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Abstract: 15 

Recombination in alphaherpesviruses was first described more than sixty years ago. Since then, 16 

different techniques have been used to detect recombination in natural (field) and experimental 17 

settings. Over the last ten years, next-generation sequencing (NGS) technologies and bioinformatic 18 

analyses have greatly increased the accuracy of recombination detection, particularly in field 19 

settings, thus contributing greatly to the study of natural alphaherpesvirus recombination in both 20 

human and veterinary medicine. Such studies have highlighted the important role that natural 21 

recombination plays in the evolution of many alphaherpesviruses. These studies have also shown 22 

that recombination can be a safety concern for attenuated alphaherpesvirus vaccines, particularly in 23 

veterinary medicine where such vaccines are used extensively, but also potentially in human 24 

medicine where attenuated varicella zoster virus vaccines are in use. This review focuses on the 25 

contributions that NGS and sequence analysis have made over the last ten years to our 26 

understanding of recombination in mammalian and avian alphaherpesviruses, with particular focus 27 

on attenuated live vaccine use. 28 

 29 
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1. Introduction 50 

Viruses belonging to the order Herpesvirales have a double stranded DNA genome and have been 51 

isolated from a wide variety of host including mammals, birds, reptiles, fish and invertebrates 52 

(Davison, 2010). Three large subfamilies arose within the family Herpesviridae over 80 million 53 

years ago. One of these, the subfamily Alphaherpesvirinae, includes avian and mammalian 54 

alphaherpesvirus lineages (Davison, 2010; McGeoch et al., 1995). The evolution of many viruses in 55 

this subfamily has been attributed, in part, to the process of recombination. The contribution that 56 

recombination makes to the evolution and diversity of alphaherpesviruses is of particular 57 

importance as these viruses have a DNA polymerase with a highly efficient proof-reading activity 58 

and exonuclease activity (Javier et al., 1986; Lee et al., 2012; Thiry et al., 2005), resulting in low 59 

point genetic mutation rates. In herpes simplex virus-1 (HSV-1) the mutation rate is as low as 0.026 60 

to 0.0027 (Drake and Hwang, 2005). 61 

Recombination is the process in which new genetic material (offspring) is generated by shuffling 62 

two different DNA sequences from viruses infecting the same host cell at the same time. High rates 63 

of in vivo intra-species homologous recombination have been demonstrated after experimental co-64 

inoculation of different strains of HSV-1 into mice (Kintner et al., 1995), bovine herpesvirus 1 65 

(BoHV-1) into calves (Schynts et al., 2003), and pseudorabies virus (PRV) into sheep and pigs 66 

(Christensen and Lomniczi, 1993; Henderson et al., 1990). In vitro intra-species co-inoculation 67 

experiments have demonstrated recombination in different alphaherpesviruses strains into cell 68 

cultures, including HSV-1 (Kintner et al., 1995), BoHV-1 (Muylkens et al., 2009), varicella zoster 69 

virus (VZV) (Dohner et al., 1988),  feline herpesvirus 1 (FeHV-1)  (Fujita et al., 1998) and PRV 70 

(Henderson et al., 1990). In vitro recombination has been detected at a lower rate than in in vivo 71 

experiments, possibly due to the reduced number of viral replication cycles possible in cell cultures. 72 

Therefore, factors that influences the number of viral replication cycles, such as latency/reactivation 73 

and use of vaccines that replicate after vaccination, should be considered as factors that may 74 

increase the likelihood of recombination. Recombination occurs most commonly between different 75 
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strains of the same virus species (intra-species recombination) but inter-species recombination is 76 

also possible and has been detected in experimental studies between caprine herpesvirus-1 and -2, 77 

and also between BoHV-1 and bovine herpesvirus-5 (BoHV-5) (Meurens et al., 2004). In field 78 

samples inter-species recombination has been detected between equine herpesviruses 1 and 4 79 

(EHV-1 and EHV-4, respectively) (Pagamjav et al., 2005).  80 

Many biological features of alphaherpesviruses, including their infection of epithelial surfaces, 81 

rapid infectious cycle, establishment of latent infection with periodic reactivation and high 82 

prevalence of infection in many host populations, create a favourable environment for co-infection 83 

of host cells, and hence for recombination. The viral, host and cell conditions that influence the 84 

likelihood of recombination in vivo and in vitro under laboratory conditions have been reviewed 85 

previously (Thiry et al., 2005). The molecular basis of alphaherpesvirus recombination has also 86 

been recently reviewed and is hypothesized to be similar to that described for lambda 87 

bacteriophages (Lo Piano et al., 2011; Weller and Sawitzke, 2014). 88 

Early studies of alphaherpesvirus recombination used strain virulence as a marker to detect 89 

recombinants (Wildy, 1955). Analysis of partial genome sequences were then used extensively to 90 

study recombination in several alphaherpesviruses, using tools such as PCR followed by restriction 91 

endonuclease cleavage fragment analysis of PCR products (PCR plus restriction fragment length 92 

polymorphism [PCR-RFLP]), gene deletion mutants, PCR hydrolysis probe assays and 93 

bioinformatic comparisons of partial genome sequences to detect recombination (Bowden et al., 94 

2004; Christensen and Lomniczi, 1993; Dangler et al., 1993; Dohner et al., 1988; Glazenburg et al., 95 

1994; Henderson et al., 1990; Javier et al., 1986; Kintner et al., 1995; Muylkens et al., 2009; 96 

Norberg et al., 2004; Sakaoka et al., 1995; Sakaoka et al., 1994; Schynts et al., 2003; Umene and 97 

Sakaoka, 1997). More recently, lower costs, improved technologies and greater access to next 98 

generation sequencing (NGS) techniques (Capobianchi et al., 2013; Pareek et al., 2011), statistical 99 

analysis (Bruen et al., 2006; Posada, 2002) and software to detect and estimate the likelihood of 100 

recombination (Huson and Bryant, 2006; Kosakovsky Pond et al., 2006; Kuhner, 2006; Lole et al., 101 
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1999; Martin et al., 2010; Martin et al., 2011; Martin et al., 2015; Pond and Frost, 2005; Wilson 102 

and McVean, 2006) have helped us to better understand recombination, and thereby provide 103 

insights into the role of recombination in the natural evolution of alphaherpesviruses (Burrel et al., 104 

2015; Hughes and Rivailler, 2007; Kolb et al., 2013; Kolb et al., 2015; Lamers et al., 2015; Lee et 105 

al., 2013; Lee et al., 2012; Newman et al., 2015; Norberg et al., 2015; Norberg et al., 2007; 106 

Norberg et al., 2006; Norberg et al., 2011; Peters et al., 2006; Szpara et al., 2014; Vaz et al., 2016a; 107 

Vaz et al., 2016b; Ye et al., 2016; Zhao et al., 2015).  108 

This review aims to summarise and update our understanding of natural recombination in 109 

alphaherpesviruses and the influence of natural recombination on viral evolution, focusing on the 110 

contributions that full genome sequencing and sequence analysis have made to this field over the 111 

last 10 years. This review covers natural recombination in human alphaherpesviruses, other 112 

mammalian alphaherpesviruses and avian alphaherpesviruses. 113 

 114 

2. Natural recombination in human alphaherpesviruses   115 

Herpes simplex virus-1, -2 and VZV are important causes of human disease worldwide. Infection 116 

with HSV-1 is commonly associated with ulcerated oral lesions and HSV-2 with genital lesions, 117 

although both viruses can cause lesions at both anatomical sites (Lowhagen et al., 2002). 118 

Additionally, HSV-1 can cause keratitis and subsequent blindness, along with sporadic encephalitis 119 

(Liesegang, 2001). Infection with VZV causes varicella (chickenpox) and herpes zoster (shingles) 120 

(Zerboni et al., 2014). Evidence of natural recombination has been available since 2004 for HSV-1, 121 

2003 for VZV, and 2007 for HSV-2. These studies have demonstrated that these three human 122 

alphaherpesviruses show differences in recombination (Table 1). 123 

 124 

2.1 Herpes simplex virus-1  125 

Early HSV-1 studies in mice demonstrated that a high proportion of recombinant viruses were 126 

generated following co-inoculation, and many of the recombinants had higher levels of virulence 127 
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than the parental strains (Brandt and Grau, 1990; Kintner et al., 1995). This potential for 128 

recombination to result in increased virulence highlighted the importance of studying HSV-1 129 

recombination in clinical settings. In 2004, Bowden et al., sequenced approximately 4% of the 130 

HSV-1 genome in 14 clinical samples from the UK and Korea, performed phylogenetic network 131 

analyses on the data to estimate recombination, and concluded that recombination plays a major 132 

role in generating diversity within HSV-1 (Bowden et al., 2004). In the same year, Norberg et al., 133 

sequenced approximately 2.3% of the HSV-1 genome in 28 clinical samples from Sweden, also 134 

detecting recombination (Norberg et al., 2004).  135 

From 2011 onwards, techniques shifted to detection of natural HSV-1 recombination by 136 

bioinformatic analysis of whole genome sequences obtained by NGS, providing a higher level of 137 

accuracy in identifying and characterising these phenomena (Kolb et al., 2011; Kolb et al., 2013; 138 

Norberg et al., 2011; Szpara et al., 2014). In 2011 the genomes of ten clinical and two laboratory 139 

HSV-1 strains isolated in 1972, were sequenced and analysed. Significant recombination was 140 

detected, including recombination events between the HSV-1 field strains F and 17. Additionally, 141 

the full genome sequences of these 12 HSV-1s facilitated classification of HSV-1 into 3 clades: A, 142 

B and C (Norberg et al., 2011). Kolb et al reached similar conclusions about the number of HSV-1 143 

clades (Kolb et al., 2011). In regard to recombination, Kolb et al., (2011) showed that some field 144 

strains (TFT401 and CJ970) were unstable in their phylogenetic classification using the whole 145 

genome sequence and identified cross over points using similarity plots in the UL1, UL11, UL43, 146 

UL49A, US4 and US7 genes. Additionally, they found that some nucleotide sequences that code for 147 

selected proteins resulted in variable phylogenetic groupings depending on the parameters used to 148 

build the phylogenetic trees. They concluded that recombination was likely and that each viral 149 

genome is a unique mosaic (Kolb et al., 2011).  150 

 151 

The most recent and comprehensive studies of HSV-1 genetic diversity, recombination and genome 152 

evolution are those that have examined full genome sequences of HSV-1 from four continents. Kolb 153 
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et al., (2013) examined 31 full genome sequences as well as partial genome sequences obtained 154 

from the NCBI reference database. Szpara et al., (2014) examined whole genome sequences 155 

obtained by NGS of 20 field strains of HSV-1 obtained from China, Japan, Kenya and South Korea 156 

and compared them with the genome sequences available for HSV-1 strains from the United States 157 

(US), Europe and Japan. Both these studies confirmed that recombination in HSV-1 is widespread, 158 

frequent, historical and ongoing (Kolb et al., 2013; Szpara et al., 2014). In addition, these two 159 

studies found that the HSV-1 strains clustered into six groups, rather than the three groups 160 

described previously. The clustering correlated with the geographic origin of the isolates, 161 

highlighting the need to include isolates from different regions in order to comprehensively 162 

examine phylogeny and recombination (Kolb et al., 2013; Szpara et al., 2014).  163 

The high levels of HSV-1 recombination detected in these studies have been hypothesised to be due 164 

to the co-existence of many different HSV-1 strains within the same geographical region (Norberg 165 

et al., 2004; Schmidt-Chanasit et al., 2009) and to the high number of HSV-1 replication cycles that 166 

which may arise from more frequent HSV-1 reactivation from latency, compared to HSV-2 or VZV 167 

(Kaufman et al., 2005; Wang et al., 2010). This suggests that the latency and reactivation 168 

characteristics of alphaherpesviruses are also factors that can influence recombination, with viruses 169 

that establish and re-activate from latency more frequently having a higher likelihood of 170 

recombination.  171 

 172 

2.2 Herpes simplex virus-2  173 

The first study to detect recombination in HSV-2 using bioinformatics analyses of partial DNA 174 

sequences from clinical isolates was published by Norberg et al., (2007). Approximately 3.5% of 175 

the genome of 47 clinical isolates of HSV-2 from Norway, Sweden, and Tanzania was examined 176 

and it was found that HSV-2 was clustered into 2 genogroups, rather than the 3 groups seen in 177 

HSV-1 isolates using similar techniques. Isolates from Norway and Sweden were clustered into 178 

only one genogroup. It was hypothesised that the lower level of genetic diversity seen in HSV-2, 179 
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compared to HSV-1, was directly related to recombination (Norberg et al., 2007). Importantly, 180 

however, these conclusions were based on the analysis of only a limited number of samples, and of 181 

partial genome sequences. Only three genes within the unique short (US) region of the HSV-2 182 

genome were examined (US4, US7 and US8) (Norberg et al., 2007). Studies on HSV-1 had 183 

detected variation in diversity across the whole genome, which can influence recombination 184 

analysis (Szpara et al., 2014). Thus, in order to comprehensively examine recombination in HSV-2, 185 

and also compare recombination between HSV-1 and HSV-2, an analysis of HSV-2 recombination 186 

analyses at the whole genome level was required.  187 

Prior to 2014 there were only two full genome sequences for HSV-2, one published in 1998 (Dolan 188 

et al., 1998), and another one in 2014 (Colgrove et al., 2014). Kolb et al., (2015) determined the 189 

complete genome sequences of an additional six HSV-2 clinical isolates. Bootscan analysis of the 190 

eight complete genome sequences demonstrated that the HSV-2 genomes were mosaics, suggesting 191 

frequent recombination randomly along the genome (Kolb et al., 2015). In a separate study, 34 near 192 

complete genome sequences were determined for HSV-2 isolates from Africa, USA and Japan. 193 

Bootscan and phylogenetic analyses of these sequences suggested that HSV-2 had five major 194 

crossover points and that recombination in HSV-2 did not occur as frequently as in HSV-1 195 

(Newman et al., 2015). Another recent study has reported that a new HSV-2 variant (HSV-2v) from 196 

west and central Africa (mostly from immunocompromised patients infected with human 197 

immunodeficiency virus) differed significantly from the classical HSV-2 prototype and contained a 198 

UL30 gene (encoding DNA polymerase) that clustered closely with the chimpanzee herpesvirus 199 

(ChHV), providing evidence of an inter-species recombination event (Burrel et al., 2015). Herpes 200 

simplex virus 2 and ChHV have genetically similar genomes with 88.3% pairwise identity and 201 

88.3% identical sites between ChHV (Genbank accession number JQ360576) and HSV-2, 202 

(Genbank accession number Z86099) as determined using Multiple Alignment with Fast Fourier 203 

Transformation (MAFFT) version 7 within Geneious V8.0.4 (Katoh and Standley, 2013). A high 204 

level of identity between viruses has been shown to play a role in promoting recombination. This 205 



 10 

level of identity is similar to what has been described for EHV-1 and -4, another pair of 206 

alphaherpesviruses in which natural inter-species recombination has been detected (Pagamjav et al., 207 

2005).             208 

 209 

2.3 Varicella zoster virus  210 

Varicella zoster virus is the only human alphaherpesvirus for which live attenuated vaccines are in 211 

widespread use. These live attenuated vaccines (Takahashi et al., 1974) contain a heterogeneous 212 

mixture of related VZV haplotypes (Depledge et al., 2014) and are used in several countries 213 

including Japan, Korea, the US, Canada, Australia, Germany, Costa Rica, Uruguay, and Qatar 214 

(Norberg et al., 2015). As VZV recombination has been observed in cell culture (Dohner et al., 215 

1988) there is potential for natural recombination, including between vaccine and wild type viruses, 216 

to occur (Quinlivan et al., 2009). This has been the focus of a number of studies examining VZV 217 

recombination. VZV recombination has been investigated using partial and full genome sequence 218 

analyses to identify viral groups (clades), and to detect recombination events (Norberg et al., 2015; 219 

Norberg et al., 2006; Norberg et al., 2011; Peters et al., 2006). 220 

Early studies used restriction endonuclease digestion profiles to examine differences between VZV 221 

genomes (Takada et al., 1995). Later, DNA sequencing and bioinformatic analyses were used to 222 

classify, determine similarities and detect recombination events between VZV isolates. Single 223 

nucleotide polymorphism (SNP) analysis (Wagenaar et al., 2003), heteroduplex mobility assays to 224 

locate informative SNPs along the genome (Barrett-Muir et al., 2003) and targeted sequencing of 225 

different regions of the VZV were used to detect and compare SNP patterns (Loparev et al., 2004). 226 

These studies showed that recombination occurs among VZV isolates and also enabled the 227 

classification of VZV isolates into different phylogenetic groups. Loparev et al., (2004) were able 228 

to classify 326 VZV isolates from the six continents into the European (E), Japanese (J) and the 229 

Mosaic (M) groups by sequencing and analysing approximately 0.3% of the full VZV genome 230 

sequence. This study also sequenced and analysed approximately 6.9% of the full VZV genome 231 
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sequence of 16 isolates. Specifically, the M group was identified as carrying SNP patterns of both 232 

the E and J group, and it was hypothesised that M strains resulted from recombination after mixed 233 

infection (Loparev et al., 2004). A separate study classified isolates into four major clades, with 234 

clade A containing European/North American (Dumas) isolates, clade B Japanese (vaccine-Oka) 235 

isolates, clade C Asian-like isolates sharing some European/North American features, and clade D 236 

containing European/North American-like isolates sharing some features of the Asian strains 237 

(Wagenaar et al., 2003). These classifications provided the first insight into natural recombination 238 

in VZV, but more detailed understanding was later achieved by full genome sequence analyses. 239 

Complete genome sequence analyses were first used to detect natural VZV recombination in 2006 240 

(Norberg et al., 2006; Peters et al., 2006). The two studies reporting these findings had different 241 

foundations but both reached similar conclusions about recombination. One investigated 242 

recombination within the clades C and D (Asian-like and European/North American-like, 243 

respectively) at the full genome level (Peters et al., 2006). This study determined the full genome 244 

sequences of 11 VZV isolates that were considered representative for Canada and the USA, and 245 

compared them to seven other sequences that were publicly available (Peters et al., 2006). They 246 

detected evidence of recombination within a Canadian isolate (VZV-8) within clade C that 247 

contained mixtures of genetic characteristics from clade A (Dumas strain from Europe/North 248 

America) and clade B (pOka strain from Japan). It was hypothesised that this isolate arose as a 249 

result of a recombination event between the vaccine strain vOka from Japan and VZV field strains 250 

from Canada, as the vaccine strain is used in Canada (Peters et al., 2006). However, as the vaccines 251 

contains mixtures of distinct genetic subtypes (Quinlivan et al., 2005; Vassilev, 2005) and the 252 

sequences available at the time in 2006 did not include all the strains within the vaccine, it was not 253 

possible to reach this conclusion definitely (Peters et al., 2006). 254 

The second study (Norberg et al., 2006) determined the full genome sequences of two VZV strains 255 

(DR and 123) that were classified previously into group M (mosaic) by Loparev et al., (2004) and 256 

thus contained genetic features from groups E (European) and J (Japanese). At the whole genome 257 
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level, the DR and 123 strains were shown to be well separated from each other and from groups E 258 

and J. Thus, group M was further divided into M1, represented by the 123 strain, and M2, 259 

represented by the DR strain. Bootscan analysis suggested that that the DR and 123 strains contain 260 

putative recombination dependent sites. Specifically, some genomic regions clustered with pOka, 261 

while other regions of the VZV genome clustered with the European strains (Norberg et al., 2006). 262 

Subsequent phylogenetic network analysis revealed that the SVETA strain, which is a Russian 263 

isolate and was thought to belong to clade 1 (European clade), had been involved in an intra-clade 264 

recombination event (Norberg et al., 2011), and significant intra-clade recombination events were 265 

found among other VZV isolates (Zell et al., 2012).  266 

After intra-clade recombination was observed, it was hypothesised that an increase in the number of 267 

full genome sequences available for analysis would reveal a greater number of recombinants. 268 

Additionally, it was hypothesised that human migration, along with widespread distribution of the 269 

attenuated VZV vaccine strains (Takahashi et al., 1974), may contribute to an apparent 270 

disappearance of VZV clades as recombination events would result in isolates becoming genomic 271 

mosaics similar to HSV-1 (Norberg et al., 2004; Sauerbrei and Wutzler, 2007; Sauerbrei et al., 272 

2008). However, recent studies that have included several isolates from different continents have 273 

shown that the only clade to consistently display a relatively high level of recombination is the 274 

clade that contains the pOka and vOka vaccine strains (Norberg et al., 2015). Detection of 275 

recombination in the other clades appears to be dependent on the analytical method used to detect 276 

evidence of recombination (Norberg et al., 2015). 277 

The relatively low rate of recombination in VZV compared to HSV-1 may be due to the distinct 278 

biology and epidemiology of VZV (Kaufman et al., 2005; Schmidt-Chanasit et al., 2009; Wang et 279 

al., 2010) as well as geographical separations of strains (Norberg et al., 2004; Schmidt-Chanasit et 280 

al., 2009). However, ongoing monitoring of recombination in field isolates of VZV is needed, as 281 

recombination between attenuated viruses such as vaccine strains has been detected, to create 282 

recombinant virulent progeny in other alphaherpesviruses (Lee et al., 2012), as well as in several 283 
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other virus families (Becher et al., 2001; Camus-Bouclainville et al., 2011; Chong et al., 2010; 284 

Cuervo et al., 2001; Dahourou et al., 2002; Holmes et al., 1999; Liu et al., 2003; Norberg et al., 285 

2013; Seligman and Gould, 2004; Wenhui et al., 2012).  286 

 287 

3. Natural recombination in other mammalian herpesviruses 288 

Over the past ten years natural recombination has been assessed in alphaherpesviruses from five 289 

non-human mammalian hosts; EHV-1, EHV-4, EHV-9, FeHV-1 and PRV (Greenwood et al., 2012; 290 

Pagamjav et al., 2005; Vaz et al., 2016a; Vaz et al., 2016b; Ye et al., 2016) (Table 2). This 291 

represents only a small proportion of the alphaherpesviruses of importance in veterinary medicine. 292 

There have been, however, other efforts to better understand recombination in a wider range of 293 

mammalian alphaherpesviruses using experimental in vitro and in vivo studies, including BoHV-1, 294 

BoHV-5 (Meurens et al., 2004; Muylkens et al., 2009; Schynts et al., 2003), PRV (Christensen and 295 

Lomniczi, 1993; Henderson et al., 1990) and FeHV-1 (Fujita et al., 1998). Live attenuated vaccines 296 

are used extensively in veterinary medicine and there is clear evidence that attenuated live vaccines 297 

can naturally recombine to generate more virulent and dominant progeny (Lee et al., 2012). 298 

Therefore, the study of natural recombination in vaccinated and unvaccinated animals is of 299 

importance in improving animal health and disease control in the field of veterinary medicine. 300 

3.1 Equine alphaherpesviruses  301 

Equine herpesviruses 1 and 4 cause significant losses in horse industries worldwide (Allen et al., 302 

2004). Equine herpesvirus-1 and 4 are genetically similar (Telford et al., 1998), but they differ 303 

significantly in terms of their pathogenesis and epidemiology (Allen et al., 2004; Patel and Heldens, 304 

2005). Infection with EHV-1 causes respiratory disease in young horses, myeloencephalitis in older 305 

horses, abortion in mares and systemic perinatal disease (Allen et al., 2004; Patel and Heldens, 306 

2005). Infection with EHV-4 also causes upper respiratory tract infection, but EHV-4 infection 307 

rarely induces systemic disease or abortions in mares, probably because of its limited capacity to 308 
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infect mononuclear cells, and therefore produce viraemia (Patel and Heldens, 2005; 309 

Vandekerckhove et al., 2011). The differences in the epidemiology of EHV-1 and EHV-4 have 310 

been well described (Allen et al., 2004; Patel and Heldens, 2005). One key epidemiological 311 

difference between these viruses is the substantially lower prevalence of infection with EHV-1 312 

compared to that seen for EHV-4 (Gilkerson et al., 1999). 313 

Natural recombination in EHV was first reported by Pagamjav et al., (2005). The field isolate   314 

EHV-1 B was shown to have arisen as a result of an inter-species recombination event between 315 

EHV-1 and EHV-4, and then spread among horse populations to become a dominant strain 316 

(Pagamjav et al., 2005). The recombination event described by Pagamjav et al., (2012) was the first 317 

evidence of natural inter-species recombination involving EHV-1. In 2012 another natural 318 

recombination event involving EHV-1 and equid herpesvirus 9 (EHV-9) was detected in a zoo in 319 

Germany by Greenwood et al., (2012) following analysis of the sequence of six virus genes using a 320 

distance based method within the Recombination Analysis Tool 1.0 (RAT v1.0). Interestingly, the 321 

recombinant was isolated from a polar bear with fatal encephalitis, even though neither EHV-1 nor 322 

EHV-9 naturally infect polar bears (Greenwood et al., 2012). More recent work has suggested that 323 

the recombination event involving these two viruses most likely occurred in zebras and was then 324 

transmitted to the polar bear (Abdelgawad et al., 2016). This recombination event has some 325 

similarities to the one detected between the HSV-2 and ChHV (Burrel et al., 2015), as both reports 326 

shown recombination within the UL30 gene (Burrel et al., 2015; Greenwood et al., 2012). The 327 

significance of the UL30 gene as a site of recombination, and potentially as an influence on the host 328 

range of the resultant recombinant viruses, warrants investigation in future studies. 329 

The high level of genetic similarity between EHV-1 and EHV-9, and also between EHV-1 and 330 

EHV-4 (Telford et al., 1992; Telford et al., 1998) are likely to have facilitated these inter-species 331 

recombination events (Pagamjav et al., 2005). Alignment of EHV-1 genome sequences (Genbank 332 

accession numbers: AY464052, KF644566, KF644567, KF644568, KF644570, KF644572, 333 

KF644576, KF644577, KF644578, KF644579, KT324724, KT324725, KT324726, KT324727, 334 



 15 

KT324728, KT324729, KT324729, KT324730, KT324731, KT324732, KT324733, KT324734, 335 

NC_001491) and EHV-4 partial and full genome sequences (Genbank accession numbers: 336 

KT324735, KT324736, KT324737, KT324738, KT324739, KT324740, KT324741, KT324742, 337 

KT324743, KT324744, KT324745, KT324746, KT324747, KT324748, NC_001844) showed there 338 

was 86.6% pairwise identity and 70.6% identical sites between EHV-1 and EHV-4. Alignments 339 

between whole genome sequences of EHV-1 (Genbank accession numbers listed above) and EHV-340 

9 (Genbank accession number: NC_011644) showed 98% pairwaise identity and 87.9% identical 341 

sites. Both alignments were done by using MAFFT version 7 within Geneious V8.0.4 (Katoh and 342 

Standley, 2013).            343 

Recently, our laboratory has determined the complete genomic sequences of 11 EHV-1 and 14 344 

EHV-4 isolates from Australia and New Zealand (Vaz et al., 2016a). Phylogenetic analysis of 345 

EHV-4 isolates revealed evidence of widespread recombination. In contrast, analyses of the 11 346 

EHV-1 isolates from Australia and New Zealand, along with another 13 international EHV-1 347 

isolates, detected limited or no evidence of recombination, depending on the method of analysis 348 

used. Pathogenesis and epidemiology can influence recombination as both these factors have an 349 

impact on the ability of viral infections to overlap in space (i.e. the same cell) and time (Thiry et al., 350 

2005). Other factors that promote alphaherpesviruses recombination include similar high loads of 351 

each co-infecting virus, similar levels of virulence and invasiveness, and similar tissue distributions 352 

of the co-infecting viruses (Thiry et al., 2005). EHV-1 and EHV-4 infections of the respiratory tract 353 

of horses result in similar viral titres, replication kinetics and durations of virus infection (Allen et 354 

al., 2004). A key difference between the pathogenesis of the two viruses lies in the ability of EHV-1 355 

to efficiently penetrate the basement membrane of the respiratory mucosa (Vandekerckhove et al., 356 

2011) and disseminate to other sites, including the vascular endothelium of the placenta and central 357 

nervous system, via a leukocyte-associated viraemia (Gryspeerdt et al., 2010). This involves 358 

additional episodes of viral amplification compared to EHV-4, which would seemingly increase the 359 

opportunities for recombination in EHV-1 if all other factors were constant. However, the much 360 
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higher frequency of natural recombination in EHV-4 compared to EHV-1 suggests that other 361 

factors, such as a lower prevalence of infection with EHV-1, may reduce opportunities for co-362 

infection and may have a greater impact on natural recombination (Vaz et al., 2016a). It is 363 

interesting to note that, similar to the situation with HSV-1 and HSV-2, less recombination is 364 

evident in the less genetically diverse EHV-1, compared to the more genetically diverse EHV-4, but 365 

the relationship between the level of recombination and the level of genetic diversity requires 366 

further investigation. 367 

 368 

3.2 Pseudorabies virus  369 

Pseudorabies virus is the aetiological agent of Aujeszky’s disease in pigs and causes economic loss 370 

in the pig industry. Although PRV has been the target of eradication programs in some countries, it 371 

remains endemic in some regions including Asia, west/east Europe and South America. Pigs 372 

infected with PRV display a range of clinical signs, depending of the age of the affected animal, 373 

including neurological, respiratory and reproductive disease. Pseudorabies virus can also infect and 374 

cause disease in a wide variety of other hosts (Mettenleiter, 2008), including dogs, cats, cattle and 375 

small ruminants. 376 

A live attenuated vaccine, Bartha-K61, has been used to control disease due to PRV infection in 377 

many countries, including China. Despite vaccination programs, disease outbreaks caused by new 378 

PRV variants have been reported in China since 2011 (Luo et al., 2014). The first study using 379 

whole genome sequence analysis to detect natural recombination in PRV has been published 380 

recently (Ye et al., 2016). This study has shown that a historical Chinese PRV strain (SC) isolated 381 

during the 1980s is a recombinant derived from an endemic Chinese PRV strain and a Bartha-like 382 

strain (Ye et al., 2016). Experimental studies have shown that Bartha-K61 can induce protection 383 

against the SC strain but not against the new variants (Luo et al., 2014). The SC strain has genomic 384 

regions similar to the Bartha strain, so it has been hypothesised that these similar regions may 385 

account for the capacity of the Bartha strain vaccine to protect against the SC strain, but not the new 386 
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variants, and that this difference in protective immunity may have permitted the new variants to 387 

circulate in pig herds and cause disease (Ye et al., 2016) 388 

 389 

3.3 Feline herpesvirus-1 390 

Recombination between FeHV-1 isolates has been demonstrated in vitro (Fujita et al., 1998), but 391 

only one study has investigated natural recombination in FeHV-1 using NGS (Vaz et al., 2016b). 392 

Feline herpesvirus-1 is the aetiological agent of feline viral rhinotracheitis and also a common cause 393 

of ocular lesions in cats (Maes, 2012). Inactivated and attenuated vaccines are used widely, but do 394 

not prevent infection (Jas et al., 2009). Previous studies using techniques such as restriction 395 

endonuclease digestion of the genome, and analysis of partial genomic sequences suggested low 396 

levels of diversity among several isolates (Maeda et al., 1995). Comparison of the whole genomes 397 

of 24 historical and contemporary FHV-1 clinical isolates and 2 US-origin commercial vaccine 398 

viruses in use worldwide confirmed that FeHV-1 isolates are highly homogeneous and has revealed 399 

no evidence of recombination (Vaz et al., 2016b). This is the first alphaherpesvirus in which 400 

recombination has been shown to occur under experimental (in vitro) conditions, but not under 401 

natural in vivo conditions. Low rates of FeHV-1 recombination in vivo have been hypothesised 402 

previously, as FeHV-1 is more homogeneous than other alphaherpesviruses (Fujita et al., 1998), but 403 

analyses of a larger number of FeHV-1 clinical isolates, from more diverse geographical regions are 404 

required in order to fully assess recombination during natural FeHV-1 infection. 405 

 406 

4. Natural recombination in avian alphaherpesviruses 407 

Natural recombination has been described in infectious laryngotracheitis virus (ILTV) and Marek’s 408 

disease virus type 1 (MDV-1, also called Gallid herpesvirus-2, GaHV-2) (Hughes and Rivailler, 409 

2007; Lee et al., 2013; Lee et al., 2012) (Table 3). Marek’s disease virus induces T cell lymphomas 410 

in susceptible birds (Morrow and Fehler, 2004), while ILTV causes upper respiratory tract disease 411 



 18 

in chickens (Garcia et al., 2013). Both diseases are highly contagious and cause economic losses in 412 

poultry industries worldwide. Live attenuated vaccines are widely used to help control both these 413 

diseases. 414 

 415 

4.1 Marek’s disease virus  416 

Four complete GaHV-2 genome sequences (CVI988, GA, Md5 and Md11) were compared in 2007 417 

and genes with unusually high degrees of synonymous divergence were identified, suggesting the 418 

past homologous recombination events (Hughes and Rivailler, 2007). This study identified three 419 

clusters of orthologous genes based on their patterns of synonymous substitutions in order to use 420 

them for further recombination analysis (Hughes and Rivailler, 2007). Eight loci within the four 421 

GaHV-2 genomic sequences were highly homogenous, suggesting homologous recombination 422 

between the vaccine strain CVI988, the highly virulent field strain (Md5) and the virulent Md11 423 

strain. Additionally, phylogenetic analyses of the GA, Md5 and Md11 strains found that the virulent 424 

GA strain generally clustered separately from the highly virulent Md5 and Md11 strains, but further 425 

analyses of the UL 49.5 and RL ORF12 genes detected a high level of homogeneity between the 426 

GA, Md5 and Md11 strains, suggesting that recombination had resulted in the transfer of virulence 427 

factors between these strains. The approach used in this study to detect recombination differed from 428 

those used for other alphaherpesviruses, such as HSV-1, HSV2, VZV, EHV-1, EHV-4, FeHV-1 and 429 

ILTV (Bowden et al., 2004; Hughes and Rivailler, 2007; Kolb et al., 2013; Kolb et al., 2015; Lee et 430 

al., 2013; Lee et al., 2012; Norberg et al., 2015; Norberg et al., 2007; Norberg et al., 2006; Norberg 431 

et al., 2011; Peters et al., 2006; Szpara et al., 2014; Vaz et al., 2016a; Vaz et al., 2016b). Instead, 432 

the method used was extrapolated from those used to detect sites of homologous recombination 433 

within bacterial genomes. This approach examines the synonymous substitution distribution 434 

patterns among orthologous protein coding genes, with higher synonymous substitutions per site 435 

providing evidence of recombination (Hughes and Langley, 2007).  436 
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Analyses of GaHV-2 genome sequences for evidence of recombination, using methods similar to 437 

those used for other alphaherpesviruses, would help to further explore these findings. To this end, 438 

we examined the 15 GaHV-2 genome sequences publicly available at NCBI database (Table 4) for 439 

recombination using the SplitsTree 4 software and RDP4 software packages, as detailed previously 440 

(Vaz et al., 2016a; Vaz et al., 2016b). These analyses revealed evidence of recombination within 441 

the unique short region of the GaHV-2 genome using the SplitsTree 4 software (Figure 1C)  (Huson 442 

and Bryant, 2006) and in all regions of the GaHV-2 genome using RDP4 software (Table 5). 443 

Together these results provide evidence of recombination in GaHV-2 but further study into the 444 

importance of recombination for GaHV-2 evolution and genome diversification is warranted, 445 

including examination of a larger number of GaHV-2 field isolates. 446 

 447 

4.2 Infectious laryngotracheitis virus  448 

Natural recombination in ILTV was first described by our laboratory in the context of attenuated 449 

vaccine use in Australia (Lee et al., 2012). This study provided clear evidence of natural 450 

recombination in ILTV, and also demonstrated safety concerns associated with the use of live 451 

attenuated alphaherpesvirus vaccines, a risk that had previously only been hypothesised. Prior to the 452 

detection of ILTV recombinants, two new genotypes of ILTV were shown to be dominant in 453 

Australia. These new genotypes, named as class 8 and 9 ILTV, had similar PCR-RFLP patterns, and 454 

clustered close to the Class 7 genotype (which includes the Serva vaccine strain) (Blacker et al., 455 

2011). These studies, together with similar findings around the world led to the hypothesis that live 456 

attenuated ILTV vaccines could displace wild type strains and cause outbreaks of disease (Garcia 457 

and Riblet, 2001; Graham et al., 2000). However, the subsequent whole genome sequencing studies 458 

showed that natural recombination between the vaccine strains in use in Australia was responsible 459 

for the rise of the virulent Class 8 and 9 ILTV strains (Lee et al., 2012). These conclusions were 460 

supported by the use of the BootScan algorithm within the SimPlot program, which revealed the 461 

locations of breakpoints for intra-species recombination events involving the Serva and Australian 462 
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origin SA2 and A20 vaccine strains (Lee et al., 2012). These findings echoed earlier studies that 463 

showed that recombination between two attenuated HSV-1 strains could generate more virulent 464 

strains in a mouse model of infection (Javier et al., 1986). 465 

In order to further investigate natural recombination in ILTV, full genome sequence data of other 466 

Australian ILTV isolates, along with full genome sequences of isolates from the US, were 467 

compared. The analyses revealed extensive recombination networks between ILTV isolates from 468 

both Australia and the US, and also uncovered new phylogenetic relationships between isolates 469 

(Lee et al., 2013). The importance of recombination in the biology and epidemiology of ILTV was 470 

then demonstrated further in 2016 in a study showing that a new virulent genotype of ILTV (Class 471 

10 ILTV) had emerged in Australian poultry flocks as a result of recombination and had become 472 

dominant in some geographical areas (Agnew-Crumpton et al., 2016). These studies that have 473 

detected and characterised natural recombination in ILTV have provided new insights into the 474 

epidemiology of the disease caused by this virus and have explained the continuing occurrence of 475 

disease outbreaks associated with novel viral genotypes in Australia. 476 

 477 

5 Conclusions 478 

Alphaherpesviruses have been shown to display a high rate of recombination in vitro and in vivo 479 

under experimental conditions. However, under natural conditions, detection of recombination 480 

varies from limited or absent, in FeHV-1 and EHV-1 (Vaz et al., 2016a; Vaz et al., 2016b) to 481 

widespread, in HSV-1, EHV-4 and ILTV (Kolb et al., 2015; Lee et al., 2013; Lee et al., 2012; 482 

Szpara et al., 2014; Vaz et al., 2016a). These findings suggest that the contribution that 483 

recombination makes to genomic diversification and evolution in alphaherpesviruses varies across 484 

the different virus species. This highlights the importance of complementing studies that examine 485 

recombination in experimental settings with studies that look into recombination in field isolates 486 

from naturally infected hosts. The most comprehensive studies in this area have included analyses 487 
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of a large number of historical and contemporary whole genome sequences of field isolates from 488 

diverse geographical regions.  489 

Most studies of natural alphaherpesvirus recombination have focused on human alphaherpesviruses. 490 

However, attenuated herpesvirus vaccines are used in both human medicine (against VZV) and 491 

veterinary medicine. Their use is particularly widespread in livestock species, poultry and pets. 492 

Recombination involving vaccine strains has been described in VZV, MDV (GaHV-2), ILTV 493 

(GaHV-1) and PRV, but the recombination events in these virus species have differed in their 494 

nature and consequences. In ILTV, two vaccine strains recombined to produce a virulent 495 

recombinant that became a dominant field strain (Lee et al., 2012). In PRV, recombination occurred 496 

between a vaccine strain and a field strain, potentially contributing to vaccine-induced selection and 497 

protection of another, genetically less similar, field strain (Ye et al., 2016). These studies provide 498 

examples of how vaccines and recombination can have an impact on viral evolution and alter the 499 

selection pressure on a viral population to result in greater dissemination of more pathogenic 500 

viruses. As live attenuated vaccines are favoured in veterinary medicine, their impact on viral 501 

ecology and evolution should be evaluated and monitored at a population level. Targeted 502 

monitoring of recombination after the introduction of new vaccine strains would be helpful for 503 

detecting the rise of new, potentially more virulent strains. Consideration of recombination risks in 504 

the assessment of vaccine safety during the process of registration could also be advantageous. 505 

Currently, natural recombination has not been assessed in BoHV-1 or herpesvirus of turkeys (HVT) 506 

but live vaccines using these viruses are in widespread use in the cattle and poultry industries, 507 

respectively, with the latter being used as vaccine vector to express exogenous proteins from other 508 

avian pathogens (Kapczynski et al., 2015; Li et al., 2011; Roh et al., 2016). Examining natural 509 

recombination in these two viruses should be included in future research in order to determine 510 

potential risks to animal health.  511 

Over the last 10 years the development of new more sophisticated and accessible NGS techniques, 512 

along with advances in computational and statistical analysis, has dramatically enhanced the study 513 
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of natural recombination in alphaherpesviruses. Detection of recombination using more than one 514 

approach is recommended and can now be achieved using a number of different bioinformatic 515 

analysis software. Commonly used programs include the Recombination Detection Program (RDP), 516 

SplitsTree software, the Genetic Algorithm Recombination Detection (GARD) program and 517 

SimPlot software. The latest version of RDP (RDP4) was made available in 2015 (Martin et al., 518 

2015) and includes nine non-parametric recombination detection methods (Martin et al., 2010). 519 

SplitTree software uses phylogenetic and reticulate networks, in addition to the pairwise homology 520 

test (PHI test), to search for the presence of recombination in a given set of aligned sequences 521 

(Huson and Bryant, 2006). The GARD program searches for evidence of segment-specific 522 

phylogenies. GARD is a likelihood-based model selection procedure that searches multiple 523 

sequence alignments for evidence of recombination breakpoints and identifies putative recombinant 524 

sequences (Kosakovsky Pond et al., 2006). SimPlot allows the analysis of sequence alignments, and 525 

searches for breakpoint locations. This program ignores sites containing gaps, and produces a 526 

similarity plot identifying the sequence position and the similarity value at each point in the 527 

sequence (Lole et al., 1999). The application of more than one method is desirable to increase the 528 

robustness and consistency of the results, since a true recombination event should be independent of 529 

the method of analysis.  530 

Sequence quality is also crucial to the accurate detection of recombination events in full genome 531 

sequences. Consideration of a measurement of quality such as Phred score and avoiding low 532 

sequence quality and parental sequence uncertainty is strongly recommended, since detection of 533 

breakpoint locations, and thus recombination, may be unreliable in low quality sequences (Posada, 534 

2002; Posada and Crandall, 2001). Inclusion of detailed information describing the methods used in 535 

recombination analyses is also desirable, specifically in regard to the preparation of the sequences 536 

that are used for recombination analysis such as the trimming of short sequence repeats (SSR), 537 

tandem repeat regions (TRR), and terminal repeated regions (TR). It is recommended to remove 538 

these sequences from analyses as they can bias recombination analysis (Dutch et al., 1995; Lee et 539 
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al., 2015; Newman et al., 2015; Vaz et al., 2016a). Finally, studies focused on natural herpesvirus 540 

recombination should aim to include high quality information about the samples and virus isolates 541 

so that the results from recombination analyses can be considered in the context of relevant clinical 542 

and epidemiological information. Pairing recombination analyses with an understanding of the 543 

epidemiology and pathogenesis of the viruses offers the greatest potential to understand the 544 

importance of recombination and the role that it may be playing in virus evolution. Indeed, some of 545 

the most important findings relating to recombination and the involvement of attenuated vaccines 546 

have come from studies that have integrated recombination, epidemiological and viral pathogenesis. 547 

Maintaining such a focus in future studies will be important for achieving a comprehensive 548 

understanding of alphaherpesvirus recombination.  549 

This review has highlighted the significance of natural recombination in many viruses of 550 

importance to human and veterinary medicine and has demonstrated the power of using full genome 551 

sequencing and sequence analysis to examine natural herpesvirus recombination. It is likely that 552 

continued advances in technology and methodologies, further reductions in the cost of NGS 553 

techniques and improved bioinformatics tools to assess recombination will enable further 554 

developments in the field of recombination, in particular by facilitating the affordable examination 555 

of increasing numbers of clinical isolates from diverse widespread geographical regions. 556 
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 943 

Figure captions: 944 

Figure 1. Recombination network trees generated using SplitsTree4 from alignment of 15 945 

publically available GaHV-2 genome sequences on Genbank. A) Alignment of complete genomes 946 

excluding the terminal sequence repeats. B) Internal repeat region. C) Unique short region. The 947 

multiple reticulate networks indicate recombination events between the isolates. The bar indicates 948 

the rate of evolution in sequence substitution per site. P values for the PHI test for detecting 949 

recombination, as implemented in SplitsTree4, are shown and were highly significant for the 950 

complete genome and for the unique short region. D) Unique long region. Details about the 951 

nucleotide sequences used in these analyses are shown in Table 4.  952 

 953 



 

Table 1. Timeline and summary of key studies examining natural recombination in human 
alphaherpesviruses.  
 
Year Summary of study findings  Reference 

Herpes simplex virus 1 (HSV-1) 
2004 Evidence of recombination in partial genome sequences (4% of the genome) 

from 14 clinical samples from UK compared with samples from Seoul and 
South Korea. 

Bowden et 
al., 2004 

2004 Evidence of recombination in partial genome sequences (2.3% of the genome) 
in 28 clinical samples from Sweden. 

Norberg et 
al., 2004 

2011 Whole genome sequencing and analysis of seven clinical isolates shows one 
isolate had variable phylogenetic features, potentially due to recombination. 

Kolb et al., 
2011 

2013 Widespread recombination was detected following whole genome sequencing 
of 31 clinical isolates from diverse geographical regions. 

Kolb et al., 
2013 

2014 Widespread recombination was found following whole genome sequencing of 
20 field strains obtained from China, Japan, Kenya and South Korea and 
comparison with those available from the US, Europe and Japan.. 

Szpara et 
al., 2014 

Herpes simplex virus-2 (HSV-2) 
2007 Analysis of partial genome sequences (3.5% of the genome) from 47 diverse 

clinical isolates shows HSV-2 has fewer genogroups than HSV-1. 
Norberg et 
al., 2007 

2015 Whole genome sequencing and analysis of six clinical isolates, along with 
analysis of two other available genome reveals evidence of recombination. 

Kolb et al., 
2015 

2015 Analysis of 34 near complete genome sequences from clinical isolates from 
diverse geographical regions shows that recombination is present but is less 
frequent than in HSV-1 

Newman et 
al., 2015 

Varicella zoster virus (VZV)*  

2003 Analysis of SNP patterns from geographically diverse isolates classified VZV 
into four major groups and showed evidence of potential recombination  

Wagenaar et 
al., 2003 

2004 Analysis of SNP patterns from geographically diverse isolates determined three 
major groups and showed evidence of potential recombination in one group/ 

Loparev et 
al., 2004 

2006 Whole genome sequencing of 11 representative isolates from North America 
identified recombination potentially involving the VZV vaccine strain. 

Peters et al., 
2006 

2006 Whole genome sequencing of isolates previously identified by Loparev et al., 
(2004) detected recombination, potentially involving the VZV vaccine. 

Norberg et 
al, 2006 

2011 
 
2012 

Whole genome sequencing of a Russian clinical isolate showed significant 
intra-clade recombination events  
Whole genome sequencing of 21 isolates revealed two novel genotypes and 
evidence of recombination 

Norberg et 
al., 2011 
Zell, et 
al.,2012 

2015 Whole genome sequences of 37 isolates from diverse geographical regions 
confirmed that viruses in the Japanese vaccine-like group consistently display 
higher levels of recombination.  

Norberg et 
al., 2015 

* Live attenuated vaccine is in use  
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Table 2. Timeline and summary of key studies examining natural recombination in other 
(non-human) mammalian alphaherpesviruses.  
 
Year Summary of study findings  Reference 

Equine herpesvirus-1*, -4* and -9 (EHV-1, -4 and -9) 
2005 
 
2012 

Analysis of partial genome sequence detected the first natural inter-species 
recombination reported between EHV-1 and EHV-4. 
Analyses of partial genome sequences of an isolate from a polar bear in a zoo 
revealed inter-species recombination between EHV-1 and EHV-9  

Pagamjav et 
al., 2005 
Greenwood 
et al., 2012 

2016 Whole genome sequencing of 11 EHV-1 and 14 EHV-4 isolates from Australia 
and New Zealand, and comparison with other available genomes, showed 
widespread recombination in EHV-4 but not in EHV-1. 

Vaz et al., 
2016a 

Pseudorabies virus (PRV)* 
2016 Whole genome sequencing of isolates from China demonstrated recombination 

involving a vaccine-like strain, potentially altering selection pressures in 
vaccinated pig populations 

Ye et al., 
2016 

Feline herpesvirus-1 (FeHV-1)*  

2016 Analyses of 24 whole genome sequences from clinical samples and 2 genome 
sequences of US origin vaccines found no evidence of recombination.  

Vaz et 
al.,2016b 

   

* Live attenuated vaccine is in use  
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Table 3. Timeline and summary of key studies examining natural recombination in avian 
alphaherpesviruses.  
 
Year Summary of study findings  Reference 

Marek’s disease virus (MDV)* 
2007 Four whole genome sequences were analyzed and recombination was identified 

between a vaccine strain and a highly virulent field strain 
Hughes and 
Rivallier et 
al., 2007 

Infectious laryngotracheitis virus (ILTV)* 
2012 Whole genome sequence analyses of newly emerged field isolates found that 

two attenuated vaccine strains had recombined to generate virulent viruses. 
Lee et al., 
2012 

2013 Whole genome sequence analyses of current and historical isolates in Australia 
and the US revealed extensive recombination networks 

Lee et al., 
2013 

2016 A newly emerged virulent field strain in Australia was sequenced and shown to 
be a recombinant virus. 

Agnew-
Crumpton et 
al., 2016 

* Live attenuated vaccine is in use  
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Table 4. Publically available full genome sequences of GaHV-2 used in recombination 
analyses. 
 

Isolate (GenBank 
accession number) 

Year of isolation 
(Reference) Country Comments Genome sequence 

reference 

GA (AF147806) 1964 (Eidson and 
Schmittle, 1968) 

USA Isolated from 
ovarian tumour 

(Lee et al., 2000) 

Md5 (AF243438) 1980 (Witter et al., 
1980) 

USA Very virulent 
isolate from 
spleen of 
commercial 
broilers 

(Tulman et al., 2000) 

Md11(AY510475) 1980 (Witter et al., 
1980) 

USA Isolated and 
maintained in 
duck embryo 
fibroblast 

(Niikura et al., 2006) 

CVI988 (DQ530348) 1972 (Rispens et 
al., 1972) 

Worldwide 
use  

Vaccine used 
since 1990 

(Spatz et al., 2007a) 

RB-1B (EF523390) 1982 (Schat et al., 
1982) 

USA Highly 
oncogenic  

(Spatz et al., 2007b) 

CU-2 (EU499381) 1973 (Smith and 
Calnek, 1973) 

USA Mildly virulent (Spatz and Rue, 2008) 

814 (JF742597) 1980 China Isolated from 
healthy chickens 
 

(Zhang et al., 2012) 

LMS (JQ314003) 2007 China Isolated from 
broilers with 
severe disease  

(Cheng et al., 2012) 

648A (JQ806361, 
JQ806362, JQ809691, 
JQ809692, JQ820250 
and JQ836662) 

1994 (Witter, 
1997) 

USA Serial passages 
of isolate 648A 
(passages p11, 
p31, p41, p61, 
p81, p101) 

(Spatz et al., 2012) 

GX0101 (JX844666) 2001 (Zhang et al., 
2012) 

China Isolated from 
layers with 
severe tumours 

(Su et al., 2012) 
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Table 5. Recombination breakpoint analysis of GaHV-2 genome sequences using RDP4 
 

Genome region 
Breakpoint (in alignment)  Possible viruses involved in 

recombination event 
R: Recombinant, M: Major parent, 

m: Minor parent 

Method of breakpoint detection in RDP4 
software Breakpoint 

beginning 99% CI* 
Breakpoint 

ending 99% CI* 

Internal/terminal 
repeat 

18291 – 19335 19926 - 21087 R: GA, M: unknown, m: GX0101 GENECONV, MaxChi, 3Seq. 

Unique long 7627 – 9282 9365 – 9689 R: 648a isolate_p101, M: 648a 
isolate_p81, m: unknown.  

GENECONV, Bootscan, MaxChi, Chimaera, 3Seq 

51568 – 73297 108359 – 3016 R: GA, M: unknown, m: Md5 MaxChi, Chimaera, SiScan, 3Seq. 

91057 – 58003 91057 - 58003 R: GX0101, M: 814, m: unknown GENECONV, MaxChi, SiScan, 3Seq. 

82371 – 93738 93740 – 101624 R: 814, M: unknown, m: Md5 MaxChi, Chimaera, 3Seq. 

Unique short 2289 – 3999 5959 – 7480 R: CVI988, M: LMS, m:GX0101 GENECONV, MaxChi, Chimaera, SiScan, 3Seq. 
 
*CI = confidence interval 

  
 

Table(s)



	A) Complete genome (p = 9.751E-9) B) Internal repeat (p = 0.05766) 

C) Unique short (p = 0.002421) 

D) Unique long (p = 0.2554) 

Figure(s)
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