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Abstract

Background: Relation extraction from biomedical publications is an important task in the area of semantic mining of
text. Kernel methods for supervised relation extraction are often preferred over manual feature engineering methods,
when classifying highly ordered structures such as trees and graphs obtained from syntactic parsing of a sentence.
Tree kernels such as the Subset Tree Kernel and Partial Tree Kernel have been shown to be effective for classifying
constituency parse trees and basic dependency parse graphs of a sentence. Graph kernels such as the All Path Graph
kernel (APG) and Approximate Subgraph Matching (ASM) kernel have been shown to be suitable for classifying
general graphs with cycles, such as the enhanced dependency parse graph of a sentence.
In this work, we present a high performance Chemical-Induced Disease (CID) relation extraction system. We present a
comparative study of kernel methods for the CID task and also extend our study to the Protein-Protein Interaction (PPI)
extraction task, an important biomedical relation extraction task. We discuss novel modifications to the ASM kernel to
boost its performance and a method to apply graph kernels for extracting relations expressed in multiple sentences.

Results: Our system for CID relation extraction attains an F-score of 60%, without using external knowledge sources
or task specific heuristic or rules. In comparison, the state of the art Chemical-Disease Relation Extraction system
achieves an F-score of 56% using an ensemble of multiple machine learning methods, which is then boosted to 61%
with a rule based system employing task specific post processing rules. For the CID task, graph kernels outperform tree
kernels substantially, and the best performance is obtained with APG kernel that attains an F-score of 60%, followed by
the ASM kernel at 57%. The performance difference between the ASM and APG kernels for CID sentence level relation
extraction is not significant. In our evaluation of ASM for the PPI task, ASM performed better than APG kernel for the
BioInfer dataset, in the Area Under Curve (AUC) measure (74% vs 69%). However, for all the other PPI datasets, namely
AIMed, HPRD50, IEPA and LLL, ASM is substantially outperformed by the APG kernel in F-score and AUC measures.

Conclusions: We demonstrate a high performance Chemical Induced Disease relation extraction, without
employing external knowledge sources or task specific heuristics. Our work shows that graph kernels are effective in
extracting relations that are expressed in multiple sentences. We also show that the graph kernels, namely the ASM
and APG kernels, substantially outperform the tree kernels. Among the graph kernels, we showed the ASM kernel as
effective for biomedical relation extraction, with comparable performance to the APG kernel for datasets such as the
CID-sentence level relation extraction and BioInfer in PPI. Overall, the APG kernel is shown to be significantly more
accurate than the ASM kernel, achieving better performance on most datasets.
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Background
Automated text mining has emerged as an important
research topic for effective comprehension of the fast
growing body of biomedical publications [1]. Within this
topic, relation extraction refers to the goal of automated
extraction of relations between well known entities, from
unstructured text. Chemical-induced-Disease (CID) rela-
tion extraction is motivated by critical applications such
as toxicology studies and drug discovery. The impor-
tance of CID relations is evident from a recent study of
Pubmed search logs [2], that observed that Chemicals,
Diseases and their relations are the most popular search
topics.

Relation extraction: sentence vs non-sentence level
A large corpus of annotated Pubmed abstracts for CID
relation extraction is now available from BioCreative-V
[3] for furthering research and comparison of different
methods. This is known as the Chemical-Disease Rela-
tions (CDR) corpus. The main objective of the CID rela-
tion extraction task defined by BioCreative-V CDR task
[3], is to infer Chemical-Disease relations expressed by a
Pubmed document (Title and Abstract only). A sample
annotated article from this corpus is illustrated in Table 1.
More generally, relation extraction from text refers to
the task of inferring a relationship between two entities
mentioned in the text.
Within this corpus, many relations may be inferred by

analyzing a single sentence that bears the mentions of the
relevant entities (Chemical and Disease). We refer to such
relations as sentence level relations. For example, the rela-
tion between “Propylthiouracil” and “hepatic damage” can
be inferred by analyzing the single sentence in the title.
non-sentence level relations, such as the relation between
“propylthiouracil” and “chronic active hepatitis”, are those
in which the entity mentions are separated by one or more
sentence boundaries. These relations cannot be inferred

Table 1 Illustration of an annotated Pubmed abstract from the
CDR corpus

Title Propylthiouracil-induced hepatic damage

Abstract Two cases of propylthiouracil-induced liver damage
have been observed. The first case is of an acute type of
damage, proven by rechallenge; the second presents a
clinical and histologic picture resembling chronic active
hepatitis, with spontaneous remission.

Entity D011441, Chemical, “Propylthiouracil”, 0-16

Entity D011441, Chemical, “propylthiouracil”, 54-70

Entity D056486, Disease, “hepatic damage”, 25-39

Entity D056486, Disease, “liver damage”, 79-91

Entity D006521, Disease, “chronic active hepatis”, 246-270

Relation (CID) D011441 - D006521

Relation (CID) D011441 - D056486

by analyzing a single sentence. We refer to such relations
as the non-sentence level relations.
Prior research has shown that relation extraction can

be addressed effectively as a supervised classification
problem [4], by treating sentences as objects for classi-
fication and relation types as classification labels. Clas-
sifiers such as Support Vector Machines (SVMs) are
typically used for high performance classification by first
transforming a sentence into a flat feature vector or
directly designing a similarity score (implemented as a
kernel function) between two sentences. Kernel meth-
ods allow us to directly compute a valid kernel score
(a similarity measure) between two complex objects,
while implicitly evaluating a high dimensional feature
space.
The approach of using a kernel is favored for work-

ing with syntactic parses of a sentence which are highly
structured objects such as trees or graphs. Tree or graph
kernels are known to be efficient in exploring very high
dimensional feature spaces via algorithmic techniques.
Deep learning [5, 6] based efforts are other alternatives,
whose goal is to enable discovery of features (represen-
tation learning) with little or no manual intervention.
However, we limit our scope in this work, to exploring ker-
nel methods for CID relation extraction.We first illustrate
parse structures and then describe the kernels developed
for using these parse structures.

Parse trees vs parse graphs
Simple approaches that use a bag of words model for
a sentence, ignore the inherent order within a sentence.
However, a sentence can be mapped to an ordered object
such as a tree or a graph by using a syntactic parser [7].
We illustrate the syntactic parse structures of a sample
sentence in Fig. 1. A constituency parse tree, encodes a
sentence as a hierarchical tree, as determined by the con-
stituency grammar. The internal nodes of this tree carry
grammatical labels such as “noun phrase (NP)” and “verb
phrase (VP)” and the leaf nodes have as labels the words
or tokens in the sentence. In contrast, a dependency graph
expresses grammatical relationships such as “noun sub-
ject (nsubj)” and “verb modifier (vmod)” , as directed
and labelled edges between the tokens in the sentence.
The nodes of this graph correspond one-to-one with the
tokens of the sentence. The undirected version of a depen-
dency graph, obtained by dropping edge directions, may
or may not result in a cycle free graph. For example,
the basic version of dependency graphs produced by the
Stanford Parser [7] is guaranteed to be cycle free, in
its undirected form. However, the enhanced dependency
parses produced by the Stanford Parser may contain
cycles in its undirected form. In the example illustrated
in Fig. 1, note the cycle between the nodes “caused” and
“fatigue” in the enhanced dependency graph.
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Fig. 1 Illustration of different parse structures for the sentence :“Seizures were caused by Alcohol and Fatigue

Kernels
In NLP, tree kernels such as the Subset Tree Kernel (SSTK)
[8, 9] and Partial Tree Kernel (PTK) [10] have been used
effectively for related tasks such as sentence classification
[11]. Tree kernels are applied over syntactic parses such as
constituency parse or basic dependency parses [12]. These
tree kernels cannot handle edge labels directly and therefore
transform the original dependency trees to special trees
without edge labels, referred to as the Location Centered
Tree [13]. A further limitation is that other forms of parses
such as enhanced dependency parses which are arbitrary
graphs with cycles, cannot be used with tree kernels.
This limitation is overcome with graph kernels such as
the All Path Graph (APG) [14] kernel that can work with
arbitrary graph structures. However, APG kernel is pri-
marily designed to work with edge weighted graphs and
requires special transformation of the dependency graphs
output by the parser. APG kernel requires the conversion
of edge labels into special vertices and it assigns a heuris-
tically determined weight value to the edges. In contrast,

the Approximate Subgraph Matching (ASM) kernel is
designed to work directly with edge labels in the graph.
We present a detailed discussion of the APG and the ASM
graph kernels in “APG kernel” and “ASM kernel” sections.

Relation to prior work
In this section, we relate and contrast the contributions
of this paper with closely related prior work. In our prior
work, we proposed a graph kernel based on approxi-
mate subgraph matching (ASM) [15]. ASM kernel adopts
an approach to graph similarity that is derived from
a subgraph isomorphism based event extraction system
[16] developed for biomedical relation extraction [17].
In the first step, ASM seeks to match vertices between
the two input graphs. Then, the set of all pair shortest
paths from the two input graphs are compared, based on
the matched vertices. The similarity estimation is based
on the counts of edge labels along the shortest path.
In our previous work [18], we evaluated the effective-
ness of Subtree (STK) and Subset-tree kernels (SSTK)
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[8, 19] with constituency parse trees for the CID relation
extraction task.
In the current work, we introduce a modified form of

ASM kernel that incorporates edge weights in the graph.
Note that the ASM kernel as presented in prior work [15]
considered edge-unweighted graphs only. This ability to
incorporate edge weights enables the ASM kernel to posi-
tively discriminate between the shortest dependency path
between the entities and other paths in the graph, there-
fore boosting its performance further. For instance, the
CID sentence level relation extraction with ASM kernel as
reported in [15] is 58%, but improved to 63% in current
work. Secondly, we have extended the evaluation for the
CID task with other tree kernels namely the Partial Tree
Kernel (PTK) [10] and graph kernels ASM and APG [20]
with dependency parse graphs.

Contributions
A summary of the main contributions of this paper are :

• We demonstrate a high performance CID relation
extraction system, reaching an F-score of 60.3%.
This performance is achieved using an effective
method for non-sentence relation extraction, by
combining multiple sentence level parse structures
into larger units, and then applying the kernel
methods on the aggregate parse structures. Our
system compares favorably with prior art [21], where
an ensemble of machine learning methods was used
to achieve an F-score of 56% and then boosted to
61.3% using task specific post-processing rules. In
contrast, our system is a general purpose relation
extraction system, that does not employ any task or
domain specific rules.

• We present a novel graph kernel, namely the ASM
kernel with modifications to incorporate edge
weights in the graph. We provide a comparative
study of the performance of the ASM kernel with the
state of the art tree and graph kernels, over two
important biomedical relation extraction tasks, the
Chemical-Induced Disease (CID) and the Protein-
Protein Interaction (PPI) tasks. We demonstrate that
the ASM kernel is effective for biomedical relation
extraction, with comparable performance to the
state of the art APG kernel on several datasets such
as CID-sentence level relations and BioInfer in PPI.

• All software for reproducing the experiments in this
paper, including our implementation of the APG and
the ASM graph kernels in the Java based Kelp [22]
framework, is available in the public domain1.

Methods
In this section, we describe the 3 main kernel methods
that are studied in this paper, namely the Tree Kernels

[10, 19, 23], the All Path Graph (APG) Kernel and the
Approximate Subgraph Matching (ASM) Kernel [15].

Tree kernels
Tree kernels [8] using constituency parse or dependency
parse trees have been widely applied for several rela-
tion extraction tasks [13, 18, 24]. They estimate simi-
larity by counting the number of common substructures
between two trees. Owing to the recursive nature of trees,
the computation of the common subtrees can be effi-
ciently addressed using dynamic programming. Efficient
linear time algorithms for computing tree kernels are
discussed in [10].
Different variants of tree kernels can be obtained, based

on the definition of a tree fragment, namely subtree, sub-
set tree and partial tree. A subtree satisfies the constraint
that if a node is included in the subtree, then all its descen-
dents are also included in the subtree. A subset tree only
requires, that for each node included in the subset tree,
either all of its children are included or none is included
in the subtree. A partial tree is the most general tree frag-
ment, which allows for partial expansion of a node, i.e
for a given node in the partial tree fragment, any subset
of its children nodes may be included in the fragment.
Subset trees are most relevant with constituency parse
trees, where the inner nodes refer to grammatical produc-
tion rules. Partial expansion of a grammatical production
rule leads to inconsistent grammatical structures. As such,
subset trees restrict the expansion of a node to include
all of its children or none. For dependency parse trees
with no such grammatical constraints, partial trees are
more suitable to explore a wider set of possible tree frag-
ments. We experiment with subset tree kernels (SSTK)
with constituency parses and partial tree kernels (PTK)
with dependency parses and report the results on both.
We illustrate the constituency parse tree for a sample
sentence in Fig. 1.
Here, we present the formal definition of tree kernels.

Let T1 and T2 denote two trees and let F = {f1, f2, . . .}
denote the set of all possible tree fragments. Let Ii(n) be an
indicator function that evaluates to 1 when the fragment
fi is rooted at node n and 0 otherwise. The unnormalized
kernel score is given by:

K(T1,T2) =
∑

n1∈NT1

∑

n2∈NT2

�(n1, n2) (1)

where NT1 and NT2 are the sets of nodes of T1 and T2
respectively and �(n1, n2) = ∑|F|

i=1 Ii(n1)Ii(n2).
Efficient algorithms for computing tree kernels in linear

time in the average case are presented in [10].We used the
implementation of tree kernels provided in Kelp [22].
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APG kernel
The APG kernel [14] is designed to work with edge
weighted graphs. A given dependency graph G needs to
be first modified, to remove edge labels and introduce
edge weights. Let e = l(a, b) denote an edge e with label
l, from the vertex a to vertex b. For every such edge in
the original graph, we introduce a new node with label l
and two unlabeled edges (a, l) and (l, b) in the new graph.
The APG kernel recommends a edge weight of 0.3 as
a default setting for all edges. To accord greater impor-
tance to the entities in the graph, the edges along the
shortest path between the two entities are given a larger
weight of 0.9. This constitutes the subgraph derived from
the dependency graph of a sentence. Another subgraph
derived from the linear order of the tokens in the sentence
is constructed. In this subgraph, n vertices are created to
represent the n tokens in the sentence. The lemma of a
token is set as the label of the corresponding node. These
vertices are connected by n − 1 edges, for the n tokens
from left to right. That is, edges are introduced between
token i and token i+1. These two disconnected subgraphs
together form the final edge weighed graph over which the
APG kernel operates.
Let A denote the adjacency matrix of the combined

graph. Let “connectivity” of a path refer to the product of
edge weights along the path. Intuitively, longer paths or
paths with lesser edge weights, have connectivity closer
to 0 and shorter paths or paths with greater edge weights
have a connectivity closer to 1. Note that the matrix Ai

represents the sum of connectivity of all paths of length
i, between any two vertices. The matrix W is defined as
the sum of the powers of A, I.e W = ∑∞

i=1 Ai. It is effi-
ciently computed asW = (I−A)−1. Therefore,W denotes
the sum of connectivity over all paths. Any contribution
to connectivity from self loops is eliminated by setting
W = W − I. Finally, the APG kernel computes the matrix
Gm = LWLT , where L is the label allocation matrix, such
that L[ i, j]= 1 if the label li is present in the vertex vj and
0 otherwise. The resultant matrix Gm represents the sum
total of connectivity in the given graphG between any two
labels. Let Gm

1 and Gm
2 denote the matrices constructed as

described above, for the two input graphs G1 and G2. The
APG kernel score is then defined as :

K(G1,G2) =
|L|∑

i=1

|L|∑

j=1
Gm
1

[
li, lj

] × Gm
2

[
li, lj

]
(2)

Impact of linear subgraph
Wenoticed substantially lower performance with the APG
kernel when the labels marking the relative position of
the tokens with respect to the entities, i.e. labels such as
“before”, “middle” and “after” in the linear subgraph are
left out. For example, the F-score for AIMed in PPI task
drops by 8 points, from 42 to 34%, when these labels are

left out. This highlights the importance of the information
contained in the linear order of the sentence, in addition
to the dependency parse graph.

ASM kernel
The ASM kernel [15] is based on the principles of graph
isomorphism. Given two graphs G1 = (V1,E1) and G2 =
(V2,E2), graph isomorphism seeks a bijective mapping
of nodes M : V1 ↔ V2 such that, for every edge e
between two vertices vi, vj ∈ G1, there exists an edge
between the matched nodes M(vi),M(vj) ∈ G2 and vice
versa. The ASM kernel though, seeks an “approximate”
measure of graph isomorphism between the two graphs,
that is described below. Let L be the vocabulary of node
labels. In the first step, ASM seeks a bijective mapping
M1 : L ↔ V1, between the vocabulary and the nodes,
such that M1(li) = vj, vj ∈ V1 when the vertex vj has the
node label li. To enable this, all nodes in the graph are
assumed to have distinct labels. For every missing label li
in the vocabulary, a special disconnected (dummy) node
vj with the label li is introduced. Next, ASM does not seek
matching edges between matching node pairs. Instead, it
evaluates the similarity of the shortest path between them.
Consider two labels li, lj. Let x, y be the vertices in the

first graph with these labels respectively. I.e M1 (li) =
x,M1

(
lj
) = yandx, y ∈ V1. Let P1x,y be the shortest path

between the vertices x and y in the graph G1. Similarly, let
x′, y′ denote the matching vertices in the second graph. I.e
M2 (li) = x′,M2

(
lj
) = y′andx′, y′ ∈ V2. Let P2x′,y′ denote

the shortest path between the vertices x′ and y′ in the
graph G2. The feature map φ that maps a shortest path
P into a feature vector is described following the ASM
kernel definition below.
The ASM kernel score is computed as:

K(G1,G2) =
|L|∑

i=1

|L|∑

j=1
φ

(
P1x,y

)
· φ

(
P2x′,y′

)

s.tM1(li) = x,M1(lj) = y and x, y ∈ V1

andM2(li) = x′,M2(lj) = y′ and x′, y′ ∈ V2

(3)

Feature space
The feature space of ASM kernel is revealed by examin-
ing the feature map φ that is evaluated for each short-
est path P. ASM kernel explores path similarity along 3
aspects, namely structural, directionality and edge labels,
as described below. We use the notationWe to denote the
weight of an edge e. An indicator function Ile is used to
indicate if an an edge e has an edge label l. Similar to the
APG graph, we set the edge weights to 0.9 for edges on the
shortest dependency path between two entities and 0.3 for
the others.
Structural similarity is estimated by comparing “path

lengths”. Note that similar graphs or approximately
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isomorphic graphs are expected to have similar path
lengths for matching shortest paths. Therefore, a single
feature φdistance(P) = ∏

e∈P We , is computed to incorpo-
rate structural similarity, where We denotes the weight of
an edge e in the path P.
Directional similarity is computed like structural sim-

ilarity, but unlike structural similarity, edge directions
are considered. ASM kernel computes two features,
φforward edges(P) = ∏

f∈P Wf and φbackward edges(P) =∏
b∈P Wb, where f and b denote a forward facing and

backward facing edge respectively, in the path P.
Edge directions may themselves be regarded as special

edge labels of type “forward” or “backward”. Edge label
similarity generalizes the above notion to an arbitrary
vocabulary of edge labels E. In particular, E is the set of
dependency types or edge labels generated by the syntac-
tic parser. For each such edge label l ∈ E, ASM kernel
computes the feature φl(P) = ∏

e∈P W
Ile
e , where Ile denotes

an indicator function that takes a value 1 when the edge e
has a label l and 0 otherwise.
The full feature map φ(P) is the concatenation of the

above described features for structural, directionality and
edge label similarity. We illustrate this feature map for a
sample enhanced dependency graph illustrated in Fig. 1.
For the label pair “seizures, fatigue”, the shortest path P is
through the single intermediate vertex “caused”. For this
path, the non-zero features are : φ(P) = {φdistance =
(0.9)2,φforward edge = 0.9,φbackward edge = 0.9,φnsubj =
0.9,φnmod:by = 0.9, }.

Implementation details
We implemented the APG and ASM kernel in the Java
based Kelp framework [22]. The Kelp framework pro-
vides several tree kernels and an SVM classifier that we
used for our experiments. We did not perform tuning
for the regularization parameter for SVM, and used the
default settings (C-Value= 1) in Kelp. Dependency parses
were generated using Stanford CoreNLP [7] for the CDR
dataset. For the Protein-Protein-Interaction task, we used
the pre-converted corpora available from [14]. The cor-
pus contains the dependency parse graphs derived from
Charniak-Lease Parser, which was used as input for our
graph kernels. All software implemented by us for repro-
ducing the experiments in this paper, including the graph
kernels APG and ASM implementations are available in a
public repository.

Results
We evaluate the performance of the ASM and APG ker-
nels. We first describe our experimental setup and then
discuss the results of our evaluation of the different ker-
nels for relation extraction.

CID relation extraction
This experiment follows the Chemical-Induced Disease
Relation Extraction subtask of [3]. The CDR corpus made
available by [3] contains three datasets, namely the train-
ing set, development set and the test set. Each dataset
contains 500 PubMed documents (title and abstract only)
with gold standard entity annotations. More details about
this corpus is available at [3]. A sample Pubmed document
is illustrated in Table 1.

Classifier setup
We build separate relation extraction subsystems for sen-
tence level relations and non-sentence level relations.
That is, for any relation (C,D) in a document (where C,D
denotes a chemical and disease identifier respectively), we
search for any single sentence that bears mentions to both
the relevant entities C,D. If such a sentence is found, it is
added as an example into sentence level relation extrac-
tion subsystem. When no such sentence can be found,
such a (C,D) pair is regarded as a non-sentence relation.
For these relations, we retrieve all sentences bearing a
mention to either C or D. All such sentences are paired to
form examples for the relation (C,D). That is, an example
for a non-sentence relation (C,D) is a pair of sentences,
one containing the mention of entity C and the second
containing the mention of entity D.

Entity focus
Note that a single sentence can carry multiple entity
pair mentions, with different relations between then. For
example, the sentence “The hypotensive effect of alpha
methyldopa was reversed by naloxone”, carries two entity
pair mentions, namely “alpha methyldopa, hypotensive”
and “naloxone, hypotensive”. The first entity pair is related
(alpha methyldopa causes hypotension) whereas the sec-
ond entity pair is unrelated. Therefore, the above sen-
tence should be suitably processed to extract two different
training or testing examples for classification, that serve
two different entity-pairs, namely “alpha methyldopa,
hypotensive” and “naloxone, hypotensive”. To distinguish
between the two cases, we attach special vertices with the
labels “Entity1” and “Entity2”, that are connected to the
entity-pair in focus, in the given graph.

Examples for the classifier
For sentence level relations, we transform each sentence
into tree or graph by retrieving its constituency parse
tree or dependency parse graph. For non-sentence rela-
tion examples, we first retrieve the underlying pair of
sentences representing the example and transform each
sentence to a tree or graph. The resultant pair of trees
or graphs are then connected at the root node, with a
special edge labelled “Sentence Boundary”, to result in a
single tree or a graph, that can then be input to a tree or
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graph kernel based classifier. The relations retrieved from
the two subsystems for sentence and non-sentence level
relations are merged (union) together, to form the final
set of retrieved Chemical-Disease relations for the whole
PubMed document.

Results for the CID task
The CID Relation extraction performance of the differ-
ent kernels is characterized by measuring the Precision,
Recall and F1measures. These are presented in Table 2 for
the CDR dataset. All the measurements listed in Table 2
are based on relation extraction with gold standard entity
annotation. Further, we have provided the performance
measurements for sentence-level relations only and non-
sentence level relations only, which characterizes the per-
formance of our two relation extraction subsystems. The
column “All Relations” represents the performance of the
final relation extraction system over the full CDR test data,
that corresponds to the subtask of BioCreative-V [3].

Comparisonwith prior art
A suitable comparison from prior art is the CID relation
extraction system by [21]. Similar to our system, they use
gold standard entity annotations and do not employ any
external knowledge source or knowledge base. This prior
work by [21] consists of a hybrid system or an ensemble
of classifiers based on feature-based model, a tree kernel-
based model and a neural network model. Their system
is designed for sentence level relations only and ignores
non-sentence relations. The F-score of this hybrid system
is reported to be 56%. To further boost the performance,
the authors in [21], propose the use of custom or CID
task specific post processing rules, such as associating the
Chemical mentioned in the title with the Diseases men-
tioned in the abstract. These heuristics were found to help
boost the performance of their system to 61.3%.
In our work, we do not employ any custom heuris-

tics and instead rely on machine learning techniques
only. Interestingly, when we removed our subsystem for
non-sentence level relation extraction, we observed that

our final CID relation extraction performance, drops to
55.7% and 54.0% respectively, for the APG and ASM
kernel based systems. In other words, our final perfor-
mance of 60.3%, is due to the substantial contribution
(+5% points in F-score), from the non-sentence relation
extraction.
To summarize, our main findings from the CID relation

extraction task are:

• The APG and ASM graph kernels substantially
outperform the tree kernels for relation extraction.

• APG kernel offers the best performance, with an
F-score of 65% for sentence level relation extraction,
45% for non-sentence level relation extraction and
60% for the full CID test relations.

• ASM kernel is effective for relation extraction and
its performance approaches that of the state of the
art APG kernel, with an F-score of 63% for sentence
level relation extraction, 37% for non-sentence
relations and 57% for the full CID test relations.

• Our system achieves a close to state of the art
performance for CID relation extraction (60% vs 61%),
without employing heuristics or task specific rules.

• Effective non-sentence level relation extraction
provides a substantial boost (+5 points) to the final
F-score for our CID relation extraction task.

Protein-protein interaction extraction
The Protein-Protein Interaction (PPI) extraction task,
involves extracting Protein-pairs that interact with each
other, from Biomedical Literature. We used the PPI cor-
pora from [25], that consists of 5 datasets, namely AIMed,
BioInfer, HPRD50, IEPA and LLL. These are collections
of sentences sourced from biomedical publications about
protein interactions. The goal of the PPI task is to ana-
lyze these sentences, such as “Isolation of human delta-
catenin and its binding specificity with presenilin 1” and
extract interacting Protein-pairs such as (delta-catenin,
presenilin 1). We used the derived version of the PPI
corpora [25], that contains sentences together with their

Table 2 Performance measurements for chemical induced disease relation extraction

Method Sent-Rel. only Non-Sent-Rel. only All relations

P R F P R F P R F

SSTK with CP-Tree 43.1 73.7 54.4 36.9 14.2 20.5 42.5 56.0 48.3

PTK with LCT 42.2 75.3 54.1 30.5 40.1 34.6 39.5 64.8 49.0

APG with Dep. Graphs 54.7 80.6 65.1 47.8 43.8 45.7 53.2 69.7 60.3

ASM with Dep. Graphs 51.6 80.8 63.0 38.8 36.0 37.3 49.0 67.4 56.8

Hybrid (Prior art [21]) - - - - - - 64.9 49.2 56.0

Hybrid+Rules (Prior art [21]) - - - - - - 55.6 68.4 61.3

(Key: P,R,F denotes Precision, Recall and F1 score respectively. Sent-Rel. and Non-Sent-Rel. denotes sentence level relations and Non-Sentence level relations respectively.
CP-Tree and LCT denote constituency parse tree and location centered tree. Dep. Graph denotes dependency graph. The best performance is highlighted in italicized font)
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Charniak-Lease Parser based tokenization, part of speech
tagging and dependency parse in a standardized XML
format. The corpus contains the list of protein-pairs in
each sentence with a label “True” for interacting pairs
and “False” otherwise. We used the dependency parses
in the corpus to produce graphs that serve as inputs
for our graph kernel with SVM based classification. We
experiment with graph kernels, specifically the APG and
ASM kernels. From prior work [26], we know that APG
kernel substantially outperforms tree kernels for the PPI
task. Therefore, our main objective in this experiment is
to characterize the performance of the ASM and APG
(our implementation) kernels for the PPI task, and con-
trast these to the state of the art APG kernel based PPI
performance.

Results for the PPI task
We evaluate our implementation of the APG and ASM
kernels in the cross-learning setting, that involves group-
ing 4 out of the 5 datasets into one training unit and
testing on the one remaining dataset. These results are
presented in Table 3.We have also listed the state of the art
performance measurements for PPI with the APG kernel,
as reported in prior art (see Table 3 of [26]).

Comparisonwith prior art
The PPI task, is characterized by the measures Precision,
Recall and F-score and the AUC or the Area Under the
ROC Curve. As indicated in prior art [26], AUC is invari-
ant to the class distribution in the dataset and is therefore
regarded as an important measurement to characterize
the PPI extraction performance.
To summarize, our findings from the PPI experiment

are:

• We expect the AUC measurements for our APG
implementation to match that of the APG
implementation in prior art (Table 3 of [14]). The
AUC measurements are nearly equal for the larger
datasets, AIMed and BioInfer, but differ noticeably

for the smaller datasets, HPRD50 and LLL. A likely
cause for this variation is the differing classifier
frameworks (SVMs vs Regularized Least Squares)
used in these two experiments.

• Our APG implementation varies substantially with
the prior art, in Precision and Recall and moderately
in F-score. These measurements are known to be
sensitive to parameter setting of the classifier and
less dependent on the kernel characteristics itself.
However, due to computational costs, we have not
performed any parameter tuning in this work.

• ASM kernel outperforms APG for BioInfer (AUC of
74.1 vs 69.6), which is a large dataset. However, APG
kernel outperforms ASM by a substantial difference
for all the remaining datasets, namely AIMed,
HPRD50, IEPA and LLL. We conclude that ASM is
outperformed by APG for the full PPI task.

Statistical significance testing
The CID and PPI relation extraction tasks, considered
different measurements, such as F-score and AUC, that
are considered relevant for relation extraction task. In
terms of classification accuracy, a better comparison of
the two kernels can be performed with the McNemar’s
test [27]. McNemar’s test estimates the statistical signifi-
cance for the null hypothesis that the two classifiers are
equally accurate. The P-values for the null hypothesis, cor-
responding to different classification tasks, are listed in
Table 4. The datasets for which the null hypothesis can be
rejected (P-value < 0.01) are highlighted. This test con-
firms that the APG and ASM kernels are significantly dif-
ferent in classification accuracy, over several large datasets
such as AIMed, BioInfer and CID non-sentence relations.

Discussion
In this section, we present a detailed comparison of the
two graph kernels, namely ASM and APG kernel. We
focus our study on the graph kernels only as we saw
above for CID relation extraction, that they substantially

Table 3 Performance measurements for protein-protein interaction extraction

Method
AIMed BioInfer HPRD50

P R F A P R F A P R F A

SOA 30.5 77.5 43.8 77.6 58.1 29.4 39.1 69.6 64.2 76.1 69.7 84.0

APG 28.6 81.6 42.3 76.8 68.6 28.6 40.4 69.7 62.3 69.9 65.9 79.7

ASM 26.3 78.0 39.3 72.9 67.2 22.6 33.8 74.1 66.0 58.3 61.9 76.2

IEPA LLL

P R F A P R F A

SOA. 78.5 48.1 59.6 82.4 86.4 62.2 72.3 86.4

APG 78.2 41.8 54.5 80.2 84.7 57.3 68.3 83.4

ASM 82.8 17.3 28.6 77.7 79.3 28.0 41.4 75.3

(Key: P,R, F and A denotes Precision, Recall, F score and area under curve respectively. SOA denotes State of the art performance with APG as reported in [26]). The best
performance is highlighted in italicized font)
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Table 4 Statistical significance (McNemar’s) tests for the ASM and APG classifiers, for the null-hypothesis being that the two classifiers
are equally accurate and a significance threshold of 0.01

Dataset
Number of examples Accuracy

P-value
Training Testing APG ASM

AIMed 11,246 5,834 58.6 53.1 3.8e-7

BioInfer 7,414 9,666 77.8 76.8 0.0011

HPRD50 16,647 433 70.9 68.1 0.999

IEPA 16,263 817 73.6 66.5 3.9e-6

LLL 16,750 330 75.4 65.1 2.2e-6

CID: Sentence level relations. 9,913 5,099 72.2 71.2 0.0969

CID: Non Sentence level relations 21,656 11,562 84.9 84.1 0.0002

P-values less than the threshold are shown in italicized font

outperform the tree kernels. Interestingly, both kernels
follow the approach of comparing node pairs between
two graphs to estimate graph similarity. However, the
key difference between the two kernels is their treat-
ment of edge labels in the graph. In APG, edge labels
in the graph are transformed into intervening nodes.
Therefore, the node label vocabulary in APG is a het-
erogeneous set which is the union of the vocabulary of
word lemmas, V in the corpus and the vocabulary of
edge labels D defined by the dependency parser [7]. That
is, the set of node labels considered by APG kernels is
L = V ∪ D. The features explored by the APG ker-
nel can be indexed by pairs of node labels, of the form
(V ∪ D) × (V ∪ D).
In ASM kernel, edge labels (dependency types D) and

node labels (word lemmas V ) are treated separately.
ASM associates a node label pair with a rich feature
vector, where each feature is a function of the edge labels
along the shortest path between the nodes. Therefore,
its feature space can be indexed by triplets of the form
(V × V × D). This is an important difference from
the APG kernel, which associates a single scalar (graph
connectivity) value with a node label pair. The higher
feature space dimensionality for the ASM kernel is a
likely cause for its lower performance than the APG
kernel. The other main difference between the two ker-
nels is that the APG kernel considers all possible paths
between a pair of nodes, whereas ASM kernel considers
only the shortest path. This is another likely factor, that
is disadvantageous to ASM kernel in comparison to
APG kernel.

Error analysis
We manually examined a few error samples to identify
the likely causes of errors by APG and ASM kernel in
CID and PPI relation extraction tasks. We noticed that
an important characteristic of the CDR dataset, which is
the presence of many entity pairs in a single sentence, to
be a likely cause for the high false positive rate. Consider

the example: “Susceptibility to seizures produced by
pilocarpine in rats after microinjection of isoniazid or
gamma-vinyl-GABA into the substantia nigra.” Here,
pilocarpine and seizures are positively related, which
is correctly recognized by our classifiers. However, our
classifiers also associate the disease seizures with the
chemicals isoniazid and gamma-vinyl-GABA. The graph
examples corresponding to different entity pairs arising
out of the above sentence, share many common subgraph
and are likely to be close enough in the feature space of
the classifiers. We hypothesize that a sentence simplifi-
cation step, that trims the sentences into shorter phrases
specific to entity-pairs, or a specific treatment of coordi-
nation structure in the sentences [28], is likely to reduce
the error rates.
Another source of errors is in preprocessing. Consider

the following sentence from the PPI corpora: “We took
advantage of previously collected data during a random-
ized double-blind, placebo-controlled clinical trial to con-
duct a secondary analysis of the RBP/TTR ratio and its
relationship to infection andVA status.”. In cases like these,
the tokenization offered as part of the PPI corpora recog-
nizes the string “RBP/TTR” as a single token. This error
in preprocessing causes the corresponding dependency
graph to have a single node with the label “RBP/TTR”,
instead of two different nodes , corresponding to the pro-
teins “RBP” and “TTR”. Improving preprocessing accuracy
is likely to improve the relation extraction performance
for PPI.

Future work
Enriching edge labels
The main strength of ASM kernel is that it handles
edge labels distinctly from node labels in the graph. This
strength can be exploited by designing informative fea-
tures for edges or paths, that are representative of the
corresponding sub-phrase in the sentence, for example,
phrase level measurements of sentiment polarity, “nega-
tion” and “hedging” [29].
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Custom edge similarity
ASM computes the similarity of shortest paths, based on
their edge label composition. As the dependency edge
labels have well defined semantics, designing custom sim-
ilarity measures between these edge labels is likely to
improve performance. These edge labels are grouped in
a well defined hierarchical fashion, which the similarity
function can exploit. For example, the edge labels “vmod”
(verb modifier) and “advmod” (adverbial modifier) are
more closely related to each other than to the edge label
“nsubj” (nominal subject).

Semantic matching
ASM relies on comparing shortest paths between two
input graphs, whose start and end nodes have identical
labels. Currently, node labels are set to be word lemmas
instead of tokens, to improve generalization and address
minor variations such as “cured” and “curing”. In future,
we aim to explore setting node labels to word classes that
group words with similar meanings together. For example,
node labels may be set to cluster ids, post word cluster-
ing. Semantic matching of lemmas using distributional
similarity [30], may allow matching different lemmas with
similar meanings (For example, lemmas such as “cure” and
“improve”). Similar approaches to tree kernels [31] has
been shown to improve performance.

Conclusion
We demonstrated a method for extracting relations that
are expressed in multiple sentences, to achieve a high
performance Chemical-Induced Disease relation extrac-
tion, without using external knowledge sources or task
specific heuristics. We studied the performance of state
of the art tree kernels and graph kernels for two impor-
tant biomedical relation extraction tasks, namely the
Chemical-Induced Disease (CID) relation extraction and
Protein-Protein-Interaction (PPI) task. We showed that
the Approximate Subgraph Matching (ASM) kernel is
effective and comparable to the state of the art All Path
Graph (APG) kernel, for CID sentence level relation
extraction and PPI extraction from BioInfer dataset. The
difference in performance between the two kernels is
not significant for CID sentence level relation extraction.
However, for the full CID relation extraction and most
other datasets in PPI, ASM is substantially outperformed
by the APG kernel.

Endnote
1 https://bitbucket.org/readbiomed/asm-kernel
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