1	Type of contribution: Research paper
2	Date of preparation: 28/3/2017
3	
4	Title: Effects of the nitrification inhibitor acetylene on nitrous oxide emissions and
5	ammonia-oxidizing microorganisms of different agricultural soils under laboratory
6	incubation conditions
7	Authors: Rui Liu ^{a*} , Helen L. Hayden ^b , Hangwei Hu ^a , Jizheng He ^a , Helen Suter ^a , Deli Chen ^a
8	Affiliations:
9	^a Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria
10	3010, Australia
11	^b Department of Economic Development, Jobs, Transport and Resources, Victoria 3083,
12	Australia
13	
14	*Corresponding author:
15	Address: Faculty of Veterinary and Agricultural Sciences, The University of Melbourne,
16	Parkville, Victoria 3010, Australia
17	Tel.: +61433990822
18	E-mail address: rliu@unimelb.edu.au
19	
20	Submitted to: Applied Soil Ecology
21	
22	

23 Abstract

Acetylene (C_2H_2) is an effective nitrification inhibitor targeting autotrophic ammonia 24 oxidizers, and has shown promise for improving nitrogen use efficiency by mitigating 25 greenhouse gas nitrous oxide (N₂O) emissions and reducing nitrate leaching. Its efficacy, 26 however, varies considerably with edaphic and environmental conditions and remains largely 27 28 less studied in dryland agricultural soils. Here we conducted two laboratory microcosm incubations to explore the efficacy of C₂H₂ across various agricultural soils and under 29 30 different conditions. The first incubation was with four agricultural soils at 25°C and 60% water-filled pore space (WFPS), and the second incubation included one cropping soil under 31 a range of conditions (15°C, 25°C, 35°C and 50%, 70% WFPS). Our results showed that 32 incubation of soil with 1% v/v C₂H₂ resulted in complete or partial inhibition of nitrification. 33 N₂O emission, and AOA or AOB growth under the experimental conditions. Acetylene can 34 totally inhibit nitrification in acidic cropping and dairy pasture soils through retarding both 35 36 AOA and AOB growth, while C₂H₂ partly inhibited nitrification and N₂O emission in the 37 alkaline vegetable soil through impeding only AOB growth. The highest inhibition effect of 38 C₂H₂ was achieved at 25°C and 50% WFPS, while there was no inhibitory effect of C₂H₂ when soil was incubated at 15°C and 50% WFPS suggesting soil temperature may have a 39 significant influence on C₂H₂ effectiveness. The inhibition of C₂H₂ on cumulative N₂O 40 emission increased with increasing temperature at 50% WFPS. In contrast, at 70% WFPS, the 41 42 inhibition of C₂H₂ on cumulative N₂O emission decreased with increasing temperature. Since the effect of C₂H₂ varied with soils and environmental conditions, this highlights the 43 assumption that N₂O production and nitrification can be affected by low concentrations of 44 C_2H_2 may be not appropriate in some occasions. 45

- Keywords: Acetylene; nitrification inhibitor; AOA; AOB; N₂O emission; temperature;
 moisture
- 48

49 **1. Introduction**

Nitrogen (N) is an essential nutrient for food production, but the amount of applied fertilizer 50 N used by crops rarely exceeds 40% (Chen et al., 2008), and can be as low as 20% in 51 vegetable production systems in Australia (Suter et al., 2014). The majority of applied N is 52 53 lost from agro-ecosystems through ammonia (NH₃) volatilization, gaseous emission of nitrous oxide (N₂O) and di-nitrogen (N₂) and nitrate (NO_{3⁻}) leaching. Nitrous oxide is a 54 potent greenhouse gas contributing significantly to global climate change with a 300-fold 55 56 higher global warming potential than CO₂ (IPCC, 2007). It is also involved in the destruction of the protective ozone layer (Ravishankara et al., 2009). Soil ecosystems are the largest 57 source of N₂O, accounting for approximately 65% of the atmospheric N₂O loading (IPCC, 58 2007). The major pathways of N₂O production in soils include microbial-mediated 59 nitrification and denitrification (Hu et al., 2015; Zhang et al., 2015). Microorganisms, such as 60 61 ammonia oxidizers and bacterial denitrifiers, involved in the N cycle can directly regulate N₂O production and consumption from soils, and increased abundance and activity of these 62 microorganisms may increase N₂O emissions (Burger et al., 2005). 63

Nitrification inhibitors (NIs) can decelerate the rate of soil nitrification by deactivating the
enzyme ammonia monooxygenase (AMO) which catalyses ammonia oxidation, the first and
rate-limiting step of nitrification which is encoded by the *amo*A gene within ammoniaoxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) (Zhang et al., 2012). NIs
can block the growth of AOA and AOB (Di et al., 2010; Hink et al., 2016), and are widely
used to improve N fertiliser efficiency, mitigate N₂O emissions and reduce NO₃⁻ leaching in

70	agricultural systems (Chen et al., 2008; Kelly et al., 2008; Chen et al., 2010; Di et al., 2010;
71	Zhang et al., 2012; Hu et al., 2015). Acetylene (C ₂ H ₂) is an effective inhibitor of bacterial
72	ammonia oxidation (Offre et al., 2009), acting with AMO as a suicide substrate. It is usually
73	used as an autotrophic nitrification inhibitor in experimental studies (de Boer and
74	Kowalchuk, 2001) and can inhibit nitrification at a low concentration (e.g.10 Pa) in most
75	soils under aerobic conditions (Hyman and Wood, 1985; Schmidt and Bock, 1998; De Boer
76	et al., 1991; Offre et al., 2009). In contrast, C ₂ H ₂ does not efficiently inhibit ammonia
77	oxidation by heterotrophic nitrifiers (Moir et al., 1996; Daum et al., 1998). Higher
78	concentrations of C_2H_2 (1–20 kPa) will inhibit the N ₂ O reductase of denitrifying
79	microorganisms (Davidson et al., 1986; Klemedtsson et al., 1988). As a result of this C_2H_2
80	has been used as a routine method to distinguish nitrification-related N ₂ O and denitrification-
81	related N ₂ O in soils experiments based on the inhibition of soil ammonia oxidation (Bateman
82	and Baggs, 2005; Butterbach-Bahl et al., 2013).
83	It is generally believed that low concentrations of C_2H_2 (0.1–10 Pa) totally inhibit
84	nitrification (Hynes and Knowles, 1978; Berg et al., 1982) by forming a reactive epoxide
85	which then irreversibly inactivates the AMO enzyme (Hyman and Wood, 1985), however,
86	this does not always occur and its efficacy is considerably varied. While it was previously
87	reported that 10 Pa of C ₂ H ₂ totally inhibited nitrification (Wrage et al., 2004), Bremner and
88	Blackmer (1979) found that 10 Pa only partially inhibited soil nitrification.
89	Acetylene was also widely used to determine the community compositions of nitrifiers in
90	soils through laboratory work (Boyle-Yarwood et al., 2008; Scheer et al., 2014). Recent
91	studies have shown however, that AOA and AOB may have a variety of responses to C_2H_2
92	application. Gubry-Rangin et al. (2010) and Offre et al. (2009) revealed that AOA growth
93	was inhibited in C ₂ H ₂ -containing microcosms but not AOB growth. Liu et al. (2015a)
94	demonstrated that both AOA and AOB were inhibited by C_2H_2 in three Australian

agricultural soils. However, these results contrast with those of Jia and Conrad (2009), who 95 found changes in the abundance of AOB amoA genes correlated best with nitrification rate 96 97 rather than AOA *amoA*, and bacterial growth occurred only in actively nitrifying microcosms with added C₂H₂. Considering the various responses of AOA and AOB to C₂H₂ addition, it is 98 therefore necessary to find out how soil factors influence the response of AOA and AOB to 99 C_2H_2 addition and what are the key factors affecting the response of AOA and AOB to C_2H_2 . 100 101 This study was designed to determine the impact of C₂H₂ on N₂O emissions, nitrification rates and the abundance of ammonia oxidizers in different agricultural soils under laboratory 102 103 conditions. Microcosm incubation experiments were established under a set of controlled environment conditions with the following objectives: (i) to examine the effects of C₂H₂ on 104 N₂O emissions and the abundances of AOA and AOB from different agricultural soils and (ii) 105 106 to investigate the effects of C₂H₂ on N₂O emissions and the abundances of AOA and AOB under different temperature and soil water contents in one agricultural soil. We hypothesized 107 that (i) C₂H₂ would have significant inhibitory effects on nitrification and N₂O production 108 from soils with different physicochemical traits, and (ii) AOA and AOB would exhibit 109 distinctly different responses to C₂H₂. This study represents comprehensive efforts to 110 examine C₂H₂ efficacy from different soils under controlled conditions, and the findings from 111 the study can improve our understanding of the interactions between soil microbial 112 communities and the nitrification inhibitor C₂H₂ in different agricultural soils under 113 114 laboratory controlled conditions.

- 115 **2. Materials and methods**
- 116 **2.1 Site description and soil sampling**

The soils used in this study were collected from four agricultural sites in Australia: vegetable
soil at Boneo, VIC (38.3°S, 144.9°E), sugarcane soil at Bundaberg, QLD (24.8°S, 152.3°E),

dairy pasture soil at Glenormiston, VIC (38.2°S, 143°E), and cereal cropping soil at

- Hamilton, VIC (38.3°S, 142.7°E). At each site, 10 replicate samples of the top soil (0–10 cm)
- 121 were collected, thoroughly homogenized, and transported on ice to the laboratory. Fresh soils
- were sieved through a 2.0 mm mesh, and root and leaf residues were removed with tweezers
- 123 prior to the establishment of microcosms. Soil moisture contents were determined by oven-
- drying three subsamples (10 g of fresh soil) at 105°C for 48 h. Soil texture (sieve and
- 125 hydrometer procedures), pH (1:5 soil/water), total carbon (Dumas method) and other soil
- 126 properties were determined and are shown in Table 1.

127 2.2 Soil microcosm incubations

128 **2.2.1** The laboratory incubation with different agricultural soils

Soil microcosms were established in 500 ml vials containing 60 g of soils (oven-dry 129 130 equivalent). Distilled water was added to soil to just under the final moisture content (60% water-filled pore space, WFPS) and the microcosms were pre-incubated at 25°C for three 131 132 weeks to stabilise soil microbial communities and minimise priming effects associated with wetting events. After pre-incubation, treatment was applied to each incubation vial to reach 133 60% WFPS (Linn and Doran, 1984). The treatments contained 100 mg N kg⁻¹ soil as 134 exchangeable NH_4^+ -N and 50 mg N kg⁻¹ soil as NO_3^- -N, which were added to the soil as 1) 135 NH₄Cl + KNO₃; and 2) NH₄Cl + KNO₃ + C₂H₂. Five ml of C₂H₂ (1% v/v) was injected into 136 the headspace of the vials using an air-tight syringe. Aerobic conditions, soil moisture and 137 C₂H₂ contents in the vials were maintained every three days by opening microcosms and 138 replenishing. Soil microcosms were incubated at 25°C in the dark for three weeks. 139

140 2.2.1.1 Gas sampling and analysis

141 Gas samples were collected on days 0, 4, 8, 12, 16 and 20 after fertilizer application. Gas

samples (20 ml) for N₂O analysis were taken from the 500 ml vials using gas-tight syringes.

Prior to collection of gas samples, the vials were opened to ensure that N₂O concentration in
the headspace was at ambient levels. During each sampling, gas samples were collected at 0,
8, 16, 24, 48 and 72 hours after vials closure. Before gas collection, 20 ml compressed zero
air was injected into 500 ml vials to maintain the pressure in the vials and then 20 ml gas
samples were collected into a pre-evacuated 12 ml exetainer (Exetainer®, Labco Ltd.,
Lampeter, Ceredigion, UK). Samples were analysed for N₂O concentration by a gas
chromatograph (Agilent 7890A) using an ECD (N₂O) detector.

150 2.2.1.2 Soil Sampling and analysis

Soils were destructively sampled for soil mineral N analysis on days 0, 7, 14 and 21 151 immediately after gas sampling. There were four replicates at each sampling day. A 152 153 subsample (2 g) of soil was taken from each vial for molecular analysis and stored in a -80°C 154 freezer before DNA extraction. The remaining 50 g of soil in the vials was shaken with 250 ml of 2 M KCl for 1 h at 200 rpm at room temperature, and the extract filtered through a 155 156 qualitative filter paper (Whatman 42). The extracts (30 ml) were stored at -20°C prior to measurement of NH₄⁺ and NO₃⁻ concentrations on a segmented-flow analyzer (Skalar, 157 SAN++). 158

159 2.2.1.3 Soil DNA extraction and quantitative PCR (qPCR)

160 The Power Soil DNA Isolation Kit (MO BIO Laboratories Inc., Carlsbad, CA, USA) was

used for DNA extraction following the manufacturer's instructions. Extracted DNA was

162 quantified using a NanoDrop ND2000c spectrophotometer (NanoDrop Technologies,

163 Wilmington, DE, USA) and the quality of extracted DNA was checked on a 1% agarose gel.

164 The archaeal and bacterial *amo*A gene copy numbers were quantified from triplicate samples

using qPCR. The primer sets were Arch-amoAF/Arch-amoAR (Francis et al., 2005) and

amoA1F/amoA2R (Rotthauwe et al., 1997), respectively. Each qPCR reaction for the

archaeal amoA gene was performed in a 20 µl volume including 0.5 µM of each primer, 10 µl 167 SensiFAST SYBR No-ROX reagent (Bioline, Sydney, Australia), and 2 µl of 10-fold dilution 168 169 DNA template (1–10 ng). Each qPCR reaction for the bacterial *amoA* gene was performed in a 10 µl volume containing 0.6 µM of each primer, 5 µl iTaq Universal SYBR Green 170 Supermix (Bio-Rad Laboratories, USA), and 2 µl of 10-fold dilution DNA template (1-10 171 ng). Amplification programs for both AOA and AOB were as follows: 3 mins at 95°C, 40 172 cycles of 5 s at 95°C, 30 s at 60°C, and 72°C for 45 s. A known copy number of plasmid 173 DNA was used to create a standard curve for each AOA or AOB assay. For all assays, qPCR 174 efficiency was 92.7-98.4% and r^2 was 0.96-0.99. 175

176 2.2.2 Soil microcosm incubation under different temperature and water contents with 177 one agricultural soil

The cropping soil used for the second experiment was chosen from one of the four sites and 178 collected from a cropping paddock in Hamilton, VIC (38.3°S, 142.7°E) (Table 1). The study 179 180 site is in a high rainfall zone (688 mm per annum), and was chosen because the soil was 181 subjected to two different land management practices, cropping and pasture. Field studies have shown that high N₂O emissions occurred when the soil was converted from pasture to 182 183 cropping. The laboratory soil incubation was carried out in 500 ml vials containing 60 g of soils (oven dry weight equivalent) to investigate the effects of C₂H₂ on N₂O emissions and 184 the abundances of amoA genes under different soil temperature and moisture contents. The 185 186 same treatments were established as the first experiment, though after the pre-incubation the samples were incubated at three temperatures (15°C, 25°C, 35°C) and two soil moisture 187 levels (50% and 70% WFPS). During the 21-day incubation, soil, gas samples and amoA 188 genes abundance were analysed as well. 189

190 **2.3 Calculations**

- 191 The equation developed by Persson and Wirén (1995) was used to calculate the net
- 192 nitrification rates over the incubation time (21 days)
- **193** $n = [(NO_3 N)_{d21} (NO_3 N)_{d0}]/21$

where $(NO_3^--N)_{d0}$ and $(NO_3^--N)_{d21}$ are the NO_3^--N concentrations in the soil on days 0 and 21, respectively.

196 2.4 Statistical Analyses

- 197 Data were analysed using SPSS 19 and means were compared using one-way analysis of
- 198 variance (ANOVA) between treatments to test the variance with a level of significance of P <
- 199 0.05. Spearman correlation analysis was performed to test the relationships between N₂O, the

abundances of AOA and AOB under different conditions.

201

202 **3. Results**

203 3.1 Soil microcosm incubation with different land-use agricultural soils

The physical and chemical properties of the soil samples were highly variable across the different sampling sites (Table 1). Briefly, all soils except the vegetable soil were acidic (pH ≤ 6.2). The cropping soil had the highest organic C content (6.2%), while the vegetable soil had the lowest (0.8%). Nitrate-N (NO₃⁻⁻N) was the dominant inorganic nitrogen ranging from 8.8 to 93 mg kg⁻¹ soil, with the highest value recorded in the cropping soil. Sugarcane and vegetable soils had a sandy texture, but cropping and dairy pasture soils were loam. The cropping soil has the highest clay content at 19%.

The highest cumulative N₂O emission was 3204.5 (\pm 52.5) mg N kg⁻¹ soil in the cropping soil,

compared to 122.4 (\pm 5.1) mg N kg⁻¹ soil in the sugarcane soil, which was the lowest emission

from fertilizer treatments (Table 2). Acetylene addition significantly reduced the cumulative

N₂O emissions by 28.6% to 54.6% (Table 2). The efficacy of C₂H₂ on reducing cumulative
N₂O emissions was ordered by dairy pasture (28.6%) < sugarcane (37.6%) < vegetable
(44.9%) < cropping (54.6%).

Changes in the NO₃⁻N concentrations of the four soils during the incubation period are 217 shown in Figure 1. The NO₃⁻-N concentrations showed an increasing trend in all soils from 218 fertilized treatments. While C_2H_2 addition significantly reduced the NO₃⁻-N concentrations in 219 all the soils (P < 0.05), the efficacy of C₂H₂ varied among soils. For example, the average net 220 nitrification rates over 21 days in the dairy pasture soil were 1.8 (\pm 0.1) mg NO₃-N kg⁻¹ soil 221 day⁻¹ for the fertilized treatment and 0 mg NO₃-N kg⁻¹ soil day⁻¹ for the fertilizer plus C₂H₂ 222 treatment, while in the vegetable soil they were 2.1 (\pm 0.4) mg NO₃⁻-N kg⁻¹ soil day⁻¹ for the 223 fertilized treatment and 1.5 (\pm 0.3) mg NO₃⁻-N kg⁻¹ soil day⁻¹ for the fertilizer plus C₂H₂ 224 treatment (Table 2). 225

The abundance of AOB before adding fertilizer varied greatly from 2.7×10^5 copies g⁻¹ soil 226 in the dairy pasture soil to 2.6×10^6 copies g⁻¹ soil in the vegetable soil, and was evidently 227 higher in the vegetable soil than in other soils (Figure 2). The addition of fertilizer 228 significantly increased AOB abundance in all soils on day 7, while C₂H₂ significantly 229 decreased the AOB abundance in cropping, sugarcane and vegetable soils on day 7. In the 230 dairy pasture soil, the abundance of AOB significantly decreased compared to the fertilizer 231 treatment on day 14 (P < 0.05). Before fertilizer addition, the AOA abundance was highest in 232 the vegetable soil up to 1.5×10^8 copies g⁻¹ soil and much lower in the cropping, sugarcane, 233 and dairy pasture soils ranging between 5.8×10^6 and 1.1×10^7 copies g⁻¹ soil (Figure 3). 234 Addition of fertilizer significantly increased AOA abundance in all soils except the vegetable 235 soil. There was a decreasing trend in AOA abundance during incubation in the vegetable soil. 236 AOA growth was inhibited by C_2H_2 addition in cropping, sugarcane and dairy pasture soils, 237

however, there was no significant difference in the AOA abundance between treatmentsduring the incubation in the vegetable soil (Figure 3).

240 **3.2** Soil microcosm incubation under different temperature and soil water contents

The NO₃⁻-N concentrations in fertilized treatments increased under 50% WFPS with 241 increasing soil temperature except at 35°C (Figure 4). At 70% WFPS, the soil NO₃⁻-N 242 concentrations decreased with increasing temperature over the incubation period. The 243 concentrations of NO₃⁻-N remained largely unchanged in the fertilizer plus C₂H₂ treatments at 244 different conditions except at 35°C with 70% WFPS. Under 35°C with 70% WFPS, NO3⁻-N 245 concentration significantly (P < 0.05) decreased after day 14 in the fertilizer plus C₂H₂ 246 treatment. Acetylene addition substantially reduced the nitrification rate by 53% - 100%, 247 suggesting C₂H₂ was capable of inhibiting nitrification under all conditions (Table 3), with 248 the highest inhibition effect found at 25°C and 50% WFPS. The efficacy of C₂H₂ on 249 nitrification decreased with increasing soil temperature and moisture except at 15°C. 250 251 Total N_2O emission increased with increasing temperature and moisture (Table 3). When 252 C_2H_2 was applied into soil microcosms, cumulative N₂O emission was reduced by 0–86.7%. 253 There was no difference in cumulative N₂O emission between the fertilizer and fertilizer plus C₂H₂ treatments at 15°C and 50% WFPS. The inhibition of C₂H₂ on cumulative N₂O 254 emission increased with increasing temperature at 50% WFPS. In contrast, when soil was 255 wetted to 70% WFPS, the inhibition of C₂H₂ on cumulative N₂O emission decreased with 256 257 increasing temperature. At the same soil temperature, the efficacy of C_2H_2 on total N_2O emission decreased with increasing moisture except at 15°C. 258

259 The changes in abundances of AOB and AOA *amoA* genes are shown in Figures 5 and 6. In

the fertilized treatment, AOA and AOB *amo*A gene copy numbers ranged from 1.0×10^7 to

261 3.3×10^8 and 1.8×10^6 to 1.7×10^7 copies g⁻¹ soil, respectively, and increased with

increasing soil moisture. However, both AOA and AOB abundance decreased with increasing 262 soil temperature. AOA amoA genes at different soil temperatures and moistures were 3.3-107 263 264 times more abundant than AOB amoA genes. AOA amoA gene abundance comprised 93-96% and 76–92% of the total amoA gene abundance at 15°C to 35°C, respectively. The ratio 265 of AOA to AOB decreased significantly with increasing soil temperature (P < 0.05). 266 Acetylene application significantly (P < 0.05) decreased AOA abundance by 48% (15°C and 267 70% WFPS) and reduced AOB abundance by 93% (25°C and 70% WFPS) relative to that in 268 269 the fertilizer treatments on day 21. However, no significant effect of C₂H₂ addition on AOA or AOB amoA gene abundances was observed at 35°C, 50% WFPS and 15°C, 70% WFPS, 270 respectively. 271

272

273 4. Discussion

This study investigated the changes in N₂O production, nitrification rates, and abundance of ammonia oxidizers after addition of the nitrification inhibitor C_2H_2 at various conditions. Our experiments showed that incubation of soil with 1% v/v C_2H_2 resulted in complete or partial inhibition of nitrification, N₂O emission, and AOA or AOB growth in all conditions.

278

4.1 Inhibitory effects of C₂H₂ in different soils.

The results demonstrate that C_2H_2 has different efficacy in inhibiting nitrification and N_2O emission in different soils. Nitrification can be inhibited by C_2H_2 , implying AMO-dependent (and presumably autotrophic) nitrification, as frequently observed in many acidic soils (De Boer and Kowalchuk, 2001). In this study, C_2H_2 was much more effective in inhibiting nitrification and cumulative N_2O emission in acidic soils than the alkaline soil, and the acidic cropping soil had the highest inhibitory effect among the four soils. Soil pH might be a key factor in C_2H_2 inhibitory effects because pH is a strong environmental determinant of AOA and AOB abundance. A number of studies have shown niche separation based on pH with
AOA favoured in acidic soils and AOB in alkaline. The abundances of AOA and AOB in our
acidic and alkaline soils supported this observation (as reviewed in He et al., 2012). Our
findings are consistent with these previous studies, and supported the clear niche separation
between AOA and AOB shaped by soil pH. We suggest that in the alkaline soil, nitrifiers can
be protected within microenvironments due to the high amounts of carbonates present in the
alkaline condition.

Besides soil pH, other soil physicochemical traits may also have the potential effects on C₂H₂ 293 inhibitory efficacy. The dairy pasture soil had the lowest inhibition by C₂H₂ on cumulative 294 N₂O emission (28.6%) while there was a complete inhibition (100%) on nitrification. It is 295 possibly that because the dairy pasture soil had the highest ratio of C to NO₃⁻, that there might 296 be a loss in inhibitory efficiency on N₂O production. Previous studies have shown that the use 297 298 of C_2H_2 to inhibit N₂O production and reduction has been problematic for soils with a very 299 high ratio of C to NO_3^- (Davidson et al., 1986). Another potential explanation for low inhibition of C₂H₂ on cumulative N₂O emission is that the release of N₂O was due to 300 processes other than nitrification, such as denitrification and heterotrophic nitrification, 301 302 rendering the C₂H₂ unable to effect N₂O emitted from either denitrification or heterotrophic nitrification. The dairy pasture soil had a high organic carbon content which might result in 303 304 high denitrification-related N₂O because of the high availability of soil organic C for denitrifiers. Wan et al. (2009) also demonstrated that more N₂O was released from 305 denitrification than from nitrification in a soil with high organic carbon. Regarding the 306 highest inhibitory effect on nitrification in dairy pasture soil, this may be due to nitrification 307 in the dairy pasture soil being largely autotrophic. This can be supported by our previous 308 study (Liu et al., 2015b) where we indicated that nitrification was primarily autotrophic with 309 heterotrophic nitrification accounting for only 20%. In the alkaline sandy soil, C₂H₂ 310

inhibition of NO₃⁻ production was only 29%, thus 1% v/v of C₂H₂ may be insufficient to inhibit nitrification completely in this soil, nevertheless, most studies have indicated that this partial pressure of C₂H₂ is clearly sufficient for a complete inhibition. This result contrasts with our previous study (Liu et al., 2015a) where we found that C₂H₂ addition produced 100% nitrification inhibition in an alkaline clay loam soil. The difference between these two studies may be because the two alkaline soils differed in soil texture.

Overall, the four soils chosen from different land uses had very differing physicochemical 317 properties. Of the properties characterised for the four soils, soil pH, texture, organic C and 318 NO_3^- content might be the key factors influencing the effectiveness of C_2H_2 on nitrification 319 and cumulative N₂O emission. Many recent studies also showed that soil physicochemical 320 properties affected the efficacy of other NIs, such as DMPP and DCD, with their efficacy 321 diminished with the addition of soil organic matter (Fisk et al., 2015) and decreased with 322 higher clay content (Marsden et al., 2016). Although it is not possible to clearly discern the 323 324 effects of land use from this experimental design, we speculate that land use may affect the efficacy of C₂H₂ to inhibit nitrification and N₂O emissions. However, a multiple regression 325 including more soil physicochemical properties is still necessary. 326

327 C_2H_2 addition was able to inhibit nitrification and N₂O emission in all soils, albeit to varying 328 degrees. It is unclear however if this reduction in N₂O emission and nitrification is linked to 329 soil microbial communities due to adding C_2H_2 and further investigation is needed to 330 examine if C_2H_2 stimulates changes in microbial community population and activity.

As observed previously (He et al., 2007; Shen et al., 2008; Levic nik-Höfferle et al., 2012;

Liu et al., 2015a), AOA grow better in acidic soils, while AOB thrive better in alkaline soils,

333 which was supported by our study. In our study, the acidic sugarcane soil had the highest

AOA abundance, while the highest AOB population was found in the alkaline vegetable soil.

Growth of AOB, and not of AOA, has been linked to soil nitrification activity with high 335 levels of ammonium (Di et al., 2009; Jia and Conrad, 2009). In contrast, growth of AOA is 336 337 associated with nitrification in soils with a continual supply of ammonia at low concentration through the mineralisation of organic matter (Offre et al., 2009). The difference in substrate 338 preferences could affect the distribution of AOA and AOB in soils and further affect the 339 efficacy of C₂H₂ across different soils. Our study indicated that the application of C₂H₂ could 340 341 block AOA and AOB growth but to different extents. In acidic cropping, sugarcane and dairy pasture soils, C₂H₂ addition significantly decreased AOA and AOB abundance, suggesting 342 343 both AOA and AOB mediated nitrification in these soils and were sensitive to C₂H₂. The observed significant decrease in N₂O emission and nitrification by the addition of C₂H₂ in the 344 cropping and sugarcane soils is mostly likely caused by the inhibitory effect of C₂H₂ on both 345 AOA and AOB growth. However, there was no inhibitory effect on AOA in vegetable soil 346 and AOB on day 7 in dairy pasture soil, suggesting that AOB rather than AOA were involved 347 in nitrification in the alkaline vegetable soil while in the dairy pasture soil AOB might be less 348 important in nitrification than AOA. Moreover, it is possible that C₂H₂ application may also 349 change active strains of ammonia oxidizers and different effectiveness possibly due to 350 different sensitive strains appearing in soils (Belser et al., 1980), and this needs further 351 investigation. 352

4.2 Inhibitory effects of C₂H₂ at different incubation conditions.

From both previous studies (Kool et al., 2010; Liu et al., 2017) and the current study, soil water content and temperature were the predominant factors regulating N₂O emission from soils. The cumulative N₂O emissions increased with increasing WFPS and temperature in the cropping soil (Table 3). The significant increase in emissions at 35°C between 50% and 70% WFPS is probably because these incubation conditions favoured nitrifying and denitrifying enzyme synthesis (Liu et al., 2017), and 35°C at 70% WFPS is the most suitable condition for

microbial activity. The degree of inhibition of cumulative N₂O emission and nitrification by 360 C₂H₂ was shown to vary across the different incubation conditions, indicating that 361 362 temperature and moisture content significantly affect C_2H_2 efficacy. At lower soil temperature (15°C) and in drier soil (50% WFPS), C₂H₂ addition had no inhibitory effect on 363 the total N₂O emissions, suggesting that nitrification may be heterotrophic under these 364 conditions in this soil. This result is supported by Liu et al. (2015c) where under 15°C and 365 366 50% WFPS incubation, nitrification was found to be predominantly heterotrophic. The low efficacy of C₂H₂ to inhibit N₂O emission under wetter soils (70% WFPS) is probably because 367 368 more N₂O was produced from denitrification. Another possibility for the low efficacy of C₂H₂ at the lower soil temperature of 15°C is that C₂H₂ may be unable to form a reactive 369 epoxide to inactivate the AMO enzyme (Hynes and Knowles, 1978). 370 Compared to 70% WFPS, the inhibitory effect of C₂H₂ was much greatest at inhibiting 371 nitrification and cumulative N₂O emission at 50% WFPS except at 15°C. This is possibly 372 because 25°C and 35°C with 50% WFPS are more suitable for nitrification to occur (Garrido 373 et al., 2002; Huang et al., 2014). During incubation, the nitrification rates in the fertilizer 374 treatments were similar at low water content (50% WFPS) regardless of soil temperature, 375 while the effectiveness of C₂H₂ on inhibiting nitrification was different (Table 3). This 376 possibly indicates that concentrations of C₂H₂ may need to be adjusted for optimal inhibition 377 378 under different soil temperature and moisture.

AOA and AOB reduced in abundance with varying degrees after C_2H_2 addition under

different environmental conditions, which might be attributed to the differential sensitivity of

AOA and AOB to C_2H_2 under different conditions. Under 15°C, 50% and 70% WFPS, C_2H_2

showed no effect on AOB populations. One possible explanation is that under lower soil

temperature $(15^{\circ}C)$, the active strains of AOB were less abundant than under higher

temperature resulting in less sensitivity to C_2H_2 addition. Another possible explanation is

AOA may prefer lower a soil temperature and be more involved in nitrification at 15°C thanAOB.

387	The underlying mechanism of how C ₂ H ₂ targets AOA remains largely unknown. Acetylene
388	might suppress the growth of <i>amo</i> A-containing archaea by inactivating the archaeal AMO
389	protein, as demonstrated in AOB (Hyman and Wood 1985). However, Offre et al. (2009)
390	demonstrated that the enzymes and metabolic pathways of AOA might differ significantly
391	from those of AOB, in which C ₂ H ₂ interferes with the AMO protein. Future studies based on
392	soil RNA and pure cultures are therefore necessary to elucidate the mechanism by which
393	C ₂ H ₂ blocks the growth of AOA.
394	In the first incubation, we found that different soils have different C_2H_2 efficacy. Therefore,

395 we cannot ascertain whether the findings of the incubation study at different temperatures and 396 moistures can be extended to other soils. Future work with alkaline soils or a larger range of 397 soil properties is definitely needed to clarify this question.

398

399 **5.** Conclusions

In conclusion, C₂H₂ was more effective in inhibiting nitrification and N₂O emissions in acidic 400 401 soils and under drier condition (50% WFPS). Soil pH, C content, texture, temperature, moisture and land use might be important factors affecting the efficacy of C_2H_2 . The various 402 C₂H₂ inhibitory effects on nitrification and N₂O production were also linked to different 403 responses of the ammonia oxidizers to C₂H₂. Therefore, since the effect of C₂H₂ varied with 404 soils and environmental conditions, the assumption that N₂O production and nitrification can 405 be affected by low concentrations of C₂H₂ may need verification for specific soils and 406 407 conditions of interest.

409	Acknowledgements
410	The authors would like to acknowledge the financial support by Incitec Pivot, the Australian
411	Government Department of Agriculture through the Grains Research and Development
412	Corporation, and Australian Research Council (DE150100870, DP160101028,
413	LP160101134).
414	
415	Reference
416	Bateman, E.J., and Baggs, E.M., 2005. Contributions of nitrification and denitrification to
417	N ₂ O emission from soils at different water-filled pore space. Biol. Fertil. Soils. 41,
418	379–388.
419	Belser, L.W., and Mays, E.L., 1980. Specific inhibition of nitrite oxidation by chlorate and its
420	use in assessing nitrification in soils and sediments. Appl. Environ. Microb. 39, 505-
421	510.
422	Berg, P., Klemedtsson, L., Rosswall, T., 1982. Inhibitory effect of low partial pressures of
423	acetylene on nitrification. Soil. Biol. Biochem. 14, 301–303.
424	Boyle-Yarwood, S.A., Bottomley, P.J., Myrold, D.D., 2008. Community composition of
425	ammonia-oxidising bacteria and archaea in soils under stands of red alder and
426	Douglas fir in Oregon. Environ. Microbiol. 10, 2956–2965.
427	Bremner, J., and Blackmer, A.M., 1978. Nitrous oxide: emission from soils during
428	nitrification of fertilizer nitrogen. Science. 199, 295–296.
429	Burger, M., Jackson, L.E., Lundquist, E.J., Louie, D.T., Miller, R.L., Rolston, D.E., Scow,
430	K.M., 2005. Microbial responses and nitrous oxide emissions during wetting and

431 432	drying of organically and conventionally managed soil under tomatoes. Biol. Fertil. Soils. 42, 109–118.
433	Butterbach-Bahl, K., Baggs, E.M., Dannenmann, M., Kiese, R., Zechmeister-Boltenstern, S.,
434	2013. Nitrous oxide emissions from soils: how well do we understand the processes and
435	their controls?. Phil. Trans. R. Soc. B. 368, DOI: 10.1098/rstb.2013.0122.
436	Chen, D.L., Suter, H.C., Islam, A., Edis, R., Freney, J.R., Walker, C.N., 2008. Prospects of
437	improving efficiency of fertilizer nitrogen in Australian agriculture; a review of
438	enhanced efficiency fertilizers. Aust. J. Soil Res. 46, 289-301.
439	Chen, D.L., Suter, H.C., Islam, A., Edis, R., 2010. Influence of nitrification inhibitors on
440	nitrification and nitrous oxide (N_2O) emission from a clay loam soil fertilized with
441	urea. Soil. Biol. Biochem. 42, 660–664.
442	Daum, M., Zimmer, W., Papen, H., Kloos, K., Nawrath, K., Bothe, H., 1998. Physiological and
443	molecular biological characterization of ammonia oxidation of the heterotrophic
444	nitrifier Pseudomonas putida. Curr. Microbiol. 37, 281–288.
445	Davidson, E.A., Swank, W.T., Perry, T.O., 1986. Distinguishing between nitrification and
446	denitrification as sources of gaseous nitrogen production in soil. Appl. Environ.
447	Microbiol. 52, 1280–1286.
448	De Boer, W., and Kowalchuk, G., 2001. Nitrification in acid soils: micro-organisms and
449	mechanisms. Soil. Biol. Biochem. 33, 853–866.
450	De Boer, W., Klein Gunnewiek, P.J.A., Veenhuis, M., Bock, E., Laanbroek, H.J., 1991.
451	Nitrification at low pH by aggregated autotrophic bacteria. Appl. Environ. Microb. 57,
452	3600–3604.

453	Di, H.J., Cameron, K.C., Sherlock, R., Shen, J.P., He, J.Z., Winefield, C., 2010. Nitrous
454	oxide emissions from grazed grassland as affected by a nitrification inhibitor,
455	dicyandiamide, and relationships with ammonia-oxidising bacteria and archaea. J.
456	Soils Sediments. 10, 943–954.
457	Di, H., Cameron, K., Shen, J., 2009. Nitrification driven by bacteria and not archaea in
458	nitrogen-rich grassland soils. Nat. Geosci. 2, 621–624.
459	Fisk, L.M., Maccarone, L.D., Barton, L., Murphy, D.V., 2015. Nitrapyrin decreased
460	nitrification of nitrogen released from soil organic matter but not amoA gene
461	abundance at high soil temperature. Soil. Biol. Biochem. 88, 214–223.
462	Francis, C.A., Roberts, K.J., Beman, J.M., Santoro, A.E., Oakley, B.B., 2005. Ubiquity and
463	diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean.
464	Proc. Natl. Acad. Sci. U.S.A. 102, 14683–14688.
465	Garrido, F., Henault, C., Gaillard, H., Perez, S., Germon, J.C., 2002. N ₂ O and NO emissions
466	by agricultural soils with low hydraulic potentials. Soil. Biol. Biochem. 34, 559–575.
467	Gubry-Rangin, C., Nicol, G.W., Prosser, J.I., 2010. Archaea rather than bacteria control
468	nitrification in two agricultural acidic soils. FEMS Microbiol. Ecol. 74, 566–574.
469	He, J.Z., Hu, H.W., Zhang, L.M., 2012. Current insights into the autotropic thaumarchaeal
470	ammonia oxidation in acidic soils. Soil Biol. Biochem. 55, 146-154.
471	He, J.Z., Shen, J.P., Zhang, L.M., Zhu, Y.G., Zheng, Y.M., Xu, M.G., Di, H., 2007.
472	Quantitative analyses of the abundance and composition of ammonia-oxidizing
473	bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term
474	fertilization practices. Environ. Microbiol. 9, 2364–2374.

475 Hink, L., Nicol, G.W., Prosser, J.I., 2016. Archaea produce lower yields of N₂O than bacteria
476 during aerobic ammonia oxidation in soil. Environ. Microbiol. doi:10.1111/1462477 2920.13282.

478 Hu, H.W., Chen, D.L., He, J.Z., 2015. Microbial regulation of terrestrial nitrous oxide

479 formation: understanding the biological pathways for prediction of emission rates.
480 FEMS Microbiol. Rev. 39, 729–49.

- Huang. T., Gao, B., Hu, X.K., 2014. Ammonia-oxidation as an engine to generate nitrous
 oxide in an intensively managed calcareous Fluvo-aquic soil. Sci. Rep. 4, 3950.
- 483 Hyman, M.R., Wood, P.M., 1985. Suicidal inactivation and labelling of ammonia

484 monooxygenase by acetylene. Biochem. J. 227, 719–725.

- Hynes, R.K., Knowles, R., 1978. Inhibition by acetylene of ammonia oxidation in
 Nitrosomonas europaea. FEMS. Microbiol. Lett. 4, 319–321.
- 487 IPCC. Climate change 2007: the physical science basis. In: Solomon, S., Qin, D., Manning,

488 M., (eds). Contribution of Working Group I to the Fourth Assessment Report of the

- 489 Intergovernmental Panel on Climate Change. Cambridge: Cambridge University490 Press, 2007.
- Jia, Z., Conrad, R., 2009. Bacteria rather than Archaea dominate microbial ammonia
 oxidation in an agricultural soil. Environ. Microbiol. 11, 1658–1671.
- Kelly, K.B., Phillips, F.A., Baigent, R., 2008. Impact of dicyandiamide application on nitrous
 oxide emissions from urine patches in northern Victoria, Australia. Aust. J. Exp. Agr.
 48, 156–159.
- Klemedtsson, L., Svensson, B., Rosswall, T., 1988. A method of selective inhibition to
 distinguish between nitrification and denitrification as sources of nitrous oxide in soil.
 Biol. Fertil. Soils. 6, 112–119.

499	Kool, D.M., Wrage, N., Zechmeister-Boltenstern, S., 2010. Nitrifier denitrification can be a
500	source of N_2O from soil: a revised approach to the dual-isotope labelling method. Eur.
501	J. Soil. Sci. 61,759–772.
502	Levic nik-Höfferle, S., Nicol, G.W., Ausec, L., Mandic-Mulec, I., Prosser, J.I., 2012.
503	Stimulation of thaumarchaeal ammonia oxidation by ammonia derived from organic
504	nitrogen but not added inorganic nitrogen. FEMS. Microbiol. Ecol. 80, 114–123.
505	Linn, D.M., and J.W. Doran., 1984. Effect of water-filled pore space on carbon dioxide and
506	nitrous oxide production in tilled and nontilled soils. Soil. Sci. Soc. Am. J. 48,1267-
507	1272.
508	Liu, R., Hayden, H., Suter, H., He, J.Z., Chen, D.L., 2015a. The effect of nitrification
509	inhibitors in reducing nitrification and the ammonia oxidizer population in three
510	contrasting soils. J. Soils. Sediments. 15, 1113–1118.
511	Liu, R., Suter, H., Hayden, H., He, J.Z., Chen, D.L., 2015b. Nitrate production is mainly
512	heterotrophic in an acid dairy soil with high organic content in Australia. Biol. Fertil.
513	Soils. 51, 891.
514	Liu, R., Hayden, H., Suter, H., Hu, H.W., He, J.Z., Pauline, M.M., Chen, D.L., 2017. The
515	effect of temperature and moisture on the source of N_2O and contributions from
516	ammonia oxidizers in an agricultural soil. Biol. Fertil. Soils. 53, 141–152.
517	Liu, R., Suter, H., He, J. Hayden, H., Chen, D. 2015c. Influence of temperature and
518	moisture on the relative contributions of heterotrophic and autotrophic nitrification
519	to gross nitrification in an acid cropping soil. J. Soils. Sediments. 15, 2304.
520	Marsden, K.A., Marín-Martínez, A.J., Vallejo, A., Hill, P.W., Jones, D.L., Chadwick, D.R.,
521	2016. The mobility of nitrification inhibitors under simulated ruminant urine
522	deposition and rainfall: a comparison between DCD and DMPP. Biol. Fertil. Soils.
523	52, 491–503.

524	Moir, J.W.B., Crossman, L.C., Spiro, S., Richardson, D.J., 1996. The purification of
525	ammonia monooxygenase from Paracoccus denitrificans. FEBS. Lett. 387, 71–74.
526	Offre, P., Prosser, J.I., Nicol, G.W., 2009. Growth of ammonia-oxidizing archaea in soil
527	microcosms is inhibited by acetylene. FEMS. Microbiol. Ecol. 70, 99–108.
528	Persson, T., Wirén, A., 1995. Nitrogen mineralization and potential nitrification at different
529	depths in acid forest soils. Plant. Soil. 168, 55–65.
530 531 532	 Ravishankara, A.R., Daniel, J.S., Portmann, R.W., 2009. Nitrous Oxide (N₂O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century. Science. 326, 123–125.
533	Rotthauwe, J.H., Witzel, K.P., Liesack, W., 1997. The ammonia monooxygenase structural
534	gene amoA as a functional marker: molecular finescale analysis of natural ammonia
535	oxidizing populations. Environ. Microbiol. 63, 4704–4712.
536	Scheer, C., Rowlings, D.W., Firrel, M., Deuter, P., Morris, S., Grace, P.R., 2014. Impact of
537	nitrification inhibitor (DMPP) on soil nitrous oxide emissions from an intensive
538	broccoli production system in sub-tropical Australia. Soil. Biol. Biochem. 77, 243-
539	251.
540	Shen, J.P., Zhang, L.M., Zhu, Y.G., Zhang, J.B., He, J.Z., 2008. Abundance and composition
541	of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an
542	alkaline sandy loam. Environ. Microbiol. 10, 1601–1611.
543	Schmidt, I., Bock, E., 1998. Anaerobic ammonia oxidation by cell-free extracts of
544	Nitrosomonas eutropha. Antonie. Van. Leeuwenhoek. 73, 271–278.
545	Suter, H, Lam, S.K., Davies, R., 2014. Soil Science Australia National Soil Science
546	Conference, 24-27 th November, Melbourne.
547	Wan, Y., Ju, X., Ingwersen J., Schwarz, U., Stange, C.F., Zhang, F., Streck, T., 2009. Gross
548	Nitrogen Transformations and Related Nitrous Oxide Emissions in an Intensively
549	Used Calcareous Soil. Soil. Sci. Soc. Am. J. 73, 102-112.

550	Wrage, N., Velthof, G.L., Oenema, O., Laanbroek, H.J., 2004. Acetylene and oxygen as
551	inhibitors of nitrous oxide production in Nitrosomonas europaea and Nitrosospira
552	briensis: a cautionary tale. FEMS Microbiol. Ecol. 47, 13–18.

- Zhang, L.M., Hu, H.W., Shen, J.P., He, J.Z., 2012. Ammonia-oxidising archaea have more
 important role than ammonia-oxidising bacteria in ammonia oxidation of strongly
 acidic soils. ISME J. 6, 1032–1045.
- Zhang, J.B., Muller, C., Cai, Z.C., 2015. Heterotrophic nitrification of organic N and its
 contribution to nitrous oxide emissions in soils. Soil. Biol. Biochem. 84, 109–209.

University Library

A gateway to Melbourne's research publications

Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:

Liu, R; Hayden, HL; Hu, H; He, J; Suter, H; Chen, D

Title:

Effects of the nitrification inhibitor acetylene on nitrous oxide emissions and ammoniaoxidizing microorganisms of different agricultural soils under laboratory incubation conditions

Date:

2017-10-01

Citation:

Liu, R., Hayden, H. L., Hu, H., He, J., Suter, H. & Chen, D. (2017). Effects of the nitrification inhibitor acetylene on nitrous oxide emissions and ammonia-oxidizing microorganisms of different agricultural soils under laboratory incubation conditions. APPLIED SOIL ECOLOGY, 119, pp.80-90. https://doi.org/10.1016/j.apsoil.2017.05.034.

Persistent Link:

http://hdl.handle.net/11343/208822

File Description: Accepted version