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Abstract. Process mining aims at gaining insights into business processes by
analysing event data recorded during process execution. The majority of ex-
isting process mining techniques works offline, i.e. using static, historical data
stored in event logs. Recently, the notion of online process mining has emerged,
whereby techniques are applied on live event streams, as process executions un-
fold. Analysing event streams allows us to gain instant insights into business pro-
cesses. However, current techniques assume the input stream to be completely
free of noise and other anomalous behaviour. Hence, applying these techniques
on real data leads to results of inferior quality. In this paper, we propose an event
processor that enables us to effectively filter out spurious events from a live event
stream. Our experiments show that we are able to effectively filter out spurious
events from the input stream and, as such, enhance online process mining results.

Keywords: Process mining, event stream, filtering, anomaly detection.

1 Introduction

Nowadays, information systems can accurately record the execution of the business
processes they support. Common examples include order-to-cash and procure-to-pay
processes, which are tracked by ERP systems. Process mining [1] aims at turning
such event data into valuable, actionable knowledge, so that process performance or
compliance issues can be identified and rectified. Different process mining techniques
are available. These include techniques for automated process discovery, conformance
checking, performance mining and process variant analysis. For example, in process
discovery we aim at reconstructing the underlying structure of the business process in
the form of a process model, while in conformance checking we assess to what degree
the recorded data aligns with a normative process model available in the organisation.

The vast majority of process mining techniques are defined in an offline setting,
i.e. they work over historical data of completed process executions (e.g. over all orders
fulfilled in the past six months). They are typically not adequate to directly work in
online settings, i.e. from live streams of events rather than historical data. Hence, they
? Part of the work was done while the author was at the Queensland University of Technology.
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cannot be used for operational support, but only for a-posteriori analysis. Online process
mining provides a wealth of opportunities. For example, when applying conformance
checking techniques, compliance deviations could be detected as soon as they occur, or
better, their occurrence could be predicted in advance. In turn, the insights gained could
be used to rectify the affected process executions on the fly, avoiding the deviations to
occur altogether.

As a result, several process mining techniques have recently been designed to
specifically work online. These include, for example, techniques for drift detection
[14, 17, 18], automated discovery [7, 13, 23], conformance checking [8, 24] and pre-
dictive process monitoring [16]. Such techniques tap into an event stream produced by
an information system. However, they typically assume the stream to be free from noise
and anomalous behaviour. In reality however, several factors cause this assumption to
be wrong, e.g. the supporting system may trigger the execution of an inappropriate ac-
tivity that does not belong to the process, or the system may be overloaded resulting in
logging errors. The existence of these anomalies in event streams easily leads to unre-
liable results. For example, in drift detection, sporadic stochastic oscillations caused by
noise can negatively impact drift detection accuracy [14, 18].

In this paper, we propose a general-purpose event stream filter designed to detect
and remove spurious events from event streams. We define a spurious event as an event
emitted onto the stream, whose occurrence is extremely unlikely, given the underlying
process and process context. Our approach relies on a time-evolving subset of behaviour
of the total event stream, out of which we infer an incrementally-updated model that
represents this behaviour. In particular, we build a collection of probabilistic automata,
which are dynamically updated to filter out spurious events.

We implemented our filter as a stream processor, taking an event stream as an input
and returning a filtered stream. Using the implementation, we evaluated accuracy and
performance of the filter by means of multiple quantitative experiments. To illustrate
the applicability of our approach w.r.t. existing online process mining techniques, we
assessed the benefits of our filter when applied prior to drift detection.

The remainder of this paper is structured as follows. In Section 2, we discuss related
work, while in Section 3 we present background concepts introducing (online) process
mining concepts. In Section 4, we present our approach, which we evaluate in Section 5.
We conclude the paper and discuss several avenues for future work in Section 6.

2 Related Work

Work in the areas of online process mining and noise filtering are of particular relevance
to the work presented in this paper. In the area of online process mining, the majority of
work concerns automated process discovery algorithms. For example, Burattin et al. [7]
propose a basic algorithm that lifts an existing offline process discovery algorithm to
an online setting. Additionally, in [6], Burattin et al. propose an online process dis-
covery technique for the purpose of discovering declarative models. Hassani et al. [13]
extend [7] by proposing the use of indexed prefix-trees in order to increase memory
efficiency. Finally, van Zelst et al. [23] extend [7, 13] and generalize it for a large class
of existing process discovery algorithms. More recently, event streams have been used
for online conformance checking [8, 24] and online concept drift detection [17, 18]. In
the context of online conformance checking, Burattin et al. [8] propose an approach
that uses an enriched version of the original process model to detect deviant behaviour.
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In [24], van Zelst et al. propose to detect deviant behaviour by incrementally computing
prefix-alignments. In the context of online concept drift detection, Ostovar et al. [18]
detect drifts on event streams by monitoring the distribution of behavioural abstractions
(i.e. α+ relations) of the event stream across adjacent time sliding-windows. In follow-
up work, Ostovar et al. [17] extend [18] to allow for concept drift characterization.

With respect to noise filtering in context of event logs, three approaches are de-
scribed in literature [9, 12, 21]. The approach proposed by Wang et al. [21] relies on a
reference process model to repair a log whose events are affected by labels that do not
match the expected behaviour of the reference model. The approach proposed by Con-
forti et al. [9] removes events that cannot be reproduced by an automaton constructed
using frequent process behaviour recorded in the log. Finally, Fani Sani et al. [12] pro-
pose an approach that uses conditional probabilities between sequences of activities to
remove events that are unlikely to occur in a given sequence.

Existing noise filtering techniques have shown to improve the quality of process
mining techniques [9, 12], yet they are not directly applicable in an online context.
Similarly, online process mining techniques do not address the problem of noise in
event streams. Our approach bridges the gap between these techniques providing, to the
best of our knowledge, the first noise filter for business process event streams.

3 Background

Here we introduce our notation and basic concepts such as event logs and event streams.

3.1 Mathematical Preliminaries and Notation

Let X denote an arbitrary set and let P(X) denote the power set of X . We let N denote
the set of natural numbers including 0. B = {0, 1} represents the boolean domain. A
multiset M over X generalizes the notion of a set and allows for multiple instances of
its elements, i.e. M : X → N. We let M(X) denote the set of all possible multisets
over X . We write a multiset M as [xi11 , ..., x

in
n ] where M(xj) = ij for 1 ≤ j ≤ n. If

for x ∈ X , M(x) = 0 we omit it form multiset notation, and, if M(x) = 1 we omit
x’s superscript. A sequence σ of length n is a function σ : {1, ..., n} → X . We write
σ = 〈x1, ..., xn〉, where for 1 ≤ i ≤ n we have σ(i) = xi. The set of all sequences
over set X is denoted X∗. Given an n-ary Cartesian product X1 × X2 × · · · × Xn

and corresponding element e = (x1, x2, ..., xn), for 1 ≤ i ≤ n, we write πi(e) = xi.
We overload notation to define projection of sequences, i.e. let σ = 〈e1, e2, ..., em〉 ∈
(X1 × X2 × · · ·Xn)

∗, we have πi(σ) = 〈πi(e1), πi(e2), ..., πi(em)〉 for 1 ≤ i ≤ n.
A pair (X,�) is a partial order if � is a reflexive, anti-symmetric and transitive binary
relation on X .

Our approach builds on the notion of a probabilistic automaton (PA). Within such
automaton is an extension of conventional non-deterministic automaton, where each
transition has an associated probability of occurrence.

Definition 1 (Probabilistic Automaton). A probabilistic automaton (PA) is a 6-tuple
(Q,Σ, δ, q0, F, γ), where Q is a finite set of states, Σ is a finite set of symbols, δ : Q×
Σ → P(Q) is a transition relation, q0 ∈ Q is the initial state, F ⊆ Q is the set of final
states, γ : Q×Σ ×Q→ [0, 1] is the transition probability function.

Additionally we require:
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1. ∀q, q′ ∈ Q, a ∈ Σ(q′ ∈ δ(q, a)⇔ γ(q, a, q′) > 0): if an arc labelled a connects q
to q′, then the corresponding probability is non-zero.

2. ∀q ∈ Q \ F (∃q′ ∈ Q, a ∈ Σ(q′ ∈ δ(q, a))): non-final have states outgoing arc(s).
3. ∀q ∈ Q(∃a ∈ Σ, q′ ∈ Q(q′ ∈ δ(q, a)) ⇒

∑
{(a,q′)∈Σ×Q|q′∈δ(q,a)}

γ(q, a, q′) = 1):

the sum of probabilities of outgoing arcs of a state equals one.

For given q, q′ ∈ Q and a ∈ Σ s.t. δ(q, a) = q′, γ(q, a, q′) represents the probability
of reaching state q′ from state q by means of label a. We write such probability as
P (a | q → q′) and we define P (a | q) =

∑
q′∈Q

P (a | q → q′).

3.2 Event Logs

Modern information systems track, often in great detail, what specific activity is per-
formed for a running instance of the process, i.e. a case, at a certain point in time.
Traditional process mining techniques aim to analyse such data, i.e. event logs, in
a static/a-posteriori setting. Consider Table 1, depicting an example of an event log.

Table 1: Example event log fragment.

Event-id Case-id Activity Resource Time-stamp
... ... ... ... ...

571 412 decide (e) Ali 2017-11-10 13:47
572 417 register request (a) Marcello 2017-11-10 14:14
573 412 reject request (g) Mohammad 2017-11-10 14:18
574 417 examine causally (b) Mohammad 2017-11-10 14:33
575 417 check ticket (d) Marlon 2017-11-10 14:06
576 417 decide (e) Mohammad 2017-11-10 14:51
577 417 pay compensation (f) Mohammad 2017-11-10 15:03
578 504 register request (a) Ali 2017-11-10 15:05
... ... ... ... ...

Each line refers to the execution of an ac-
tivity, i.e. an event, in context of a process
instance, which is identified by means
of a case-id. In this example the case-
id equals the id of the ticket for which a
compensation request is filed. In general
the case-id depends on the process under
study, e.g. a customer type or product-id
are often used as a case-id.

Consider the events related to case-
id 417. The first event, i.e. with id 572,
describes that Marcello executed a register request activity. Subsequently, Mohammad
performed a causal examination of the request (event 574). In-between event 572 and
574, event 573 is executed that relates to a case with id 412, which reflects the that
several process instances run in parallel. An event e, i.e. the execution of an activity, is
defined as a tuple (ι, c, a) ∈ E , where E = I × C × A, I denotes the universe of event
identifiers, C denotes the universe of case identifiers, and A denotes the universe of
activities. Typically, more event attributes are available, e.g. the resource(s) executing
the activity and/or the time-stamp of the activity. However, here we only consider the
ordering of activities in context of a process instance, i.e. the control-flow perspective.

Definition 2 (Event Log, Trace). Given a collection of events E ⊆ E , an event log
L is a partially ordered set of events, i.e. L = (E,�) s.t. ∀e = (ι, c, a), e′ = (ι′, c′,
a′) ∈ E(ι = ι′ ⇒ (c = c′ ∧ a = a′)).

A trace related to case c ∈ C is a sequence σ ∈ E∗ for which:

1. ∀1 ≤ i ≤ |σ|(π2(σ(i)) = c); Events in σ relate to case c.
2. ∀e ∈ E(π2(e) = c⇒ ∃1 ≤ i ≤ |σ|(σ(i) = e)); Each event related to c is in σ.
3. ∀1 ≤ i < j ≤ |σ|(σ(i) 6= σ(j)); All events in σ are unique.
4. ∀1 ≤ i < j ≤ |σ|(σ(j) � σ(i)); Events in σ respect their order.

The partial order of the events of an event log is usually imposed by
means recorded times-stamps. A log is partially ordered due to, for exam-
ple, inherent parallelism of and/or mixed time-stamp granularity. A trace is a
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S ∞· · · (571, 412, e), (572, 417, a), (573, 412, g), (574, 417, b), · · ·

Fig. 1: Example event stream S.

sequence of events related to the same case identifier that respect the par-
tial order. Consider the trace related to case 417 of Table 1, which we write
as 〈(572, 417, register request), (574, 417, examine causally), (575, 417, check ticket),
(576, 417, decide), (577, 417, pay compensation)〉, or simply 〈(572, 417, a), (574, 417,
b), (575, 417, d), (576, 417, e), (577, 417, f)〉 using short-hand activity names. Most
process mining techniques ignore the event- and case-identifiers stored within events
and simply distil a sequence of activities from the given trace. For example, by project-
ing the example trace, we obtain〈a, b, d, e, f〉. When adopting such view on traces, a
multitude of cases exist which project onto the same sequence of activities.

3.3 Event Streams

We adopt the notion of online/real-time event stream-based process mining, in which
the data is assumed to be an infinite sequence of events. Since in practice, several in-
stances of a process run in parallel, we have no guarantees w.r.t. the arrival of events
related to the same case. Thus, new events related to a case are likely to be emitted onto
the stream in a dispersed manner, which implies that our knowledge of the activities
related to cases changes over time.

Definition 3 (Event Stream). An event stream S as a (possibly infinite) sequence of
unique events, i.e. S ∈ E∗ s.t. ∀1 ≤ i < j ≤ |S|(S(i) 6= S(j)).

Consider Figure 1, in which we depict a few of the (short-hand) events that we also
presented in Table 1. The first event depicted is (572, 417, register request), the second
event is (574, 417, examine causally), and so on. We assume that one event arrives per
unit of time, i.e. we do not assume the existence of a multiple channelled stream. More-
over, we assume that the order of event arrival corresponds to the order of execution.

4 Approach

In this section we present our approach. We aim to build and maintain a collection
of probabilistic automata which we use to filter out spurious events. Each automaton
represents a different view on the behaviour of the underlying process, as described
by the event stream. The main idea of the approach is that dominant behaviour attains
higher occurrence probabilities within the automata compared to spurious behaviour.

4.1 General Architecture

The proposed filter uses a subset of all behaviour emitted onto the stream and is in-
tended to be updated incrementally when new events arrive on the stream. Since we
need to maintain the possibly infinite event stream in finite memory, we need to “for-
get” behaviour observed in the past. Hence, we account for removal of events as well.

In Figure 2, we depict the main architecture of the proposed filter. We assume
an input event stream S that contains spurious events. As indicated, events related
to different cases are typically dispersed over an event stream. Hence, we need
means to track, given case c, what behaviour was received in the past for case c.



6

Input Event Stream S ∞
TimeNew Event e

Event Window w

Forw
ard

e

D
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{
e ′1 ,...,e ′n } Apply Filter f

Output Event Stream S′ ∞

Fig. 2: Schematic overview of the proposed
filtering architecture.

The exact nature of such data structure
is outside the scope of this paper. We as-
sume the existence of a finite event win-
dow w : C × N → E∗, where w(c, t)
represents the sequence of events stored
in the event window at time t. As such,
the event window maintains a set of rele-
vant recently received events, grouped by
case-identifier.

In order to determine what events
need to be removed from the event win-
dow (i.e. we need to maintain a finite
view of the stream), we are able to use
a multitude of existing stream-based approaches, e.g. we are able to us techniques such
as (adaptive) sliding windows [4,5], reservoir sampling [3,20] or (forward) decay meth-
ods [10]. The only strict assumption we pose on w, is that event removal respects the
order of arrival w.r.t. the corresponding case. Thus, whenever we have a stream of the
form 〈..., (ι, c, a), (ι′, c′, a′), (ι′′, c, a′′), ...〉, we assume event (ι, c, a) to be removed
prior to event (ι′′, c, a′′). A new event e is, after storage within w, forwarded to event
filter f . From an architectural point of view we do not pose any strict requirements on
the dynamics of the filter. We do however aim to let filter f reflect the behaviour cap-
tured within window w. Hence, the filter typically needs to process the event within its
internal representation, prior to the actual filtering. For the newly received event, the
filter f either decides to emit the event onto output stream S′, or, to discard it.

4.2 Automaton Based Filtering

Given the general architecture, in this section, we propose an instantiation of filter f .
We first present the conceptual idea of the use of probabilistic automata for the purpose
of spurious event filtering, after which we describe the main approach.

Prefix-Based Automata In our approach, a collection of probabilistic automata repre-
sents recent behaviour observed on the event stream. These automata are subsequently
used to determine whether new events are, according to the probability distributions
described by the automata, likely to be spurious or not. Each state within an automa-
ton refers to the recent history of cases as described by recently received events on the
event stream. The probabilities of the outgoing arcs of a state are based on cases that
have been in that state before, and subsequently moved on to a new state by means of
a new event. Upon receiving a new event, we assess the state of the corresponding case
and check, based on the distribution as defined by that state’s outgoing arcs, whether
the new event is likely to be spurious or not.

We construct probabilistic automata in which states represent recent behaviour for
a newly related event based on its case-identifier, i.e. prefix-based automata. In prefix-
based automata, a state q represents a possible prefix of executed activities, whereas
outgoing arcs represent those activities a ∈ A that are likely to follow the prefix rep-
resented by q, and their associated probability of occurrence. We define two types of
parameters, that allow us to deduce states in the corresponding prefix automaton based
on a prefix, i.e.:
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εstart 〈a〉

〈b〉

〈c〉

〈d〉
a, 1

b, 2
3

c, 1
3

b, 1
3

c, 1
3

b, 2
3

d, 1
3

d, 1
3

(a) Prefix Size 1/Identity Abstraction

εstart [a]

[a, b]

[a, c]

[b, c]

[b2]

[b, d]

[c, d]

a, 1

b, 2
3

c, 1
3

c, 1
2

b, 1

b, 1
2

c, 1
2

d, 1
2

b, 1
4

d, 1
4

b, 1
4

d, 1
4

(b) Prefix Size 2/Parikh Abstraction

Fig. 3: Two examples of prefix-based automata, based on traces 〈a, b, b, c, d〉, 〈a, b, c, b,
d〉 and 〈a, c, b, b, d〉.

1. Maximal Prefix Size; Represents the size of the prefix to take into account when
constructing states in the automaton.

2. Abstraction; Represents an abstraction that we apply on the prefix in order to define
a state. We identify the following abstractions:

– Identity; Given σ ∈ A∗, the identity abstraction id yields the prefix as a state,
i.e. id : A∗ → A∗, where id(σ) = σ

– Parikh; Given σ ∈ A∗, the Parikh abstraction p yields a multiset with the
number of occurrences of a ∈ A in σ, i.e. p : A∗ →M(A), where:

p(σ) =

an | a ∈ A ∧ n =

|σ|∑
i=1

({
1 if σ(i) = a

0 otherwise

)
– Set; Given σ ∈ A∗ the set abstraction s indicates the presence of a ∈ A in σ,

i.e. s : A∗ → P(A), where s(σ) = {a ∈ A | ∃1 ≤ i ≤ |σ|(σ(i) = a)}

In Figure 3, we depict two different automata based on the traces 〈a, b, b, c, d〉, 〈a,
b, c, b, d〉 and 〈a, c, b, b, 〉, which we assume to occur equally often. In Figure 3a, we
limit the prefix size to 1 and use the identity abstraction. Note that any of the possible
abstractions in combination with prefix size 1 always yields the same automaton. Con-
sider the state related to abstraction 〈b〉 which states that P (b | 〈b〉) = P (c | 〈b〉) =
P (d | 〈b〉) = 1

3 , i.e. we are equally likely to observe activity b, c or d after 〈b〉. In
Figure 3b, we limit the prefix size to 2 and use the Parikh abstraction. In this case, since
we use a larger prefix size, we have more fine-grained knowledge regarding the input
data. For example in Figure 3a, the automaton describes that sequence 〈a, b, d〉 is likely,
whereas in Figure 3b we have P (d | [a, b]) = 0.

Incrementally Maintaining Collections of Automata As new events are emitted on
the stream, we aim to keep the automata up-to-date in such a way that they reflect the
behaviour present in event window w. Let k > 0 represent the maximal prefix length
we want to take into account when building automata. We maintain k prefix-automata,
where for 1 ≤ i ≤ k, automaton PAi = (Qi, Σi, δi, q

0
i , Fi, γi) uses prefix-length i to

define its state set Qi. As exemplified by the two automata in Figure 3, the prefix length
influences the degree of generalization of the corresponding automaton. Moreover, in-
creasing the maximal prefix length considered is likely to generate automata of larger
size, and thus it is more memory intensive.
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Upon receiving a new event, we incrementally update the k maintained automata.
Consider new event e = (ι, c, a) arriving at time t and let σ = σ′ · 〈a〉 = w(c, t).
To update automaton PAi we apply the abstraction of choice on the prefix of length
i of the newly received event in σ′, i.e. 〈σ′(|σ′| − i + 1), ..., σ′(|σ′| − i + i)〉 to de-
duce corresponding state qσ′ ∈ Qi. The newly received event influences the probability
distribution as defined by the outgoing arcs of qσ′ , i.e. it describes that qσ′ can be fol-
lowed by activity a. Therefore, instead of storing the probabilities of each γi, we store
the weighted outdegree of each state qi ∈ Qi, i.e. deg+i (qi). Moreover, we store the
individual contribution of each a ∈ A to the outdegree of qi, i.e. deg+i (qi, a) with
deg+i (qi, a) = 0 ⇔ δ(qi, a) = ∅. Observe that deg+i (qi) =

∑
a∈A

deg+i (qi, a), and, that

deducing the probability of activity a in state qi is trivial, i.e. P (a | qi) =
deg+

i (qi,a)

deg+
i (qi)

.
Updating the automata based on events that are removed from event window w is

performed as follows. Assume that we receive a new event e at time t > 0. For each
c ∈ C, let σ′c = w(c, t − 1), σc = w(c, t) and let ∆c(t) = |σc| − |σ′c|. Observe that
for any case c that does not relate to the newly received event, we have ∆c(t) ≥ 0, i.e.
some events may have been dropped for that case, yet no new events are received, hence
|σc| ≤ |σ′c|. In a similar fashion, for the case c that relates to the newly event e, we have
∆c(t) ≥ −1, i.e. either |σc| = |σ′c| + 1, or, |σc| ≤ |σ′c|. Thus, to keep the automata in
line with the events stored in the event window, in the former case we need to update the
automata if ∆c(t) > 0, i.e. at least one event is removed for the corresponding case-id,
whereas in the latter case we need to update the automata if ∆c(t) ≥ 0. Therefore, we
define ∆′c(t) = ∆c(t) for the former case and ∆′c(t) = ∆c(t) + 1 in the latter case.
Henceforth, if for any c ∈ C, we have ∆′c(t) > 0, we need to update the maintained
automata to account for removed events. To update the collection of k maintained au-
tomata, for each 1 ≤ i ≤ ∆′c(t) we generate sequences 〈σ′(i)〉, 〈σ′(i), σ′(i) + 1〉, ...,
〈σ′(i), ..., σ′(i+k)〉 (subject to |σ′| > i+k). For each generated sequence we apply the
abstraction of choice to determine corresponding state q, and subsequently reduce the
value of deg+(q) by 1. Moreover, assume the state q corresponds to sequence 〈σ′(i),
σ′(i + 1), ..., σ′(i + j)〉 with 1 ≤ i ≤ ∆′c(t) and 1 ≤ j < k, we additionally reduce
deg+(q, a) by 1, where a = σ′(i + j + 1). As an example, consider that we use max-
imal prefix length 2, i.e. k = 2, a identity abstraction, and assume that for some c ∈ C
we have σ′ = 〈a, b, c, d, e〉 and σ = 〈b, c, d, e〉, i.e. the event related to activity a is
removed. We have δ′c(t) = 1, thus we generate sequences 〈σ′(1)〉 = 〈a〉 and 〈σ′(1),
σ′(1+1)〉 = 〈a, b〉. Since we use identity abstraction these two sequence correspond to
a state in their associated automaton, and we reduce deg+(〈a〉), deg+(〈a〉, b), deg+(〈a,
b〉) and deg+(〈a, b〉, c) by one.

Filtering Events After receiving an event and subsequently updating the collection of
automata, we determine whether the new event is spurious or not. To assess whether the
newly arrived event is spurious we assess to what degree the probability of occurrence
of the activity described by the new event is an outlier w.r.t. the probabilities of other
outgoing activities of the current state. Given the set of k automata, for automaton
PAi = (Qi, Σi, δi, q

0
i , Fi, γi) with prefix-length i (1 ≤ i ≤ k), we characterize an

automaton specific filter as fi : Qi × Σi → B. Note that an instantiation of a filter fi
often needs additional input, e.g. a threshold value or range. The exact characterization
of fi is a parameter of the approach, however, we propose the following instantiations:

– Fractional; Considers whether the probability obtained is higher than a given
threshold, i.e. fFi : Qi×Σi× [0, 1]→ B, where, fFi (qi, a, κ) = 1 if P (a | qi) < κ.
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– Heavy Hitter; Considers whether the probability obtained is higher than a fraction
of the maximum outgoing probability, i.e. fHi : Qi × Σi × [0, 1] → B, where,
fHi (qi, a, κ) = 1 if P (a | qi) < κ ·max

a′∈A
P (a′ | qi).

– Smoothened Heavy Hitter; Considers whether the probability obtained is higher
than a fraction of the maximum outgoing probability subtracted with the non-
zero average probability. Let NZ = {a ∈ Σi | P (a | qi) > 0}, we de-
fine fSHi : Qi × Σi × [0, 1] → B, where, fSHi (qi, a, κ) = 1 if P (a | qi) <

κ ·

(
max
a′∈A

P (a′ | qi)−
∑

a′∈NZ

P (a′|qi)

|NZ|

)
.

For a newly received event, each automaton, combined with a filter of choice yields
a boolean result indicating whether or not the new event is spurious. In context of this
paper we assume that we apply the same filter on each automaton. Moreover, we assume
that when any of the k maintained automata signals an event to be spurious, the event
itself is spurious. Note that maintaining/filtering the automata can be parallelized, i.e.
we maintain an automaton on each node within a cluster.

5 Evaluation
We implemented our filter as an open-source plugin for both ProM [19] and
RapidProM [2]. The filter source code is available at https://github.com/

s-j-v-zelst/prom-StreamBasedEventFilter. All raw results, including pro-
cess models, associated event data, scientific workflows and charts are available at
https://github.com/s-j-v-zelst/research/releases/tag/2018_caise.

Using the RapidProM plugin, we conducted a two-pronged evaluation. First, we
assessed filtering accuracy and time performance on randomly generated event streams,
based on synthetic process models, i.e. a collection of process models that resemble
business processes often present in organizations. Second, we assessed the applicability
of our filter in combination with an existing class of online process mining techniques,
namely concept drift detection. In the latter experiment we used both synthetic and
real-life datasets.

5.1 Filtering Accuracy and Time Performance
For this first set of experiments, we generated several event streams using 21 variations
of the loan application process model presented in [11]. These variations are inspired by
the change patterns of [22]. Out of 21 stable models, we generated 5 different random
event logs, each containing 5000 cases, with a varying amount of events. For each
generated log we randomly inserted spurious events with probabilities ranging from
0.025 to 0.15 in steps of 0.025. In these experiments we use a simple sliding window
with fixed size as an implementation for w. Given a sliding window of size |w|, the first
|w| events are used for training and are ignored. Each event arriving after the first |w|
events that relates to a case that was received within the first |w| events is ignored.

Accuracy We assess the impact of a wide variety of parameters on filtering accuracy.
These are the prefix size, the particular abstraction used, the filtering technique and
the filter threshold. The values of these parameters are presented in Table 2. Here, we
mainly focus on the degree in which prefix size, abstraction, filtering method and win-
dow size influence the filtering quality. The results for each of these parameters are

https://github.com/s-j-v-zelst/prom-StreamBasedEventFilter
https://github.com/s-j-v-zelst/prom-StreamBasedEventFilter
https://github.com/s-j-v-zelst/research/releases/tag/2018_caise
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Table 2: Parameters of Data Generation and Experiments with Synthetic Data

Data Generation
Artefact/Parameter Value
Number of Models 21
Number of Event Logs, generated per model 5
Probability of spurious event injection, per event log {0.025, 0.05, ..., 0.15}

Experiments
Window Size {2500, 5000}
Prefix Size {1, 3, 5}
Abstraction {Identity (id), Parikh (p), Set (s)}1

Filter
{Fractional (fF ), Heavy Hitter (fH),

Smoothened Heavy Hitter (fSH}
Filter Threshold (κ) {0.05, 0.1, ..., 0.5}
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Fig. 4: Average F1-score for different prefix sizes, abstractions, filtering methods and
window sizes, per threshold/noise combination.

presented in Figure 4. Note that, to reduce the amount of data points, we show results
for noise levels 0.025, 0.05, 0.1 and 0.15, and threshold levels 0.05− 0.25.

For the maximal prefix size (see Figure 4a), we observe that a prefix-size of 1 tends
to outperform prefix-sizes of 3 and 5. This is interesting as it shows that, for this col-
lection of models and associated streams, ignoring history improves the results. Note
that, for maximal prefix length k, we use k automata, and signal an event to be spurious
whenever one of these signals that this is the case. Using a larger maximal prefix-length
potentially identifies more spurious events, yielding higher recall values. However, a
side effect is potentially lower precision values. Upon inspection, this indeed turns out
to be the case, i.e. the differences in F1-score are explained by higher recall values for
increased maximal prefix lengths, however, at the cost of lower precision.

As for the abstraction used (see Figure 4b), we observe that the Identity- outper-
forms both the Parikh- and the Set abstraction (for these results prefix length 1 is ig-
nored.). The results are explained by the fact that within the collection of models used,
the amount of parallelism is rather limited, which does not allow us to make full use of
the generalizing power of both the Parikh and Set abstraction. At the same time, loops
of short length exist in which order indeed plays an important role, which is ignored



11

0.25

0.50

0.75

0.04 0.08 0.12
Noise

F
1 

S
co

re

0.25

0.50

0.75

0.1 0.2 0.3 0.4 0.5
Threshold

F
1 

S
co

re

Fig. 5: Average F1-score per noise (a)/threshold level (b).

by the two aforementioned abstractions. Upon inspection, the recall values of all three
abstractions is relatively equal, however, precision is significantly lower for both the
Parikh- and Set abstraction. This can be explained by the aforementioned generalizing
power of these abstractions, and, in turn, explains the difference in F1-score.

For the filter method used (see Figure 4c), we observe that the Smoothened Heavy
Hitter and Heavy Hitter outperform the Fractional filter for increasing threshold values.
This is explained by the fact that the fractional filter poses a rigorous requirement on
events to be considered non-spurious, e.g. threshold 1

4 requires an activity to occur at
least in 25% of the observed cases. The other two filters solve this by using the maximal
observed value, i.e. if a lot of behaviour is possible, the maximum value is lower and
hence the requirement to be labelled non-spurious is lower.

Finally, we observe that an increased sliding window size does not affect the filter
results significantly (see Figure 4d). Since the process is stable, this indicates that both
window sizes used are sufficiently large enough to deduce automata that allow us to
accurately filter the event stream.

Figure 5 shows how the average F1-score varies based on percentage of noise and
threshold level. We observe that the F1-score converges for the different threshold levels
as noise increases. Interestingly, in Figure 5b, we observe that for relatively low thresh-
old values, the range of F1-score values for various noise levels is very narrow, i.e. the
filtering accuracy is less sensitive to changes in the noise level. This effect diminishes as
the threshold increases, leading more scattered yet lower F-score values. We conclude
that, for the dataset used, the threshold level seems to be the most dominant factor in
terms of the F1-score.

Time Performance Window w maintains a finite representation of the stream, thus,
memory consumption of the proposed filter is finite as well. Hence we focus on time
performance, which we measured in RapidProM, using one stream per base model with
15% noise, and several different parameter values. The experiments were performed
on an Intel Xeon CPU (6 cores) 3.47GHz system with 24GB memory. Average event
handling time was∼ 0.017 ms, leading to handling∼ 58.8 events per ms. These results
show that our filter is suitable to work in real-time settings.

5.2 Drift Detection Accuracy

In a second set of experiments, we evaluate how effective is our filter to improve the
accuracy of process drift detection. For this, we chose a state-of-the-art technique for
drift detection that works on event streams, i.e. [18]. We apply our filter to the event
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streams generated from a variety of synthetic and real-life logs, with different levels of
noise, and compare drift detection accuracy with and without the use of our filter.

Experimental Setup For these experiments, we used the 18 event logs proposed
in [18]. These event logs were generated by simulating a model featuring 28 differ-
ent activities (combined with different intertwined structural patterns). Additionally,
each event log contains nine drifts obtained by injecting control-flow changes into the
model. Each event log features one of the twelve simple change patterns [22] or a com-
bination of them. Simple change patterns may be combined through the insertion (“I”),
resequentialization (“R”) and optionalization (“O”) of a pattern. This produces a total
of six possible nested change patterns, i.e. “IOR”, “IRO”, “OIR”, “ORI”, “RIO”, and
“ROI”. For a description of each change pattern we refer to [18].

Starting from these 18 event logs, we generated 36 additional event logs (two for
each original event log) containing 2.5% and 5% of noise (generated inserting random
events into traces of each log). This led to a data set of 54 event logs (12 simple patterns
and 6 composite patterns with 0%, 2.5%, and 5% noise), each containing 9 drifts and
approximately 250, 000 events.

Results on Synthetic Data In this experiment, we evaluated the impact that our ap-
proach has on the accuracy of the drift detection technique proposed in [18]. Figure 6
illustrates F1-score and mean delay of the drift detection before and after the application
of our filter over each change pattern.

The filter successfully removed on average 95% of the injected noise, maintaining
and even improving the accuracy of the drift detection (with F1-score of above 0.9 in
all but two change patterns). This was achieved while delaying the detection of a drift
by less than 720 events on average (approximately 28 traces).

When considering noise-free event streams (cf. Figure 6a), our filter preserved the
accuracy of the drift detection. For some change patterns (“rp”, “cd”, “IOR”, and
“OIR”), our filter improved the accuracy of the detection by increasing its precision.
This is due to the removal of sporadic events relations, that cause stochastic oscillations
in the statistical test used for drift detection. Figure 6b and Figure 6c show that noise
negatively affects drift detection, causing the F1-score to drops on average to 0.61 and
0.55 for event streams with 2.5% and 5% of noise, respectively. This is not the case
when our filter is applied, where an F1-score of 0.9 on average is achieved.

Finally, in terms of detection delay, the filter on average increased the delay by 370,
695, and 1087 events (15, 28, and 43 traces) for the logs with 0%, 2.5%, and 5% noise,
respectively. This is the case since changes in process behavior immediately following
a drift are treated as noise.

Results on Real-Life Data In this experiment, we checked if the positive effects of
our filter on drift detection, observed on synthetic data, translate to real-life data. For
this, we used an event log containing cases of Sepsis (a life-threatening complication
of an infection) from the ERP system of a hospital [15]. Overall, the event log contains
1, 050 cases with a total of 15, 214 events belonging to 16 different activities.

For this experiment, we attempted the detection of drift over the last 5, 214 events,
as the first 10, 000 events are used to train the filter. Figure 7 plots the P-value curves
of the statistical tests used for drift detection, both without (left figure) and with (right
figure) the use of our filter. When comparing these two curves, what appears evident is
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Fig. 6: Drift detection F1-score and mean delay per change pattern, obtained from the
drift detection technique in [18] over filtered vs. unfiltered event streams.
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Fig. 7: P-value without filtering (left) and with our filtering (right) for the Sepsis log.

that drifts detected after the 2067th event and after the 4373rd event are no longer there
after the application of our filter. In the experiments with synthetic logs, we observed
that our filter reduced the number of false positives (drift detected when it did actually
not occur). To verify if this was also the case for the real-life event log, we profiled the
direct-follows dependencies occurring before and after the drifts.

The profiling showed that while direct-follows dependencies “IV Antibiotics -
>Admission NC” and “ER Sepsis Triage ->IV Liquid” could be observed several times
across the entire event stream, the infrequent direct-follows dependencies “Admission
NC ->IV Antibiotics” and “IV Liquid ->ER Sepsis Triage” appeared only in the prox-
imity of the two drifts. These two infrequent dependencies cause a change in the α+
relations between the activities (changing from causal to concurrent), which then re-
sults in the detection of the drifts. These infrequent dependencies are removed by our
filter. In light of these insights, we can argue that the two drifts detected over the un-
filtered event stream are indeed false positives, confirming what we already observed
on the experiments with synthetic logs, i.e. that our filter has a positive effect on drift
detection accuracy.
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5.3 Threats to Validity

The collection of models used within the synthetic experiments related to filtering accu-
racy, i.e. as presented in Section 5.1, represent a set of closely related process models.
As such these results are only representative of models that exhibit similar types and
relative amounts of control-flow constructs compared to the process models used. Sim-
ilarly within these experiments, the events are streamed trace by trace, rather than using
event-level time stamps. Note that, since the process is stable we expect the automata
to be based on a sufficient amount of behaviour, similar to streaming parallel cases. Fi-
nally note that, we do observe that our filter can be applied on real-life data, yet whether
the results obtained are valid is hard to determine due to the absence of a ground-truth.

6 Conclusion

We proposed an event stream filter for online process mining, based on probabilistic
automata which are updated dynamically as the event stream evolves. A state in these
automata represents a potentially abstract view on the recent history of cases emitted
onto the stream. The probability distribution defined by the outgoing arcs of a state is
used to classify new behaviour as spurious or not.

The time measurements on our implementation indicate that our filter is suitable to
work in real-time settings. Moreover, our experiments on accuracy show that, on a set
of stable event streams, we achieve high filtering accuracy for different instantiations of
the filter. Finally, we show that our filter significantly increases the accuracy of state-
of-the-art online drift detection techniques.

As a next step, we plan to use our filter in combination with other classes of online
process mining techniques, such as techniques for predictive process monitoring and
automated process discovery.

Currently, filtering is immediately applied when an event arrives, taking into ac-
count only the recent history for that event. To increase filtering accuracy, we plan to
experiment with different buffering strategies for incoming events, to keep track both
of the recent history as well as the immediate future for each event. We also plan to
test different strategies for adapting the length of the sliding window used to build our
automata. For example, in our experiments we often observed windows with a large
number of events with low relative frequency, due to a high number of parallel cases
and due to case inactivity. The hypothesis here is that in these cases a larger window
leads to less false positives.

Acknowledgments. This research is funded by the Australian Research Council (grant
DP150103356), and the DELIBIDA research program supported by NWO.
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