using the 
unconstrained sLORETA method44 as implemented in Brainstorm, based on electrode locations relative to a 
standard Montreal Neurological Institute structural brain (Colin27) and a forward model based upon a bound-
ary element model (BEM) generated with OpenMEEG software45. Anterior cingulate cortex activation was then 
calculated based on coordinates from a standard automatic parcellation of the cingulate cortex into ROIs46. 
Timecourses of source activity for the ACC were estimated as averages across left and right hemisphere ROIs of 
maximal elementary sources at each timepoint within the FRN analysis window.

Quantification of computational variables.  Epochs were binned for ERP analysis according to three 
different computational variables: positive/negative RPEs, positive/negative IPEs, and positive/negative informa-
tion. Each of these variables was calculated according to the difference between win probabilities before and after 
observation of a card. This quantity was calculated based on the binomial probability that black cards would be in 
the majority in the informative stimulus, given conditional independence of successive card draws:

( )Pr win n n n
k( , ) 1 0 5 (3)req k

n n
0

1req∑| = − .=
−

where n is the number of cards remaining to be drawn, and nreq is the number of additional black cards required 
for a majority given nblack already drawn:
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By definition, no information is imparted by cards in the non-informative stimulus, and in this case was 
always equal to 0.5.

The reward prediction error associated with each card was calculated as the difference between the partici-
pant’s expected lottery winnings prior to and following the card draw (see Equation 1).

Following Shannon47, the information content of a stimulus was defined as the entropy difference between 
posterior and prior beliefs:

I H Pr win H Pr win( ( ) ) ( ( ) ) (5)post prior= −

With entropy defined as the binary entropy function:

H Pr win Pr win log Pr win Pr win log Pr win( ( )) ( ) ( ( )) (1 ( )) (1 ( )) (6)2 2= − . − − . −

Given n and nreq, the expected information content of any card prior to its being revealed can therefore be 
calculated as the average of the amount of information that would be associated with one additional red card and 
the amount of information that would be associated with one additional black card:
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This allows for IPEs to be calculated as per Equation 2. See Fig. 4 for a schematic overview of card transitions 
indicating events associated with positive versus negative RPEs and IPEs, and the differences between the two. 
Positive/negative RPEs indicate an increase in the likelihood of winning/losing the lottery, respectively, whereas 
positive/negative IPEs indicate that an event conveyed more/less information about the outcome than expected, 
regardless of whether that outcome was a win or a loss. Given that there was an equal probability of observing a 
red versus a black card at every point in time (i.e. each state transition in Fig. 4 was equiprobable), positive and 
negative RPEs and IPEs were therefore independent of one another for the task design used in the present study.

Data availability.  Data is available upon reasonable request from the corresponding author.
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