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ABSTRACT: 

 

This paper investigates the displacement capacity of lightly reinforced rectangular walls. The 

design parameters and detailing of the walls considered in this study are typical of low-to-

moderate seismic regions such as Australia.  Obtaining accurate estimates of the displacement 

capacity of lightly reinforced walls is a vital step towards producing realistic estimates of 

fragility curves of RC buildings in low-to-moderate seismic regions. It is shown in this 

investigation that the nominal yield displacement capacity for reinforced concrete walls that 

have low amounts of longitudinal reinforcement can sometimes be overestimated using the 

existing equations.  An alternative approach is proposed here which gives a better match with 

experimental and numerical results and is particularly important for the reinforced concrete 

walls that exhibit a single crack in the plastic hinge zone.  An ultimate curvature equation is 

proposed for when a wall is estimated to form a single crack in the plastic hinge region.  A 

plastic hinge length equation which has been specifically derived for these types of walls is 

also introduced to estimate the plastic displacement of the wall due to plastic rotation at the 

base.    Experimental and finite element modelling results are used to compare the displacement 

capacity predictions. 
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1. Introduction 

For seismic design and assessment purposes it is typical to use a bilinear (or trilinear) 

approximation of the force-displacement response of reinforced concrete walls (Priestley et al., 

2007; Wibowo et al., 2013), as shown in Figure 1.  The point of first yield (Δ’y) is defined as 

that at which the tension reinforcement at the outermost position on the tensile side first reaches 

the yield strain.  The line that extends from this point to the nominal yield (Δy) point is 

calculated using Equation 1.  The ultimate displacement (Δu) is the summation of the nominal 

yield displacement and the plastic displacement (Δp). 

�� = �′���
��

 (1) 

where Fy and Fu are the force at first yield and ultimate force respectively. 

 

 

 

 

Figure 1 Idealised Moment-Curvature with nominal yield displacement 

These key displacement points in Figure 1 can commonly be calculated from a moment-

curvature analysis performed for the reinforced concrete (RC) section, or alternatively can be 

estimated using simplified equations.  For example, Priestley et al. (2007) recommends that 

Equation 2 be used to calculate the nominal yield displacement of an RC wall, where the 

approximate nominal yield curvature (Φy) is estimated using Equation 3. 

∆�=  ∅�
��
2 �1 − 
�

3
�
� (2) 

where He is the effective height of the wall and Hn is the total height of the wall. 

∅� = 2���
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where εsy is the yield strain of the reinforcing steel and Lw is the wall length. 

However, these equations have been derived for ‘typical conditions’, where a linear curvature 

profile is assumed for the wall reaching the yield strain (and curvature) at the base.  This 

assumption may not be applicable to lightly reinforced walls that exhibit a single-crack failure 

at the base of the wall.  In this case, the wall acts as a rigid body and must be separated from 

the flexural deformation that is classically obtained from the curvature distribution over the 

height of the wall.  This is discussed by Wibowo et al. (2016) for lightly RC columns, where 

the fixed end assumption, which is assumed in the traditional moment-curvature analysis, 

‘ignores the yield penetration effect associated with reinforcement elongation and bond slip in 

the anchorage zone’.  This can also be applied to single-crack failures in lightly reinforced 

walls, where yield penetration and bond slip are the primary contributors to the overall global 

displacement of the wall.  

Single-crack-failures in lightly reinforced concrete (RC) walls have been observed in the recent 

Canterbury earthquake sequence in 2011.  For example, an RC wall in the Gallery Apartments 

exhibited a single crack at the base of the wall.  On further inspection, longitudinal reinforcing 

bars that crossed this crack were found to have fractured (Henry, 2013; Sritharan et al., 2014).  

‘The building’s [Gallery Apartments] overall damage state may be described as being at near 

collapse.  A potentially catastrophic failure might have been observed for a slightly longer 

duration of severe ground shaking’ (Morris et al., 2015).  In past experimental testing of RC 

wall elements, it has been common for researchers to observe the development of a plastic 

hinge zone at the base of the wall in which cracks are well distributed.  The reason that single 

crack failures have not usually been observed in these tests is because of the high amounts of 

longitudinal reinforcement used in these specimens.  This would be common for RC wall 

designs in high seismic regions, but not in low-to-moderate seismic regions, such as Australia, 

where the majority of the building stock includes RC wall elements that have longitudinal 

reinforcement ratios (ρwv) less than 1% (Albidah et al., 2013; Wibowo et al., 2013). 

The aim of this paper is to investigate the (nominal) yield and plastic displacement capacities 

of RC walls.  An equation suitable for predicting the minimum longitudinal reinforcement 

required for secondary cracking is introduced.  Coefficients have then been derived from finite 

element (FE) modelling results to be used in expressions to improve the estimates of the 

nominal yield displacement of lightly RC walls.  Further to this, in order to estimate the 

contribution to the ultimate displacement capacity from the displacements due to plastic 

rotation at the base, a plastic hinge length equation, specifically derived for these types of walls, 

is introduced.  Moreover, an equation is proposed to estimate the average curvature at the single 

crack at the base when the ultimate displacement capacity is reached.  The displacement 

estimates based on the proposed equations are substantiated by comparisons to the 

experimental and FE results.  Achieving an accurate estimation of the displacement capacity 

of an RC wall is crucial in obtaining realistic results when constructing fragility curves. The 

fragility curves consider many cases and it would be very time-consuming to base them entirely 

on FE results; it is more expedient to rely upon reasonable estimates made with formulae that 

match well with the FE results within the range of interest. 
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2. Minimum longitudinal reinforcement required 

The authors have recently conducted an extensive numerical study of lightly reinforced and 

unconfined walls (Hoult et al., 2016b), detailed in accordance with AS3600:2009 (Standards 

Australia, 2009).  The results from the study indicated that a simple Secondary Cracking Model 

(SCM) can successfully estimate the minimum longitudinal reinforcement ratio (ρwv.min) 

required to initiate secondary cracking in an RC wall.  Using the SCM, Equation 4 has been 

derived to estimate the minimum longitudinal reinforcement ratio (ρwv.min). 

���.��� = �t� − � !" #$% .&'
$�(�

 (4) 

where tw is the thickness of the wall, nt is the number of layers of transverse reinforcing bars, 

dbt is the diameter of transverse reinforcing bars, fct.fl is the flexural tensile strength of the 

concrete and fu is the ultimate strength of the longitudinal reinforcing bars. 

3. Yield displacement as a function of ρwv 

Several lightly reinforced walls were analysed to obtain the displacement at first yield (∆'y).  

VecTor2 (Wong et al., 2013) is a state-of-the-art finite element (FE) modelling program for 

plane RC sections that is based on the disturbed stress field model (Vecchio et al., 2000).  The 

program was validated by comparing the prediction of the force-displacement behaviour 

(cyclic and monotonic) and strain distributions for some lightly reinforced RC walls (Hoult et 

al., 2016a, 2016b).  The constitutive and materials models used in VecTor2 include the 

Popovics normal-strength concrete compression model, which was adopted from the 

recommendations from Palermo and Vecchio (2007).  The model for the reinforcing steel is 

represented by the stress-strain curve as suggested in Seckin (1981).  Recent investigations by 

the authors using VecTor2 have shown that the Kupfer/Richart model (Kupfer et al., 1969; 

Richart et al., 1928) gives an overall better result for walls that are governed by compression.  

It was assumed that the reinforcement had perfect bond, an approach that has also been adopted 

in Lu et al. (2015).  More details of the extensive list of models chosen for the VecTor2 analyses 

can be found in Hoult et al. (2016a) and Hoult et al. (2016b).  For all of the walls modelled 

here, a mesh size of approximately 0.5tw to 1.0tw was used, where the 3:2 aspect ratio limit was 

recommended in Wong and Vecchio (2002).  The axial load was distributed and applied to all 

nodes at the top of the wall (held constant throughout the analysis), while the same nodes were 

subjected to a lateral displacement for the monotonic nonlinear pushover analyses. 

The two walls chosen for the initial study have wall lengths (Lw) of 3 and 6 metres and are 200 

mm thick, with effective heights (He) corresponding to 7.35m and 35 m respectively.  The axial 

load ratio (ALR) for both walls was 5%.  The mean in situ compressive strength of concrete 

(fcmi) is 40 MPa and the mean mechanical properties of steel from Menegon et al. (2015b) for 

D500N bars were used, which corresponds to a εsy of 0.0027 (assuming Young’s Modulus of 

the reinforcing steel is 200 GPa).  The nominal yield displacement results from VecTor2 as a 

function of the longitudinal reinforcement ratio (ρwv) are illustrated in Figure 2.  In this case, 

the nominal yield displacement (Δy) was calculated using Equation 1, by extracting the values 

for ∆'y, Fu and Fy from the FE results for each increment of ρwv.    The results from this study 
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indicate that the nominal yield displacement increases as a function of the longitudinal 

reinforcement ratio (ρwv) of the wall.  This is discussed by Wallace and Moehle (1992) for the 

nominal yield curvature (Φy), which ‘increases with increasing steel ratio and axial load’.  

Moreover, the estimation from Priestley et al. (2007) using Equations 2 and 3 vastly 

overestimates the nominal yield displacement over the entire ρwv range.  As discussed in 

Priestley and Kowalski (1998), the relationship for yield curvature (given in Equation 3) 

‘should not be extrapolated beyond the range 300 ≤ fy ≤ 500 MPa nor beyond the limits of 

longitudinal steel ratio’, which were between 0.01 ≤ ρwv ≤ 0.04.  Given that the lower 

characteristic value of the yield stress (fy) of D500N reinforcing bars used in Australia is 500 

MPa (Standards Australia/New Zealand, 2001) the actual value of fy will typically be higher 

than 500 MPa.  Moreover, the majority of RC walls found in this region have longitudinal 

reinforcement ratios lower than 0.01 (Albidah et al., 2013; Wibowo et al., 2013).  Hence the 

equation for estimating the nominal yield curvature for rectangular walls in Australia needs 

further investigation. 

Figure 2 Nominal yield displacement as a function of longitudinal reinforcement for (a) 3 metre wall and 

(b) 6 metre wall 

It is also interesting to note that the resulting nominal yield displacement from VecTor2 is also 

significantly lower than the estimate from Priestley et al. (2007) for walls with ρwv larger than 

ρwv.min.  It has been shown that for certain walls with well distributed cracking a linear curvature 

profile at yield is able to provide a good approximation to the yield displacement that 

corresponds to a more realistic curvature (Priestley et al., 2007).  For example, Equation 2 has 

been derived by assuming a linear curvature profile, which has been shown to give only a 

slightly higher yield displacement result in comparison to a more “realistic” curvature profile 

of a wall which has an uncracked upper portion (50% of wall height) if ignoring tension shift 

effects (Priestley et al., 2007).  However, this same approach is not likely to give a close 

estimate of the yield displacement for walls with a low amount of longitudinal reinforcement 

(and unconfined boundary ends), where flexural cracking above the base of the wall does not 

extend to 50% of the wall height.   
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To investigate this, while highlighting the difference in behaviour for walls with a single crack 

and those in which well distributed cracking is observed, values of ρwv of 0.15% and 1.00% 

have been taken and are used to compare key strain and curvature distributions.  Using Equation 

4, it is estimated that both walls need a ρwv of approximately 0.50% to allow secondary 

cracking.  This gives an insight into the reasons for the differences in estimates of yield 

displacement that have been discussed above.  Figure 3(a) shows the results for the 3 metre 

walls with a ρwv of 0.15% and 1.00% respectively at the point at which the yield strain, εsy, has 

just been reached in the outermost layer of tensile reinforcement at the base of the wall.  For 

the wall with a single crack (ρwv = 0.15%), the strain distribution at yield is clearly concentrated 

at the base of the wall and the tensile strain rapidly diminishes over a small length up the height 

of the wall.  This is in contrast to the wall with a 1.00% longitudinal reinforcement ratio, where 

the strains appear to be more distributed up the wall height.  Figure 3(b) shows the curvature 

distribution results for the walls with secondary cracking (ρwv of 0.60%, 0.75% and 1.00%) 

over the entire wall height (of 7.35 m).  Superimposed on this figure is a linear curvature profile.  

Although it appears some yielding (and thus, some cracking) have occurred in the majority of 

the lower 50% of the wall height, the actual curvature profiles are far different from the 

approximate linear curvature profile.  Moreover, the curvature distribution becomes more 

linear as the longitudinal reinforcement ratio increases, which explains the trend illustrated in 

Figure 2. 

Figure 3 (a) Steel strain distribution and (b) curvature distribution for the 3 metre wall in VecTor2 

The results here have shown that a review is needed of the displacement capacity equations for 

the lightly reinforced walls typically found in regions of low-to-moderate seismicity.  In the 

next section coefficients are derived that can be used in equations to better predict the nominal 

yield displacement of lightly reinforced walls. 

4. Nominal Yield Displacement Capacity 

For cantilever wall structures, the nominal yield displacement can be predicted by using the 

expression in the form of Equation 5 (Tjhin et al., 2004).  The yield displacement coefficient 

(kΔ) depends on the curvature distribution up the height of the wall.  As previously discussed 
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in Sections 1 and 3, lightly reinforced concrete walls that exhibit a single crack will have a 

concentration of strain (and therefore curvature) over a small, localised length of the wall height 

from the base.  Hence, estimating the Δy with Equation 5 using kΔ is inappropriate for these 

walls that are likely to form a single crack.  Instead, the yield displacement can be estimated 

using Equations 6 and 7, which have been derived from a study focusing on the experimental 

testing of lightly reinforced concrete elements (Altheeb, 2016). The Δsp.e is the deformation due 

to elastic strain penetration. 

∆�=  )∆*�
�� 
 

(5) 

∆�= ∆�+.� = ∆�'�+.�',� �%
0.5�� − !%


� 

 

(6) 

where dc is the cover distance of the longitudinal reinforcing bars. 

∆�'�+.�',� �%= ���$��!"'

1.2�!"'#/.01$%′
 

(7) 

where fsy and dbl is the yield strength and diameter of the longitudinal reinforcing bars. 

For walls that do form secondary cracking, the nominal yield curvature (Φy) can be estimated 

using an expression in the form of Equation 8, where kϕ is the nominal yield curvature 

coefficient. 

*� = )2
��

 (8) 

The kϕ value is also commonly dependent on the yield strain value of the reinforcing bars used; 

e.g. kϕ = 2εsy from Priestley et al. (2007) for rectangular concrete walls.  FE results for walls 

that exhibited secondary cracking will be used to compare and derive (if necessary) kΔ and kϕ 

values for the lightly reinforced, unconfined walls. 

The FE modelling program VecTor2 was used to conduct further nonlinear pushover analyses 

using the constitutive models and mesh guidelines discussed in Hoult et al. (2016b) and Section 

3.  The sensitivity of the coefficients to several different parameters was investigated; these 

parameters were the wall length (Lw), axial load ratio (ALR) and longitudinal reinforcement 

ratio (ρwv).  A realistic range of values was taken for each parameter, given in Table 1.  Mean 

values of the mechanical properties were taken from Menegon et al. (2015b) for the D500N 

steel reinforcing bars that are commonly used in Australia.  The fcmi was held constant at 

40MPa, while the ALRs considered were 1.5% and 10%, a lower and upper limit found to be 

within the recommended and observed values from Henry (2013) and Albidah et al. (2013).  

All of the walls had an aspect ratio (a = He/Lw) higher than 3 so that flexural behaviour would 

govern; the effective height that correspond to the 3, 6 and 9 metre walls are 12.25, 19.6 and 
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34.3 metres.  Importantly, the ρwv considered for this study were chosen to be higher than the 

ρwv.min calculated using Equation 1 (approximately 0.50%).  This is because the coefficients and 

corresponding equations will be used for walls with flexural behaviour; if ρwv is less than ρwv.min 

other equations based on strain penetration behaviour are needed as discussed previously. 

Table 1 Values used for several parameters of the RC walls invetsigated 

Lw (m) ALR (%) ρwv (%) 

3, 6, 9 2.5, 10 0.6, 0.75, 0.9 

 

Using the VecTor2 results, the yield displacement (Δ’y) was determined as the displacement at 

which the outermost longitudinal reinforcing bar reached or exceeded the yield strain εsy 

(approximately 0.0027).  The curvature at first yield (Φ’y) was also calculated from the steel 

and concrete strains reached in the respective extreme fibre edges at the yield displacement.  

The nominal yield curvature (Φy) was thus calculated using Equation 9 with the corresponding 

moment at first yield (My) and ultimate moment (Mu).  Similarly, the nominal yield 

displacement (Δy) was calculated using Equation 1.  The nominal yield curvature coefficient 

(kϕ) and yield displacement coefficient (kΔ) were found by using the curvature and displacement 

results from VecTor2 and rearranging Equations 8 and 5 respectively.  The results from 

VecTor2 and the corresponding coefficients are given in Table C1 (Appendix C). 

*� = *′�3�
3�

 (9) 

Table C1 shows that the commonly used expression from Equation 3 overestimates the nominal 

yield curvature in comparison to the VecTor2 results.  Instead, a kϕ value of 1.6εsy was found 

to be more applicable, which has been derived from the minimum of the sum of the squares. 

The kΔ results in Table C1 indicate some variability, with a high dependence on the amount of 

longitudinal reinforcement in the wall, as was found in Section 3.  Therefore, Equation 10 can 

be used to estimate kΔ based on the ρwv of the wall.  A minimum and maximum value of 0.08 

and 0.24 for kΔ respectively were chosen based on the results of this study 

0.08 ≤ )∆ = 39��� − 0.12 ≤ 0.24 (10) 

5. Plastic Displacement Capacity 

As previously discussed in Section 1, observations from the Christchurch earthquake indicated 

that some lightly reinforced walls may fail in a non-ductile fashion with a single crack in the 

plastic hinge zone.  In this case, the curvature is concentrated over a small height at the base of 

the wall.  Furthermore, a typical moment-curvature analysis may not be able to predict the 

ultimate curvature achieved by these types of walls as the performance is governed by strain 

penetration deformation rather than flexural deformation, where the assumptions inherently 

built in to a moment-curvature analyses no longer apply.  Research by Wibowo et al. (2016) 

has led to an alternative method for calculating the moment-curvature for lightly reinforced 

concrete columns.  Moreover, Wibowo et al. (2016) offer a simplified alternative for the 
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moment and curvature.  However, these equations may not be applicable to RC walls since 

there is typically a greater axial load ratio (ALR) and longitudinal reinforcement ratio (ρwv) in 

lightly reinforced columns in comparison to lightly reinforced walls.  Instead, the proposed 

estimation here stems from treating the plastic behaviour due to yield penetration and bond slip 

at the base as a plastic rotation due to an estimated curvature multiplied by a plastic hinge 

length.  This estimate of the plastic curvature (Φp) of the walls with a single-crack failure is 

illustrated in Figure 4.  The Φp can be calculated using Equation 11, which conservatively 

assumes that no compression region exists over the length of the wall.  An ultimate strain value 

equal to 0.6 of the uniform elongation strain (εsu) for the reinforcing steel is used due to the 

recommendations by Priestley et al. (2007) for low-cycle fatigue.  The yield strain (εsy) value 

is subtracted from the ultimate strain (0.6εsu).  In contrast, for walls that achieve secondary 

cracking, and hence well distributed cracks within the plastic hinge zone, a typical moment-

curvature analysis can be used to obtain an estimate of the ultimate curvature (Φu), as it is 

assumed that the walls’ performance will be governed by flexural behaviour.  In this case Φp 

can then be calculated by subtracting the estimated nominal yield curvature (e.g. Φp = Φu – 

Φy). 

*+ = 0.6��� −  ���
��

 (11) 

 

 

Figure 4 Idealised strain reached at the ultimate state for a single-crack-failure wall 

The plastic displacement is then calculated using Equation 12.  For walls that form secondary 

cracks, the plastic hinge length (Lp) can be calculated for lightly reinforced and unconfined 

concrete rectangular walls using Equation 13.  This equation has been derived from regression 

analysis using results of an extensive study testing the effects of numerous parameters by the 

authors for these types of walls (Hoult et al., 2016b).  It is limited to walls with ALRs less than 

10%.  Hoult et al. (2016b) recommend that a more conservative equation be used for design 

purposes.  Moreover, the plastic strain penetration length (Lsp) was not included in the original 

study; thus, the Lsp estimated by Altheeb (2016) (Equation 14) has been included into Equation 

13 to give a more realistic length for assessment purposes. 

0.6εsu 

Lw 

εsy 
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∆+= �*+#�+
� (12) 

�+ = �0.10�� + 0.075
�#�1 − 6;�<# +  ��+ ≤ 0.5�� (13) 

��+ = =$�� − $��>!"'?.�

4@$%A  (14) 

If a wall is estimated to have a single, primary crack, the plasticity is confined to a small length 

of the wall. The authors previously suggested that a value of 100 mm could be used here (Hoult 

et al., 2016b); by using the product of this length and the plastic curvature estimated in Equation 

11 a conservative estimate of the plastic rotation could be obtained that incorporates strain 

penetration on each side of the crack.  A less conservative value of 150 mm is used here for 

assessment purposes, which corresponds to the mean plastic hinge length for the walls assessed 

in Hoult et al. (2016b). 

6. Comparison with experimental and FEM walls 

Recent experimental testing on lightly reinforced rectangular concrete walls have been 

conducted in Australia using D500N type reinforcing steel (Albidah, 2016; Altheeb, 2016).  

One of the two walls tested and reported here formed a single-crack at the base of the wall, 

which had a ρwv content less than the ρwv.min estimated using Equation 4.  This presents an 

opportunity to test the proposed equations against the experimental data.  For the sake of 

brevity, the reader is referred to the corresponding reports for full details of the wall specimens 

(Albidah, 2016; Altheeb, 2016).  VecTor2 provided good correlations modelling the 

behaviours of walls “Wall1” and “Wall2” (Albidah, 2016; Altheeb, 2016) using the same 

constitutive and material models as for the numerical walls analysed in this paper.  Hence the 

results from VecTor2 are considered reliable when making predictions of the actual yield and 

plastic displacements of a wall.  Therefore, two RC walls analysed in VecTor2 are also used 

for comparison.  The two FE walls are similar to that analysed in Section 3 but with a Lw of 3 

m and a He of 7350 mm.  The equations that have been proposed above to estimate the wall 

displacement are summarised in Appendix A.  The set of equations used is dependent on the 

longitudinal reinforcement ratio and whether it is smaller or larger than the specified minimum 

value (Equation 4).  Moreover, the equations used for comparison that are proposed by 

Priestley et al. (2007) are summarised in Appendix B.   

Table 2 and Table 3 compare the predicted nominal yield and plastic displacement 

(respectively) from the proposed capacity equations to the observed experimental and 

analytical results.  The resulting predictions of displacement capacity using the equations 

recommended by Priestley et al. (2007) are also given in Table 2 and 3, which also require a 

moment-curvature analysis to be undertaken for each of the wall sections.  Table 4 gives the 

summation of the yield and plastic deformations, which corresponds to the ultimate 

displacement.  It should be noted that the ultimate displacement is taken at the peak of the 

force-displacement response of the walls; this typically corresponds with an ultimate concrete 

strain of 0.003 being reached in the unconfined walls, a value which has been used by other 

researchers (Menegon et al., 2015a; Tjhin et al., 2004; Wood, 1989). 
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As shown in Table 2, the estimates of the nominal yield displacement made using the proposed 

equations are conservative for the experimental walls from Altheeb (2016), but are within 83% 

to 99% of the observed value for the walls analysed in VecTor2.  The equations from Priestley 

et al. (2007) overestimate the nominal yield displacement, as was found in Section 3.  It is 

estimated in Altheeb (2016) that 38% of the deformation at yield for Wall1 is due to flexural 

deformations, hence the use of Equations 6 and 7, which only calculate elastic deformation due 

to strain penetration, gives a conservative result.  Similarly, it is estimated that flexural 

deformations are only responsible for 60% of the total displacement at yield for Wall2 

(Altheeb, 2016), which corresponds closely to the value obtained in Table 2 using the equations 

proposed in this study (Appendix A). 
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Table 2 Nominal yield displacement results 

    Nominal Yield Displacement (Δy) Ratio (predicted/observed) 

Wall Specimen ρwv ρwv.min Behaviour? Observed (mm) This Study (mm) Priestley et al. (2007) This Study (mm) Priestley et al. (2007) 

Wall1 (Altheeb, 2016) 0.36% 0.47% Single Crack 10 4 19 0.45 1.95 

Wall2 (Altheeb, 2016) 0.73% 0.46% Secondary Cracking 11 6 19 0.61 1.76 

3 metre wall (VecTor2) 0.15% 0.50% Single Crack 4 3 35 0.83 8.63 

3 metre wall (VecTor2) 1.00% 0.50% Secondary Cracking 18 18 35 0.99 1.92 

 

Table 3 Plastic displacement results 

    Plastic Displacement (Δp) Ratio (predicted/observed) 

Wall Specimen ρwv ρwv.min Behaviour? Observed (mm) This Study (mm) Priestley et al. (2007) This Study (mm) Priestley et al. (2007) 

Wall1 (Altheeb, 2016) 0.36% 0.47% Single Crack 29 26 25 0.90 0.88 

Wall2 (Altheeb, 2016) 0.73% 0.46% Secondary Cracking 32 14 15 0.43 0.47 

3 metre wall (VecTor2) 0.15% 0.50% Single Crack 20 17 60 0.87 2.98 

3 metre wall (VecTor2) 1.00% 0.50% Secondary Cracking 22 18 29 0.81 1.30 

 

Table 4 Ultimate displacement results 

    Plastic Displacement (Δp) Ratio (predicted/observed) 

Wall Specimen ρwv ρwv.min Behaviour? Observed (mm) This Study (mm) Priestley et al. (2007) This Study (mm) Priestley et al. (2007) 

Wall1 (Altheeb, 2016) 0.36% 0.47% Single Crack 39 30 44 0.79 1.14 

Wall2 (Altheeb, 2016) 0.73% 0.46% Secondary Cracking 43 20 34 0.48 0.79 

3 metre wall (VecTor2) 0.15% 0.50% Single Crack 24 21 94 0.86 3.92 

3 metre wall (VecTor2) 1.00% 0.50% Secondary Cracking 40 36 63 0.89 1.58 
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For walls that are predicted to form secondary cracks, the large discrepancy of calculated 

plastic deformation compared to the observed experimental deformation for the wall with 

secondary cracking (Wall 2) could be due to the large amount of strain penetration 

deformations contributing to the overall global displacement; Altheeb (2016) reported that the 

deformation contributions at the peak displacement were from flexural (54%), strain 

penetration (36%) and shear (or sliding shear) (10%). 

For the walls with single-crack failures that have rotations at the base driven by strain 

penetration rather than flexural deformations over a specified length, a good match is obtained 

for the plastic deformation using Equation 13 and a plastic hinge length of 150mm.  In contrast, 

the equations by Priestley et al. (2007) widely overestimate the plastic deformation for the 3 

metre FE wall with a single crack, primarily due to the calculated Lp of 1033 mm (Appendix 

B).  Moreover, the nominal yield and plastic deformation predictions by Priestley et al. (2007) 

decrease in accuracy as the effective height (He) increases.  This is due to the high dependency 

on He in the equations for calculating nominal yield and plastic displacement given in Equation 

2 and Equation 14 respectively. 

Overall, a closer match was achieved using the equations proposed here (in the Appendix A) 

when predicting the yield and plastic deformations of these lightly reinforced and unconfined 

rectangular walls that are common to the low-to-moderate seismic region of Australia. 

7. Conclusion 

This paper and corresponding study aimed to provide better estimates of the (nominal) yield 

and plastic deformation capacities for lightly RC walls.  It was of particular importance to 

predict the displacement capacity of walls that exhibit a single crack, where the performance 

is predominantly governed by strain penetration deformation rather than the conventional 

flexural deformations.  Nominal yield curvature and displacement coefficients were derived 

from a series of FE modelling analyses and have been included in the proposed displacement 

capacity equations for these types of walls; these are given in Appendix A.  The equations have 

been shown to make conservative predictions when compared with available experimental 

results, and also with results from case studies that have been analysed using a comprehensive 

FEM analysis. The equations from Priestley et al. (2007) that have previously been used to 

make predictions for RC walls in regions of high seismicity have been shown to provide large 

overestimates of the displacement capacity in some case, particularly for large values of the He 

(e.g. mid and high-rise buildings) and walls that fail with a single crack.  This work is part of 

ongoing research being conducted at the University of Melbourne to derive fragility functions 

for RC wall and core buildings in Australia. 
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Appendix A 

Summary of Displacement Capacity Equations (Assessment) 

For ρwv < ρwv.min 
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For ρwv ≥ ρwv.min 
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Appendix B – Equations proposed in Priestley et al. (2007) 
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Appendix C – VecTor2 Results 

Table C1 Results from VecTor2 for the lightly reinforced concrete walls 

 

    VecTor2     

Lw (m) ALR He (m) ρwv Δ'y (mm) Fu/Fy Φy (rad/mm) Φy=1.6εsy/Lw Φy=2εsy/Lw Δy (mm) kΔ 

3 1.5% 12.25 0.60% 17 1.31 1.5 1.4 1.8 22 0.10 

3 1.5% 12.25 0.75% 33 1.21 1.4 1.4 1.8 40 0.18 

3 1.5% 12.25 0.90% 40 1.22 1.5 1.4 1.8 49 0.22 

3 10.0% 12.25 0.60% 24 1.29 1.6 1.4 1.8 31 0.14 

3 10.0% 12.25 0.75% 39 1.14 1.6 1.4 1.8 45 0.20 

3 10.0% 12.25 0.90% 44 1.15 1.5 1.4 1.8 51 0.23 

6 1.5% 19.6 0.60% 17 1.44 0.8 0.7 0.9 24 0.09 

6 1.5% 19.6 0.75% 40 1.22 0.6 0.7 0.9 49 0.17 

6 1.5% 19.6 0.90% 50 1.23 0.6 0.7 0.9 62 0.22 

6 10.0% 19.6 0.60% 22 1.51 0.6 0.7 0.9 33 0.12 

6 10.0% 19.6 0.75% 48 1.17 0.7 0.7 0.9 56 0.20 

6 10.0% 19.6 0.90% 55 1.16 0.8 0.7 0.9 64 0.23 

9 1.5% 34.3 0.60% 28 1.61 0.3 0.5 0.6 45 0.08 

9 1.5% 34.3 0.75% 87 1.22 0.4 0.5 0.6 107 0.19 

9 1.5% 34.3 0.90% 100 1.25 0.4 0.5 0.6 125 0.22 

9 10.0% 34.3 0.60% 44 1.52 0.4 0.5 0.6 67 0.12 

9 10.0% 34.3 0.75% 98 1.17 0.4 0.5 0.6 115 0.20 

9 10.0% 34.3 0.90% 111 1.18 0.5 0.5 0.6 131 0.23 
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