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Abstract 

 

Substantial progress has been made in developing option hedging models that 

account for transaction costs. Previous analyses of option hedging strategies in the 

presence of transaction costs use a Monte Carlo simulation framework in conjunction 

with a mean variance rule to compare different strategies. These studies being based on 

simulated stock price data are essentially theoretical tests. It is not known, however, 

how various proposed hedging strategies compare in terms of hedging precision and 

transaction costs when tested using actual market data. In addition, the mean variance 

rule is subject to certain well-known restrictive assumptions. 

  

This thesis aims to fill two gaps in the literature, by: (1) using actual market data 

to examine hedging performance, and (2) using a stochastic dominance rule as an 

alternative hedging performance measure. I undertake two studies. The first compares 

hedging strategies using Monte Carlo simulation together with mean variance and 

stochastic dominance criteria. Simulation allows us to study the consistency of the 

hedging outcomes determined by criteria rules in a controlled environment. The second 

study is a comprehensive empirical investigation of the merits of competing option 

hedging strategies with transaction costs, using S&P 500 index options. Both studies 

examine the hedging performance of the delta-neutral hedge. Given the widely 

documented volatility risk in empirical data, I further supplement the empirical study 

with a delta–vega-neutral hedge.  

 

Consistent with the literature, the Monte Carlo simulation demonstrates that 

move-based strategies are superior to time-based strategies. In contrast, empirical 

testing shows time-based strategies, in particular the Black-Scholes discrete time 

hedging strategy, are the optimal hedging strategies. Empirically, I find that a delta-

neutral hedge is sufficient for a hedger to attain the optimal tradeoff between hedging 

precision and transaction costs paid if the hedger is using time-based strategies. I further 

demonstrate that a hedger can save a substantial amount of transaction costs by simply 

switching from a move-based strategy to a time-based strategy. A hedger is able to save 

an average 46% of the transaction costs associated with a poorly performing hedging 

strategy by simply switching to the optimal hedging strategy. I also show that mean 
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variance and stochastic dominance comparisons are not always mutually consistent with 

each other; however, the differences are usually small. The rank of each strategy under 

either rule is highly dependent on the characteristics of the empirical distribution of the  

net hedging error. I also show that a stochastic dominance test provides a precise 

ranking of hedging performance for each hedging strategy only when there are strong 

dominance relationships among the strategies, that is, when the empirical density 

functions of  net hedging error for each of the strategies are sufficiently different. The 

comparisons presented in my study strengthen the confidence in the mean variance rule 

as a performance measure in assessing hedging outcomes in the presence of transaction 

costs. The findings of my thesis will assist financial institutions in making informed 

hedging decisions when transaction costs are taken into consideration. 
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Chapter 1  

1. Introduction  

 

The derivatives market has expanded dramatically since the publication of Black 

and Scholes’ (1973) and Merton’s (1973) seminal papers on option pricing and dynamic 

hedging. The core idea of their papers is that, in a frictionless and complete market, the use 

of a dynamic trading strategy provides a perfectly instantaneous riskless hedge at the limit 

of continuous trading. Since then, there has been an explosion of new option pricing and 

hedging models that relax the restrictive assumptions imposed in the Black–Scholes–

Merton model.   

 

In this thesis, I consider a situation in which a trader has written a European call 

option. The trader is presented with a long list of possible option hedging models in the 

literature, which can be grouped into three major categories: stochastic volatility, 

stochastic interest rates and jump diffusion processes. The trader would like to identify 

the best way to hedge the risk exposure of the short position. Using empirical analysis, 

Bakshi, Cao and Chen (1997) find that, if a delta-vega-neutral strategy is implemented, 

the ad hoc Black–Scholes model performs no worse than other more complicated 

models that allow volatility, interest rates and jumps to be stochastic. Dumas, Fleming 

and Whaley (1998) model the volatility as a deterministic function of strike price and 

maturity. They show, also using empirical analysis, that the hedge ratios determined by 

the Black–Scholes model are more reliable than those obtained from a deterministic 

volatility function. Lam, Chang and Lee (2002), who examine the variance-gamma 

option pricing model, and Yung and Zhang (2003), who look at the Generalised 

AutoRegressive Conditional Heteroskedasticity (GARCH) option pricing model, 

conclude similarly that the Black–Scholes hedging strategy performs well relative to 

other, more complicated models. All these studies conclude that simpler hedging 

strategies work best; however, these studies do not include transaction costs in their 

analyses.   

 

In the real world, trading occurs at discrete time points; therefore, the assumption of 

continuous trading in most hedging models is violated. When market friction such as 
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transaction costs for each trade are taken into consideration, a perfect hedge using the 

underlying asset and cash (equivalently, riskless bonds or the money market account) 

cannot be obtained. This is because continuous trading of arbitrarily small amounts of 

stock is infinitely costly. As a result, perfect hedging is impossible and the optimal 

hedging strategy becomes preference-dependent. In addition, most option pricing and 

hedging models assume no transaction costs. When it comes to practical applications, 

transaction costs may be a major reason to reject a theoretically sound hedging strategy 

that can eliminate most of the risks such as jumps in asset prices, stochastic interest 

rates and stochastic volatility. Although many hedging studies have included transaction 

costs in their empirical tests, these studies assess how the introduction of transaction 

costs affect the performance of the more sophisticated models; they do not test the 

performance of alternative hedging strategies designed to reduce the total costs of 

hedging.  

 

Several theoretical papers examine option hedging in the presence of transaction 

costs. There are two main classifications of hedging strategies in the literature: time-

based strategies and move-based strategies. Leland (1985) is the first author to examine 

how both discrete time trading and transaction costs affect the cost and risk of hedging 

an option. Leland’s hedging strategy is a time-based strategy in which the hedging 

portfolio is rebalanced at fixed time intervals. Instead of perfect replication at every 

time interval, he focuses on matching the option payoff at maturity. Leland derives a 

hedging strategy that is similar to the Black–Scholes strategy but with modified hedging 

volatility, which depends on proportional transaction costs and the hedging frequency.  

 

Other authors consider non-constant hedging time intervals; these are classified as 

move-based hedging strategies. Henrotte (1993), Grannan and Swindle (1996) and Toft 

(1996) analyse strategies based on the percentage change in the underlying asset price 

(asset tolerance strategies, a subset of move-based hedging strategies). They show that 

under certain conditions, move-based strategies are superior to simple time-based 

strategies; that is, when the underlying asset is volatile, transaction costs are small and 

the hedger is less risk-averse. Whalley and Wilmott (1993) propose another move-based 

strategy, based on the movement of the delta of the option, termed the delta tolerance 

strategy. 
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The aforementioned hedging strategies may not satisfy optimality criteria. Several 

theoretical papers examine hedging strategies as an optimal control problem in the 

presence of transaction costs. These include Hodges and Neuberger (1989), Davis, 

Panas and Zariphopoulou (1993), and Barles and Soner (1998). By using an expected 

utility maximisation framework of intertemporal portfolio optimisation for an investor 

with exponential utility, optimal hedging strategies are derived such that no portfolio 

rebalancing is required when the portfolio value (or delta) is within the hedging 

bandwidth, and trading should only occur to adjust the hedge position to the nearest 

edge of the bandwidth when the hedging bandwidth is breached. Although these 

hedging strategies are optimal and have good empirical performance under simulation, 

they are rarely used in practice because of the need for preference specification and 

computational difficulties in deriving hedging bandwidth.  

  

Toft (1996) first analyses the costs and risks of hedging an option discretely in the 

mean variance framework. He presents closed-form solutions of expected hedging error, 

transaction costs and variance of the cash flow for both Leland’s time-based strategy 

and Henrotte’s move-based strategy. His analysis, which can be considered as an 

extension of Figlewski’s (1989) simulation study, indicates that a move-based strategy 

is superior to a time-based strategy when the volatility of the underlying asset is high, 

transaction costs are small and the hedger has low risk aversion.  

 

Although an extensive list of theoretical models has developed over decades, there 

are relatively few empirical comparisons of different option hedging strategies in the 

presence of transaction costs. Only four studies have been published so far: Mohamed 

(1994), Martellini and Priaulet (2002), Zakamouline (2006b, 2009), which compare the 

performance of competing hedging strategies using a Monte Carlo simulation 

framework. Mohamed (1994) uses the value at risk of the hedging error, while the other 

three papers use a mean variance rule to assess the performance of competing hedging 

strategies. The reason for using a mean variance rule as an assessment tool is that the 

hedger faces a tradeoff between transaction costs incurred and accuracy of the hedging 

results. To obtain a highly precise hedging result, a hedger often incurs higher 

transaction costs; therefore, the hedger takes into consideration the mean and variance 

of the hedging error. However, the use of the mean variance rule has to satisfy one of 

two assumptions: (1) that the hedger has a quadratic utility function, or (2) that hedging 
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errors are normally distributed. These assumptions are rarely satisfied in practice, 

casting doubt on the validity of the results of previous studies. On the other hand, Hadar 

and Russell (1969), Hanoch and Levy (1969), Rothschild and Stiglitz (1970) and 

Whitmore (1970) introduce stochastic dominance rules and their economics application. 

Stochastic dominance rules are conceptually superior to the mean variance rule since 

they maximise investors’ expected utility, using the entire distribution of asset returns 

for decision-making. 

 

This research aims to fill two important gaps in the literature. First, existing 

empirical studies of the performance of alternative option hedging strategies with 

transaction costs are tested in a Monte Carlo simulation environment. In contrast to 

most empirical studies in option pricing and hedging, there is a lack of empirical tests of 

these strategies based on actual market data. Second, the comparison of alternative 

hedging strategies is largely based on mean variance criteria. Given the restrictive 

assumptions of the mean variance framework as described earlier, the validity of 

existing results is an open question. Therefore, the key original contributions of this 

thesis to the existing literature are (1) to examine the performance of alternative 

hedging strategies using actual market data, and (2) to compare the results using both 

mean variance and stochastic dominance rules.  

 

Previous studies show that the empirical performance of Black–Scholes hedging is 

no worse than the performance of more sophisticated models. Therefore, this research 

examines the best use of the Black–Scholes hedging strategy in the presence of 

transaction costs. In other words, I use the Black–Scholes hedge ratio to form a hedging 

portfolio and employ hedging strategies proposed in the transaction costs literature to 

dynamically hedge the risk exposure of a short European call option position. The 

objective of the study is to search for the most efficient European call option hedging 

strategy in terms of transaction costs paid and hedging precision. I examine both time-

based and move-based hedging strategies, comparing a total of six strategies. These 

strategies are the Black–Scholes hedge at fixed time intervals (BS), Leland’s hedge (LS), 

Henrotte’s asset tolerance strategy (AT), delta tolerance strategy (DT), hedging to a 

fixed bandwidth around delta strategy (FB), and hedging to a variable bandwidth around 

delta strategy (VB). The first two strategies are time-based strategies, while the last four 
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are move-based strategies. These strategies are the same as those examined in 

Zakamouline’s (2009) study. 

 

It is noted that, in the option hedging literature, the term, hedging error is typically 

used in empirical testing without consideration of transaction costs. In this thesis, I 

therefore use the term net hedging error to represent the difference between the value of 

the hedging portfolio and the payoff on the option at maturity, after taking transaction 

costs into account. 

  

This thesis includes two studies which solve longstanding questions in the literature: 

(1) how well do established hedging strategies perform when applied to actual market 

data? (2) does stochastic dominance test provide different conclusion from mean 

variance test? In my first study, I assume that the underlying risky asset is subject to 

proportional transaction costs but trading in a riskless bond requires no transaction costs. 

I use Monte Carlo simulation to investigate the performance of alternative hedging 

strategies in a controlled environment. I compare simulated hedging results by using 

both mean variance and stochastic dominance rules in the presence of transaction costs. 

To assess stochastic dominance, I use statistical tests proposed by Barret and Donald 

(2003) and Linton, Masoumi and Whang (2005). 

 

The second study examines the performance of alternative hedging strategies using 

actual Standard and Poor’s (S&P) 500 index option data obtained from the Ivy Option 

Metrics database. The sample period is from January 2, 1996 to October 31, 2010. The 

dataset comprises 676,358 European call options. Time-based strategies allow 

assessment of net hedging error at the end of each rebalancing period; however, move-

based strategies are rebalanced at random time points. As a result, my hedging 

performance computation method differs from that of Bakshi et al. (1997) and other 

studies in order to consistently compare the empirical performance of the proposed 

hedging strategies. In my study, I assume that the hedger will hold an option position 

until maturity so that I can assess the total amount of transaction costs paid for each 

proposed hedging strategy. Therefore, the net hedging error presented in my study may 

be larger than the actual transaction costs paid. This is because it is rarely the case that a 

market maker will hold an option position until maturity. Instead, he will close his 

position as soon as possible to reduce his risk exposure. Therefore, the reported net 
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hedging errors in my empirical study represent the most that a market maker could have 

lost if he had held his position until maturity. The proposed hedging strategies are based 

on the assumption that the hedger will aim to maintain a delta-neutral hedge position. In 

addition, empirical studies performed by other authors have emphasised the importance 

of maintaining a delta-vega-neutral hedging strategy in order to control volatility risk. 

Therefore, my empirical study considers the hedging performance of the proposed 

strategies while maintaining a delta-vega-neutral position whenever applicable. 

 

In my simulation study, I find that, with proportional transaction costs, the optimal 

hedging strategy is consistent with theoretical results, which is to rebalance the hedging 

portfolio to the nearest boundary of the hedging bandwidth (VB) under the mean 

variance rule. Move-based strategies are superior to time-based strategies when drift 

decreases and volatility increases. However, when I introduce fixed transaction costs for 

each trade, the hedging performance of move-based strategies is weakened. Given that 

the theoretical optimal hedging strategy is derived under the assumption of small 

proportional transaction costs and no fixed costs in each transaction, I therefore also 

assess the impact of fixed transaction costs on hedging performance. The introduction 

of fixed transaction costs increases total transaction costs paid for the hedging strategy. 

Nonetheless, this suggests that a hedger should switch from a time-based strategy to a 

move-based strategy, which allows the hedger to save substantial transaction costs for 

the same level of hedging precision. For example, a hedger who aims for a highly 

precise hedging outcome is able to save 45% of total transaction costs associated with 

the BS hedging strategy by simply switching to VB while maintaining the same level of 

hedging risk. Overall average transaction costs savings for high, moderate and low 

hedging precision are 28%, 13% and 12% respectively. On the other hand, stochastic 

dominance test results show that FB is the optimal hedging strategy when hedging 

precision is high and AT is optimal when the hedging precision is low. Although I find 

that mean variance results do not conform with stochastic dominance results in terms of 

the ranking of the hedging performance most of the time, both tests consistently identify 

the same set of top three and bottom three hedging strategies in terms of hedging 

performance. I also find that mean variance results depend on the choice of hedge 

parameters or option characteristics. In contrast, stochastic dominance results are robust 

with respect to those aspects.  
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In the second study, I investigate the empirical performance of the selected hedging 

strategies based on S&P 500 index option data. For a hedger who maintains a delta-

neutral portfolio, I find that time-based strategies are superior to move-based strategies 

in the mean variance framework, and that BS is the optimal hedging strategy. Switching 

from the worst to the best hedging strategy saves an average of 46% of total transaction 

costs paid for the worst-performing strategy. Note that the average transaction costs 

saving is larger than the one documented in my simulation study. My stochastic 

dominance results demonstrate that the hedging performance of fixed bandwidth and 

delta tolerance strategy are no worse than time-based strategies, but it is rare that a 

single strategy dominates all others.  

 

 Given the emphasis in the literature on controlling volatility risk in the hedging 

process (e.g., Bakshi et al., 1997), my second study also tests the performance of a 

delta-vega-neutral hedge using the same set of hedging strategies. To control for 

volatility risk, a European call option with the same maturity but a different strike price 

from the target option is added to the existing hedging portfolio. In the empirical testing, 

it is assumed that the hedging portfolio is delta-vega-neutral at each rebalancing point. 

Consistent with the terminology in Bakshi et al. (1997), the target option is a European 

call option the hedger wants to hedge, and the hedging instrument is a European call 

option used for neutralising the vega of the target option. In other words, volatility risk 

is tilted back to a neutral position whenever the delta hedge is triggered. I note that not 

all European call options that can be used as a hedging instrument in forming a vega 

neutral position have daily market prices throughout the life of the hedging portfolio. 

The life of a hedging portfolio is equivalent to the maturity of the target option. As a 

result, the sample size for delta-vega-neutral hedge testing is only 249,111 observations. 

I also introduce early liquidation into the delta-vega-neutral hedge given the sample 

characteristics. I assume that transaction costs for the option are negligible or that the 

hedger has an existing option to form the vega-neutral hedge. Therefore, total 

transaction costs paid for the hedge are expected to be less than the amount paid for the 

delta-neutral hedge. As opposed to the delta-neutral hedge results, my hedging 

performance measures indicate that neither time-based nor move-based strategies 

consistently dominate all other strategies. In a delta-vega-neutral hedge, the average 

transaction costs saving is 86% of total transaction costs paid for the worst-performing 

strategy. It is noted that these savings are relative to the total transaction costs paid for 
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alternative hedging strategies when a delta-vega-neutral hedge is formed. I demonstrate 

that the saving in a delta-vega-neutral hedge is on average 29%, 21% and 19% less than 

the total transaction costs saving in a delta-neutral hedge for high, moderate and low 

hedging precision, respectively. The adjustment of a move-based strategy based on my 

simple setup may result in over-hedging at each rebalancing point, and therefore the 

hedging performance may deteriorate. There is a potential that move-based strategies 

have controlled volatility risk indirectly when forming a delta-neutral hedge. Therefore, 

I also compare the performance of time-based strategies implemented using a delta-

vega-neutral hedge and move-based strategies implemented using a delta-neutral hedge. 

The objective of the test is to examine whether I can obtain better or similar hedging 

performance from simple time-based strategies after controlling for volatility risk. The 

test shows that time-based strategies (particularly the BS) are optimal and a delta-

neutral hedge is sufficient for a hedger to obtain the hedging precision desired at 

minimal transaction costs.  

 

 My research will assist financial institutions in making better informed decisions 

when selecting hedging strategies. Given that transaction costs are non-recoverable in 

the trade process, hedging performance can be improved merely through changing to an 

optimal hedging strategy. This benefit is clearly demonstrated in both my simulation 

and empirical studies. In particular, I recommend hedgers choose BS as the preferred 

hedging strategy regardless of risk preferences because this strategy provides the 

optimal tradeoff between hedging precision and transaction costs. As concerns an 

optimal framework for the comparison of hedging performance, I find that the results of 

mean variance and stochastic dominance rules are reasonably consistent and suggest 

that time-based strategies are empirically superior to move-based strategies. However, 

the stochastic dominance test I use does not consistently rank one of the six hedging 

strategies highest. 

 

In the remainder of this chapter, I outline the structure of the thesis and provide an 

overview of each chapter. Chapter 2 contains a review of the existing literature and 

identifies gaps. Chapter 3 presents a survey of option pricing and hedging models with 

transaction costs, and provides a detailed examination of their implicit assumptions. 

Chapters 4 and 5 cover sample construction, methods and results for the Monte Carlo 
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simulation study and the empirical study of S&P 500 index option hedging, respectively. 

Chapter 6 provides a summary and overall discussion. 

 

1.1 Outline of the Thesis 

 

Chapter 2: Literature Review 

This chapter reviews three major strands of the literature. Each section considers both 

theoretical and empirical literature. First, I review the option pricing and hedging 

literature, starting from the situation of a frictionless market, before discussing hedging 

at discrete time intervals and in the presence of transaction costs. Second, I look at the 

trading costs literature and its empirical estimation methods. Third, I study the 

stochastic dominance literature starting by considering both theory and application of 

consistent tests of stochastic dominance. The third section also compares and contrasts 

the application of the well-known mean variance rule and the stochastic dominance rule 

in finance.  

 

The existing literature suggests that (1) ad hoc Black–Scholes hedging 

performance is no worse than that of more sophisticated models after controlling for 

volatility risk; (2) theoretical option hedging models show that the choice of hedging 

strategy depends on the hedger's level of risk aversion when transaction costs are taken 

into account; (3) stochastic dominance rules have become increasingly popular for 

comparing choices under uncertainty; and (4) recent developments of statistical tests of 

dominance rules allow us to perform empirical test with greater power. I identified two 

points that remain unaddressed: 

(1) existing empirical studies of the performance of alternative option hedging 

strategies with transaction costs have been performed in a Monte Carlo 

simulation environment, but there is a lack of empirical tests of these strategies 

based on actual market data; and  

(2) comparison of alternative hedging strategies is largely based on the mean 

variance rule; given the restrictive assumptions in the mean variance framework, 

the validity of the results of those tests is questionable and it remains to be 

shown whether they hold when applying a more general rule such as stochastic 

dominance.  
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Chapter 3: Survey of Transaction Costs Option Pricing Models  

This chapter presents a survey of option pricing and hedging models with transaction 

costs in detail. The first section of the survey reviews the Black–Scholes model, which 

is an option pricing and hedging model developed under the assumption of a frictionless 

market – a benchmark model in the literature. Subsequent sections explore option 

pricing and hedging models in the extended Black–Scholes economy, which relaxes the 

assumptions of continuous trading and no transaction costs in trading. The survey is 

grouped according to two major types of hedging strategies in the literature, namely, 

time-based strategies and move-based strategies. Time-based strategies are those 

strategies that rebalance the hedging portfolio at pre-determined regular time intervals, 

that is, hedging frequency in terms of time units such as days. Move-based strategies are 

those strategies that rebalance the hedging portfolio based on movement of the 

underlying asset return or option Greeks. I also study strategies that do not belong to 

either group. For each strategy, I discuss its model specifications, benefits and the 

drawbacks of implementing such strategies. In addition, I look into the literature on 

asset allocation with transaction costs given that the two problems are inherently similar 

except with regard to time horizon. Finally, the chapter outlines the hedging strategies 

chosen for performance assessment in chapters 4 and 5. 

 

Chapter 4: Simulation Study  

In this chapter I examine the performance of selected alternative hedging strategies 

using a Monte Carlo simulation framework. The benefit of using simulation is that I am 

able to isolate the factors that affect hedging performance of each strategy and identify 

how performance varies with a particular factor. In the presence of transaction costs, 

previous researchers compare hedging strategies using the mean variance rule. I 

compare hedging outcomes of alternative strategies using both mean variance and 

stochastic dominance rules. My objective is to identify the optimal hedging strategy in 

the presence of transaction costs. At the same time, I want to examine whether both 

performance measures provide the same conclusions and if not, how test results differ. 

The simulation study shows that move-based strategies are superior to time-based 

strategies when drift decreases and volatility increases. In particular, the variable 

bandwidth strategy performs best. Both mean variance and stochastic dominance rules 

consistently identify the same set of top three and bottom three performing hedging 
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strategies. A hedger is able to save an average of 28%, 13% and 12% of total hedging 

transaction costs at high, moderate and low precision respectively. 

 

Chapter 5: Empirical Study – The S&P 500 Index Option 

This chapter provides an empirical assessment of the performance of alternative 

hedging strategies using S&P 500 index option data. My testing procedure is similar to 

that used by Bakshi et al. (1997), who analyse various option pricing models. My study 

does not fully replicate Bakshi et al. (1997) because I consider transaction costs. In 

order to study the impact of transaction costs, the hedger is assumed to rebalance the 

hedging portfolio according to the hedging criteria of selected hedging strategies until 

option maturity. I define net hedging error as the difference between the hedging 

portfolio value and option payoff at maturity. My calculation incorporates total 

transaction costs for rebalancing trades during the life of the option. My assumptions 

differ from those of Bakshi et al. (1997), as their calculation method only considers 

time-based rebalancing. It is also worth mentioning that my terminology of net hedging 

error is different from the hedging error in Bakshi et al. (1997) because I include 

transaction costs in the calculation.   

 

This chapter is divided into two sections. The first section concerns the delta-

neutral hedging performance of alternative hedging strategies. The second section 

focuses on the performance of delta-vega-neutral hedging. I examine delta-vega-neutral 

hedging because volatility risk has been widely documented in the option pricing and 

hedging literature. This delta-vega-neutral hedge exercise is a simple control for 

volatility risk, using the same set of proposed hedging strategies designed to minimise 

transaction costs. The delta-vega-neutral hedging portfolio is assumed to maintain delta-

neutral and vega-neutral positions when delta hedge is triggered by the hedging criteria; 

in another words, the hedging portfolio’s vega is allowed to drift at all other times. The 

empirical results show that, in the presence of transaction costs, a hedger can attain 

optimal hedging outcomes by implementing a delta-neutral hedge using time-based 

strategies. In terms of performance, both mean variance and stochastic dominance 

produce consistent results, showing that time-based strategies are superior to move-

based strategies. However, the stochastic dominance rule does not suggest a single 

optimal hedging strategy, due to the lack of strong dominance relationship in the 

empirical distribution function. 
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Chapter 6: Conclusion and Future Research 

This chapter concludes the thesis with a summary of findings and the contribution of the 

research to the literature. It outlines the limitations of the study and suggestions for 

future research.   
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Chapter 2 

2. Literature Review 

 

This chapter presents reviews of three major areas of literature. First, I review 

option pricing and hedging literature related to the frictionless market, discrete hedging 

and the presence of transaction costs. This section is divided into theoretical and 

empirical literature. Second, I look at transaction costs literature and its empirical 

estimation methodology. Third, I study stochastic dominance literature starting from 

theory to the development of consistent tests of stochastic dominance on empirical data. 

In addition, this section also contrasts the well-known mean variance comparison 

framework with the stochastic dominance rule in finance literature. From this literature 

review, I derive research problems that have been largely resolved to date: 

 

 although sophisticated option models were developed to capture empirical 

regularities of the underlying asset, the Black–Scholes model still has superior 

empirical hedging performance if one is willing to add an appropriate financial 

instrument to hedge against the volatility risk; 

 many theoretical models on option pricing and hedging in the presence of 

transaction costs have been proposed in the past. Theoretical results suggest that 

the choice of hedging strategy depends on the hedger’s level of risk aversion; 

 the increasing popularity of applying stochastic dominance rules in comparing 

choices under uncertainty given that the rules overcome some inferiority in the 

mean variance framework; and  

 development of the statistical test of stochastic dominance rules allow us to 

carry out empirical study with greater power. 

 

In addition, I identify gaps in the literature that remain unanswered, given below: 

 empirical studies of the performance of option hedging strategies with 

transaction costs have been performed in a Monte Carlo simulation environment. 

In contrast to most of the empirical studies of option pricing and hedging, there 

is a lack of empirical testing of these strategies based on actual market data; and 
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 comparison of performance hedging strategies is largely based on the mean 

variance criteria. Given the restrictive assumptions in the mean variance 

framework, the validity of the results is subject to question. 

 

Therefore, the main contributions of this research to the literature are (1) an examination 

of the performance of alternative hedging strategies using actual market data, and (2) 

comparing the results obtained using mean variance and stochastic dominance rules. 

The key literature on the topic of this research is summarised in Table 1 below. I have 

also prepared a literature roadmap to assist the reader to understand the linkage of the 

three strands of literature being reviewed in this chapter. The literature roadmap is set 

out in Figure 1.  
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Table 1 Summary of Key Literature in Option Pricing and Hedging in the Presence of Transaction Costs 

Panel A: Theory 

Papers Assumptions Main findings Transaction costs 
included? 

Black and Scholes 
(1973) 
 
Merton (1973) 

Frictionless and 
complete market with 
continuous trading 

Instantaneous riskless hedge can 
be formed through dynamic 
trading of option's underlying 
asset and riskless bonds  
 

No 

Cox, Ross and 
Rubinstein (1979) 

Discrete time trading 
and no arbitrage 
condition 

Option can be replicated using a 
portfolio of stocks and bonds. 
Risk-neutral probability measure 
is independent of investor's risk 
preference 
 

No 

Figlewski (1989) 
 
Jameson and Wilhelm 
(1992) 
 
 

Discrete time trading Risk arising from discrete hedge 
rebalancing has a statistical and 
economic influence on option 
spreads 

Yes for Figlewski 
(1989) 
No for Jameson and 
Wilhelm (1992) 

Leland (1985) Discrete time trading 
and transaction costs 

A time-based strategy similar to 
Black–Scholes but with modified 
hedging volatility that depends on 
proportional transaction costs 
and hedging frequency 
 
This is not a self-financing trading 
strategy 
 

Yes, proportional 
transaction costs 
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Papers Assumptions Main findings Transaction costs 
included? 

Hodges and Neuberger 
(1989) 
 
Whalley and Wilmott 
(1997) 
 
Barles and Soner 
(1998) 
 
Lai and Lim (2009) 

Transaction costs An optimal move-based strategy 
is derived under a utility 
maximisation framework of inter-
temporal portfolio optimisation 
for an investor with exponential 
utility 
 
The strategy requires no portfolio 
rebalancing when the portfolio 
delta is inside the hedging 
bandwidth 
 
If rebalancing is required, trading 
should only adjust the hedge 
position to the nearest edge of 
the hedging bandwidth 
 
 

Yes, proportional 
transaction costs 

Boyle and Vorst (1992) Discrete time trading 
and transaction costs 

A discrete self-financing strategy 
under a binomial framework 
 

Yes, proportional 
transaction costs 

Henrotte (1993) 
 
Grannan and Swindle 
(1996) 
 
Toft (1996) 
 

Transaction costs Analysed the conditions when 
move-based strategies perform 
better time-based strategies and 
vice versa 
 

Yes, proportional 
transaction costs 

Martellini (2000) Discrete time trading Generalise time-based strategy by Yes, proportional 
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Papers Assumptions Main findings Transaction costs 
included? 

and transaction costs  rebalancing different fractions of 
an option portfolio at different 
hedging frequencies 
 

transaction costs 

Gondzio, Kouwenberg 
and Vorst (2003) 

Discrete time trading, 
stochastic volatility, 
transaction costs and 
trading restrictions 

The resulting stochastic 
optimisation model stays close to 
a delta-vega neutralised position 
but with some additional slack to 
avoid needless transaction costs  

Yes, proportional 
transaction costs 

 

Panel B: Empirical test 

Type of tests Papers Methodology Data Main findings Transaction costs 
included?  

Empirical tests 
of alternative 
option pricing 
models  

Bakshi et al. 
(1997) 
Nandi (1998) 

Stochastic 
interest rates, 
volatility and 
jumps model 

S&P 500 index 
option 

Black–Scholes 
hedge 
performs no 
worse than 
stochastic 
volatility 
model after 
controlling for 
volatility risk 

No 

 Dumas et al. 
(1998) 

Deterministic 
volatility 
function 

S&P 500 index 
option 

Black–Scholes 
hedge 
performs  no 
worse than 
the proposed 
model after 

No 



31 

 

Type of tests Papers Methodology Data Main findings Transaction costs 
included?  

controlling for 
volatility risk 

 Yung and Zhang 
(2003) 

GARCH option 
pricing model 

S&P 500 index 
option 

Black–Scholes 
hedge 
performs the 
best after 
controlling for 
volatility risk 

No 

 Vähämaa (2003) Skewness and 
kurtosis 
adjusted 
Black–Scholes 
model 

FTSE 100 
index option 

Black–Scholes 
hedge 
performs 
better than 
the proposed 
model 

No 

Empirical tests 
of alternative 
hedging 
strategies 

Mohamed (1994) Value at risk 
comparison 

Simulation 
short call 
option 

Move-based 
strategy 
performs the 
best 

Yes 

 Martellini et al. 
(2002) 
Zakamouline 
(2006) 

MV 
comparison 

Simulation 
short call 
option 

Move-based 
strategy 
performs the 
best 

Yes 

 Zakamouline 
(2009) 

MV 
comparison 

Simulation, 
exotic option 

Mixed results Yes 

 Chen et al. (2011) Average out-
of-sample 
realised 
hedging errors 

S&P 500 
futures option 
and simulated 
data 

Rule-based 
strategy 
performs the 
best 

Yes 
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Figure 1 Literature Roadmap 

 

A hedging performance measure used in this thesis 

to overcome the limitations of mean variance test. 

This section provides a review of the SD paradigm. 

 Stochastic dominance criteria (2.3.1) 

 Empirical studies of the application of 

stochastic dominance that include (2.3.2) 

 

o Stochastic dominance algorithm 

and its effectiveness (2.3.2.1) 

o Econometric issues of forming 

efficient algorithm for stochastic 

dominance test (2.3.2.2) 

 

o Application of stochastic 

dominance rules in finance 

 

    

Stochastic dominance (Section 2.3) 

 

A detailed study of the hedging strategies in the presence of transaction 

costs. In this section, I group existing models into:  

 time -based strategies 

 move-based strategies 

 other hedging strategies 

 

This chapter also compares the related empirical studies in terms of the 

type of options examined, performance measure and empirical results. 

Determine the hedging 

strategies used in answering the 

research questions 

Survey of transaction costs option pricing models (Chapter 3) 

This section reviews the theoretical model 

and empirical estimation. 

 Different transaction costs 

estimation methods (2.2.1) 

 

 

 Empirical estimate of trading 

costs (2.2.2) 

 

Transaction costs (Section 2.2) 

Research questions 

1.  How well do established hedging strategies perform when applied to actual market data, such as S&P 500 index options? 

2. Does stochastic dominance test provide different conclusion from mean variance test? 

 

This section is broadly divided into two subsections: 

theoretical models and empirical studies. 

 Classical option pricing models and their 

variations (2.1.1)  

This section assumes market is complete 

 

 Option pricing and hedging in an incomplete 

market (2.1.2)  

This section focuses on research that relaxes the 

assumptions of continuous trading and absence of 

transaction costs in trading 

o Discrete time hedging (2.1.2.1) 

o Transaction costs (2.1.2.2) 

o Others: Feedback effect, implicit 

transaction costs (2.1.2.3) 

 

 Assessment of various option pricing models 

mainly based on pricing error and hedging 

performance (2.1.3.1) 

 Examination of the performance of different 

hedging strategies with transaction costs using 

actual data and Monte Carlo simulation (2.1.3.2) 

 Application of dynamic hedging concept - 

portfolio insurance (2.1.3.3) 

 Empirical estimate of implied risk aversion 

(2.1.3.4)  

Option pricing and hedging (Section 2.1) 
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2.1 Option Pricing and Hedging 

 The derivatives market has expanded dramatically since the early 1970s. The 

academic research on financial derivatives has expanded in parallel, following the 

fundamental insights of Black and Scholes (1973) and Merton (1973) on option pricing 

and dynamic hedging. In this section, I briefly review the development of option pricing 

and hedging literature with an emphasis on research that relaxes the assumptions of 

continuous trading and absence of transaction costs in trading. 

 

2.1.1 Classical Option Pricing Models and their Variations 

The theory of option pricing can be traced back as early as 1900. Bachelier 

(1900) assumes stock prices follow a Brownian motion process with zero drift to derive 

an option pricing formula. However, this assumption implies that stock prices can be 

negative and option prices can be greater than the underlying stock prices. More 

importantly, Bachelier’s formula leads to the development of the option pricing theory 

and the ground-breaking Black and Scholes (1973) and Merton (1973) option pricing 

formulations. Following Bachelier, Sprenkle (1961), Boness (1964) and Samuelson 

(1965) provide valuation formulas of the same general form
1
. Their formulas, however, 

depend on the expected return or risk premium of the underlying stock, which is related 

to investors’ risk preferences. The seminal papers of Black and Scholes (1973) and 

Merton (1973), hereafter Black-Sholes
2
, show that in fact option price can be valued 

without requiring knowledge of investors’ beliefs about expected returns on the 

underlying stock. The core idea of their papers is that, in a frictionless and complete 

market, the use of dynamic trading strategy provides a perfectly instantaneous riskless 

hedge in the limit of continuous trading. Later, Cox, Ross and Rubinstein (1979) present 

a discrete time binomial option pricing model, including the Black-Scholes model as a 

special limiting case. The binomial model shows that an option value can be replicated 

using a portfolio of stocks and riskless bonds. In addition, using only the no-arbitrage 

condition, the risk-neutral probability measure can be determined without entering any 

investor preferences in the dynamic hedging strategy. Harrison and Kreps (1979) 

illustrate that, in a discrete time model, the absence of arbitrage implies that the 

discounted underlying asset price process is a martingale with the risk-neutral 

                                                 
1
 Smith (1976) reviews the development of the explicit solutions to the option pricing problem prior to the 

work of Black and Scholes. Each of the works is presented with the formula and Smith highlights the 

improvements and differences in the basic approaches taken to solve the option pricing problem. 
2
 In the literature, the model is also referred to as the Black-Scholes-Merton model. 
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probability measure
3
. This leads to the famous results of Harrison and Pliska (1981), 

known as the Fundamental Theorems of Arbitrage Pricing: i) a market is arbitrage-free 

if and only if there exists an equivalent martingale measure, and ii) a market is complete 

if and only if there exists a unique equivalent martingale measure. 

 

The Black-Scholes model employs several restrictive assumptions:  

(i) the option is an European option or the option can only be exercised at 

maturity,  

(ii) the short term risk-free interest rate is known and is constant through time,  

(iii) the stock pays no dividend,  

(iv) there are no short sale restrictions,  

(v) the stock returns process follows a geometric Brownian motion with 

constant volatility,  

(vi) no transaction costs involve in purchasing or selling the underlying stock 

or the option, and  

(vii) trading takes place continuously in time.  

The later development of option pricing has centred on developing new models 

that relax some of these assumptions.  

 

The Black-Scholes model remains valid when some of these assumptions are 

relaxed. For example, Merton (1973) shows that in the absence of dividends, it is never 

optimal to exercise an American call option early and so the American call can be 

priced as if it was a European call. Merton (1973) and Amin and Jarrow (1992) 

introduce stochastic interest rates into the option pricing framework by assuming the 

short-term risk-free interest rate can vary over the life of the option. Merton considers 

the option pricing problem when the underlying stock pays continuous dividend yield 

by modifying the stock price input in the BS model, while Thorp (1973) examines both 

the effect of the short sales restrictions and dividend payments. Ingersoll’s (1976) model 

takes into consideration the differential tax rates on capital gains and ordinary income. 

 

                                                 
3

 The risk-neutral probability measure is also called the equivalent martingale measure. For any 

probability measure P, an equivalent martingale measure is a probability measure P* on (, F) with 

properties: 1) P* and P are equivalent such that P*(A)>0 if and only if P (A)>0, 2). The discounted price 

process S becomes a martingale when P is replaced by P*. 
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However, the Black-Scholes solution is not valid when the stock return 

dynamics cannot be represented in a stochastic process with a continuous sample path 

and/or constant volatility. This creates volatility risk or jump risk. Under such 

circumstances, a Black-Scholes riskless hedge is not possible. To mitigate volatility risk 

or jump risk, additional restrictions on the stock price distribution are required. For 

instance, Merton (1976) models the underlying stock return as the mixture of 

continuous and jump processes. In his model, the jump component reflects the arrival of 

important information and is a Poisson process. Likewise, Cox and Ross (1976) assume 

a birth and death process for the jump part of the stock return dynamics. Bates (1991) 

postulates the jump process is asymmetric and systematic. Hull and White (1987) and 

Wiggins (1987) examine the stochastic volatility problem, but their models have no 

closed-form solution and require the use of numerical techniques to solve a two-

dimensional partial differential equation (PDE). Later, Stein and Stein (1991) and 

Heston (1993) derive a closed-form solution for the price of a European call option on 

an asset with stochastic volatility. Some other extensions related to stock price 

dynamics include Bailey and Stulz’s (1989) and Bakshi and Chen’s (1997) option 

pricing models, which admit both stochastic volatility and stochastic interest rates; 

Duan (1995) values the option in the context of a GARCH asset return process; and 

Madan, Carr and Chang (1998) introduce the variance gamma process for the dynamics 

of the log stock price to control for the skewness and kurtosis of the return distribution, 

and use it to derive an analytical solution for the prices of European options. 

   

The Black-Scholes model disagrees with reality in several ways; nevertheless, it 

is widely used in practice. For example, the Black-Scholes model serves as a useful 

approximation in pricing and it can be generalised to price other contingent claims such 

as options on forward contracts, as in Black (1976). For hedging purposes, the idea of a 

Black-Scholes instantaneous riskless hedge through dynamic investment strategies was 

applied to popular portfolio insurance in the 1980s, as discussed by Leland (1980), 

Rubinstein and Leland (1981) and Rubinstein (1985a). Another popular way of using 

the Black-Scholes model is to infer implied volatility of an option at a given market 

price as in Rubinstein (1985b). For a given range of option strike prices and maturities, 

one can construct an implied volatility surface and use it to price other exotic contingent 

claims, especially for those contingent claims on non-traded or illiquid underlying 
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assets. The applications of the Black-Scholes model are versatile, but the users are 

required to understand its limitations to avoid unexpected risk. 

 

2.1.2 Option Pricing and Hedging in an Incomplete Market 

In this section, I depart from the Black-Scholes paradigm and look into option 

pricing and hedging in an incomplete market. In the Black-Scholes model, options are 

traded in a complete market. This means that an option payoff can be replicated by 

using assets traded in the market (i.e., stocks and bonds). However, if an investor is 

trading in an incomplete market, he or she is subject to risk. Given the topic I examine 

in this thesis, I pay careful attention to the risks arising from discrete time hedging and 

transaction costs involved in trading the underlying assets. 

 

2.1.2.1 Discrete Time Trading 

 Since trading takes place at discrete time intervals and therefore it is clearly 

impossible to rebalance the hedge portfolio continuously, the hedge portfolio is no 

longer riskless as in the Black-Scholes model. As a result, the hedge portfolio returns 

become risky.  

 

Black and Scholes (1973) claim that the discrete rebalancing risk can be across a 

hedged portfolio, and therefore it can be ignored if a hedging portfolio can be 

rebalanced frequently. In this case, market makers seem to have the advantage of 

diversifying the risk either though trading a variety of instruments or across many 

markets. In spite of this, in an empirical test, Jameson and Wilhelm (1992) demonstrate 

that the risk arising from discrete hedge rebalancing has a statistically and economically 

significant influence on option spreads. The option’s gamma serves as the proxy for the 

marginal contribution of the risk introduced by discrete hedge rebalancing. Their results 

imply that the inability to rebalance an option position continuously is considered by 

market makers when they set bid-ask quotes in the options markets. Their results are 

consistent with Figlewski’s (1989) simulation results that discrete rebalancing imposes 

relatively wide bounds on option prices on top of transaction costs. 

 

On the other hand, Boyle and Emanuel (1980) examine the distribution of the 

returns on hedge portfolios when rebalancing takes place at discrete time intervals. They 
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show that the expected hedge return is zero, but the distribution of the return is skewed 

and leads to biased t-statistics. Galai (1983) decomposes hedge returns into three 

elements: first, the riskless return on the cash position; second, the return from the 

discrete hedge position; and third, the return from the change in the deviation of the 

actual option price and model option price. He finds that the third element is the 

dominant factor in explaining the performance of hedging activity. The third element is 

linked to price changes due to stochastic volatility. His results suggest that, in any 

hedging scheme, controlling for stochastic volatility is more important than discrete 

hedging. Similarly, Hull and White (1987) examine several hedging schemes, including 

delta hedging, delta-gamma hedging and delta-vega hedging. They conclude that if 

there is only one option to be used for hedging, then it must be used for controlling 

volatility risk. 

 

Discrete trading also introduces systematic risk. Black and Scholes (1973) and 

Boyle and Emanuel (1980) argue that option hedge returns are uncorrelated with the 

market even with discrete rebalancing; however, their findings are limited to discrete 

rebalancing with short time intervals. Glister (1997) asserts that, for longer rebalancing 

time intervals, Black-Scholes hedge positions exhibit substantial systematic risk that 

may bias the empirical tests of Black-Scholes option pricing models. However, Jarrow 

(1997) points out that Glister’s assertion is false due to his neglect of a term in his 

hedging risk estimation that causes the suggested bias. 

 

2.1.2.2 Transaction Costs 

When market frictions such as transaction costs for each trade are taken into 

consideration, the argument of perfect replication using stocks and bonds may not hold. 

This is because continuous trading of arbitrarily small amount of stock at random time 

point is infinitely costly. Hence, it is impossible to perfectly replicate an option payoff. 

Consequently, trading an option is subject to hedging risk. With transaction costs, the 

concept of no arbitrage price of an option is replaced by a range of option prices. In the 

option hedging/pricing context, transaction costs can be as fixed and/or proportional to 

the amount of stock traded.    
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Leland (1985) was the first to examine how both discrete trading and transaction 

costs affect the cost and risk of an option hedging strategy. Leland’s hedging strategy is 

considered a time-based strategy in which the hedging portfolio is rebalanced at fixed 

regular time intervals. Instead of having perfect replication at every time interval, he 

focuses on matching the option payoff and derives a hedging strategy which is similar 

to Black-Scholes but with modified hedging volatility that depends on the proportional 

transaction costs and the hedging frequency. However, Leland’s model is not a self-

financing trading strategy. Boyle and Vorst (1992) value option replicating costs 

through a discrete self-financing trading strategy in a binomial framework by assuming 

initial holding of stocks portfolio. Their model serves as an extension of Merton’s (1990) 

two-period binomial model; however, their use of a binomial model requires the user to 

explicitly specify a revision interval. Hoggard, Whalley and Wilmott (1994) also 

consider hedging strategies that take place at a fixed time interval by looking into 

portfolios of European-type options. Hoggard et al. also present a nonlinear PDE for 

which the nonlinearity arises from the presence of transaction costs. Amster, Averbuj, 

Mariani and Rial (2005) extend Leland’s model by assuming non-increasing transaction 

costs with a combination of fixed and proportional transaction costs. Martellini (2000) 

generalises the standard time-based strategies that rebalance different fractions of an 

option portfolio at different time frequencies. These strategies are based on the idea of 

trading portions of underlying assets at different time intervals
4
.   

 

As noted in chapter one, other authors consider non-constant hedging time 

intervals. Henrotte (1993), Grannan and Swindle (1996) and Toft (1996) analyse 

strategies based on the movement of the percentage change in the underlying asset. 

They show that under certain conditions, move-based strategies are superior to simple 

time-based strategies; that is, when the underlying asset is volatile, transaction costs are 

small and the hedger is less risk-averse.  

 

The aforementioned hedging strategies may not satisfy some optimality criteria. 

There are two ways of defining optimality criteria. First, the strategy should maximise 

the expected utility of the difference between the realised and the desired cash flow at 

maturity. Second, the strategy has to minimise the initial cost of obtaining a terminal 

                                                 
4
 On average, an investor will enjoy the diversification benefit from up and down movements of the 

underlying asset when trading at different time intervals. 
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option payoff that dominates the desired payoff. The first strand of research focuses on 

solving the optimal control problem in the presence of transaction costs, as attempted by 

Hodges and Neuberger (1989). They set up the problem in the utility maximisation 

framework of intertemporal portfolio optimisation for an investor with exponential 

utility
5
. With this setting, they are able to derive optimal hedging strategy where no 

portfolio rebalancing is required when the portfolio value (or delta) is inside the 

“hedging bandwidth”. Trading should only occur to adjust the hedge position to the 

nearest edge of the band when the hedging bandwidth is breached. Their finding is 

similar to that of Constantinides (1986) in his study of capital market equilibrium with 

transaction costs. In Constantinides’ model, the investor will modify the trading 

frequency and volume to accommodate the transaction costs. Davis, Panas and 

Zariphopoulou (1993) and Clewlow and Hodges (1997) use discrete time dynamic 

programming to develop the numerical methods to compute optimal hedge. 

 

Although these hedging strategies are optimal and have good empirical 

performance, they are rarely used in practice because of the need for preference 

specification and computational difficulties in deriving hedging bandwidth. Whalley 

and Wilmott (1997) first provide an asymptotic analysis to Hodges and Neuberger 

(1989), assuming the transaction costs are small. They derive an optimal hedging 

bandwidth which centres around the Black-Scholes delta. Similarly, Barles and Soner 

(1998) present another asymptotic analysis of the same model and assume that the 

transaction costs are small and the hedger is risk-averse. Their optimal hedging strategy 

is different from that of Whalley and Wilmott, depending on optimal hedging 

bandwidth and volatility adjustment. Zakamouline (2006) overcomes the computation 

drawback by presenting an analytic approximation to the solution. Lai and Lim (2009) 

use an alternative approach based on a cost-constrained pathwise risk minimisation 

method to solve for the optimal buy and sell boundaries. 

 

The second strand of optimality criteria research focuses on super replicating an 

option. Bensaid, Lesne and Pages (1992) and Edirsinghe, Naik and Uppal (1993) relax 

the strict objective of replicating an option payoff by replacing the objective of 

dominating the option payoff; this is termed a super replication strategy. Their papers 

                                                 
5
 These models consider the indifference in expected utility between final wealth with and without option 

liability. 



40 

 

propose similar trading strategies to the utility maximisation framework, for which 

rebalancing occurs only when the marginal gain from revising a portfolio more than 

offsets the cost of trading. However, Davis and Clark (1993) conjecture – and Soner, 

Shreve and Cvitanic (1995) prove – that the cheapest super replication strategy is to 

purchase one share of the underlying asset initially and hold it until maturity. This 

leaves an unsatisfactory result of little economic interest for an option writer for which 

the option premium bound is the underlying asset price. Based on Leland’s (1985) idea, 

Avellaneda and Parás (1994) introduce a new option hedging strategy that super 

replicates an option with a non-convex payoff function in the presence of large 

transaction costs. The resulting hedging strategy is path-dependent, and there may be a 

long period of no re-hedging transactions even though the hedging strategy must be 

monitored at a fixed regular time interval. A more recent study by Primbs (2009) solves 

the super replication problem by using the first two moments of the replication error. 

 

 More recent papers solve the hedging problem with transaction costs by 

incorporating stochastic volatility and jump diffusion. For example, Gondzio, 

Kouwenberg and Vorst (2003) develop a stochastic optimisation model for hedging 

contingent claims that takes account of the effects of stochastic volatility, transaction 

costs and trading restrictions. The hedging strategy resulting from their model is similar 

to a delta-vega-neutral hedge, except there is some slack to avoid needless transaction 

costs. Xing, Yu and Lim (2012) study the influence of jump diffusion in option pricing 

with proportional transaction costs by maximising expected utility of terminal wealth in 

a stochastic optimal control setting. Nguyen and Pergamenshchikov (2015) provide a 

new specification for the volatility adjustment in Leland's (1985) model that 

incorporates stochastic volatility.  

 

The transaction costs literature concludes that, in the presence of transaction 

costs, the hedging strategy a hedger chooses depends on his or her risk aversion. This is 

because a hedger is facing tradeoff between hedging accuracy and transaction costs 

expenditure.  
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2.1.2.3 Others: Feedback Effect, Implicit Transaction Costs 

When the perfectly competitive market assumption is weakened, a dynamic 

hedging strategy affects the underlying asset’s price process. Jarrow (1994), Frey and 

Stremme (1994) and Frey (1998) analyse how standard option pricing theory can be 

extended when there is a feedback effect from the demand of a large trade on an 

underlying stock price process
6
. Since hedging an option involves buying shares of the 

underlying asset when its price goes up and selling when it falls, the literature shows 

that a hedging strategy causes the underlying asset to be more volatile. As a result, a 

large trader is confronted with higher hedging costs. The approach used in these papers 

is similar: the market is split into a group of small traders who trade based on an asset’s 

fundamental value and a single large trader who trades according to his own strategy. A 

modified asset price process is the result of the market equilibrium derived from the 

aggregate demand of the two groups. 

 

Jarrow (2001) is one of the first attempts to incorporate liquidity risk into 

arbitrage pricing theory as a convenience yield; however, convenience yield only 

captures the inventory dimension of liquidity. Therefore, the price-taking assumption is 

still valid and classical arbitrage pricing theory can be applied. The model structure 

implies that different trade sizes have no impact on asset prices. Hence, bid-ask spread 

does not exist for an asset, which is not consistent with the market observations.  

 

Alternatively, Longstaff (2001) defines liquidity as the risk of a trader being 

unable to liquidate the desired amounts when need arises. With this definition, 

Longstaff solves a continuous time partial equilibrium in which investors are limited to 

choose trading strategies of bounded variation
7
. Amaro de Matos and Antao (2001) 

derive super-replicating bounds on a European option price when it is impossible to 

trade the underlying asset at some points in time. 

 

Following Jarrow (2001), with the focus on temporary imbalance in short-term 

supply of and demand for the underlying asset, Cetin, Jarrow and Protter (2004) 

                                                 
6
 Jarrow (1994) proposes a discrete time model to formalise the issue of how a large trader takes account 

of the feedback effect when he chooses a hedging strategy. Jarrow also presents the conditions that must 

be satisfied in order to forbid market manipulation. With these conditions, a unique derivative price can 

be obtained. Frey and Stremme (1994) extend Jarrow’s result in a continuous time framework. 
7
 Longstaff (2001) partial equilibrium shows that the optimal trading strategy endogenously imposed the 

borrowing and lending constraints on investors.  
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introduce a stochastic stock supply curve to model the asset prices as a function of trade 

size and time. They show that trading strategies that are continuous and of finite 

variation incur no liquidity costs and the market is approximately complete. In 

particular, an option’s price is shown to be equal to the Black-Scholes option value with 

such trading strategies. However, the classical hedge will not attain the Black-Scholes 

value. 

 

In research parallel to Cetin et al. (2004), Liu and Yong (2005) examine how the 

price impact on the underlying asset market affects the replicating cost of a European 

option. They derive a generalised Black-Scholes pricing PDE by incorporating price 

impact function
8
 into the stochastic stock price process and establish the existence and 

uniqueness of a classical solution to this PDE. The pricing PDE shows that the option 

replicating cost is only affected by the price impact of traders’ trading activities on stock 

return volatility. The difference between Liu and Yong (2005) and Cetin et al. (2004) is 

that the former suggest traders trade more underlying assets in the presence of price 

impact (i.e., greater option delta in the hedging process), while Cetin et al. suggest 

trading at the classical Black-Scholes delta, but each delta trade would generate an 

additional liquidity cost due to price impact. Cetin and Rogers (2007) study the 

maximisation of investor’s expected utility from terminal liquidation wealth. Due to the 

fact that liquidity costs can prevent arbitrageurs earning unbounded profits, they show 

that arbitrage opportunities and the optimal strategy with respect to a given utility 

function can co-exist. In addition, traders appear to trade less and more cautiously in the 

presence of liquidity costs. Rogers and Singh (2010) emphasise the difference between 

price impact effects and illiquidity effects. They model liquidity cost as a nonlinear 

transaction costs, which is a function of the rate of change of portfolio.  

  

More recent studies of market impact on option pricing and hedging consider 

both permanent and temporary market impact. In addition to market impact, Guéant and 

Pu (2015) take into account execution costs and characterise the optimal hedging 

strategy with a PDE that relies on a numerical solution. Their optimal strategy is 

smoother than a classical delta hedging model, and their hedging strategy is affected by 

the type of settlement (e.g. physical delivery versus cash settlement). Motivated by a 

                                                 
8
 The price impact is linear in trade size. 
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market event that may be caused by naive option hedging, Li and Almgren (2016) 

illustrate that unstable pricing swings can arise if the hedging strategy is applied 

carelessly with discrete time steps. They provide a formulation to avoid such instability 

through mean variance optimisation. 

 

2.1.3 Empirical Studies 

The logic of dynamic replication in Black and Scholes (1973) and Merton (1973) 

is that options can be replicated by the continuous trading of a portfolio of underlying 

asset and cash. This means that options are redundant securities, since their value can be 

derived from the value of the replicating portfolio. However, in practice, the financial 

market is subject to frictions. The restrictive assumptions of the Black-Scholes option 

pricing model for the underlying asset challenge the validity of its practical applications. 

Substantial progress has been made in developing more realistic models
9
. While the 

search for a perfect model is a difficult task, empiricists question whether these models 

can explain the well-documented Black-Scholes empirical biases such as what causes 

the existence of volatility smiles, which model gives the smallest pricing errors or the 

best hedging performance, and how the implicit parameters vary differently from the 

actual market. Figlewski (1989) simulates market frictions and other trading problems 

such as transaction costs, indivisibilities and discrete time rebalancing. He documents 

the importance of market frictions in determining option prices and testing the valuation 

models. Bates (2003) provides a comprehensive overview of empirical option pricing 

research. In this section I first briefly review related literature and then focus on the 

empirical tests of option pricing with market frictions. 

 

2.1.3.1 Option Pricing and Hedging  

Many researchers have conducted empirical studies of the performance of 

various option pricing models. In terms of hedging performance, Bakshi et al. (1997) 

find that, if a delta-vega-neutral strategy is implemented, the Black-Scholes model 

performs no worse than other, more complicated models that allow volatility, interest 

rates and jumps to be stochastic. Dumas et al. (1998) model the volatility as a 

                                                 
9
 Examples include the stochastic interest rate models of Amin and Jarrow (1992) and Merton (1973); 

mixtures of jump and diffusion processes of Bates (1991), Cox and Ross (1976) and Merton (1976); the 

stochastic volatility models of Heston (1993) and Hull and White (1987), and the stochastic interest rate 

and volatility models of Bailey and Stulz (1989) and Bakshi and Chen (1997). 
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deterministic function of strike price and maturity. They show empirically that hedge 

ratios determined by the Black-Scholes model are more reliable than those obtained 

from the deterministic volatility function. Other studies show that the Black-Scholes 

hedging strategy performs well relative to other models: Lam, Chang and Lee (2002) 

examine the variance gamma option pricing model, and Yung and Zhang (2003) look at 

the GARCH option pricing model. All these studies use S&P 500 options data and 

conclude that simpler hedging strategies work the best. Alternatively, using the sample 

of S&P 500 index options, Bakshi and Kapadia (2003) demonstrate that the delta-

hedged option portfolio underperforms and is consistent with a non-zero negative 

volatility premium; this implies that the portfolio has dynamically hedged against all 

risks except volatility risk.  

 

On the other hand, Bakshi et al. (2000) focus on the predictions of the one-

dimensional diffusion class of option model
10

 and empirically test the predictions using 

S&P 500 index options. Their results contradict the model’s prediction, implying that 

frequent hedge revision using the Black-Scholes delta-neutral strategy will in fact 

compound hedging errors
11

. While some of the contradictory option price movements 

can be explained by market microstructure factors and time decay impact, the one-

dimensional diffusion option model is still unable to capture the inverse relationship 

between option price and stock price. With the use of canonical valuation (proposed by 

Stutzer, 1996), Alcock and Grey (2005) derive a close form hedge ratios for call and put. 

They demonstrate that hedging using the canonical deltas is more effective than using 

the Black-Scholes delta in simulation studies when the underlying process deviates from 

geometric Brownian motion. Gray, Edwards and Kalotay (2007) examine the pricing 

and hedging effectiveness of canonical valuation on Australian Stock Exchange index 

options. They find that, in term of pricing accuracy, unconstrained canonical estimation 

fails to outperform Black-Scholes estimation; however, with the incorporation of a 

small amount of information, the constrained canonical estimation is able to reduce 

                                                 
10

 Black and Scholes (1973), Merton (1973), Bakshi et al. (1997) and Dumas et al. (1998) give examples 

of the one-dimensional diffusion class of option model. These models predict (1) call (put) prices are 

monotonically increasing (decreasing) with underlying asset price, (2) option prices are perfectly 

correlated with the underlying price movement, and 3) options are redundant securities. 
11

 Bakshi et al.’s (2000) empirical investigation demonstrates that call (put) prices do not increase 

(decrease) monotonically with underlying asset price, call and put prices tend to move together regardless 

the underlying price movement, and the adjustment in option prices can be larger than that in the 

underlying asset. 
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pricing errors drastically. In addition, the canonical approach results in superior hedging 

effectiveness compared to the Black-Scholes approach. Kaeck (2013) illustrates that 

jumps are important features of S&P 500 index data, and shows that hedging 

performance can be improved when jumps are included in the model. 

 

Jameson and Wilhelm (1992) provide evidence that the inability to rebalance an 

option position continuously and uncertainty about the return volatility of the 

underlying asset account for a significant portion of option bid-ask spreads observed in 

the market. Similarly, Cho and Engle (1999) offer the derivative hedge theory
12

 and 

examine the relationship between option bid-ask spread and illiquidity in the underlying 

market. Their empirical results support the derivative hedge theory that option market 

spread is positively related to the underlying market spread. However, option market 

duration also explains the variation in option market spread. Cho and Engle’s (1999) 

mixed results imply that an option market maker cannot perfectly hedge his positions by 

using the underlying asset. 

 

2.1.3.2 Transaction Costs  

Swidler and Diltz (1992) use both option and stock price transaction data to infer 

the total transaction costs associated with the Black-Scholes replicating strategy. Pena, 

Rubio and Serna (1999) find that transaction costs proxied by bid-ask spread are a key 

determinant of the Spanish IBEX-35 index.   

 

Some empirical studies that compare the performance of different hedging 

strategies with transaction costs focus on simulated numerical results. Mohamed (1994) 

uses 95% risk of loss as the criterion to determine the best strategy. Toft (1996) derives 

closed-form solutions for expected hedging errors, expected transaction costs and 

variance of the cash flow for both time-based and move-based hedging strategies. He 

then compares the performance of these strategies under the mean variance framework. 

Martellini and Phillippe (2002) consider more hedging strategies in their performance 

comparisons. The aforementioned studies focus on a plain vanilla European call option. 

These papers show that move-based strategies perform better than time-based strategies 

                                                 
12

 The derivative hedge theory states that, in a perfectly hedged world, the spread of an option is solely 

due to the illiquidity of the underlying asset rather than inventory risk or adverse selection in the options 

market. 
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when the drift of the underlying asset decreases and volatility of the underlying asset 

increases. Zakamouline (2009) investigates the hedging performance of different types 

of options and option portfolios. He shows that the ranking of alternative hedging 

strategies depends of the type of option position being hedge and the risk preferences of 

the hedger.   

 

2.1.3.3 Portfolio Insurance 

The concept of dynamic hedging strategy used in option hedging has been 

applied to implement portfolio insurance. Garcia and Gould (1987) empirically study 

the cost of portfolio insurance in terms of forgone returns for the period starting from 

1963 to 1983. They demonstrate that portfolio insurance is able to protect the investor 

against market downfall, however, the evidence does not show that a dynamically 

rebalanced insured portfolio will outperform a static mix portfolio in the long run. Do 

and Faff (2004) assess the synthetic put and Constant Proportion Portfolio Insurance 

(CPPI) under both tranquil and turbulent market conditions in the Australian market. 

They show that the futures-based implementation of both methods are robust to market 

conditions in preserving the desired floor value. Annaert, Osselaer and Verstraete (2009) 

evaluate the portfolio insurance performance through the use of synthetic put option, 

stop loss strategy and CPPI by using the stochastic dominance approach on a 

multinational basis. Their results indicate that the 100% floor value should be preferred 

to low floor values and daily rebalancing strategies dominate strategies with less 

frequent rebalancing. 

 

2.1.3.4 Implied Risk Aversion Estimation 

Jackwerth (2000) empirically derives the implied risk aversion from option 

prices and realised returns on the S&P 500 index simultaneously. The implied risk 

aversion functions he finds are consistent with the standard assumption in economic 

theory, being concave in utility, during the pre-1987 crash period. However, he also 

observes there are partially increasing risk aversion functions, and utility functions 

changed to convex in shape during the post-crash period. Aït-Sahalia and Lo (2000) 

show that implied risk aversion is a U-shaped function of stock price. Both Jackwerth’s 

and Aït-Sahalia and Lo’s studies assume that the return distribution is constant over 

long period. Aït-Sahalia, Wang and Yarred (2001) and Rosenberg and Engle (2002) 
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assume the conditional densities are time invariant in deriving the implied risk aversion. 

Consequently, the resulting risk aversion functions are somewhat inconsistent with the 

theory. Bliss and Panigirtzoglou (2004) use both power and utility function to estimate 

the representative agent’s relative risk aversion at different time horizons. Their 

estimates are reasonable and consistent across utility functions and markets. 

 

2.2 Transaction Costs  

 Transaction costs or trading costs are most often referred to in the literature as 

the combination of quoted bid-ask spreads, brokerage fees (or commissions), and 

execution costs (or market impact costs as defined in Constantinides, 1997, and 

Zakamouline, 2009). Many papers focus on bid-ask spreads in estimating the trading 

costs of equities. The bid-ask spread of the underlying asset serves as a proxy of 

transaction costs involved in the hedging process. This is due to the hedger purchasing 

the asset at the ask price and selling the asset at the bid price. 

 

Although market impact costs have an important role in trading, the impact may 

not be as economically significant in the hedging context unless a trader is hedging 

options on small or illiquid stocks at large transaction volume. The hedgers in this 

context are assumed to be large traders or market makers who trade in liquid stocks. In 

addition, they also act as price takers in the market. Following Zakamouline (2009), the 

transaction costs considered in this research are proportional to the trading size, and can 

be inferred from the spread observed in the market. The formation of bid-ask spread in 

the market can be affected by order-handling costs (see Demsetz, 1968; Roll, 1984), 

inventory costs (see Smidt, 1971; Garman, 1976; Amihud & Mendelson, 1980; Ho & 

Stoll, 1981) and adverse selection costs (see Grossman & Stiglitz, 1980; Glosten & 

Milgrom, 1985; Kyle, 1985). Studies such as Glosten and Harris (1988), Madhavan and 

Smidt (1991, 1993), Hasbrouck and Sofianos (1993) and Ho and Macris (1984) explain 

the above factors using the empirical data.  

 

 Roll (1984) derives an implicit bid-ask spread from the first-order serial 

covariance of price changes under the assumption that the market is informationally 

efficient. Roll’s model offers a simple estimation of execution costs with the use of 

transaction price data. The implicit spread serves as the price of immediate trade and is 



48 

 

expected to be less than the quoted spread, which includes other factors. On the other 

hand, Arnott and Wagner (1990) decompose the total trading costs into two components: 

immediate execution costs and the opportunity cost of delaying a trade. With these two 

components, the total trading costs are U-shaped with respect to transaction time. Three 

other low frequency spread measures have been developed. Lesmond, Ogden and 

Trzcinka (1999) develop a spread estimate that is based on the frequency of zero stock 

returns. Holden (2009) and Goyenko, Holden and Trzcinka (2009) derive the effective 

tick estimator based on the idea that wider spreads are associated with larger effective 

tick sizes. Corwin and Schultz (2012) develop the bid-ask spread estimator from daily 

high and low prices. The high-low spread estimator is a good estimator when intraday 

trade and quote data are unavailable. The estimator is shown to outperform Roll's 

covariance estimator and the Lesmond et. al. measure. 

 

In terms of the empirical estimate of equity transaction costs, Stoll and Whaley 

(1983) report quoted spread and commission costs of 2% and 9% for the largest  New 

York Stock Exchange (NYSE) deciles and smallest deciles respectively. Bhardwaj and 

Brooks (1992) report median quoted spread and commission costs between 2%, for 

NYSE securities with prices greater than $20, and 12.5% for securities with prices less 

than $5. Schultz (2000) applies Roll’s estimator to quantify changes in transaction costs 

of NASDAQ stocks from 1993 to 1996, since time-stamps of trades and quotes cannot 

be estimated. Hasbrouck (2004) improves Roll’s model using a Bayesian Gibbs 

approach and applies it to futures transaction data. Hasbrouck (2009) generalises the 

Hasbrouck (2004) model and applies it to daily Centre for Research in Securities Prices 

(CRSP) US equity data; he reports that the average effective trading costs are below 

1%
13

 for the three highest capitalisation quartiles of equities listed on the NYSE and 

American Stock Exchange (AMEX) after the Great Depression.  

 

Stoll’s (2000) study of frictions provides an overview of trading costs 

estimations. The quoted spread and effective spread, which reflect total friction, are 7.9 

and 5.6 cents for all NYSE and AMEX stocks. Bessembinder (2003a) reports the 

average quoted bid-ask half spreads are 0.486% for stocks traded on NYSE and 0.739% 

for stocks traded on the NASDAQ in 1998. Quoted spreads have become less indicative 

                                                 
13

 Hasbrouck (2009) reports one-way costs. 
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of actual trading costs since decimalisation for both NYSE and AMEX. The effective 

bid-ask spread appear to a more relevant measure of transaction costs. Bessembinder 

(2003b) reveals that the trading costs are on average 0.33% for both NYSE and 

NASDAQ stocks. Alternatively, Lesmond et al. (1999) propose another transaction 

costs estimator based on the incidence of zero return. They report round-trip transaction 

costs of 1.2% and 10.3% for large and small decile firms from 1963 to 1990. Goyenko 

et al. (2009) report round-trip mean effective spread of 2.6%–2.9% for 400 randomly 

selected US stocks over 1993 to 2005. Corwin and Schultz (2012) find round-trip mean 

effective spreads of 2.4% for AMEX, NYSE and NASDAQ stocks from 1993 to 2006. 

In addition, they show that the spread between large stock and small stocks are small in 

the later period.  

 

2.3 Stochastic Dominance 

The concept of stochastic dominance (SD, hereafter) was introduced as 

majorisation theory in the early 1900s (see Karamara, 1932; Hardy, Littlewood & Polya, 

1934); Sherman, 1951; Blackwell, 1951, 1953; and Lehmann, 1955). However, the 

development of SD theory and its application to economic and finance only begins after 

the publication of Hadar and Russell (1969), Hanoch and Levy (1969), Rothschild and 

Stiglitz (1970) and Whitmore (1970). Since then, an extensive SD literature has 

developed. Bawa (1982) provides an exhaustive list of early SD publications, and Levy 

(1992) surveys the SD literature with a focus on contributions since 1980.  

 

This section contains a review of the SD paradigm. I first present the SD criteria 

and the empirical issues related to the development of the SD algorithm, SD's test, and 

SD’s application in finance.  

 

2.3.1 Stochastic Dominance Criteria 

This section provides the formulation of SD criteria and various ways of defining 

and ordering investor’s preferences. Let us denote    for  =1, 2, 3 as the class of utility 

function where    includes all utility functions such that     ;    includes all utility 

functions such that      and      ; and    includes all utility functions such that 

    ,       and       . For economic interpretation,      assumes that the 

investor prefers more to less.       assumes that the investor is risk-averse.        
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assumes that the investor prefers positive skewness.    is also a set of utility functions 

that is larger than the set of utility functions with decreasing absolute risk aversion (I 

denote the later set of utility functions as   ). Also, assume the investor seeks to 

maximise his expected von Neumann-Morgenstern expected utility. Then, the following 

three theorems hold
14

: 

 

Theorem 2.1 Let      and      be the cumulative distributions of two prospects.   

dominates   by first-order stochastic dominance (FSD) for all      if and only if 

          for all values  , and there is at least one    for which a strict inequality 

holds.  

F first-order stochastically dominates G is denoted       and is illustrated in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 First Order Stochastic Dominance 

 

Theorem 2.2 Let      and      be the cumulative distributions of two prospects 

whose density functions are      and       respectively.   dominates    by second-

order stochastic dominance (SSD) for all      if and only if  

                      
 

 

 

for all         and there is at least one    for which a strict inequality hold. 

                                                 
14

 For example, Quirk and Saposnik (1962), Hadar and Russell (1969), Hanoch and Levy (1969), 

Rothschild and Stiglitz (1970) and Whitmore (1970). 
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F second-order stochastically dominates G is denoted      and is illustrated in Figure 

3. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Second Order Stochastic Dominance 

 

Theorem 2.3 Let      and      be the cumulative distributions of two prospects 

whose density functions are      and     respectively.   dominates   by third-order 

stochastic dominance (TSD) for all      if and only if the following two conditions 

hold: 

(a)                                                  
 

 

 

 
          for all        , 

(b)                                    

and there is at least one    for which a strict inequality hold.  

F third-order stochastically dominates G is denoted     . Although not considered 

here, Whitmore (1989) presents higher order SD rules. 

 

Levy (2006) establishes various sufficient rules for SSD and TSD such that FSD 

=> SSD => TSD. This means that more restrictive sets of assumptions must be imposed 

in order to derive the higher order stochastic dominance. 

 

In addition to FSD, SSD and TSD, it is often the case that the investor has 

decreasing absolute risk aversion. This means that the investor is willing to pay a lower 

risk premium for the same amount of risk as his wealth increases. This leads to another 

set of criterion for all      called Decreasing Absolute Risk Aversion Stochastic 
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Dominance (DSD). Hammond (1974) provides some conclusions for DSD, however, no 

simple and clear rule can be derived. Given that      , it is obvious that       

    . As a result, the DSD-efficient sets are a subset of the TSD-efficient sets. 

 

On the other hand, Levy (2006) presents the SD rule for risk-seeking investors. 

The set of risk-seeking utility functions has the properties of      and      , 

denoted as   
   . 

 

Theorem 2.4 Let      and      be the cumulative distributions of two prospects 

whose density functions are      and     , respectively.   dominates    by Risk-

Seeking Stochastic Dominance (RSSD) for all     
    if and only if  

                      
 

 

 

for all         and there is at least one    for which a strict inequality hold. 

I denote   dominates   by RSSD as            . 

 

The relationship between the various SD rules is summarised in Figure 4. 

 

 

 

 

 

 

 

Figure 4 The Stochastic Dominance Relationship between the Different Classes of Utility Functions 

and the Resulting Efficient Sets 

Source: (Levy (2006), Chapter 3, pp. 140)  

 

2.3.1.1 Extensions of Stochastic Dominance  

Given the complexity of considering the whole distribution of the prospects 

being compared, Levy (1973a) first uses the quantile of order   of the distribution to 

examine the SD conditions for log-normally distributed prospects. Levy and Kroll 

(1978) then formalise a set of SD rules based on the quantile approach. They show the 

Efficient Sets Utility Classes 

FSD 

SSD 

TSD 

DSD 
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equivalence between the cumulative distribution and the quantile formulations. Let 

      and       denote the quantiles of order P of distribution   and   such that 

               and       are defined similarly. The FSD, SSD and TSD are 

restated below by using the quantile approach: 

 

Theorem 2.5 F dominates G by FSD if and only if             for all  , with a 

strict inequality for at least one  . 

 

Theorem 2.6 F dominates G by SSD if and only if                   
 

 
 for all  , 

with a strict inequality for at least one  . 

 

Theorem 2.7 F dominates G by TSD if and only if                    
 

 
  

 

 
 for 

all  , with a strict inequality for at least one   and     
 

 
              . 

 

The advantage of the SD rule based on the quantile formulation is that the 

analysis can be easily extended among those prospects that have unknown statistical 

distributions of the mixed random variables. Examples of the quantile approach include 

Levy and Kroll (1978), who consider the FSD, SSD and TSD when the riskless asset is 

allowed; Levy (1985) uses it to derive the upper and lower bound of call and put option 

values; and Levy and Wiener (1998) develop the prospect SD corresponding to the S-

shaped utility function of Kahneman and Tversky (1979), that is, the investor displays 

risk aversion in choices involving gains and risk seeking in choices involving losses. 

 

Jarrow (1986) examines the relationship between arbitrage and FSD. He 

provides a set of conditions under which FSD implies the existence of arbitrage 

opportunities. If the two assets have perfect linear correlation, then there exist arbitrage 

opportunities if and only if there is FSD between the two assets. This relationship is 

proven by Kroll (1984), who states the arbitrage in terms of state-contingent SD. 

 

2.3.1.2 Multi-Period Stochastic Dominance 

The aforementioned SD criteria were developed in the single-period framework. 

However, investment decisions and portfolio selection process often involve multi-
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period considerations. Levy (1973b) and Levy and Paroush (1974) extend the one-

period SD criteria to the multi-period case. With the assumption of independence over 

time, they show that if    (the first-period return of prospect  ) dominates    (the first-

period return of prospect  ) and    (the second-period return of prospect  ) dominates 

   (the second-period return of prospect  ), then the two-period return      dominates 

    . The result can also be generalised to an  -period return. In addition, Levy and 

Paroush (1974) show that dependence of the rate of return can be ignored only if multi-

period additive utility function is considered. However, the result does not hold when 

one considers the case of one-period utility function, which is defined on terminal 

wealth. Levy and Levy (1982) present the multi-period SD criteria with riskless asset. 

These papers conclude that the size of the efficient sets decreases with the length of the 

investment horizons with the assumption of stationary and independent distribution. In 

contrast, Huang, Vertinsky and Ziemba (1978) provide a counter-example showing that 

the conclusion does not hold.   

 

2.3.2 Empirical Studies 

Empirical studies of the application of SD can be divided into two stages. The first 

stage of the literature focuses on developing an efficient algorithm, while the second 

stage focuses on the econometric issues of forming consistent tests
15

 of SD. 

 

2.3.2.1 The stochastic dominance algorithm and its effectiveness 

The early stage of the empirical application of SD rules focuses on identifying 

the efficient sets in a pool of securities returns. In order to check whether a dominance 

relationship exists, we need to know the precise cumulative distributions function (CDF) 

of the rates of return (which can be obtained from historical data). Levy and Hanoch 

(1970) develop the first algorithm for FSD and SSD, which can be applied to the 

empirical distributions of the ex-post rates of returns. The algorithms take advantage of 

the fact that the observed rates of return have uniform discrete distribution. For example, 

if we have obtained   observations, then each observation will be assigned a probability 

of 
 

 
. Porter, Wart and Ferguson (1973) employ the necessary rules in developing the 

algorithms to reduce the number of pairwise comparisons of large numbers of portfolios. 

                                                 
15

 A consistent test is one for which the power of the test for an untrue hypothesis increases to one when 

the number of observations increases. 
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The algorithms for FSD and SSD are simpler than those for the TSD. Early 

papers on the TSD algorithm, such as Porter et al. (1973), compare two distributions 

only at jump points; Kearns and Burgees (1979) apply the trapezoidal rule; Aboudi and 

Thon (1994) propose a method of finding the crossing points without merging the data 

points; Bawa, Lindenberg and Rafsky (1979) use zero crossing point and lower partial 

moment method; Levy and Kroll (1979) employ the quantile approach. According to 

Levy (2006), the proposed TSD algorithms are wrong for two reasons. First, unlike the 

FSD and SSD, we cannot only compare the two distributions at the jump points. 

Fishburn and Vikson (1978) claim that the TSD integral is non-linear and therefore 

comparisons made at the jump points may lead to the wrong decision. Second, 

switching between the cumulative distribution and the quantile of a distribution does not 

apply to TSD. Levy, Leshno and Hechet (2004) derive a TSD algorithm based on the 

cumulative distribution and check the integral condition in interior points in order to 

overcome the shortcomings found in the existing literature. 

 

Vickson (1977) presents the algorithms for decreasing absolute risk aversion 

(DSD). Vickson and Altmann (1977) apply the algorithm to 20 securities traded on the 

Toronto Stock Exchange and conclude that there is no material difference in stochastic 

ordering between TSD and DSD. Levy and Kroll (1979) demonstrate the algorithm for 

SD with riskless assets. 

 

2.3.2.2 Testing for SD Rules 

The early empirical studies of portfolio efficiencies and investment strategies 

using SD rules, such as Levy and Hanoch (1970), Levy and Sarnat (1971), Porter and 

Gaumnitz (1972), Porter (1973), Porter (1974), Joy and Porter (1974), Vickson and 

Altman (1977), Kroll (1977), Kroll and Levy (1979), Levy and Brooks (1989), treat the 

empirical distribution of asset returns as the true cumulative distribution of asset returns. 

The widespread use of empirical distribution functions (EDFs) may be due to the 

desirability of avoiding the assumption of the form of the distribution and the optimal 

properties of EDF as an estimator of the CDF (see Zacks, 1971). Porter et al. (1973) 

point out the potential difficulties in empirical application of the SD rules. The existing 

empirical studies, as mentioned above, assume (1) the historical samples represent 
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accurate estimates of the true underlying distribution, and (2) the true distribution 

remains the same over time so that past data can be used to predict future outcomes.  

 

The empirical application of the SD rules is subject to sampling errors. The 

historical samples of returns only represent one of the possible observations in the 

population. Sampling errors arise; for example, we may have   dominating   in the 

population but the two empirical distributions intersect, hence no FSD relationship is 

found empirically. Another possibility is that there is no SD relationship in the 

population but it is found in the sample. As a result, the application of SD rules is 

subject to type I or type II error as in any other statistical analysis. Kroll and Levy (1980) 

consider two types of sampling errors in the use of empirical data: 

(a) for two options, one option dominates another one in the population but no 

dominance is found in the sample (Type II statistical error); and 

(b) neither option dominates in the population, but dominance is found in the sample; 

or one option dominates the other in the population but an opposite dominance 

relationship is found in the sample (Type I statistical error). 

 

With the use of Monte Carlo simulation, Kroll and Levy (1980), Pope and Ziemer 

(1984) and Stein and Pfaffenberger (1986) examine the power of tests for efficiency for 

various distributions. The main result of these papers is that the power of the SD tests is 

relatively low. Stein, Pfaffenberger and Kumar (1983) derive an analytical formula for 

the Type I error probability for FSD when the options are sampled from the same 

population of returns. Tolley and Pope (1988) present the statistical tests for second-

order SD using a permutation test, but the power of the test is not examined. To 

increase the power of the test, Ben-Horim (1990) suggests truncating the tail of the 

sample before applying the SD rules; he shows that truncation will greatly reduce the 

tail problem which has led to low power in previous studies. Nelson and Pope (1991) 

suggest bootstrapping as an alternative way to increase the power of the tests when 

dominance exists in the population. The improvement resulting from their test may 

stem from the smoothing process of the order statistics to avoid inadvertent intersection 

of the cumulative distributions. 
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Based on the assumptions of independent and identically distributed observations 

and independent prospects, McFadden (1989) establishes a closed-form statistical test 

for FSD using the concept of the Smirnov statistic (see Durbin, 1973). He assumes that 

  dominates   in the population as the null hypothesis; however, he does not 

distinguish the case when   dominates   in the sample, which poses a serious error in 

the statistical test. McFadden also considers the test for SSD, but its computation is 

complicated. Klecan, McFadden and McFadden (1991) extend McFadden’s test by 

allowing for dependence in observations and replacing the independence with a general 

exchangeability amongst prospects. Kaur, Rao and Singh (1994) propose a test in the 

reverse form such that the null hypothesis is   does not dominate   against the 

alternative hypothesis that   dominates  . The above studies use the infimum or 

supremum statistics over the support of the distributions. 

 

In contrast, Anderson (1996) and Davidson and Duclos (2000) calculate the test 

statistics based on a fixed and arbitrarily chosen set of grid points. Anderson employs 

the trapezoidal rule of approximating integrals at fixed grid points. Davidson and 

Duclos’ approach is based on tests of inequality constraints for which multiple 

hypotheses at different grid point are involved. Therefore, their tests are based on 

multiple comparisons. Tse and Zhang (2004) compare the performance of several tests, 

namely, Kaur et al. (1994), Anderson (1996) and Davidson and Duclos (2000); their 

Monte Carlo simulation results suggest Davidson and Duclos’ test is the best in terms 

of power. Davidson and Duclos’ (2000) test has sound practicality, as it is based on a 

small number of comparisons; however, the test may be subject to inconsistency. Given 

that the comparisons are made at fixed grid points, only a subset of SD restrictions is 

tested. Barrett and Donald (2003) introduce a new test of SD based on a Kolmogorov–

Smirnov-type test that compares the prospects at all intervals. They also assume 

independent samples of prospects with different sample sizes from two populations.  

 

With the use of a subsampling method, Linton et al. (2005) relax the assumptions 

and allow prospects and observations to be dependent and not identically distributed in 

estimating the critical values of the tests. In addition, they provide a test for SD among 

  prospects where     . Kläver (2005) further improves the Linton et al. (2005) 

method by using the circular block method to capture the dependence structure of 
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sample data. Donald and Hsu (2016) construct a new Kolmogorov–Smirnov type of 

test for SD that is less conservative and more powerful than Barret and Donald’s (2003) 

test. Under certain circumstances, their proposed method is also more powerful than the 

subsampling tests developed by Linton et al. (2005). 

 

2.3.2.3 Mean Variance Rule versus Stochastic Dominance 

Markowitz (1958) introduces the mean variance (MV) rule for portfolio 

selection. The rule for determining the superior performance of one portfolio over 

another only requires the mean and variance of the return distribution. A portfolio is 

said to dominate another if it has higher return for the same level of risk or the same 

return for lower risk. Given its simplicity, the rule has been widely applied in the 

portfolio management and hedging literature. However, the MV rule is subject to 

criticisms that its criterion is only appropriate under restrictive assumptions. These 

assumptions include that the investor has a quadratic utility function or asset returns are 

normally distributed. Pratt (1964), Arrow (1965) and Hanoch and Levy (1970) have 

discussed the limitations of quadratic utility functions. One of the important properties 

is that investors with quadratic utility functions display increasing risk aversion 

behaviour. In addition, there is plenty of evidence which shows that financial asset 

returns are non-normal (see Mandelbrot, 1963; Fama, 1965; Clark, 1973; Cornew, 

Crowson & Town, 1984; Bookstaber & Clarke, 1985; Brown & Warner, 1985; Helms 

& Martell, 1985; Richardson & Smith, 1993; Peirό, 1999). Despite the criticism, Levy 

and Markowitz (1979) and Kroll, Levy and Markowitz (1984) show, for various utility 

functions and empirical return distributions, an expected utility maximiser will be 

indifferent in making choices between using the direct utility maximisation and MV 

rule. 

 

The SD rules are conceptually superior to the MV rule, since they maximise the 

investor’s expected utility and utilise the information of the entire probability function. 

In addition, the dominance results apply to a general class of utility functions. However, 

the SD rules’ practical applicability is limited due to the difficulty in estimating the 

distribution functions. In fact, these two competing rules have generated considerable 

literature with a focus on efficient portfolio formation. Aharony and Loeb (1977) and 

Ghandhi and Saunders (1981) demonstrate the advantages of using the SD rules, while 
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Levy (1982) demonstrates how the MV rule will fail in the truncated normal distribution. 

On the other hand, Ashton (1982) shows that SD is inferior to MV when dealing with 

alternative risk projects given the opportunity to invest in riskless assets. At the same 

time, a number of studies examine conditions under which the two approaches would be 

indifferent. These include Ali (1975), which explores the relationships between SD and 

MV by considering various popular distributions; Johnson and Burgess (1975) who 

examine how different samples affect the SD and MV tests; and Meyer (1987) who 

identifies the location and scale parameter condition to ensure consistency between two 

rules.  

 

2.3.2.4 Applications 

Stochastic dominance rules have been applied to fields including economics, 

finance, insurance, statistics and agriculture. In this section, I focus on their applications 

in finance. 

 

Levy (1985, 1988) applies SSD rules to derive option bounds when an investor 

is allowed to invest in a stock or a corresponding call option. Their discrete model can 

easily incorporate transaction costs and taxes into the analysis.  

 

Brooks, Levy and Yoder (1987) use the SD rule to evaluate the performance of a 

stock portfolio with options, for example covered calls and protective puts. They point 

out that it is inappropriate to use the MV rule to assess the option strategies because the 

return distributions for these strategies are negatively skewed. With simulation, Brooks 

and Levy (1993) investigate the effectiveness of portfolio insurance by examining the 

dominance of insured and uninsured portfolios. They find that neither a naked portfolio 

nor a covered portfolio dominates unless some specific utility functions are assumed.  

 

More recent applications involve the SD statistical tests on actual market data. 

For example, Fisher, Wilson and Xu (1998) examine the economic significance of the 

term premium in real returns on US Treasury Bills; Gasbarro, Wong and Zumwalt 

(2006) analyse the performance of country indices represented by iShares; Cho, Linton 

and Whang (2007) test the Monday effect in daily stock index returns; Constantinides, 

Jackwerth and Perrakis (2009) show empirically that there is a mispricing of S&P 500 
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index options through the widespread violations of stochastic dominance; and Annaert 

et al. (2009) evaluate the performance of different portfolio insurance strategies using 

30 years of equity data from the US, the UK, Japan, Australia and Canada. They find no 

dominance relationship between portfolio insurance and buy and hold strategies. Al-

Khazali, Lean and Samet (2014) use SD analysis to show that Islamic indexes 

outperformed the conventional Dow Jones indexes during the global financial crisis 

(GFC), but not when the market is tranquil.  

 

Roman, Mitra and Zverovich (2013) apply the idea of second-order SD as a 

choice criterion to form an enhanced indexation type of portfolio. Using three datasets, 

the FTSE 100, Nikkei 225 and S&P 500, they show empirically that the SSD-based 

model consistently outperforms the index return.  
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Chapter 3  

3. Survey of Transaction Costs Option Pricing Models 

 

This chapter contains a survey of option pricing and hedging models with 

transaction costs. For simplicity, as in the Black-Scholes world, I assume that the 

economy includes only two assets: a riskless asset, such as a riskless bond, money 

market account or cash account, and a risky one, such as stock. There are no transaction 

costs associated with transactions in the riskless asset, but transactions in the risky asset 

incur proportional transaction costs. These are the standard assumptions in the existing 

literature. I will mention explicitly in the following sections if the assumptions in the 

model depart from the standard ones. In the presence of transaction costs, perfect 

replication under the Black-Scholes framework is no longer possible because of infinite 

transaction costs incurred from hedging activities. Therefore, different hedging 

strategies are proposed in order to hedge the option at the cheapest cost. 

 

In this chapter, I take the perspective of an option writer who hedges his position 

by holding a portfolio of underlying asset and cash accounts according to certain 

hedging strategies. I denote the option price at time   as           and maturity as time 

 .      denotes the stock price at time  . The hedging strategy is as follows: when an 

option writer wants to hedge the position he uses the proceeds           to set up a 

hedging portfolio according to some prescribed hedging strategy. If re-hedging is 

performed frequently, the hedging error will reduce but transaction costs will increase. 

Conversely, the hedger is able to reduce transaction costs paid but at the cost of larger 

hedging errors. Essentially, for all hedging strategies, the hedger is facing a tradeoff 

between reducing transaction costs and diminishing hedging errors. The goal of the 

option writer or hedger is to attain his objective of minimising the combination of these 

costs.   

 

This survey groups the existing models according to two main categories of 

option hedging strategies proposed in the literature, namely, time-based and move-

based strategies. Time-based hedging strategies are those for which trading occurs at a 

fixed regular time interval. The time interval is also termed the hedging frequency in 
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this context. For example, once a hedger has chosen the hedging frequency, he only 

needs to rebalance the hedging portfolio at the pre-specified time interval until the end 

of his risk exposure (i.e. option maturity). On the other hand, a move-based strategy 

permits rebalancing the hedging portfolio according to the movement of the underlying 

asset price or option delta. A hedger who adopts a move-based strategy is required to 

monitor the market closely. In addition, I survey other hedging strategies such as stop 

loss and static hedging, as well as optimal trading strategies introduced in the asset 

allocation and portfolio management with transaction costs literature.  

 

The layout of the chapter is as follows. Section 1 presents a review of the 

classical Black-Scholes option pricing model. Subsequent sections present reviews of 

the models developed under the extended Black-Scholes economy, which relaxes the 

assumptions of continuous trading and no transaction costs incurred in trading the 

underlying assets. Finally, I look into the empirical performance of alternative hedging 

strategies and outline the hedging strategies chosen to assess their performance in 

chapter 4 and 5. 

 

3.1 Option Pricing and Hedging in a Frictionless Market 

Black and Scholes (1973) show that, in a frictionless market, it is possible to 

replicate an option’s payoff by constructing a self-financing portfolio of stocks and cash. 

In a Black-Scholes world, the stock price,     , is assumed to follow a diffusion process 

given by 

                                                                                               (3.1) 

where   and   are the mean and volatility of the stock returns respectively, and    is a 

standard Brownian motion. The cash account,     , earns at a constant risk-free rate of 

    and its corresponding diffusion process is  

          .                                                    (3.2) 

Assuming no arbitrage, the price of an option is given by solving the PDE 

                
 

 
                                                  (3.3)                 

subject to a boundary condition corresponding to the payoff on the option at maturity, 

         . Here,    is the first-order derivative of the option price with respect to stock 

price commonly referred to as the 'delta' of the option.    is the first-order derivative of 

the option price with respect to time to maturity, which is termed ‘theta’.     is the 
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second-order derivative of the option price with respect to stock price and is commonly 

referred to as the ‘gamma’ of the option. 

 

In the Black-Scholes framework, the hedging strategy at time t consists of 

holding    shares of stock and some cash     , 

               
   

    
      

  

   

   
 

                                                                                                                      (3.4)              

 

where   is the exercise price of the option and   is the time to maturity. The hedging 

portfolio is rebalanced continuously.  

 

In the presence of transaction costs, the Black-Scholes hedging strategy incurs 

infinite transaction costs. As a result, various hedging strategies have been proposed to 

overcome this problem, each resulting in a different price for the option. Figlewski 

(1989) shows that market imperfections result in wide bounds on equilibrium option 

prices. In the following sections, I denote c and k as the constant and proportional 

transaction costs of trading an underlying asset. 

 

Following Dewynne, Whalley and Wilmott (1994), many transaction costs 

models result can be summarized in the following PDE form 

                                               
 

 
                                                     (3.5)                  

where the left-hand side corresponds to the Black-Scholes PDE and the function        

on the right-hand side depends upon the hedging strategy. In the Black-Scholes 

economy, a perfect hedge is possible and hence         . On the other hand, in the 

presence of transaction costs, the option price depends on the cost of hedging. The cost 

of hedging is linked to how often the hedging portfolio is rebalanced. Hence, one 

distinct feature of the function        is its dependence on the gamma. Gamma is a 

measure of the sensitivity of the change in delta with respect to the change in the 

underlying price, and hence it is also a measure of transaction costs.  
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3.2 Time-Based Strategies 

A time-based strategy involves rebalancing a portfolio at a pre-determined 

regular time interval. This type of strategy is usually local in time, as specified in the 

hedging literature. A local-in-time strategy means that the investor would like to 

minimise the hedging risk over a short time interval and does not consider the hedging 

risk at any other time intervals. In contrast, a global-in-time hedging strategy considers 

the whole time horizon when minimising hedging risk. 

 

3.2.1 Black–Scholes Hedging at Fixed Time Intervals 

 The simplest hedging strategy to alleviate the infinite transaction costs incurred 

in hedging portfolio rebalancing is to implement the Black-Scholes delta-hedging 

strategy at discrete time intervals. The idea is to divide the time interval [t, T] into fixed 

regular time intervals of  t, such that    
   

 
. At time t, the hedger forms a hedge with 

   unit of the underlying asset and      amount of cash. At time     , the hedger will 

rebalance the hedging portfolio according to Black-Scholes delta. Therefore, an 

additional unit,         , of the underlying asset will be purchased or sold. The 

hedging is repeated in the same manner for all subsequent time intervals until maturity. 

 

 When   is large, the variance of hedging error is small and transaction costs are 

large because of frequent hedging. The choice of   is related to the hedger’s risk 

aversion. When a hedger is risk-averse, he will choose a large n so that he can rebalance 

his hedge position frequently and minimise hedging error at maturity. However, a 

hedging strategy with large n will involve large transaction costs. On the other hand, a 

less risk-averse hedger will choose a small   because he is willing to accept larger 

hedging error and save on transaction costs. Note that this strategy is neither local in 

time nor global in time. Black and Scholes (1973) and Boyle and Emanuel (1980) argue 

that hedging error is relatively small if one rebalances the portfolio frequently. However, 

frequent trades will increase the cost of the hedging portfolio significantly and the cost 

may exceed the price of the underlying asset. In addition, transaction costs appear to be 

random and tend to amplify the error in the Black-Scholes hedging strategy. On the 

other hand, this simple time-based strategy may benefit from a volatile market. For 

example, the underlying asset price movement tends to be volatile on a daily basis but 

the price may revert back to the last rebalancing state when the time interval is 



65 

 

sufficiently large, that is, no or only a small amount of rebalancing of the underlying 

asset position is required.  

 

3.2.2 Leland’s Hedge 

 Leland (1985) is the first to consider the option pricing and hedging problem in 

the presence of transaction costs. His model setup is similar to the Black-Scholes model 

with the exception that the underlying asset (the risky asset) is subject to proportional 

round-trip transaction costs  . In addition, the hedger will rebalance the portfolio at 

fixed time interval    . Leland’s strategy is a local-in-time strategy. The expected 

hedging error (inclusion of transaction costs) and the variance of the hedging error 

approach zero when    becomes small. With these features, he proposes a modified 

Black-Scholes hedging strategy to ensure no infinite transaction costs are incurred in 

hedging an option no matter how small the re-hedging interval. When transaction costs 

are small or the rehedging interval approaches zero, Leland’s strategy is similar to 

Black-Scholes delta hedging but with a modified volatility as input: 

                                                
       

 

 
 

 

   
                                                 (3.6) 

where   is the proportional transaction costs,   is the Black-Scholes volatility,    is the 

transaction frequency and     is the sign function: 

 

 

                                                                                                                                                                              

(3.7) 

Based on Leland’s (1985) idea, Hoggard et al. (1993) present the following PDE: 

                             
 

 
                

 

   
                                     (3.8) 

with the boundary condition of                         . Equation (3.8) is an 

example of an option hedging with transaction costs model that is expressed in the form 

of equation (3.5). 

 

 

Similar to a Black-Scholes discrete hedge, the choice of transaction frequency δt 

reflects a hedger’s risk-aversion level. A very risk-averse hedger will choose to 

          

       =                  
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rebalance as frequently as possible and select a small δt, while a relatively risk-tolerant 

hedger will select a large δt. 

 

 Zakamouline (2006b) explains in detail how Leland’s modified volatility works 

in reducing the risk of a hedging strategy. The mechanism (the modified volatility) used 

in Leland’s strategy improves the risk-return tradeoffs of the hedging portfolio. 

Specifically, the modified volatility allows the hedging error to be negatively correlated 

with transaction costs. For example, when a hedger is in a short gamma position, the 

option is hedged with an increased hedging volatility. This increase in volatility will 

decrease the absolute value of the gamma
16

 in a high-gamma region and therefore 

reduce transaction costs because of reduced re-hedging activities. From another 

perspective, Leland’s hedge allows for systematic gains accumulated over the hedging 

horizon. The systematic gains are then offset by the transaction costs incurred during 

the dynamic hedging process. 

 

 Let   
   

 

 
 

    
 , such that   

                 . Avallaneda and Paras (1994) 

show that Leland’s model works well when the security has convex payoff or    . In 

terms of transaction costs  , the condition     implies that        
 

 
         . 

This means that round-trip transaction costs should not exceed 1.25 times the standard 

deviation of the underlying asset price movement for a single period
17

. For some highly 

risky securities, Leland’s model generates great hedging slippage even though the 

condition     is satisfied. On the other hand, when     or the security has a 

concave payoff, the authors show it is not valid to use Leland’s strategy but rather 

suggest a new path-dependent hedging strategy, which is to delta hedge at each interval 

using the modified variance for certain periods and maintain static hedge in other 

periods when the critical events are triggered. 

 

 Albanese and Tompaidis (2008) extend Leland’s model by using the risk reward 

analysis found in “good deal” pricing in incomplete markets
18

 (see Cochrane & Saa-

                                                 
16

 An option gamma is negatively related to underlying asset’s volatility and spot price.  
17

 This corresponds to the assumptions in Leland (1985) that the transaction costs are small and the re-

hedging interval approaches zero. 
18

 Their idea is based on the fact that investors like assets with high Sharpe ratios. 
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Requejo, 2000 and Bernardo & Ledoit, 2000). They perform the analysis from the 

market maker and price taker point of view. They find the optimal length of time 

interval between each trade and the resulting adjusted volatility are different from those 

in Leland (1985). The objective of a market maker is different from a price taker. A 

market maker is interested in minimising the risk taken for a given level of 

compensation so that he can set the price competitively. On the other hand, a price taker 

is concerned about maximising his returns, since he can only observe implied volatility 

from the market. For a market maker, the optimal time length is proportional to the level 

of transaction costs and inversely related to the volatility and risk reward factor. The 

optimal adjusted volatility is proportional to the square root of the transaction costs. Let 

   be the optimal time length between each trade and   be the risk reward factor. The 

results are as follows: 

                                           
 

    
                  

   

   
                                      (3.9) 

For a price taker, the optimal time length is proportional to the square of transaction 

costs and inversely proportional to the volatility and the square of adjusted volatility. 

The optimal risk reward factor is proportional to the square of the adjusted volatility. 

                                  
   

         

               
     

  
     

                      (3.10) 

 In contrast with Leland’s model, which discretely hedges an option in a 

continuous time framework, Boyle and Vorst (1992) consider a discrete time framework 

for hedging an option with transaction costs. They also point out that Leland’s strategy 

is not self-financing and present another variance adjustment of the form 

                                                              
       

    

   
                                                (3.11)        

when replicating a long call option, where   is the number of periods to option 

expiration. On the other hand, the adjusted variance for replicating a short call option is  

                                                                 
       

    

   
                                              (3.12) 

The adjusted variance is greater than that in Leland’s model.   

 

 Grannan and Swindle (1996) consider another type of time-based strategy that 

includes Leland (1985) as a special case. The optimal strategy can be derived under two 

optimisation criteria: (1) minimisation of the expected square replication error given a 

portfolio value, and (2) minimisation of the weighted sum of portfolio value and 
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replication error. Their optimal strategy is different from previous studies. The time 

interval between each re-hedging trade is not constant, but rather more trades happen 

towards the end of the life of the option. Their method is proved to be able to reduce 

replication errors relative to the constant time interval strategies in a Monte Carlo 

simulation setting. 

 

3.2.3 Multi-Scale Strategy 

 Consider a hedger who has two options. The hedger can choose to hedge two 

options at every    time interval or at every     depending on how much transaction 

cost he is willing to pay. Martellini (2000) suggests a third method to hedge the options, 

which is to hedge one option at every    time interval and another one at every    . He 

uses the concept that the hedger enjoys a diversification benefit through hedging at 

different time scales.  

 

Let     . A multi-scale strategy is denoted as follows. A                  

strategy for        is a strategy for which the investor hedges a fraction of    of the 

option portfolio by trading every  , a fraction of    of the option portfolio by trading 

every   , …, and a fraction of    of the option portfolio by trading every    .    

represents portfolio weight with rebalancing frequency    . If      for some   and 

     for    , the multi-scale strategy is the same as the single-scale strategy, as 

Leland (1985) shows. Note that the hedging ratio for every rebalancing portfolio is the 

same as the one in Leland (i.e., Black-Scholes hedge with adjusted volatility). Although 

this strategy is derived under the optimal framework, Martellini shows that the 

performance of the multi-scale strategy is superior to that of the single-scale strategy 

(i.e., Black-Scholes and Leland) when there is low serial correlation in the return 

process for any hedging frequency
19

. If the return process has high serial correlation, 

under- or over-hedging can severely affect hedging performance given that more 

rebalancing activities occur at some pre-determined time intervals. 

 

                                                 
19

 Martellini (2000) uses the following performance measure to gauge the superiority of the multi-scale 

strategy: for a given level of expected transaction costs (expected tracking error), the superior strategy 

will produce smaller expected tracking error (expected transaction costs). 
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3.3 Move-Based Strategies 

 Move-based strategies are defined as strategies that rebalance the hedging 

portfolio according to the movement of the underlying asset price or the delta of the 

option. These strategies require continuous monitoring of market movements. The most 

common move-based strategies are described in the following sections. 

 

3.3.1 Henrotte’s Asset Tolerance Strategy 

 Instead of re-hedging a portfolio at fixed regular time intervals, Henrotte (1993) 

recommends a hedging strategy based on movement of the underlying asset price. The 

hedger monitors the market continuously and rebalances the hedging portfolio back to a 

perfectly hedged position when the percentage change in the price of the underlying 

asset exceeds a pre-determined amount. The perfectly hedged position is determined by 

the Black-Scholes model. The series of stopping times,   , is recursively given by: 

                                            
      

   

                              (3.13) 

where   is a given constant percentage.  

 

 The choice of   depends on the hedger’s risk aversion level. A risk-averse 

hedger would select a small   in order to obtain small hedging error at maturity but at 

large transaction costs. In contrast, a more risk-tolerant hedger is willing to face larger 

hedging error but enjoy lower transaction costs. 

 

 Compared to time-based strategies, this move-based strategy may improve the 

performance of the hedging portfolio. This strategy reacts to market movements, which 

can overcome the hedging slippage when the hedging time interval is large. Yet the 

relationship between stock price movement and the change in the hedging portfolio 

value is not monotonic. It is important for us to consider the sensitivity of the option 

delta (which represents the stock portion of the hedging portfolio) to the underlying 

asset price movement. Figure 5 below shows the relationship between the gamma of a 

call option (with strike price X) and the price of the underlying asset. 
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Figure 5 Long Call Option Gamma and Underlying Asset Price 

 

Option gamma is largest when the option is at the money. Therefore, the 

implementation of an asset tolerance strategy may incur extra transaction costs for in-

the-money and out-of-the-money options. This is because asset tolerance hedging 

criterion is based on the absolute percentage change in underlying asset price. 

Transaction costs are charged as long as the movement in the underlying asset price has 

breached the hedging bandwidth, even though the option gamma is low (or has low 

sensitivity to option delta). 

 

3.3.2 Delta Tolerance Strategy 

 Another popular hedging strategy, introduced by Whalley and Wilmott (1993), 

is based on the movement of the option delta. With this hedging strategy, a hedger will 

rebalance a hedging portfolio to the Black-Scholes delta when the hedging ratio moves 

outside the tolerance level H. The series of stopping times,   , is recursively given by: 

 

                                              
  

  
                               (3.14) 

 

where 
  

  
 is the Black-Scholes hedge, and   is a given constant tolerance level. 

 

  is related to the desired hedging precision. A risk-averse hedger would choose 

a small   , while a more risk-tolerant hedger will choose a large   . This strategy 

improves the performance of the hedging portfolio by reducing the extra amount of 

transaction costs associated with time-based strategies and the asset tolerance strategy, 

given that rebalancing depends on the sensitivity of the change in portfolio value to the 

change in underlying asset price. Dewynne et al. (1994) point out that this hedging 

Gamma 

Underlying asset price, S 
S=X S >X S<X 
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strategy is inappropriate for hedging options with large and positive gamma (i.e., long 

at-the-money call or put options). This is because the hedging portfolio value will 

increase in a very short time in the neighbourhood of the expiry date. 

 

3.3.3 Utility-Based Hedging  

Hodges and Neuberger (1989) derive an option hedging strategy explicitly 

taking into consideration the hedger’s risk preference specified by a negative 

exponential utility function of the form 

                                                                                                               (3.15) 

The utility-based approach in option pricing and hedging uses the concept of 

indifference in expected utility between final wealth with and without an option liability. 

The difference between the strategies with and without an option liability reflects the 

hedging action. The concept is illustrated in the following setup. This approach is 

considered as global in time in the hedging literature because it focuses on minimising 

the portfolio risk for the entire time horizon. 

 

Assume that the hedger faces proportional transaction costs and maximises his 

expected utility of terminal wealth. The hedger has a finite horizon of       and there is 

no transaction costs at terminal time   . The hedger has    unit of stocks and    in cash. 

Let       be the utility of wealth at time t. The value function of the hedger without an 

option liability is  

                                                                                      (3.16) 

The value function of the hedger with an option liability is  

                                                                             (3.17) 

The option value    and the optimal strategy are obtained by solving the following 

equation: 

                                                                           )                             (3.18) 

The above equation (3.18) implies that the hedger is willing to receive   in order to 

write an option such that his expected utility at terminal T is indifferent from not writing 

an option. The value function or indirect utility function is solved recursively backwards 

through time using the Hamilton–Jacobi–Bellman dynamic programming approach of 

stochastic optimisation: 

                                                     
 

 
                                             (3.19) 
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The resulting hedging strategy involves a no-transaction region. Let us denote 

two boundaries    and    such that      . As long as the hedge ratio    lies within 

        , the portfolio is not required to re-hedge. If    falls outside of the no-

transaction region, then the hedger needs to re-hedge the portfolio back to the nearest 

boundary of the no-transaction region (or hedging bandwidth). For example, if      , 

the hedger should trade the underlying asset to bring the hedge ratio back to    and vice 

versa. Figure 6 below demonstrates the relationship between Black-Scholes delta and 

the optimal strategy. Hodges and Neuberger (1989), Clewlow and Hodges (1997) and 

Zakamouline (2006a) have documented that the middle of the optimal hedging strategy 

does not coincide with the Black-Scholes delta. 

 

Although the resulting hedging strategy is optimal, it is rarely used as the 

strategy lacks a closed-form solution and is computationally demanding in 

implementation. Davis et al. (1993) provide a rigorous proof of the existence and 

uniqueness of the solutions. Constantinides and Zariphopoulou (1999) derive tighter 

closed-form upper and lower bounds of writing an option by maximising the expected 

utility. Clewlow and Hodges (1997) propose a numerical algorithm based on the 

binomial scheme in Cox et al. (1979) to compute the optimal hedging strategy while 

substantially reducing the computational burden in Hodges and Neuberger (1989). 

Through simulation, Clewlow and Hodges (1997) have also shown that the optimal 

strategy is superior to Leland’s strategy, the Black-Scholes strategy and a heuristic 

strategy that centred the optimal control region on the Black-Scholes delta. Another 

method of numerical implementation is found in Davis and Pans (1994). 
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Figure 6 Black–Scholes and Optimal Strategy Reservation Short Call Option Prices 

Source: Zakamouline (2006a). 

 

There are two advantages of the assumed negative exponential utility function: 

the hedger’s strategy is independent of the amount of his holdings in the cash account, 

and the utility function simplifies computation. The choice of the utility function is 

restrictive, and the result may differ if a different utility function was used. Davis et al. 

(1993) conjecture and Andersen and Damgaard (1999) show that the option price is 

insensitive to the choice of utility function, and instead the level of risk aversion plays 

an important role. One obvious advantage of utility-based hedging strategies over 

Leland’s (1985) strategy is that it can be applied to a portfolio of long and short options 

with a simple modification to the payoff function. The disadvantage of the strategy is 

the necessity of prescribing the hedger’s utility function. 

 

3.3.3.1 Hedging to a Fixed Bandwidth around Delta 

Given the computation burden in deriving the hedging strategy Hodges and 

Neuberger (1989) propose, a simplified version of the utility-based hedging strategy can 

be substituted. Following Martellini and Priaulet (2002), the boundary of no-transaction 

region for this simpler hedging strategy is as follows: 

                                                              
  

  
                                                    (3.20)

     
 

where 
  

  
  is the Black-Scholes hedge, and   is a given constant tolerance level. 
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As with previous case, H also represents the hedger’s risk aversion level. For 

that reason, a risk-averse individual will choose a small no-transaction region while the 

relatively risk-tolerant agent will choose a relatively large no-transaction region. This 

strategy is closely related to the delta-tolerance hedging strategy. The major difference 

between this strategy and the delta-tolerance strategy is that the hedger will rebalance 

the hedge ratio to the nearest boundary of the hedging bandwidth. On the other hand, 

the delta-tolerance strategy will have a hedge ratio that is equal to the perfect Black-

Scholes hedge position. As a result, the hedger is able to save the transaction costs for 

extra rebalancing between the perfect hedge position and the boundary. 

 

 This strategy is subject to the limitation that the hedging bandwidth is not varied 

according to the change in option gamma. It has been shown in the literature that 

gamma (as shown in Leland, 1985) plays an important role in option hedging. Gamma 

measures the sensitivity of the change of delta with respect to the stock price. Hence, it 

is often referred to as a measure of the level of transaction costs. If an option moves into 

a large gamma region, then the hedging portfolio is expected to re-hedge more often and 

therefore incur large transaction costs. A better strategy to avoid large transaction costs 

is to have a larger bandwidth when the option has large gamma; however, this strategy 

lacks the ability to self-adjust, so may still be subject to large transaction costs when the 

hedging ratio moves beyond the bandwidth in the high gamma region. For this reason, 

this hedging strategy may have poor performance for the at-the-money option with large 

gamma values. 

 

3.3.3.2 Hedging to a Variable Bandwidth around Delta 

Whalley and Wilmot (1997) propose another way to alleviate the 

computationally time-consuming problem of obtaining the optimal hedging strategy. 

They provide an asymptotic solution to Hodges and Neuberger’s (1989) problem by 

assuming that transaction costs are small.  

 

Davis et al. (1993) derive a transaction costs model expressed in PDE form: 

                
 

 
           

 

 
 

        

   
 

 
 
      

      

     
  

 
             (3.21) 
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where   is the index of risk aversion and           . Through asymptotic analysis, 

they show that the boundary of the no-transaction region is of the following form: 

                                                 
  

  
  

 

 

            

 
 

 
                                               (3.22) 

where 
S

C




is the Black-Scholes hedge,   is the Black-Scholes gamma, γ is the hedger’s 

absolute risk aversion and k is the proportional transaction costs. As k approaches zero, 

the optimal hedge will become the Black-Scholes hedge. The above formula can be 

further simplified as follows:  

                                                                        
  

  
               

 
                              (3.23) 

where h is a given constant tolerance level that reflects the hedger’s risk aversion.  

 

Instead of hedging to a fixed bandwidth around delta as in section 3.3.3.1, the 

hedger will rebalance the hedge ratio to the nearest boundary of the variable hedging 

bandwidth once the delta movement is beyond the non-hedging bandwidth. The 

bandwidth is determined by option gamma, spot underlying asset price, risk-free rate 

and time to maturity, and thus changes over time. As we expect there will be more re-

hedging activities in regions with high gamma, the optimal control region is adjusted to 

be positively related to the gamma value so as to reduce the transaction costs that occur 

in frequent re-hedging. Another feature of the optimal strategy is that the no-transaction 

region becomes larger as the option close to maturity. This implies that a hedger tends 

to trade less towards the end of the option position and that most hedging transactions 

have been done in early stages. The role of the spot underlying asset price in 

determining the no-transaction region is linked to the fact that there is no one-to-one 

correspondence between the change in the underlying price and the change in the delta. 

The inclusion of the underlying asset price allows adjustment of the delta of the hedge 

only for the amount that is required to keep within the no-transaction region and to 

reduce some transaction costs. 

 

Barles and Soner (1998) perform another version of asymptotic analysis of 

Hodges and Neuberger’s (1989) model by assuming that both transaction costs and the 

hedger’s risk tolerance are small. The optimal strategy has two key elements: a 

particular form of hedging bandwidth and volatility adjustment. This strategy is 

different from that of Whalley and Wilmott (1997) because of the additional term of 
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volatility adjustment. The volatility adjustment is similar to the one in Leland (1985). 

For example, the hedger wants to hedge a short option position; the adjusted volatility is 

greater than the original volatility. As seen in equation (3.6), the volatility adjustment 

has a positive relationship with the transaction costs and option gamma. As with 

Hodges and Neuberger (1989) and Whalley and Wilmott (1997), the optimal hedging 

strategy is to keep the hedge ratio inside the no-transaction region defined as below: 

                                                   
      

  
 

 

   
                                         (3.24) 

where 
      

  
 is the Black-Scholes delta with adjusted volatility given by 

                                                                
                                              (3.25) 

The function      is the unique solution of the nonlinear initial problem 

                                                             
      

  
 

      

         
                                (3.26) 

For    ,      is a concave increasing function. Both Whalley and Wilmott (1997) 

and Barles and Soner (1998) share the characteristics that the hedging bandwidth 

increases when the level of transaction costs, hedger’s risk tolerance or option gamma 

increases. 

 

Zakamouline (2006a) compares the performance of the exact numerical 

calculation of Hodges and Neuberger (1989) model with the asymptotic models and 

finds that the performance of the asymptotic models is worse than the exact strategy. 

The Barles and Soner (1998) model performs relatively better than Whalley and 

Wilmott’s (1997) model due to the adjusted volatility, which reduces the sensitivity of 

the option delta to the underlying asset price movement. Zakamouline investigates the 

poor performance of the asymptotic strategies and discovers that the asymptotic analysis 

provides inaccurate solutions when the parameters are neither very large nor very small. 

In particular, the size of the hedging bandwidth and the volatility adjustments are 

overvalued. More importantly, the interrelationship between the size of the hedging 

bandwidth and the adjusted volatility is not sustainable. In Zakamouline’s empirical 

testing, either undervaluation or overvaluation significantly affect the hedging 

performance; as a result, she proposes an approximation strategy to hedge a short 

European call option. Her proposed optimal hedging strategy has the general 

specification of  
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                                       (3.27) 

where    and    are functions which depend on option gamma, while    is 

independent of option gamma. The term    is similar to those obtained in Whalley and 

Wilmott (1997) and Barles and Soner (1998). When an option becomes deep in-the-

money or deep out-of-the-money, the gamma of the option approaches zero. This means 

that the hedging bandwidths suggested by Whalley and Wilmott (1997) and Barles and 

Soner (1998) approach zero. In fact, based on exact calculation, the numerical results 

show that the hedging bandwidth of the optimal strategy times the stock price converges 

to a constant value when gamma approaches zero, as seen in Figure 7 below. 

 
Figure 7 The Form of the Optimal Hedging Bandwidth versus the Option Gamma 

Source: Zakamouline (2006a). 

 

The term    captures the constant value observed from the optimal hedging bandwidth 

using exact numerical calculation. The constant value turns out to be the half of the size 

of the no-transaction region in the optimal model without option liability. Based on 

Zakamouline’s model calibration, the following approximate functions are obtained: 

                                                                           
 

         
                                              (3.28) 

 

                                                                       
        

 
      

   

 
                   (3.29) 

 

                                          
           

     

         
 

        

 
 

    

                     (3.30) 
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However, this model is of limited practical use because the calibration requires a large 

dataset (and therefore it is very time-consuming to derive the optimal strategy) and the 

above estimations are only valid for a particular type of option. Nevertheless, this 

optimal strategy has been tested and its performance is close to the exact strategy 

derived from Hodges and Neuberger's model. 

 

3.4 Other Hedging Strategies 

3.4.1 Super Replication 

 Bensaid et al. (1992) and Edirsinghe et al. (1993) show that one can obtain a 

tighter upper bound on writing an option by replacing the goal of replicating the option 

payoff with the goal of dominating the payoff at maturity; that is, the terminal call 

option payoff becomes  

                                                                                                               (3.31) 

This method is called super replication of an option payoff. The strategy derived from 

super replication is optimal since it satisfies the optimality criterion. At least two 

optimality criteria have been defined in the literature. One is defined in terms of 

maximising the expected utility at terminal date, which we have seen in section 3.3.3. 

Another is to minimise the initial cost of a strategy, which produces dominating payoff 

at maturity.   

 

The advantage of using super replication is that the optimal strategy is 

independent of the hedger’s risk aversion.  However, finding the minimum cost hedging 

strategy under super replication is a nonlinear problem. Bensaid et al. (1992) construct a 

dynamic programming algorithm to obtain the cost-minimising trading strategy. To 

overcome the computational burden, Edirsinghe et al. (1993) reformulate the nonlinear 

problem into either a linear programming model or a two-stage dynamic programming 

model under the assumption that the underlying asset price movement follows a 

binomial model. The difference between these two algorithms is that Edirsinghe et al. 

introduce current stock and bond position as the state variables while Bensaid et al. 

introduce the entire stock price path as the state variable. However, the derived optimal 

strategy does not have a general representation; instead, we only know about the 

characteristics of the optimal strategy. For a hedger to adopt such an optimal strategy, it 

is no longer necessary to trade in every period and it is optimal to establish a larger 
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initial position and reduce the amount of trading in later periods. These characteristics 

can also be found in the utility-based hedging strategies. 

 

 A major disadvantage of the super replication approach is that the cheapest cost 

obtained depends on the number of trading periods. For a long position in a European 

call option, the price is an increasing function of the number of trading periods. Further, 

as noted earlier, Davis and Clark (1993) conjecture and Soner et al. (1995) prove that 

the cheapest super replication strategy is to purchase one share of the underlying asset 

initially and hold it until maturity. This leaves an unsatisfactory result of little economic 

interest for an option writer, for whom the option premium bound is the underlying 

asset price. 

 

3.4.2 Stop-Loss Start-Gain Strategy 

Consider a simple trading strategy in which the investor will hold no stocks or 

bonds when the option is at-the-money. The investor will only buy one unit of stock by 

using the borrowed fund every time the option becomes in-the-money. Conversely, the 

investor will sell one unit of stock and use the proceeds to repay the loan when the 

option becomes out-of-the money.  

 

Seidenverg (1988) terms this strategy the stop-loss start-gain strategy and 

analyses it by modelling the stock price movement under a binomial framework. Assay 

and Edelsburg (1986) test the effectiveness of this strategy through a Monte Carlo 

simulation. A similar study by Dybvig (1988) examines the stop-loss strategy
20

 in the 

asset allocation problem. Carr and Jarrow (1990) formalise the proof that this strategy is 

not self-financing. Both Assay and Edelsburg (1986) and Dybvig conclude that, even in 

the absence of transaction costs, this strategy requires more transactions and suffers 

from the large cost of inefficiency in implementation.  

 

Further, the infinite crossing property of geometric Brownian motion implies 

infinite transaction costs may be incurred. 

  

                                                 
20

 This strategy is to invest in the stock until the portfolio value falls below a specified level. The investor 

is able to limit potential losses by switching his investment to bond. 
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3.4.3 Static Hedging 

Carr, Ellis and Gupta (1998) propose static hedging for exotic options using 

standard options. Given the features of exotic options, which tend to be sensitive to 

volatility and have high gamma, static hedging is considered easier and cheaper than 

dynamic hedging using the underlying asset. They propose to use the European put-call 

symmetry to form the static hedge, that is, the method relies on the relationship between 

European put and call with different strike prices but they have the same maturity. 

Although the paper does not consider the impact of transaction costs on static hedging, 

this type of hedging strategy is expected to incur small transaction costs for trading in 

the standard options. Eventually, static hedging is like a buy-and-hold strategy and no 

intermediate trading during the life of the option. 

 

3.5 Asset Allocation with Proportional Transaction Costs 

A related strand of literature concerns asset allocation with transaction costs. 

Asset allocation refers to the decision of allocating wealth across different asset classes. 

In the literature, most authors consider a riskless asset and a risky asset in solving the 

problem. The objective of the investor is to maximise his or her expected terminal 

wealth. Therefore, the proposed solutions to the asset allocation problem are similar to 

those for the utility maximisation option hedging strategy as described in section 3.3.3. 

 

 Merton (1971) is the pioneer in solving the asset allocation problem. He assumes 

that there are only two assets in the economy. The riskless asset is earning at constant 

risk-free rate and the risky asset is log-normally distributed. An investor is assumed to 

have a power utility function, and will consume some of his wealth over time. At the 

same time, the investor will invest a fraction of      of his wealth in the risky asset and 

the remaining fraction of        in the riskless asset. The power utility function is of 

the form  

                                                                                 
  

 
                                      (3.32) 

In the absence of transaction costs, the optimal trading strategy for the investor is to 

invest a constant fraction       of his wealth in the risky asset;  

                                                                                  
   

                                                (3.33) 

where   is the expected return on the risky asset,   is the risk-free return and   is the 

volatility of the risky asset. The optimal ratio is also known as the Merton ratio. 
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 Kamin (1975), Magil and Constantinides (1976) and Constantinides (1979, 1986) 

consider the impact of transaction costs on the optimal choice of allocation of wealth 

between a riskless asset and a risky asset. The transaction costs are only deducted from 

the account holding the riskless asset. In addition, the investor’s consumption is taken 

out from the riskless asset through time. In particular, Kamin (1975) and Magil and 

Constantinides (1976) show that there exists a no-transaction region for the fraction of 

risky assets. If a portfolio lies in the buy region, then the investor needs to buy the risky 

asset until the portfolio reaches the region’s boundary. Conversely, if a portfolio lies in 

the sell region, then the investor needs to sell the risky asset until the portfolio reaches 

the sell region boundary. The portfolio space can be divided into three positive convex 

cones as shown in Figure 8, whereby    and    denote the amount of riskless and risky 

assets held in the portfolio. The Merton ratio, derived from an economy without 

transaction costs, stays inside the wedge of the no-transaction region.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8 Portfolio Space and Trading Strategy 

 

Constantinides (1979) addresses the situation for which one can simply reduce 

the multi-period consumption investment problem to a single-period framework, while 

Constantinides (1986) derives the approximate solution for the boundaries by assuming 

that the investor has a power utility function and restricting the consumption rate to a 

constant fraction of the holding in the riskless asset. Some important results documented 

by Constantinides (1986) are that: 

 high transaction costs will widen the no-transaction region and shift the region 

towards more investment in the riskless asset; 

Merton ratio 

No transaction 

Sell 

Buy 
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 the width of the no-transaction region is not affected by the investor’s risk 

aversion. However, an increase in the investor’s risk aversion will shift the 

region towards the riskless asset; and 

 the width of the no-transaction region is insensitive to the variance of the risky 

asset’s rate of return (though an increase in the variance shifts the region 

towards the riskless asset). 

 

Davis and Panas (1990) investigate the same problem, and show that the optimal 

buying and selling boundaries can be obtained by solving a free boundary problem of a 

nonlinear PDE without imposing restriction on the consumption process. They also 

provide an algorithm for numerical calculation. Shreve and Soner (1994) remove more 

of the restrictive assumptions in obtaining the optimal solution. For all these papers, the 

models assume that the investor has an infinite investment horizon and the investor 

maximises his or her discounted utility of intermediate consumption. On the other hand, 

Dumas and Luciano (1991) analyse the problem by modifying the assumption that the 

investor accumulates his wealth without consuming until a point in time at which he 

consumes all of his wealth; the investor’s objective is to maximise his expected utility 

of terminal wealth. In their paper, they use the limiting argument that the finite time 

horizon becomes large. With this modification, the authors are able to obtain an 

analytical solution. Dumas and Luciano’s (1991) findings are similar to those in 

Constantinides (1986), except that the investor has no preference for cash investment 

corresponding to an increase in his risk aversion level. This is due to the fact that there 

is no intertemporal consumption in their model. 

 

As opposed to the previous studies, Gennotte and Jung (1994) examine the 

effect of transaction costs on the optimal trading strategy by considering the investor 

has a finite horizon and he only consumes at the end of the horizon. They use a 

binomial approximation to numerically compute the optimal trading strategy. The 

results are consistent with Constantinides (1986). In addition, they also find that the 

width of the no-transaction region (i) becomes constant when the time to maturity is 

lengthened, and (ii) converges faster to a constant when the volatility of the risky asset 

increases, or transaction costs decrease, or risk aversion decreases. When the time 

horizon increases, the no-transaction region converges to the infinite horizon case. 
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Overall, the investor’s utility is reduced compared to the no-transaction costs case. 

Balduzzi and Lynch (1999) use discrete approximations to solve a similar optimisation 

problem. Liu and Loewenstein (2002) introduce some jump events to resemble an 

investor’s uncertain horizon by using an independent Poisson process. In contrast to 

Dumas and Luciano (1991), they find that it is not optimal for the investor to invest in 

stock subject to transaction costs if the expected horizon is short. 

 

One common feature of the optimal trading strategies proposed is that, in order 

to reduce the impact of transaction costs, the investor will modify his or her trading 

strategy in terms of trading frequency and the size of their trades. 

 

3.6 Empirical Studies 

 Toft (1996) analyses the cost and risk of hedging an option discretely under the 

MV framework. He provides closed-form solutions for expected hedging error, 

transaction costs and variance of the cash flow. His analysis indicates that the move-

based strategy is superior to the time-based strategy when the volatility of the 

underlying asset is high, transaction costs are small and the hedger is less risk-averse.   

 

Compared to the extensive list of theoretical models established over the years, 

there are relatively few empirical comparisons of different methods for option hedging 

with transaction costs. Only four published papers – Mohamed (1994), Martellini and 

Priaulet (2000), Zakamouline (2006a), and Zakamouline (2009) – systematically 

compare the performance of competing hedging strategies through Monte Carlo 

simulations. I discuss these papers from four perspectives: types of options, methods of 

comparison, hedging strategies covered, and results. 

 

3.6.1 Type of Options 

Mohamed (1994), Martellini and Priaulet (2002) and Zakamouline (2006a) 

focus on hedging plain vanilla short European call options, whereas Zakamouline (2009) 

examines the hedging performance of exotic options. The distinction between an exotic 

option and a plain vanilla option is in terms of its payoff function. The exotic option 

payoff function tends to contain jumps, discontinuities and barriers, and be path 

dependent. These options often have high gamma, meaning dynamic hedging is very 
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costly. In addition, exotic options are highly sensitive to volatility. As a consequence, 

dynamic hedging may result in substantial hedging error due to volatility 

misspecification. 

 

3.6.1.1 Methods of Comparison 

 Previous studies define the hedging error as the difference between the value of 

the replicating portfolio (excluding transaction costs) and the payoff on the option at 

maturity. The profit and loss (P&L) is then defined as the hedging error net of total 

transaction costs (TC), 

                                                (3.34) 

The total transaction costs are the sum of transaction costs incurred during each 

rebalancing trade adjusted for the time value of money and so is expressed in present 

value terms. An alternative approach, and the one adopted in this thesis, is to adjust the 

value of the replicating portfolio at maturity by the cumulative effect of transaction 

costs incurred over the life of the hedging strategy. For this purpose, the net hedging 

error is the difference between the value of the replicating portfolio (after transaction 

costs) and the payoff on the option at maturity. 

 

Following Toft (1996), Martellini and Priaulet (2002) and Zakamouline (2009), 

I compare the performance of the alternative hedging strategies under the MV 

framework. Varying parameters which serve as proxies for hedging frequency or 

bandwidth are used to calculate the expected net hedging error and the variance (or 

standard deviation) of the net hedging error. These values are then used to span the 

space of all possible strategies, from the most accurate hedging strategy to the least 

accurate one, in order to form an efficient frontier
21

 in the MV plane for each type of 

strategy. The approach is described in more detail in section 4.3.1 below.  

 

 Instead of using variance as the measure of hedging risk, Mohamed (1994) uses 

the 95% risk of loss to gauge performance. The idea is similar to the Value at Risk 

(VaR), which is to estimate the hedging error for the 95
th

 percentile of loss. In other 

                                                 
21

 The literature uses the terminology of ‘efficient frontier’ in describing the hedging errors in the MV 

space; arguably, MV curve is a more suitable term. This is because the efficient frontiers presented in the 

literature have inefficient outcomes that should not appear on an efficient frontier. Hence, in this thesis, I 

use the term MV curve instead of efficient frontier when forming the hedging performance comparison 

under the MV comparison framework. 
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words, we expect to observe the loss that exceeds this amount of hedging error with less 

than 5% probability. In Mohamed’s study, the best hedging strategy is the one which 

has the lowest value of the 95% risk of loss. 

 

 Zakamouline (2006a) uses both standard deviation and 95% risk of loss as risk 

measures to compare the hedging performance under the MV framework. 

 

 All four studies listed above cover four popular hedging strategies proposed in 

the literature: 

(1) re-hedging using Black-Scholes delta at fixed time intervals, 

(2) re-hedging using Leland’s delta at fixed time intervals, 

(3) re-hedging using a delta-tolerance strategy, and 

(4) re-hedging using variable bandwidth around delta based on Whalley and 

Wilmott’s (1993) asymptotic solution. 

In addition to the above strategies, Martellini and Priaulet (2002) test the multi-scale 

strategies proposed in Martellini (2000). Both Martellini and Priaulet (2002) and 

Zakamouline (2009) test the performance of Henrotte’s (1993) strategy, which is based 

on the percentage change in the underlying asset price, with that of other strategies. In 

contrast, Zakamouline (2006a) mainly focuses on the performance of the optimal 

hedging strategies (which are based on utility maximisation) by using different closed-

form solutions derived from the asymptotic analysis and approximation method. 

 

3.6.1.2 Results 

 Mohamed (1994) and Martellini and Priaulet (2002) both show that a move-

based strategy is superior to a time-based strategy for a plain vanilla short European call 

option. In particular, it is advantageous to adopt a move-based strategy when the drift of 

the underlying asset decreases and its volatility increases. However, the performance of 

the move-based strategy deteriorates following the introduction of stochastic volatility 

and a fixed transaction costs is incurred each trade. For exotic options, Zakamouline 

(2009) demonstrates that the ranking of the performance of the hedging strategies is 

mixed. The ranking depends on the composition and payoff function of the exotic 

option and the hedger’s risk preference. 
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3.7 Selected Hedging Strategies 

 For comparative purposes with previous studies, I select six hedging strategies 

for empirical testing using simulated data in chapter 4 and actual market data in chapter 

5. In addition to the MV rule used in the previous studies, I also use the SD rule to 

systematically compare the hedging strategies. The advantages of using the SD rule are 

stated in chapter 4. The specific hedging strategies examined in this thesis are: 

 

Time-based strategies: 

(1) Black–Scholes hedge at fixed time intervals (BS); and 

(2) Leland’s hedge (LS); 

Move-based strategies: 

(3) Henrotte’s asset tolerance strategy (AT); 

(4) delta tolerance strategy (DT); 

(5) hedging to a fixed bandwidth around delta (FB); and 

(6) hedging to a variable bandwidth around delta (after Whalley & Wilmott, 1997) 

(VB). 

 

 

  



87 

 

Chapter 4  

4. Simulation Study 

 

This chapter presents an examination of option hedging performance using 

Monte Carlo simulation. The simulated hedging performances of different hedging 

strategies serve as benchmarks for the subsequent empirical studies reported in chapter 

5. In addition, simulation studies can solve some of the problems in empirical tests. For 

example, in the test of option models using historical data, researchers are often limited 

to examining a single set of data, and are unable to identify the true ex-ante price 

distribution. The simulations reported in this chapter allow me to assess how strategies 

perform in a controlled environment. 

 

The objective of the study is to determine the optimal hedging strategy with a 

tradeoff between transaction costs and hedging precision - the smaller the hedging error 

the more precise the hedge. Theoretically, a hedging strategy with high rebalancing 

frequency will produce a small hedging error but involve high transaction costs. The 

existing literature focuses on comparing different classes of option hedging strategies 

using the MV analysis framework. Some weaknesses of the MV comparison method 

were identified in chapter 2. First, the MV framework only works well under the 

assumption of investor has a quadratic utility function or normally distributed random 

variables. Second, MV only focuses on the first and second moment of the distribution, 

rather than the whole distribution of the random variables.  

 

  In this study, I use the SD test to determine the existence of an optimal option 

hedging strategy in the presence of transaction costs. If a strategy stochastically 

dominates another strategy, then the dominant strategy maximises the expected utility 

of the hedger. As opposed to the MV analysis, SD considers the whole distribution of 

the net hedging errors. Further, I investigate whether MV and SD tests produce 

consistent or drastically different results. 

 

 As previously mentioned, the following six hedging strategies are examined: 

(1) Black-Scholes hedge at fixed time intervals (BS), 
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(2) Leland’s hedge (LS), 

(3) Henrotte’s asset tolerance strategy (AT), 

(4) delta tolerance strategy (DT), 

(5) hedging to a fixed bandwidth around delta (FB), and 

(6) hedging to a variable bandwidth around delta (after Whalley & Wilmott, 1997) 

(VB). 

 

 For all hedging strategies except LS, the hedger wishes to optimise the tradeoff 

between transaction costs paid and hedging precision by allowing some hedging 

inaccuracy. The introduction of hedging inaccuracy allows the hedger to reduce the 

transaction costs. In BS, a reduction in transaction costs is achieved by rebalancing the 

hedging portfolio at discrete time points rather than continuously (as assumed in their 

model). However, regular periodic rebalancing is not necessarily optimal. For example, 

if the underlying asset price has not changed significantly since the last rebalancing 

point, then it may not be optimal to rebalance the portfolio. This gives rise to the idea of 

the AT strategy, which uses a hedging criterion based on the percentage change in the 

underlying asset price. For the AT strategy, the hedger will rebalance the stock position 

in the hedging portfolio back to the Black–Scholes delta when the rebalancing event is 

triggered. Further the relationship between a change in asset price and corresponding 

change in option delta is not one-to-one: a small change in the underlying price can lead 

to a large change in option delta and vice versa. Hence, the DT strategy is more closely 

related to the rebalancing event; that is, the portfolio is only rebalanced when the option 

delta changes significantly. Following the literature on optimal portfolio selection with 

transaction costs such as Constantinides (1986) and Davis and Norman (1990), it is 

more optimal to rebalance to the boundaries of the no-transaction region than to 

rebalance to the optimal portfolio holdings in the absence of transaction costs. Thus, one 

introduces a hedging bandwidth around the Black–Scholes delta with the aim of 

avoiding some intermediate but unnecessary trades. I therefore expect FB to outperform 

DT. Option gamma determines the change in option delta; the higher the gamma, the 

larger the change in delta. As a result, the total transaction costs incurred in DT and FB 

are proportional to option gamma since both hedging criterion are based on a change in 

delta. To further reduce the total amount of transaction costs paid, VB is introduced 

such that its hedging bandwidth increases when gamma is high. Hence, I expect VB will 

perform better than FB. 
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 In contrast to the abovementioned hedging strategies, LS has a special 

mechanism that can reduce hedging volatility and may, at the same time, lower 

transaction costs. Given that LS is similar to the BS strategy but with modified volatility, 

I expect LS
22

 to outperform BS when transaction costs are present. 

 

4.1 Simulation Setup 

Consider a market maker who has an imbalance in short and long option 

positions and so wishes to hedge a short call option. In this chapter, I consider hedging 

either a single call option or a portfolio of options on the same underlying asset, 

whereby all options have the same maturity. Evaluating a portfolio of options on a 

basket of underlying assets or the same options with different maturities are not within 

the scope of this study. 

 

 I take the viewpoint of a call option writer who has sold an European option on 

stock with exercise price X and maturity at time T. For a short call position, the option 

writer receives the option premium as compensation at time zero for the risk of a cash 

outflow at maturity. At time T, if the stock price is greater than X, then the option writer 

is obliged to pay the option buyer the difference between the stock price and X. On the 

other hand, if the stock price is less than X, then the option writer is not obliged to pay 

the option buyer. Given the potential cash outflow at maturity, the call option writer 

enters into a series of transactions in underlying stock and cash such that he is able to 

repay the potential cash outflow at time T. I term these transactions hedging a short call 

option or replicating a long call option. Therefore, the option writer also becomes a 

hedger. 

 

 In order to study the performance of alternative option hedging strategies, I first 

simulate the underlying stock price process. I define S(t) as the spot price of the 

underlying stock at time t and B(t) as the cash amount in money market account at time 

t. I assume S(t) follows geometric Brownian motion, which means the spot price at time 

t + dt is of the form: 

                                                                   (4.1) 

                                                 
22

 Leland’s strategy assumes discrete time trading and proportional transaction costs in trading underlying 

assets. 
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where µ is the drift of the stock price process, σ is the volatility of the stock price 

process, dt is the time interval and W(t) is a standard Brownian motion. A standard 

Brownian motion has a normal distribution with mean zero and volatility   . 

Discretising the stock price process gives: 

             
   

  

 
         

                                       (4.2) 

where Z is a standard normal distribution and    is the time interval between each 

observable stock price. In my simulation study,    is assumed to be 
 

   
 which 

corresponds to a single trading day. Table 2 sets out the inputs used in simulating the 

stock price process. For consistency with my empirical study in chapter 5, I assume the 

underlying stock is the S&P 500 index and accordingly base the parameter inputs on the 

daily averages of the S&P 500 index for the period from January 2, 1996 to September 

30, 2009. I simulate 200,000 stock price paths
23

, each with a duration of six months
24

.  

 

Table 2 Inputs for Stock Price Simulation 

Parameter 

Simulation 

input
25

 

 

Risk free rate (r) 4.60%  

Volatility (σ) 16.09%  

Drift (µ) 8.87%  

Time interval (δt) 1/250  

Time to maturity (T) 0.5 year  

 

Let B(t) be the amount of cash at time t. Similar to the Black–Scholes economy, I 

assume cash accumulates at a risk-free rate. Therefore, the process for B(t) is of the 

form: 

                                                                      (4.3) 

 

                                                 
23

 The antithetic variates method is used when generating the random variables in order to reduce the 

variance of the simulated stock price paths. 
24

 Zakamouline’s (2009) simulation method may have introduced inconsistent simulated stock price paths 

between time-based and move-based strategies. For time-based strategies, the stock price path is 

simulated based on the rebalancing interval δt as seen in (4.2). However, for move-based strategies, each 

stock price path consists of 250 equally spaced trading dates over the life of the option. Given that two 

different sets of random variables are used in the stock price path simulation, inconsistency is introduced 

to the Monte Carlo simulation that forms the basis of her net hedging error calculation.  
25

 The standard deviation for the risk-free rate is 1.65. The volatility input is based on the average of VIX 

and its standard deviation is 4.39. The standard deviation for the drift rate is 0.17. 
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4.2 Calculation of Net Hedging Error 

 A hedging portfolio V(t) refers to the value of stock and cash held at time t. 

Further, I define C(t) as the option premium or price at time t and    to be the amount of 

stock holding at time t. At time zero, the hedger sets up a hedging portfolio consisting 

of    units of stock and cash, by using an option premium received from the option 

buyer and borrowing. The option premium received by the hedger is assumed to be the 

Black–Scholes value of the option in my simulation study. Therefore,             

                        and V(0) = C(0). This means that B(0) is the cash 

remaining after purchasing    units of stock and transaction costs paid for purchasing 

   units of stock. A negative B(0) represents borrowing. The hedging portfolio value 

will change over time, and rebalancing is required such that the hedger is able to deliver 

the cash flow at maturity if the option finishes in-the-money. As mentioned previously, 

I will test the performance of six hedging strategies, two of which belong to the time-

based class and four to the move-based class. Each hedging strategy has different 

rebalancing criteria.  

 

 For the time-based strategies, BS and LS, I check at each    if the hedging 

portfolio requires rebalancing. For example, at each t+   , a new delta is calculated. If 

delta at time t+    is different from delta at time t, then the stock holding at time t+    

will be adjusted to the new delta at time t+   . When a rebalancing trade is performed, 

transaction costs are withdrawn from the cash account. Figure 9 shows that time-based 

strategies rebalance the hedging portfolio at regular intervals. For time-based strategies, 

a reduction of transaction costs can be achieved by adjusting the time interval between 

each rebalancing point. The main difference between BS and LS strategies is the 

calculation method for     which determines the amount of stocks to purchase or sell at 

each rebalancing point (i.e.       -   ). For BS,    is the delta at time t derived from the 

Black-Scholes model; for LS,    is derived from the Black–Scholes model with 

Leland's modified volatility. 

 

 Move-based strategies (AT, DT, FB and VB) rebalance the portfolio whenever 

the hedging criteria are met. With these strategies, rebalancing occurs at non-constant 

time intervals. As suggested by its name, the hedging criteria for move-based strategies 

depend on changes in market-observable information. The threshold of the movement 
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serves as the control for the transaction costs. Compared to time-based strategies, move-

based strategies’ hedging criteria have more variation. For AT and DT strategies, the 

amount of stocks to purchase or sell at each rebalancing point is equivalent to the 

difference between    and                             . In contrast, FB and VB only 

rebalance their stock position to the nearest boundary of   . Detailed explanation of the 

hedging criteria for each strategy was provided in chapter 3. 

 

 

Figure 9 Time-based and Move-based Rebalancing Example 

 

 When rebalancing criteria for the hedging strategy are met, a series of 

rebalancing trades in undertaken. Next, I describe the change in portfolio value before 

and after rebalancing at time t. 

 

Portfolio value before rebalancing: 

                                                             (4.4) 

Prior to rebalancing, the hedging portfolio value consists of the value of stock at time t 

based on the stock position carried over from the last rebalancing period and the cash 

value accumulated at a risk-free rate from the last period     . 

 

Portfolio value after rebalancing: 

                                                             (4.5) 

The hedging portfolio value reflects the new stock position    at time t and new cash 

value after deducting transaction costs. It is noted that    is determined according to the 
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choice of hedging strategy.    may not be the option delta derived from the Black–

Scholes model if FB and VB are the choice of hedging strategy. I denote one-way 

transaction costs as k% of traded stock amount in dollars. Given that transaction costs 

are paid regardless of whether stock is bought or sold, the transaction costs incurred for 

a trade at time t is k times                                   , which is non-

recoverable and will be deducted from the cash account. 

 

 At maturity time T, I compute the net hedging error as the value of the hedging 

portfolio V(T) minus the payoff of the option. The NHE for a call option is  

                                                  (4.6) 

where X is the strike price of the call option. NHE is inclusive of transaction costs 

deducted from the cash account throughout the life of the option when rebalancing is 

required. If no transaction costs are incurred in trading stocks (i.e., k = 0%) then the 

difference between V(T) and option payoff at maturity represents the hedging error (HE) 

as commonly used in the literature. For each hedging strategy, 200,000 net hedging 

errors are generated - one for each of the 200,000 simulated stock price paths and then 

scaled by the initial option price calculated using the Black–Scholes formula. 

 

 

4.2.1 Transaction Costs Assumption 

In testing the performance of alternative hedging strategies, I chose the level of 

one-way proportional transaction costs k to be 50 basis points
26

 of stock price at the 

time of trading. This assumes transaction costs are inclusive of one-half bid-ask spread 

and one-way trading fees
27

. This transaction costs assumption is consistent with 

Constantinides et al.’s (2008) study of mispricing of S&P 500 index options. Similar 

transaction costs are used in simulation studies by Mohamed (1994), Clewlow and 

Hodges (1997) and Zakamouline (2009). Further, a round-trip transaction costs of 1% is 

supported by the empirical findings in Hasbrouck (2009)
28

. In contrast, Bessembinders 

(2003a) shows that the level of proportional transaction costs can further reduce to 

                                                 
26

 The sensitivity of transaction costs assumption is tested and the results are reported in section 4.5. 
27

 Trading fees refer to brokerage fees as a compensation for order processing costs. This assumption is 

consistent with the findings in my empirical study chapter. The empirical results show that the average 

bid-ask spread for the S&P 500 exchange traded fund is 40 basis points. Therefore, the assumption of 10 

basis points of brokerage fees is reasonable. 
28

 Hasbrouck (2009) finds that the effective trading costs are below 1% for the highest capitalisation 

quartiles of equities listed on AMEX and NYSE. 
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0.21% to 0.24% for a large investor trading in large and very liquid stocks. I assume 

there are no transaction costs in investing in cash or risk-free bonds.  

 

4.3 Mean Variance Analysis 

 This section compares the performance of alternative hedging strategies using 

mean variance curves.  

4.3.1 Construction of mean variance curves 

 In this section I describe how the simulated NHEs are used to construct one MV 

curve for each of the six hedging strategies. I illustrate the construction procedure in 

Figure 10 using the Black–Scholes hedging strategy. The starting point is to calculate 

the mean and standard deviation of the 200,000 simulated NHEs assuming Black–

Scholes rebalancing every five days. This gives a single point in MV space as shown in 

the first panel of Figure 10. Under the MV framework, I use the mean NHE as the 

return measure and standard deviation of NHE as the risk measure. The process is 

repeated assuming Black-Scholes rebalancing every 10 days and again assuming Black-

Scholes rebalancing every 20 days. This gives the second and third points in MV space 

in the first panel of Figure 10. 

 

 Extending the set of rebalancing frequencies to 2, 3, ..., 60 days and repeating 

the process gives the MV curve for the BS hedging strategy in the second panel of 

Figure 10. This MV curve represents the risk-return profile for the BS strategy for a 

range of different rebalancing frequencies. 

 

 A similar process is used to generate a MV curve for each of the other five 

strategies. For example, the MV curve for LS is presented in the third panel of Figure 

10.  
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Figure 10 Example of Mean Variance Curve Construction 
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 In the transaction costs literature, the degree of risk aversion has a direct impact 

on NHEs. A highly risk-averse hedger is unwilling to accept a large NHE at maturity as 

he prefers high precision in hedging outcome. Therefore, in the presence of transaction 

costs, a highly risk-averse hedger is willing to pay higher transaction costs in exchange 

for the likelihood of smaller NHEs. On the other hand, a less risk-averse hedger will 

prefer to pay lower transaction costs in exchange for the likelihood of larger NHEs (low 

precision in hedging outcome). As a result, there is a negative relationship between the 

precision of NHE and risk aversion and a positive relationship between total transaction 

costs of hedging and risk aversion. The desired level of hedging precision is 

incorporated by a specific parameter in each of the six hedging strategies. For example, 

a hedger who chooses to rebalance his portfolio every day by using the BS strategy has 

the choice of hedging parameter    = 
 

   
 . Hedging every day allows the hedger to 

reduce his likely NHE compared to the case when he chooses to rebalance every week, 

e.g.    = 
 

   
 . In another words, the more frequently a portfolio is rebalanced, the more 

risk-averse the hedger. On the flip-side, the hedger has to pay higher  transaction costs 

throughout the life of the option. The six hedging parameters (and assumed range of 

possible values) for the six hedging strategies are described in Table 3. 

 

 In five of the strategies (BS, LS, AT, DT and FB), a higher parameter value 

corresponds to a less risk-averse hedger. In the VB strategy, however, a higher 

parameter value corresponds to a more risk-averse hedger, due to the mechanics of the 

exponential utility function.  

 

 The range of hedging parameter values in Table 3 is largely based on 

Zakamouline (2009)
29

. Note the choice of the hedging parameters ensures all MV 

curves lie on the same MV space. For BS and LS strategies, the upper bound of 

rebalancing every 60 days ensures the hedging portfolio is rebalanced at least once 

                                                 
29

 Zakamouline (2009) examines the hedging performance of exotic options versus a plain vanilla call 

option. In her study, time to maturity of the option is one year for the non-path-dependent option and six 

months for the path-dependent option. The simulation setup in my study is slightly different to 

Zakamouline's simulation setup. 
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during the assumed six-month life of the option. The parameters for the move-based 

strategies are chosen to match the MV curves resulting from the time-based strategies
30

.  

 

 A hedging strategy is superior to all others if it offers the highest return on a 

hedging portfolio at a certain amount of risk. In another words, it has the highest mean 

NHE relative to other strategies for a given standard deviation of NHE. 

 

Table 3 Hedging Parameters for Simulation 

This table shows the hedging parameters for each hedging strategy used in the simulation study. 

The first column represents the choice of hedging strategy, the second column represents the 

hedge parameter in symbol format and the last column specifies the range of parameter values
31

. 

Hedging strategy Hedging parameter  Range of parameter 
values 
 

Black–Scholes hedge at fixed time 
intervals (BS) 

   (in days) 
 

 

   
 
  

   
  

 

Leland's hedge (LS)    (in days) 
 

 

   
 
  

   
  

 

Henrotte asset tolerance (AT) H (percentage change in 
underlying asset price)  
 

             

Delta tolerance (DT) 
 

H (option delta)              

Hedging to a fixed bandwidth around 
delta (FB) 

 

H (option delta)              

Hedging to a variable bandwidth 
around delta (VB) 

 

  (risk aversion)              

 

4.3.2 Results 

 The MV curves for the six hedging strategies tested on the simulated price data 

are shown in Figure 11. There are two points to note to assist with their interpretation. 

                                                 
30

 Note my choice of VB hedging parameter is larger than Zakamouline’s, which has a range between 0.1 

and 2. With Zakamouline's VB parameters assumption, my MV curve for VB will start slightly later than 

the starting point of MV curves for the time-based hedging strategies, Hence, there is a lack of 

comparison points for the TB strategy rebalancing every one and two days. Further, with my parameter 

assumption, the VB MV curve appears to be smoother because the MV points obtained from risk aversion 

parameter values between 2 and 100 are heavily clustered at the starting points of the curve.  
31

 For each hedging strategy, there are 60 hedging parameters within the listed range in Table 3. In 

another words, these 60 points will form an MV curve for each parameter value of the six hedging 

strategies.  
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First, in accordance with expectations, the hedger's level of risk aversion increases as 

we move from right to left. Second, the negative mean NHEs are explained as follows. 

The more frequent the rebalancing activity, the greater the transaction costs incurred. 

Hence, it has greater negative impact on the mean NHE. Further, the initial hedging 

portfolios, for each of the six strategies, are constructed assuming the amount of option 

premium received is equivalent to the Black–Scholes value of the option. However, the 

option premium derived by transaction costs models are higher for a short option 

position. For example, Boyle and Vorst (1992) show that, in the presence of transaction 

costs, there exists a bound for option price. Cho and Engle (1999) also demonstrate that 

option hedging activity explains the bid-ask spreads in an option market. In another 

words, the option premium derived from the Black–Scholes model that assumes a 

frictionless market is the value obtained using the cheapest and most efficient way to 

hedge the option payoff at maturity using stocks and bonds. When more restrictive 

assumptions are relaxed, option bounds become wider and centred around the Black–

Scholes value. As a result, the hedging portfolio value is always in deficit in my 

simulation because of insufficient funds used to set up the initial hedging portfolio. 

  

Figure 11 Comparison of Alternative Hedging Strategies in the Mean-Standard Deviation 

Framework 
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 To determine the optimal hedging strategy in Figure 11, I choose a fixed level of 

hedging precision (standard deviation of NHE) on the horizontal axis and draw a 

vertical line to find the strategy that produces the least negative mean NHE. The most 

striking feature of Figure 11 is that the variable bandwidth VB strategy clearly 

outperforms all other strategies at all levels of hedging precision
32

. The result is 

intuitive, as VB is derived by maximising the hedger's utility. Transaction costs increase 

the volatility of the NHE of the hedging portfolio due to its random nature
33

. However, 

the mechanism used in VB is able to reduce the volatility by adjusting the hedging 

bandwidth, that is, the hedging bandwidth is a function of option gamma and reducing 

trading activity when the option is close to maturity. The fixed bandwidth FB strategy 

appears to be the next best strategy, except when hedging precision is low. Another 

important feature of Figure 11 is that the LS strategy is always superior to the BS 

strategy, because the Leland strategy adjusts the number of stocks traded in each 

rebalancing point by a modified volatility, which take into consideration the magnitude 

of transaction costs per trade. The special mechanism in LS allows the hedger to reduce 

expected NHE and pay less transaction costs at the same time. 

 

 The performance ranking of the hedging strategies depends on the level of 

precision. Given that the hedging strategies are examined in an incomplete market, the 

hedger is concerned about hedging risk due to tradeoff between transaction costs and 

hedging precision. In the following performance rankings, high, moderate and low 

hedging precision correspond to the hedger's high, moderate and low risk aversion level. 

When the hedger's risk aversion is moderate (the middle section of the MV curve), the 

ranking of the strategies is  

                   

As the hedger's risk aversion increases (left-hand side of the MV curve), the LS 

performs better than the DT strategy. The ranking becomes 

                   

                                                 
32

 The hedging precision is determined using standard deviation of NHE. 
33

 There are two random components that are path dependent: (1) the amount of transaction costs paid 

depends on the rebalancing amount of underlying index (2) move-based strategies have random 

rebalancing points which are linked to the hedging criterion. These two components depend on the 

realisation of the index price path in the future. 
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On the other hand, as the hedger becomes more risk-tolerant (right-hand side of the MV 

curve), the FB strategy is inferior to the AT strategy. The ranking becomes 

                   

It is also observed that the performance gap among the strategies declines when the 

hedger becomes less risk-averse. As mentioned previously, the hedger faces a 

continuous dilemma between hedging precision and transaction costs. Apart from 

hedging precision, I can also assess the performance of hedging strategies using total 

transaction costs paid, i.e. a strategy is preferred to another if the total transaction costs 

paid is lower for a given level of the volatility of the NHE. However, the ranking may 

be different from the results obtained above. This is because transaction costs only 

explain part of the mean NHE.  

   

4.3.2.1 Benefits of Switching Existing Hedging Strategies 

 Given the performance of the six hedging strategies in Figure 11, I further 

analyse the level of benefits of switching from one hedging strategy to another. The 

ideal result is to obtain an economically significant reduction in NHE when the hedger 

switches from an inferior strategy to a superior one. In this analysis, the performance of 

the hedging strategies is divided into different levels of hedging precision. I first fit the 

mean variance curves in Figure 11 by using a power function
34

 of the following form: 

        

where Y is the mean NHE and X is the standard deviation of NHE. a, b and c are fitted 

parameters
35

. 

 

 I define three levels of hedging precision – high, medium and low – that 

correspond to the standard deviation of the NHE obtained from the BS strategies with 

hedging frequencies of 2 days
36

, 10 days and 20 days. With this definition, I am able to 

                                                 
34

 The reason I fit the MV curves into a power function is because there are 60 mean-standard deviation 

points for each hedging strategy in Figure 11. However, there is no guarantee that the discrete MV points 

for each hedging strategy refer to the same standard deviation. Hence, fitting the MV curve into a 

function allows me to compare the mean NHE of the six hedging strategies based on the same amount of 

standard deviation of NHE.  
35

 The adjusted R-squared is high for most of the strategies. They are 0.9854, 0.9808, 0.9645, 0.9529 and 

0.7643 corresponding to LS, AT, DT, FB and VB strategies, respectively. 
36

 Instead of using the daily rebalancing as a reference, the BS strategy with 2 days rebalancing frequency 

is treated as a reference to the high risk aversion level. The reason for not using the one day frequency is 

that all move-based strategies with zero bandwidth are degenerated into the BS strategy with daily 

rebalancing in my simulation design. 
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compare the mean NHE for each hedging strategy across all classes while fixing the 

level of hedging precision.   

 

 Table 4 shows the reduction in mean NHE if the hedger switches from one 

strategy to another. (Note I use the term "reduction" to indicate an improvement in 

hedging outcome based on the change in the magnitude of the NHE.) The results are 

presented in heatmap format, in which green implies that it is worthwhile to switch from 

a strategy on the left-hand side (listed in rows) to a strategy on the right-hand side 

(listed in columns) whilst red indicates it is not worthwhile to switch. To illustrate the 

results, consider the following example. A highly risk-averse hedger (a hedger who 

prefers high hedging precision) employing the BS hedging strategy would be able to 

reduce his portfolio mean NHE by 20% if he switched to the AT strategy whilst being 

exposed to the same level of risk. Alternatively, he would have reduced the mean NHE 

by 57% if he switched to the VB strategy. Table 4 also shows that there are benefits for 

a hedger irrespective of his level of hedging precision to switch from a time-based to a 

move-based strategy (except the DT strategy). However, the percentage of mean NHE 

reduction decreases when hedging precision is lower, that is, the hedger becomes more 

risk-tolerant. When the hedger prefers low hedging precision, switching to the AT or 

VB strategy is equally beneficial. The DT strategy appears to be an inferior performing 

strategy. In particular, DT has the worst performance when the hedger prefers high 

hedging precision. This result is partially due to assuming the option to be hedged is at-

the-money. The gamma of an at-the-money option is at its peak compared to other 

moneyness levels. High option gamma leads to more frequent change in option delta, 

which increases the transaction costs of the hedging activities. As a result, the gains 

from DT are less than from the others. It is noted that the reduction in mean NHE can be 

attributed to a reduction in transaction costs and (or) reduction in hedging error. It is 

possible that the mean hedging error
37

 of a strategy increases due to the hedging 

mechanism, which reduces transaction costs substantially and then leads to a reduction 

in mean NHE. My results show that, at the three levels of hedging precision, over 70% 

of the reduction in mean arising from a switch in hedging strategy is due to a reduction 

in total transaction costs paid for a new hedging strategy that performs better than the 

existing strategy. 

                                                 
37

 Recall, hedging error is the difference between hedging portfolio value and option payoff at maturity 

under the condition that there are no transaction costs in trading the underlying index. 
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Table 4 Comparative Mean of Net Hedging Error Reduction for Switching Strategies 

The table shows the percentage of mean NHE reduction when the hedger switches from one 

strategy to another. The leftmost column is the hedger’s current strategy. The rest of the 

columns are the strategies that the hedger chooses to switch to. I use the standard deviation of 

NHE to determine the level of hedging precision. The BS strategies with hedging frequency of 2 

days, 10 days and 20 days represent the hedger who prefers high, moderate and low hedging 

precision respectively. I then determine the mean NHE for LS, AT, DT, FB and VB strategies 

using the same scale of standard deviation obtained from the BS strategy. A negative percentage 

means that there is a reduction in the mean NHE by switching from strategy A to strategy B. A 

positive percentage means that there is an increase in the mean NHE by switching from strategy 

A to strategy B. The colour scale at the bottom illustrates the scale of the mean NHE reduction. 

 

Panel A: High hedging  precision 
     

  

Switching to 

  
BS LS AT DT FB VB 

Switching from 

BS   -31% -20% 11% -47% -57% 

LS 46% 
 

16% 61% -22% -37% 

AT 26% -14% 
 

39% -33% -45% 

DT -10% -38% -28% 
 

-52% -61% 

FB 87% 29% 49% 107% 
 

-19% 

VB 131% 58% 83% 155% 23%   

        Panel B: Moderate hedging precision 
     

  

Switching to 

  
BS LS AT DT FB VB 

Switching from 

BS   -6% -22% -13% -27% -40% 

LS 7% 
 

-16% -7% -22% -36% 

AT 28% 20% 
 

12% -7% -24% 

DT 14% 7% -11% 
 

-17% -32% 

FB 37% 29% 8% 20% 
 

-18% 

VB 68% 57% 31% 47% 22%   

        Panel C: Low hedging precision 
     

  

Switching to 

  
BS LS AT DT FB VB 

Switching from 

BS   -7% -37% -1% -23% -38% 

LS 8% 
 

-32% 7% -17% -33% 

AT 59% 48% 
 

58% 22% -1% 

DT 1% -6% -37% 
 

-22% -37% 

FB 30% 21% -18% 29% 
 

-19% 

VB 60% 48% 1% 58% 23%   
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Mean of net hedging error 

   

  
            

  

Worse 

off 
    

Better 

off 
 

 Next, I inspect the relative expensiveness of the strategies. I perform similar 

power function fitting
38

 to determine the relationship between total transaction costs 

paid and the standard deviation of NHE. Table 5 shows the comparative transaction 

costs gains when the hedger switches his current strategy to a new one. Again, similar 

results pattern to comparative mean NHE are observed. A hedger who prefers high 

hedging precision would have saved almost half of the total transaction costs paid for 

the BS strategy by simply switching to the VB strategy. For most cases, switching from 

a time-based strategy to a move-based strategy will reduce the total transaction costs by 

an average of 15%. It is noted that total transaction costs savings decreases when the 

hedger becomes more risk-tolerant. This is not a surprising result, as a hedger benefits 

from paying lower transaction costs when he is willing to accept higher hedging risk or 

lower hedging precision. My results for the DT strategy are also consistent with the 

findings in Table 4. The DT strategy involves larger transaction costs, and is not 

recommended for use when the option is at-the-money as the change in delta is sensitive 

to the change in underlying stock price. In particular, higher transaction costs for the DT 

strategy occur when the hedger is highly risk-averse. This is because the hedging 

bandwidth is easily breached and more stock is required to rebalance to the new delta 

position. 

 

Table 5 Comparative Transaction Costs Gains for Switching Strategy 

The table shows the percentage of transaction costs reduction when the hedger switches from 

one strategy to another. The leftmost column is the hedger’s current strategy. The rest of the 

columns are the strategies that the hedger chooses to switch to. I use the standard deviation of 

NHE to determine the level of hedging precision. The BS strategies with hedging frequency of 2 

days, 10 days and 20 days represent the hedger who prefers high, moderate and low hedging 

precision respectively. I then determine the total transaction costs of LS, AT, DT, FB and VB 

strategies using the same scale of standard deviation of NHE obtained from the BS strategy. A 

negative percentage means a reduction in total transaction costs by switching from strategy A to 

                                                 
38

 The adjusted R-squared is high for most of the strategies. They are 0.987, 0.9956, 0.9664, 0.9587 and 

0.7659 corresponding to LS, AT, DT, FB and VB strategies. 
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strategy B. A positive percentage means an increase in the total transaction costs by switching 

from strategy A to strategy B. The colour scale at the bottom illustrates the scale of the 

transaction costs saving.  

 

 

Panel A: High risk aversion 
      

  

Switching to 

  
BS LS AT DT FB VB 

Switching from 

BS   -26% -31% 7% -45% -45% 

LS 35% 
 

-6% 45% -26% -26% 

AT 44% 7% 
 

55% -21% -21% 

DT -7% -31% -35% 
 

-49% -49% 

FB 81% 34% 26% 95% 
 

-1% 

VB 83% 35% 27% 96% 1%   

        Panel B: Moderate risk aversion 
      

  

Switching to 

  
BS LS AT DT FB VB 

Switching from 

BS   -5% -11% -12% -23% -26% 

LS 6% 
 

-6% -7% -19% -22% 

AT 13% 7% 
 

-1% -13% -16% 

DT 14% 8% 1% 
 

-13% -16% 

FB 30% 23% 16% 15% 
 

-3% 

VB 35% 28% 20% 19% 4%   

         

Panel C: Low risk aversion 
      

  

Switching to 

  
BS LS AT DT FB VB 

Switching from 

BS   -6% -14% -8% -21% -21% 

LS 6% 
 

-8% -2% -16% -16% 

AT 16% 9% 
 

7% -9% -8% 

DT 8% 2% -6% 
 

-14% -14% 

FB 26% 19% 9% 17% 
 

0% 

VB 26% 19% 9% 17% 0%   

        

  
Average total transaction costs paid  

  

  
            

  

Worse 

off 
    

Better  

off 

 

4.3.2.2 Different Risk Measures 

 Previous studies use mean or root mean squared hedging error to evaluate the 

performance of different option pricing and hedging models. Conversely, the hedging 
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literature employs the variance of the hedging error as the main estimation method. In 

addition, there are other risk measures such as VaR and expected shortfall (ES) which 

focus on the left tail of the distribution. VaR, stated in Jorion (2001), measures the 

magnitude of the maximum loss at a certain confidence level. Mohamed (1994) uses 

VaR as a risk measure to determine the best-performing strategies; however, VaR does 

not indicate the loss that exceeds VaR and is not a coherent risk measure
39

. VaR 

breaches the sub-additivity property, which means that the VaR of a portfolio can be 

greater than the sum of the VaR of individual components. On the other hand, ES
40

 

measures the average loss below the VaR (see Acerbi & Tasche, 2002); therefore, it is 

more sensitive to the loss distribution in the tail and unlike VaR is a coherent risk 

measure.  

 

 Given that standard deviation is a quadratic risk function, it penalises both 

profits and losses. I assess the robustness of the MV results by changing the risk 

measure to VaR and ES, which focus on the left tail of the NHE distribution. Figure 12 

and Figure 13 illustrate the performance of alternative strategies based on one-sided 

95% VaR and ES. The ranking of the hedging strategies for both VaR and ES risk 

measures remain the same as the one obtained using an MV framework. Note, all the 

MV curves in Figures 10 and 11 have an "efficient" part and an "inefficient" part in 

accordance with well-known portfolio theory concepts. This means that for each 

hedging strategy a better outcome may be possible by changing the desired level of 

hedging precision. For example, in the BS model it may be possible to reduce the mean 

NHE but maintain the same level of risk (VaR of NHE) by rebalancing the hedge 

portfolio less frequently. 

                                                 
39

 A coherent risk measure is a function that satisfies properties of monotonicity, sub-additivity, 

homogeneity and translational invariance.  
40

 Expected shortfall is also termed expected tail loss, conditional value at risk or average value of risk. 
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Figure 12 Comparison of Alternative Hedging Strategies in the Mean-VaR Framework 

 

Figure 13 Comparison of Alternative Hedging Strategies in the Mean-Expected Shortfall 

Framework 
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4.4 Stochastic Dominance Analysis 

The SD rules and the MV rules use partial information about the investor’s 

preferences. There are several advantages of using the SD rules over the MV rules. First, 

the MV rules assume quadratic utility or normally distributed random variables. Second, 

MV only focuses on the first and second moment of the distributions, rather than the 

whole distribution of the random variables. In the following subsections, I present the 

SD rules and explain how to implement them in an empirical setting and then compare 

and contrast the SD results with the MV results. 

 

4.4.1 Stochastic Dominance Rule 

I denote    for  =1, 2 and 3 as the class of utility function where    includes all 

utility functions such that      ,    includes all utility functions such that      and 

     , and    includes all utility functions such that     ,       and       . In 

what follows I assume the investor maximises the von Neumann–Morgenstern expected 

utility and I state the SD criteria. 

 

Theorem 4.1  First-order stochastic dominance test 

Let [a, b] be the support of each distribution function. Let       and       be the 

cumulative distribution of the net hedging error of strategies X and Y, respectively. X 

dominates Y in the first order if                          

 

For the FSD test, the only requirement for the choice of the utility function U(x) is 

that U is an increasing monotonic function of x, that is,          Economically, this 

assumes that an investor prefers more to less. In my context, this means that a hedger 

would prefer a positive NHE to a negative NHE. Positive NHE means that there is a 

positive cash flow from the hedging position. In other words, the hedging portfolio 

value (after taking account of transaction costs) is greater than the liability or option 

payoff at maturity. 

 

Theorem 4.2  Second-order stochastic dominance test  

Let [a, b] be the support of each distribution function. Let       and       be the 

cumulative distribution of the net hedging error of strategies X and Y, respectively. X 

dominates Y in the second order if    
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For the SSD test, the requirement for the choice of utility function U(x) is that U is 

monotonically increasing and it is concave, that is,         and         . 

Economically, this assumes that an hedger prefers more to less and he is risk-averse. 

Note that the MV analysis is a special case of SSD. 

 

For proof of FSD and SSD, see Hadar and Russell (1969), Hanoch and Levy (1969) 

and Rothschild and Stiglitz (1970). 

 

In addition, Whitmore (1970) introduces third-order stochastic dominance (TSD) by 

adding the condition that the utility function has a non-negative third derivative in 

addition to a non-negative first derivative and non-positive second derivative. 

Economically, the non-negative third derivative assumes that the hedger has decreasing 

absolute risk aversion. 

 

According to Levy (2006), there is a unique relationship among stochastic 

dominance at different orders. Formally, if a strategy X stochastically dominates a 

strategy Y at the n
th

 order, then strategy X also dominates strategy Y at any order higher 

than n. Therefore, we can infer that  

X FSD Y => X SSD Y=> X TSD Y. 

 

4.4.2 Application of the SD Rules to Empirical Data 

Early studies propose different algorithms for testing SD (see Porter et al., 1973; 

Levy & Kroll, 1979; Levy, 1998; Levy et al., 2004). Most SD tests are designed to test 

two uncertain choices, assuming that we know the true probability distribution of the 

two choices. However, in empirical studies, it is often the case that we do not know the 

true probability distribution of NHE of a strategy. Given that we have to rely on the 

empirical distribution function, which is subject to sampling error, more recent studies 

of SD rules have focused on econometric issues. 

 

Anderson (1996) and Davidson and Duclos (2003) consider the problem of making 

statistical inferences for various forms of SD; however, their method of comparison is 

undesirable and introduces the possibility of test inconsistency. This is because 
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statistical inferences are made by comparing objects at a fixed number of arbitrarily 

chosen points. A desirable test compares the objects at all points of the supports. 

Accordingly, Barrett and Donald (2003) propose a consistent test for SD based on the 

Kolmogorov–Smirnov test, which compares the objects at all points in the support of 

the object. We employ Barret and Donald's method to test the existence of an SD 

relationship among the hedging strategies. Note that the test proposed by Barret and 

Donald assumes the situation in which the samples are independent with possibly 

different sample sizes. This assumption matches my testing samples, for which each 

hedging strategy is independent of each other. Depending on the required characteristics 

of the utility function, different orders of SD rules can be tested. All levels of SD orders 

assume the hedger has von Neumann–Morgenstern utility function and would like to 

maximise his expected utility.  

 

The general hypotheses for testing SD of order   can be written as follows: 

  
     

       
      for all           

  
     

       
      for all           

 

where      and      are the cumulative distribution functions for strategy   and  , 

which have the common support        where    ∞.   
       is the function that 

integrates   to order  -1. For example, 

  
                                                                  (4.7) 

  
              

 

 
                                                   (4.8) 

  
                 

 

 
 

 

 
   

        
 

 
                                   (4.9) 

 

If the null hypothesis is not rejected, then G stochastically dominates F at order j. 

The above test focuses on identifying the pairwise dominance relationship. The test is 

used when two strategies are compared; hence it is useful to determine the ranking of 

the strategies at the same level of hedging precision. Since this SD test is designed for 

pairwise comparison, the test must be conducted twice in order to determine the 

existence of a dominance relationship. For example, to compare strategies A and B, the 

first step is to check if strategy A dominates strategy B. If there is no dominance 

relationship, then we need to check if strategy B dominates strategy A before making a 
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conclusion. If there is no dominance relationship, then strategies A and B are equally 

acceptable to the hedger.  

 

Let   and   be the sample size of strategy A and B. The empirical distributions 

used to construct the statistical tests are respectively  

 

   
         

 
         

     and     
         

 
         

   .                    (4.10) 

For higher order: 

 

   
           

          
 

  
 for s = 2,3                                (4.11) 

     
           

          
 

  
 for s = 2,3                                (4.12) 

 

For the null hypothesis that strategy A dominates B at first and s
th

 order where s = {2; 

3}, the test statistics can be written in the form 

 

   
   

  
  

   
              

   
       

   
                                 (4.13) 

 

and  

   
   

  
  

   
              

   
       

   
     for s = 2,3.                     (4.14) 

 

 

In searching for the optimal hedging strategy among all possible strategies, I use 

a consistent testing method proposed by Linton et al. (2005). Consider there are 

  hedging strategies,        . Denote    as the full sample size of the net hedging 

error observations of    for k = 1, 2,..., . Let       be the cumulative distribution 

function of strategy  . The null and alternative hypotheses for testing the dominance 

relationship for a particular hedging strategy are: 
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Let N denote the full sample size of hedging error observations of strategy     for k = 

1,...,   and i = 1,.., . The test statistic   
   

    for the full sample is computed as below: 

  
                           

   
       

   
     for s ≥ 1,            (4.15)      

where    
   

              

 
          

    and    
           

          
 

  
 for s ≥ 2. 

Let χ denotes the union of supports of all cumulative distributions of the hedging 

strategy,       for j = 1,…, . To test the null hypothesis, Linton et al. (2005) suggest 

taking the maximum over all   with    . I apply this test to the hedging strategies 

across different classes. 

 

 For both pairwise and all strategies’ SD tests, the critical value is obtained 

through bootstrapping simulation by using the observed NHE as the population. To 

determine whether a null hypothesis is rejected or not, the simulated p-value is 

calculated and compared at 1%, 5% and 10% levels of significance. The procedure of 

obtaining the test statistics and simulated p-value are summarised in three steps (the 

details are stated in Appendix A). 

 

 In section 4.4.4, I use the SD tests for the selected six hedging strategies at three 

different levels of hedging precision
41

. For each strategy k, I test whether it dominates 

all other strategies by FSD, SSD and TSD at the selected level of hedging precision. 

This gives three p values per strategy with each corresponding to FSD, SSD and TSD. 

The significance levels of 1%, 5% and 10% are used to decide whether or not I can 

reject the null hypothesis. Further, I determine for each strategy the highest SD order for 

which the null hypothesis of SD cannot be rejected. A strategy is FSD if we cannot 

reject the null hypothesis that the strategy dominances all other strategies. An FSD 

strategy also implies that the strategy is SSD and TSD. For an SSD strategy, the null 

hypothesis of the strategy dominates all other strategies at SSD but is rejected at FSD. 

Lastly, a TSD strategy means that the null hypothesis of the strategy dominates all other 

strategies at TSD but rejected at FSD and SSD. 

 

                                                 
41

 Unlike the hedging precision in the MV test, which is derived from a fitted power function using the 

same level of standard deviation, the hedging precision in the SD test is based on a list of selected 

hedging parameters. 
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 In order to determine the ranking of the hedging performance of each hedging 

strategy, the pairwise SD test (as described previously in this section) is used. A 

strategy k is ranked higher than strategy l if the null hypothesis that strategy k dominates 

strategy l cannot be rejected but the null hypothesis that strategy l dominates strategy k 

is  rejected. On the other hand, if both null hypotheses are rejected, then the strategy are 

equally ranked. The FSD, SSD and TSD tests are also performed at high, moderate and 

low hedging precision levels. 

 

4.4.3 SD Tests Setup 

 I carry out the SD tests by considering three different levels of hedging precision 

for each class of hedging strategy. The selected hedging parameters for the 

corresponding hedging precision level are presented in Table 6 below. 

 

Table 6 Hedging Parameters for Stochastic Dominance Test 

The table shows the hedging parameters selected for each class of hedging strategy. These 

parameters represent three different levels of hedging precision: high, moderate and low. The 

first column presents the name of the hedging strategy, the second column indicates the 

measurement unit of the hedging parameters and the remaining columns indicate the parameter 

value for its corresponding level of hedging precision. The bracket term in second column 

specifies the meaning of the parameter symbol. 

Hedging Strategy Hedging Parameters High Moderate Low 

Black–Scholes hedge at fixed time 

intervals (BS) 

 

   (in days) 

2 10 20 

Leland's hedge (LS) 

 

   (in days) 
2 10 20 

Henrotte asset tolerance (AT) 

 

H (percentage change in 

underlying asset price)  

 

2% 4% 6% 

Delta tolerance (DT) 

 

H (option delta) 
0.05 0.1 0.2 

Hedging to a fixed bandwidth around 

delta (FB) 

 

H (option delta) 

0.05 0.1 0.2 
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Hedging to a variable bandwidth around 

delta (VB) 

 

  (risk aversion) 

5 0.1 0.001 

 

In my simulation setting, the rebalancing frequency for a move-based strategy 

with zero hedging bandwidth will be degenerated into a BS hedging strategy with daily 

rebalancing frequency. As a result, I choose the BS and LS strategies rebalance every 2 

business days for time-based strategies with expected high hedging precision. The 10 

business days and 20 business days represent bi-weekly and monthly rebalancing 

strategies, which have relatively less hedging precision than the 2 days strategy. For 

move-based strategies, a wider hedging bandwidth implies that the hedger is less risk-

averse and willing to accept a less precise hedging outcome. Although the choice of the 

move-based strategies’ hedging parameter is somewhat arbitrary, these parameter values 

will generate a three-point MV curve for hedging strategy, which spans the same MV 

space, for consistency comparison between MV and SD tests. The choice of the hedging 

parameters for the AT strategy is based on historical daily index return. For the period 

of January 2, 1996 to September 30, 2009, I observe that the average daily index return 

is 0.9% and the maximum return is 11%. As a result, I set 2% as the high hedging 

precision strategy and 6% as low hedging precision strategy. For the delta move-based 

strategy, the hedging parameter is chosen such that rebalancing does not occur only 

when the option has changed from in-the-money position to the out-of-the-money 

position. An in-the-money option always has delta greater than 0.5 and an out-of-the-

money option delta is always less than 0.5. Therefore, the low hedging precision 

hedging parameter is set at 0.2, and the high hedging precision strategy will rebalance 

the hedging portfolio when delta changes by 0.05. 

 

The hedging parameter for the VB bandwidth strategy is also chosen arbitrarily. 

It is chosen on the basis that the MV curve lies within all other MV curves. The greater 

the risk aversion parameter, the more risk-averse the hedger. In addition, the choice of 

these hedging parameters produces a performance ranking consistent with the results 

obtained in section 4.3. It is possible that different choices of hedging parameter values 

for each hedging strategy can yield different SD test results; this poses a limitation to 

my study. The derivation of a consistent comparable set of hedging parameters will be 

investigated in a future study. 



114 

 

 

4.4.4 Results 

4.4.4.1 Simulated net hedging error distribution  

 Prior to presenting the stochastic dominance test results, I study the 

characteristics of NHE using the simulated results in section 4.3. For each hedging 

strategy, probability density functions (PDF) and EDFs corresponding to the hedging 

parameter are plotted. The PDF and EDF are constructed using the simulated NHE. 

Each hedging strategy has 200,000 simulated NHEs for its corresponding hedging 

parameters. As a result, each simulated net hedging error is assigned a probability of 

1/200,000. A kernel distribution function in Matlab is used to plot the PDF. A kernel 

distribution is a non-parametric representation of the PDF of a random variable. Let 

          be independent and identically distributed random variables with common 

density function. The kernel density estimator is of the following equation: 

   
      

 

  
   

    

 
          

                                   (4.16) 

where n is the sample size, K(.) is the kernel smoothing function and h is the bandwidth. 

The bandwidth value controls the smoothness of the resulting density curve. The kernel 

smoothing function is a non-negative function that integrates to one and has mean zero. 

The resulting kernel distribution is similar to a histogram (which places sample values 

into discrete bins) except that it is a smooth and continuous probability curve. The 

kernel distribution allows study of the characteristics of the NHE distribution without 

making assumptions about the distribution of the data. 

 

 The EDF is defined as  

                      
      

 

 
    

          
                                  

 
                (4.17) 

 where 1{A} is the indicator of event A. It is the CDF associated with the empirical 

measure of the sample value. In my study, the empirical measure of each net hedging 

error is 1/200,000.  

 

 Figures 13–15 display the NHE for each hedging strategy at different hedging 

precision levels. As explained previously, the level of hedging precision is represented 

by the hedging parameter value. The PDF plots show that the distributions of NHE for 

all hedging strategies are skewed to the left. This is because total transaction costs paid 
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during the hedging period are non-recoverable and therefore constitute permanent losses 

to the replicating portfolio. It is noted that the distributions of each strategy are shifted 

slightly to the right when hedging precision becomes less precise (or the hedger is 

willing to accept greater amount of NHE and therefore lower transaction costs). As 

suggested by theorem 4.1, a first-order dominance strategy's EDF will stay below that of 

the rest of the hedging strategies; this also means that there will be no crossing with the 

EDF of other hedging strategies. If a strategy is dominating at second order, then there 

will be one crossing between the EDF of two strategies. Graphically, the results in 

Figure 14 imply that there is a first-order SD relationship for the FB strategy at a high 

level of hedging precision. In addition, the DT strategy is potentially dominated by all 

other strategies at second or higher order
42

, given that Figure 15 shows that the DT 

strategy's EDF is generally the highest of all strategies and crosses other strategies’ 

curves at least once. To confirm the preliminary visual results, I present the results of 

statistical testing in the next section.  

 

Figure 14 Probability Density Function and Empirical Distribution Function of Net Hedging Error 

Across Strategies – High Hedging Precision 

                                                 
42

 This could be due to the choice of the parameters in Table 6. Another possibility is that the DT strategy 

can be quite costly to a hedger. One can imagine that the hedger will need to rebalance the underlying 

index position to the perfect BS delta position even though the only change is time and all else has not 

changed. An option with high gamma may require the hedger to rebalance the portfolio daily and hence 

hedging becomes very costly. 
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Figure 15 Probability Density Function and Empirical Distribution Function of Net Hedging Error 

Across Strategies – Moderate Hedging Precision 

 

Figure 16 Probability Density Function and Empirical Distribution Function of Net Hedging Error 

Across Strategies – Low Hedging Precision 
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4.4.4.2 SD Test Results 

 I present the test results of the null hypothesis that a particular hedging strategy 

dominates all other strategies at three levels of hedging precision (high, moderate and 

low). The results in Table 7 show that FB dominates all other strategies at first order at 

high hedging precision. This implies that FB is the optimal strategy for a hedger who 

prefers a highly precise hedging outcome. As I decrease the level of hedging precision, 

there is no dominating strategy when the hedging precision becomes moderate. Last but 

not least, AT is the preferred strategy when the hedger prefers low hedging precision in 

my testing. It is noted, at low hedging precision level, AT dominates all other hedging 

strategies at second order. Given that the SD results presented in this section are based 

on hedging parameters defined in Table 6, I re-run the mean variance test for the six 

hedging strategies using those hedging parameters defined in Table 6, generating a new 

set of six different MV curves
43

. This is to ensure that both MV and SD results are 

compared consistently.  

 

The untabulated results
44

 show that the ranking of the hedging strategies are 

slightly different from those presented in section 4.3.2. The reason behind this is that the 

comparison in the previous section is based on calibrating NHE to a power distribution 

such that mean NHE is derived using BS NHE standard deviation as an input. In 

contrast, the untabulated MV results are obtained without any calibration, that is, the 

mean and standard deviation of NHE are directly derived from the hedging parameters 

in Table 6. In addition, the MV comparison is based on the location of the particular 

strategy on the MV curve; hence, this comparison method is slightly different from the 

one introduced in the previous section. These SD results are consistent with the MV 

results for high and low hedging precision. However, the contrasting result is that there 

is no conclusive dominating strategy at moderate hedging precision given that VB, FB 

and AT strategies dominate all other strategies at third order. Unlike the pairwise test, 

the all-strategy test does not indicate these three strategies are regarded equally. The 

                                                 
43

 Each MV curve is constructed using three hedging parameters defined in Table 6. 
44

 For a high level of hedging precision, the ranking becomes 
                   

  For a moderate level of hedging precision, the ranking becomes        
                   

  For a low level of hedging precision, the ranking becomes 
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results are inconclusive, so the consistency of the MV and SD test results is not 

confirmed. 

 

Table 7 Stochastic Dominance Test for All Other Strategies 

The table shows SD test results obtained from a simulation of 200,000 NHEs for each of the six 

hedging strategies based on the hedging parameters listed in Table 6. One-way proportional 

transaction costs of 50 basis point are assumed. Under the null hypothesis of the SD tests, a 

particular hedging strategy dominates all other hedging strategies at the selected hedging 

precision level. If the null hypothesis is rejected, no dominance relation is present. The test 

statistics are calculated using equation (4.14). The table displays the highest SD order for which 

the null hypothesis of dominance cannot be rejected. FSD implies that we cannot reject the null 

hypothesis that the strategy dominates all other strategies at the selected hedging precision level 

by first-order. Similarly, SSD means that we can reject the null hypothesis that the strategy 

dominates all other outcomes by FSD, but not that it dominates the other outcomes by second-

order. Finally, if a strategy is TSD, we can reject the hypothesis that the strategy dominates all 

other strategies by FSD and SSD, but not that it dominates all other strategies in the set by third-

order. No SD means that we reject the null of SD by any order. 
○
,
○○

,
○○○

 denote the significance 

level of the hypothesis test for SD identifications, i.e. 10%, 5%, 1% level respectively. 

 

 
Hedging Strategy 

Hedging Precision BS LS AT DT FB VB 

High  No SD 
○○○ No SD 

○○○ No SD 
○○○ No SD 

○○○ FSD No SD 
○○○ 

Moderate No SD 
○○○ No SD 

○○○ TSD No SD 
○○○ TSD TSD 

Low No SD 
○○○ No SD 

○○○ SSD No SD 
○○○ No SD 

○○○ No SD 
○○○ 

 

 Pairwise SD tests using equation (4.13) and (4.14) are performed in order to 

determine the optimal ranking of the hedging strategies. I obtain the following ranking 

at different levels of hedging precision. When the hedging precision is moderate, the 

ranking of the strategies is  

                   

As the hedging precision increases (i.e., high hedging precision level), the ranking 

becomes 

                   

On the other hand, as the hedging precision decreases (i.e., low hedging precision level), 

some of the move-based strategies are regarded equally to the time-based strategy. The 

ranking becomes 
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These dominance relationships are presented at first-, third- and second-order with 

respect to high, moderate and low hedging precision levels. In terms of hedging 

performance, the dominating strategy obtained from pairwise results are consistent with 

the all-strategies SD results. In comparison, the ranking of high hedging precision 

strategies coincides with the MV results. For moderate and low hedging precision, both 

MV and SD correctly identify the top and bottom three strategies, but the ranking is 

different in each test. 

 

 It is important to note that the probability distribution of the hedging strategies is 

dissimilar to the normal distribution; these distributions are negatively skewed and most 

have long tails due to transaction costs. As a result, it is no surprise that the ranking of 

the strategies under the SD test is different from the one under the MV test, for which 

the accuracy of the test depends on the normality assumption.  

 

4.5 Sensitivity Tests 

 To access the robustness of the hedging performance, I perform sensitivity tests 

on the choice of optimal hedging strategy to different factors such as option moneyness, 

time to maturity, transaction costs, volatility, drift and interest rate. I analyse the impact 

of each factor through three levels of hedging precision which are high, moderate and 

low. The corresponding hedging parameters have been defined in Table 6.  

 

4.5.1 Option Moneyness 

 I consider different levels of moneyness for which the strike price of the option 

ranges from 900 to 1100 compared to the starting value of the index of 1000. We find 

that the total transaction costs paid in dollars is the highest for the at-the-money option. 

This result is consistent with the fact that the at-the-money option has the highest 

gamma, and therefore more frequent rebalancing is involved. The performance of the 

hedging strategies is not robust with the change in option moneyness when using MV 

analysis. Instead, the ranking of the strategy depends on moneyness and hedging 

precision level. For all levels of hedging precision, the move-based strategies 

consistently perform better than the time-based strategies, even though the rankings of 
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the strategies are not always consistent when option becomes out-of-the-money for all 

hedging precision levels. In general, VB is the preferred strategy at all hedging 

precision levels. However, FB becomes the preferred strategy as the option becomes 

deeper out-of-the-money at moderate and low hedging precision levels. We also observe 

that, for moderate and low hedging precision levels, there is increasing preference for 

the time-based strategy when an option becomes in-the-money. 

 

 The contrasting result in my study is that, although the ranking of the hedging 

strategies using the SD test is different from the ranking using MV analysis, the 

performance of the hedging strategies are robust with the change in option moneyness at 

high and moderate levels of hedging precision at third-order of pairwise SD. In 

particular, all strategies’ SD test results are consistent across all moneyness in 

identifying the dominant hedging strategy. SD results demonstrate that FB is preferred 

at high and moderate hedging precision levels, whereas AT is preferred at low hedging 

precision level.  

 

4.5.2 Time to Maturity 

 I implement the hedging strategy by varying time to maturity of the call option 

from 30 days to 250 days. For all strategies, the total transaction costs increase with 

time to maturity because of more rebalancing transactions through time. I also find that 

the standard deviation of NHE increases with the length of maturity, but the mean is 

relatively unaffected. This reflects the fact that hedging outcomes are increasingly 

uncertain over longer periods, given that underlying stocks prices can fluctuate with 

larger magnitude over longer periods of time. My results show that the MV and SD test 

results conform with each other when hedging precision is high or moderate. Hence, 

time to maturity does not play an important role in determining the relative performance 

of hedging strategies. 

 

4.5.3 Transaction costs 

 The proportional transaction costs increase the transaction costs paid by the 

hedger. I observe that the NHE becomes more negative in value when transaction costs 

increase. The influence of proportional transaction costs on strategy ranking depends on 

hedging precision level. I consider the situation in which the proportional transaction 
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costs increases from 1 to 100 basis points. Under the MV test, move-based strategies 

(except the DT strategy) perform better than time-based strategies across different levels 

of hedging precision. Although the ranking of the strategies is slightly altered, VB 

appears to be the optimal hedging strategy consistently at high and moderate hedging 

precision. As with all other parameters considered in the sensitivity test, the MV test 

correctly identifies the top three and bottom three performing strategies consistently. 

Under the SD test at third-order, the base case results are robust when transaction costs 

are non-trivial at all levels of hedging precision. 

 

 In practice, a transaction will involve both fixed and proportional transaction 

costs. I therefore consider the impact of fixed transaction costs on hedging performance. 

I assume each transaction will incur 40 cents of fixed transaction costs and 50 basis 

points of proportional transaction costs. The ranking of the strategies under the MV test 

alters significantly, such that time-based strategies are within the top three best-

performing strategies. The reason is that move-based strategies involve an infinite 

number of trades near the hedging bandwidth and become very costly when fixed costs 

are included. 

 

4.5.4 Volatility 

When the underlying asset becomes more volatile, there is greater risk involved 

in the hedging process. More transactions must be undertaken in order to attain certain 

level of accuracy of a hedging position. Consequently, higher transaction costs are 

expected when volatility increases. I test the impact by varying levels of volatility from 

10% to 50% and find that the base case result is robust to the change in volatility under 

both MV and SD tests at all levels of hedging precision.  

 

The previous analysis assumes the underlying stock price process follows a 

geometric Brownian motion, so the instantaneous relative volatility of the stock price is 

constant. Studies such as Hull and White (1987a), Bakshi et al. (1997) and Dumas et al. 

(1998) demonstrate that we should always hedge for volatility risk. As a result, I 

analyse the impact of stochastic volatility on hedging performance. I implement the 

same set of hedging strategies on the assumption that the underlying stock return 

exhibits stochastic volatility. I assume that the stock price process follows Heston’s 
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(1993) model. The model assumes that the stock price      follows the stochastic 

process: 

                                                              (4.18) 

where      is the instantaneous variance which follows the Cox, Ingersoll and Ross 

(1985) process:  

                                                              (4.19) 

and        and       are Wiener processes with correlation  . I denote   as the rate 

of return of the stock price,   as the long-run average price for volatility,   as the speed 

of mean reversion to the long-run average and   as the volatility of volatility. 

 

 For simulation, I set  =0.039,   =0.0457,  = 5.07 and  =0.48 based on the 

estimates in Table 6 from Aït-Sahalia and Kimmel (2007)
45

 and simulate 200,000 stock 

price paths. I then use the Heston option pricing model to compute the option price, 

which includes the price of volatility risk
46

. I rebalance the hedging portfolio according 

to the proposed hedging strategies. It should be noted that the implementation of the 

hedging strategy is inconsistent with the Black–Scholes assumption, which is based on 

constant volatility. I find that the hedging performance deteriorates, partly due to the 

volatility risk that is not captured by the constant volatility model. This exercise allows 

us to access the robustness of the result with respect to stochastic volatility. For both 

MV and SD test results, I consistently find that FB is the best hedging strategy across all 

levels of hedging precision.  

 

4.5.5 Drift 

The value of the drift varies from 5% to 20%. In general, I expect a higher drift 

value will reduce the standard deviation of NHE. This is because the drift rate is the 

average increase in underlying price per unit of time, and hence a higher drift will drive 

the option in-the-money sooner compared to a relatively lower drift rate. For example, a 

call option will reach a further in-the-money position when drift rate increases and 

hence rebalancing transactions may reduce the number of stock transactions, which 

leads to lower transaction costs. In my sensitivity test, I find that there is a decrease in 

                                                 
45

 These estimates are obtained from the daily data of S&P 500 index and the Chicago Board Options 

Exchange Volatility Index from January 2, 1990 to September 30, 2003. 
46

 Note that the Black–Scholes price is no longer valid for use as a benchmark for option price as before. 

This is because the underlying stock return has stochastic volatility. 
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the standard deviation of NHE when the drift rate increases; however, the magnitude of 

decrement is trivial. Overall, the ranks of the strategies are robust to the base case 

results obtained from both tests. 

 

4.5.6 Interest rate 

The present value of expected transaction costs decreases when the interest rate 

increases due to the effect of the time value of money. Given that the base case option is 

an at-the-money option that has high gamma, it therefore involves a relatively large 

number of trading activities. The effect of interest rate is mixed, and depends on when 

most trades happen. If trades happen to occur in the early time period, then the present 

value of transaction costs is greater and vice versa. Hedging performance deteriorates as 

more transaction costs are incurred.  

 

To access the impact of interest rate level on hedging performance, I implement 

the test with different interest rate values ranging from 0% to 10%. The NHE 

distribution skews to the right for all levels of hedging precision when interest rates 

increase. This observation can be explained by the fact that the present value of total 

transaction costs is reduced when the interest rate increases. The ranking of hedging 

strategies is consistent with the base case results under the MV and SD tests across 

different risk-free rates; however, these comparison methods do not yield the same 

ranking results. This means that hedging performance is insensitive to the change in 

interest rate but the choice of comparison method will change the optimal hedging 

strategy. For example, VB is the optimal strategy under the MV test but FB is optimal 

when the strategies are compared using the SD test.  

 

4.6 Conclusion 

In this chapter I examine the performance of alternative option hedging strategies in 

the presence of transaction costs in a Monte Carlo simulation setting. The objective of 

the comparison was to determine the existence of an optimal hedging strategy among 

the six proposed hedging strategies. The presence of transaction costs introduces a 

tradeoff between hedging precision and the amount of transaction costs paid. In general, 
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there are two main classifications of hedging strategies in the literature: time-based 

strategies and move-based strategies.  

 

The existing literature uses MV rules to assess the performance of the competing 

hedging strategies. However, the use of the MV test has to satisfy the assumption that 

either the hedger has a quadratic utility function or the NHE is normally distributed. 

These assumptions are hardly satisfied, questioning the validity of the results of 

previous studies. To overcome the deficiency, I propose a systematic comparison of 

alternative hedging strategies using the SD test. In contrast to the MV decision rule, 

which is based on the first and second moment of NHE distribution, the SD test 

considers the entire distribution of NHE. The SD rule is also consistent with the von 

Neumann–Morgenstern expected utility maximisation framework. 

 

When I test the performance of alternative hedging strategies using the MV test, six 

MV curves based on the mean and standard deviation of the NHE of each hedging 

strategy, with varying hedging parameters, form the basis of comparison. I find that, 

with proportional transaction costs, the optimal hedging strategy is to rebalance the 

hedging portfolio to the nearest boundary of the hedging bandwidth (VB) under the MV 

test. I also find that move-based strategies are superior to time-based strategies when 

drift decreases and volatility increases. This suggests that a hedger should switch from a 

time-based strategy to a move-based strategy, which allows the hedger to save 

substantial transaction costs for the same level of hedging precision. However, the 

move-based strategies’ performance is weakened when fixed transaction costs are 

introduced. Indeed, the performance of time-based strategies improve and they enter the 

top three preferred strategies. This is because hedging at a fixed time point will reduce 

transactions incurred due to movement close to hedging bandwidth in move-based 

strategies.  

 

Another consistent performance measure I use in testing the alternative of hedging 

strategies is the SD test. Given the intensity of the calculation, I simplify the 

comparison by limiting three hedging parameters for each hedging strategy in order to 

reflect high, moderate and low hedging precision. I use the pairwise SD test (introduced 

by Barret & Donald, 2003) and an all-strategies SD test (introduced by Linton et al., 

2005) to compare the performance of six hedging strategies at three different levels of 
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hedging precision. The SD test results show that FB is the optimal hedging strategy 

when a hedger requests high hedging precision and AT is optimal when a hedger 

requests low hedging precision in the base case scenario. However, I cannot determine 

the optimal strategy when hedging precision is moderate, due to the absence of 

dominance of a single strategy. I also find that the SD results are robust to all types of 

sensitivity tests.  

 

For consistency comparison between MV and SD tests, I also construct a reduced 

version of the MV test based on three hedging parameters for each hedging strategy. 

These hedging parameters are the same as those used in the SD test. Although both 

test’s resulting rankings do not match most of the time, they consistently identify the 

same set of top three and bottom three hedging strategies in terms of hedging 

performance. Given the robustness of SD test results at high and low hedging precision 

levels, I conclude that SD is a better method for assessing the performance of hedging 

strategies. The superiority of the SD test is largely due to the fact that it considers the 

full distribution of NHE and has less restrictive assumptions than the MV test.  
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Chapter 5 

 

5. Empirical Study: The S&P 500 Index Option 

 

The simulation study in chapter 4 compares the performance of alternative 

hedging strategies under a controlled environment. Although simulation results provide 

a performance benchmark for the approximated NHE of alternative hedging strategies, 

an empirical study allows me to gauge the effectiveness of hedging strategies in practice. 

In real life, practitioners tend to use move-based strategies to hedge their option 

exposure because of their intuitive appeal in theory and superior hedging results 

obtained from Monte Carlo simulations based on the mean variance rule. However, it is 

also noted that there is no standard way of implementing a hedging strategy. For 

example, a market maker who aims to maintain a delta neutral position on a daily basis 

(either through a covered position or dynamic hedging) can also implement a move-

based strategy within the day. The hedging practice in real life is largely driven by the 

risk appetite of the market maker (or his/her firm)
47

. This chapter offers better guidance 

for market participants in choosing an appropriate hedging strategy.  

 

 In this chapter, I investigate the empirical performance of alternative option 

hedging strategies using S&P 500 index options data. As listed in chapter 3, the six 

hedging strategies that I examine in this chapter are: 

(1) Black-Scholes hedging at fixed time intervals (BS), 

(2) Leland’s hedge (LS), 

(3) Henrotte’s asset tolerance strategy (AT), 

(4) delta tolerance strategy (DT), 

(5) hedging to a fixed bandwidth around delta (FB), and 

(6) hedging to a variable bandwidth around delta (Whalley & Wilmott, 1997) (VB). 

 

                                                 
47

 As stated in chapter 4, I would like to highlight our assumption of holding the position until maturity 

(or liquidation period) is for consistent comparison purposes but it is not necessarily how hedging is being 

done most of the time in real life. 
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Recall, the first two strategies belong to the class of time-based strategies and the 

remaining four belong to the class of move-based strategies.  

 

The chapter is organised as follows. Section 5.1 and 5.2 explain the data and 

methodology for the empirical study. Section 5.3 summarises the findings under both 

MV and SD frameworks. Section 5.4 examines the performance of hedging strategies 

when a delta-vega-neutral hedge is formed. Section 5.5 concludes the chapter. 

 

5.1 Data 

S&P 500 index options are the focus of much option pricing research, including 

Bakshi, Cao and Chen (1997, 2000), Dumas et al. (1998), Rubinstein (1994) and 

Constantinides et al. (2009). Consistent with the reasons previous studies provide, I use 

S&P 500 index options traded on the Chicago Board of Exchange (CBOE) to examine 

the performance of alternative hedging strategies. There are two reasons why I use S&P 

500 index options as the market data. First, S&P 500 index options satisfy most of the 

conditions required by the Black–Scholes formula. Second, options written on this 

index are the most actively traded European-style index option contract. Thus, S&P 500 

index options offer an ideal test for most of the option hedging models.  

 

For all hedging exercises conducted in this study, I require two types of hedging 

instrument: the underlying asset that closely resemblances the S&P 500 index
48

, and a 

cash account. Following Bakshi et al. (1997), the spot S&P 500 index
49

 rather than the 

                                                 
48

 I acknowledge a suggestion from an examiner that a Contract for Difference (CFD) can be a potential 

hedging instrument. From United States investors perspective, CFD is not permitted to trade under the 

Dodd-Frank Act which is implemented by the Securities and Exchange Commission (SEC). Although 

CFD is traded in Australia, the exchange traded version of CFD only starts from November 2007 which is 

towards the end of our sample period. This poses data availability issue to my study. It is noted that CFD 

has been traded exclusively over-the-counter (OTC) prior to November 2007. Further, CFD is a margined 

product and similar to a futures contract except it does not have a specified maturity date. Reasons for not 

choosing futures as the underlying asset used in this study are discussed above. 
49

 It is known that the S&P 500 index is non-tradeable. Another financial instrument that closely tracks 

the performance of the S&P 500 index is its exchange traded fund, called Standard and Poor's Depository 

Receipts (SPDR). Although the return on SPDR almost replicates the S&P 500 return, several factors 

affect SPDR returns apart from the S&P 500 index return. First, SPDR charges management expenses of 

11 basis points. Second, the dividends received in SPDR are invested in a non-interest bearing account 

and the accumulated dividends are distributed quarterly. Ackert and Tian (1998) show that the non-

interest bearing component has resulted in the underperformance of the SPDR relative to the S&P 500 

index by approximately 10 basis points. Third, the SPDR closing price may differ from its net asset value, 

although the amount is very small. Fourth, transaction costs incurred in replicating the index, such as 
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S&P 500 index futures contract is used in place of the spot asset in each hedge. The 

decision was made based on the following considerations. First, the spot S&P 500 and 

the S&P 500 futures contract with immediate expiration month generally have a 

correlation coefficient close to one. As a result, whether a spot index or a futures 

contract is used in a hedge, the conclusion most likely will be the same. Second, the 

hedging ratio drawn from the literature has to be modified if a futures contract is used as 

a hedging instrument. This would introduce a misalignment of the hedging strategy 

derived from the option hedging model, and hence bias the results. Third, futures 

contracts require margin account maintenance throughout the life of the futures contract. 

This will involve cash in- and out-flow which has further implications for the cash 

account in my hedging process. Last, I also need to consider the liquidity of the futures 

contract when using it as a hedge instrument. Given that the S&P 500 futures contract 

matures quarterly but the S&P 500 index options contract has monthly maturity, I need 

to roll over the futures contract to the next most liquid futures contract (if the maturity 

month of the futures contract does not coincide with the maturity of the options contact) 

so that hedging can be continued. The rollover effect adds another layer of complication 

to the hedging performance. In addition, the contract size rounding effect would 

introduce basis risk if an actual tradable instrument was used as the hedging instrument. 

 

5.1.1 Option Metrics Database 

The data on S&P 500 index options are obtained from Option Metrics. The S&P 

500 index options are standard European options on the spot index listed on the CBOE. 

Daily closing quotes on each option contract (bid and ask) and their corresponding 

contract specifications such as strike price and time-to-maturity are recorded in this 

database. The dataset also includes a unique option contract identifier to facilitate the 

tracking of an option contract over time. Option Metrics also supply the underlying 

index level at close, interest rate curve and projected dividend yield. The advantage of 

the database is that option data are directly linked with the underlying issue data to 

ensure consistency of the historical time series. My hedging exercises are based on the 

ask option price quotes, given that the objective is to hedge short position (or replicate a 

long call position) in European call options. The difference between mid-price and ask 

                                                                                                                                               
portfolio components, change when S&P 500 index components change. Based on the above factors, I do 

not use SPDR as the underlying asset even though it is a highly liquid tradeable asset.  
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price is the market friction costs inclusive of market perceived transaction costs paid for 

hedging
50

.  

 

 Option Metrics collects different types of S&P 500 index options in the database. 

These include the S&P 500 index option (which has an expiry date of the Saturday 

following the third Friday of the expiration month), the quarterly S&P 500 index option 

(which maturity is the last business day of the quarter) and the S&P 500 Long-term 

Equity AnticiPation Securities (LEAP) option. The first type of option has maturity 

spanning from 30 days to 12 months, while the LEAP option has maturity greater than 

12 months. The quarterly index options were listed on July 10, 2006 and trading 

commenced on February 21, 2007. Given the sample period stated in the following 

section, and consistent with previous literature, I exclude the quarterly S&P 500 index 

call and put options from my sample, which consist of 4.36% and 5.33% of the original 

sample respectively. Similar to Bakshi et al. (1997), I only report the results based on 

the calls. 

 

5.1.2 Other Data 

Daily Treasury bill data are collected from the Federal Reserve Bank of St. 

Louis Economics Research Database (FRED®). There are four different maturities for 

Treasury bills: 28 days, 91 days, 182 days and 264 days. In order to obtain continuously 

compounded interest rates that match the options’ maturities, I linearly interpolate or 

extrapolate interest rates from these four rates
51

. Daily S&P 500 index prices are 

obtained from the Option Metrics database.  

 

5.1.3 Sample Period 

The sample period is from January 2, 1996 to September 30, 2009. This period 

covers four major financial crises: the long-term capital management (LTCM) crisis in 

1998, the tech bubble in the year 2000, the subprime mortgage crisis in 2007 and the 

subsequent GFC in 2008. The LTCM crisis began with the devaluation of the Russian 

                                                 
50

 If the mid-price is used, then I might underestimate the market-perceived transaction costs in hedging 

the option. In the option hedging with transaction costs literature, such as Boyle and Vorst (1992), the 

presence of transaction costs introduces an option price bound. 
51

 There is at least one Treasury bill rate available for each day in my sample period. Therefore I can 

interpolate or extrapolate when other Treasury rates are missing.   
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Ruble and default of Russian bonds on August 17, 1998 and ended on November 17, 

1998
52

. The database includes 66 trading days within the LTCM crisis period. The tech 

bubble began on March 31, 2000 and ended on March 31, 2001
53

. The subprime 

mortgage crisis began on July 1, 2007, but there is no clear date for its end
54

 because it 

was followed by the more severe GFC. 

 

Although the sample period ends in September 2009, I downloaded option 

prices up to September 2010. The reason is that I need to allow for extra observations to 

extract implied volatility from the option data beyond September 2009 that is used in 

the hedging estimation process. For example, if I examine the hedging performance of 

an option which initiates in July 2009 and has maturity of six months, daily implied 

volatilities up to December 2009 are required for the dynamic hedging process. Figure 

17 below illustrates why extra option prices are needed. 

 

 

 

 

 

 

 

 

 

 

Figure 17 Option Data Requirement for Dynamic Hedging Process 

 

Given the construction of the dynamic hedging process, call options on first 

trade day in the sample are excluded because these options are used as inputs for 

implied volatilities (this serves as criterion E1 in Figure 18 as described later). The 

                                                 
52

 Cai (2002) and Adrian (2007) illustrate the timeline for the start and end of the long-term capital 

management crisis. 
53

 According to Griffin, Harris, Shu and Topaloglu (2011), the run-up period of the tech bubble was 

January 2, 1997 to March 27, 2000. The bursting of the tech bubble was the crisis period that lasted for a 

year from March 31, 2000. The technology index lost most of its gains (-72.9%) during this one-year 

period.  
54

 The choice of the starting date of the subprime mortgage crisis is arbitrary but consistent with the 

market consensus.  

Day T = Option maturity Day t-1 Day t 

Step 1: 

Volatility = average of 

volatility implied by all 

call options at day t-1 

Step 2: 

Use spot index and interest rate on day 

t and volatility estimated on day t-1 to 

construct the desired hedge based on 

selected hedging strategy  

 

Repeat Step 1 and 2 for each option and 

every trading day in the sample  
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average of the implied volatilities on day 1 is then used as a volatility input for the 

option hedging process on day 2. In addition, I restrict the data to option samples with 

maturity no later than October 1, 2010 (this serves as criterion E2 in Figure 18) due to 

data availability at the time of download from Option Metrics. This restriction is due to 

the last day of implied volatility estimation being September 30, 2010.  

 

5.1.4 Data Cleaning 

Since S&P 500 index options are European-style contracts, the spot index level 

must be adjusted for dividends. For each option with τ periods to expiration from time t, 

the ex-dividend index level becomes 

                     ,                                                  (5.1) 

where      is the dividend-inclusive S&P 500 index level and d is the dividend yield. 

As mentioned in section 5.1.1, dividend yield information is provided in the Options 

Metrics database. This procedure is repeated for all option maturities and for each day 

in my sample. 

 

 I apply various filters to the raw database in order to construct the option data. I 

exclude observations with the following properties:  

1. options with less than six days to expiration, to avoid any liquidity related biases
55

; 

2. option price quotes lower than $3/8, to mitigate the impact of price discreteness on 

option valuation
56

; 

3. duplicated options contracts
57

; and 

4. options that violate the (simple static) arbitrage restriction 

                                                       .      (5.2) 

where   is the exercise price and   is the risk-free rate. 

 

Based on the data cleaning procedure illustrated in Figure 18, 676,358 call 

options are included in the final sample, which is about 46% of the original sample. 

                                                 
55

 This filter follows Bakshi et al.’s (1997) data cleaning procedure. 
56

 This filter follows Bakshi  et al.’s (1997) data cleaning procedure. 
57

 There are data duplication problems in the Option Metrics database from 2005 to 2009. There are 191 

days, 251 days, 251 days, 253 days and 182 days of duplicated data in 2005, 2006, 2007, 2008 and 2009 

respectively. 
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Most elimination is due to bid quotes of less than $3/8 and duplicated data. The 

eliminated calls are mostly deep out-of-the-money.  

 

 I divide the option data into several categories according to either option 

moneyness or maturity. A call option is said to be in-the-money (ITM) if 

its         ; at-the-money (ATM) if its                 ; and out-of-the-money 

(OTM) if its         . For ITM and OTM options, I further divide observations into 

deep ITM (if         ) and deep OTM (if         ). An option is said to be 

short-term if it has less than 60 days to expiration; medium term if it has between 60 

and 180 days to expiration; and long-term otherwise. This creates 18 categories of 

options, which are analysed and the results presented in subsequent sections.  
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Figure 18 Options Data Cleaning Procedure 

 

These additional 

filters apply due to 

implied volatility 

estimation 

requirements for 

hedging results 

Final sample: 

676,358 call options 

Criteria E1:  

Remove options traded on the first day due to implied volatility estimation 

- Deleted 91 observations 

Remaining number of observations: 775,834 

 

 
Criteria E2:  

Remove options with expiry date greater than 30 September 2010 due to implied volatility 

availability constraint 

- Deleted 19,819 observations 

Remaining number of observations: 775,743 

 

 

Criteria E3:  

Remove options that have maturity less than 30 days so that all hedging results are 

consistent across moneyness maturity category due to hedge parameter selection. 

- Deleted 99,385 observations 

Remaining number of observations: 676,358 

 

 

Raw call option data download from Option Metric covers from January 2, 1996 to September 30, 2010 

Number of observations: 1,700,244 

 

Criteria 1:  

Remove options with maturity less than six days to expiration 

- Deleted 76,237 observations 

Remaining number of observations: 1,624,007 

 

 
Criteria 2:  

Remove option price quotes lower than $3/8 

- Deleted 424,919 observations 

Remaining number of observations: 1,199,088 

 

 
Criteria 3:  

Remove duplicated observations 

- Deleted 396,008 observations 

Remaining number of observations: 803,080 

 

 

Criteria 4:  

Remove observations that violate option arbitrage bound  

- Deleted 7,427 observations 

Remaining number of observations: 795,653 
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Table 8 Summary Statistics of the S&P 500 Option Sample 

This table reports (i) the average quoted bid-ask mid-point option price, (ii) the average 

effective bid-ask spread (ask price minus bid-ask mid-point) in brackets, and (iii) the total 

number of observations in braces for each moneyness-maturity category. The sample period is 

from January 2, 1996 to September 30, 2009. Daily end-of-day call option quotes of each 

contract is used in this table. S denotes the spot S&P 500 index level and X is the exercise price. 

ITM, ATM and OTM denote in-the-money, at-the-money and out-of-the-money options 

respectively. Short, medium and long term-to-expiration options represent options with maturity 

less than 60 days, between 60 and 180 days, and greater than 180 days. 

  Moneyness Term-to-Expiration   

  S/X 
Short 
<60 

Medium 
60-180 

Long 
≥ 180 Total 

      Deep OTM < 0.94  $         505  $          953   $       3,221  

 
  

         (54.73)            (65.00)          (108.03)  

 
  

{18,529} {50,132} {115,826} {184,487} 

      OTM 0.94-0.97  $         1,010   $       2,475   $       7,976  

 
  

         (57.65)            (85.43)          (130.14)  

 
  

{14,365} {18,492} {18,656} {51,513} 

      ATM 0.97-1.00  $      2,229   $       3,917   $       9,962  

 
  

         (81.45)            (97.38)          (131.42)  

 

  
{16,382} {20,500} {19,229} {56,111} 

      ATM 1.00-1.03  $       4,210   $       5,918   $     11,988  

 
  

         (98.43)          (102.65)          (132.61)  

 
  

{15,356} {19,100} {18,376} {52,832} 

      ITM 1.03-1.06  $       6,653   $       8,295   $     14,035  

 
  

        (102.79)          (106.07)          (132.37)  

 
  

{12,648} {16,121} {17,152} {45,921} 

      Deep ITM ≥ 1.06  $     19,627   $     22,620   $     29,745  

 
  

        (113.67)          (109.85)          (135.95)  

 

  
{52,353} {91,035} {142,106} {285,494} 

        Subtotal {129,633} {215,380} {331,345} {676,358} 

 

Table 8 summarises the properties of the S&P 500 call price sample. The 

reported summary statistics include average bid-ask mid-point price, average effective 
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spread
58

 and total number of observations for each moneyness-maturity category. There 

are 676,358 call options in the sample, with deep ITM and deep OTM call options 

respectively taking an average of 42% and 27% of the sample for different maturity 

categories. The average call price ranges from $505 for short-term deep OTM options to 

$29,745 for long-term deep ITM options. The effective spread is smallest for OTM 

options ($54.73) and largest for ITM options ($135.95).  

 

5.2 Methodology  

This section explains how to estimate the NHE of each hedging strategy. In 

particular, I focus on forming a delta-neutral hedge by using the spot S&P 500 index. 

My choice of hedging instrument is consistent with Bakshi et al. (1997), for the reasons 

given in section 5.1. 

 

5.2.1 Net Hedging Error Estimation  

Consider a situation in which an option writer intends to hedge a short position 

in a European call option with strike price X and τ periods to expiration. I refer to this 

call option as the target call option for the remaining of the chapter. It is worth 

mentioning that the objective of hedging a short call is equivalent to replicating a long 

call option. I first examine hedges in which only a single instrument (i.e., the underlying 

asset) can be employed. This constraint implies that the uncertainties that are affecting 

option value, but are uncorrelated with the underlying asset, are not hedged. Therefore, 

hedge results are expected to be not as good as the case when I control for more 

dimensions of uncertainty.  

 

As mentioned previously, I will test the performance of six hedging strategies, 

the first two belonging to the time-based class and the rest to the move-based class. 

Each strategy has different rebalancing criteria, and hence    depends on the choice of 

the hedging strategy. I assume no liquidation of the underlying asset at maturity and 

hence no transaction costs will be paid at maturity. This assumption is consistent with 

                                                 
58

 Effective spread is ask price minus bid-ask mid-price. 
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most of the theoretical assumptions in the option pricing and hedging models with 

transaction costs.
59

  

 

 The calculation of the NHE is as previously described in section 4.2. In short, 

NHE is the difference between the hedging portfolio value and the option payoff at 

maturity. There are some differences between the simulation and empirical settings. 

First, the market-observed S&P 500 index option price is used when setting up the 

hedging portfolio initially. Second, there is only one realised S&P 500 index path for 

each option sample in empirical testing. Third, market conditions are fed into the 

hedging portfolio through implied volatility (as explained in the following paragraph) 

input in the option delta calculation. Fourth, the NHE is standardised since the empirical 

test is performed on a set of option samples with varying option moneyness and time to 

maturity. 

 

 To obtain the empirical hedging results presented in section 5.3, I follow three 

steps. First, estimate the volatility values implied by all call options of day t-1. Next, on 

day t, use the volatility estimate and current day's spot index and interest rates to 

construct the desired hedge using    unit of underlying index and B(t) amount of cash. 

Finally, rebalance the hedge by repeating step 1 and 2 whenever there is a rebalancing 

need throughout the life of the option. At maturity, I calculate the NHE. Figure 17 in 

section 5.1.3 shows the parameters estimation procedure and how the calculation is 

applied to my empirical study. This three-step procedure is applied to every option in 

my sample. Figure 19 shows how the option samples are used in my empirical study. 

 

 

 

 

 

 

 

 

                                                 
59

 To assess the impact of trading at the ending period, transaction costs can be added easily. The 

transaction costs may increase significantly depending on how deep in moneyness the option is at 

maturity. 
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Figure 19 Option Hedging Estimation Process 

 

 Following Carr and Wu (2014), I normalise the NHE as a percentage of the 

underlying index value at the starting date of the hedging exercise for consistent 

comparison of NHE obtained from the option sample on different trade days. Given that 

each option sample has different maturity, the normalised NHE is then standardised by 

the number of days to maturity so that the comparison among different option samples 

will be consistent. 

 

 My method of hedging portfolio construction assumes that market participants 

are aware of the presence of transaction costs, and hence the discounted expected 

transaction costs of hedging the option are incorporated into the market price of 

option
60

. In contrast, the simulation study in chapter 4 expects a deficit at maturity. This 

is because I used the frictionless option price to construct the hedging portfolio
61

. My 

                                                 
60

 Note there is no longer a single option price in the presence of transaction costs; instead, there is a bid-

ask spread. The market bid and ask option price include not only the transaction costs of hedging the 

position but incorporate the liquidity of the option itself as well as other market frictions. 
61

 In the simulation, I am unable to incorporate the present value of the expected transaction costs in 

setting up the hedging portfolio. This is because the amount of expected transaction costs depends on 

which transaction costs model is used. Given the objective of comparing the hedging strategies 

consistently, I want to avoid bias towards any particular transaction costs model in setting up the hedging 

portfolio. 

... 

Option sample 1 

Option sample 2 

Option sample 676,358 

For each call option, a 3-step 

estimation procedure is 

followed 

1. Estimate volatility values 

implied by all call options of 

previous day and calculate 

average value 

2. Construct hedge using 

current day spot index, interest 

rate and volatility estimate from 

step 1 

3. Repeat step 1 and 2 until 

maturity and calculate NHE for 

the option sample 

NHE 1 

NHE 2 

NHE 676,358 

... 
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empirical study measures the effectiveness of the six types of hedging strategies in 

practice by using the actual market prices. 

 

 For each option in the sample, I assume the option is held until its maturity. 

Without this assumption, I would not be able to calculate the total transaction costs of 

an option. Further, consistent comparison among the six hedging strategies is not 

possible because move-based strategies have random rebalancing periods. I do not track 

an option contract's price change since its inception; rather, I assume an option contract 

is commenced on its trade date
62

. At each time point t, I calculate option delta    and 

gamma    according to the corresponding index and interest rate movement at that time 

and its remaining time to maturity. I also use this set of information to rebalance the 

hedging portfolio. The option delta and gamma are expressed in the following forms: 

   
          

     
,                                                         (5.3)        

    
           

                                                                       (5.4) 

Note that the volatility input for both delta and gamma
63

 calculations is the average 

implied volatility by all call options on day t-1. 

 

  At maturity, the normalised NHE for each observation in each monyness-

maturity category is calculated. The average values for each category are then reported 

in the results section. In my testing, the market value of the option contract will not 

affect the value of the hedging portfolio throughout the rebalancing process. There is 

only one exception (to be explained later): when I use the market option price to 

construct the hedging portfolio. With such a procedure, I am able to calculate the total 

transaction costs spent on hedging the option. This also allows me to compare across 

different hedging strategies in a consistent way.  

 

It is noted that my computation method differs from Bakshi et al.’s (1997) and 

Carr and Wu’s (2014), because those studies test time-based hedging strategies without 

accounting for transaction costs. For example, Bakshi et al. (1997) compute the hedging 

error at time t as the difference between the market value of an option contract and the 

                                                 
62

 Note that the database provides the option contract identification number. However, the scope of this 

study is not on the daily changes in the market contract value.  
63

 The option delta and gamma are derived from the Black–Scholes model. 
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value of a hedging portfolio constructed at     . Their hedging portfolio is 

reconstructed at every rebalancing time interval   . Figure 20 below demonstrates the 

difference between my NHE and Bakshi et al.’s (1997) hedging error calculation 

method.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20 Illustration of Difference in Net Hedging Error Calculations 

 

Bakshi et al.’s (1997) calculation method is not applicable in my testing for the 

following reason. There is a major difference between time-based strategies and move-

based strategies in terms of NHE calculation. For time-based strategies, the rebalancing 

Bakshi et al. (1997) 

T 0 t1 t2 ... 

Construct hedging 

portfolio using 

option price 0 

Reconstruct hedging 

portfolio using 

option prices t1 

Reconstruct hedging 

portfolio using 

option price t2 

HE1 = Hedging 

portfolio (0) value - 

option price t1 

HE2 = Hedging 

portfolio (t1) value - 

option price t2 

HET = Hedging 

portfolio (T) value - 

option price T 

Hedging error  = average (HE1, HE2, ....,HET) 

This study 

NHE  = Portfolio value at maturity - option payoff at maturity 

T 0 t1 t2 ... 

Construct hedge 

portfolio using 

option price 0 

Rebalance portfolio 

and update existing 

portfolio value 

Rebalance portfolio 

and update existing 

portfolio value 

 

NHE = Hedging 

portfolio (T) value - 

option payoff 
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frequency must be decided when a hedging portfolio is established. Once the 

rebalancing frequency is selected, the hedger is not required to constantly monitor the 

movement of the underlying asset. Therefore, the hedging error
64

 is calculated only on 

the day when rebalancing takes place. For example, if I choose to rebalance a hedging 

portfolio every five days, then I calculate the hedging error on day t+5 when I set up the 

portfolio on day t. I reconstruct the hedging portfolio on day t+5 and repeat the hedging 

error calculation on day t+10, and so on. The average hedging error is the average of 

the recorded hedging errors at each rebalancing interval. Hence, the average hedging 

error is a function of rebalancing frequency. Bakshi et al. (1997) and others employ this 

method to compute the hedging error, since they only consider time-based hedging 

strategies and transaction costs are ignored.  

 

On the other hand, move-based strategies require constant monitoring of the 

movement of the underlying asset price. The hedging portfolio is rebalanced whenever 

the percentage change of the underlying asset price or change in delta breaches the 

selected hedging bandwidth. As a result, the time interval for calculating the hedging 

error is random. In order to compare the performance of the hedging strategies 

consistently, my method differs from those in the existing literature as I take account of 

transaction costs. Therefore, I use the terminology of net hedging error in order to 

distinguish my hedging error calculation from Bakshi et al.’s hedging error calculation 

without transaction costs. It is noted, however, that the NHE presented in this chapter 

may still be larger than the actual amount. This is due to the fact that a market maker 

will seldom hold an option position until maturity; instead, he will close his position (by 

entering into an offsetting position) as soon as possible in order to eliminate or reduce 

his risk exposure. Therefore, the NHE reported in my study is the most that a market 

maker could have lost on average if he holds his short position until maturity. 

 

5.2.2 Transaction Costs Assumptions 

I assume constant proportional one-way transaction costs are incurred when 

trading the underlying index throughout the sample period. Following Constantinides et 

al. (2008), I assume 50 basis points of the index value as the one-way transaction costs. 

                                                 
64

 The term hedging error refers to the difference between hedging portfolio value and option payoff 

when there is no transaction costs. In Bakshi et al. (1997), the option payoff is replaced by the market 

option price at the end of each rebalancing period. 
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The assumed transaction costs are inclusive of one-half bid-ask spread and one-way 

trading fees
65

. Similar amount of transaction costs are used in simulation studies by 

Mohamed (1994), Clewlow and Hodges (1997) and Zakamouline (2009). Empirically, a 

round-trip transaction costs of 1% is supported by the empirical findings in Hasbrouck 

(2009). To assess the sensitivity of the transaction costs assumption, I perform the same 

hedging exercise using 25 basis points of the index value as the one-way transaction 

costs. The findings are similar to those achieved with the 50 basis points assumption, 

except the mean and standard deviation of NHE are smaller. I assume no costs are 

involved in investing cash. In practice, transaction costs vary according to market 

conditions. The impact of time-varying transaction costs are beyond the scope of this 

study but are useful topics for future research.  

 

5.2.3 Assessment of Hedging Performance  

 In the transaction costs literature, the degree of hedging precision has a direct 

impact on the NHE of a hedging strategy. The hedging precision is also related to the 

hedger's risk aversion. A highly risk-averse hedger is unwilling to accept large NHE at 

maturity. Therefore, in the presence of transaction costs, this highly risk-averse hedger 

is willing to pay more transaction costs in exchange for small NHE. On the other hand, 

a less risk-averse hedger pays lower transaction costs for willing to bear relatively larger 

NHE. As a result, there is a negative relationship between NHE and risk aversion. In 

contrast, there is a positive relationship between total transaction costs paid for hedging 

and risk aversion. For example, a highly risk-averse hedger who prefers a precise 

hedging outcome will rebalance a hedging portfolio more frequently to minimise NHE. 

Frequent rebalancing will incur higher transaction costs during the hedging period. The 

choice of hedging parameter in the selected six hedging strategies reflects how 

frequently a hedging portfolio is rebalanced or the precision of the hedging outcome. 

Attaining a more precise hedging outcome requires the hedger to rebalance the hedging 

portfolio more frequently than a less precise hedging outcome in order to control for the 

risk of having large NHE at maturity. Therefore, a hedging parameter serves as a proxy 

for the desired level of hedging precision.  

 

                                                 
65

 Trading fees refer to brokerage fees as a compensation for order processing's costs.  
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In Table 10, I have listed the range of hedging parameters for each hedging 

strategy tested in the empirical study. The specific parameters values used in the 

empirical test in this chapter are mostly the same as those used in the simulation test in 

chapter 4. The sole exception is for the BS and LS strategies where the maximum 

rebalancing frequency has been reduced from 60 to 30 days. The reason for reducing the 

frequency is to avoid further reduction in the sample size of options with short maturity 

(i.e., maturity less than 60 days
66

). For all hedging parameters except  , the greater the 

parameter value, the less risk-averse the hedger.  

 

Table 9 Hedging Parameters for Empirical Study 

This table shows the hedging parameters for each hedging strategy used in my empirical study. 

The first column represents the choice of hedging strategy, the second column represents the 

hedging parameter in symbol format, and the last column specifies the range of parameter 

values. 

Hedging strategy Hedging parameter  Range of parameter values 
 

Black–Scholes hedge at fixed time intervals (BS)    (in days) 
 

 

   
 
  

   
  

 

Leland's hedge (LS)    (in days) 
 

 

   
 
  

   
  

 

Henrotte asset tolerance (AT) H (percentage 
change in 
underlying asset 
price)  
 

             

Delta tolerance (DT) 
 

H (option delta)               

Hedging to a fixed bandwidth around delta (FB) 
 

H (option delta)              

Hedging to a variable bandwidth around delta (VB) 
 

  (risk aversion)              

 

5.2.3.1 Mean Variance Test 

Since an option cannot be hedged perfectly in the presence of transaction costs 

by trading the underlying asset, the hedging strategy chosen by a hedger is highly 

dependent on his risk aversion level. A hedger faces a tradeoff between hedging 

                                                 
66

 This is to ensure the testing of BS and LS hedging performance is consistent across their corresponding 

range of hedging parameters (i.e., the number of option samples for testing BS rebalances every day is the 

same as the number of option samples for testing BS rebalances every 30 days).  
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accuracy and transaction costs. Ultimately, a hedger would like to seek a hedging 

strategy that gives reasonable accuracy and low transaction costs. The objective of my 

study is to determine the best hedging strategy considering both hedging accuracy and 

transaction costs.  

 

An MV test is often used in the transaction costs literature to compare the 

performance of different hedging strategies. In my context, this test requires the 

construction of an MV curve for each hedging strategy. For each hedging strategy, I fix 

a value for a hedging parameter chosen from the range listed in Table 9 and calculate 

the standardised NHE for each option sample using the methodology described in 

section 5.2.1. The average and standard deviation of the standardised NHEs for all 

option samples belonging to each moneyness-maturity category are then reported for 

each hedging strategy. Under the MV framework, mean and standard deviation of 

standardised NHE are proxied as return and risk respectively. For each hedging strategy 

and its associated hedging parameter within the range in Table 9, I calculate 30 different 

combinations of risk and return, which form an MV curve of the hedging strategy. An 

example of MV curve construction is provided in section 4.3.1. Note that each hedging 

strategy has its own MV curve as each has a different risk and return profile. In total, I 

have six MV curves that allow me to compare hedging performance consistently. Under 

the MV framework, a rational hedger will always prefer a hedging strategy that 

minimises risk for a given level of return or maximises return for a given level of risk. 

As a result, a hedging strategy is optimal if it offers the highest hedge return that is, 

highest mean NHE relative to the other strategies for a given level of hedge risk or 

standard deviation of NHE
67

. 

 

For ease of comparison, I will present the best hedging strategy under the MV 

framework at three levels of hedging precision: high, moderate and low for each 

moneyness-maturity category. To present the results at different level of hedging 

precision for each moneyness-maturity category, I fit each MV curve by using a 

quadratic function of the following form: 

           

                                                 
67

 Ideally, a hedging strategy performs best if the average NHE is close to zero at minimal hedging risk. 

When I compare six hedging strategies simultaneously, a strategy performs better if it has less deficit (or 

more surplus) in the difference between hedging portfolio value and final payoff for the same level of 

hedge risk.  
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where Y is the mean standardised NHE and X is the standard deviation of standardised 

NHE. a, b and c are fitted parameters. I performed similar fitting in chapter 4
68

. With the 

fitted functions, the mean standardised NHE is a function of the standard deviation of 

standardised NHE. The high, moderate and low hedging precision levels correspond to 

the standard deviation of standardised NHE obtained from the Black–Scholes strategy 

with hedging frequency of 2 days, 10 days and 20 days. With this definition, I am able 

to compare the mean standardised NHE for each hedging strategy at the same level of 

hedging precision. The resulting optimal strategy will be reported in Table 11 in section 

5.3.1. 

 

 In addition, I examine the relative expensiveness of the hedging strategies. I 

perform similar quadratic function fitting to determine the relationship between total 

transaction costs and the standard deviation of standardised NHE. Results in Table 11 

show the best- and worst-performing hedging strategies along with the amount of 

transaction costs saved if the hedger switched from the worst to the best strategy. 

 

5.2.3.2 Stochastic Dominance Test 

 I use two types of SD test in empirical testing. The first test determines if one 

hedging strategy stochastically dominates the remaining five strategies; if a dominance 

relationship exists, then that hedging strategy is optimal. I refer to the first test as the 

all-strategies SD test. The second test compares one strategy to another, pairwise; hence 

I refer to the second test as the pairwise SD test. Given that the true distributions of 

standardised NHE are unknown in practice, SD tests have to rely on an EDF, which is 

subject to sampling error. Hence I employ Barret and Donald (2003) for the pairwise 

SD test and Linton et al. (2005) for the all-strategies SD test. The details of the test 

hypotheses and their associated test statistics are set out in section 4.4.2. 

 

 For both pairwise and all-strategies SD tests, the procedure of obtaining the test 

statistics can be summarised in three steps (detailed in Appendix A). Note that this 

procedure is applied to each moneyness-maturity category. For example, for the ATM 

option (strike to underlying index ratio between 0.97 and 1.00) with medium-term 

maturity, there are 20,500 standardised NHEs for one hedging strategy with selected 

                                                 
68

 Power function tends to have poor fitting for the empirical data. Hence a quadratic function is used here. 
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hedging parameters. These 20,500 observations form an EDF which is then used in both 

SD tests. 

 

 Given the extensiveness of the SD test, I simplify the results presentation to 

three levels of hedging precision: high, moderate and low. The selected hedging 

parameters for each corresponding hedging precision level are presented in Table 10 

below. The choice of hedging parameters for the SD test is the same as for the test in 

Table 5 in chapter 4.  

 

Table 10 Hedging Parameters for Stochastic Dominance Test 

The table shows the hedging parameters selected for each class of hedging strategy. These 

parameters represent three different levels of hedging precision: high, moderate and low. The 

first column presents the name of the hedging strategy, the second column indicates the 

measurement unit of the hedging parameters, and the remaining columns indicate the parameter 

value for its corresponding level of hedging precision. The bracket term in the second column 

specifies the meaning of the parameter symbol. 

Hedging Strategy Hedging Parameters High Moderate Low 

Black–Scholes hedge at fixed time 

intervals (BS) 

 

   (in days) 

2 10 20 

Leland's hedge (LS) 

 

   (in days) 
2 10 20 

Henrotte asset tolerance (AT) 

 

H (percentage change in 

underlying asset price)  

 

2% 4% 6% 

Delta tolerance (DT) 

 

H (option delta) 
0.05 0.1 0.2 

Hedging to a fixed bandwidth around 

delta (FB) 

 

H (option delta) 

0.05 0.1 0.2 

Hedging to a variable bandwidth around 

delta (VB) 

 

  (risk aversion) 

5 0.1 0.001 
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5.3 Results 

5.3.1 Mean Variance Test Results  

 For each moneyness-maturity category, a set of MV curves similar to the form 

in Figure 21 is obtained. To interpret the magnitude of the mean NHE in Figure 21, I 

use the index level of 2160 and 30 days to maturity as an example. For move-based 

strategies, a mean NHE of 0.00001 is equivalent to $0.26. For time-based strategies, a 

mean NHE of 0.00015 is equivalent to $3.86. If I compare the amount of mean NHE 

obtained from the simulation study, -0.1 of mean NHE is equivalent to -$42.90. As a 

result, the mean NHE is smaller in the empirical study than in the simulation study.   

 

 

Figure 21 Mean Variance Curves of the Performance of Alternative Hedging Strategies under 

Delta-Neutral Hedge 

 

 The MV curves in Figure 21 based on actual market data are, not surprisingly, 

less smooth than the MV curves based on simulated data in Figures 10-12. 

Notwithstanding, the basis of comparison of the alternative hedging strategies remains 

the same in both the controlled setting in chapter 4 and the actual market setting here. 

Under the MV framework, the best hedging strategy is the one with an MV curve in the 
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upper left-hand corner. This means that the strategy has the highest positive (or smallest 

negative) mean NHE at the smallest amount of hedging risk (i.e., the standard deviation 

of NHE). An important finding in the figure is that both time-based strategies are in the 

upper left-hand corner in the MV space when they are compared with the move-based 

strategies. This result is opposed to my findings in the simulation study; indeed, a 

discrete time Black–Scholes hedging strategy is the optimal hedging strategy. At first, 

this result may be counter-intuitive, since the ex ante result is that VB should be the 

optimal hedging strategy, but is likely due to the dynamic volatility update in my 

hedging exercise. The volatility input used in the rebalancing activity has effectively fed 

market information into the hedging portfolio. On the other hand, the move-based 

strategies are derived from the framework that assumes constant volatility input since 

inception of the hedging portfolio. A potential explanation as to why VB underperforms 

the time-based strategy is related to the formation of its hedging bandwidth, which is 

negatively related to the option's gamma. The volatility input in my hedging exercise is 

the average implied volatility from call options on the previous day. If implied volatility 

is greater than realised volatility, then VB's hedging bandwidth becomes narrower than 

it should be. This may result in over-hedging and therefore more transactions in the 

underlying asset. Consequently, this leads to more uncertainty in hedging outcome and 

greater variation in transaction costs. Another observation is that the theoretically 

superior LS underperforms BS. LS is derived by incorporating discrete time hedging 

and non-zero transaction costs for the underlying asset. The LS hedging mechanism is 

to make systematic gains over the course of option life in order to offset the expected 

transaction costs of hedging. In my empirical study, the volatility input is non-constant 

and hence the expected systematic gain may be insufficient to cover the transaction 

costs over the hedging period. Nonetheless, the gap between BS and LS decreases when 

the standard deviation of NHE increases (or required hedging precision decreases). This 

finding is similar to my simulation results in chapter 4. In terms of the hedging 

performance of move-based strategies, VB has better performance than AT, DT and FB, 

except when the hedging precision is low (or the standard deviation of NHE is large).  

 

 Table 11 presents the best and the worst delta-neutral hedging strategies for 

across the eighteen moneyness-maturity categories. The table shows that time-based 

strategies are the best hedging strategies most of the time for different moneyness-

maturity groups at different levels of hedging precision. For moderate hedging precision, 
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BS is the optimal hedging strategy across seventeen moneyness-maturity groups. On the 

other hand, LS is optimal for ATM options regardless of the length of option maturity 

when hedging precision is high. It is also often the case that DT and VB are the worst 

hedging strategies
69

. The transaction costs saved by switching from the worst to the best 

hedging strategy are also reported in the same table. The average transaction costs 

saving is 46%, and this amount is approximately constant at high, moderate and low 

hedging precision level. Most of the time, the average transaction costs saving is greater 

when the maturity of the option is longer; however, there are a few exceptions. These 

exceptions may be due to two reasons: (1) each moneyness maturity group has a 

different number of observations, and (2) the market price of options contains the cost 

of other frictions such as liquidity of option price. The transaction costs saving in the 

empirical study is about 31% higher than that obtained in the simulation study. The 

detailed hedging performance ranking results for the six hedging strategies is set out in 

Table 1A of Appendix B. 

 

 

Table 11 Best and Worst Delta-Neutral Hedging Strategy Under Mean Variance Test 

In this table, the S&P 500 index is used as the hedging instrument. Parameters and spot 

volatility implied by all call options of the previous day are used to establish the current 

day's hedges. The hedging portfolio is rebalanced according to the rule of the selected 

hedging strategy until option maturity. For each target call option, its NHE is, as of 

maturity day, the difference between the hedging portfolio value and its payoff 

normalised by initial option ask price and number of days to maturity. The best and the 

worst hedging strategy tested under the MV framework are presented in each panel at 

different level of hedging precision. The standard deviation of the standardised NHE of 

the BS strategy is used as a proxy for the level of hedging precision. The BS strategies 

with hedging frequency of 2 days, 10 days and 20 days represent the hedger who prefers 

high, moderate and low hedging precision correspondingly. The mean NHE for LS, AT, 

DT, FB and VB strategies are derived from the standard deviation obtained from the BS 

strategy through a fitted quadratic function for each strategy. The sample period is from 

January 2, 1996 to September 30, 2009. There are 676,358 observations distributed 

across eighteen moneyness-maturity categories. In each moneyness-maturity category, 

                                                 
69

 The finding in Table 11 that VB appears to be the worst hedging strategy seems to contradict the MV 

curves in Figure 21. The difference however results from using a quadratic function for fitting purposes in 

Figure 21. 
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the first row represents the best-performing hedging strategy and the second row (in 

italic) represents the worst-performing hedging strategy within time-based or move-

based strategies. The third row in the category represents the total transaction costs 

saving by switching from the worst to the best hedging strategy. A negative value 

means saving and a positive value means paying more transaction costs (as a percentage 

of total transaction costs paid when adopting the worst hedging strategy). 

 

Panel A: High Hedging Precision 

    

  

  Moneyness Term-to-Expiration   

  S/X Short   Medium   Long   

        OTM < 0.94  BS  

 

 LS  

 

 FB  

 

  

 LS  

 

 DT  

 

 LS  

 

  

-27% 

 

-30% 

 

-84% 

 

        

 

0.94-0.97  FB  

 

 LS  

 

 FB  

 

  

 AT  

 

 DT  

 

 VB  

 

  

-25% 

 

-46% 

 

-50% 

 

        ATM 0.97-1.00  LS  

 

 LS  

 

 LS  

 

  

 DT  

 

 DT  

 

 BS  

 

  

-40% 

 

-48% 

 

-43% 

 

        

 

1.00-1.03  LS  

 

 LS  

 

 LS  

 

  

 DT  

 

 AT  

 

 BS  

 

  

-55% 

 

-33% 

 

-52% 

 

        ITM 1.03-1.06  LS  

 

 LS  

 

 LS  

 

  

 DT  

 

 AT  

 

 BS  

 

  

-71% 

 

-28% 

 

-56% 

 

        

 

≥ 1.06  FB  

 

 AT  

 

 LS  

 

  

 DT  

 

 DT  

 

 BS  

 

  

-53% 

 

-93% 

 

-48% 

                 

        Panel B: Moderate Hedging Precision 

   

  

  Moneyness Term-to-Expiration   

  S/X Short   Medium   Long   

        OTM < 0.94  BS  

 

 BS  

 

 BS  

 

  

 VB  

 

 VB  

 

 LS  

 

  

-33% 

 

-47% 

 

-91% 
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0.94-0.97  BS  

 

 BS  

 

 BS  

 

  

 VB  

 

 VB  

 

 VB  

 

  

-23% 

 

-43% 

 

-54% 

 

        ATM 0.97-1.00  BS  

 

 BS  

 

 BS  

 

  

 VB  

 

 VB  

 

 VB  

 

  

-10% 

 

-38% 

 

-52% 

 

        

 

1.00-1.03  BS  

 

 BS  

 

 BS  

 

  

 VB  

 

 VB  

 

 VB  

 

  

-24% 

 

-36% 

 

-50% 

 

        ITM 1.03-1.06  BS  

 

 BS  

 

 BS  

 

  

 VB  

 

 VB  

 

 VB  

 

  

-22% 

 

-33% 

 

-50% 

 

        

 

≥ 1.06  FB  

 

 BS  

 

 BS  

 

  

 DT  

 

 DT  

 

 DT  

 

  

-20% 

 

-86% 

 

-46% 

                 

        Panel C: Low Hedging Precision 

    

  

  Moneyness Term-to-Expiration   

  S/X Short   Medium   Long   

        OTM < 0.94  BS  

 

 BS  

 

 BS  

 

  

 VB  

 

 VB  

 

 VB  

 

  

-29% 

 

-37% 

 

-70% 

 

        

 

0.94-0.97  LS  

 

 BS  

 

 LS  

 

  

 DT  

 

 VB  

 

 VB  

 

  

-4% 

 

-38% 

 

-60% 

 

        ATM 0.97-1.00  LS  

 

 BS  

 

 LS  

 

  

 DT  

 

 VB  

 

 VB  

 

  

-63% 

 

-34% 

 

-59% 

 

        

 

1.00-1.03  LS  

 

 DT  

 

 LS  

 

  

 DT  

 

 VB  

 

 VB  

 

  

-71% 

 

-59% 

 

-59% 

 

        ITM 1.03-1.06  LS  

 

 DT  

 

 BS  

 

  

 DT  

 

 VB  

 

 VB  

 

  

-71% 

 

-65% 

 

-56% 
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≥ 1.06  FB  

 

 BS  

 

 LS  

 

  

 DT  

 

 DT  

 

 VB  

 

  

-71% 

 

-92% 

 

41% 

                 

 

5.3.2 Stochastic Dominance Test Results  

 Using Linton et al.’s (2005) SD test method, the all-strategies SD results in 

Table 12 show that there is no SD relationship for deep ITM options and deep OTM 

options for all maturities and all hedging precision levels. I examine the undocumented 

empirical distributions of NHE of each hedging strategy for deep ITM options and deep 

OTM options and compare them with options at other moneyness levels. I find that 

these options tend to have empirical distributions that are clustered together and hence 

no strong preference is concluded from the SD test. Deep ITM options and deep OTM 

options have smaller gamma compared to other moneyness options. This means that the 

hedging portfolios tend to have less rebalancing transactions and the stickiness of delta 

may produce hedging results that have minimal difference among the six hedging 

strategies.  The results also apply to long maturity options across all option moneyness. 

This means that a hedger does not prefer any particular hedging strategy, since all 

hedging strategies are equal under the SD test. As opposed to the MV results, move-

based FB and VB strategies are no worse than either time-based strategy. Indeed, VB is 

the optimal hedging strategy for ATM options with short maturity (when hedging 

precision is high) and ATM options with medium maturity (when hedging precision is 

moderate). The reason is the distribution of NHE for VB has more positive NHEs (long 

right tail) and larger standard deviation than the remaining strategies. The MV test fails 

to consider the impact of thick tail distribution on hedging performance. Using Barrett 

et al.’s (2003) methodology, I also perform a pairwise SD test, however, no meaningful 

results are obtained. The results are grouped similarly to those obtained from the all-

strategies SD test. Hence, the pairwise results are not presented. 

 

Table 12 All-Strategies Stochastic Dominance Test for Delta-Neutral Hedge 

In this table, the S&P 500 underlying index is used as the hedging instrument. 

Parameters and spot volatility implied by all call options of the previous day are used to 

establish the current day's hedges. The hedging portfolio is rebalanced according to the 

rule of selected hedging strategy until option maturity. For each target call option, its 

standardised NHE is, as of maturity day, the difference between the hedging portfolio 
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value and its payoff. The dominating hedging strategy tested under the all-strategies SD 

framework is presented in each panel at a different level of hedging precision. Under 

the null hypothesis of the SD tests, a particular hedging strategy dominates all other 

hedging strategies at the selected hedging precision level. If the null hypothesis is 

rejected, no dominance relation exists. The table displays the highest SD order for 

which the null hypothesis of dominance cannot be rejected. FSD implies that we cannot 

reject the null hypothesis that the strategy dominates all other strategies at selected risk 

aversion levels by first-order. Similarly, SSD means that we can reject the null 

hypothesis that the strategy dominates all other outcomes by FSD, but not that it 

dominates the other outcomes by second-order. Finally, if a strategy is TSD, we can 

reject the null hypothesis that the strategy dominates all other strategies by FSD and 

SSD, but not that it dominates all other strategies in the set by third-order. No SD 

means that we reject the null hypothesis of SD by any other. 
○
,
○○

,
○○○

 denote the 

significance level of the null hypothesis test for SD identifications, i.e. 10%, 5%, 1% 

level respectively. If there is more than one strategy in the moneyness-maturity category, 

then these strategies are ~equal. The sample period is from January 2, 1996 to 

September 30, 2009. There are 676,358 observations distributed across eighteen 

moneyness-maturity categories.  

 

Panel A: High Hedging Precision 

    Moneyness Term-to-Expiration 

  S/X Short Medium Long 

     OTM < 0.94  FB~VB 

(FSD)  

 No SD°°°   No SD°°°  

  

0.94-0.97 

  

LS~FB~VB 

(FSD)  

 

 LS~AT~FB~VB 

(FSD)  

  

No SD°°°  

      

ATM 0.97-1.00  VB 

(FSD)  

 No SD°°°   No SD°°°  

  

1.00-1.03 

 

 VB 

(FSD)  

  

No SD°°°  

 

 No SD°°°  

      

ITM 1.03-1.06  FB~VB 

(FSD)  

 BS~LS~FB~VB 

(FSD)  

 No SD°°°  

  

≥ 1.06 

  

No SD°°°  

 

 No SD°°°  

  

No SD°°°  

          

   

` 
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Panel B: Moderate Hedging Precision 

  Moneyness Term-to-Expiration 

  S/X Short Medium Long 

     OTM < 0.94  No SD°°°   No SD°°°   No SD°°°  

  

0.94-0.97 

 

BS~LS~AT~FB~VB 

(FSD)  

 

BS~LS~AT~FB~VB 

(FSD)  

  

No SD°°°  

     

ATM 0.97-1.00  LS~VB 

(FSD)  

 VB 

(FSD)  

 No SD°°°  

  

1.00-1.03 

  

BS~LS~VB 

(FSD)  

  

VB 

(FSD)  

  

No SD°°°  

     

ITM 1.03-1.06  BS~LS~VB 

(FSD)  

 LS~VB 

(FSD)  

 No SD°°°  

  

≥ 1.06 

  

No SD°°°  

  

No SD°°°  

  

No SD°°°  

          

     Panel C: Low Hedging Precision 

    Moneyness Term-to-Expiration 

  S/X Short Medium Long 

     OTM < 0.94  No SD°°°   No SD°°°   No SD°°°  

  

0.94-0.97 

 

BS~LS~AT~FB~VB 

(FSD)  

 

BS~LS~AT~FB~VB 

(FSD)  

  

No SD°°°  

     

ATM 0.97-1.00  BS~LS~VB 

(FSD)  

BS~LS~AT~FB~VB 

(FSD)  

 No SD°°°  

  

1.00-1.03 

  

BS~LS~VB 

(FSD)  

 

BS~LS~AT~FB~VB 

(FSD)  

  

No SD°°°  

     

ITM 1.03-1.06  BS~LS~VB 

(FSD)  

 BS~AT~FB~VB 

(FSD)  

 No SD°°°  

  

≥ 1.06 

  

No SD°°°  

  

No SD°°°  

  

No SD°°°  

          

 

 

5.4 Delta-Vega-Neutral Hedge 

Empirical evidence provided by Bakshi et al. (1997) and Dumas et al. (1998) 

shows that, in terms of hedging performance, the ad-hoc Black–Scholes model performs 
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no worse than more sophisticated models, especially when one takes account of 

stochastic volatility risk. In addition, Hull and White (1987) use simulated and actual 

foreign currency data from the Philadelphia Exchange to demonstrate that we should 

always hedge for volatility risk if we are given a choice to hedge between gamma and 

vega. Much research has also demonstrated that it is important to control for volatility 

risk. For example, Bakshi et al. show that a simple delta-vega-neutral hedge would have 

improved the hedging performance significantly; the results of the Black–Scholes delta- 

plus vega-neutral strategy and the delta-neutral strategies for the other models that 

considered stochastic volatility are indistinguishable. A simple delta-vega-neutral hedge 

is formed by using a combination of underlying stock and vanilla call options to 

neutralise the sensitivity of the hedge to underlying price risk and volatility risk. One 

should note that jump risk would also have an impact on hedging effectiveness. 

However, Bates (1996), Cox and Ross (1976) and Merton (1976) find that it is difficult 

to create a perfect hedge in the presence of stochastic jump risk. As a result, the hedge 

effectiveness provided in this study is not controlled for jump risk.  

 

 The formation of a delta-vega-neutral hedge is similar to the previously 

described delta-neutral hedge in section 5.2. However, the methodology is slightly 

different due to data limitations. In this section, I first describe the selection of a hedge 

instrument, then demonstrate the procedure of computing the NHEs resulting from the 

delta-vega-neutral hedge, and finally present the results. 

 

5.4.1 Formation of Delta-Vega-Neutral Hedge  

Suppose again that the target option is a short European call option with strike 

price X and τ periods to expiration from time t. The hedger will need a position in (i) 

     shares of underlying spot index (to control for price risk), (ii)      amount of cash 

and (iii)      units of another call option with the same maturity but different strike 

price    (to control for volatility risk). The time t value of this hedging portfolio is 

                            , where             is the (actual market) price of the 

hedge instrumental option with strike price     at time t. Deriving the dynamics for the 

hedging portfolio with those of target call option          , I present the following 

solution: 

     
         

        
,                                                  (5.5) 
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                           ,                                  (5.6) 

                                        ,                         (5.7) 

where            and           are the delta of the target and hedge instrumental option 

as determined in equation (5.3); and            and           are the vega of the target 

and hedge instrumental option as demonstrated in equation (5.8) below: 

   
          

  
,                                                        (5.8) 

and   denotes the volatility of the corresponding option. 

 

 To examine the hedging effectiveness, I set up a hedging portfolio as described 

above. At each time interval, I rebalance the portfolio in a way similar to the delta-

neutral hedge in section 5.2
70

. In the case of the delta-vega-neutral hedge, the hedging 

portfolio has added an additional option to control for volatility risk. As a result, the 

residual cash amount invested after transaction costs is of the following form: 

                                                           

                                                            ,                                                     

(5.9) 

where    is the proportional one-way transaction costs incurred when trading the hedge 

instrumental option. Note that δt is not necessarily a fixed interval. Other than in BS and 

LS strategies, δt is determined by the hedging rule that indicates rebalancing is required 

when conditions are met. The above hedging exercise also means that the hedging 

portfolio will be rebalanced to a delta-vega-neutral hedge position at each rebalancing 

interval. 

 

5.4.2 Net Hedging Error Estimation 

 To derive a hedge effectiveness measure for the delta-vega-neutral hedge, I 

construct the desired hedge as described and rebalance the hedging portfolio according 

to the selected hedging strategy rule. I rebalance the hedging portfolio (whenever it is 

necessary) until the option matures. At maturity, I compute the NHE, being the 

difference between the hedging portfolio value and the option payoff at maturity. The 

computed NHE is of the following form:  

                                                            (5.10) 

                                                 
70

 I use a delta-neutral hedge rebalancing rule to rebalance the delta-vega-neutral hedge portfolio.   
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Given that the selected hedge instrumental option and the target option have the same 

maturity but different strike price, the payoff of the hedge instrumental option is 

therefore equivalent to                . 

 

 Based on the hedge equation (5.9), the data requirement for the empirical test is 

stricter than the previous delta-neutral hedging in section 5.2. The delta-vega-neutral 

hedge requires (i) the availability of prices for the hedge instrumental option at each 

rebalancing point:            and (ii) the computation of    and    for both the target 

and hedge instrumental option. One further complication in my testing is that the option 

prices are only available up to six days before maturity due to the data cleaning 

process
71

. Hence, I need to revise the NHE computation to  

                                                                    )          (5.11) 

where    is the last day where both target and hedge instrumental option prices are 

available in my dataset.             and              are the market prices for both target 

option and hedge instrumental option on   . In Bakshi et al. (1997), the delta-vega-

neutral test does not suffer from an early liquidation problem because their estimation of 

hedging error uses the option prices at the end of each rebalancing interval. A new 

hedging portfolio is reconstructed and new hedging error calculated at the end of next 

rebalancing interval. Given the lack of transaction costs term in their hedging error 

computation, their method does not face the same issue I do. In my revised NHE 

estimation, I have indirectly assumed that the hedger liquidates his position prior to 

maturity. This exercise results in lower transaction costs paid throughout the hedging 

process due to early exit of the position. However, it is not an uncommon practice for 

practitioners to liquidate their position before option maturity. In any event, the relative 

performance comparison is consistent since all strategies are using the same set of 

information to form the delta-vega-neutral hedge and exit the position at the same time
72

. 

 

 There are some occasions when multiple hedge instrumental options (options 

with same maturity but strike price different to the target option specification) match the 

target option after applying the matching criteria (i) and (ii). Under this situation, I 

                                                 
71

 Following Bakshi et al. (1997), options with less than six days to expiration are excluded in order to 

avoid any liquidity-related bias.  
72

 I have also performed the delta-neutral hedge in which the hedging portfolio is liquidated six days prior 

to maturity. The results show that a reduction of 20% in total transaction costs due to the early liquidation 

of the hedging portfolio. 
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select the option that is the furthest away from the ATM position as the matched hedge 

instrumental option. The rationale is that the ATM option has the highest option gamma 

and therefore it will trigger more rebalancing activities due to the hedge instrumental 

option instead of the target option. I aim to reduce the gamma impact as much as 

possible through the selection of a hedge instrumental option. Moreover, if there is a 

choice between ITM and OTM options, I select the OTM option as the hedge 

instrumental option because it is cheaper in terms of transaction costs. Based on the 

requirements above, the remaining sample for this hedging exercise contains 249,111 

matched pairs. As before, I use the current day's spot index and interest rate, but the 

volatility implied by all of the previous day call options to determine the current 

hedging position for the target call. The hedge is rebalanced according to the rule of the 

selected hedging strategy. At time   , I calculate NHE using equation (5.11). NHE is 

then normalised by the underlying index value at the initial hedging portfolio setup date 

and number of days to maturity. This procedure is repeated for each target call option in 

my new sample pool. 

   

5.4.3 Results 

5.4.3.1 Mean Variance Test 

 The MV curves for each hedging strategy generated from the delta-vega-neutral 

hedge are shown in Figure 22. The most striking feature is the zigzag patterns which 

arise from (1) relatively lengthy unhedged periods for the time-based strategies, and (2) 

actual option prices containing frictions other than transaction costs. These results are 

similar across eighteen moneyness-maturity categories. A second key distinction from 

the delta-neutral hedge results in Figure 21 is that the DT and FB MV curves only span 

a small area in the MV space based on the defined range of hedging parameters. This is 

because the DT and FB results are relatively insensitive to the change in hedging 

parameter value. As a result, the best and worst hedging strategies and the transaction 

costs saving in Table 13 for DT and FB are most likely extrapolated at moderate and 

low hedging precision level. I also observe that the mean and standard deviation of 

NHE in the delta-vega-neutral hedge are larger than those in the delta-neutral hedge, 

although the translated dollar value is still small. This finding is different from the 

results in the empirical option hedging literature, such as Bakshi et al. (1997), Nandi 

(1998) and Dumas et al. (1998), whereby ad hoc Black–Scholes hedging will improve 
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hedging performance after controlling for volatility risk. My finding may be due to the 

fact that previous research has not taken account of transaction costs paid in the hedging 

process and the hedging error is calculated based on liquidation of the option at each 

rebalancing interval. As discussed previously, my NHE calculation traces the option 

position until the option matures (for the delta-neutral hedge) or is liquidated early (for 

the delta-vega-neutral hedge). Given the randomness of transaction costs, hedging an 

extra risk dimension may have increased NHE risk through the adjustment of the delta 

position due to the use of a hedge instrumental call option. Nonetheless, my delta-vega-

neutral position is formed only when the rebalancing criterion is triggered. Another 

observation in Figure 22 is that LS performs better than BS since its MV curve always 

sits on the left-hand side of the BS MV curve.  

 

Figure 22 Mean Variance Curves of the Performance of Alternative Hedging Strategies under 

Delta-Vega-Neutral Hedge 

 

 Based on the hedging results presented in Table 13, I find that although there is 

no single strategy that is outstanding in terms of hedging optimality, the MV results are 

relatively consistent across three levels of hedging precision for all options except deep 

ITM and deep OTM options. The detailed of hedging performance ranking results for 
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the six hedging strategies are set out in Table 1B in Appendix C. The average 

transaction costs saving in the delta-vega-neutral hedge is 86% of the total transaction 

costs of the worst hedging strategy. Note that the 46% saving in the delta-neutral hedge 

and 86% savings in the delta-vega-neutral hedge cannot be compared directly. This is 

because the amount of savings is presented on a relative comparison among alternative 

hedging strategies under the same hedge type, that is, using either a delta-neutral or 

delta-vega-neutral hedge. As a result, I compare the total amount of transaction costs in 

dollar value in order to assess the reduction in total transaction costs paid when 

changing from a delta-neutral hedge to a delta-vega-neutral hedge. Relative to the total 

transaction costs paid in the delta-neutral hedge, my unreported results demonstrate that 

there is an average reduction of 29%, 21% and 19% in total transaction costs with 

respect to high, moderate and low hedging precision when a delta-vega-neutral hedge is 

applied. The amount of reduction in total transaction costs is partially due to early 

liquidation of the hedging portfolio in the delta-vega-neutral hedge
73

. The total 

transaction costs in the delta-vega-neutral hedge do not capture the full amount paid at 

the maturity of the option. In addition, the saving decreases when option maturity 

becomes longer and option moneyness increases.   

 

Table 13 Best and Worst Delta-Vega-Neutral Hedging Strategy under Mean Variance Test 

In this table, the S&P 500 index and a call option with the same maturity as the target 

call option but different strike price are used as the hedging instruments. Parameters and 

spot volatility implied by all call options of the previous day are used to establish the 

current day's hedges. The hedging portfolio is rebalanced according to the rule of 

selected hedging strategy until six days prior to maturity. For each target call option, its 

standardised NHE is, as of liquidation day, the difference between the hedging portfolio 

value and its market price. The best and the worst hedging strategy tested under the MV 

framework are presented in each panel at different levels of hedging precision. The 

sample period is from January 2, 1996 to September 30, 2009. The standard deviation 

of the standardised NHE of the BS strategy is used as a proxy for the level of hedging 

                                                 
73

 I have checked the percentage of transaction cost reduction due to the introduction of early liquidation. 

Early liquidation reduces total transaction costs by an average of 67% for rebalancing the portfolio until 

option maturity in my sample. For consistency, the comparison of transaction costs reduction between 

delta-neutral hedge and delta-vega-neutral hedge portfolio is based on the early liquidation samples 

described in section 5.4.2. For example, if we are paying $100 worth of transaction costs for rebalancing 

the portfolio until option maturity, then we are paying only $33 when we liquidate the hedging portfolio 

early due to short hedging time period. This means that implementation of delta-vega-neutral hedge still 

allows the hedger to save some total transaction costs. 
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precision. The BS strategies with hedging frequency of 2, 10 and 20 days represent the 

hedger prefers high, moderate and low hedging precision respectively. The mean 

standardised NHEs for LS, AT, DT, FB and VB strategies are derived from the standard 

deviation obtained from the BS strategy through a fitted quadratic function for each 

strategy. There are 249,111 observations distributed across eighteen moneyness-

maturity categories. In each moneyness-maturity category, the first row represents the 

best-performing hedging strategy and the second row (in italic) represents the worst-

performing hedging strategy within time-based or move-based strategies. The third row 

in the category represents the amount of total transaction costs saving by switching 

from the worst to the best hedging strategy. A negative value means saving and a 

positive value means paying higher transaction costs (as a percentage of total 

transaction costs paid when adopting the worst hedging strategy). 

 

Panel A: High Hedging Precision 

   

  

  Moneyness Term-to-Expiration   

  S/X Short   Medium   Long   

        OTM < 0.94  AT  

 

 DT  

 

 AT  

 

  

 DT  

 

 VB  

 

 DT  

 

  

-100% 

 

-100% 

 

-100% 

 

        

 

0.94-0.97  DT  

 

 DT  

 

 LS  

 

  

 BS  

 

 FB  

 

 DT  

 

  

-100% 

 

-100% 

 

-100% 

 

        ATM 0.97-1.00  LS  

 

 DT  

 

 LS  

 

  

 DT  

 

 FB  

 

 DT  

 

  

-67% 

 

-100% 

 

-99% 

 

        

 

1.00-1.03  LS  

 

 VB  

 

 LS  

 

  

 DT  

 

 FB  

 

 DT  

 

  

-76% 

 

-100% 

 

-95% 

 

        ITM 1.03-1.06  LS  

 

 AT  

 

 FB  
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 DT  

 

 DT  

 

  

-61% 

 

-66% 

 

-100% 

 

        

 

≥ 1.06  LS  

 

 FB  

 

 LS  

 

  

 VB  

 

 DT  

 

 DT  

 

  

-32% 

 

-63% 

 

-90% 
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        Panel B: Moderate Hedging Precision 
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Panel C: Low Hedging Precision 
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1.00-1.03  LS  

 

 VB  
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-95% 
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-24% 

 

-75% 

 

-77% 

     .           

 

5.4.3.2 Stochastic Dominance Test 

 The results from the all-strategies SD test are presented in Table 14. I find that 

there is no SD relationship, that is, all hedging strategies are equal, for the following: (1) 

deep ITM options at high hedging precision, (2) deep OTM options at moderate 

hedging precision and (3) deep ITM and OTM options at low precision. I observe that 

some dominating relationships exist at different level of hedging precision. At a high 

level of hedging precision, AT and (or) LS appear to be the preferred strategy. This 

relationship can be seen from the MV curves, such that LS and AT are sitting at the left-

hand side of the MV curves of other hedging strategies. At moderate hedging precision, 

VB is preferred when options have medium to long maturity. At low hedging precision, 

all strategies are equal except DT and FB. The DT and FB results have to be interpreted 

with caution, as the MV curves for these strategies span very little of the MV space. 

This means that their results at moderate and low hedging precisions are extrapolated 

based on the fitted curve. Nonetheless, the observations do not mean DT and FB are 

statistically dominated by other strategies under the all-strategies test. Last but not least, 

it is not surprising that there is not much difference in hedging performance when the 

hedging precision level is low. This is because the relaxation in achieving accurate 

hedging outcomes leads to less frequent trades, which may avoid some unnecessary and 

costly intermediate trades.   

 

 I also perform a pairwise SD test; the results are not documented here, since the 

exercise produces no meaningful ranking. Although there is no obvious pairwise 
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ranking for the six hedging strategies across moneyness-maturity categories, I 

consistently find that the move-based strategies DT and FB do not dominate the 

remaining strategies. 

 

Table 14 All Strategies Stochastic Dominance Test for Delta-Vega-Neutral Hedge 

In this table, the S&P 500 index and a call option with the same maturity as the target 

call option but a different strike price are used as the hedging instruments. Parameters 

and spot volatility implied by all call options of the previous day are used to establish 

the current day's hedges. The hedging portfolio is rebalanced according to the rule of 

the selected hedging strategy until six days prior to maturity. For each target call option, 

its standardised NHE is, as of liquidation day, the difference between the hedging 

portfolio value and its market price. The dominating hedging strategy tested under the 

all-strategies SD framework is presented in each panel at a different level of hedging 

precision. Under the null hypothesis of the SD tests, a particular hedging strategy 

dominates all other hedging strategies at the selected hedging precision level. If the null 

hypothesis is rejected, no dominance relation exists. The table displays the highest SD 

order for which the null hypothesis of dominance cannot be rejected. FSD implies that 

we cannot reject the null hypothesis that the strategy dominates the strategies at all other 

hedging precision levels by first-order. Similarly, SSD means that we can reject the null 

hypothesis that the strategy dominates all other outcomes by FSD, but not that it 

dominates the other outcomes by second-order. Finally, if a strategy is TSD, we can 

reject the hypothesis that the strategy dominates all other strategies by FSD and SSD, 

but not that it dominates all other strategies in the set by third-order. No SD means that 

we reject the null of SD by any other. 
○
,
○○

,
○○○

 denote the significance level of the 

hypothesis test for SD identifications, i.e. 10%, 5%, 1% level respectively. If there is 

more than one strategy in the moneyness-maturity category, then these strategies are 

~equal. The sample period is from January 2, 1996 to September 30, 2009. There are 

249,111 observations distributed across eighteen moneyness-maturity categories.  

 

Panel A: High Hedging Precision   

  Moneyness Term-to-Expiration 

  S/X Short Medium Long 

     

OTM < 0.94  No SD°°°   No SD°°°   No SD°°°  

  

0.94-0.97 

  

BS~LS~AT 

(FSD)  

  

LS~AT 

(FSD)  

  

BS~LS~AT 

(FSD)  
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ATM 0.97-1.00  AT 

(FSD)  

 AT 

(FSD)  

 LS~AT 

(FSD)  

  

1.00-1.03 

  

AT 

(FSD)  

  

BS~LS~AT 

(FSD)  

  

LS~AT 

(FSD)  

     

ITM 1.03-1.06  LS~AT 

(FSD)  

 LS~AT 

(FSD)  

 LS~AT 

(FSD)  

  

≥ 1.06 

  

LS~AT 

(FSD)  

  

LS~AT 

(FSD)  

  

LS~AT 

(FSD)  

          

     

 

Panel B: Moderate Hedging Precision 

  

  Moneyness Term-to-Expiration 

  S/X Short Medium Long 

     

OTM < 0.94  LS~AT 

(FSD)  

 LS~AT 

(FSD)  

 LS~AT 

(FSD)  

  

0.94-0.97 

  

BS~LS~AT~VB 

(FSD)  

  

AT~VB 

(FSD)  

 

 VB 

(FSD)  

     

ATM 0.97-1.00  LS~AT~VB 

(FSD)  

 VB 

(FSD)  

 VB 

(FSD)  

  

1.00-1.03 

  

BS~LS~AT~VB 

(FSD)  

  

AT~VB 

(FSD)  

  

VB 

(FSD)  

     

ITM 1.03-1.06  BS~LS~AT~VB 

(FSD)  

BS~LS~AT~VB 

(FSD)  

 AT~VB 

(FSD)  

 ≥ 1.06  No SD°°°   No SD°°°   No SD°°°  

          

     

 

Panel C: Low Hedging Precision 

  

  Moneyness Term-to-Expiration 

  S/X Short Medium Long 

     

OTM < 0.94  No SD°°°   No SD°°°   No SD°°°  

  

0.94-0.97 

  

BS~LS~AT~VB 

(FSD)  

 

BS~LS~AT~VB 

(FSD)  

 

BS~LS~AT~VB 

(FSD)  

     

ATM 0.97-1.00  BS~LS~AT~VB 

(FSD)  

BS~LS~AT~VB 

(FSD)  

 AT~VB 

(FSD)  
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1.00-1.03 

  

BS~LS~AT~VB 

(FSD)  

 

BS~LS~AT~VB 

(FSD)  

  

AT~VB 

(FSD)  

     

ITM 1.03-1.06  BS~LS~AT~VB 

(FSD)  

BS~LS~AT~VB 

(FSD)  

 BS~AT~VB 

(FSD)  

  

≥ 1.06 

  

No SD°°°  

  

No SD°°°  

  

No SD°°°  

          

 

 Given that move-based strategies may have controlled for volatility risk 

indirectly through their hedging criteria, which avoid intermediate transaction costs paid 

due to transient market movements, I also use the samples of options that are liquidated 

early (as described in section 5.4.2) to compare the hedging performance of time-based 

strategies using a delta-vega-neutral hedge with the performance of move-based 

strategies using a delta-neutral hedge. Although this type of comparison is inconsistent 

with the hedging setup, such treatment may in some sense give the time-based strategies 

a fairer chance. Further, the poor performance of move-based strategies in the delta-

vega-neutral hedge may be due to overly hedging the volatility risk. There is also a 

potential of introducing more volatility risk instead of controlling the hedging risk. To 

examine whether time-based strategies’ hedging performance under delta-vega-neutral 

hedge is comparable to move-based strategies’ hedging performance under delta-neutral 

hedge, I re-calculate the NHE of move-based strategies using a delta-vega-neutral hedge 

sample. It is worth mentioning that this delta-neutral hedge exercise is different from 

the one in section 5.2.1. For consistency with data limitations in the delta-vega-neutral 

hedge, I trace the hedging portfolio until the target option's liquidation day instead of 

the target option maturity date. The NHE is therefore the difference between hedging 

portfolio value and option price on the liquidation day. I consistently obtain the set of 

MV curves of the form in Figure 23 across all eighteen moneyness-maturity categories. 

We can see that move-based strategies are located in the northwest location, whereas 

time-based strategies are located in the inefficient region. The results show that the 

hedging performance of time-based strategies after controlling for volatility risk is 

worse than the performance of move-based hedging strategies implemented through a 

delta-neutral hedge at all levels of hedging precision.  
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Figure 23 Mean Variance Curves of Time-Based Strategies under Delta-Vega-Neutral Hedge versus 

Move-based Strategies under Delta-Neutral Hedge 

 

 Based on the findings above, I investigate two more questions: (i) will the 

introduction of fixed transaction costs affect the results? (ii) does the hedging 

performance vary between crisis and tranquil markets?
74

 To answer the first question, I 

introduce a fixed transaction costs of 40 cents
75

 for each transaction in the underlying 

index for both delta-neutral and delta-vega-neutral hedges. The findings do not change, 

except there is an increase in total transaction costs paid. To answer the second question, 

I divide the samples into crisis and non-crisis periods according to the periods defined 

in section 5.1.3. For both delta-neutral and delta-vega-neutral hedge, I find that the 

ranking of hedging performance does not vary much between crisis periods (which 

                                                 
74

  I acknowledge an examiner's comment on the importance of how time series variation of illiquidity of 

the underlying stock can potentially affect hedging performance. A classical hedge ratio (which is used in 

my study) may no longer be valid when considering the feedback effect of illiquidity. Further the 

illiquidity problem is also closely linked to time varying transaction costs. This suggests an interesting 

area for future research is to examine how each hedging strategy accommodates the problem of high 

transaction costs during liquidity dries up period.  
75

  The amount of 40 cents refers to the trading fees paid by the market maker in the CBOE and Chicago 

Mercantile Exchange.  
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include the tech bubble and GFC) and non-crisis periods. However, the mean and 

standard deviation of NHE are elevated during crisis periods. In addition, VB's standard 

deviation of NHE increases for the same range of hedging parameters, and therefore its 

MV curve spans further than the remaining hedging strategies. On the other hand, the 

MV curves formed during the LTCM crisis are different from those in the non-crisis 

period. The MV curves formed during the LTCM crisis period (albeit a short one) 

cluster together, and the ranking of hedging performance has no clear pattern.  

 

5.5 Conclusion 

 The performances of six different hedging strategies are examined using S&P 

500 index options obtained from Option Metrics. The sample period covers January 2, 

1996 to September 30, 2009. The empirical tests are performed with reference to Bakshi 

et al. (1997), including investigating various option pricing models such as Black and 

Scholes’ (1973) model as well as more complicated models that allow volatility, interest 

rates and jumps to be stochastic. However, my empirical testing methodology does not 

fully replicate Bakshi et al.’s approach. This is because transaction costs are introduced 

to my empirical test. In order to study the impact of transaction costs, the hedger (who 

hedges a short European call option or replicates a long European call option) is 

assumed to rebalance the hedging portfolio whenever required using a selected hedging 

strategy until the option matures. I assess the hedging performance by using two 

performance comparison frameworks: MV and SD tests.  

 

 I first study the delta-neutral hedging performance of alternative hedging 

strategies. The MV results show that time-based strategies are preferred to move-based 

strategies, contradicting the findings of my simulation study. In particular, the BS 

hedging strategy is the optimal hedging strategy. The average saving from switching 

from the worst to the best hedging strategy is 46% of the total transaction costs paid for 

worst-performing strategy. Based on SD test results, I am only able to draw the 

conclusion that move-based strategies of delta tolerance and hedging with fixed 

bandwidth are no worse than the time-based strategies.  

 

 Given the widely documented importance of controlling volatility risk in option 

hedging process, I test the performance of the delta-vega-neutral hedge using the same 
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set of hedging strategies. The test is designed to control volatility risk in the hedging 

portfolio by adding a European call option (with same maturity as the target option but 

different strike price) position into the existing hedging portfolio, which consists of the 

underlying index and cash. It is assumed that the hedging portfolio is delta-vega-neutral 

at each rebalancing point. In another words, volatility risk is tilted back to a neutral 

position only when the delta hedge is triggered. Given the characteristics of my sample, 

the delta-vega-neutral hedging portfolio will be liquidated before the target option 

matures. Therefore, total transaction costs paid for hedging using this testing approach 

will be less than for the hedging activity that maintains delta-vega-neutral throughout 

the life of the option. My empirical evidence based on two hedging performance 

measures indicates that, after controlling for volatility risk, neither time-based nor 

move-based hedging strategies are consistently optimal. Indeed, the performance of the 

delta-vega-neutral hedge is worse than that of the delta-neutral hedge. Note that my 

simple implementation of move-based strategies introduced some volatility to the 

hedging outcomes. Hence, I also compare the hedging performance of time-based 

strategies implemented using a delta-vega-neutral hedge and move-based strategies 

implemented using a delta-neutral hedge. 

 

 Overall, my results support the contention that time-based strategies, in 

particular, the Black–Scholes hedge at fixed time interval (or the so-called ‘ad hoc 

Black–Scholes hedge’ – Bakshi et al., 1997) is the optimal hedging strategy when 

transaction costs are taken into consideration. A delta-neutral hedge is sufficient for a 

hedger to control total transaction costs paid while attaining the optimal hedging 

outcome for hedging a short European call option. My empirical evidence also shows 

that MV and SD tests conform, so I arrive at the conclusion that time-based hedging 

strategies are superior to move-based hedging strategies when the fat tails of NHE 

distributions are not large. However, the SD test does not enable me to draw a 

conclusion on the exact hedging performance ranking of the six hedging strategies.  
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Chapter 6 

6. Conclusion and Future Research 

 

 Consider the situation where a trader has written a European call option. For 

some reason, the trader is unable to offset (or reduce) his position. Therefore, this sold 

European call option position represents his net exposure to the market. The trader faces 

the problem of how to mitigate his risk exposure, and becomes a hedger. In a Black and 

Scholes’ (1973) economy, he is able to create a riskless hedge by continuously 

rebalancing a portfolio of underlying assets and risk-free bonds throughout the life of 

the option. However, if transaction costs are paid for trading the underlying asset, it is 

no longer viable to engage in the previous hedging strategy. This is because a 

continuously rebalancing hedging strategy will generate infinite transaction costs. On 

the other hand, he has been presented with choices to hedge his position in order to 

maintain a riskless hedge position and minimise transaction costs paid during the 

hedging process.  

 

The literature proposes two major types of hedging strategy: time-based 

strategies and move-based strategies. A hedger who has chosen a time-based hedging 

strategy will rebalance the hedging portfolio regularly. On the other hand, a move-based 

hedging strategy requires the hedger to rebalance the hedging portfolio according to the 

movement of a pre-defined parameter such as change in stock price or change in option 

Greeks. In this thesis, I examine two time-based strategies, being Black and Scholes’ 

(1973) rebalance at fixed time intervals and Leland’s (1985) hedging strategy, and four 

move-based strategies, being Henrotte’s (1993) asset tolerance strategy, Whalley and 

Wilmott’s (1993) delta tolerance strategy, Hodges and Neuberger’s (1989) hedging to a 

fixed bandwidth around delta strategy, and Whalley and Wilmott’s (1997) hedging to a 

variable bandwidth around delta strategy. I sought to identify which of these six 

strategies allows the hedger to incur the lowest transaction costs and yet achieve the 

desired hedging precision. 

 

 The objective of my research is to fill two important gaps in the existing 

literature. First, despite an extensive list of articles describing theoretical models of the 
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pricing and hedging of options in the presence of transaction costs, only four published 

papers compare the performance of competing hedging strategies in a Monte Carlo 

simulation setting. There is also a lack of empirical testing of the performances of 

alternative hedging strategies based on actual market data. Further, research has clearly 

demonstrated that the volatility of the return on an underlying asset changes over time, 

and therefore a hedging portfolio is subject to volatility risk. To this author’s knowledge, 

no published empirical study focuses on delta-vega-neutral hedge performance in the 

presence of transaction costs. Second, existing comparisons of hedging strategies are 

largely based on the MV rule. The MV rule is subject to a restrictive set of assumptions, 

namely that the hedger has a quadratic utility function and /or the returns on asset prices 

are normally distributed. Alternatively, SD rules maximise the investor's expected 

utility and utilise information about the entire probability function of the asset returns. 

As a result, my key original contributions to the existing literature are (1) to examine 

the performance of alternative hedging strategies using actual market data, and (2) to 

compare the results using both mean variance and stochastic dominance rules. The 

findings of my research allow a hedger to make better decisions when actual market 

conditions are taken into account, and to understand better how hedging results may 

differ when different performance assessment methods are used. 

 

 Unlike Bakshi et al.’s (1997) study and other studies of the performance of time-

based hedging strategies, my hedging performance estimation method involves 

estimating the hedging error and cumulative transaction costs at maturity of the option. 

Bakshi et al. compute the hedging error as the difference between the market value of an 

option contract and the value of the hedging portfolio constructed at fixed time intervals. 

However, there is a major difference between time-based strategies and move-based 

strategies. For time-based strategies, a hedging error can be calculated on the day 

rebalancing takes place. On the other hand, move-based strategies require constant 

monitoring of movement of the underlying asset price so that the hedging portfolio is 

rebalanced whenever a change in the underlying asset return or delta breaches the 

predefined hedging bandwidth. Hence, the time interval to calculate a hedging error is 

random. To distinguish my work from the hedging literature without transaction costs, I 

term the difference between option payoff at maturity and hedging portfolio value after 

transaction costs as NHE instead of hedging error.  
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 With reference to the existing literature, I use the MV rule as a starting point for 

consistent comparison of the performance of the six alternative hedging strategies. The 

MV rule determines that one strategy is superior to another if it produces a greater mean 

NHE given the same level of variance (or standard deviation) of NHE or vice versa. The 

simulation results show that move-based strategies outperform time-based strategies in 

a delta-neutral hedge. In particular, VB has the best performance under the MV 

framework. In contrast, my empirical study demonstrates that time-based strategies are 

better than move-based strategies. Based on my analysis of S&P 500 index option 

historical prices, a Black–Scholes hedge at a fixed time interval is the optimal hedging 

strategy. In my testing, I also use an SD rule to determine the superiority of hedging 

performance at first, second and third order. SD rules require fewer assumptions about 

NHE distribution, which gives the results greater explanatory power. To carry out an 

SD test, the distributions of NHEs are obtained. The SD test is based on (i) Barrett and 

Donald’s (2003) Kolmogorov–Smirnov type test, which is able to test SD consistently 

by assuming each strategy is independent from each other, and (ii) Linton et al.’s (2005) 

test for whether a single strategy dominates the remaining five hedging strategies. I find 

that the MV results are consistent with the SD results in identifying the outperforming 

class of hedging strategies (e.g. time-based strategies outperform move-based strategies 

in a delta-neutral hedge) when the fat tails of the NHE distribution are not large. 

However, the SD test does not permit me to draw a conclusion about the hedging 

performance ranking of the six hedging strategies in my empirical test, due to the 

absence of a strong dominance relationship. Another important result obtained in my 

simulation is that, if a hedger is willing to switch to a better hedging strategy, he can 

save an average of 15% of total transaction costs paid for the inferior strategy. The 

average transaction costs saving decreases when the required hedging outcome is less 

precise. More interestingly, the estimated cost saving was as high as 46% in my 

empirical test, and the magnitude of saving is relatively insensitive to high, moderate 

and low hedging precision.  

 

 In empirical testing it is possible to obtain a positive average NHE for a hedging 

strategy. This may be because the market data are inclusive of different types of market 

frictions, such as transaction costs, in trading the underlying asset and option bid-ask 

spread. Both methods tend to prefer a hedging strategy with the largest positive NHE 

due to their assumption that the hedger prefers more to less. In contrast, the existing 
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literature on empirical testing of the performance of alternative option hedging in the 

presence of transaction costs does not report positive NHE results; this is because those 

studies compare hedging performances in simulation settings. The frictionless Black–

Scholes price is often used as the premium received when forming the hedging portfolio 

initially. Given that the Black–Scholes price does not consider transaction costs, 

average NHEs in simulations are always negative. Therefore, the resulting optimal 

hedging strategy is that with the least negative average NHE, which coincides with the 

strategy that closely replicates the short option position.   

 

 I supplement my findings by extending my examination beyond the delta-neutral 

hedge in empirical tests. Given that volatility risk in hedging has been widely 

documented in empirical studies, I study how hedging performance can vary when the 

hedger maintains a delta-vega-neutral hedge. To control for volatility risk throughout 

the hedging period, I include a European call option position (either long or short) to 

neutralise the vega of the hedging portfolio that consists of underlying asset and cash. It 

is important to note that my testing methodology assumes that the hedging portfolio will 

have zero delta and zero vega whenever the portfolio is rebalanced according to the 

existing set of hedging strategies. In another words, volatility risk is controlled when a 

delta hedge is triggered. As opposed to delta-neutral hedge results, I find neither time-

based nor move-based strategies are consistently preferred. My ad hoc implementation 

of a delta-vega-neutral hedge may over-hedge volatility risk when using move-based 

strategies. Therefore, I also perform a simple hedging performance comparison between 

time-based strategies using a delta-vega-neutral hedge and move-based strategies using 

a delta-neutral hedge. I find that the Black–Scholes hedge at a fixed time interval is the 

optimal hedging strategy, and a delta-neutral hedge is sufficient in achieving optimal 

result for the hedger. 

 

 In contrast to the simulation study, in the empirical study the theoretically 

optimal hedging strategy, VB, appears to be the worst under the MV test. I show that 

switching from the VB hedging strategy to one of the time-based strategies proposed in 

my study allows a hedger to save an average of 37% of the transaction costs paid for the 

VB strategy at moderate and low hedging precision. This suggests that a hedger should 

try to avoid using a VB strategy in order to achieve an optimal tradeoff between 

hedging precision and transaction costs. In addition, my research shows that a delta-
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neutral hedge achieves a better hedging outcome than the ad hoc delta-vega-neutral 

hedge when time-based strategies are the preferred choices. My study provides useful 

information for the hedger about the magnitude of transaction costs that can be saved 

and the best options to choose when he considers switching hedging strategy. For a 

hedger who has restrictive access to other derivatives when forming a hedging portfolio, 

my research shows that the hedger is able to achieve a favourable hedging outcome 

without using another derivative hedge instrument as long as he is adopting a Black–

Scholes hedge at a fixed time interval and forming a delta-neutral hedge for his short 

position. From a practicality perspective, if a hedger is unable to change an existing 

strategy due to contractual obligations, my study allows him to analyse how much 

money to set aside in order to cover the potential loss due to non-optimal choice of 

hedging strategy.   

 

 Although this research was prepared and conducted carefully, it has some 

limitations. First, I assume the hedger will hold the option position until maturity. NHEs 

obtained from a delta-neutral hedge are likely to be larger than the realised amount. This 

is because a market maker will seldom hold an option position until maturity. Instead, a 

hedger will close his position (by entering into an offsetting position) as soon as 

possible in order to eliminate or reduce his risk exposure. Therefore, the NHE reported 

in my study may serve as, on average, the most a market maker could have lost if he 

holds the position until maturity. Second, I assume that the hedger will only use one 

strategy to hedge the option. This assumption eliminates the possibility that he changes 

strategy when he discovers non-optimal hedge results. If option maturity is not long 

dated, it is likely that a single strategy will better serve the hedging objective. Adoption 

of a single hedging strategy can also be a true reflection of market practice, whereby 

hedging activities can be restricted by a firm’s policy or portfolio mandate. Third, 

transaction costs are a fixed proportion of the underlying asset price and the fixed 

amount does not change over time. In fact, transaction costs are time-varying, especially 

during a market downturn. In addition, the amount of transaction costs paid by a hedger 

depends on his market power. The assumption of 50 basis points would be too high for 

a hedger who transacts frequently and in large amounts. Finally, for the delta-vega-

neutral hedge, my results are limited to the assumption that the hedger has an existing 

option to hedge against volatility risk. In addition, the vega of the hedging portfolio is 

only neutralised according to the hedging criteria derived from the selected strategies. It 
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is noted that my selected strategies are mostly based on the formation of a delta-neutral 

position. Therefore, my results demonstrate how a simple adjustment can reduce the 

volatility risk of a hedge position rather than identify the optimal delta-vega-neutral 

hedge strategy.    

 

Throughout the thesis, I identify various avenues of research that require further 

investigation.  

 

First, time-varying transaction costs are observed in market data. In particular, 

the magnitude of transaction costs during tranquil and crisis periods can be very 

different. Market participants are less willing to transact during crisis periods, and 

therefore may request a premium in order to transact. Consequently, transaction costs 

are expected to increase during crises. A useful future study would involve examining 

whether the optimal hedging strategy varies with the change in transaction costs over 

time. For example, is it sufficient for a hedger to adopt one strategy when market 

conditions have changed significantly since hedging inception? Or, is the choice of the 

hedging strategy dependent on market conditions? It would also be valuable to 

understand if hedging portfolio performance changes significantly under different 

market conditions.  

 

Second, the delta-vega-neutral hedge studied in this thesis is based on the same 

hedging criteria derived from the delta-neutral hedge. In contrast, Gondzio et al. (2003) 

propose a stochastic optimisation model for hedging options that takes account of 

stochastic volatility, transaction costs and trading restrictions. In their model, hedging 

errors are only minimised at the first few trading dates rather than every trading date up 

to option maturity. The formation of a delta-vega-neutral hedge model consists of 

underlying stock, cash and different options to hedge at different trading dates. Gondzio 

et al.’s simulation study finds that a delta-vega-neutral hedge model can improve 

hedging performance considerably compared to traditional hedging strategies. To 

overcome the limitations of my own study, an extension of my empirical study with 

respect to the optimal delta-vega-neutral hedge rebalancing rule, along the lines of the 

model introduced by Gondzio et al., will provide insights about the optimal hedging 

approach.  
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Third, the hedging parameters I use in my SD test were chosen arbitrarily to a 

certain extent. Future research on how to derive the hedging parameters for each 

hedging strategy at the same level of hedging precision, without relying on the standard 

deviation of NHE, will allow the results to be applied on a more general basis. 

 

 My research has filled important gaps in the literature through addressing 

unanswered research questions, finding that: (1) the superiority of time-based strategies 

to move-based strategies is strongly evident in historical S&P 500 index option data, 

and (2) MV and SD results conform, to arrive at the ultimate conclusion that time-based 

strategies have stronger hedging performance than move-based strategies. Unlike the 

MV test, the SD test is able to provide a precise performance ranking for hedging 

strategies only when a strong a dominance relationship is present. This research allows 

a hedger to understand that the choice of hedging strategy has a significant impact on 

the amount of total transaction costs paid for the hedging process, and that this 

ultimately affects the performance of a hedging position. It also strengthens confidence 

in using the MV rule as a consistent performance measure in assessing hedging outcome 

in the presence of transaction costs. 
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Glossary Table 

Term Acronym Description 

Hedging error HE The difference between hedging portfolio value 
(exclusive of transaction costs) and option payoff at 
maturity. 
 

Net hedging error NHE For a delta-neutral hedge, the difference between 
hedging portfolio value (inclusive of transaction costs) 
and option payoff at maturity. 
 
For a delta-vega-neutral hedge, the difference 
between hedging portfolio value (inclusive of 
transaction costs) and hedge instrumental option 
price on liquidation date. 
 

Target option N/A The short European call option to be hedged or long 
European call option to be replicated. 
 

Hedge instrumental option N/A The long European call option that has the same 
maturity as the target option but at a different strike 
price. 
 

Mean variance curve N/A A set of means and standard deviations of NHE 
corresponding to each hedge parameter of a hedging 
strategy. 
 

Empirical distribution function EDF The distribution function associated with the 
empirical measure of the sample. It is a step function 
that jumps up by 1/N at each of the N data points. 
The function will converge with probability one. 
 

Probability density function PDF A function that describes the relative likelihood for 
the NHE to take on a given value. 
 

Mean variance test MV Test rule based on the mean and variance (or 
standard deviation = square root of variance). A 
strategy has the best performance if it has the highest 
mean NHE (greatest positive value or lowest negative 
value) for the same level of standard deviation of NHE 
or vice versa. 
 

Stochastic dominance test SD Test rule based on the whole distribution of NHE. 
Comparison is formed by constructing an EDF and 
testing at different order using the EDF and its 
derivatives. 
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Appendix A Stochastic Dominance Test Procedure 

Let   and   be the sample size of strategy A and B. The empirical distribution 

functions used to construct the statistical tests are respectively,  

 

   
         

 
         

     and     
         

 
         

   .                   (A1) 

For higher order, 

 

   
           

          
 

  
 for s = 2, 3                                (A2) 

   
           

          
 

  
 for s = 2, 3.                                (A3) 

 

Pairwise stochastic dominance test 

The hypothesis for testing the dominance relationship is 

                                                               

                                                                        

where s = 1,2 and 3. 

The test statistics for first and s
th

 order of SD can be written in the following form: 
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     for s = 2, 3.                  (A5) 

 

All strategies stochastic dominance test 

The hypothesis for testing the dominance relationship for a particular hedging strategy 

is 

                                                                        

                                                                                

where s = 1,2 and 3. 
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Let N denotes the full sample size of normalised NHE observations of strategy     for k 

= 1,...,   and i = 1,.., . The test statistic   
   

    for the full sample is computed below: 

  
                           

   
       

   
     for s = 1,2 and 3,            (A6)      

where    
   

              

 
          

    and    
           

          
 

  
 for s =2,3. 

Let χ denote the union of supports of all cumulative distributions of the hedging strategy, 

      for j = 1,…, . 

 

The three-step procedure below is used to obtain the test statistics for both pairwise and 

all-strategies SD tests. 

 

Step1: 

Compute the test statistics    
   

 and   
   

    for         using equations defined in 

(A1)- (A6).  

 

Step 2: 

Use a bootstrapping method to recompute the test statistics as detailed in the following.  

 

I define N as the full sample size of NHE observations for each hedging strategy and 

                     as the sample pool of observations where      is     

observation of NHE of hedging strategy k where k = 1, 2, ..., K and  i = 1, 2, ..., N. In my 

simulation study, N is 200,000 and K is 6. For each bootstrapping iteration, a random 

subsample   of b observations of NHE of each hedging strategy is selected from  , for 

example,                  where                 and i=N-b+1. Kläver 

(2005) recommends a circular blocking method to recompute the test statistics so that 

observations at the beginning and the end of the distribution are equally considered, as 

well as the observations in the middle of the full distribution. Hence, the test statistics in 

(A1)-(A6) are computed for N-b+1 different subsamples               where 

        and additionally for the subsamples                       where 

i=N-b+2,...,N. The idea is that each subsample    represents a sample of the true 

sampling distribution. For each   , I calculate the test statistics    
   

 and   
   

   . Note 

that the test statistics are multiplied by the square root of the subsample size b. The 

resulting distribution of the subsampling statistics will approximate the sampling 
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distribution of the full sample statistics obtained from Step 1. Following Kläver (2005), 

the subsample size in my computation is          .  

 

Step 3:  

Compute the rejection rate of the null hypothesis 

   
                                   for pairwise SD test  

and  

  
                                                                        for all 

strategies SD test. The rejection rate is denoted as     
   

 
 

 
      

   
    

    
    and 

   
   

    
 

 
     

   
      

   
    

    for s = 1 ,2 and 3. 1(.) is an indicator function. 

The rejection rate can be interpreted as the number of occurrences when sub-sampling 

statistics    
   

 and   
   

    are greater than the full-sample test statistics    
   

 and   
   

   .  
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Appendix B Delta-Neutral Hedge Additional Results 

Mean variance results  

Table 1A shows the pairwise ranking of the six hedging strategies at each level of hedging precision based on the MV test. 

Panel A: High Hedging Precision 

    Moneyness Term-to-Expiration 

  S/X Short Medium Long 

OTM < 0.94  BS>FB>VB>AT>DT>LS   LS>FB>BS>VB>AT>DT   FB>BS>AT>DT>VB>LS  

     

 

0.94-0.97  FB>BS>LS>VB>DT>AT   LS>FB>BS>VB>AT>DT   FB>DT>LS>AT>BS>VB  

     ATM 0.97-1.00  LS>FB>BS>VB>AT>DT   LS>FB>BS>VB>AT>DT   LS>FB>DT>AT>VB>BS  

     

 

1.00-1.03  LS>FB>BS>VB>AT>DT   LS>FB>BS>DT>VB>AT   LS>FB>DT>AT>VB>BS  

     ITM 1.03-1.06  LS>FB>BS>VB>AT>DT   LS>DT>FB>BS>VB>AT   LS>FB>DT>AT>VB>BS  

     

 

≥ 1.06  FB>LS>AT>VB>BS>DT   AT>LS>FB>VB>BS>DT   LS>AT>DT>FB>VB>BS  
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Panel B: Moderate Hedging Precision 

    Moneyness Term-to-Expiration 

  S/X Short Medium Long 

OTM < 0.94  BS>FB>LS>AT>DT>VB   BS>LS>FB>DT>AT>VB   BS>FB>AT>DT>VB>LS  

     

 

0.94-0.97  BS>FB>LS>DT>AT>VB   BS>LS>FB>DT>AT>VB   BS>FB>LS>DT>AT>VB  

     ATM 0.97-1.00  BS>FB>LS>DT>AT>VB   BS>LS>FB>DT>AT>VB   BS>DT>FB>LS>AT>VB  

     

 

1.00-1.03  BS>FB>LS>DT>AT>VB   BS>LS>FB>AT>DT>VB   BS>DT>FB>LS>AT>VB  

     ITM 1.03-1.06  BS>LS>FB>DT>AT>VB   BS>LS>FB>AT>DT>VB   BS>DT>LS>FB>AT>VB  

     

 

≥ 1.06  FB>BS>LS>AT>VB>DT   BS>AT>LS>FB>VB>DT   BS>LS>AT>FB>VB>DT  
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Panel C: Low Hedging Precision 

    Moneyness Term-to-Expiration 

  S/X Short Medium Long 

OTM < 0.94  BS>LS>FB>DT>AT>VB   BS>LS>FB>DT>AT>VB   BS>LS>FB>AT>DT>VB  

     

 

0.94-0.97  LS>BS>FB>AT>VB>DT   BS>LS>AT>FB>DT>VB   LS>BS>FB>AT>DT>VB  

     ATM 0.97-1.00  LS>VB>BS>FB>AT>DT   BS>LS>AT>FB>DT>VB   LS>BS>FB>AT>DT>VB  

     

 

1.00-1.03  LS>BS>AT>FB>VB>DT   DT>LS>BS>AT>FB>VB   LS>BS>FB>AT>DT>VB  

     ITM 1.03-1.06  LS>BS>AT>FB>VB>DT   DT>AT>BS>LS>FB>VB   BS>LS>FB>DT>AT>VB  

     

 

≥ 1.06  FB>LS>BS>AT>VB>DT   BS>LS>FB>VB>AT>DT   LS>BS>AT>DT>FB>VB  
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Appendix C Delta-Vega Neutral Hedge Additional Results 

Mean variance results  

Table 1B shows the pairwise ranking of the six hedging strategies at each level of hedging precision based on the MV test. 

Panel A: High Hedging Precision 

    Moneyness Term-to-Expiration 

  S/X Short Medium Long 

OTM < 0.94  AT>BS>VB>LS>FB>DT   DT>LS>AT>BS>FB>VB   AT>LS>VB>FB>BS>DT  

     

 

0.94-0.97  DT>FB>AT>LS>VB>BS   DT>LS>AT>BS>VB>FB   LS>AT>BS>FB>VB>DT  

     ATM 0.97-1.00  LS>AT>BS>FB>VB>DT   DT>VB>AT>LS>BS>FB   LS>AT>BS>VB>FB>DT  

     

 

1.00-1.03  LS>AT>BS>VB>FB>DT   VB>LS>AT>BS>DT>FB   LS>AT>BS>VB>FB>DT  

     ITM 1.03-1.06  LS>AT>DT>FB>BS>VB   AT>LS>FB>BS>VB>DT   FB>LS>AT>BS>VB>DT  

     

 

≥ 1.06  LS>FB>AT>DT>BS>VB   FB>LS>AT>BS>VB>DT   LS>AT>BS>VB>FB>DT  
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Panel B: Moderate Hedging Precision 

    Moneyness Term-to-Expiration 

  S/X Short Medium Long 

OTM < 0.94  FB>VB>BS>LS>AT>DT   LS>BS>DT>AT>VB>FB   AT>LS>BS>FB>VB>DT  

     

 

0.94-0.97  DT>FB>VB>BS>LS>AT   DT>AT>LS>BS>VB>FB   LS>BS>AT>VB>FB>DT  

     ATM 0.97-1.00  AT>LS>BS>VB>FB>DT   DT>VB>AT>LS>BS>FB   LS>AT>BS>VB>FB>DT  

     

 

1.00-1.03  LS>AT>BS>VB>FB>DT   VB>LS>BS>AT>DT>FB   AT>LS>BS>VB>FB>DT  

     ITM 1.03-1.06  LS>AT>BS>FB>VB>DT   BS>AT>LS>FB>VB>DT   FB>AT>LS>BS>VB>DT  

     

 

≥ 1.06  LS>FB>BS>DT>AT>VB   FB>BS>LS>AT>VB>DT   AT>LS>BS>VB>FB>DT  
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Panel C: Low Hedging Precision 

    Moneyness Term-to-Expiration 

  S/X Short Medium Long 

OTM < 0.94  FB>VB>BS>LS>AT>DT   DT>LS>BS>AT>VB>FB   AT>FB>LS>BS>VB>DT  

     

 

0.94-0.97  DT>FB>VB>LS>BS>AT   DT>AT>LS>BS>VB>FB   LS>BS>AT>FB>VB>DT  

     ATM 0.97-1.00  LS>BS>AT>VB>FB>DT   DT>VB>AT>LS>BS>FB   LS>AT>BS>VB>FB>DT  

     

 

1.00-1.03  LS>AT>BS>VB>FB>DT   VB>LS>BS>AT>DT>FB   LS>BS>AT>VB>FB>DT  

     ITM 1.03-1.06  LS>BS>AT>FB>VB>DT   BS>AT>LS>FB>VB>DT   FB>LS>BS>AT>VB>DT  

     

 

≥ 1.06  LS>FB>BS>DT>VB>AT   BS>LS>AT>FB>VB>DT   BS>LS>AT>VB>FB>DT  
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