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Abstract 

Characterising the mechanistic principles underlying immune function and regulation 

will help us understand how the immune system provides effective host defence. 

However, the highly complex and multi-level nature of the immune system requires a 

systems-level analysis to gain multi-dimensional insight and unravel its complexity. 

 
High-throughput profiling technologies allow quantitative measurement of various 

immunological parameters that capture system-wide information. This has led to the 

generation of large-scale multi-omics datasets from human populations, experimental 

set-ups, and a compendium of immune cell types. Developments in bioinformatics offer 

integrative approaches to explore the functional and regulatory relationships within and 

between various organisational levels of the immune system as well as across other 

biological systems. 

 
For this thesis, multi-omic analysis was used to characterise immune processes in terms 

of genetics, transcriptional networks and interactions with metabolism. First, I mapped 

the genetics and interactions of immune gene networks with circulating metabolites in 

in a population-based study. I integrated blood transcriptomic, metabolomic, and 

genomic profiles from two population-based cohorts, including a subset with 7-year 

follow-up sampling. I identified topologically robust gene networks enriched for 

immune functions including cytotoxicity, viral response, B cell, platelet, neutrophil, and 

mast cell/basophil activity. These immune gene modules showed complex patterns of 

association with 158 circulating metabolites, including lipoprotein subclasses, lipids, 

fatty acids, amino acids, and CRP. Genome-wide scans for module expression 

quantitative trait loci (mQTLs) revealed five modules with mQTLs with both cis and 

trans effects.  
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Then, I explored the underlying shared genetic architecture between correlated 

cytokines, the regulatory agents of the immune system. Multivariate genome-wide 

association scan was performed to identify genetic variants regulating circulating 

cytokines in ~9,000 individuals from three independent population studies. Eight loci 

were identified as regulating this network, including two previously undetected loci. 

Expression quantitative loci (eQTL) analysis revealed that these loci harbour eQTLs. 

Further linking these loci with genetic variants associated with disease risk provided 

insight into the possible inflammatory pathways underlying these common diseases.  

 
Thirdly, I explored a particular component of the immune system, immunological 

memory; with emphasis on tissue resident memory T-cells (TRM cells). I employed a 

network-based approach to identify a transcriptional sub-network related to the 

residency of murine TRM cells isolated from various tissues. Comparative analysis 

further revealed that expression profiles of tissue resident immune cells from different 

lineages share transcriptional similarity.  

 
Finally, the role of TGF-β, an extrinsic tissue-derived factor in influencing the 

transcriptional signature of TRM cells was investigated. I compared the global 

transcription of T-cells induced in vitro by TGF-β with the residency-related 

transcription signature previously established in TRM cells. This demonstrated that the 

transcriptional signature of TRM cells is largely driven by TGF-β.  

 
Findings from this thesis demonstrate the power of integrative bioinformatics analyses 

to gain novel insights into the immune system, which can assist in predicting its 

response to perturbations. It also may help explain how inter-individual variability in 

immune function contributes to differential disease susceptibility and treatment 

outcomes. This thesis offers a general framework to systematically integrate and analyse 

multi-omics data to answer important biological questions. 

 



iii 

Declaration 

This is to certify that this thesis conforms to relevant policies and procedures of the 

University of Melbourne and has been compiled with the following requirements: 

 

 

 

i) This thesis, entitled “Integrative genomics to understand immune function and 

regulation”, comprises only my original work towards the Doctor of Philosophy 

degree, except where otherwise indicated. The contribution of others towards 

this thesis and the proportion of the work that I have claimed as original has 

been acknowledged in the Preface of this thesis; 

 

ii)  Due acknowledgement has been made in the text to all other material used; 

 

iii) This thesis is fewer than 100,000 words in length, exclusive of tables, maps, 

bibliographies, and appendices. 
 

 

 

 

 

Artika Praveeta Nath, B.Sc (Hons) M.Sc 

Department of Microbiology and Immunology, 

The Peter Doherty Institute for Infection and Immunity, 

The University of Melbourne, Parkville 

 

 



iv 

Preface 

This preface summarises the contents of each chapter, the proportion of work claimed as 

original, and the nature and extent of contribution to chapters from co-authors, 

collaborators, and supervisors. Chapters resulting in a manuscript that have been either 

published, submitted, or in preparation are listed.  

 

Chapter 1: Introduction and literature review is an original work that provides an 

overview of the background to, research gap, and rational for the current research work 

done in this thesis. All original work discussed were appropriately cited. Comments on 

the structure and contents of this chapter were provided by my principal supervisor, 

Michael Inouye, and co-supervisor Francis Carbone.  

 

Chapter 2: An interaction map of circulating metabolites, immune gene networks 

and their genetic regulation is an original work that resulted in a publication in 

Genome Biology with the same title. In this chapter, I systematically integrated multi-

omic data from two population-based cohorts to identify interactions, both spatially and 

temporally, between circulating metabolites and immune gene networks and their 

genetic regulation. The article can be found online at: https://doi.org/10.1186/s13059-

017-1279-y. 

 

I am the first author and major contributor to the work presented in this co-authored 

manuscript. The following indicates the contributions of co-authors and myself:  

 
• I was responsible for the majority of the bioinformatics analyses, interpretation 

of the results, and creating figures for the results presented in this chapter with 

input from Michael Inouye.  

 
• I was responsible for planning, drafting and editing the manuscript, creating 



v 

figures, and responding to reviewer comments with help from Michael Inouye. 
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Johannes Kettunen, Mika Kähönen, Markus Juonala, Mika Ala-Korpela, Samuli 

Ripatti, Terho Lehtimäki, Olli Raitakari, Veikko Salomaa, and Markus Perola 

were involved in the collection, measurement, preprocessing, and quality control 

of the multiple omics data in the population cohorts analysed in this chapter and 

provided feedback on the final version of the manuscript prior to submission.  

 
• The genotype data analysed in this chapter had already been imputed and 

undergone post-imputation filtering. The gene expression data made available 

had also been processed. Details on data processing, quality control, and filtering 

are provided in the Methods section of this chapter.  

 
• Scott Ritchie developed the NetRep software used in this analysis. He was also 

responsible for running NetRep on gene expression data to identify and replicate 

gene co-expression networks across cohorts.  

 
• Liam Fearnley provided advice and feedback on the functional enrichment 

analysis. 

 
• Michael Inouye, Gad Abraham, Scott Ritchie, and Sean Byars provided 

guidance and advice on data analyses, and the interpretation of the results and 

their visualisation.  

	
Chapter 3: Multivariate genome-wide association analysis identifies eight loci 

associated with a network of circulating cytokines is an unpublished chapter; a co-

authored manuscript, which is in preparation with the same title. I am the lead author on 

this manuscript. In this chapter, I performed genome-wide association analysis to 

identify and characterise genetic variants that regulated correlated cytokines in three 

population-based cohorts.  

 
The following indicates the contributions of collaborators, colleagues, and myself 

towards the work presented in this chapter:  
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• I was responsible for the majority of the bioinformatics analyses, interpretation 

of the results, and creating figures for the results presented in this chapter with 

input from Michael Inouye. 

 
• I was responsible for drafting and editing the manuscript in preparation, and 

creating figures with help from Michael Inouye.  

 
• Ari Ahola-Olli, Peter Würtz, Aki Havulinna, Kristiina Aalto, Niina Pitkänen, 

Terho Lehtimäki, Mika Kähönen, Leo-Pekka Lyytikäinen, Emma Raitoharju, 

Ilkka Seppälä, Antti-Pekka Sarin, Samuli Ripatti, Aarno Palotie, Markus Perola, 

Jorma Viikari, Sirpa Jalkanen, Mikael Maksimow, Veikko Salomaa, Marko 

Salmi, Olli Raitakari, Johannes Kettunen were involved in the collection, 

measurement, preprocessing, and quality control of the omics data in the 

population cohorts analysed in this chapter.  

 
• Michael Inouye, Gad Abraham, and Scott Ritchie provided guidance and advice 

on data analyses, and the interpretation of the results and their visualisation.  

 

Chapter 4: Differential network analysis identifies a transcriptional network 

involved in tissue resident memory T-cell development is an original, unpublished 

work. In the first part of this chapter, I employed a network-based approach to identify 

and characterise a residency-related gene network associated with murine TRM cells 

isolated from various peripheral tissues. In the second part of this chapter, I performed 

comparative analysis to assess the shared similarities between transcriptional profiles of 

resident immune cells from different lineages. A manuscript for publication has been 

planned for this chapter.  

 
The following indicates the contributions of collaborators, colleagues, and myself 

towards the work presented in this chapter:  

 
• I was responsible for the majority of the bioinformatics analyses and creating 

figures for the results presented in this chapter with input from Michael Inouye 

and Francis Carbone.  
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• Scott Ritchie provided computational assistance with the network tool used to 

construct gene networks.  

 
• I was responsible for interpreting the results with contributions and feedback 

provided by Michael Inouye, Francis Carbone, Thomas Gebhardt, and Laura 

Mackay. 
 

Chapter 5: RNA-seq analysis reveals that the trancriptional signature of TRM 

cells is largely driven by TGF-β signalling is an original unpublished chapter. I 

performed comparative transcriptional analysis to assess the role of TGF-β signalling, a 

local extrinsic factor present at tissue sites, in influencing the transcriptional program of 

TRM cells. A manuscript for publication has been planned for this chapter.  

 
The following indicates the contributions of collaborators, colleagues, and myself 

towards the work presented in this chapter:  

 
• I was responsible for the majority of data analyses and creating figures for the 

results presented in this chapter with input from Michael Inouye, Thomas 

Gebhardt, and Asolina Braun.  

 
• Asolina Braun was responsible for performing all the lab experiments, which 

included the in vitro TGF-β stimulation experiment and RNA extraction at the 

Peter Doherty Institute for Infection and Immunity.  

 
• Matthew Tinning at the Australian Genome Research Facility was responsible 

for performing the RNA sequencing.  

 
• I was responsible for interpreting the results with contributions and feedback 

provided by Michael Inouye, Thomas Gebhardt, and Asolina Braun.  

 

Chapter 6: Conclusions is an original summary of the key findings for each chapter, 

and the implications and importance of work presented in this thesis. 
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Chapter 1  
 

Introduction and literature review 

1.1 Introduction 

The immune system is a complex and dynamic network ordered in several hierarchical 

levels from simple molecules, cells to the whole organism. An effective host immune 

response against internal and external threats relies on the regulated interaction and 

integration between various levels of this hierarchy. Substantial progress has been made 

over the years to understand the mechanistic principles regulating the immune system 

and their relationship to diseases. However, this has mainly been done through a 

reductionist approach where the hierarchical sub-systems have been studied as 

individual entities with only a few selected candidate targets usually assessed.  

 

A systems-level analysis is required to comprehensively evaluate and understand 

immune function and regulation. The Human Genome Project and the subsequent 

advancements in high-throughput profiling technologies have facilitated quantitative 

measurements of various aspects of the immune system at multiple levels. As a result, 

this has led to the generation of comprehensive information-rich datasets including 

genotypes, transcriptome, metabolome, cytokine profiles, and so forth. Besides, new 

developments in bioinformatics methods and tools enable us to integrate and represent 

the inter-relationship between components at each level of the immune system as 

functional or regulatory interaction networks.  

 

This chapter is a review of the literature. First, I provide an overview of the immune 

system and response. Next, I summarise the different high-throughput profiling
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technologies that probe the immune system, the bioinformatics approaches and tools for 

analysing large-scale data, and how the meaningful insights extracted from these data 

can be used to inform about immune-system.  

 

1.2 The immune system and its components  

The immune system is composed of a network of molecules, immune cells, and 

coordinated organ system that collectively function to guard the body against infection 

and foreign invaders (1,2).  

 
One of the fundamental characteristics of the immune system is the ability to 

discriminate between self and non-self, which is essential to identify and eliminate 

invading microorganisms and abnormal cells from our bodies.  

 

To be able to perform self/non-self discrimination, multiple proteins are required. This 

includes receptors that recognise pathogens such as pattern recognition receptors 

(PRRs) for innate immunity and receptors of T- and B-cells [T Cell Receptor (TCR) and 

B Cell Receptor (BCR)] for adaptive immunity (3). Signalling through these receptors 

trigger intracellular signalling cascades, for example the myeloid differentiation primary 

response gene 88 (MyD88)-dependent pathway in innate immunity. This in turn leads to 

the activation of several transcriptional factor families [e.g. nuclear factor kappa b (NF-

κB) and interferon regulatory factors (IRFs) for innate immunity; NF-κB and nuclear 

factor of activated T cells (NFAT) for adaptive immunity], which subsequently drive 

the expression of effector cytokines and chemokines (3).  

1.2.1 Organs of the immune system  

Organs in the immune system can be divided into two groups. These are the primary 

lymphoid organs (bone marrow and thymus), sites where progenitor immune cells 

mature; and the secondary lymphoid organs (spleen, lymph nodes), where the mature 

immune cells further differentiate following an antigen encounter (4).  
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Bone Marrow is the soft tissue that lies inside the hollow cavities of bones. All the 

immune cells of the hematopoietic lineage are derived from precursor hematopoietic 

stem cells (HSCs) within the bone marrow (5).  

 
The thymus is a bi-lobed organ located behind the breastbone in the upper chest where 

differentiation of precursor T-cells occurs (6).  

 
The spleen is located in the upper left quadrant of the abdominal cavity, which 

functions as a blood filter by capturing foreign antigens and initiating an adaptive 

immune response (7). Aberrant and old cells are also detected and destroyed by the 

spleen. 

 
The lymphatic system is an auxiliary circulatory system made up of lymph vessels, 

lymph nodes, and lymph (clear fluid rich in white blood cells). In the context of 

immunity, it functions as an internal filtration system. The microbes and toxins picked 

up by the lymph get cleared off in the lymph nodes (8).  

 
Lymph nodes are dispersed throughout the body as concentrated regions of T-cells, B-

cells, dendritic cells and macrophages, which function to filter the lymph (8). 

 
Skin not only provides a physical barrier against invading pathogens but is also a matrix 

for a number of resident immune cell subtypes (e.g. resident memory T-cells). 

 

1.2.2 Haematopoiesis gives rise to the cells of the immune system 

Immune cells and other blood cell subpopulations are produced by a highly orchestrated 

developmental process, called haematopoiesis (9) (Figure 1.1). Adult HSCs, residing in 

the bone marrow, give rise to progeny, which progressively differentiate until they 

create distinct (unable to differentiate into other cell lineages) classes of blood and 

immune cells (10,11). The self-renewing HSCs first differentiate into multipotent 

progenitors (MPP), which lose their potential to self-renew. The MMPs further 

differentiate into two distinct branches – common myeloid progenitors (CMPs) and 

common lymphoid progenitors (CLPs) (11,12). The myeloid progenitors give rise to 

erythrocytes (red blood cells), platelets, granulocytes and macrophages, while T-, B-, 

and NK cells develop through the lymphoid path (9). Dendritic cells are derived from 
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both CLP and CMP lineages (13). The expression of a number of lineage-specific 

transcription factors is crucial in determining cell fate during haematopoiesis (12,14–

19). In addition stem cell factor (SCF), thrombopoietin (TPO), erythropoietin (EPO), 

Fms-like tyrosine kinase 3 (FLT3) ligand, granulocyte–macrophage colony-stimulating 

factor (GM-CSF), and interleukins (IL-2, IL-3 and IL-7, IL-15) are growth factors and 

cytokines required for cell proliferation and survival at all points of the hematopoietic 

lineage (20,21). The functions of the blood elements formed during haematopoiesis are 

summarised in Table 1.1. 

 

1.2.3 An immune response: crosstalk between innate and adaptive 
immunity 

The immune system is divided into two distinctive, yet interconnected, subdivisions: the 

innate (natural) and adaptive (acquired) immunity (22). The innate immune system is 

constitutively present as the first line of defence and is activated within one hour of 

exposure to foreign invaders (23). This defence mechanism, which is mediated by 

various immune cells such as macrophages, neutrophils, dendritic cells, NK cells, and 

basophils, recognises pathogens in a non-specific manner via germ line-encoded pattern 

recognition receptors (24). The adaptive immune system, which involves T- and B-

cells, is triggered after several days of infection in a more specific manner, by targeting 

antigens (foreign substance that triggers an immune response). This is achieved by the 

somatic rearrangement of genes encoding for receptors on these cells, thus generating a 

diverse repertoire of antigen-specific T- or B-cell receptors that are specific for unique 

foreign structures (3). This may allow it to clear pathogens that had somehow evaded 

innate immunity. Immunologic memory, the ability to recognise and rapidly clear 

reinfections, is another hallmark of adaptive immunity that is otherwise lacking in the 

innate immune response (24). However, there is intimate cross-talk between these two 

systems, and dendritic cells play a central role in this (25). 

 

1.2.3.1 Innate immune response  

An innate immune response is activated when a pathogen invades the physical barrier 

(e.g. skin) of a host. Pathogens interact with leukocyte receptors such as toll-like 

receptors (TLRs), nucleotide oligomerization domain (NOD) like receptors (NLR), 
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RIG-I like receptors (RLR), and other pattern recognition receptors (PRRs). These 

identify evolutionary conserved molecular structures (e.g. bacterial lipopolysaccharide, 

RNA from viruses) called pathogen-associated molecular patterns (PAMPs) that are 

exclusive to pathogens (26,27). PRRs can also detect endogenous host molecules that 

are released from damaged or dying cells and provoke an inflammatory response (28). 

PRRs trigger signalling pathways that converges on the activation of NFkB and IRF 

family of transcription factors, which mediate the expression of an array of cytokines 

including tumour necrosis factor alpha (TNF), interleukins (IL-1, IL-10, IL-12), type 1 

and type II interferons [IFN-alpha (IFN-α), IFN-beta (IFN-β), IFN-gamma (IFN-γ)], 

and chemokines (26,29). Chemokines function as chemoattractants recruiting 

neutrophils, monocytes (precursors of macrophages), and other leukocytes to the 

infection site (29). Macrophages and neutrophils are phagocytes that ingest microbes 

and degrade them using digestive enzymes and toxic peroxides (30). Studies in 

translucent zebra fish showed that macrophages engulf fluid borne bacteria, while 

neutrophils engulf surface associated bacteria as they sweep over them using a "vacuum 

cleaner" technique (31). Cytokine production also activates the complement system, 

which bind to microbes, and mark with antibodies or proteins; thus “opsonising” them – 

making them more susceptible to ingestion by phagocytes (24). Innate-adaptive 

crosstalk occurs through cell–cell interaction upon antigen presentation by antigen 

presenting cells (APCs) to antigen specific receptors on the surface of T- and B-cells, 

hence, initiating an adaptive immune response (32–34).  
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Figure 1.1: Simplified schematic of the hematopoietic lineage tree. 

Adapted from Moignard et al. (35). MEP, megakaryocyte-erythroid progenitor; GMP, granulocyte-macrophage progenitor. Key growth factors and cytokines 
are indicated (SCF, stem cell factor, TPO, thrombopoietin; IL, interleukin; GM-CSF, Granulocyte-macrophage colony-stimulating factor; M-CSF, 
macrophage colony-stimulating factor; G-CSF; Granulocyte-colony stimulating factor; EPO, erythropoietin. 
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Table 1.1: Major cells of the immune system and their functions. 

Immune cell type  Functions  

Erythrocytes 

(Red blood cells) 

Transport oxygen around the body 

Leukocytes  

Lymphocytes   

T-cells CD4+ T-cells different into various helper T-cells subsets during an 
adaptive immune response, which secretes specific cytokines to 
activate other immune cells as well as enhances their function. 
Also, suppresses immune overactivation (36,37).  
 
CD8+ T-cells gain effector function following antigen challenge 
(adaptive immune response) to clear off infection. 
 
Few of the CD4+ helper T cells and effector CD8+ T cells go onto 
developing into memory subsets to protect against reinfections 
(38). 

B-cells Part of adaptive immunity and are responsible for clearing 
infections by producing antibodies, which bind to antigens found 
on invading pathogens (39). 

Natural killer 

(NK) cells 

Part of the innate immune system and possesses cytotoxic function 
to destroy abnormal or virus-infected cells (40).  

Granulocytes  

Neutrophils Functions in innate immunity as phagocytic cells, where engulfed 
bacteria of fungi are digested with the cytotoxic chemicals released 
from their granules (41). 

Eosinophil  Provides defence against parasites and allergic diseases (42). 

Basophil  Involved in inflammatory response to allergic reactions mainly by 
releasing histamine (43). 

Monocytes 

Macrophages  

Phagocytic cells that engulf debris, microbes and apoptotic cells 
(44). Also, function as antigen presenting cells. Monocytes are 
precursors of macrophages and dendritic cells (45). 

Dendritic cells  Antigen presenting cells, which initiate an adaptive immune 
response (46). 

Platelets Involved in blood clotting (47). 
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Since two research chapters of this thesis will focus on CD8+ T-cells (Chapters 4 and 

5), CD8+ T-cellmediated adaptive immune response is discussed in depth below. 

 

1.3 CD8+ T-cell mediated immunity 

1.3.1 T-cell development in the thymus  

T-cell progenitors initially arise from HSC in the bone marrow and then migrate 

through blood to the thymus where they complete their development (48). In the 

thymus, these progenitors, also known as thymocytes, undergo successive stages of 

differentiation, which are constrained to specific lineages, before maturing into distinct 

T-cell subsets and re-entering the circulation (48). The earliest thymocytes are devoid of 

surface expression of both co-receptors, CD4 and CD8, and are thus referred to as 

double-negative (DN; CD4− CD8−) thymocytes (48,49). As these cells progressively 

differentiate during their development, they become double positives (DP; CD4+ CD8+) 

and then ultimately mature into single-positive naive CD4+ or CD8+ T-cells (48,49). 

Once released, these naive T-cells, which are specific for a unique antigen, constantly 

recirculate through secondary lymphoid organs scanning for their cognate antigens 

displayed on APCs (50).  

 

1.3.2 Molecular mechanisms regulating effector and memory CD8+ T-
cell differentiation  

The T-cell immune response following an infection or antigen exposure is comprised of 

three phases. This includes the initial priming and expansion of naive cells, followed by 

their contraction, and finally memory formation and maintenance (51). A simplified 

overview of CD8+ T-cell differentiation is presented in Figure 1.2. 

 

1.3.2.1 Priming and activation of naive T cells  

A T-cell response is initiated when a naive T-cell recognises and binds to its cognate 

antigen on APCs through the T-cell antigen receptor (TCR) (52). Mature dendritic cells 

are the main APCs that activate naive T-cells, but stimulation by others, such as 
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macrophages, has also been shown (53,54). Dendritic cells process the ingested 

pathogen into small antigenic peptides (p) and display it on its cell surface by loading 

them onto the major histocompatibility complex (MHC) molecules (pMHC) (52,55).  

 
Activated dendritic cells have increased expression of MHC and co-stimulatory 

molecules such as CD80 and CD86, together with altered chemokine receptor 

expression (up-regulation of CCR7 and CXCR4, and down-regulation of CCR1 and 

CCR5) (56,57). They migrate to lymph nodes where they effectively communicate with 

and activate T-cells via TCR-pMHC interactions, triggering an adaptive immune 

response. CD4+ and CD8+ T-cells interact with MHC class II and I molecules on the 

target cells, respectively. The CD4 and CD8 co-receptors on the T cells then further 

enhance TCR signalling by further stabilising the TCR-pMHC complex (58,59).  

 
Besides binding to their respective MHC through TCR, the activation of CD4+ and 

CD8+ T-cells require accompanying co-stimulatory signals or adhesion molecules. 

Leukocyte function antigen 1 (LFA-1) and cluster of differentiation 28 (CD28) co-

stimulatory receptors present on naive T-cells bind respectively to intercellular adhesion 

molecules 1 (ICAM-1) and CD80 found on dendritic cells (Figure 1.3), which further 

magnifies the signal received via TCR-pMHC interaction and as a result enhances naive 

T cell activation and survival (60). Also, pro-inflammatory cytokines and chemokines, 

particularly interleukin (IL)-12 and IFN-α, have also been shown to augment naive T-

cell priming (61). Once activated these T-cells rapidly proliferate (~105 fold) and release 

more IL-2, producing a positive feedback on their proliferation and differentiation into 

effector T-cells (62,63). Activated CD8+ T-cells mature and expand into effector 

cytotoxic T lymphocytes (CTLs) (64). The extent of synergy between three signals, 

which includes antigenic stimulation via TCR (signal 1) in combination with co-

stimulatory (signal 2) and inflammatory signals (signal 3), has been suggested to play a 

role in determining effector fate (Figure 1.3) (65).  

 

Activated CD4+ T-cells differentiate into either one of the effector T helper (Th) 

lineages (Th1, Th2, Th17, and iTreg), which is characterised by the combination of 

cytokines they produce (62,66–68). Th1 cell differentiation is primarily induced by the 

cytokines IL-12 and IFN-γ, and the transcription factors STAT-5 (signal transducers and 

Activators of Transcription), STAT-4 and Tbet (69). 
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Figure 1.2: Simplified overview of the three main developmental phases of CD8+ T-cell differentiation.  
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Figure 1.2: Simplified overview of the three main developmental phases of CD8+ T-cell 
differentiation.  

 
When naive CD8+ T-cells encounter their pathogen-specific antigen (Ag) presented on antigen 
presenting cells (APCs), they undergo a differentiation program comprising of three steps: 
priming, expansion, and contraction followed by memory development. These naive cells 
rapidly proliferate and differentiate into cytotoxic effector cells, which secrete antiviral 
cytokines and cytolytic proteins (interferon gamma, IFNγ; granzyme, GZMB; and perforin). 
The early effector cells, which can adopt different fates, further differentiate into short-
lived effector cells (SLEC) or memory precursor effector cells (MPEC). The terminally 
differentiated SLECs express increased amounts of killer cell lectin-like receptor G1 (KLRG1) 
and interleukin-2 receptor (IL-2R), and low amounts of interleukin-7 receptor (IL-7R). SLECs 
die during the contraction phase. By contrast, MPECs, which develop into long-lived, self-
sustained memory T-cells, express high levels of IL-7R and low levels of KLRG1 and IL-2R. 
The memory population comprises of the circulating effector memory (TEM) cells and central 
memory (TCM) cells, and the tissue resident memory (TRM) cells. TCM cells express CD62L 
(L-selectin), and CCR7 homing molecules, which regulate their access to lymph node and 
localisation to secondary lymphoid organs. On the other hand, TEM cells lack lymph node 
targeting receptors, CCR7 and CD62L, but they express cytokine receptors such as CXCR3 
allowing them to gain access to non-lymphoid peripheral tissues, spleen, and blood. TRM cells, 
which permanently reside in peripheral tissues, express the canonical CD103 and CD69 surface 
markers that facilitate their retention at tissue sites. This figure has been adapted from Kaech 
and Cui, 2012 (70). 
 ______________________________________________________________________ 
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IL-4 induced expression of transcription factors STAT-6 and GATA-3 (GATA Binding 

Protein 3) leads to polarization of Th2 cells (69). Th17 cell fate is determined by the 

cytokines IL-6 and TGF-β, and the transcription factors STAT-3 and RORγt (retinoic 

acid-related orphan nuclear receptor) (71). The TGF-β/FOXP3 signalling pathway plays 

a critical role in the polarization of regulatory T (Treg) cells (72). Each of the TH 

subsets have their own dominant cytokine profiles and lineage-specific transcription 

factors, which counter regulates the development of other subsets as well as self-

reinforces their lineage commitment and maintenance (69). 

 

1.3.2.2 Clonal expansion and differentiation of CD8+ T-cells: Molecular 
mechanisms regulating effector and memory fates 

CD8+ effector CTLs mediate killing of infectious agents by secreting antiviral cytokines 

such as interferon-gamma (IFNγ), tumour necrosis factor (TNF), and cytolytic proteins 

including granzyme B (GZMB) and perforin (73).  

 

 
Figure 1.3: Naive T-cell stimulation and activation require the three signals provided by 
dendritic cells.  
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Figure 1.3: Naive T-cell stimulation and activation require the three signals provided by 
dendritic cells.  

Signal 1 is the activation signal when the naive T-cell binds via the T-cell receptor to the MHC- 
associated peptides (Ag) presented on the surface of dendritic cells, forming a TCR-peptide-
MHC (TCR-pMHC) complex. Signal 2 are the co-stimulatory signals triggered by co-
stimulatory and adhesion molecules. Leukocyte function antigen 1 (LFA-1) and cluster of 
differentiation 28 (CD28) co-stimulatory receptors present on naive T-cells bind respectively to 
intercellular adhesion molecules 1 (ICAM-1), and CD80 found on dendritic cells. Signal 3 is 
cytokine and chemokine mediated signalling that leads to the functional polarisation and 
differentiation into effector T-cells. This figure has been adapted from Kapsenberg, 2003 (74). 
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The CTL effector group comprises two sub-populations that can be distinguished by the 

expression of surface markers interleukin-7 receptor (IL-7R) and killer cell lectin-like 

receptor G1 (KLRG1). These are: short-lived effector cells (SLECs; IL-7Rlow and 

KLRG1high) that are lost through apoptosis; and memory precursor effector cells 

(MPECs; IL-7Rhigh and KLRG1low) which preserve long-lasting memory for a particular 

antigen, so that re-exposure to that antigen elicits a more rapid and enhanced response 

(75).  

 
Although the role of effector CD8+ T-cells has long been well-known, the actual 

molecular mechanisms underlying their function and fate have only just begun to be 

elucidated. For instance, studies have indicated that the strength and nature of TCR 

signalling can regulate effector fate. Dampened TCR signalling skewed CD8+ T-cell 

differentiation towards a memory phenotype (76,77). Mice expressing a mutant TCR 

showed impaired TCR-mediated NF-kappaB signalling, which resulted in the loss of 

memory cell development but intact effector differentiation (78).  

 
In addition, the combinatorial effects of the signals as mentioned earlier in Figure 1.3 

may indirectly determine cell fate by altering transcription factor levels. Studies have 

identified a number of critical fate-determining transcription factors. These usually 

work in pairs and in a counter regulatory fashion to produce both SLECs and MPECs. 

 
T-Bet and EOMES. It has been observed that high levels of IL-12 up-regulate T-bet 

expression inducing SLECs, while low levels of IL-12 coupled with low T-bet 

expression promoted accumulation of MPECs (75). Reciprocal expression of T-bet and 

Eomes has been noted in early effectors (T-Bethigh and EOMESlow) and memory cells 

(T-Betlow and EOMEShigh) (64,79).  

 
BLIMP1 and BCL6. B lymphocyte–induced maturation protein 1 (BLIMP1 or 

PRDM1) and BCL6 are reciprocally expressed exerting antagonist effects on each other 

to determine cell fate during differentiation of effector and memory T-cells (80,81). 

Blimp1 is highly expressed in IL-7Rlow KLRG1high SLECs and enhances CTL functions 

through the production of effector molecules such as IFN-γ and granzyme. Murine T-

cells lacking Blimp1 differentiate into IL-7Rhigh KLRG1low MPECs with attributes 

mirroring central memory T-cells (TCM). These cells are also deficient in granzyme B 
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and have increased Bcl6 expression compared to Blimp1-expressing T-cells from wild-

type mice (82,83). In memory T-cells, Bcl6 expression levels are inversely correlated to 

Blimp1 levels. The overexpression of Bcl6 results in increased TCM cells (84) 

suggestive of its a role in TCM development.  

 
ID2 and ID3. Inhibitor of DNA binding 2 (ID2) and 3 (ID3) are another important set 

of transcription regulators, which control effector and memory cell fates by inhibiting 

the DNA-binding activity of E-protein transcription factors (38,85). Studies with Id2 

and Id3 reporter constructs in mice showed that Id3-GFPhigh phenotype correlated with 

memory potential resulting in effector cells differentiating into MPECs; producing more 

IL-2. On the other hand, Id2-YF2 expression led to the generation of SLECs (38,85). 

Loss of ID2 and ID3 impaired the formation of memory, and short-lived effector subsets 

respectively (38). Moreover, BLIMP1-mediated repression of Id3, via direct binding to 

Id3 promoters, is a key determinant of effector cell fate (86).  

 
In conclusion, there is a complexity yet also an exquisite balance in the way that 

transcription factors regulate the differentiation and production of effector and memory 

immune cell. Hence, a genome-wide analysis is needed to comprehensively evaluate 

and deconvolute the complexity of the transcriptional regulation mediated by these 

transcription factors.  

 

1.3.2.3 Contraction and development of memory T-cells 

Following clearance of the primary infection, the expanded antigen-specific T-cell pool 

undergoes rapid contraction, with most effector cells dying by apoptosis. Only a small 

proportion (~10%) of memory cells remain to protect against reinfection (87). The 

contraction phase and subsequent generation of memory T-cells is mediated largely by 

the interactions between survival (BCL2, BCL-XL, BCL-W, MCL1) and apoptotic 

(BIM, BID, and PUMA) proteins. 

 
Earlier studies have identified two distinct circulating groups of memory T-cells, based 

on their function and the expression of migratory homing receptors on their cell surface. 

Central memory T-cells (TCM) express CD62L (L-selectin), and CCR7 homing 

molecules, which regulate their access to lymph node and localisation to secondary 

lymphoid organs. TCM cells can produce interleukin (IL-2) following antigen 
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induction, stimulating them to proliferate expansively, but they have decreased effector 

capabilities (87–91). On the other hand, effector memory T-cells (TEM) lack lymph 

node-targeting receptors, CCR7 and CD62L, but they express other cytokine receptors 

such as CXCR3 allowing them to gain excess into non-lymphoid peripheral tissues, 

spleen, and blood (87–91). TEM cells have decreased proliferative capabilities, but have 

increased effector potential due to their ability to express effector cytokines like IFN-γ 

and IL-4 (87–91). In addition, TCMs have longer lifespans compared to TEM cells and 

can also themselves differentiate into TEM cells upon exposure to antigens (92).  

 
The loss of TEM cells over time from circulation does not necessarily deprive extra-

lymphoid tissues of T-cell immunity (93); a new subset of antigenic-specific long-lived 

memory T-cells, referred to as tissue resident memory (TRM) cells, have been 

identified to be permanently localised to peripheral tissues following an infection. TRM 

cells are disconnected from circulation and reside long-term in barrier and non-barrier 

tissues, where they have been shown to provide superior and rapid frontline defence 

against local reinfections (94–102). The expression of specific homing receptors and 

concurrent repression of genes involved in tissue egress facilitates the retention of TRM 

cells in tissues (95,103–105). Additionally, TRM cells display a transcriptional program 

that distinguishes them from their circulating TEM and TCM counterparts (88,103). 

Even though TRM cells are distinct from the circulating memory subsets, based on their 

phenotype, function and transcriptional profile, the mechanisms underlying tissue 

residency are still not fully understood.  

 
As mentioned above memory T-cells express cytokine and chemokine receptors, which 

suggests that cytokines play a fundamental role in the development, migration and 

function of these memory cells.  

 

1.4 Cytokines, chemokines, and growth factors  

Cytokines, chemokines, and growth factors (hereafter referred to collectively as 

“cytokines”, unless otherwise stated) are cell signalling molecules that play a key role in 

regulating immune cell differentiation, immune response and inflammation during host 

response to infection and injury (106).  
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1.4.1 Properties and function of cytokines 

Cytokines are low molecular weight (usually ~10-40 kD), water-soluble proteins or 

glycoproteins, which are secreted by immune cells in response to a stimulus. These 

secreted cell signalling molecules are intimately involved in coordinating an effective 

immune response by facilitating communication between innate and adaptive responses. 

They exert their effect by binding to their cognate receptors on the surface of target cells 

(106–108) in an autocrine (same cell), paracrine (neighbouring cell) or endocrine 

(distant cells via circulation) fashion (109). Moreover, there is redundancy, in that a 

number of cytokines share similar biological functions. Several cells can produce the 

same cytokine, and each cytokine might be involved in multiple signalling pathways or 

act on multiple cells (110). In addition, cytokines also have the propensity to exhibit 

synergistic, antagonistic, and cascade-induction behaviour (110–112). Depending on the 

local inflammatory environment, cytokines may either promote (pro-inflammatory) or 

suppress (anti-inflammatory) inflammatory response, or both (113). The cytokine 

superfamily can be divided into seven broad classes including interferons, interleukins, 

colony-stimulating factors (CSF), angiogenic growth factors, tumour necrosis factors 

(TNF), transforming growth factors, and chemokines (Table 1.2).  

 

1.4.2 Multiplexed cytokine profiling 

Cytokines are traditionally measured using the antibody-based Enzyme-Linked 

Immuno-Sorbant Assay (ELISA) assays, which are the best-validated approach 

currently available. However, this approach generally requires large sample quantities, 

as multiple cytokines cannot be tested from one aliquoted sample; each cytokine 

requires its own aliquot for measurement (114). In recent years, several multiplexing 

technologies have emerged as an extension of ELISA to overcome these limitations. 

Multiplex cytokine profiling allows quantification of multiple cytokines (several 

dozens) simultaneously in serum or plasma. The two basic assay designs for multiplex 

cytokine profiling are beads-based multiplex assays and planar array assays. In the 

beads-based multiplex assay, relies on the capture and detection antibodies (Figure 1.4). 
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Table 1.2: Cytokine subgroups and their key functions 

Group Cytokines Primary functions 

Interferons 
(INFs) 

INF-α, INF-β and INF-γ Secreted in response to viral infections, 
exerting their effects by stimulating 
several downstream interferon-induced 
antiviral and immunomodulatory genes 
(115).  

Interleukins  
(ILs) 

IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-
7, IL-9, IL-10, IL-11, IL-12, IL-13, 
and IL-17 

Involved in immune cell growth, 
differentiation and activation (116). 

Colony-
stimulating 
factors (CSFs) 

CSF-1, CSF-3 Exert their effect in a lineage-specific 
manner regulating the proliferation, 
differentiation and survival of cells in 
the macrophage and neutrophil lineages 
(117).  

Angiogenic 
growth factors 

Vascular endothelial growth factor A 
(VEGF-A),  
platelet-derived growth factor 
(PDGF), Hepatocyte growth factor 
(HGF), stromal cell-derived factor-1 
(SDF-1) 

Secreted by injured tissues, platelets, 
and immune cells to induce and regulate 
angiogenesis, a prerequisite for 
facilitating wound healing process (118).  
 

Tumor 
necrosis 
factors (TNFs) 

TNF-α, TNF-β Exhibits an array of function including 
immune response, hematopoiesis, and 
initiation of cell survival, differentiation 
and apoptosis pathways (119). 

Transforming 
growth factor 
beta (TGFB) 

TGFB1, TGFB2, and TGFB3 Involved in regulating immune cell 
differentiation, proliferation, and 
immune homoeostasis (120). 

Chemokines  Monocyte chemotactic 
protein (MCP)-1 
MCP-2, IL-8, Macrophage 
inflammatory protein-1beta (MIP-
1B) 

Chemotactic migration and infiltration 
of macrophages, monocytes, 
neutrophils, and other immune cells 
(121). 
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The first laser light identifies the beads based on their fluorescence signature and the 

second laser light quantifies the cytokines by measuring the fluorescence intensity of the 

fluorescently labelled detection antibodies (114).  

 
In the planar array assays, the two-dimensional array (96 wells) consists of different 

capture antibodies immobilised at different spots within each well, which are detected 

by chemiluminescence (114). The data generated from such multiplex platform needs to 

be treated with caution, as they tend to be confounded by technical and systematic 

noise. Hence, appropriate curve-fitting models and normalisation strategies should be 

employed when calculating concentrations (from fluorescence intensities) and 

preprocessing data, respectively.  

 

 
 
Figure 1.4: Schematic showing the bead-based sandwich immunoassay system used for 
cytokine detection in biological samples.  

Figure has been adapted from Sachdeva and Asthana, 2007 (122).  
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1.4.3 Cytokine profiling to assess the immune system 

The emergence of technologies such as multiplex cytokine profiling allows us to 

quantify a large number of cytokines across multiple samples simultaneously, which 

permits a systems-based investigation of complex immune and inflammatory responses. 

Several studies have utilised such technologies to assess cytokine patterns elicited 

following vaccination, infection or disease onset. For instance, cytokine profiling has 

been used in vaccination studies to establish the cytokine pattern induced in PBMCs, in 

response to vaccination by human papillomavirus (HPV) L1 virus-like particles (VLP) 

(123). It has also been used to quantify the difference in cytokine responses following 

the anti-tuberculosis Bacillus Calmette–Guérin (BCG) vaccination across infants from 

Malawi, UK, and Gambia (124,125). Finally, it has been used to characterise the 

response of CD4+ T-cells in subjects who received the YFV-17D yellow fever vaccine 

(126). Multiplexed cytokine analysis has also been used in association with human 

diseases; cytokine profiles have been constructed to differentiate disease severity in 

patients with rheumatoid arthritis and sepsis (127,128); to examine the host immune 

response to variable compositions of gut microbiota in HIV patients (129); and to 

identify biomarkers signatures associated with other diseases (130–132).  

 
The variation in immune response can be partially explained by heritable influences 

(133). Genetic variation in immune-related traits such as cytokine levels likely 

contributes to inter-individual differences in immune function and affects disease risk.  

 

1.5 Genome-wide association studies (GWAS) to investigate the 
genetic architecture of complex diseases and traits 

Over the last two decades, genome-wide association studies (GWAS) have emerged as a 

powerful approach to decipher the genetic basis of human diseases. GWAS has been 

used to identify common genetic variants (with minor allele frequency [MAF] > 5%) 

associated with disease risk (134), clinical phenotypes (135,136), and response to 

treatment and therapies (137).  

 
Much progress has been made in creating a comprehensive catalogue of common 

variants occurring in diverse human populations. This includes the Human Genome 
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Project (138) and its extended International HapMap Project (138–140), the 1000 

Genomes Project (141–143). Technological advances in genotyping have improved the 

viability of performing GWAS in both a time and fiscal sense. The two most popular 

genotyping platforms used in GWAS studies, Affymetrix GeneChip and Illumina 

BeadChip arrays, are capable of assaying thousands to millions of SNPs simultaneously 

across the genome (144). Genotype imputation, an approach to infer un-assayed SNPs 

using a reference panel derived from existing population data (e.g. 1000 Genomes), is 

commonly employed in GWASs to increase power, fine map regions, and enable 

summary statistics from separate studies to be combined via meta-analysis (145). 

Additionally, the application of the genotyping platform has been expanded to detect 

structural variants such as copy number variations (CNVs). CNVs refer to insertions, 

duplications, or deletions of segments of a chromosome (> 1kb) that vary in number 

between individuals (146). 

 
In performing a GWAS, one needs to account for linkage equilibrium (LD), the 

correlation between closely-neighbouring SNPs due to them being inherited together 

more frequently than SNPs that are further apart. A SNP identified via GWAS to be 

associated with a complex disease or quantitative trait may not be the causative SNP, 

but may instead be in LD with the causal allele (147–149).  

 
GWASs are a popular method of analysis for genetic associations. The initial large-

scale studies explored a large variety of human diseases, including age-related macular 

degeneration (150), Crohn's Disease (151), type 2 diabetes (152), inflammatory bowel 

disease (153). Of particular note is a landmark GWAS study conducted by the 

Wellcome Trust Case-Control Consortium (WTCCC), that jointly-investigated seven 

prominent diseases (bipolar disorder, coronary artery disease, Crohn's disease, 

rheumatoid arthritis, type 1 and type 2 diabetes, and hypertension) (154). Since then a 

number of studies have been conducted, leading to the identification of thousands of 

reproducible common genetic variants associated with complex traits. As of 17th April 

2017, an online catalogue of all published GWAS studies, maintained by the he 

European Bioinformatics Institute (EMBL-EBI), contained 2,584 curated publications 

with 33,674 unique SNP-trait associations (155,156). 
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Inflammatory and autoimmune diseases have been at the front line of scrutiny using 

GWAS, which has led to the identification of an exceptional number of risk loci 

(157,158). Furthermore, several studies have provided insight into the genetic 

determinants underlying blood cell traits, which have been extensively used in clinical 

settings as indicators to assess human health. Genetic variants influencing a number of 

blood cell traits such as platelet counts and volumes (135,136), haemoglobin 

concentrations (159), and white blood cell counts (136) have been identified. As a 

result, the unprecedented number of susceptibility loci identified through these GWASs 

have considerably redefined our understanding of the genetic architecture (number, 

frequency and effect size of susceptibility alleles, and the way these alleles collectively 

interact) of common diseases or traits (148,160–162). Besides, studies are now focusing 

on characterising risk variants regulating intermediate immunological parameters (e.g. 

cytokines, gene expression) that are linked to disease development. The last few years 

has seen an increase in the availability of genetic data from large studies such as the UK 

Biobank, Electronic Medical Records and Genomics (eMERGE) network, and US 

National Institutes of Health Precision Medicine Initiative, in which individuals have 

been extensively phenotyped. 

 
However, despite considerable progress in mapping the susceptibility loci of diseases, 

identification of casual variants at each of these loci, and the mechanism of their effect 

remains elusive. The two main reasons for this are as follows: firstly, the standard 

GWAS approach is often underpowered to identify causal SNPs with small effect sizes 

(163). Secondly, even if the GWAS is sufficiently powered, the majority of identified 

variants occur in intergenic, non-coding regions, with an uncertain mechanism of action. 

Some may exert their effect as transcriptional regulatory SNPs since they generally 

overlap with regulatory elements such as promoters (164).  

 

A problem that often emerges in both population- and family-based GWA studies is 

confounding due to genetic relatedness between samples, which can lead to spurious 

(false positive) association signals if not appropriately accounted for in the analysis 

(165). The two types of relatedness that need to be identified and adjusted for are 

population structure and cryptic relatedness. Population structure occurs when there is a 

substantial difference in ancestry-specific allele frequencies between subgroups in a 

study population (165,166). In most cases, population structure is closely aligned with 
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self-reported ethnicity, race, language or geographic origin. Cryptic relatedness arises 

when close relatives (up to third-degree) are present in population-based studies (166). 

The inference of population structure and cryptic relatedness using genome-wide SNP 

data, and accounting for these effects accordingly in downstream association analysis, 

has become a common practice. PCA is one of the most widely used approaches to 

control for population structure (167). Usually PCA is performed on a small group of 

representative SNPs (with low pair-wise correlation) that can still extract the same 

structure of subpopulations within the dataset (168). The inferred PCs capturing the 

ancestry signal for each individual are then adjusted for as covariates in the association 

test for each SNP (169). In recent years, association analysis based on linear mixed 

models (LMM), which requires a matrix of pair-wise genetic relatedness computed 

between all individuals, has become a well accepted method to simultaneously account 

for population structure and cryptic relatedness (170). The quantile-quantile (QQ) plot 

of observed versus expects P-values and the genomic inflation factor (λ) have been 

routinely used to assess the presence of genetic relatedness (171). The inflation factor is 

estimated as the ratio of the median value of the empirically observed test statistics to its 

expected under the null hypothesis of no association, and it should be close to one in the 

absence of population stratification or cryptic relatedness (171). 

 

1.6 Gene expression profiling- microarray and RNA-seq 

The genetic knowledge gained from the completed sequence of the human genome has 

led to rapid developments in high-throughput technologies that make it possible to 

profile thousands of genes simultaneously within a cell or tissue. With regards to the 

immune system, global transcriptome analyses of specific immune cells and mixtures of 

immune cell populations (e.g. leukocytes in whole blood) have been used to characterise 

and understand the underlying molecular mechanisms regulating immunity in health and 

disease. Microarray-based profiling has been most widely used for such analyses, but in 

recent years, cDNA sequencing using next-generation sequencing (RNA-seq) has 

become an increasingly popular alternative (172). 
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1.6.1 Tools and methods for analysing gene expression data 

1.6.1.1 Microarray and RNA-seq technology  

Microarrays are based on the principle of hybridization (173) (adapted from Southern 

blotting) where fluorescently-labelled cDNA, derived from mRNA, hybridise to the 

oligonucleotide probes on the array chip. The chip is read by a laser scanner to generate 

a fluorescent image, where the fluorescence intensity correlates with the amount of 

mRNA isolated from the sample. Affymetrix GeneChips and Illumina BeadArrays are 

two platforms available for microarray-based expression studies, and they have been 

compared in Barnes et al.(174).  

 
In RNA-seq, libraries are prepared by ligating sequence adapters to cDNA, which are 

then subjected to PCR amplification, followed by sequencing. The millions of short 

sequence reads generated are aligned back to a known reference genome. Quantification 

by counting or estimating the number of reads overlapping within a genomic region 

(gene or exon) is used as an abundance measure (175–177). The sequence template can 

be sequenced from either one (single-end sequencing) or both ends (pair-end 

sequencing). Pair-end reads are particularly useful for detecting new transcripts and 

isoforms (178). Sequencing provides a number of advantages over microarrays, such as 

the ability to identify new transcribed regions and isoforms, gene fusions 

(translocations), allele-specific expression, differential splicing, and allows 

identification of single nucleotide variants (179,180). The recent applications of RNA-

seq technology have expanded to single-cell sequencing, which has emerged as a 

powerful tool to profile the transcriptome of individual cells to investigate cell-to- cell 

heterogeneity within an individual (181). 

 

1.6.1.2 Normalising gene expression data  

Normalisation is an essential step in both microarray and RNA-seq data analysis to 

ensure that expression values are comparable across samples and reliable for 

downstream analysis. The choice of normalisation strategy may have a strong influence 

on the identification of differentially expressed genes, clustering, and the construction 

of gene networks (182).  
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Microarray. The common factors that usually contribute to unwanted systematic 

differences between samples include technical variation introduced during sample 

preparation and hybridization (183,184), and study design-related batch effects (185). 

The majority of published microarray studies have used Affymetrix GeneChips for 

profiling. The most popular normalising algorithms for Affymetrix gene arrays are 

Microarray Suite (MAS), Robust Multi-array Analysis methods including RMA (186), 

gcRMA (for correcting GC content) (187,188), and the Li-Wong model (189). 

However, since these methods do not take into account the study design, they often fail 

to remove batch effects (183,190–192). A number of methods such as ComBat (193), 

SVA (194), SNM (195), and RUV-2 (183), which operate in a supervised manner, have 

been proposed to filter batch effects. Supervised normalisation for microarrays (SNM) 

jointly fits a study-specific model to the expression data by defining two sets of 

variables: one that is of interest to the biological outcome (biological variables) and the 

other that is not (adjustment variables) (195). 

 
RNA-seq. Specific technical biases inherent in RNA-seq data can also impact 

downstream analysis. To correct for the differences in library size or the total number of 

aligned reads across samples, several library size normalisation methods exist. The 

FPKM (Fragments Per Kilobase of exon per Million mapped reads) and RPKM (Reads 

Per Kilobase of exon per Million mapped reads) measures for paired-end and single-end 

reads, respectively, account for both the transcript length and library size within samples 

(196). However, since this approach only makes transcripts comparable within samples, 

it might not be appropriate in cases where a dissimilar distribution of transcripts is 

observed between samples. For example, in some samples, a few highly expressed 

transcripts may dominate the total reads counts resulting in a skewed distribution. 

Methods such as the trimmed mean of M-values and upper quartile scaling (UQ) are 

commonly used to normalise such between sample differences (197).  

 

1.6.1.3 Differential gene expression analysis  

The key goal of gene expression studies is to identify genes differentially expressed 

between two conditions (198).  

 
Microarray. Fold change was the first crude method used in microarray analysis to rank 

differentially expressed genes. Fold change for each gene was calculated as the ratio of 
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mean expression intensities (log-transformed) between two groups. Often a list of 

differentially expressed genes was obtained using an arbitrary threshold of at least two-

fold difference, with no statistical confidence given for the differential expression (199). 

This approach ignores the variance between replicates of the same condition (200). 

Hypothesis testing through statistical models has been developed to detect differentially 

expressed genes. A t-test is commonly used, and it assumes the data to be normally 

distributed with the groups having equal variance (198,199). However, the estimation of 

variance for each gene may not always be accurate since this method does not consider 

the heterogeneity in variance across all genes analysed (201,202). In cases where there 

are very few replicates, this can lead to false positives. To overcome this problem, 

Smyth et al. proposed a modified t-statistic approach, an empirical Bayes method, 

which estimates the variance of a gene while borrowing information from other genes 

(202).  

 
RNA-seq. While analysis of microarray data assumes a continuous measurement of 

expression intensities, RNA-seq analysis requires separate statistical methods that take 

into account the discrete distribution of read counts. The commonly used models are 

Poisson distribution and Negative Binomial (NB) distribution (203,204). Poisson 

distribution is mainly used for its simplicity and has a single parameter where the 

variance of the model is identical to the mean (203). This model works well with 

technical replicates, but in the case of biological replicates, where the variability tends 

to be much larger, this model tends to underestimate the biological variation leading to 

the problem of overdispersion (203,205). The NB model is able to handle 

overdispersion by factoring in the relationship between the two parameters, mean and 

variance (204). Various tools, including Cuffdiff2 (206), DESeq (207), and edgeR 

(204), perform differential expression analysis using the NB model.  

 
Multiple testing correction methods. A major problem encountered when analysing 

gene expression data is simultaneous testing of multiple null hypotheses (no association 

between the expression level of each gene with a condition or response) (208). Multiple 

hypothesis testing introduces two types of errors: a Type I error (false positive) results 

when a gene is declared differentially expressed when it is not; a Type II error (false 

negative) arises due to the failure to identify a truly differentially expressed gene (209). 

Statistical methods proposed for controlling false discovery rates includes the most 
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stringent Bonferroni correction method (210), and the less stringent and more 

appropriate methods for microarray analysis such as Holm (211), Storey's q-value (212), 

and Benjamini & Hochberg (213). 

 

1.6.1.4 Cluster analysis and its limitations 

Clustering is a valuable exploratory tool used as an initial dimension-reduction step in 

expression analysis, to partition genes with high expression-similarity into meaningful 

groups (214,215). Clustering of genes is based on the assumption that genes with 

similar expression have similar functions or share a common biological pathway, which 

can be useful to infer functions of unknown genes within the same cluster (216,217). 

The most popular clustering methods include K-means (218), hierarchical clustering 

(219), self-organizing maps (SOMs) (220), and principle component analysis (PCA) 

(221); these are all unsupervised, in that they do not rely on a priori knowledge of the 

data (222). Clustering of samples can lead to the identification of unknown sub-groups 

in the samples (223). A prerequisite for all clustering algorithms is that a measure of 

dissimilarity, or distance between two genes or samples, must be computed so that 

genes or samples placed in the same cluster are most similar (less dissimilar) to each 

other than to those from another cluster (224). Euclidean distance and Pearson 

correlation coefficient are two commonly used dissimilarity measures (224).  

 
The traditional clustering methods mentioned above have a number of limitations. 

Firstly, since genes are grouped based on similar expression patterns across all samples, 

in cases where there is heterogeneity in experimental conditions, then these methods are 

no longer appropriate (225–228). Secondly, it misses out genes that belong to the same 

functional pathway if they have dissimilar expression patterns due to transactivation or 

transrepression (229). Thirdly, each gene is assigned to only one specific cluster, and 

most algorithms do not produce overlapping clusters; whereas in reality a gene may be 

involved in multiple pathways in different ways (activator, repressor) under varying 

experimental conditions (227,230). Finally, the clustering algorithm detects patterns in 

both noise and signal, so it ends up assigning all genes into a cluster, generating 

biologically irrelevant noisy clusters (230). The weakness of these traditional clustering 

algorithms have consequences on downstream biological interpretation and have 

motivated the development of co-expression network analysis approaches. 
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1.6.1.5 Gene co-expression network analysis 

Gene co-expression networks, which are becoming increasingly popular in 

transcriptome analysis, facilitate the understanding of transcriptional programs 

governing specific biological processes or cellular traits (231,232). Since genes 

involved in the same pathway or biological processes are usually co-expressed, network 

analysis provides a basis to represent functionally related genes as interaction networks 

(233). 

 
Gene network fundamentals. The idea of displaying gene expression data as a network 

was introduced by the work of Butte and Kohane on yeast S. cerevisiae expression data 

(234). They computed mutual information (MI), defined as the amount of information 

that one gene contains about another gene, for all pairwise gene-gene expression 

combinations (234). Then a threshold value was applied to screen for gene pairs that 

were biologically linked with similarity above the threshold (234). The resulting output 

was a co-expression network comprised of clusters of genes, an undirected graph where 

the nodes represent genes, and edges between gene pairs indicate the co-expression 

associations (216,229,234). Gene pairs exhibiting high correlation scores have a greater 

chance to be functionally related and are more likely to be co-regulated by common 

transcription factor(s) (235,236). MI has the following properties: its non-negative, 

symmetric, and additive for independent variables (234,237). Despite mutual 

information being robust, it can be computationally demanding to calculate. Hence, 

many network construction methods commonly use traditional Pearson correlation 

coefficients to quantify co-expression between two nodes. Alternatively, ranked-based 

correlation metrics such as Spearman and Kendell are applied when outliers are a 

concern.  

 
To discriminate biologically relevant correlations from noise, an arbitrary minimum 

correlation threshold can be applied (hard thresholding) to generate an unweighted 

network (238). However, the optimal choice of a threshold can be challenging, as it can 

discard meaningful correlations resulting in information loss. On the contrary, a 

commonly-used algorithm, Weighted Gene Coexpression Network Analysis 

(WGCNA), deals with these limitations by giving the edges weights based on their 

correlation strength (soft thresholding) and only penalises weaker correlations (239).  
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In a co-expression network, a module refers to a subnetwork consisting of a subset of 

highly connected genes. Module detection with the WGCNA algorithm is based on 

using the topological overlap measure, a measure of connectedness between common 

neighbours shared by gene pairs, to hierarchically cluster densely-connected shared 

neighbours (240). Tree-cutting algorithms are used to cut the branches of the 

dendrogram based on its shape. Several cluster parameters can be tuned to identify 

nested and tightly connected modules (241). 

 
Gene network structure. Several studies characterising the topology (arrangement of 

nodes in a network) of yeast, human, and mouse co-expression networks have shown 

that these networks exhibit small world and scale-free architecture (242–246) features 

that hold true for other cell biology (247) and real world networks (248). A scale-free 

co-expression network is heterogeneous in structure and exhibits properties where most 

nodes in the network will be connected to only a few other nodes (i.e. less connectivity), 

but some nodes will act as hubs connected to many nodes (i.e. high connectivity) 

(242,244,247). Co-expression networks have small-world architecture whereby non-

neighbouring nodes can be reached from every other node by a very small distance L 

such that the average shortest route in the network is very small (216,242).  

 
Replication of network topology. A key aim in network biology is to assess module 

reproducibility in an independent dataset. A typical approach, which does not require 

rigorous statistical methods and is computationally inexpensive, involves visual 

inspection (e.g. correlation heatmaps) or cross-tabulation of genes within a module 

across datasets (249,250). This type of approach can be applied to various module 

detection strategies including basic clustering methods. However, it requires modules to 

be detected in the test dataset as well and does not yield information about network 

topology (the relationship between genes). To address these limitations, module 

preservation statistics have been developed that assess the patterns of gene connections 

within a module in the test data, using network topological metrics (251,252). For 

example, Ritchie et al. have recently developed a tool called NetRep, which uses a 

permutation-based approach to assessing module preservation (251).  
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1.6.1.6 Differential co-expression network analysis 

Differential co-expression analysis (DCA) extends on the idea of the gene co-expression 

network, by aiming to identify groups of genes with altered dependencies across two 

classes or conditions, i.e. a group of genes or modules highly co-expressed in one 

condition but not other (253). DCA is a useful complement to the conventional analysis 

for identifying differential gene expression, as it can identify genes that differ mildly in 

their expression yet have a strong opposing effect on downstream genes between 

conditions (254). Several computations methods have been developed for differential 

co-expression analysis such as CoXpress (255), DICER (256), DiffCoEx (253) and 

others (257,258). DiffCoEX and MODA use WGCNA to identify gene networks.  

 

1.6.1.7 Functional enrichment analysis 

One of the primary goals of gene expression analysis is to ascertain the functional 

properties of gene sets obtained from differential expression analysis, clustering or 

network analysis. Functional enrichment analysis is a popular statistical method to look 

for gene enrichment in a list of DE genes or gene clusters annotated for particular 

biological pathways or processes (259,260). Several databases such as Gene Ontology 

(GO) (261), Kyoto Encyclopedia of Genes and Genomes (KEGG) (262), and Biocarta 

Pathways (263), can be utilised for functional analysis. Over the years a number of tools 

like DAVID (264,265), GeneCodis (266,267), GeneTrail (268), and GOrilla (269) have 

integrated information from other databases (e.g. GO, KEGG, BioCarta, disease and 

protein databases) in order to make the enrichment analysis more comprehensive. For 

most of these tools, GO database is widely used to identify statistically overrepresented 

GO terms in a given gene set. In addition, methods that prioritise gene sets based on 

their association with a given condition have been developed (270). Among those, Gene 

Set Enrichment Analysis GSEA (271) is the most popular, which performs differential 

analysis to determine whether a predefined group of genes show significant expression 

difference between two groups.  

1.6.2 Using transcriptome profiling to assess the immune system 

Blood transcriptomic profiling has been widely used to capture the overall immune and 

inflammatory state of the body, as reflected in circulating leukocyte activity. Changes in 
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global gene expression profiles have been used to identify immune response signatures for 

a number of diseases, including autoimmune (272,273), cardiovascular (274,275) and 

infectious diseases (276–279); to assess response to vaccine and drug therapy (280–284); 

to distinguish between types of infections (285–287); and to differentiate between 

infection states (279,288). In addition, a few studies have extended blood transcriptomics 

to population-level studies, showing that heterogeneity in immune responses is due to 

environment and genetics (289–293). Furthermore, network analysis has been applied to 

blood transcriptomics to identify networks of highly co-expressed genes that underlie the 

immune response. These networks have been shown to replicate in cross-study 

comparisons (249,294). For instance, gene networks exhibiting unique transcriptional 

signatures have been associated with specific diseases (272) or different types of vaccines 

(295). Others have identified immune-related gene networks in healthy populations 

(249,294,296). Moreover, gene networks have also been constructed in B- and T-cells to 

gain insight into the biological processes involved with these immune cells (297,298). 

Additionally, differential co-expression analysis has been able to capture pathways that 

were perturbed or differentially co-expressed in diseased individuals (299).  

 

1.6.3 The genetic architecture of gene expression levels 

Initial studies in monozygotic twins, siblings, and family pedigrees provided evidence 

for heritability of gene expression (300,301). Since then, an increasing number of 

studies have followed to directly map genetic variants that influence gene expression, 

both across different tissues and in different populations (301–311). 

 
Genomic regions that contain variable DNA sequences such as single nucleotide 

polymorphisms (SNPs) and copy number variants (CNVs) have been shown to affect 

the expression level of one or many genes. These are named expression quantitative trait 

loci (eQTLs). EQTLs have been identified to regulate the expression of genes that are 

either within close proximity (< 1 Mb) to the eQTL (cis-eQTL), or located distant (> 5 

Mb) from the eQTL (trans-eQTL). Of the two types, cis-eQTLs are predominant and 

are enriched near transcription start sites, where they have a comparatively larger 

expression effect on adjacent genes (292). In an eQTL (SNP) analysis, the association 

between each variant-allele dosage is tested with gene expression abundance (312). 
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The localisation of most disease-associated loci to intronic regions suggests that they 

have regulatory roles; these loci may influence immune-related disease phenotype by 

altering gene expression levels, which might then be correlated with various functional 

or malfunctioning states of the immune system (164,313,314). Several studies within 

human populations have demonstrated that genetic variants associated with complex 

traits alter expression levels of nearby genes (300–308). Hence, dissecting the genetic 

architecture underlying gene expression changes through eQTL mapping provides a 

means to identify key genetic drivers of immunological processes and associated 

diseases. 

 
Earlier eQTL (SNP) mapping studies used human biopsy samples from multiple tissue 

types – including liver (315), adipose (308), brain (316,317), and others (318) – to 

report tissue-specific regulation of gene expression. These and other studies have also 

reported cell-type specific eQTLs in blood (308,317,319). Some of the largest 

population-based eQTL mapping studies have been performed in whole blood 

(310,320–322). More recent population-based eQTL studies, which have focused on 

immune cell types suspected to be involved in some diseases, have also demonstrated 

eQTLs exerting cell-type specific regulation (289–292,318,323,324). A resource that 

has emerged recently is the tissue-specific eQTL database from the Genotype-Tissue 

Expression (GTEx) portal (311). As of now, this database contains eQTLs detected in 

43 tissues from 175 postmortem donors (311), which can be queried by other eQTL 

studies. 

 
Epigenetic modifications of the DNA, which are a heritable change in the chromatin 

structure rather than the actual DNA sequence, is another mechanism that regulates 

gene expression. Epigenetic regulation of gene activity, during development, 

differentiation or in response to environmental cues, occurs by altering the accessibility 

of the transcription machinery and other DNA binding proteins to specific DNA regions 

(325–327). Several epigenetic mechanisms including DNA methylation, 

posttranslational modifications (PTMs) of histone proteins, small and non-coding 

RNA's, and remodelling of chromatin structure play a part in regulating gene expression 

(328).  
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1.7 Genetic architecture of cytokines levels 

Early genetic studies identified numerous SNPs and a handful of microsatellite 

polymorphisms located mainly within regulatory regions of cytokine genes. Most of 

these studies showed that these variants influenced cytokine gene expression in vitro, 

and were clinically associated with a number of diseases (329,330). Hence, it was 

hypothesised that these cytokine polymorphisms may also regulate cytokine levels as 

well. Support for this hypothesis came from an in vitro study by Pravica et al., where 

they showed that a SNP within the first intron of IFNG gene was correlated with its 

production (331). In 2005, Craen et al. demonstrated evidence for heritability of 

cytokine levels by comparing variation among monozygotic twins, dizygotic twins, and 

siblings (332). They found that more than half of the variance in the five cytokines they 

assessed was due to genetics (332). Since then, a few population-based studies have 

shown that cytokine polymorphisms are associated with cytokine levels in diseased 

individuals. For instance, gene polymorphisms in IFNG, IL-12B, TNF, IL-17A, IL-10, 

and TGFB1 influenced the differential production of these cytokines in tuberculosis 

patients undergoing treatment (333). Several population-based studies have also linked 

cytokine gene polymorphisms to diseases such as type 2 diabetes (334), Helicobacter 

pylori infection (335), coronary heart disease (336), cancer (337), and rheumatoid 

arthritis (338). This suggests that these polymorphisms may also directly contribute 

towards the development of these diseases. So far, all studies discussed above were 

limited to polymorphisms located within and proximate to the cytokine genes 

themselves. EQTL studies have further linked disease-associated SNPs with the 

expression of cytokine genes and their receptors (339). In addition, several population-

based genome-wide eQTL studies have also identified both cis- and trans- eQTLs for 

cytokines genes (310,320,322).  

 
A few GWA studies have identified multiple loci associated with cytokine levels (340–

343). However these GWASs have only focussed on either one or just a couple of 

cytokines. Recently, Ahola-Olli et al. performed one of the largest GWAS studies for 

circulating concentrations of 41 cytokines profiled in more than 8,000 individuals. The 

authors identified 27 loci to be associated with one or more cytokines, which also 

harboured eQTLs for cytokine genes (344). 
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1.8 Metabolomics  

Metabolites are end-products of a cellular process, and their global measurements can 

give a close-up picture of the physiological or pathological state of an individual at a 

specific point in time (345–347). This image can be reflective of endogenous or 

exogenous (environmental) influences. Additionally, the highly metabolically active 

microbial community in the human gut can influence the host metabolome (348). 

 
Metabolomics utilises high throughput analytical technology to identify and quantify 

small molecules such as amino acids, lipids, lipoproteins, carbohydrates, and fatty acids, 

collectively referred to as metabolites, in biological samples (349). These biological 

samples mainly include urine, tissues, serum or plasma (350).  

 

1.8.1 Metabolite profiling 

The two main technologies for metabolite profiling are nuclear magnetic resonance 

(NMR) spectroscopy and mass spectroscopy (MS). NMR is by far the most widely-used 

since it is non-destructive (the same sample can be reused for different analyses); 

requires minimum sample preparation, and allows lipoprotein subfraction measurements 

(351). In NMR, the nuclei (neutrons and protons) within a sample are exposed to a 

magnetic field and excited by a frequency pulse, whereby the motion of magnetic 

moments in these nuclei results in an NMR spectra for that sample (352). The area 

under each distinct peak representing a particular metabolite corresponds to its 

concentration (352,353). MS can quantify thousands of proteins for even low 

concentration samples. The ionised molecules within a sample are separated according 

their mass-to-charge ratio and then passed through a detector to measure their 

abundance (354), which are also displayed as a spectrum. Unlike NMR, MS is far more 

sensitive to low concentrations (at a micromolar range), and MS can measure up to 

thousands of different metabolites (355). MS also usually requires an additional 

separation step before detection by chromatography such as gas chromatography (GC) 

or high-performance liquid chromatography (356). 
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1.8.2 Metabolomics to assess the immune system 

Metabolomics has gained a lot of interest in medical research, mainly because 

metabolites reflect the end products of gene activity, transcription, and protein 

metabolism, and small changes in either of these processes can substantially alter the 

metabolic fingerprints within a biological system. Metabolomics has been used to 

identify biomarkers in diseases including type 2 diabetes (357), gestational diabetes 

(358), and tuberculosis (359). Additionally, metabolite signatures have also been used to 

predict cardiovascular and metabolic disease risk (360–362), all-cause mortality (363), 

and death in septic patients (364); assess treatment response (365); differentiate between 

tumour subtypes (366); and profile host metabolic response to Hepatitis C virus 

infection (367). Altered metabolite profiles have been associated with obesity status 

(368), body weight change (369), menopause status (370), age (370), hormonal 

contraceptive use (371), and insulin resistance (372), which can all contribute to 

cardiometabolic disease risk. Recently, the trajectory has shifted towards understanding 

the interplay between metabolic reprogramming and immune function, termed 

“immunometabolism”. The metabolic requirements of immune cells vary according to 

cell type, stage and function, which support their survival and proliferation (373). It is 

becoming evident that the metabolic machinery operating within immune cells is 

important in regulating their cell fate, function, and ultimately shaping an immune 

response (374). Recently, studies have begun exploring immunometabolism in human 

blood by integrating matched transcriptomic and metabolomic data 

(294,296,355,369,375–378). Networks of correlated genes involved in immune function 

have been found to be associated with blood lipid and serum metabolite levels 

(296,355,375,378). Immunometabolism offers an additional dimension to understanding 

the central role of the immune system in health and disease. 

 

1.9 Research objectives 

The overall functionality of the immune system relies on the coordinated interactions 

between sub-systems, and substantial interplay and regulation at systems level. A 

systems-wide analysis is required to understand the mechanistic underpinnings of the 

interactions among multiple levels contributing towards the net behaviour of the 
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immune system, and how it works across other biological systems. High-throughput 

profiling technologies have allowed measurements of various immunological 

parameters at the genome-wide level, which captures multi-level information. The 

application of integrative approaches to these large-scale data is necessary to delineate 

the complexity and gain insights that are not possible otherwise.  

 
The overall objective of this thesis was to apply integrative bioinformatics methods to 

multi-omics data obtained from humans and immune cells to understand immune 

function and regulation. Here, four different aspects of the immune system were 

explored. First, this thesis globally explored the immune system and its relationship 

with metabolism in human blood. Next, it focused on the regulation of the immune 

system by exploring the genetic architecture underlying circulating cytokines in human 

populations. Then, a specific component of the immune system, immunological 

memory, was studied with emphasis on TRM cells. Finally, the role of one particular 

signalling molecule, TGF-β, in influencing tissue residency of TRM cells was assessed. 

 

The specific objectives of this thesis were: 

 

1. To create a robust interaction map of circulating metabolites, immune gene 

networks, and their genetic regulation in a population-based study. 

 

2. To identify and characterise genetic variants regulating a network of circulating 

cytokines in a population-based study.  

 

3. Characterise gene networks underlying the transcriptional signature regulating the 

development and establishment of tissue resident memory T-cells. 

 

4. To perform RNA-seq analysis to explore the role of TGF-β, an extrinsic tissue-

derived factor, in influencing the transcriptional signature of TRM cell.  
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Chapter 2  
 

An interaction map of circulating metabolites, immune 

gene networks and their genetic regulation 

2.1 Introduction 

The focus of this chapter was to explore the relationship between two fundamental 

biological systems at a molecular level, immune function and metabolism, in natural 

human populations. The aims of this chapter have been addressed in an article published 

in Genome Biology (378), which contains materials presented in this chapter (see 

Preface). A comprehensive catalogue of diverse metabolite interactions across a 

spectrum of immune-related processes and their genetic regulation may provide insights 

into how metabolism is linked to pathogen sensing and immune response. 

 
Investigating the interplay between the immune system and metabolism, coined as 

immunometabolism, is an emerging area of research. Until recently, these two systems 

were regarded as separate processes that occur within an organism. Here the role of the 

immune system was to protect the host against external (e.g. microbes and viruses) and 

internal threats. While, metabolism was regarded a set to biochemical processes that 

facilitated the energy requirements for cellular process, which also included cells 

involved in immune function. However, in the recent years, through immunometabolic 

studies, it has become increasingly clear that the relationship between metabolism and 

immunity is more than just energy supply. Metabolic preprograming within immune 

cells plays a key role in shaping an immune response (373,374) From a health 

perspective, interest in this area grew with the realisation that both low-grade 

inflammation and metabolic dysfunction jointly contribute towards metabolic disorders 
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such as obesity, type 2 diabetes, and cardiovascular diseases (379). Despite considerable 

progress in the field, a clear understanding of key interactions of immunometabolism in 

population-based studies is lacking. To identify these key interactions, an actual map of 

the immune-metabolite interactions needs to be created. Understanding the complex 

interactions between metabolism and immune function will provide insight into the 

potential pathogenic mechanisms underlying cardiometabolic diseases and offer ways to 

manipulate metabolism, which can help boost or suppress immunity. In addition, 

investigating the genetic basis of inter-individual difference in immune function and 

how this might remodel the immune-metabolic crosstalk, may explain the differential 

disease susceptibility in individuals. Hence, assessing immunometabolism against a 

genetic background will provide an additional dimension to our knowledge of the 

immune system and its role in health and disease.  

 

2.1.1 Role of immunometabolism in cardiometabolic diseases  

Immunometabolism has a key role in both type 2 diabetes (T2D) and atherosclerosis. 

In T2D, it is generally appreciated that immune overactivation in adipose tissue is a 

key driver (380,381). Studies have shown that macrophage infiltration and subsequent 

overexpression of proinflammatory cytokines such as TNF in adipose tissues is 

associated with insulin resistance (380–382). Moreover, evidence for metabolic 

inflammation has also been shown in other tissues where, in blood, elevated glucose 

and free fatty acid levels potentiate IL-1B mediated destruction of pancreatic ß-cells 

and subsequent T2D progression (383–385). Lipid-induced inflammatory response 

mechanisms have also been implicated in atherosclerosis and myocardial infarction 

(386). For example, oxidised phospholipids in an atherogenic lesion lead to a new 

macrophage phenotype, which promotes inflammasome activation (387) and 

proinflammatory cytokine secretion (388) .  

 

2.1.2 Immunometabolism in population-based studies  

Despite its role in pathogenesis, few large-scale human studies have assessed the 

systems-level interactions between the immune system and metabolites by 

systematically integrating matched transcriptomic and metabolomics data. Early 
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studies have utilised previously collected blood samples from population-based cohorts 

(294,296,355,369,375). Blood is an easily accessible tissue, which serves as a channel 

through which cells of both the innate and adaptive arms of the immune system 

perform their function in proximity to diverse circulating metabolites, making it an 

ideal tissue to study their interactions. As discussed in Chapter 1, blood 

transcriptomic profiling has been widely used to capture the overall status of the 

immune system.  

 
Inouye et al. were the first to show this link, where they identified an immune related 

(mast cell/basophil activity) gene co-expression network constructed from whole blood 

transcriptome, the lipid leukocyte (LL) module, to be associated blood lipid and serum 

metabolite levels (296,375). Consistent findings were also reported by Wahl et al., 

where authors correlated the LL module with both, a metabolite network consisting of 

mainly VLDL subclass of lipoprotein and triglycerides, and change in body weight 

(369). In another study, Bartel et al. constructed an integrated correlation network 

combining blood transcriptome and serum metabolites and were also able to capture 

pathway level cross-talk between metabolic pathways and immune processes (355). 

Recently, Ritchie et al. showed that a gene co-expression network enriched for 

neutrophil function was associated with GlycA, a biomarker predictive of 

cardiovascular disease and all-cause mortality (294). The findings of these above 

studies suggest that an intimate link exists between immune response pathways and 

circulating metabolites.  

 

2.1.3 Existing gap in understanding the immune-metabolite interactions 
in population-based studies 

However, the studies discussed above had modest sample sizes (several hundred) and 

did not fully explore the interplay between the diverse range of immune processes and 

metabolites. Furthermore, while these integrative studies have investigated the 

underlying biology of the immunometabolic interactions, eQTL mapping of immune 

networks promises to provide insight into how genetic variation may further affect these 

interactions as well as relate to diseases. Despite substantial progress of these early 

studies, a robust systems-level map of immunometabolic relationships and their genetic 
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regulation in a natural human population is still incomplete. A detailed map may further 

guide in inferring which these connections get rewired in diseases.  

2.2 Research objectives  

The central aim of this chapter was to create a robust integrated map of 

immunometabolic relationships and their genetic regulation in human blood. The 

specific objectives of this chapter have been addressed in an article published in 

Genome Biology (378). 

 

The specific objectives of this research chapter were: 

 

1. To perform gene co-expression network analysis for network discovery and cross-

cohort topological replication to identify robust gene modules enriched for immune-

related functions. 

 

2. To perform association analysis to identify metabolites that show significant 

associations with each of the immune-related gene modules. 

 

3. To perform genome-wide scans to identify QTLs, both cis and trans, influencing the 

overall expression of immune-related modules.  

 

4. To investigate the time-varying affects on metabolite and genetic associations of 

immune co-expression networks over a 7-year follow-up period.  
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2.3 Methods  

2.3.1 Study populations 

An overview of the study populations, molecular data, and study design is given in 

Figure 2.1. This study used data from two population-based cohorts, the Dietary, 

Lifestyle, and Genetic determinant of Obesity and Metabolic syndrome (DILGOM; 

N=518) and the Cardiovascular Risk in Young Finns Study, (YFS; N=1,650), which 

have been described in detail elsewhere (296,389). All subjects enrolled in these studies 

gave written informed consent.  

 
The DILGOM study is a cross-sectional population-based survey conducted in 2007, 

which randomly recruited 5,325 unrelated individuals aged between 25–74 years of age 

from the Helsinki region of Finland, 630 of whom underwent at least one of the 

genotyping, transcriptomics or metabolomics profiling considered here. Ethics approval 

was given by the Coordinating Ethical Committee of the Helsinki and Uusimaa Hospital 

District. In 2014, a follow-up study was conducted, for which 1,273 individuals from 

the original study re-participated. Samples collected in 2007 and 2014 are referred to as 

DILGOM07 and DILGOM14, respectively. 

 
The YFS is a longitudinal prospective cohort study that started in 1980, with follow-up 

studies carried out every three years, to monitor cardiovascular disease risk factors in 

children and adolescents from the five major regions of Finland (Helsinki, Kuopio, 

Turku, Oulu, and Tampere). In the baseline study a total of 3,596 children and 

adolescents in age groups 3, 6, 9, 12, 15, and 18 years participated, who were randomly 

selected from the national public register, details of which are described in (389). In this 

current study, data collected from the 2011 follow-up study (participants aged 34, 37, 

40, 43, 46, and 49 years) were analysed. Ethics approval for the study research protocols 

was given by the Joint Commission on Ethics of Turku University and Turku University 

Central Hospital. 
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Figure 2.1: Overview of the study design.  

For DILGOM, samples collected in 2007 and 2014 are referred to as DILGOM07 and 
DILGOM14, respectively. GO refers to Gene Ontology. Gene co-expression networks were 
constructed using the weighted gene co-expression network analysis (WGCNA) tool. Network 
topologies were assessed using the NetRep tool.  
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2.3.2 Sample collection 

Venous blood was collected following an overnight fast in all three studies. Samples 

were centrifuged, the resulting plasma and serum samples were aliquoted into separate 

tubes and stored at −70°C for analyses. Protocols for the blood sampling, physiological 

measurements, and clinical survey questions were similar across the YFS and DILGOM 

studies, and are described extensively in (296,390).  

 

2.3.3 Genotyping and imputation  

Whole blood genomic DNA obtained from both cohorts was genotyped using the 

Illumina 610-Quad SNP array for DILGOM07 (N=555) (296) and a custom generated 

670K Illumina BeadChip array for YFS (N=2,443) (391). The 670K array shares 

562,643 SNPS with the 610-quad array. The 670K array removes poorly performing 

SNPs from the 610-quad array and improves copy number variation coverage (391). 

Genotype calling was performed with the Illuminus clustering algorithm (392). Quality 

control was performed as previously described in (296) and (391) for DILGOM and 

YFS, respectively. Genotypes were imputed to the 1000 Genomes Phase 1 version 3 

reference panel using IMPUTE2 in both DILGOM and YFS (393). Poorly imputed 

SNPs based on low call-rate (< 0.90 for DILGOM, < 0.95 for YFS), low-information 

score (< 0.4), minor allele frequency < 1%, and deviation from Hardy-Weinberg 

equilibrium (P < 5 x 10-6) were then removed. A total of 7,263,701 SNPs in DILGOM 

and 6,721,082 in YFS passed quality control, with 6,485,973 common between the two. 

A total of N=518 samples in DILGOM and N=2,443 samples in YFS individuals passed 

quality control filters.  

 

2.3.4 Metabolomics profiling 

Metabolite concentrations for DILGOM07 (N=4,816), DILGOM14 (N=1,273), and 

YFS (N=2,046) were quantified from serum samples utilizing a high-throughput 1H-

NMR metabolomics platform (349,351). Details of the experimental protocol including 

sample preparation, NMR spectroscopy and metabolite identification has been 

previously described in (296,349). A total of 158 metabolite measures were assessed, of 

which 148 were directly measured and 10 were derived (Table 2.1). The 148 measures 



Chapter 2: An interaction map of circulating metabolites, immune gene networks  
and their genetic regulation 

 
 

 45 

include the constituents of 14 lipoprotein subclasses (98 measurements total), sizes of 3 

lipoprotein particle, 2 apolipoproteins, 8 fatty acids, 8 glycerides and phospholipids, 9 

cholesterols, 9 amino acids, 1 inflammatory marker, and 10 small molecules (involved 

in glycolysis, critic acid cycle and urea cycle). The lipoprotein subclasses are classified 

according to size (Table 2.1). Measurements with very low concentration, set as zero by 

the NMR pipeline, were set to the minimum value of that particular metabolite. 

Measurements rejected by automatic quality control or with detected irregularities were 

treated as missing. Undefined derived ratios arising from measurements with very low 

concentration (i.e. zero) were also treated as missing. Measurements were log2 

transformed to approximate a normal distribution. 

  
C-reactive protein (CRP), an inflammatory marker, was quantified from serum using a 

high sensitivity latex turbidimetric immunoassay kit (CRP-UL assay, Wako Chemicals, 

Neuss, Germany) and an automated analyser (Olympus AU400) in DILGOM07 

(N=5000), DILGOM14 (N=1308), and YFS (N=2046). CRP levels were log2 

transformed.  

 

2.3.5 Gene expression, processing and normalisation 

Transcriptome-wide gene expression levels were quantified by microarrays from 

peripheral whole blood using similar protocols in all three cohorts, and have been 

previously described for DILGOM07 (296) and YFS (394). Stabilised total RNA was 

obtained from whole blood using a PAXgene Blood RNA System and the protocols 

recommended by the manufacturer. In DILGOM07, RNA integrity and quantity was 

evaluated using an Agilent 2100 Bioanalyzer. In YFS, RNA integrity and quantity were 

evaluated spectrophotometrically using an Eppendorf BioPhotomer and the RNA 

isolation process was validated using an Agilent RNA 6000 Nano Chip Kit. RNA was 

hybridised to Illumina HT-12 version 3 BeadChip arrays in DILGOM07 and to Illumina 

HT-12 version 4 BeadChip arrays in DILGOM14 and YFS. 
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Table 2.1: List of 159 NMR based metabolites analysed in this study.  

Metabolite Description  Units  
Amino acids 
ALA Alanine mmol/L 
GLN Glutamine  mmol/L 
GLY Glycine  mmol/L 
HIS Histidine  mmol/L 
ILE Isoleucine mmol/L 
LEU Leucine mmol/L 
PHE Phenylalanine mmol/L 
TYR Tyrosine mmol/L 
VAL Valine mmol/L 
Small molecules and energy metabolism related metabolites 
ACACE Acetoacetate mmol/L 
ACE Acetate mmol/L 
ALB Albumin signal area 
BOHBUT 3-hydroxybutyrate mmol/L 
CIT Citrate mmol/L 
GLC Glucose mmol/L 
LAC  Lactate mmol/L 
PYR Pyruvate mmol/L 
GLOL Glycerol mmol/L 
Fatty acids and fatty acid ratios (relative to total fatty acids) 
TOT_FA Total fatty acids mmol/L 
UNSAT* Estimated degree of unsaturation mmol/L 
DHA 22:6, docosahexaenoic acid mmol/L 
LA 18:2, linoleic acid  mmol/L 
FAW3 Omega-3 fatty acids  mmol/L 
FAW6 Omega-6 fatty acids  mmol/L 
PUFA Polyunsaturated fatty acids  mmol/L 
MUFA Monounsaturated fatty acids; 16:1, 18:1  mmol/L 
SFA Saturated fatty acids  mmol/L 
DHA/FA* Ratio of 22:6 docosahexaenoic acid to total fatty acids % 
LA/FA* Ratio of 18:2 linoleic acid to total fatty acids % 
FAW3/FA* Ratio of omega-3 fatty acids to total fatty acids % 
FAW6/FA* Ratio of omega-6 fatty acids to total fatty acids % 
PUFA/FA* Ratio of polyunsaturated fatty acids to total fatty acids % 
MUFA/FA* Ratio of monounsaturated fatty acids to total fatty acids % 
SFA/FA* Ratio of saturated fatty acids to total fatty acids % 
Cholesterol    
SERUM_C Serum total cholesterol mmol/L 
EST_C Esterified cholesterol mmol/L 
FREE_C Free cholesterol mmol/L 
REMNANT_C Serum total cholesterol (Non-HDL, non-LDL cholesterol)  mmol/L 
HDL_C Total cholesterol HDL mmol/L 
LDL_C Total cholesterol LDL mmol/L 
VLDL_C Total cholesterol VLDL mmol/L 
HDL2_C Total cholesterol in HDL2 mmol/L 
HDL3_C Total cholesterol in HDL3  mmol/L 
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Glycerides and phospholipids 

SERUM_TG Serum total triglycerides (mmol/l) mmol/L 
HDL_TG Triglycerides in HDL (mmol/l) mmol/L 
LDL_TG Triglycerides in LDL (mmol/l) mmol/L 
VLDL_TG Triglycerides in VLDL (mmol/l) mmol/L 
TOT_PG Total phosphoglycerides (mmol/l) mmol/L 
TG/PG* Ratio of triglycerides to phosphoglycerides  ratio 
PC Phosphatidylcholine and other cholines (mmol/l) mmol/L 
SM Sphingomyelins (mmol/l) mmol/L 
TOT_CHO Total cholines (mmol/l) mmol/L 
Apolipoproteins  
APOA1 Apolipoprotein A-I g/L 
APOB Apolipoprotein B g/L 
APOB/APOA1* Ratio of apolipoprotein B to apolipoprotein A-I  ratio 
Lipoprotein particle size  
VLDL_D Mean diameter for VLDL particles  nm 
LDL_D Mean diameter for LDL particles nm 
HDL_D Mean diameter for HDL particles  nm 
Lipoprotein subclasses and their constituents   

Chylomicrons and extremely large VLDL particles (average particle diameter at least 75.0 nm) 

XXL_VLDL_P Concentration of chylomicrons and extremely large VLDL particles  (mol/L) 
XXL_VLDL_L Total lipids in chylomicrons and extremely large VLDL  mmol/L 
XXL_VLDL_PL Phospholipids in chylomicrons and extremely large VLDL mmol/L 
XXL_VLDL_C Total cholesterol in chylomicrons and extremely large VLDL  mmol/L 
XXL_VLDL_CE Cholesterol esters in chylomicrons and extremely large VLDL  mmol/L 
XXL_VLDL_FC Free cholesterol in chylomicrons and extremely large VLDL  mmol/L 
XXL_VLDL_TG Triglycerides in chylomicrons and extremely large VLDL  mmol/L 

Very large VLDL particles (average particle of 64.0 nm) 

XL_VLDL_P Concentration of very large VLDL particles (mol/L) 
XL_VLDL_L Total lipids in very large VLDL mmol/L 
XL_VLDL_PL Phospholipids in very large VLDL mmol/L 
XL_VLDL_C Total cholesterol in very large VLDL mmol/L 
XL_VLDL_CE Cholesterol esters in very large VLDL mmol/L 
XL_VLDL_FC Free cholesterol in very large VLDL mmol/L 
XL_VLDL_TG Triglycerides in very large VLDL mmol/L 

Large VLDL particles (average particle diameter of 53.6 nm) 

L_VLDL_P Concentration of large VLDL particles (mol/L) 
L_VLDL_L Total lipids in large VLDL mmol/L 
L_VLDL_PL Phospholipids in large VLDL mmol/L 
L_VLDL_C Total cholesterol in large VLDL mmol/L 
L_VLDL_CE Cholesterol esters in large VLDL mmol/L 
L_VLDL_FC Free cholesterol in large VLDL mmol/L 
L_VLDL_TG Triglycerides in large VLDL mmol/L 

Medium VLDL particles (average particle diameter of 44.5 nm) 

M_VLDL_P Concentration of medium VLDL particles (mol/L) 
M_VLDL_L Total lipids in medium VLDL mmol/L 
M_VLDL_PL Phospholipids in medium VLDL mmol/L 
M_VLDL_C Total cholesterol in medium VLDL mmol/L 
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M_VLDL_CE Cholesterol esters in medium VLDL mmol/L 
M_VLDL_FC Free cholesterol in medium VLDL mmol/L 
M_VLDL_TG Triglycerides in medium VLDL mmol/L 

Small VLDL particles (average particle diameter of 36.8 nm)  
S_VLDL_P Concentration of small VLDL particles (mol/L) 
S_VLDL_L Total lipids in small VLDL mmol/L 
S_VLDL_PL Phospholipids in small VLDL mmol/L 
S_VLDL_C Total cholesterol in small VLDL mmol/L 
S_VLDL_CE Cholesterol esters in small VLDL mmol/L 
S_VLDL_FC Free cholesterol in small VLDL mmol/L 
S_VLDL_TG Triglycerides in small VLDL mmol/L 

Very small VLDL particles (average particle diameter of 31.3 nm) 
XS_VLDL_P Concentration of very small VLDL particles mol/L 
XS_VLDL_L Total lipids in very small VLDL mmol/L 
XS_VLDL_PL Phospholipids in very small VLDL mmol/L 
XS_VLDL_C Total cholesterol in very small VLDL mmol/L 
XS_VLDL_CE Cholesterol esters in very small VLDL mmol/L 
XS_VLDL_FC Free cholesterol in very small VLDL mmol/L 
XS_VLDL_TG Triglycerides in very small VLDL mmol/L 

Intermediate density lipoprotein (IDL) particles (average particle diameter of 28.6 nm)  
IDL_P Concentration of IDL particles mol/L 
IDL_L Total lipids in IDL mmol/L 
IDL_PL Phospholipids in IDL mmol/L 
IDL_C Total cholesterol in IDL mmol/L 
IDL_CE Cholesterol esters in IDL mmol/L 
IDL_FC Free cholesterol in IDL mmol/L 
IDL_TG Triglycerides in IDL mmol/L 

Large LDL particles (average particle diameter of 25.5 nm)  
L_LDL_P Concentration of large LDL particles mol/L 
L_LDL_L Total lipids in large LDL mmol/L 
L_LDL_PL Phospholipids in large LDL mmol/L 
L_LDL_C  Total cholesterol in large LDL mmol/L 
L_LDL_CE Cholesterol esters in large LDL mmol/L 
L_LDL_FC Free cholesterol in large LDL mmol/L 
L_LDL_TG Triglycerides in large LDL mmol/L 

Medium LDL particles (average particle diameter of 23.0 nm) 
M_LDL_P Concentration of medium LDL particles mol/L 
M_LDL_L Total lipids in medium LDL mmol/L 
M_LDL_PL Phospholipids in medium LDL mmol/L 
M_LDL_C Total cholesterol in medium LDL mmol/L 
M_LDL_CE Cholesterol esters in medium LDL mmol/L 
M_LDL_FC Free cholesterol in medium LDL mmol/L 
M_LDL_TG Triglycerides in medium LDL mmol/L 

Very large HDL particles (average particle diameter of 14.3 nm) 
XL_HDL_P Concentration of very large HDL particles (mol/l) mol/L 
XL_HDL_L Total lipids in very large HDL (mmol/l) mmol/L 
XL_HDL_PL Phospholipids in very large HDL mmol/L 
XL_HDL_C Total cholesterol in very large HDL mmol/L 
XL_HDL_CE Cholesterol esters in very large HDL mmol/L 



Chapter 2: An interaction map of circulating metabolites, immune gene networks  
and their genetic regulation 

 
 

 49 

XL_HDL_FC Free cholesterol in very large HDL mmol/L 
XL_HDL_TG Triglycerides in very large HDL mmol/L 

Large HDL particles (average particle diameter of 12.1 nm) 
L_HDL_P Concentration of large HDL particles mol/L 
L_HDL_L Total lipids in large HDL mmol/L 
L_HDL_PL Phospholipids in large HDL mmol/L 
L_HDL_C Total cholesterol in large HDL mmol/L 
L_HDL_CE Cholesterol esters in large HDL mmol/L 
L_HDL_FC Free cholesterol in large HDL mmol/L 
L_HDL_TG Triglycerides in large HDL mmol/L 

Medium HDL particles (average particle diameter of 10.9 nm) 
M_HDL_P Concentration of medium HDL particles mol/L 
M_HDL_L Total lipids in medium HDL mmol/L 
M_HDL_PL Phospholipids in medium HDL mmol/L 
M_HDL_C Total cholesterol in medium HDL mmol/L 
M_HDL_CE Cholesterol esters in medium HDL mmol/L 
M_HDL_FC Free cholesterol in medium HDL (mmol/l) mmol/L 
M_HDL_TG Triglycerides in medium HDL (mmol/l) mmol/L 

Small HDL particles (average particle diameter of 8.7 nm) 
S_HDL_P Concentration of small HDL particles mol/L 
S_HDL_L Total lipids in small HDL mmol/L 
S_HDL_PL Phospholipids in small HDL mmol/L 
S_HDL_C Total cholesterol in small HDL mmol/L 
S_HDL_CE Cholesterol esters in small HDL mmol/L 
S_HDL_FC Free cholesterol in small HDL mmol/L 
S_HDL_TG Triglycerides in small HDL mmol/L 
Inflammation  
GlycA Glycoprotein acetyls, mainly alpha-1-acid glycoprotein  mmol/L 
 
* Derived metabolites (N=10) 
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For DILGOM07, data was preprocessed as described in Inouye et al. (296). Briefly, for 

each array the background corrected probes were subjected to quantile normalisation at 

the strip-level. Technical replicates were combined by bead count weighted average and 

replicates with Pearson correlation coefficient < 0.94 or Spearman’s rank correlation 

coefficient < 0.60 were removed. Expression values for each probe were then log2 

transformed. For YFS, background corrected probes were subjected to quantile 

normalisation followed by log2 transformation. For DILGOM14, probes matching to 

the erythrocyte globin components (N=4) and those that hybridized to multiple 

locations spanning more than 10Kb (N=507) were removed. Probes with average bead 

intensity of 0 were treated as missing. The average bead intensity was then log2 

transformed and quantile normalised. A total of 35,425 (for DILGOM07), 36,640 (for 

DILGOM14) and 37,115 (for YFS) probes passed quality control. In order to preserve 

information on alternative exon usage, which is captured by multiple probes targeting 

different exons for a given gene, signals from multiple probes were not summarised. All 

downstream analyses were done at probe level.  

 

2.3.6 Gene coexpression network analysis and replication 

Gene co-expression network modules were identified in DILGOM07 (N=518 

individuals with gene expression data) as previously described (294) using WGCNA 

version 1.47 (239,395) on all probes passing quality control. Briefly, probe co-

expression was calculated as the Spearman correlation coefficient between each pair of 

probes after adjusting for the effects of age and sex. A linear model was fit for each 

probe on age and sex, and the resulting residuals were taken as the adjusted probe 

expression. The weighted interaction network was calculated as the element-wise 

absolute co-expression exponentiated to the power 5. This power was selected through 

the scale-free topology criterion (239), which acts as a penalization procedure to 

enhance differentiation of signal from noise. Probes were subsequently clustered 

hierarchically (average linkage method) by topological overlap dissimilarity (239) and 

modules were detected through dynamic tree cut of the resulting dendrogram with 

default parameters and a minimum module size of 10 probes (241). Similar modules 

were merged together in an iterative process in which modules whose eigengenes 

clustered together below a height of 0.2 were joined. Module eigengenes, representative 
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summary expression profiles, were calculated as the first eigenvector from a principal 

components analysis of each module’s expression data. 

 

Module reproducibility and longitudinal stability were assessed in YFS (N=1,650 with 

gene expression data) and DILGOM14 (N=333 with gene expression data) respectively 

using the NetRep R package version 0.30.1 (251). Briefly, a permutation test (20,000 

permutations) of seven module preservation statistics was performed for each module in 

YFS and DILGOM14 separately. These statistics test the distinguishability and 

similarity of network features (density and connectivity) for each module in a second 

dataset (252). Modules were considered reproducible where permutation P-values for 

all seven statistics were < 0.001 (Bonferroni correcting for 40 modules) in YFS, and 

modules were considered longitudinally stable where P-values were < 0.001 for all 

seven statistics in DILGOM14. Probe co-expression in YFS was calculated as the 

Spearman correlation coefficient between age and sex adjusted expression levels and 

the weighted interaction network was calculated as the element-wise absolute co-

expression exponentiated to the power 4 as previously described (294). Probe co-

expression in DILGOM14 was calculated as the Spearman correlation coefficient 

between each pair of probes, and the weighted interaction network defined as the 

element-wise absolute co-expression exponentiated to the power 5. 

 
To filter out genes spuriously clustered into each module by WGCNA we performed a 

two-sided permutation test on module membership (Pearson correlation between probe 

expression and the module eigengene) for each reproducible module in DILGOM07 and 

YFS. Here, the null hypothesis was, for each module, that its probes did not truly 

coexpress with the module. The null distribution of module membership for each 

module was empirically generated by calculating the membership between all non-

module genes and the module’s eigengene. P-values for each probe were then 

calculated using the following permutation test P-value estimator (396): 

! = # + 1
v + 1 − ( #; v, +, -+,

..0 1234

.
 

Where b is taken as the number of non-module genes with a membership smaller or 

greater than the test gene’s module membership, whichever number is smaller. v, the 

number of permutations calculated, and vt, the total number of possible permutations, 
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are both the number of non-module genes. The resulting P-value was multiplied by 2 

because the test was two-sided. To adjust for multiple testing, false discovery rate 

(FDR) correction was applied to the P-values separately for each module using the 

Benjamini and Hochberg method (213). We rejected the null hypothesis at FDR 

adjusted P-value < 0.05 in both DILGOM07 and YFS, deriving a subset of core probes 

for each module. 

 

2.3.7 Functional annotation of immune-related gene modules  

Immune modules were identified through over-representation analysis of Gene 

Ontology (GO) terms in the core gene set for each of the 20 reproducible modules using 

the web based tool GOrilla (397) with default parameters (performed March 2016). 

GOrilla was run on two unranked gene lists where core module genes were given as the 

target list and the background list was given as the 25,233 human RefSeq genes 

corresponding to any probe(s) passing quality control in both DILGOM07 and YFS. A 

hypergeometric test was calculated to test whether each module was significantly 

enriched for genes annotated for each GO term in the “Biological Process” ontology. A 

GO term was considered significantly over-represented in a module where it’s FDR 

corrected P-value was < 0.05. FDR correction was applied in each module separately. 

Significant GO terms for each module were further summarised into a subset of 

representative GO terms with REVIGO (398) using the RELSIM semantic similarity 

measure and a similarity cut-off value C = 0.5 on genes from Homo sapiens. A module 

was considered to be immune-linked where the representative GO term list contained 

the parent GO term GO:0002376 (immune system process) and/or GO:0002682 

(regulation of immune system processes). 

 

To delineate the function of the genes in GIMA and GIMB, I further queried a more 

specialised database for innate immunity research, InnateDB 

(http://www.innatedb.com) (399). GO enrichment analysis for innate immunity was 

carried out using the Ensembl IDs of core genes present in GIMA and GIMB as an 

input in the InnateDB “gene ontology over-representation analysis (ORA)” tool. Gene 

ontology ORA analysis was performed using a hypergeometric test. The resulting 

enrichment P-values were adjusted using Benjamini-Hochberg (213) FDR correction, 
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and significance level was established at FDR < 0.05.  

 

2.3.8 Statistical analyses  

Reproducible module–metabolite associations were identified through linear regression 

of each immune module eigengene on each of the 159 metabolites in both DILGOM07 

and YFS. Prior to analysis, metabolite data was first subsetted to individuals with 

matching gene expression profiles, followed by removal of subjects on cholesterol 

lowering drugs, for YFS (N=62) and DILGOM07 (N=74). Pregnant women in YFS 

(N=10) and DILGOM (N=2) were further removed from the analysis. A total of 440 

individuals in DILGOM07 and 1,575 individuals in YFS had matched gene expression 

and metabolite data, excluding pregnant women and those individuals taking lipid-

lowering medication. Models were adjusted for age, sex, and use of combined oral 

contraceptive pills. Module eigengenes and metabolite levels were scaled to standard 

deviation units. To maximize statistical power, a meta-analysis was performed on the 

DILGOM07 and YFS associations using the fixed-effects inverse variance method 

implemented in the “meta” R package downloaded from CRAN (https://cran.r-

project.org/web/packages/meta/index.html). The meta-P-values for the 159 metabolite 

associations within each module were FDR corrected. An association was considered 

significant at FDR adjusted P-value < 6.25 x 10-3 (0.05/8 modules). This Bonferroni 

adjusted threshold was chosen to further adjust for the multiple modules being tested. 

To assess the potential confounding effects of blood cell type abundance on metabolite-

module association, the model was rerun in YFS adjusting for leukocyte (for CCLM, 

VRM, BCM, NM, LLM, GIMA, GIMB) and platelet (for PM) counts available for this 

cohort. The beta values and P-values generated with and without adjusting for cell 

count were then compared. Additionally, to assess the possible effect of cell counts on 

expression profiles, cell counts were associated with module eigengenes. 

 
Module–metabolite associations were tested for longitudinal stability in DILGOM14 

using a linear regression model of each immune module eigengene on each of the 159 

metabolites. A total of, 216 individuals in DILGOM had matched gene expression and 

metabolite data in both 2007 and 2014, after removing pregnant women and individuals 

on lipid lowering medication at either time points (N=70). Models were adjusted for age 
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and sex. Information on use of oral contraceptives was not available for this cohort. It is 

worth noting that > 60% of women were more than 50 years old, hence we would 

expect that rates of contraceptive use would be low and therefore not be a significant 

confounder. Module eigengenes and metabolite levels were scaled to standard deviation 

units. An association was considered longitudinally stable where the association was 

significant (FDR adjusted P-value < 6.25 x 10-03) in both DILGOM14 and DILGOM07. 

For sensitively analysis, the model in DILGOM07 was run without adjusting oral 

contraceptive use and this did not affect the significant immune-metabolite associations 

maintained over the two time-points.  

 
Module quantitative trait loci (mQTLs) were identified through genome-wide 

association scans with each immune module eigengene using the PLINK2 version 1.90 

software (https://www.cog-genomics.org/plink2) (400) in DILGOM07 and YFS. A total 

of 518 individuals had matched gene expression and genotype data in DILGOM07 and 

1400 individuals had matched gene expression and genotype data in YFS. Associations 

were tested using a linear regression model of each eigengene on the minor allele 

dosage (additive model) of each SNP. Models were adjusted for age, sex, and the first 

10 genetic principal components (PCs). Genetic PCs were generated from a linkage-

disequilibrium (LD) pruned set of approximately 200,000 SNPs using flashpca (168). P-

values for each association in DILGOM07 and YFS were combined in a meta-analysis 

using the METAL software (401), which implements a sample size weighted Z-score 

method. A SNP was considered an mQTL if meta-analysis P-value (meta-P-value) was 

< 5 x 10-8. Blood cell count data available for YFS was utilised to test the robustness of 

module associations with mQTLs, where the same model was run with and without 

adjusting for leukocyte and platelet cell counts. 
 
Significant mQTLs were subsequently tested as expression quantitative trait loci 

(eQTLs) for genes within their respective modules using Matrix eQTL in both 

DILGOM07 and YFS (312). Of note, genome-wide cis and trans eQTLs analysis were 

not performed, but rather the cis and trans effects of significant mQTLs on individual 

genes within a respective module were tested, where cis was defined as an mQTL 

within 1Mb of a given probe and trans as greater than 5Mb from a given probe or on a 

different chromosome. Associations were tested using a linear regression model of 

probe expression on minor allele dosage (additive model) of the mQTL. Models were 
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adjusted for age, sex, and the first 10 genetic PCs. For trans-eQTL associations P-

values in DILGOM07 and YFS were combined in a meta-analysis using the weighted 

Z-score method and considered significant where the meta-P-value < 5x10-8. For cis-

eQTL associations where the meta-P-value < 5x10-8, permutation tests were further 

performed to test if the association was robust. For the permutation test, gene expression 

sample labels were shuffled 10,000 times to compute an empirical P-value. The 

permuted model P-values and nominal P-value were combined across DILGOM and 

YFS07 in a meta-analysis using the weighted Z-score method when computing the 

permutation test P-value. A mQTL was considered a cis-eQTL where the typically used 

permutation test P-value < 0.05.  

 

  



Chapter 2: An interaction map of circulating metabolites, immune gene networks  
and their genetic regulation 

 
 

 56 

2.4 Results and Discussion 

2.4.1 Summary of cohorts and data  

In this study genome-wide genotype, whole blood transcriptomic and serum 

metabolomics data from two population-based cohorts were analysed (Figure 2.1). 

Detailed description for each cohort, with regards to the number of individual with 

relevant omics data before and after filtering, is provided in Table 2.2.  

 

 

Table 2.2: Covariate and data information for each cohort. 

 
N refers to the total number of individuals. N/A refers to data not available. 
 

  

Characteristics YFS DILGOM07 DILGOM14 

Collection year 2011 2007 2014 

Covariate information 

Age range (years) 34-49 25-74 32-38 

Pregnant women (N) 10 2 0 

Individuals on lipid lowering drugs (N)  62 74 65 

Women on oral contraceptives (N) 92 33 N/A 

Data available for individuals in each cohort 

Metabolome (N) 2,046 4,816 1,273 

Transcriptome (N) 1,650 518 333 

Genotype (N) 2,443 518 518 

C-reactive protein (N)  2,046 5,000 1,308 

Number of Individuals (N) profiled with matched data after filtering 
Matched metabolome & transcriptome  
Total N (Male/female) 
 

1,575 
(709/866) 

440 
(191/249) 

258 
(155/168) 

Matched genotype & transcriptome  
Total N (Male/female) 

1400 
(635/765) 

515 
(239/276) 

294 
(158/136) 
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DILGOM and YFS genotyping were performed using Illumina Human 610 and 670 

arrays, respectively, with subsequent genotype imputation, performed using IMPUTE2 

(393) and the 1000 Genomes Phase I version 3 reference panel. For both cohorts, whole 

blood transcriptome profiling was performed using Illumina HT-12 arrays, and serum 

metabolomics profiling was carried out using the same 1H-NMR platform (349). 

Individuals on lipid-lowering medication and pregnant women were excluded from the 

metabolome analyses. Of the 158 metabolites analysed, 148 were directly measured, 

and 10 derived (Table 2.1). After filtering, individuals with matched data in each cohort 

(Table 2.2) were utilised in subsequent association analyses discussed below. 

 

2.4.2 Inference of robust immune gene co-expression networks in whole 
blood 

In this study, first, networks of tightly coexpressing genes were identified in 

DILGOM07. From the 35,422 probes subjected to network analysis, a total of 40 

modules of coexpressed genes were identified. Then, using NetRep (251), the 

preservation of the network topology for each of these 40 modules was tested in YFS. 

Of the 40 DILGOM07 modules, 20 were strongly preserved in YFS, which ranged in 

size from 14 – 4452 probes. A module was considered strongly preserved if the P-value 

was < 0.001 for all seven preservation statistics (Bonferroni correction for 40 modules) 

(Table 2.3) Next, for each of the 20 replicated modules, the core gene probes were 

defined, those which are most tightly coexpressed and thus robust to clustering 

parameters, using a permutation test of module membership. As expected, larger 

modules (> 1,000 probes) retained a smaller proportion of core gene probes (< 10% of 

the initial number of probes) as compared to the smaller, more tightly coexpressed 

modules (>80%) (Table A.1 in Appendix A). 

 

It is also worth noting that 50% of the modules did not replicate between cohorts, 

possibly due to a number of factors. Firstly, microarray datasets contain systematic (or 

technical) noise that is introduced during sampling and data generation process. 

Adequately removing systematic noise from the data during the pre-processing and 

normalisation steps is challenging and may affect the statistical inference of gene co-

expression networks (402). As a result, a proportion of the networks discovered will be 
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false positives, especially the larger more weakly connected ones, and fail to replicate in 

an independent dataset. Similarly, technical variation in the replication dataset can 

hinder the replication of the true networks discovered. Secondly, the study cohorts 

analysed have a number of differences, for example, a noticeable difference in age 

distribution. Moreover, cohort-specific environmental factors can and do have an 

influence on the measured transcript levels, which could have an impact on gene-gene 

relationships (403). For example, there were a couple of modules (Modules 20, 30, 31, 

and 36) that failed to replicate in YFS, but not in DILGOM14. Thirdly, a stringent 

filtering criteria (P-value < 0.001 for all seven preservation statistics) was used to 

identify modules that replicated across cohorts. All of the 21 modules except two, which 

failed to replicate, met the P-value threshold for at least three preservation statistics.  

 

2.4.3 Identification and characterization of immune-related gene 
networks  

To identify modules of putative immune function, analysis of GO terms “immune 

system processes” (GO: 0002376) and/or “regulation of immune system processes” 

(GO:0002682) were performed for the core genes of each replicated modules. Each 

immune module's gene content and putative biological function is summarised in Table 

2.4. 

 

Six out of the 20 modules were enriched for at least one of these two terms, of which 

two have been previously identified. This included a platelet module (PM) that 

substantially overlaps with a previously reported module for platelet aggregation 

activity (310) and the neutrophil module (NM) (294). In addition, I also identified 

another well characterised gene coexpression module, lipid-leukocyte module (LLM) 

(296), which has been related to mast cell and basophil function. Of note, this module 

was not significantly enriched for any GO terms owing to small module size. Since it is 

well appreciated that apart from their classical role in haemostasis and blood clotting, 

platelets also play a role in inflammation and immune response (47,404), I also 

characterized PM in subsequent analyses. Hence, in total, eight immune-related module 

were characterised for subsequent analyses.  
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Table 2.3: The seven module preservation statistics of gene networks (discovered in 
DILGOM07) in YFS. 

Module #Probes 
DILGOM 

#Probes 
YFS 

Mean 
Adj 

PVE Corr. 
Coexp 

Corr. 
kIM 

Corr. 
MM 

Mean 
Coexp 

Mean 
MM 

Rep. 
 

0 8,990 6,418 1 9.2 x 10-2 5 x 10-5 6.1 x 10-1 5 x 10-5 5 x 10-5 5 x 10-5 NO 
1 8,680 6,766 3.7 x 10-3 5 x 10-5 5 x 10-5 5 x 10-5 1 5 x 10-5 1 NO 
2 5,403 4,452 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 YES 
3 3,258 2,374 1 5 x 10-5 5 x 10-5 5 x 10-5 9.8 x 10-1 5 x 10-5 3.3 x 10-1 NO 
4 1,775 1,666 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 YES 
5 1,734 1,722 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 YES 
GIMA 1,019 1,009 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 YES 
7 604 574 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 YES 
8 598 411 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 1.2 x 10-1 5 x 10-5 5.4 x10-2 NO 
9 545 411 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 YES 
GIMB 339 335 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 YES 
11 265 188 9.8 x 10-1 5.3 x 10-2 5 x 10-5 3.5 x 10-1 1 x 10-3 5 x 10-5 5 x 10-5 NO 
12 255 255 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 YES 
13 239 239 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 YES 
14 225 225 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 YES 
15 208 194 5.5 x 10-4 3.8 x 10-2 5 x 10-5 1.3 x 10-2 7 x 10-1 5 x 10-5 2.4 x 10-2 NO 
CCLM 179 177 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 YES 
PM 138 138 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 YES 
VRM 112 111 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 YES 
19 84 80 2.4 x 10-3 4.8 x 10-3 5 x 10-5 9 x 10-4 1 5 x 10-5 1 NO 
20 80 79 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 1 5 x 10-5 1 NO 
21 77 57 4.5 x 10-4 1.1 x 10-2 5 x 10-5 4.7 x 10-2 5 x 10-5 5 x 10-5 5 x 10-5 NO 
BCM 67 67 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 YES 
23 64 61 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 YES 
24 63 37 9 x 10-1 4.6 x 10-1 9.7 x 10-1 2.6 x 10-2 9.8 x 10-1 1.4 x 10-1 3.4 x 10-2 NO 
25 43 42 5 x 10-5 5 x 10-5 5 x 10-5 2.3 x 10-2 1.1 x 10-3 5 x 10-5 5 x 10-5 NO 
26 40 40 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 YES 
27 39 39 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 YES 
28 34 29 2.5 x 10-2 1.7 x 10-3 1 x 10-4 4.2 x 10-3 6.3 x 10-3 5 x 10-5 5 x 10-5 NO 
NM 31 31 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 YES 
30 31 31 5 x 10-5 5 x 10-5 5 x 10-5 1.4 x 10-3 1.6 x 10-3 5 x 10-5 5 x 10-5 NO 
31 31 31 5 x 10-5 5 x 10-5 5 x 10-5 1 x 10-4 7.8 x 10-3 5 x 10-5 5 x 10-5 NO 
32 30 30 5 x 10-5 5 x 10-5 5 x 10-5 1.3 x 10-3 5 x 10-5 5 x 10-5 5 x 10-5 NO 
33 28 28 5 x 10-5 5 x 10-5 5 x 10-5 1 x 10-4 5 x 10-5 5 x 10-5 5 x 10-5 YES 
34 25 25 5 x 10-5 5 x 10-5 9.2 x 10-3 5.4 x 10-1 4.5 x 10-1 5 x 10-5 5 x 10-5 NO 
35 20 20 5 x 10-5 5 x 10-5 5 x 10-5 1.1 x 10-2 5 x 10-5 5 x 10-5 5 x 10-5 NO 
36 19 18 5 x 10-5 5 x 10-5 5 x 10-5 1.1 x 10-2 9.1 x 10-3 5 x 10-5 5 x 10-5 NO 
37 18 18 9.3 x 10-1 9.1 x 10-1 3.1 x 10-1 9.4 x 10-1 6.7 x 10-1 6.7 x 10-1 8.1 x 10-1 NO 
LLM 15 14 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 YES 
39 10 10 3.5 x 10-4 5 x 10-5 4 x 10-4 2.6 x 10-2 7.3 x 10-3 5 x 10-5 5 x 10-5 NO 
40 10 10 1 x 10-4 5 x 10-5 1.6 x 10-3 5.3x 10-1 2.1 x 10-1 5 x 10-5 5 x 10-5 NO 

 
The seven statistics are as follows: (1) Mean Adjacency (Mean Adj), assesses how densely the genes are 
connected in a module across the datasets; (2) Proportion of variance explained by the module eigengenes 
(PVE); (3) Correlation of the module co-expression across the two datasets (Corr.Coexp); (4) Correlation of 
connectivity (Corr.kIM) assesses whether the most highly connected genes in a module are the same across the 
datasets; (5) Correlation of module membership (Corr.MM), which is the correlation between each module 
gene and the module eigengene, assesses whether the contribution of each gene to the summary expression of a 
module is same across the datasets; (6) mean co-expression (Mean Coexp); and (7) mean module membership 
(Mean MM) assesses whether the signs of the correlation are in the same direction in the two datasets. Module 
0 is the background module. The immune-related modules are: GIMA; GIMB; CCLM; PM; VRM; BCM; NM; 
LLM. Rep. – refers to module replication.  
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Table 2.4: Immune module gene content and putative biological function based on GO terms (top three shown) and literature. 

Module Size GO terms Literature-based immune related function of genes  

Cytotoxic cell-
like module 
(CCLM) 

130 
(115) 

Immune system process 
Defence response 
Immune response 

Cytotoxic effectors (GZMA, GZMB, GZMM, CTSW, PRF1 (405)); surface 
receptors (IL2RB, SLAMF6, CD8A, CD8B, CD2, CD247, KLRD1, KLRG1 
(405–407)); T and NK cell differentiation (ID2 and EOMES (70,408)), 
activation (ZAP70 and CBLB (409,410)), and recruitment (CX3CR1, 
CCL5, CCL4L2 (411)).  

Viral response 
module (VRM 

95 
(88) 

Response to virus 
Type I interferon signalling 
pathway 
Response to biotic stimulus 

Type I interferon-induced antiviral activity (IFITM1, IFIT1, IFIT2, IFIT3, 
IFIT5, IFI44, IFI44L, IFI6, MX1, ISG15, ISG20, HERC5 (412,413)); viral 
RNA degradation (OAS1, OAS2, OAS3, OASL, DDX60 (414)); type 1 
interferon-signalling pathway (IRF9, STAT1, STAT2 (415,416)). 

B cell activity 
module (BCM) 

54 
(49) 

Immune system process 
Immune response 
B cell activation 

B cell surface markers (CD79A, CD79B, CD22 (417,418)); B cell 
activation (BANK1, BTLA, CD40, TNFRSF13B, TNFRSF13C (419)), 
development (POU2AF1, BCL11A, RASGRP3 (420)), migration (CXCR5, 
CCR6 (420,421)), and their regulation (CD83, FCER2, FCRL5 (422)); 
antigen presentation (HLA-DOA, HLA-DOB (423)). 

*Platelet module 
(PM) 

114 
(106) 

Coagulation 
Blood coagulation 
Cell activation 

Platelet receptor signalling, activation, and coagulation (GP6, GP9, 
ITGA2B, ITGB3, ITGB5, MGLL, MPL, MMRN1, PTK2, VCL, THBS1, 
F13A1, VWF, (424)); regulating platelet activity (SEPT5, TSPAN9 
(425,426)). 
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*Neutrophil 
module (NM) 

26 
(26) 

Killing of cells of other 
organism 
Cell killing 
Response to fungus 

Anti -microbial, -fungal, and -viral activity (DEFA1, DEFA1B, DEFA3, 
DEFA4, ELANE, BPI, RNASE2, RNASE3 (427–430)); neutrophil 
mediated activity (AZU1, LCN2, MPO, CEACAM6, CEACAM8, OLFM4 
(430,431)) and its regulation (LCN2, CAMP, OLR1 (432–434)) 

*Lipid-leukocyte 
module (LLM) 

13 
(13) 

**Mast cell and basophil 
function 
 

Mast cell and basophil related immune response and allergic inflammation 
(FCER1A, HDC, GATA2, SLC45A3, CPA3, MS4A3 (296,435,436)) 

General immune 
module A (GIMA) 

509 
(482) 

Immune system process 
Defence response 
Regulation of response to 
stimulus 

 
These modules contain genes involved in a broad range of immune 
processes and their regulation such as signalling; cell death; defence 
response to stress, inflammation, and external stimuli; leukocyte 
activation, migration, and adhesion.  General immune 

module B (GIMB) 
74 

(69) 

Immune response-activating 

signal transduction 

Positive regulation of immune 

response 

Activation of immune 

response 

 
* Modules previously reported to have immune related function. ** LLM module was not significantly enriched for any GO term. Size refers to the 
number of core genes in each module and the subset of these core genes with GO term annotations are listed in parenthesis. Functions were 
assigned to each of these modules based on GO enrichments and literature-based searches for genes in the modules. 
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The eight modules encoded diverse immune functions, including cytotoxic, viral 

response, B cell, platelet, neutrophil, mast cell/basophil, and general immune-related 

functions.  

 
To further delineate the function of the genes present in GIMA and GIMB, I 

investigated the enrichment of these genes within innate immunity genes manually 

annotated in the innateDB (399) database. It was seen that genes in these two modules 

were enriched in innate immune-related pathways such as recognition and response to 

bacterial lipoproteins, phagocytosis, and signalling pathways triggered during innate 

immune response (Table 2.5).  

2.4.4 Immune module association analysis for eQTLs and metabolite 
levels 

For each gene module, I performed a genome-wide scan to identify module QTLs 

(mQTLs) that regulate expression. In DILGOM07 and YFS, the module eigengene was 

regressed on each SNP, and then mQTL test statistics were combined in a meta-

analysis. Significant mQTLs were further examined at individual gene expression 

levels. A genome-wide significance level (P-value < 5x10-8) was used to identify 

mQTLs (Figure 2.2; Table 2.6). Immune-metabolite associations for all the modules 

have been summarised in Figure 2.3. 

 

Given the exploratory nature of this study, the GWAS significant threshold (P < 5 x 10-

8) was chosen for mQTL detection. Since the GWAS threshold is considered to be 

highly stringent, further accounting for the 8 modules tested (that would raise the cutoff 

to P < 6.25 x 10-9) would lead to an overly conservative threshold and potential false 

negative associations. It is pertinent to note here that five out of the nine mQTLs 

detected, which might of biological importance, did not achieve the 6.25 x 10-9 

significance, necessitating further investigation and reconfirmation from replication 

and/or validation studies. The same P-value < 5x10-8 threshold applied in mQTL 

analysis was also used to identify significant trans effects on individual gene expression 

because genes within each module are highly correlated with their respective module 

eigengenes.  
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Table 2.5: Top InnateDB functional annotations for genes in GIMA and GIMB. 

Module GO ID ~ innate immunity GO annotation 
terms  

P-value Count Genes 

 

 

 

 

GIMA 

GO:0045087 ~ innate immune response 

GO:0007165 ~ signal transduction 

GO:0032496 ~ response to lipopolysaccharide 

GO:0090382 ~ phagosome maturation 

GO:0006954 ~ inflammatory response 

GO:0019221 ~ cytokine-mediated signaling 

pathway 

GO:0038096 ~ Fc-gamma receptor signaling 

pathway involved in phagocytosis 

GO:0050900 ~ leukocyte migration 

GO:0031663 ~ lipopolysaccharide-mediated 

signaling pathway 

GO:0007596 ~ blood coagulation 

4.65 x 10-17 

6.27 x 10-10 

1.46 x 10-7 

2.39 x 10-7 

1.89 x 10-6 

2.09 x 10-6 

 

3.50 x 10-6 

 

3.62 x 10-6 

3.90 x 10-6 

 

4.64 x 10-6 

86 

70 

17 

9 

23 

20 

 

11 

 

13 

7 

 

29 

1384 

1368 

154 

39 

315 

249 

 

82 

 

116 

 

29 

483 

 

 

 

 

GIMB 

GO:0045087 ~ innate immune response 

GO:0071726 ~ cellular response to diacyl bacterial 

lipopeptide 

GO:0006928 ~ cellular component movement 

GO:0060715 ~ syncytiotrophoblast cell 

differentiation involved in 

labyrinthine layer development 

GO:0097194 ~ execution phase of apoptosis 

GO:0034097 ~ response to cytokine 

GO:0048713 ~ regulation of oligodendrocyte 

differentiation 

GO:0038096 ~ Fc-gamma receptor signaling 

pathway involved in phagocytosis 

GO:0007165 ~ signal transduction 

GO:0034142 ~ toll-like receptor 4 signaling 

pathway 

9.26 x 10-10 

1.23 x 10-5 

 

2.88 x 10-5 

3.68 x 10-5 

 

 

7.10 x 10-5 

7.24 x 10-5 

7.34 x 10-5 

 

2.02 x 10-4 

 

2.53 x 10-4 

3.70 x 10-4 

22 

2 

 

5 

2 

 

 

3 

4 

2 

 

4 

 

14 

4 

1384 

2 

 

101 

3 

 

 

23 

63 

4 

 

82 

 

1368 

96 

 
GO – refers to Gene Ontology. The GO terms listed are significant at FDR < 0.05. 
Counts – the number of genes in the modules (GIMA or GIMB) that were classified to a 
particular GO annotation in InnateDB database. Genes – the number of module genes in 
InnateDB for a particular GO annotation. 
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2.4.4.2 Effect of blood cell counts on immune module associations with 
mQTLs and metabolites  

Leukocyte and platelet counts were available for YFS and were used to test the 

robustness of module associations with mQTLs and metabolites. Six modules showed 

statistically significant association with platelet or leukocyte counts (P-value < 0.05) 

(Table 2.7), however adjustment for leukocyte counts did not affect mQTL nor 

metabolite-module associations, with the exception of the PM and CCLM discussed 

below. Since we did not have cell counts available for DILGOM07, all the immune-

metabolite associations discussed below, unless otherwise noted, have not been adjusted 

for cell counts. 

 

2.4.4.3 Cytotoxic cell-like module (CCLM) associations with mQTLs and 
metabolites  

CCLM was not significantly associated with any mQTL at genome-wide significance, 

however it was associated with 24 metabolites, mainly consisting of fatty acids, 

intermediate density lipoproteins, and CR (Figure 2.3; Table A.2 in Appendix A). The 

top associated metabolite was docosahexaenoic acid (DHA) (meta-P-value = 5.34 x 10-

08). The role of CRP in augmenting cytotoxic responses has been reported, which 

includes the ability of CRP to bind to NK cells and also influence their activity (60), 

enhance cytotoxic response of NK cell against tumour cells (61), and sensitize 

endothelial cells to cytotoxic T-cell mediated destruction (62).  

 
However, when the CCLM-metabolite associations were adjusted for leukocyte counts, 

four existing associations (CRP, creatinine, ratio of polyunsaturated fatty acids to total 

fatty acids, and VLDL particle size) were no longer significantly associated (Table A.3 

in Appendix A). I also observed a gain of 38 additional significant associations, mainly 

the LDL and VLDL subclass of lipoproteins, when leukocyte levels were accounted for 

(Table A.3 in Appendix A). 
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2.4.4.4 Viral response module (VRM) associations with mQTLs and 
metabolites  

 
mQTLs for the VRM  

Three genome-wide significant mQTLs were identified for the VRM (Figure 2.2; 

Table 2.6). The strongest mQTL, rs182710579 (meta-P-value = 9.22 x 10-09), lies 

within a relatively unstudied nearly 900bp lncRNA RP11-608O21.1 region (Figure 

2.4A). Rs182710579 was a trans eQTL for 3 genes in the VRM (Table A.4 in Appendix 

A). The strongest association was seen with CCL2 (meta-P-value = 6.78 x 10-12), a pro-

inflammatory chemokine involved in leukocyte recruitment during infection and 

elevated levels have also been reported during viral infections (63,64). 

 
The next strongest mQTL, rs151234502, resides within intron 4 of ZNF212 (Figure 

2.4B). ZNF212 encodes a zinc finger (ZNF) protein and is part of a ZNF gene cluster on 

chromosome 7q36.1 that contains a conserved Kruppel-associated box (KRAB) domain 

(65). KRAB-ZNF proteins are usually involved in transcription repression (66) and 

have been noted to show high expression in immune cells (65). Rs151234502 regulated 

the expression of 12 probes (corresponding to 11 unique genes) present in the VRM in 

trans (Table A.4 in Appendix A) and the strongest association was detected with OAS2 

(meta-P-value = 8.98 x 10-10), an interferon-induced gene that encodes an enzyme 

responsible for promoting RNase L-mediated cleavage of viral and cellular RNA (67). 

 
The final mQTL for the VRM, rs147742798, was an intergenic lead SNP located 

between SHANK2 and DHCR7 at 11q13.4 (Figure 2.4C). Rs147742798 was a trans 

eQTL for 2 genes in the VRM (Table A.4 in Appendix A) and was most strongly 

associated with BST2 (meta-P-value = 6.10 x 10-09). BST2, an interferon-induced gene, 

encodes a transmembrane protein with antiviral function through inhibition of the egress 

of mature virions from infected cells by tethering them to the cell surface (68). For the 

three mQTLs, none were in cis to any genes in the VRM. 

 

Metabolites associated with the VRM 

VRM was associated with eight metabolites, including amino acids (alanine, 

phenylalanine), fatty acids (omega-6 fatty acids, polyunsaturated fatty acids, saturated 
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Figure 2.2: Manhattan plot of meta-analysed P-values from the DILGOM/YFS module QTL analysis. 

The y-axis shows the log10 (meta-P) values plotted against all the SNPs tested (x-axis). The lead SNP and its closest genes are shown. The associated 
loci for each module are highlighted with a separate colour designated for each module. The sky-blue line represents genome-wide (meta P-value < 5 
x10-8) threshold. 

 



Chapter 2: An interaction map of circulating metabolites, immune gene networks  
and their genetic regulation 

 
 

 67 

 

Table 2.6: QTLs for immune gene modules. Modules: VRM (viral response module), BCM (B cell activity module), PM (platelet module), NM 
(neutrophil module). 

Module Top SNP CHR Hg19 Pos. 

(Mb) 

Allele 

(minor/major) 

MAF 

(Avg) 

P-value 

DILGOM07 

(effect size) 

P-value  

YFS 

(effect size) 

Meta- 

P-value 

 

VRM 

rs182710579 

rs151234502 

rs147742798 

4 

7 

11 

19768086 

148950168 

70947761 

G/T 

T/C 

T/C 

0.012 

0.012 

0.016 

2.01 x 10-04 (0.05) 

2.59 x 10-01 (0.01) 

1.51 x 10-03 (0.04) 

8.10 x 10-06 (0.02) 

5.31 x 10-09 (0.03) 

1.66 x 10-06 (0.02) 

9.23 x 10-09 

2.46 x10-08 

9.43 x10-09 

BCM rs2523489 6 31348878 T/C 0.186 1.42 x 10-1 (0.005) 5.29 x 10-08 (0.006) 6.27 x 10-08 

PM 

 

rs1354034 

rs28367734 

3 

6 

56849749 

3128657 

T/C 

A/G 

0.284 

0.108 

7.11 x 10-14 (-0.02) 

5.40 x 10-04 (0.02) 

1.51 x 10-16 (-0.008) 

2.02 x 10-05 (0.006) 

7.35 x 10-28 

5.44 x 10-08 

 

NM 

rs2485364 

rs13297295 

rs140929198 

6 

9 

20 

159512260 

131659724 

38555870 

C/T 

C/T 

A/G  

0.466 

0.085 

0.031 

1.78 x 10-03 (0.009) 

4.26 x10-02 (0.009) 

2.98 x 10-02 (0.03) 

6.05 x 10-07 (0.004) 

8.39 x 10-11 (0.01) 

8.47 x 10-09 (0.01) 

3.93 x 10-09 

3.93 x 10-11 

1.41 x 10-09 
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Figure 2.3: Metabolite associations with immune gene modules.  

Circular heatmap of associations between individual metabolites and the module eigengene of 
each module (coloured by FDR-adjusted P-values). Concentric circles represent modules, with 
numbers in parentheses denoting total number of metabolites associated with that module at 
FDR-adjusted P-value < 6.25 x 10-03. Each segment of the circle represents a metabolite labelled 
on the outside of the heatmap. NM (neutrophil module), LLM (lipid leukocyte module), GIMA, 
and GIMB (General immune modules A and B), PM (platelet module), CCLM (cytotoxic cell-
like module), BCM (B cell activity module), and VRM (viral response module). See Table 2.1 
for full metabolite descriptions.  
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Table 2.7: Association between immune-related modules and blood cell counts (leukocyte 
and platelet counts) in YFS. 

Module Cell counts Beta estimates Standard error P-value 

CCLM Leukocytes -0.17 0.03 1.57 x 10-11 

VRM Leukocytes -0.04 0.03 8.77 x 10-02 

BCM Leukocytes -0.06 0.03 2.55 x 10-02 

NM Leukocytes 0.24 0.02 6.23 x 10-22 

LLM Leukocytes -0.13 0.03 2.11 x 10-07 

GIMA Leukocytes 0.22 0.03 5.79 x 10-17 

GIMB Leukocytes 0.11 0.03 2.78 x 10-05 

PM Platelets 0.29 0.02 8.23 x 10-30 

 
Results from the linear regression of immune module summary expression profiles on leukocyte 
and platelet counts. The regression module was adjusted for age and sex.  
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fatty acids, and total fatty acids), and cholesterol esters in medium VLDL (Figure 2.3; 

Table A.5 in Appendix A). Consistent with its putative role in viral response, VRM was 

strongly associated with CRP (meta P-value = 2.38 x 10-10). Viral infection has been 

shown to trigger a mild acute phase response, which causes a moderate increase in CRP 

levels (437–439). Amino acids, phenylalanine and alanine, were also associated with 

this module. There is increasing evidence supporting the association between viral 

infection, and altered amino acid metabolism (440–444). Phenylalanine is an essential 

amino acid shown to be involved in modulating immune response processes (445,446) 

and elevated levels in circulation have been seen in patients infected with dengue virus 

(443). 

 

2.4.4.5 B-cell activity module (BCM) associations with mQTLs and 
metabolites  

 
mQTLs for the BCM 

While no mQTLs for the BCM exceeded genome-wide significance, the plausible MHC 

class I locus showed some evidence in YFS (Figure 2.2; Table 2.6). The intergenic 

index SNP at this locus, rs2523489 (meta-P-value = 6.27 x 10-08), is located between 

HLA-B/C and MICA (Figure 2.5). The HLA class I region is known to be associated 

with a number of autoimmune diseases. This SNP is within ~1.8Kb and in strong LD 

with a variant (rs1521; r2 = 0.9) associated with Graves disease (69) an autoimmune 

disease characterised by hyperthyroidism. The role of B cells in the development of 

autoimmune diseases is well recognised (70) including Graves disease where their 

numbers are shown to be elevated (71,72). Rs2523489 was associated in trans with 

CD79B (meta-P-value = 1.16 x 10-09), a gene present in the BCM, which encodes for 

the CD79B subunit of the B cell receptor complex that binds to antigens (73). CD79B 

forms part of the CD79A/B heterodimer that is essential for B-cell receptor functioning 

(417,447,448) and altered signalling through this receptor has been suggested to 

contribute to B-cell induced autoimmunity (449). Particularly, antibodies against 

CD79b have been shown to suppress autoimmune diseases (450–452), This implies that 

signals emanating from CD79, which may t be influenced by variants at the MHC class 

I locus, might be crucial in the development of B-cell-mediated autoimmunity. 
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Figure 2.4: Regional plots of the mQTLs associated with the viral response module (VRM) at the (A) 4p15.31, (B) 7q36.1, and (C) 11q13.4 regions. 

For each plot, the circles represent the -log10 meta-analysed P-values (y-axis) of SNPs plotted against their chromosomal position (x-axis). The lead mQTL 
(rsID) in each plot is denoted by a purple circle, and its pairwise LD (r2) strength with other SNPs in the region, estimated from the “1000 genomes Mar 2012 
EUR” population, is indicated by colour. The blue lines indicate the recombination rates. The plots were generated using the LocusZoom online tool 
(http://locuszoom.sph.umich.edu/locuszoom/). 
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Metabolites associated with the BCM 

The BCM was associated with 14 metabolites including CRP, histidine, lactate, 

apolipoproteins, and mainly medium HDL subclass of lipoproteins. (Figure 2.3; Table 

A.6 in Appendix A). The strongest association was seen with CRP (meta-P-value = 2.65 

x 10-08). Histidine, the second most strongly associated metabolite, is catabolised to 

histamine by histidine decarboxylase (a component of LL module). The relationship 

between B cells and histamine is a central part of the allergic reaction where IgE 

released by B cells blankets mast cells, causing them to release histamine. 

 

 

 
 
Figure 2.5: Regional plots of the mQTLs associated with the B-cell activity module (BCM) 
at the 6p21.33 (HLA) region.  

The circle represents the -log10 meta-analysed P-values (y-axis) of SNPs plotted against their 
chromosomal position (x-axis). mQTL (rsID) is denoted by a purple circle, and its pairwise LD 
(r2) strength with other SNPs in the region, estimated from the “1000 genomes Mar 2012 EUR” 
population, is indicated by colour. The blue lines indicate the recombination rates. The plots 
were generated using the LocusZoom online tool (http://locuszoom.sph.umich.edu/locuszoom/).	 	
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2.4.4.6 Platelet Module (PM) associations with mQTLs and metabolites  

 
mQTLs for PM 

Two genome-wide significant mQTLs were identified for the PM (Figure 2.2; Table 

2.6). The strongest mQTL for the PM, as well as strongest of any gene module, was an 

intronic SNP (rs1354034; meta-P-value = 7.35 x 10-28) located in the ARHGEF3 gene at 

3p14.3 (Figure 2.6A). ARHGEF3 encodes Rho guanine nucleotide exchange factor 3, 

which mediates the activation of Rho GTPases by catalysing its conversion from an 

inactive GDP-bound to an active GTP–bound form. No genes within 1Mb of rs1354034 

were present in the PM, indicating that this mQTL functions in trans. The ARHGEF3 

mQTL (rs1354034) exhibited a strong trans-regulatory effect and was associated with 

61 PM genes (65 unique probes) (Figure 2.7; Table A.7 in Appendix A). The top trans 

eQTL was ITGB3 (meta-P-value = 5.09 x 10-42), a gene encoding the β3 subunit of the 

heterodimeric integrin receptor (integrin αIIbβ3). This integrin receptor is most highly 

expressed on activated platelets and plays a key role in mediating platelet adhesion and 

aggregation upon binding to fibrinogen and Willebrand factor (453,454). Our data are 

consistent with previous observations of the diverse trans eQTL effects of rs1354034 

(310). I was able to replicate 26 of the trans associations that were previously identified 

for rs1354034 in an eQTL analysis on RNA-sequencing based expression profiles 

obtained from whole blood (57). The same study also identified rs1354034 as a splice-

QTL for TPM4, a significant eGene in the PM. Additionally, An intergenic SNP, 

rs2836773 (meta-P-value = 5.4 x 10-08), at the HLA locus was also identified as a lead 

mQTL (Figure 2.6B). No HLA genes were present in this module.  

 
ARHGEF3 itself is of intense interest to platelet biology. It has previously been shown 

that silencing of ARHGEF3 in zebrafish prevents thrombocyte formation (135). To test 

whether ARHGEF3 expression had an effect on PM genes, we regressed out ARHGEF3 

levels and re-ran the eQTL analysis. Adjusting for ARHGEF3 did not attenuate the 

trans-associations of rs1354034, suggesting either independence of downstream 

function for ARHGEF3 and rs1354034 or post-transcriptional modification of 

ARHGEF3. Previous GWAS studies have shown rs1354034 is associated with platelet 

count and mean platelet volume (135), however, perhaps due to power, we found no 

significant relationship between platelet counts and rs1354034 in YFS. While platelet 

counts were positively associated with the PM (β = 0.29; P-value = 8.23 x 10-30) (Table 
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2.7), the association between rs1354034 and the PM was still highly significant when 

conditioning on platelet counts (β = -0.33; P-value = 1.40 x 10-17). 

 

Metabolites associated with the PM 

PM displayed diverse metabolic interactions and was associated 55 metabolites, largely 

comprising of lipoprotein subclasses and fatty acids, as well as CRP (Figure 2.3; Table 

A.8 in Appendix A). Cholesterol esters in small HDL particles were most strongly 

associated with the PM (meta-P-value = 9.45 x 10-20). HDL has been shown to exhibit 

antithrombotic properties by modulating platelet activation, aggregation and coagulation 

pathway (455). On the other hand, pro-atherogenic lipoproteins effects on platelets have 

been recognised as an important driver in the development of atherosclerosis. For 

example, LDL has been shown to influence platelet activity either by enhancing platelet 

responsiveness to aggregating stimuli or inducing aggregation (456,457). Moreover, 

LDL specific binding sites on platelets have also been reported (458,459).  

 
CRP was also strongly associated with the PM (meta-P-value = 4.12 x 10-08). Several 

studies have shown the link between CRP and platelet activity, for example, infusion of 

recombinant human CRP in humans led to the activation of coagulation pathway (460). 

In addition, CRP has also been shown to promote the adhering of platelets to monocytes 

(461) and endothelial cells (462), a consequence of platelet activation.  

 
As noted above, the PM was associated with platelet counts, and adjustment of PM-

metabolite associations for platelet counts in the YFS resulted in attenuation of 

approximately half of the weakest metabolite associations; however, the strongest were 

maintained (Table A.9 in Appendix A). Association with VLDL particle size and three 

others were gained following the adjustment (Table A.9 in Appendix A).  
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Figure 2.6: Regional plots of the mQTLs associated with the platelet activity module (PM) at regions (A) 3p14.3 and (B) 6p21.33.  

For each plot, the circles represent the -log10 meta-analysed P-values (y-axis) of SNPs plotted against their chromosomal position (x-axis). The mQTL (rsID) 
in each plot is denoted by a purple circle, and its pairwise LD (r2) strength with other SNPs in the region, estimated from the “1000 genomes Mar 2012 EUR” 
population, is indicated by colour. The blue lines indicate the recombination rates. The plots were generated using the LocusZoom online tool 
(http://locuszoom.sph.umich.edu/locuszoom/). 
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Figure 2.7: rs1354034 is a strong trans regulator of genes in the platelet module.  

The circular plot shows the trans eQTL associations (meta-P-value < 5 x10-8) between the lead 
module QTL (rs1354034) and the genes in the platelet module. The ring presents the genome 
arranged by the autosomal chromosomes, 1 to 22, showing the location of genes in the platelet 
module. Lines are pointing from the lead SNP (labelled outside the ring) to the respectively 
associated gene.  
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2.4.4.7 Neutrophil Module (NM) associations with mQTLs and metabolites  

 

mQTLs for NM 

Three loci were identified as mQTLs for NM (Figure 2.2; Table 2.6). The top mQTL 

was intronic to LRRC8A at 9q34.11 (rs13297295; meta-P-value = 3.93 x 10-11, Figure 

2.8A). LRRC8A encodes for a trans-membrane protein shown to play a role in B- and T- 

cell development and T-cell function (463,464). Two additional intergenic mQTLs were 

located at the TAGAP locus at 6q25.3 (rs2485364; meta-P-value = 3.93 x 10-9) and at 

20q12 (rs140929198; meta-P-value = 1.41 x 10-9) (Figure 2.8B-C). 

 
At the LRRC8A locus, rs13297295 was a strong trans regulator of the NM and was 

associated with 8 genes (10 unique probes), in particular, the major alpha defensins 

(DEFA1-DEFA4) which formed the core genes of highest centrality in the module 

(Table A.10 in Appendix A), The strongest trans-eQTL was DEFA1B (meta-P-value = 

3.17 x 10-14). Additionally, rs13297295 was also a cis-eQTL for another core NM gene, 

LCN2 (meta-P-value = 3.81 x 10-09; permuted meta-P-value = 1 x 10-04) (Table A.10 in 

Appendix A). LCN2 is induced in response to TLR activation and acts as an 

antimicrobial agent by sequestering bacterial siderophores to prevent iron uptake (86–

88). LCN2's role in acute phase response also appears to be related to cardiovascular 

diseases, such as heart failure (89). 

 
At the TAGAP locus, rs2485364 was a trans-eQTL for 8 genes (10 probes) in the NM 

and was also a strong driver of LCN2 (meta-P-value = 9.11 x 10-17) (Table A.10 in 

Appendix A). Consistent with our findings, neutrophils from LCN2 deficient mice have 

been shown to exhibit impaired chemotaxis, phagocytic capability, and increased 

susceptibility to bacterial and yeast infections compared to wild type (90). The TAGAP 

locus has also been linked to autoimmune diseases, variants in moderate LD (r2 = 0.52) 

with rs2485364, have been reported to be associated with celiac disease (91), Crohn’s 

disease (91–93) and rheumatoid arthritis (94). With regards to arthritis, LCN2 knockout 

mice showed reduced neutrophil migration and developed a more severe form of the 

disease than their wild-type counterparts (95). Taken together, it can be speculated that 

a functional role of TAGAP variants is the regulation of neutrophil migration through 

LCN2. 
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At 20q12, rs140929198 was a trans-eQTL for 5 genes (7 probes) in the NM and was 

most strongly associated with OLR1 (meta-P-value = 6.75 x10-09) (Table A.10 in 

Appendix A), an endothelial cell surface receptor for pro-atherogenic oxidized-LDL 

(ox-LDL) (96). OLR1 expression has been reported to play a role in neutrophil 

migration during sepsis (97). 

 

Metabolites associated with the NM 

NM was associated with 121 circulating metabolites (~76% of all metabolites analysed) 

as well as CRP (Figure 2.3; Table A.11 in Appendix A). The strongest is the previously 

reported association with inflammatory biomarker GlycA (meta-P-value = 2.68 x 10-25) 

(294), however NM's association with various lipoproteins subclasses, particle sizes of 

lipoproteins, fatty acids, cholesterol, apolipoproteins, glycerides and phospholipids, 

amino acids, and other small molecules indicates it has a potentially major role in 

linking neutrophil function to metabolism. Lipoproteins have been reported to have an 

immunomodulatory function during bacterial infections; for example, lipoproteins such 

as HDL, VLDL, and LDL have been shown to bind to lipopolysaccharide (LPS), an 

outer membrane component of gram-negative bacteria, neutralising their activity (98–

101). In addition, the associations seen with LDL lipoprotein subclasses provide 

possible mechanistic insights into the emerging proatherogenic role of neutrophils. 

Neutrophil derived defensins (DEFA1–DEFA3) can complex with LDL particles 

enhancing their binding and uptake by endothelial, smooth muscle cells, and fibroblasts 

(465) . Furthermore, it has been suggested that defensins induce LDL modification upon 

binding that accelerates its removal from circulation and subsequent deposition in 

vascular cells (466).  
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Figure 2.8: Regional plots of the mQTLs associated with the neutrophil module (NM) at the (A) 9q34.11, (B) 6p25, and (C) 20q12 regions. 

For each plot, the circles represent the -log10 meta-analysed P-values (y-axis) of SNPs plotted against their chromosomal position (x-axis). The lead mQTL 
(rsID) in each plot is denoted by a purple circle, and its pairwise LD (r2) strength with other SNPs in the region, estimated from the “1000 genomes Mar 2012 
EUR” population, is indicated by colour. The blue lines indicate the recombination rates. The plots were generated using the LocusZoom online tool 
(http://locuszoom.sph.umich.edu/locuszoom/). 
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2.4.4.8 Lipid-Leukocyte module (LLM) associations with mQTLs and 
metabolites  

Consistent with previous studies, no mQTLs were detected for LLM. Together with 

NM, the LLM showed extensive metabolic associations. Overall, 123 metabolites and 

CRP were associated with LLM, with the strongest being the ratio of triglycerides to 

phosphoglycerides (meta-P-value = 5.16 x 10-138, Figure 2.3; Table A.12 in Appendix 

A). With the inclusion of the YFS, these findings strongly replicate previous LMM-

metabolite associations (375) as well as highlight additional metabolite associations. 

We also confirm the previous strong negative association between CRP and LLM 

(meta-P-value = 8.16 x 10-20). The other top associations mainly consisted of the 

VLDL subclass of lipoproteins. 

 

2.4.4.9 General Immune Module A (GIMA) and General Immune Module B 
(GIMB associations with mQTLs and metabolites  

No mQTLs were associated with GIMA and GIMB. However, these modules were 

associated with 97 and 82 metabolites, respectively (Figure 2.3; Tables A.13 – 14 in 

Appendix A). Cholesterol esters in small HDL and the mean diameter for VLDL 

particles exhibited the strongest associations with GIMA (meta-P-value = 1.56 x 10-30) 

and GIMB (meta-P-value = 1.83 x 10-15), respectively. The GIMA was also associated 

with CRP (meta-P-value = 5.7 x 10-05). Other metabolites associations with these two 

modules include mainly the VLDL and HDL subclass of lipoproteins and fatty acids, 

however, due to their large size and heterogeneous composition, interpretation of 

metabolic relationships of GIMA and GIMB is limited.  

 

2.4.5 Temporal preservation of immune-linked networks and their 
interaction with metabolites and mQTLs  

Finally, we tested the robustness of each gene network's co-expression and association 

with metabolites over a 7-year period using the DILGOM07 and DILGOM14 datasets. 

Between time points, 23 of 40 modules were significantly preserved (all preservation 

statistics' permutation P-values <0.001), including all 8 immune-related modules 

(Table 2.7). Furthermore, we also observed largely consistent correlation structure in 

the metabolite profiles between DIGOM07 and DILGOM14 (Figure 2.9). 
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Next, we examined how the interactions between immune-related modules and 

metabolites changed over the 7-year time period. While power was somewhat limited 

(N=216 individuals shared between DILGOM07 and DILGOM14), across all modules 

with significant metabolite associations in DILGOM07, only those for the LLM were 

maintained over the 7-year period. The LLM was significantly associated with 90 and 

79 metabolites in DILGOM07 and DILGOM14 (Figure 2.10), respectively, of which 

70 metabolite associations overlapped across the two time points (Table A.15 in 

Appendix A). The stable metabolite associations predominantly included VLDL and 

HDL subclasses of lipoproteins together with fatty acids and lipids. The direction and 

effect size of LLM-metabolite associations were largely maintained (Figure 2.11). Our 

findings indicate that the LLM is not only stably coexpressed over time but that its 

interactions with circulating metabolites are maintained at a level greater than other 

gene co-expression networks. Across all significant mQTLs, only the trans-eQTL 

effects of rs1354034 on the platelet module appeared to be temporally stable (mQTL 

P-value = 4.87 x 10-07). However, no metabolite associations were significantly 

maintained for this module. No other mQTLs reached significance for temporal 

stability. 
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Figure 2.9: Heatmap comparing the correlations between metabolites in DILOM07 with 
those in DILGOM14. 

Comparison of the correlations between the 158 metabolites within DILGOM07 (upper 
triangle) with those in DILGOM14 (lower triangle). Each square in each triangle represents the 
Pearson’s correlation coefficient calculated between the metabolites within each cohort 
separately. The correlation matrix in DILGOM07 was hierarchically clustered using distance 
as, 1-absolute value of the correlations. The ordering of rows and columns in DILGOM2014 
(lower triangle) was based on DILGOM07. Red and blue indicates positive and negative 
correlations, respectively.  
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Table 2.8: Module preservation statistics of the DILGOM07 immune-related gene co-
expression modules in DILGOM14. 

Module Mean 
Adj 

PVE Corr. 
Coexp 

Corr. 
kIM 

Corr. 
MM 

Mean 
Coexp 

Mean 
MM 

Rep. 
 

GIMA 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 YES 

GIMB 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 YES 

CCLM 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 YES 

PM 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 YES 

VRM 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 YES 

BCM 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 YES 

NM 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 YES 

LLM 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 5 x 10-5 YES 

 
The seven statistics are as follows: (1) Mean Adjacency (Mean Adj), assesses how densely the 
genes are connected in a module across the datasets; (2) Proportion of variance explained by 
the module eigengenes (PVE); (3) Correlation of the module co-expression across the two 
datasets (Corr.Coexp); (4) Correlation of connectivity (Corr.kIM) assesses whether the most 
highly connected genes in a module are the same across the datasets; (5) Correlation of module 
membership (Corr.MM), which is the correlation between each module gene and the module 
eigengene, assesses whether the contribution of each gene to the summary expression of a 
module is same across the datasets; (6) mean co-expression (Mean Coexp); and (7) mean 
module membership (Mean MM) assesses whether the signs of the correlation are in the same 
direction in the two datasets. Rep. – refers to module replication.  
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Figure 2.10: Temporally stable metabolite associations with the LLM.  

Circular heatmap for association between individual metabolites and the LLM across two time 
points, DILGOM07 and 7-years later (DILGOM14).  
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Figure 2.11: Comparison of the effect size estimates of metabolite association with LLM 
in DILGOM07 and DILGOM14.  

The plot shows that the overall association patterns are consistent across the two time-points. 
Colours denote metabolites that are significantly associated with the LLM in DILGOM07 only 
(orange), DILOM14 only (blue), and across both time-points (green). The grey dashed line is 
the x=y line.  
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2.5 Discussion 

This study has utilised over 2,000 individuals to map the immuno-metabolic crosstalk 

operating in circulation. We have identified and characterised eight robust immune 

gene modules, their genetic control and interactions with diverse metabolites, 

including many of clinical significance (e.g. triglycerides, HDL, LDL, branched-chain 

amino acids). Furthermore, our findings are consistent with and build upon those of 

previous studies (294,296,310,355,375). In addition to five newly identified gene 

modules, their mQTLs and metabolite interactions, we have replicated the previously 

characterised LL module and confirm its association with lipoprotein subclasses, 

lipids, fatty acids, and amino acids (296,375). Associations between the core genes in 

the LL module and isoleucine, leucine, and various lipids were also identified 

independently in the KORA cohort (355). Importantly, we have shown the long-term 

stability of LL and neutrophil module co-expression and metabolite interactions, and 

we have greatly expanded the number of known biomarkers associated with the NM 

from one (GlycA) to 123 (294). Our study has also expanded the widespread trans 

eQTL effects at the ARHGEF3 locus (310), shows them to be strongly maintained 

within individuals over time, and further identifies extensive lipoprotein and fatty acid 

metabolite interactions that may be a consequence of these of these trans effects.  

 
Taken together, the findings of this study adds to the growing body of evidence 

intimately linking the immunoinflammatory response to systemic metabolism, which 

is consistent with the view that this interplay contributes to myriad complex diseases 

of the metabolic, cardiovascular, autoimmune and infection aetiologies. Since earlier 

studies on immunometabolism have mainly been done in the context of disease, using 

in-vitro or non-human design models, focusing on delineating the metabolic 

configuration in mainly adipocytes or on specific immune mediators, they have 

provided fragmentary insight on systemic immunometabolism. For example, multiple 

studies have shown that increased expression of TNF in adipose tissue of both obese 

rodents and humans plays a critical role in mediating obesity-related insulin resistance 

(380,467,468). My study addressed this gap by integrating blood transcriptomic and 

metabolite datasets from two population-based cohorts in a systematic manner to 
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provide insight into how systemic metabolism integrates with immunological 

responses. Metabolites of several metabolic pathways were associated with more than 

one immune-related processes, which is consistent with the notion that complex 

patterns of interaction exists between inflammatory processes and the underlying 

metabolic rewiring linked to chronic diseases. Hence, studies exploring immune-

targeted therapeutic opportunities for metabolic diseases should not only also focus on 

single inflammatory mediators, but rather also on immune response pathways. In the 

case of targeting single inflammatory molecules, a few biologic (therapeutic 

intervention) studies have also yielded variable results. For instance, studies have 

found that treatment with anti-TNF drug enhances insulin sensitivity and reduces the 

risk of diabetes, while others have failed to reach the same conclusions (469,470).  

 

Furthermore, current anti-inflammatory strategies are further evidence for the 

causative role of inflammatory process in metabolic diseases such as diabetes. 

Commonly used anti-diabetic drugs such as metformin and thiazolidinedione, as well 

as exercise has been shown to reduce pro-inflammatory cytokine levels, 

inflammation, and insulin resistance (471–473). With finer-resolution maps of these 

interactions, new biomarkers of chronic and acute inflammatory states are likely to 

emerge. Hence, together with in vivo follow-up and interventional studies to modulate 

metabolite-immune interactions, existing lipid-lowering medications, anti-

inflammatory therapies or lifestyle interventions may provide new ways that the 

immune system itself can be utilised to lessen the burden of cardiometabolic diseases.  

 

Finally, the magnitude of the human immune response indicates a high level of 

inter-individual variability and 20-40% of this variation is due to genetic diversity 

(474). As a result, this can lead to varied treatment responsiveness among patients. 

For example, a recent clinical trial demonstrated that following treatment with an 

inhibitor of the protein kinase IKKε, only a subgroup of obese diabetic patients 

responded with a reduced gene expression signature of inflammation and improved 

insulin sensitivity (475). My study highlights several genetic drivers of immune-

related processes and genes, which clinical intervention studies can leverage to 

characterise sub-populations of individuals who are enriched for specific mQTLs, 

gene co-expression network levels, or metabolites. The robust integrated map of 
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immunometabolic relationships and their genetic regulation provided by this study 

may guide future studies focusing on designing effective therapeutic and preventative 

approaches for cardiometabolic diseases at the immune-metabolic interface to 

improve human health. The catalogue of immune-metabolite interactions provided 

can be explored with targeted experiments to gain insight into underlying disease 

mechanisms. 
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Chapter 3  
 

Multivariate genome-wide association analysis 

identifies eight loci associated with a network of 

circulating cytokines  

3.1 Introduction 

The immune system has evolved to provide effective host defence against various 

threats while maintaining self-tolerance against autoimmunity. Such feature is 

enabled by cytokines, which are essential regulatory components of the immune 

system. Their controlled release is important in mediating and regulating an 

appropriate immune response. The focus of this chapter was to characterise the 

genetic variants influencing cytokine levels in natural healthy populations. This may 

provide insight into how inter-individual genetic differences in cytokine levels shape 

immune responses and subsequently impact disease risks.  

 

3.1.1 Existing gap in understanding the genetic regulation of 
circulating cytokine levels in population-based studies 

Several studies have identified variants in cytokine genes to be associated with 

circulating cytokine levels (331,333,476). However, these studies have mainly 

focussed on specific allelic variants located within cytokine gene(s). Others have 

investigated the effect of certain cytokine gene polymorphisms on disease risk and 

outcome (329,330). 
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Importantly, there is a paucity of studies examining the effects of genome-wide 

variation on cytokine levels in population-based studies. Few population-based GWAS 

of individual cytokine levels have been performed (340–343,477), however 

simultaneous assessment of the multiplicity of cytokines is necessary to capture the 

immune state of the individual. A recent study by Ahola-Olli et al. performed a 

univariate genome-wide scan for loci associated with circulating concentrations of 41 

cytokines (344). The study identified 27 loci associated with at least one cytokine, of 

which 17 were novel (344). Yet, cytokine levels are tightly regulated with the relative 

levels of both pro and anti-inflammatory cytokines critical to the health of the 

individual. This tight regulation induces correlations amongst phenotypes, which are 

rarely considered by genetic association studies.  

 
Simulation studies have previously shown that multivariate analysis of correlated 

phenotypes can result in increased power to detect genetic associations with small or 

pleiotropic effects across these phenotypes (478–481). Recent studies have 

demonstrated increased power empirically, typically using correlations amongst 

lipids, lipoproteins, and triglyceride levels (482–485). Application of a multivariate 

test on 4 lipid traits across all combinations of 2, 3, and 4 lipid traits led to the 

identification of 21% more independent genome-wide significant SNPs compared to 

the univariate analysis (482). Likewise, simultaneously testing four metabolic traits 

either in combinations of four or two leads to richer findings over the univariate 

approach (483). Moreover, complex genotype-phenotype dependencies have been 

revealed when jointly testing rare variants with lipoprotein traits (484). Of particular 

relevance to our study, Inouye et al. showed that association testing of individual 

SNPs with networks of highly correlated circulating metabolites increased power to 

identify additional loci not identified in univariate testing (485). They further 

identified variants at the top novel multivariate signals as cis eQTLs for SERPINA1 

and AQP9 in multiple tissues. Additionally, they found these genes to be expressed at 

higher levels in human atherosclerotic plaques.  

 
Hence, exploiting the dependency structure among cytokines jointly through 

multivariate analysis can provide deeper insight into the shared genetic architecture 
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between cytokines, giving new perspectives on immune function and disease 

mechanisms. 

3.2 Research objectives  

The central aim of this chapter was to leverage the correlation structure between a 

network of 11 cytokines to perform a multivariate genome-wide scan to identify 

genetic variants regulating this network in 9,263 healthy individuals from three 

independent population-based studies.  

 

The specific objectives of this research chapter were: 

 

1. To identify network(s) of correlated cytokines. 

 

2. To identify genetic variants associated with correlated cytokines. 

  

3. To demonstrate that simultaneous analysis of cytokines increases power to detect 

novel genetic variants.  

 

4. To perform whole blood cis- and trans-eQTL analyses for lead and tagging 

GWAS variants.  

 

5. To query the eQTLs identified at the novel loci against the GTex eQTL database 

to identify if these eQTLs regulate gene expression in a tissue-specific manner. 
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3.3 Methods  

3.3.1 Study populations 

Approval for the study protocols for each cohort was obtained from their respective 

ethics committees and all subjects enrolled in the study gave written informed 

consent. An overview of the study populations, molecular data, and study design is 

given in Figure 3.1.  

 
The Cardiovascular Risk in Young Finn Study (YFS) cohort used in this analysis was 

from the year 2007 (YFS07) aged 30, 33, 36, 39, 42 and 45 years. A total of 2,202 

individuals had measures available on various physical and clinical variables. In 

addition, gene expression profiles available for 1,650 individuals from the 2011 

follow-up were also analysed. Details of the YFS and specifics on gene expression 

profiling for this cohort has been described in detail in Chapter 2. Ethics were 

approved by the Joint Commission on Ethics of the Turku University and the Turku 

University Central Hospital.  

 
The FINRISK cohorts are part of the cross-sectional population-based survey, carried 

out every 5 years since 1972 to evaluate the risk factors of chronic diseases in the 

Finnish population (486). Each survey recruits a representative sample of 6,000-8,800 

individuals, within the age group of 25-74 years, who are chosen from the national 

public register. This study utilised samples from the 1997 (FINRISK97) and 2002 

(FINRISK02) collections, which recruited individuals from five major regional and 

metropolitan areas of Finland: the provinces of North Karelia, Northern Savo, and 

Northern Ostrobothnia and Kainuu; the Turku and Loimaa region of south-western 

Finland; and the Helsinki and Vantaa metropolitan area. In total, 8,444 (aged 24 – 74 

years) and 2,775 (aged 51 – 74 years) individuals were recruited in the FINRISK97 

and FINRISK02 studies, respectively. Ethics were approved by the ethical committee 

of the National Public Health Institute, Finland. 

 
The Dietary, Lifestyle, and Genetic determinant of Obesity and Metabolic syndrome 

(DILGOM) study, a sub-sample of FINRISK aged between 25 – 75 years, recruited 

from the Helsinki region of Finland, was conducted in 2007. Gene expression profiles 

were available for 518 individuals, details of which have been described in Chapter 
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2. Ethics approval was given by the Coordinating Ethical Committee of the Helsinki 

and Uusimaa Hospital District. 

 

 

 
 
Figure 3.1: Overview of the study populations, design, and the analyses conducted.  
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3.3.2 Blood sample collection 

Blood samples and detailed information on various physical and clinical variables for 

the YFS and FINRISK cohorts were collected using similar protocols as described 

previously (389,486). Venous blood was collected following an overnight fast for the 

YFS cohorts and non-fasting for FINRISK cohorts. Samples were centrifuged, the 

resulting plasma and serum samples were aliquoted into separate tubes and stored at 

−70°C for analyses.  

 

3.3.3 Genotype processing and quality control 

Genotyping in YFS and the FINIRISK cohorts was performed on whole blood 

genomic DNA. For YFS07 (N=2,442), a custom 670K Illumina BeadChip array was 

used for genotyping. For FINRISK97 (N=5798), individuals were genotyped on the 

Human670-QuadCustom Illumina BeadChip platform. Genotyping in FINRISK02 

(N=5988) was performed with the Human670-QuadCustom Illumina BeadChip 

(N=2447) and the Illumina Human CoreExome BeadChip (N=3541). The Illuminus 

clustering algorithm was used for genotype calling (392) and quality control was 

performed using the Sanger genotyping quality control (QC) pipeline. This included 

removing SNPs and samples with > 5% genotype missingness followed by the 

removal of samples with gender discrepancies. Genotypes were then imputed with 

IMPUTE2 (393) using the 1000 Genomes Phase 1 version 3 of the reference panel 

followed by removal of SNPs with call rate < 95%, imputation “info” score < 0.4, 

minor allele frequency < 1%, and Hardy-Weinberg equilibrium P < 5 x 10-6. 

Overlapping SNPs were merged in PLINK (400) where multiple genotyping 

platforms were used. A total of 6,664,959, 7,370,592 and 6,639,681 genotyped and 

imputed SNPs passed quality control in YFS, FINRISK97 and FINRISK02, 

respectively. Cryptic relatedness was assessed using identity by descent (IBD) 

estimates and in cases where the pi-hat relatedness > 0.1, one of the two individuals 

was randomly removed (N = 44 for YFS, N=291 for FINRISK97, and N=39 for 

FINRISK02). Genetic PCs were obtained through principle component analysis 

(PCA) using FlashPCA (168) on ~60,000 LD pruned SNPs.  
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3.3.4 Measurement of cytokines, chemokines and growth factors 
(referred to as cytokines) 

Cytokine concentrations were measured in serum (YFS07), EDTA plasma 

(FINRISK97), and heparin plasma (FINRISK02) using multiplex fluorescent bead 

based immunoassays (Bio-Rad). A total of 48 cytokines were measured in YFS07 

(N=2,200) and FINRSK02 (N=2,775) using two complementary array systems: the 

Bio-Plex ProTM Human Cytokine 27-plex assay and Bio-Plex ProTM Human 

Cytokine 21-plex assay. For FINRISK97, 19 cytokines were assayed on the Human 

Cytokine 21-plex assay system. All assays were performed in accordance with the 

manufacturer’s instructions except that the amount of beads, detection antibodies, and 

streptavidin-phycoerythrin conjugate were used at half of their recommended 

concentration. Fluorescence intensity values determined using the Bio-Rad’s Bio-Plex 

200 array reader were converted to concentrations from the standard curve generated 

by the Bio-PlexTM Manager 6.0 software. For each cytokine, a standard curve was 

derived by fitting a five-parameter logistic regression model to the curve obtained 

from standards provided by the manufacturer. Cytokines with concentrations at the 

lower and upper asymptotes of the sigmoidal standard curve were set to the 

concentration corresponding to the fluorescent intensity 2% above or below the 

respective asymptotes.  

 

3.3.5 Cytokine data filtering, normalisation and clustering 

The analysis was limited to 18 cytokines (Table 3.1) assayed in all three cohorts used 

in this study. Although Interleukin 1 receptor, type I (IL-1Ra) was assayed in all three 

cohorts, it was excluded from the analyses due to inconsistent measurement across the 

datasets. 

 
Before normalisation, cytokine data was subsetted to individuals with matched 

genotype data, YFS07 (N=2018), FINRISK97 (N=5728), and FINRISK02 (N=2775). 

Individuals in YFS07 reporting infection with fever in the two weeks prior to 

collection were also excluded. To identify extreme outlier samples, PCA was 

performed on the log2 transformed cytokine values using the “missMDA” R package 

(487), which first imputes the missing cytokine values using a regularised iterative 
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PCA algorithm implemented in the “imputePCA” function before performing PCA. 3 

and 2 outlier samples were removed from the FINRISK97 and FINRISK02 datasets, 

respectively. Based on IBD analysis described above N=44 (YFS07), N=291 

(FINRISK97), and N=39 (FINRISK02) individuals were further removed. After 

filtering, a total of N=1,843, N=5,434 and N=1,986 individuals who passed quality 

control in YFS07, FINRISK97 and FINRISK02, respectively, were utilized for 

downstream analysis. 

 
Since all the 18 cytokines displayed non-Gaussian distribution, normalisation was 

necessary. For YFS07, the lower limit of detection (LOD), the lowest concentration of 

a cytokine that can be measured, was available for each cytokine. Values reported 

below the LOD are highly unreliable as they could be likely due to background noise 

signals or instrument error (488). Treating them incorrectly could introduce biases in 

down stream analysis; hence they were treated as missing. For the FINRISK97 and 

FINRISK02 datasets, the detection limits were not available, however, it was 

observed that the leftmost peak of cytokines in these two datasets exhibiting a 

bimodal distribution pattern comprised primarily of values that were below the LOD. 

Individuals in the leftmost peak were set to missing. The log2-transformed cytokine 

values were then normalised to follow Gaussian distribution (mean of 0 and sd of 1) 

using ranked-based inverse normal transformation function (rntransform) 

implemented in the GenABEL R package (489). For each study group, residuals for 

all the cytokines were calculated by regressing the normalised cytokine values on age, 

sex, BMI, lipid and blood pressure medication, pregnancy status (FINRISK97), and 

the first 10 genetic PCs using a multiple linear regression model.  

 
Detection of groups of correlated cytokines was done in FINRISK97, the cohort with 

the largest sample size. Pairwise Pearson correlation coefficients calculated between 

the residuals of 18 cytokines were hierarchically clustering with 1 minus the absolute 

correlation coefficient given as the dissimilarity matrix. A group of 11 cytokines, 

moderate to highly correlated (r > 0.57), was identified as the cytokine network to use 

in the multivariate analysis.  
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Table 3.1: Cytokine characteristics for the YFS07, FINRISK97 and FINRISK02 cohorts 

Cytokine  
symbol 

Cytokine name  YFS07 FINRISK97 FINRISK02 
Median concentration (interquartile range) 

Eotaxin Eotaxin 115.5 
(90.6–148.6) 

68.3 
(52.7–88.9) 

43.9 
(27.8–75.3) 

FGF-Basic/ 
bFGF/FGF2 

Basic fibroblast growth 
factor 

66.5 
(57.1–78.2) 

23.8 
(13.0–39.9) 

31.3 
(22.5–44.8) 

G-CSF/ 
CSF3 

Granulocyte-colony 
stimulating factor 

136.4 
(117.9–157.3) 

128.6 
(79.7–193.3) 

41.62 
(31.1–55.9) 

HGF  Hepatocyte growth factor 505.9 
(405.4–644.6) 

324.4 
(265.3–403.7) 

462.1 
(375.9–569.8) 

IFN-γ Interferon-gamma 262.9 
(224.4–308.6) 

82.4 
(49.6–130.0) 

47.2 
(36.3–65.8) 

IL-4 Interleukin 4  11.4 
(10.4–12.5) 

3.8 
(2.7–5.2) 

1.0 
(0.77–1.42) 

IL-6 Interleukin 6 11.7 
(10.1–13.6) 

10.36 
(7.5–14.0) 

5.7 
(4.23–9.16) 

IL-10 Interleukin 10 18.7 
(13.2–24.6) 

1.9 
(0.9–3.3) 

5.3 
(3.6–7.9) 

IL-12p70 Interleukin 12 heterodimer 
consisting of p35 and p40 

66.1 
(47–90.5) 

19.35 
(11.7–31.1) 

19.8 
(13.6–30.1) 

IL-17 Interleukin 17 266.3 
(229.1–311.5) 

54.6 
(27.5–93.1) 

34.1 
(25.1–50.3) 

IL-18 Interleukin 18  65.4 
(50–85.8) 

245.1 
(191.4–313.3) 

197.1 
(152.8–258.2) 

MCP-1/ 
CCL2  

Monocyte chemoattractant 
protein-1  

32.6 
(26.6–40.5) 

25.1 
(20.6–30.7) 

84.7 
(67.8–103.9) 

MIP-1b/ 
CCL4 

Macrophage inflammatory 
protein-1beta 

85.5 
(68.8–104.6) 

52.1 
(41.1–65.7) 

63.9 
(53.1–80.1) 

PDGF-BB Platelet derived growth 
factor BB 

8,526 
(6,886–10,500) 

924.4 
(470.9–1653.0) 

447.3 
(313.2–616.9) 

SCF Stem cell factor 90.8 
(74.1–109.3) 

108.4 
(90.7–128.2) 

273.1 
(224.7–328.1) 

SDF-1a/ 
CXCL12 

Stromal cell derived factor -
1alpha 

70 
(54.5–88.5) 

113.4 
(74.1–161.1) 

81.3 
(61.6–101.5) 

TRAIL/ 
TNFSF10 

TNF–related apoptosis 
inducing ligand 

133.2 
(96.8–172.5) 

92.9 
(62.8–130.7) 

179.4 
(141.7–224.3) 

VEGF-A Vascular endothelial 
growth factor A  

69.2 
(48.5 – 103.6) 

14.7 
(6.3–29.7) 

36.0 
(26.3–49.0) 

 
Values are reported in pg/ml 
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3.3.6 Statistical Analysis  

Univariate association analysis was carried out using linear regression model in 

PLINK version 1.90 software (https://www.cog-genomics.org/plink2) (400), where 

the residuals of each cytokine were regressed onto each SNP. P-values at each marker 

across three datasets were combined using the METAL software program (401), 

which implements a weighted Z-score method.  

 

Multivariate testing (MV) was performed under the canonical correlation (CCA) 

framework implemented in PLINK (MV-PLINK) (478), which extracts the linear 

combination of traits most highly correlated with the genotypes at a particular SNP. 

The test is based on Wilks’ Lambda (λ = 1−ρ2), where ρ is the canonical correlation 

coefficient between the SNP and cytokine network. Corresponding P-values were 

computed by transforming Wilks’ Lambda to a statistic that approximates an F 

distribution and the loadings for each cytokine shows their individual contribution 

towards the multivariate association result (478). The multivariate P-values were 

combined using the weighted Z-score method (490,491) implemented in the “metap” 

R package. Briefly, the P-values for each dataset were transformed into z-scores, 

weighted by their respective sample sizes and the sum of these weighted z-scores 

were then divided by the square root of the sum of squares of the sample size for each 

study. The combined weighted Z-score obtained was back transformed into a one-

tailed P-value. 
 
To assess the inflation of the test statistics as a result of population structure, quantile-

quantile (Q-Q) plots of observed vs. expected –log10 P-values were generated from 

the multivariate analysis done on the three datasets separately and meta-analysed. 

Corresponding genomic inflation factor (λ) was calculated by taking the ratio of the 

median observed distribution of P-values to the expected median.  

 

3.3.7 Gene expression profiling and expression quantitative trait loci 
(eQTL) analysis 

An eQTL meta-analysis was performed for 1,916 peripheral blood samples from two 

cohorts, DILGOM (N= 515) and YFS (N=1,401). Details of gene expression profiling 
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and data pre-processing for both the cohorts are described in Chapter 2. After pre-

processing, a total of 35,425 (for DILGOM) and 37,115 (for YFS) probes were 

available.  

 
For eQTL analysis, matching SNP and gene expression data was available for a 515 

and 1,401 unrelated individuals for DILGOM and YFS, respectively. First, all proxy 

SNPs in linkage disequilibrium (r2 > 0.5) with each of the 8 multivariate index SNPs 

and 4 conditional lead SNPs were retrieved. Then, Matrix eQTL (312), an R package, 

was used to search for eQTLs. Both cis (SNP-Probe distance < 1Mb) and trans (SNP-

Probe distance > 5MB) eQTL mapping was conducted using an additive linear model, 

where the normalised and scaled probe intensities were regressed on each SNP 

genotype while adjusting for sex, age, and the first 10 genetic PCs as covariates in the 

model. The test statistics from the cohort-level association analysis was then 

combined in a meta-analysis using the fixed-effects inverse variance method 

implemented in the “meta” R package. The combined P-values were FDR adjusted 

for multiple tests using the Benjamini-Hochberg procedure (213). To assess 

significance, a total of 7,808 cis and 10,793,892 trans associations were tested, 

respectively. For both cis and trans associations, only probe-SNP associations with 

cohort-level P-value < 0.05 and FDR adjusted meta-P-value < 0.05 were considered 

as significant.  
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3.4 Results 

3.4.1 Summary of cohorts and data 

Multivariate genome-wide association scans were performed on a total of 9,267 

healthy individuals enrolled in three population-based studies, YFS07 (N=1843), 

FINRISK97 (N=5438), and FINRISK02 (N=1986), which all had genotype data and 

cytokine profile measurements of 18 cytokines (Table 3.1). Characteristics of the 

study cohorts are summarised in Table 3.2. Genotypes for the three datasets were 

imputed with IMPUTE2 (393) using the 1000 Genomes Phase 1 version 3 of the 

reference panel. After quality control, a total of 6,022,229 imputed and genotyped 

SNPs common across the datasets were available. Cytokine levels were measured in 

serum and plasma using Bio-Plex ProTM Human Cytokine 27-plex and 21-plex 

assays, then subsequently normalised and adjusted for covariates including age, sex, 

BMI, pregnancy status, blood pressure treatment, lipid treatment, and population 

substructure (see Methods). Whole blood gene expression profiles from the Illumina 

HT-12 array were available for YFS11 and DILGOM07. An overview of the study 

workflow is shown in (Figure 3.1). 

 
Table 3.2: Characteristics of the study population. 

Characteristics FINRISK97 FINRISK02 YFS07 

Collection year 1997 2002 2007 
Individuals with matched cytokine & 

genotype data  

5438 1986 1843 

Male, n (%) 2637 (48.5) 991(49.9) 841 (45.6) 
Mean age in years (and range) 47.6 (24-74) 60.3(51-74) 37.7 (30-45) 
BMI: mean ± SD 
kg/m^2 

26.6 ± 4.6 28.1 ± 4.5 25.9 ± 4.6 

Individuals on lipid lowering drugs 174 284 40 
Individuals on blood pressure treatment 

drugs 

698 512 127 
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3.4.2 Identification of the cytokine network  

To identify groups of correlated cytokines for multivariate association analysis, I 

utilised normalised cytokine residuals for the FINRISK97 cohort, the largest dataset. 

Hierarchical clustering was applied to the pair-wise Pearson correlation coefficients 

calculated between the residual values of the 18 cytokines. I identified a cytokine 

network containing 11 cytokines, with median cytokine-cytokine Pearson correlation 

of 0.75 (range r=0.57–0.9; Figure 3.2). While cytokine-cytokine correlations overall 

were lower in YFS07 and FINRISK02, the cytokine network was still distinct with 

moderate median intra-module correlations (r=0.42 and r=0.46, respectively; Figure 

3.3). 

 

 
 
Figure 3.2: Correlation heatmap of the 18 cytokines in the FINRISK97 cohort. 

Each cell presents the pair-wise Pearson’s correlation coefficient between the normalised 
cytokine residuals. The cytokines are ordered by hierarchical clustering, using 1 minus the 
absolute value of the correlations as the distance matrix. The colour scale denotes the strength 
of the correlations, where red is a high positive correlation. The group of 11 tightly correlated 
cytokines (black box) was used for multivariate analysis 
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Figure 3.3: Comparison of cytokine-cytokine correlation in FINRISK07, FINRISK02, and YFS07.  

The heatmaps show the correlations between the normalised cytokines residuals in the discovery dataset, (A) FINRISK97, and the replication datasets, 
(B) FINRISK02 and (C) YFS07. Each square represents the Pearson’s correlation coefficient between the cytokines. The black box shows the correlation 
patterns among the 11 correlated cytokines (discovered using the FINRISK97) across the three datasets. The correlation matrix in FINRISK07 was 
hierarchically clustered using distance as 1 minus the absolute value of the correlations. The ordering of rows and columns in FINRISK02 and YFS07 
was defined by the ordering in FINRISK07. The strength of the correlations is indicated by the colour on the scale. 
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The composition of the cytokine network included both anti-inflammatory (IL-10, IL-

4, IL-6) and pro-inflammatory (IL-12, IFN-γ, IL-17) cytokines as well as growth 

factors (FGF-basic, PDGF-BB, VEGF-A, G-CSF) and a chemokine (SDF-1a) 

involved in promoting leukocyte extravasation and wound healing (118,492,493). 

These cytokines were positively correlated with each other suggesting counter-

regulatory mechanisms exist between the pathways that release pro-inflammatory and 

anti-inflammatory cytokines.  

 

3.4.3 Multivariate genome-wide association analysis for cytokine loci  

A multivariate GWAS was performed on the cytokine network in each cohort 

separately, and then cohort-level results were combined using meta-analysis (see 

Methods)). Since one hypothesis test (corresponding to the cytokine network) was 

performed for each SNP, a genome-wide significance threshold of P < 5 x 10-8 was 

used. Minimal inflation was observed for the cohort-level and meta-analysis test 

statistics with lambda (λ) inflation ranging between 1.00-1.02 (Figure 3.4). The meta-

analysis identified 8 distinct genomic loci (562 SNPs in total) reaching genome-wide 

significance for association with the cytokine network (Figure 3.5; Table 3.3). 

 

The strongest association was seen with rs7767396 (meta-P-value = 6.93 x 10-306), a 

SNP located 172kb downstream of vascular endothelial growth factor A (VEGFA) 

gene on chromosome 6p21.1 (Figure 3.6A; Table 3.3). The VEGFA locus was 

previously identified in univariate analyses as associated with cytokine levels 

including VEGF-A, IL-7, IL-10, IL-12, and IL-13 (343,494). Our multivariate GWAS 

detected other loci previously associated with levels of at least one cytokine present in 

our cytokine network (343,494,495). This includes loci at SERPINE2 (rs6722871; 

meta-P-value = 1.19 x 10-59), ZFPM2 (rs6993770; meta-P-value = 4.73 x 10-08), 

VLDLR (rs7030781; meta-P-value = 3.78 x 10-13), and PCSK6 (rs11639051; meta-P-

value = 1.93 x 10-58) (Figure 3.6B-E; Table 3.3). The F5 locus was also associated 

with the cytokine network (rs9332599; Pmeta = 7.17 x 10-12) (Figure 3.6F; Table 3.3) 

and has been previously associated with cytokines, stem cell factor (SCF) and stem 

cell growth factor beta (SCGF-b) (494), which are not part of the cytokine network 

identified in this chapter.  
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Figure 3.4 Quantile-quantile (Q-Q) plots resulting from the multivariate GWAS in the 
three cohorts and meta-analysis.  

Q-Q plots of observed (y-axis) vs. expected P values (x-axis) for each SNP from the 
multivariate genome-wide association in (A) FINRISK97, (B) FINRISK02, (C) YFS07, and 
(D) Meta-analysis. The diagonal red line (y=x) indicates null hypothesis of no association. 
The inflation factor (λ) was between 1.0-1.2 suggesting that inflation from population 
substructure or other confounders was appropriately adjusted for.  
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Figure 3.5: Manhattan plot for meta-analysis results from the multivariate genome-wide 
association analysis of the cytokine network. 

The statistical strength of association (-log10 meta-P-value) is plotted against all the SNPs 
ordered by chromosomal position. The sky-blue and grey horizontal dashed lines represent 
the thresholds for genome-wide (meta-P-value < 5x10-08) and suggestive significance (meta 
P-value < 1x10-05), respectively. The lead SNP (lowest meta-P-value) at each locus and the 
nearby genes are shown.  
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Table 3.3: Meta-analysed results from the multivariate and univariate GWA analysis of 
the cytokine network and individual cytokines in the cytokine network, respectively. 

 
The table shows the meta-analysis P-values for the top SNP (lowest P-value) at each locus 
associated with the cytokine network in the multivariate analysis at genome-wide significance 
threshold (5 x 10-08). The corresponding lowest meta-P-value for the same top SNP in the 
univariate analysis with any single cytokine present in the cytokine network, given in brackets 
beside the meta-P-value, was also reported. *Instance where the top SNP at a locus crossed 
only the univariate significance threshold (P < 4.55 x 10-09), then the corresponding meta-P-
value for that SNP in the multivariate was also given. The univariate significance threshold 
was calculated from a Bonferroni correction of 5 x 10-8/ 11 cytokines tested. 
 
 

Locus Locus 

Region 

Top SNP Average 

MAF 

Top 

Multivariate 

Meta-P-value 

Univariate  

Meta-P-value 

(Top Cytokine) 

Detection  

F5 1q24.2 rs9332599 0.294 7.17 x 10-12 9.21 x 10-03 

(SDF1a) 

Multivariate  

SERPINE2 2q36.1 rs6722871 0.311 1.19 x 10-59 3.55 x 10-18 

(PDGF-BB) 

Both 

PDGFRB 5q32 rs2304058 0.379 4.06 x 10-09 1.52 x 10-05  

(IL4) 

Multivariate 

VEGFA 6p21.1 rs7767396 0.471 6.93 x 10-306 3.10 x 10-201 

(VEGF-A) 

Both 

ZFPM2 8q23.1 rs6993770 0.221 4.73 x 10-08 1.01 x 10-07 

(IL12p70) 

Multivariate 

ABO 9q34.2 rs550057 0.306 2.75 x 10-08 4.9 x 10-03  

(IL4) 

Multivariate 

VLDLR 9p24.2 rs7030781 0.413 3.78 x 10-13 6.78 x 10-14 

(VEGF-A) 

Both 

PCSK6 15q26.3 rs11639051 0.255 1.93 x 10-58 1.19 x 10-26 

(PDGF-BB) 

Both 

JMJD1C 10q21.3 rs9787438 0.374 *1.30 x 10-07 *8.96 x 10-12 

(VEGFA) 

Univariate 
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In addition to these, multivariate GWAS identified a further two loci not shown to be 

associated with cytokine levels in our current univariate testing of the 11 cytokines or 

previous GWAS studies. These included rs2304058 (meta-P-value = 4.06 x 10-09), 

which is located within the tenth intron of the platelet-derived growth factor receptor-

beta (PDGFRB) gene on chromosome 5q32, and rs550057 (meta-P-value = 2.75 x 10-

08), situated within the first intron of the ABO gene on chromosome 9q34.2 (Figure 

3.6G-H; Table 3.3). 

 

3.4.4 Conditional analysis revealed multiple independent signals  

To find independent signals at each locus associated with the cytokine network, 

I performed a stepwise conditional multivariate meta-analysis on the lead SNPs 

at each of the 8 loci (see Methods)). Three loci exhibited evidence of multiple 

independent variants associated with the cytokine network (Table 3.4), 

including two intergenic SNPs at the SERPINE2 (rs55864163; conditional-

meta-P-value = 9.03 x 10-29) and VEGFA (rs4714729; conditional-Pmeta = 7.49 

x 10-10) locus; a SNP located on PCSK6 (rs6598475, conditional-Pmeta = 2.63 x 

10-17). A third SNP was identified at the SERPINE2 locus in the second round 

conditional analyses (rs112215592, conditional-Pmeta = 2.10 x 10-12). I repeated 

the conditional analyses in the univariate model with the aforementioned 

multivariate SNPs and found a secondary signal at the VEGFA locus associated 

with VEGF-A levels (rs4714729; conditional-Pmeta = 8.8 x 10-13) after one step 

of the conditional test (Table 3.4). 
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Figure 3.6: Regional association plots for each of the 8 loci associated with the cytokine network from the meta-analysed multivariate GWA 
analysis 

(A) VEGFA locus, rs7767396 is an intergenic SNP located 172.83kb downstream of vascular endothelial growth factor A (VEGFA) gene on chromosome 
6p21.1. (B) SERPINE2 locus, rs6722871 lies 10.9kb upstream of SERPINE2 on chromosome 2q36.1. For each plot, the circles represent the -log10 meta-
analysed P-values (y-axis) of SNPs plotted against their chromosomal position (x-axis). The lead SNP in each plot is denoted by a purple circle, and its 
pairwise LD (r2) strength with other SNPs in the region, estimated from the “1000 genomes Mar 2012 EUR” population, is indicated by colour. The blue 
lines indicate the recombination rates. The plots were generated using the LocusZoom online tool (http://locuszoom.sph.umich.edu/locuszoom/).  
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(C) ZFPM2 locus, rs6993770 lies within intron 4 of the zinc finger protein multitype 2 (ZFPM2) gene on chromosome 8q23.1. (D) VLDLR locus, 
rs7030781 is situated ~31.8kb away from the very low-density lipoprotein receptor (VLDLR) gene on chromosome 9p24.2. 
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(E) PCSK6 locus, rs11639051 is located in the second intron of PCSK6 (proprotein convertase subtilisin/kexin type 6) on chromosome 15q26.3. (F) F5 
locus, rs9332599 is located within intron twelve of factor V (F5) gene on chromosome 1q24.2.   
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(E) PCSK6 locus, rs11639051 is located in the second intron of PCSK6 (proprotein convertase subtilisin/kexin type 6) on chromosome 15q26.3. (F) F5 
locus, rs9332599 is located within intron twelve of factor V (F5) gene on chromosome 1q24.2.  
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Table 3.4: Results from the conditional (regional) multivariate and univariate GWA 
analysis of the cytokine network. 

Locus Locus 
region  

Cond.  
SNP  

Lead SNP 
after  
Cond. 

A1/ 
A2 

Cond. meta-
P-value 
Multivariate  

Cond. 
meta- P-
value 
Univariate 
(Cytokine)  

*r2 

Round 1 

SERPINE2 2q36.1 rs6722871 rs55864163 A/G 9.03 x 10-29 1.25 x 10-7 

(PDGF-BB) 

0.010 

VEGFA 6p21.1 rs7767396 rs4714729 T/C 7.49 x 10-10 8.84 x 10-13 

(VEGF-A) 

0.002 

PCSK6 15q26.3 rs11639051 rs6598475 G/T 4.08 x 10-17 7.364 x 10-7 

(PDGF-BB) 

0.100 

Round 2  

SERPINE2 2q36.1 rs6722871, 

rs55864163 

rs112215592 G/A 4.56 x 10-16 1.819 x 10-6 

(PDGF-BB) 

0.008 

 
*Linkage Disequilibrium (LD; r2) was calculated between the lead SNP associated with the 
cytokine network and secondary lead SNP. LD was calculated in FINRISK97. Cond. – refers 
to conditional. A1/A2 refer to the minor/major allele in the Finnish population.  
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3.4.5 Comparison of multivariate and univariate meta-analyses 

To directly compare the power of multivariate to univariate GWAS on the cytokine 

data, we first performed univariate analysis in each dataset by regressing each of the 

11 cytokines in the CM individually on each SNP, then combined the summary 

statistics in a meta-analysis (see Methods)). Since 11 hypothesis tests were performed 

for each SNP, genome-wide significance was formally set at P < 4.55 x 10-9, 

however, we also compared to the standard P < 5x10-8 threshold. To compare we used 

the smallest univariate meta-analysis P-value at a given locus. Overall, the 

multivariate analysis yielded more significant P-values in the meta-analysis (Table 

3.3) while also detecting 4 loci not identified in the univariate analysis at either 

genome-wide significance threshold. One locus that was significant in univariate 

analysis, 10q21 (rs9787438, meta P=9x10-12, top cytokine VEGFA), dropped slightly 

below genome-wide significance in the multivariate analysis (Table 3.3). 

 

3.4.6 Loci associated with the cytokine network harbour eQTLs  

To characterise the regulatory effects of the multivariate loci, cis-and trans-eQTL 

meta-analysis was performed in 1,916 whole blood samples from two studies, 

DILGOM07 and YFS11. I tested 270 SNPs across the 8 significant loci, which were 

either multivariate index SNPs (primary or secondary) or their proxies in linkage 

disequilibrium (r2 > 0.5) (see Methods). The eQTL analysis was done separately for 

DILGOM07 and YFS11, and the association test statistics obtained from the additive 

linear model were then combined in a meta-analysis using the fixed-effects inverse 

variance method. Only those SNP-probe associations were considered as statistically 

significant where both the FDR corrected meta-analysed P-values (meta-P-valuecis-

eQTL), and cohort-level P-values were < 0.05. Given that eQTL studies are generally 

underpowered, a permissive significance threshold was chosen to identify weaker, but 

potentially relevant cis associations. The cis-eQTLs identified were further tested for 

replication to reduce false positive findings.  

  

Of the 8 loci associated with the cytokine network, 7 harboured cis-eQTLs, which, in 

total, influenced the expression levels of 9 genes (Table 3.5). The most significant 

association was observed between the tagging SNP rs920251 and the expression level 
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of SERPINE2 gene (meta-P-valuecis-eQTL =
 2.35 x 10-152), which encodes for a serine 

protease inhibitor (496). Rs920251 is in high LD (r2 = 0.76) with the index SNP 

rs6722871 and is also strongly associated with the cytokine network (GWAS meta-P-

value = 1.35 x 10-58). Rs3766103, a tagging SNP in the F5 region, was significantly 

correlated with the expression level of F5 (meta-P-valuecis-eQTL = 1.05 x 10-5) and 

XCL1 (meta-P-valuecis-eQTL = 1.85 x 10-4). SNPs in the VEGFA region were associated 

with ABCC10 (rs12205248; meta-P-valuecis-eQTL = 7.41 x 10-3) and CAPN11 

(rs9472179; meta-P-valuecis-eQTL = 9.61 x 10-3) expression. At the PCSK6 and VLDLR 

loci, eQTLS were identified for the PCSK6 (rs1552948; meta-P-valuecis-eQTL = 2.70 x 

10-7) and VLDLR (rs10125071; meta-P-valuecis-eQTL = 3.90 x 10-3) genes, respectively. 

 
Additionally, eQTLs were also identified at both novel multivariate loci. At the 

PDGFRB region, r2240780, which is located in the 6th intron of the PDGFRB gene, 

was observed to influence the expression of CSF1R (meta-P-valuecis-eQTL = 3.35 x 10-

3). Rs2240780 was in strong LD (r2 = 0.75) with its lead GWAS variant rs2304058 

and was suggestively associated with the cytokine network (GWAS meta-P-value = 

7.35 x 10-6). At the ABO locus, rs532436, which lies within the first intron of the ABO 

gene, was associated with the expression level of SURF6 (meta-P-valuecis-eQTL = 4.44 

x 10-5). Rs532436 was in moderate LD (r2 = 0.75) with the lead GWAS SNP and 

showed suggestive evidence of association with the cytokine network (GWAS meta-

P-value = 6.04 x 10-7). 

 

No significant trans-eQTLs were detected at meta-analysed P-value threshold of < 

5.12 × 10−7, a threshold previously used by Westra et al. (320) for detecting trans 

associations. When a relaxed threshold of 1 x 10-5 (suggestive association) was 

applied, trans-eQTLs for 22 SNPs across 6 loci were obtained (Table 3.6). The 

strongest trans associations were seen between 2 variants (rs3816018 and rs2304058) 

at 5q32 and the expression of levels of LUC7L (meta-P-valuetrans-eQTL = 2.26 x 10-6 

and meta-P-valuetrans-eQTL = 2.30 x 10-6), a gene that encodes for an RNA binding 

protein (497). Multiple SNPs located at the VEGFA locus were correlated in trans 

with the expression levels of OAS2 gene, which mediates an anti-viral innate immune 

response (414).  
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Table 3.5: Meta-analysed results of cytokine network SNPs (lead and tag SNPs) representing significant (FDR < 0.05) cis-eQTLs in whole blood. 

 

SNP 

 

Gene 

(Probe ID) 

 

Chr  

 

A1/A2 

DILGOM07 YFS11 Meta 

analysed P-

values 

cis-eQTL 

FDR adj. 

meta 

analysed 

P-values 

cis-eQTL 

*Meta-P-

value 

GWAS 
P-value Beta SE P-value Beta SE 

rs3766103 XCL1 1 C/T 2.58 x 10-4 

 
0.24 0.065 

 
1.54 x 10-2 

 
0.094 

 
0.039 

 
7.46 x 10-5 

 
1.85 x 10-4 

 
3.63 x 10-4 

 
rs3766103 F5 1 C/T 4.26 x 10-2 

 
0.13 0.065 

 
3.05 x 10-5 

 
0.156 

 
0.037 

 
3.46 x 10-06 

 
1.05 x 10-5 

 
3.63 x 10-4 

rs920251 SERPINE2 2 A/G 9.93 x 10-37 
 

0.76 0.055 
 

5.16 x 10-97 

 
0.806 

 
0.036 

 
9.10 x 10-155 

 
2.35 x 10-152 

 
1.35 x 10-58 

 
rs2240780 CSF1R 5 A/G 3.87 x 10-2 

 
-0.13 0.063 

 
1.73 x 10-2 

 
-0.092 

 
0.039 

 
1.84 x 10-3 

 
3.35 x 10-3 

 
7.35 x 10-6 

 
rs12205248 ABCC10 6 C/T 3.73 x 10-2 

 
0.13 0.063 

 
3.87 x 10-2 

 
0.079 

 
0.038 

 
4.34 x 10-3 

 
7.41 x 10-3 

 
8.00 x 10-299 

 
rs9472179 CAPN11 6 A/G 4.71 x 10-2 

 
-0.13 0.063 

 
4.34 x 10-2 

 
-0.076 

 
0.038 

 
5.81 x 10-3 

 
9.61 x 10-3 

 
5.68 x 10-11 

 
rs10125071 VLDLR 9 C/T 1.71 x 10-2 

 
0.15 0.063 

 
3.29 x 10-2 

 
0.082 

 
0.038 

 
2.16 x 10-3 

 
3.90 x 10-3 

 
2.42 x 10-9 

 
rs532436 SURF6 9 A/G 5.40 x 10-4 

 
0.29 0.084 

 
2.89 x 10-3 

 
0.139 

 
0.047 

 
1.67 x 10-5 

 
4.44 x 10-5 

 
6.04 x 10-7 

 
rs1552948 PCSK6 15 T/C 8.80 x 10-4 

 
0.23 0.068 

 
1.66 x 10-5 

 
0.183 

 
0.042 

 
5.36 x 10-8 

 
2.7 x 10-7 

 
4.27 x 10-58 

 
 
A1/A2 refer to the minor/major allele in the Finnish population.  
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Variants at the F5 locus were associated with the expression of KCND2 and NCOR2. 

Trans-eQTLs at the SERPINE2 and PCSK6 loci were observed to influence the 

expression of GPSM1 and CACNA2D4, respectively. 

 

3.4.7 Linking cis-eQTLs identified at the 2 novel loci, PDGFRB and 
ABO, with publicly available results 

First, I assessed the consistency of the cis-eQTLs identified at the novel loci with 

those previously identified in the Westra et al. (320) meta-analysis of eQTL studies of 

5,311 whole blood samples from European populations. I was able to replicate the 

rs2240780-CSF1R association seen with a much larger sample size in Westra et al. Of 

note, Westra et al. (320) also identified the lead GWAS SNP rs2304058 associated 

with the cytokine network in my analysis as an eSNP for CSF1R (P-value-Westra-study =  

2.90 x 10-17) an association most likely underpowered in my analysis. The cis-eQTLs 

identified at the ABO locus did not replicate, but several proxy SNPs, in high LD (r2 > 

0.7) with these eQTLs SNPs, were cis-eQTLs in Westra et al. These proxy SNPs 

(rs651007, rs579459, rs649129, and rs495828) were excluded from the meta-analysis 

because they were either absent in one dataset (DILGOM or YFS) or did not meet the 

cohort level P-value < 0.05 threshold in both datasets. Hence, there is evidence of the 

ABO locus replicating in Westra et al.  

 
Next, I investigated whether the blood cis-eQTLs identified at these two novel loci 

regulate gene expression in a tissue-specific manner by querying them against the 

eQTL results from 43 tissues available in the GTEx (Genotype-Tissue Expression) 

portal (311). Rs2240780 was identified as a cis-eQTL for PDGFRB in Epstein-

Barr virus (EBV)-transformed lymphocytes. The cis-eQTL, rs532436, at the ABO 

locus exhibited tissue-specific expression across 17 independent tissues and was 

associated in cis with ABO, RP11-430N14.4 or SURF1 expression in at least one of 

these tissues (Table 3.7). 
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Table 3.6: Meta-analysed results of cytokine network SNPs (lead and tag SNPs) representing significant (FDR < 0.05) trans-eQTLs in whole blood. 

 
SNP 

 
SNP 
Chr 

 
Gene 
(Probe ID) 

 
Gene 
Chr  

 
A1/ 
A2 

DILGOM07 YFS11 Meta analysed 
P-values 
trans-eQTL P-value Beta SE P-value Beta SE 

rs9332665 1 KCND2 
(ILMN_1748755) 

7 G/T 5.30 x 10-4 
 

-0.24 
 

0.070 1.52 x 10-3 
 

-0.13 
 

0.042 
 

6.01 x 10-6 

rs3820060 1 KCND2 
(ILMN_1748755) 

7 G/T 5.46 x 10-4 
 

-0.24 
 

0.070 
 

1.58 x 10-3 
 

-0.13 
 

0.042 
 

6.42 x 10-6 

rs4656185 1 KCND2 
(ILMN_1748755) 

7 A/G 8.08 x 10-4 
 

-0.23 
 

0.069 
 

1.54 x 10-3 
 

-0.13 
 

0.042 
 

8.12 x 10-6 

rs9287092 1 NCOR2 
(ILMN_2340052) 

12 A/C 2.50 x 10-2 
 

-0.18 
 

0.080 
 

1.23 x 10-4 
 

-0.17 
 

0.045 
 

8.26 x 10-6 

rs1557570 1 KCND2 
(ILMN_1748755) 

7 T/G 5.26 x 10-4 
 

-0.24 
 

0.070 
 

2.19 x 10-4 
 

-0.13 
 

0.042 
 

9.33 x 10-6 

rs181196325 2 GPSM1 
(ILMN_1667064) 

9 T/C 1.87 x 10-3 
 

0.63 
 

0.203 
 

4.48 x 10-4 

 
0.35 

 
0.101 

 
5.56 x 10-6 

rs144898125 2 GPSM1 
(ILMN_1667064) 

9 G/C 1.87 x 10-3 
 

0.63 
 

0.203 
 

4.57 x 10-4 
 

0.35 
 

0.101 
 

5.68 x 10-6 

rs147862316 2 GPSM1 
(ILMN_1667064) 

9 T/C 1.87 x 10-3 
 

0.63 
 

0.203 
 

4.57 x 10-4 
 

0.35 
 

0.101 
 

5.68 x 10-6 

rs3816018 5 LUC7L 
(ILMN_1667064) 

16 C/T 3.54 x 10-5 
 

-0.26 
 

0.062 
 

3.05 x 10-3 

 
-0.11 

 
0.039 

 
2.26 x 10-6 

rs2304058 5 LUC7L 
(ILMN_1667064) 

16 C/G 3.54 x 10-5 
 

-0.26 
 

0.062 
 

3.09 x 10-4 

 
-0.11 

 
0.039 

 
2.30 x 10-6 

rs11748255 5 HS.539385 
(ILMN_1667064) 

12 G/A 4.55 x 10-3 
 

-0.17 
 

0.060 
 

6.19 x 10-4 

 
-0.13 

 
0.038 

 
9.90 x 10-6 

rs12214523 6 OAS2 
(ILMN_1736729) 

12 C/T 4.46 x 10-2 
 

-0.12 
 

0.061 
 

6.58 x 10-5 -0.15 
 

0.037 
 

7.94 x 10-6 
 

rs6936047 6 OAS2 
(ILMN_1736729) 

12 A/G 4.46 x 10-2 
 

-0.12 
 

0.061 
 

6.58 x 10-5 -0.15 
 

0.037 
 

7.94 x 10-6 
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rs9462951 6 OAS2 
(ILMN_1736729) 

12 C/T 4.46 x 10-2 
 

-0.12 
 

0.061 
 

6.60 x 10-5 -0.15 
 

0.037 
 

7.97 x 10-6 
 

rs9472184 6 OAS2 
(ILMN_1736729) 

12 A/G 4.46 x 10-2 
 

-0.12 
 

0.061 
 

6.60 x 10-5 -0.15 
 

0.037 
 

7.97 x 10-6 
 

rs3929925 6 OAS2 
(ILMN_1736729) 

12 A/G 4.45 x 10-2 
 

-0.12 
 

0.061 
 

7.27 x 10-5 -0.15 
 

0.037 
 

8.74 x 10-6 
 

rs3929926 6 OAS2 
(ILMN_1736729) 

12 A/G 4.46 x 10-2 
 

-0.12 
 

0.061 
 

7.31 x 10-5 -0.15 
 

0.037 
 

8.79 x 10-6 
 

rs3929927 6 OAS2 
(ILMN_1736729) 

12 A/C 4.46 x 10-2 

 
-0.12 

 
0.061 

 
7.31 x 10-5 -0.15 

 
0.037 

 
8.79 x 10-6 

rs4714722 6 OAS2 
(ILMN_1736729) 

12 T/C 4.46 x 10-2 

 
-0.12 

 
0.061 

 
7.34 x 10-5 -0.15 

 
0.037 

 
8.82 x 10-6 

rs550057 9 HS.542481 
(ILMN_1904400) 

17 T/C 1.47 x 10-2 
 

0.18 
 

0.072 
 

1.03 x 10-4 0.16 
 

0.041 
 

4.27 x 10-6 

rs7178458 15 CACNA2D4 
(ILMN_2404493) 

12 T/C 6.88 x 10-3 

 
0.19 

 
0.068 

 
3.94 x 10-4 0.14 

 
0.041 

 
8.98 x 10-6 

rs7172696 15 CACNA2D4 
(ILMN_2404493) 

12 A/G 6.88 x 10-3 

 
0.19 

 
0.068 

 
4.06 x 10-4 

 
0.14 

 
0.041 

 
9.27 x 10-6 

 
 
A1/A2 refer to the minor/major allele in the Finnish population. SE refers to standard error.  
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Table 3.7: Cis-eQTLs identified at the 2 novel loci, PDGFRB and ABO, exhibit tissue 
specific regulation in GTex tissues.  

 

  

SNP Chr Gene P-value  Tissue  Effect 
Size  

rs2240780 5 PDGFRB 1.80 x 10-5 Cells - EBV-transformed 

lymphocytes 

0.50 

rs532436 9 RP11-430N14.4 1.80 x 10-16 Muscle – Skeletal 0.7 

rs532436 9 RP11-430N14.4 2.60 x 10-16 Whole blood -0.75 

rs532436 9 ABO 3.40 x 10-10 Whole Blood -0.62 

rs532436 9 RP11-430N14.4 3.30 x 10-15 Adipose – Subcutaneous 0.64 

rs532436 9 RP11-430N14.4 1.20 x 10-13 Adipose – Visceral 

(Omentum) 

0.70 

rs532436 9 RP11-430N14.4 5.50 x 10-13 Artery – Tibial 0.42 

rs532436 9 RP11-430N14.4 1.10 x 10-12 Esophagus – Muscularis 0.67 

rs532436 9 RP11-430N14.4 9.20 x 10-11 Breast – Mammary Tissue 0.72 

rs532436 9 RP11-430N14.4 1.00 x 10-10 Heart – Left Ventricle 0.54 

rs532436 9 RP11-430N14.4 9.60 x 10-10 Nerve – Tibial 0.55 

rs532436 9 RP11-430N14.4 2.80 x 10-9 Esophagus – Mucosa 0.46 

rs532436 9 RP11-430N14.4 3.80 x 10-8 Adrenal Gland 0.76 

rs532436 9 RP11-430N14.4 5.90 x 10-8 Pituitary 0.72 

rs532436 9 RP11-430N14.4 2.80 x 10-7 Colon – Transverse 0.27 

rs532436 9 RP11-430N14.4 9.40 x 10-7 Heart – Atrial Appendage 0.67 

rs532436 9 RP11-430N14.4 2.30 x 10-6 Lung 0.28 

rs532436 9 RP11-430N14.4 4.50 x 10-6 Thyroid 0.32 

rs532436 9 SURF1 5.30 x 10-6 Heart – Atrial Appendage -0.50 

rs532436 9 ABO 6.40 x 10-6 Adrenal Gland 0.62 

rs532436 9 SURF1 2.70 x 10-5 Skin – Sun Exposed 

(Lower leg) 

-0.32 
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3.5 Discussion 

Characterising the genetic architecture of cytokine concentration control in circulation 

in a general population may provide in-depth insight into how inter-individual 

differences in immune function may contribute to differential disease susceptibility. 

In this study, we first identified a network of 11 correlated cytokines, which were 

consistently correlated across the three populations analysed. The cytokines within 

this network most likely participate in a broad array of immune responses occurring in 

circulation, rather than in a specific immune pathway. These cytokines have been 

shown to be involved in the classical TH1 (IL-12, IFN-γ), TH2 (IL-4, IL-6, and IL-10), 

TH17 (IL-6, IL-17, and G-CSF) and Treg (IL-10) responses (492,493). It also includes 

pro-angiogenic growth factor (VEGF-A, FGF-basic and PDGF-BB), which promote 

angiogenesis during wound repair process (118). This suggests that the immune 

system in apparently healthy individuals is tailored to effectively counteract different 

classes of pathogens simultaneously through the release of a plethora of polarising 

cytokines, which activate various lineage-specific effector responses. A recent study 

has shown that cytokines induced by bacteria or fungi cluster in a pathogen-specific 

manner (498). All the 11 cytokines in the network, which exert either anti-

inflammatory or pro-inflammatory effects, were positively correlated. This indicates 

counter-regulatory mechanisms exist between these two broad groups of cytokines 

that control their release and function.  

 

On the other hand, the 11 cytokines from the various TH subsets have been previously 

shown to cross regulate each other’s development. For example, IL-10 produced by 

Th2 cells supresses IL-12 secretion and subsequently inhibits Th1 polarization (499). 

Meanwhile, IFN-γ–produced by Th1 cells inhibits Th2 development (500). Despite 

evidence that some of the cytokines in the network can negatively influence each 

other’s level, in my study all the cytokines were positively correlated. However, the 

inhibitory effects of these cytokines have been mainly supported by in vitro 

stimulation studies. There are few studies that have assessed the relationship between 

cytokine levels in population based studies (344,498). A similar correlation pattern 

between the 11 cytokines was also observed in a recent study utilising similar data 

(344). There is increasing evidence through in vitro and in vivo studies that TH 
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subsets display context dependent functional plasticity, and are able to convert into 

other subsets (501). For example, Th17 subsets are capable of producing functional 

Th1-like progeny (502). This implies that multiple effector functions can co-occur in 

one TH subset, which also acquires additional cytokine producing capacities. This 

may partially account for the positive correlation seen between the cytokine, but 

warrants further investigation. Of note, baseline cytokine levels were analysed in this 

study. Homeostatic balance of pro-inflammatory and anti-inflammatory cytokine 

baseline levels is necessary to maintain a healthy state, which may explain to some 

extent the positive correlations observed. This homeostatic balance tends to shift 

during infection, whereby studies assessing cytokine production after pathogen 

challenge have reported different correlation patterns between cytokines mentioned in 

this study (498,503). For example, following fungal challenge, IL-10 was observed to 

be negatively correlated IL-17 and IFN-γ, and positively correlated with IL-6 (498). 

 

Secondly, in the meta-analysis of multivariate GWAS of the cytokine network in 

9,267 individuals, I identified 12 independent variants located across 8 chromosomal 

loci. Findings of this study further confirm and extend previously identified genetic 

signals associated with circulating cytokine levels. Of these 8 loci, 6 were consistent 

with previous studies (343,494,495). Furthermore, I empirically showed that 

modelling correlated cytokines in a multivariate fashion increases statistical power to 

detect associations compared to the univariate test. This lead to the detection of two 

novel signals located on chromosomes 5 (PDGFRB locus) and 9 (ABO locus) not 

previously reported to be associated with cytokine levels. Of note, these two novel 

loci were also not detected in a recent univariate GWAS of 44 cytokines, which 

utilised similar data from the same populations used in my analysis (494). Moreover, 

similar power gain has also been shown in a previous comparison, where multivariate 

GWAS of metabolite networks outperformed the univariate approach, leading to the 

identification of novel loci (485). The findings of this study and those of others 

support the emerging evidence of genetic pleiotropy, whereby a genetic locus 

influences multiple traits (504). Also, one locus, which was identified in the 

univariate analysis, did not achieve significance in the multivariate analysis. It has 

been shown through simulation studies that multi-trait QTL analysis may not always 

provide a power boost, depending on the QTL effects and the residual correlation 
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between traits (478,505,506). Instances where genetic variants influence correlations 

between multi-traits, then jointly modelling of these traits using multivariate 

approaches can increase power to detect additional loci (506).  

 
Thirdly, cis-eQTL analysis revealed that 6 out of the 8 multivariate GWAS loci, 

which include the two novel loci, harbour eQTLs. The strongest cis-association was 

observed at the SERPINE2 locus between the tag SNP rs920251 and SEPRINE2 

expression level. Rs920251 is located within intron 1 of SERPINE2. This gene 

encodes a serine protease inhibitor, and its role has been implicated in coagulation, 

fibrinolysis and remodelling of tissue (496). Moreover, SERPINE2 is also referred to 

as a cytokine-inducible gene, whereby its expression has been previously shown to be 

up-regulated by pro-inflammatory cytokines including IL-1 and TNF as well anti-

inflammatory cytokines such as TGF-β (507–510). This suggests that rs920251 most 

likely influences the expression levels of SERPINE2 in blood by regulating the 

concentrations of circulating cytokines. On the other hand, studies have also 

demonstrated that SERPINE2 antagonises the pro-inflammatory effects of IL-1 on the 

production of matrix metalloproteinases, proteolytic enzymes known to be linked with 

the pathogenesis of chronic obstructive pulmonary disease (COPD) (507,511). In 

addition, rs920251 has been previously reported to be associated with COPD in a 

case-control study, linking SERPINE2 with COPD susceptibility (512). The 

mechanistic role of SERPINE2 in the development of COPD remains unclear. The 

association observed between variants at the SERPINE2 locus, its expression, and the 

cytokine network in my analysis provides a molecular link between the inflammatory 

processes and structural remodelling of the airway in COPD. The rs920251-

SERPINE2 cis association has also been previously identified in B cells (289).  

 
At the novel locus 5q32, a cis-eQTL was identified for CSF1R, a consistent 

association previously observed in another blood eQTL study (320). CSF1R encodes 

for a transmembrane tyrosine kinase receptor, which is activated by its cytokine 

ligands CSF-1 and IL-34 (513). It is largely expressed in cells of the myeloid lineage, 

particularly macrophages, and plays a role in their development (513). Signalling via 

the CSF1R receptor has been shown to enhance cytokine production (514). In 

humans, CSF1R and PDGFRB have similar gene organisation and are in very close to 

each other on chromosome 5 (~500bp apart), indicating that these two genes arose 
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from a duplication event (515). This raises the hypothesis that variants on PDGFRB 

influences CSF1R level, which in turn regulates myeloid cells numbers and 

subsequently cytokines levels.  

 
At the other novel locus, 9q34.2, rs532436 influenced the expression of SURF6 

levels. The SURF6 gene encodes for a nucleolar protein, which is required for 

ribosome biogenesis in the nucleolus, and is organised within the Surfeit gene cluster 

(SURF1-SURF4) of unrelated housekeeping genes (516). Rs532436 has been 

previously associated with LDL level, haemoglobin concentration and haematocrit 

(517,518). This SNP lies within an enhancer box (E-box) motif that binds to the 

transcription factor USF (upstream stimulatory factor) (519). In addition, rs532436 is 

identified by the GTEx project (311) to regulate the expression of genes RP11-

430N14.4, ABO, and SURF1 in a number of tissues. However, this SNP has an 

opposite effect on expression of these genes in different tissues. This further supports 

the notion that eQTLs regulate gene expression in a tissue-specific manner and may 

influence the expression levels of different genes across tissues or cell types 

(318,520).  

 
Although the correlation patterns between cytokines were similar across the three 

populations, the correlations were somewhat weaker in YFS07 and FINRISK02. This 

may be linked to the small sample sizes in these two populations. Another reason 

could be the differences in the cytokine measurements (serum vs. plasma), their 

stability, and experimental assays. Comparison studies have shown that inter-

variability among multiplex cytokine assays can make cross-population comparisons 

difficult (114,521,522). In particular, the choice of the collection tube, storage 

duration and temperature, and freeze-thaw cycles greatly impacts cytokine levels and 

stability (523).  

 
Cytokines are important intermediate immunological phenotypes and characterising 

the genetic architecture of cytokines levels can provide insight into inflammatory 

pathways underlying the link between genetic variants and disease susceptibility. 

Given the previously established role of cytokines in orchestrating an inflammatory 

process in COPD (524), and the consistent association between SERPINE2 locus and 

susceptibility to COPD (512), which may subsequently lead to airway remodelling 
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and COPD risk. This to the best of my knowledge is the first study that links 

SERPINE2 locus with cytokine levels and SERPINE2 expression. Moreover, the ABO 

locus described above has been previously associated with venous thromboembolism 

(525). There is evidence that inflammatory cytokine levels may also play a role in 

venous thromboembolism (526). Findings in this study also provide support that the 

mechanism underlying the association between the ABO locus and venous 

thromboembolism may in part be due to genetic regulation of cytokine levels via 

variants at this locus.  

 

Moreover, the loci identified also overlaps with prominent drug targets. The variants 

at the VEGFA locus are proximal to the VEGFA gene that encodes for a drug target 

for angiogenesis (527). This suggests a likely genetic contribution to the inter-

individual variation seen in response to drugs targeting this gene (528). Also, the 

VEGFA locus and the VEGF cascade has been linked to ulcerative colitis risk, 

implicating that drugs targeting VEGFA can be potentially used to treat ulcerative 

colitis and other inflammatory diseases of the bowel (494,529).  

 

In summary, in this chapter, a total of 8 loci contributing to the genetic regulation of a 

network of 11 cytokines were identified. This included 2 novel loci previously 

undetected loci for cytokines in GWA studies. The novel loci harboured eQTLs, 

which were previously identified as tissue-specific eQTLs. However, it is pertinent to 

note that the correlations observed between the 11 cytokines, the genetic variants and 

eQTLs identified, and the subsequent interpretation the results were based on baseline 

cytokine levels. Thus, these findings might not directly relate to cytokine response 

following immunological challenge or infection. Recent studies investigating genetic 

variants influencing cytokine production have shown that stimulation by different 

pathogens induces pathogen-specific correlation patterns between pro-inflammatory 

and anti-inflammatory cytokines (498,503). These studies have also identified 

different sets of genetic variants affecting cytokine response to pathogens (498,503). 

 

The findings from this study and other similar ones suggest that exploiting cytokines 

in GWA studies can provide insights into how genetic variation can regulate upstream 

inflammatory processes, which may confer susceptibility to immune-related diseases. 
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Characterising genetic variants influencing cytokine levels in population-based 

studies, which may lead to differential immune responses, is necessary to understand 

mechanisms underlying autoimmune and infectious diseases, and for the development 

of effective vaccines and therapeutics.  
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Chapter 4  
 

Differential network analysis identifies a 

transcriptional network involved in tissue resident 

memory T-cell development 

4.1 Introduction 

This chapter focuses on a particular aspect of the immune system, which is 

immunological memory, with specific emphasis on the tissue resident memory CD8+ 

T (TRM) cells. Characterisation of transcriptional networks in TRM cells is of 

importance to understand the mechanisms regulating their homing and maintenance at 

tissue sites. 

 
Memory is regarded as a unique trait of the adaptive immune system, which provides 

long-term protection against reinfections and is the major focus for rational vaccine 

design. The majority of vaccines developed so far rely on circulating responses. 

However, infectious pathogens commonly cross barrier sites such as skin, gut and 

lung, and cause localised infections. Hence, it is crucial to generate memory T-cells at 

these sites for effective site-specific immunity. Since TRM cells provide frontline 

defence at barrier sites, understanding the transcriptional mechanisms underlying their 

generation and maintenance is important. Few studies have identified a number of 

transcriptional regulators that influence the memory gene signature in T-cells (64,530) 

but, to date, specific lineage-defining genes have not been linked directly to long-term 

memory T-cell formation. This suggests that transcriptional programs regulating 

commitment to long-term memory operate as part of a network rather than a few
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candidate master regulators. Hence, this has underscored the need to focus on 

transcriptional networks that regulate the establishment of TRM cells at tissue sites 

for robust protective immunity. 

 
The application of integrative tools and network-based approaches to gene expression 

microarray datasets facilitates the representation of functional dependencies between 

genes as networks. The recent use of gene expression profiling to assess 

transcriptional programs in TRM cells has made publically available transcriptomic 

data, which can be leveraged for network analysis.  

 

4.1.1 Tissue resident memory CD8+ T (TRM) cells  

For a long time, it had been accepted that the memory CD8+ T-cells comprised of two 

major subsets: the central memory T (TCM) cells, which circulate through secondary 

lymphoid sites and the effector memory T (TEM) cells trafficking through blood, 

spleen and peripheral tissues (531). However, over the last decade accumulating 

evidence has supported the existence of a third subset of memory T-cells, which 

reside in peripheral tissues and are incapable of re-entering circulation (95,100,532). 

These TRM cells have been identified in a number of barrier tissues including the 

skin, brain, lung, gut, liver, salivary glands, and female reproductive tract where they 

have been shown to offer superior protection against local infection compared to their 

circulating memory counterparts (94–102). In addition, TRM cells exhibit a unique 

transcriptional profile that distinguishes them from TEM and TCM cells (88,103). 

 

4.1.1.1 Evidence for the existence of TRM cells 

Several studies performed in both mice and humans have provided considerable 

evidence for the existence of TRM cells in peripheral tissues, which have been shown 

to be disconnected from circulation and independently sustained from their circulating 

(TEM and TCM) counterparts (533,534). Transplantation experiments by Gebhardt et 

al. showed that memory population residing in the dorsal root ganglia (DRG) of 

herpes simplex virus (HSV) infected mice did not recirculate when transplanted under 

the kidney capsule of naive (not infected) recipient mice (95). Likewise, they also 

demonstrated that the memory population present on the skin after HSV infection did 
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not migrate and persisted for weeks when transplanted into naive recipients (95). In a 

later study by the same group, the idea that TRM cells are distinct and independent of 

the circulating subsets was further reinforced using transfer experiments (535). They 

showed that upon transfer, HSV-specific T-cells from male mice migrated and 

survived for about 10 weeks in the skin of female mice in the absence of their non-

viable circulating counterparts, which were rejected by the female immune system 

(535). TRM cells have also been observed to persist for several months within the 

brain parenchyma following an acute vesicular stomatitis virus (VSV) infection in 

mice (100). Also, in situ intracranial labelling with carboxyfluorescein succinimidyl 

ester (CFSE) revealed that these brain TRM cells were locally confined to the 

infection site and represented a self-sustaining population, distinct from their 

circulating subsets that required constant replenishment from the circulation (100). 

These brain TRM cells further lost the ability to survive once removed from their 

tissue niche (100). Similar persisting TRM population has also been found in murine 

intestinal epithelium (536) and salivary gland upon lymphocytic choriomeningitis 

virus (LCMV) infection (101) and other tissues including skin, lungs, salivary glands 

(104). For example, treatment of LCMV-immune mice with fingolimod (FTY; a drug 

that increases migration of recirculating T-cells into lymph node) did not reduce the 

TRM cell numbers in intestinal epithelium even after 30 days of treatment but led to a 

drastic reduction of circulating memory T-cells in blood (536). These findings 

confirmed that TRM cells were indeed long-term resident cells lacking recirculating 

abilities (536). Moreover, the resident nature of TRM cells has been further confirmed 

through experiments utilising parabiotic mice (two mice surgically joined together to 

share their circulatory system), in which TRM cells failed to equilibrate across the 

skin of these two mice (96). 

 
Likewise, evidence for TRM cells in human tissues also exists. Early studies utilising 

xenotransplantation experiments showed that pathogenic resident cells present on 

human skin grafts from psoriatic patients were able to persist for several weeks, 

locally proliferate, and were sufficient to give rise to psoriasis lesions following 

transplantation into immuno-compromised (lacking both type I and type II interferon 

receptors) mice (537–539). TRM-like cells have also been identified in human genital 

herpes lesions, where a subset of HSV-specific T-cells was observed to infiltrate to 

the local site of re-infection and persist for months in the skin following lesion 
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resolution (540,541). The existence of these resident cells at tissue site further 

correlated with increased viral clearance (542). Influenza-specific TRM cells have 

also been identified in human lungs (543,544). TRM cells expressing the 

characteristic resident surface markers have also been isolated from the human gut 

(90) and skin (545). Additionally, skin TRM cells have also been linked to fixed drug 

eruption, an allergic response leading to skin lesions at the same site each time after 

ingesting a particular drug (546,547). Histological staining has identified IFN-γ 

producing resident CD8+ T-cells at sites of healed lesions and recurrence of these 

lesions at the same location following challenge with the inducing drug, further 

supporting the causative role TRM cells (546,547). The most compelling evidence 

that human TRM cells persist in tissues and are non-recirculating came from studies 

utilising cutaneous T-cell lymphoma patients (548,549). Treatment of these 

individuals with a low dose of alemtuzumab, an antibody that destroys CD52-bearing 

T-cells in blood, leads to the depletion of all circulating T-cells without affecting 

those residing in the skin (548,549).  

 

4.1.1.2 TRM cells provide superior protection in peripheral tissues  

There is now accumulating evidence that TRM cells persist for long term in 

peripheral tissues forming a frontline defence. In particular skin TRM cells, which 

exhibit superior protection against local reinfection relative to their circulating 

memory subsets (95,96,100,550). Using microscopy and in vivo experiments, Ariotti 

et al. showed that antigen-specific TRM cells persisting after a herpes infection 

acquire a dendritic morphology and are able to rapidly recognise antigen-expressing 

cells by continuously patrolling the epidermis (550). This suggests that the local 

patrolling by skin TRM cells provides first line of defence against reinfections. 

Studies employing parabiotic mice revealed that only the mice with skin TRM cells 

were able to effectively clear a VACV reinfection, whereas mice with only TCM and 

no TRM cells could not, suggesting that TRM cells functionally confer superior local 

protection (96). In another study, Gebhardt et al. observed that TRM cells lodged in 

the skin and vagina were able to effectively clear HSV upon reinfection (551). In the 

lungs, vaccine-generated TRM cell populations (552) provided effective shielding 

against influenza and lower respiratory infections (553). Others have demonstrated 
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that TRM cells are capable of rapidly responding to infections by clearing them 

before the arrival of circulating memory T-cells (96,552).  

 

4.1.1.3 Molecular mechanisms defining TRM cells generation and 
maintenance  

TRM cells have been best characterised by their incapability to recirculate through 

blood once they are lodged within a tissue following local infection (87,95,96,554). 

However, the molecular mechanisms underlying their differentiation, migration, and 

retention in peripheral tissues have just begun to emerge.  

 
Generation from TRM cell precursors. The exact lineage-committed precursor that 

gives rise to TRM cells is still not clear, but they have been shown to generate from 

the same KLRG1Low effector-like subset that gives rise to TCM cells as well. For 

example, two separate studies in mice showed that effector cells with low KLRG1 

expression were able to infiltrate into the skin and gut, and later develop into TRM 

cells (98,103). The localisation of these effector precursors in the skin was driven by 

high amounts of CXCR3 chemokine expression (103). Consistent with these findings, 

DNA sequencing of TCR gene isolated from skin TRM cells and lymph node TCM 

cells generated after skin immunisation revealed that they bear identical TCR motif 

(CDR3), suggesting that both TRM and TCM cells arise from common naive 

precursor cells (555).  

 
TRM Cell surface markers. The identification of TRM cells in many non-lymphoid 

tissues, including skin, gut, lungs, brain, female reproductive tract, salivary glands, 

and thymus have been based on the expression of two key the surface molecules, 

CD69 (Cluster of Differentiation 69) and CD103 (95,100,532,556–558). In addition, a 

subset of TRM cells completely devoid of CD103 expression has been found in the 

liver (102), intestine (559), and secondary lymphoid organs (560), suggesting that 

CD103 expression might be tissue-specific. A recent study showed that human spleen 

and tonsils were populated with two distinct groups of TRM cells (CD69+CD103+ and 

CD69+CD103–), which were also anatomically separate within these tissues (561). 

While on the other hand, it was observed that a considerable fraction of TRM cells in 

the salivary glands, pancreas and female reproductive tract of mice lacked both CD69 

and CD103 expression (562). These studies provide evidence that the TRM cell pool 
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exhibits phenotypic heterogeneity and the expression of these phenotypic markers 

might be dependent on tissue type and compartment.  

 
CD103 (encoded by the Itgae gene) is the alpha subunit of the αEβ7 integrin receptor 

found on the TRM cells, which promotes their adhesion to skin and gut by interacting 

with E-cadherin ligands constitutively expressed in the epithelial layers of these 

tissues (95,101,103,556,558,563,564). Interestingly, E-cadherin expression has also 

been noted in TRM cells obtained from a range of tissues including skin, gut, lung, 

and brain (88,101,103). CD103 has been shown to play a functional role in mediating 

the homing and retention of TRM cells within peripheral tissues 

(89,100,103,556,565,566). There is also evidence that this receptor might also be 

involved in directing tissue localisation of TRM cells (567,568). TRM cells defective 

of CD103 expression were able to infiltrate into the gut, brain, and skin, but failed to 

persist long-term (98,100,551,556,567,569). Moreover, TRM cell precursors in the 

skin and gut up-regulated CD103 once they were lodgement into these tissues 

(103,559). TGF-β, a tissue derived cytokine is essential for the development of TRM 

cells in the skin, gut and lungs by the inducing CD103 expression 

(98,103,556,569,570). The role of TGF-β in inducing the residency-related 

transcriptional profile has explored through RNA-sequencing analysis in Chapter 5.  

 
CD69 is encoded by the Cd69 gene, which is localised within the cluster of Natural 

Killer receptors, and is a transmembrane glycoprotein (571,572). CD69 is well known 

as an activation marker that is expressed very early on stimulated T-cells, but its role 

in mediating tissue residency has been identified lately (573,574). Similar to CD103, 

CD69 expression is also induced on TRM cells soon after they reach their residency 

site, which further enhances their retention by antagonising tissue egress signals for 

TRM cells (103,105). CD69 forms a complex with the migration receptor, 

sphingosine-1-phosphate receptor-1 (S1PR1), and mediates its internalisation into the 

cytoplasm for degradation (575). Consequently, the surface expression of S1PR1 is 

inhibited hampering the receptors ability to chemotactically respond to the exit signals 

from sphingosine-1-phosphate (S1P), thereby ensuring tissue residency (103,574). T-

cells deficient in CD69 expressed functional S1PR1 and as a result were incapable of 

tissue lodgement (103,105,573). Together with Itgae, S1pr1 gene is also part of the 

core transcriptional signature defined in epithelial TRM cells from the gut, lung, and 
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skin (103). Moreover, CD69 inhibited S1P1-induced chemotactic migration of T-cells 

as soon as they entered the lung, however, their long-term persistence does not 

depend upon such inhibition (576). This suggests that TRM maintenance might be 

CD69-exclusive. In addition, the loss of expression of both S1PR1 and its 

transcriptional activator KLF2 (kruppel-like factor 2) in TRM cells is correlated with 

their residency at peripheral sites (105).  

 
Other signals regulating TRM cell development and survival. Evidence exists for 

additional factors that are required for the acquisition of residency. The expression of 

a number of chemokine receptors on TRM precursor cells, in particular, CXCR3, are 

required for their homing in skin and lung (103,577,578). Furthermore, the local 

production of cytokines including IL-15, IL-33, TGF-β, and TNF produced at tissue 

environments influences the development and establishment of TRM cells at these 

sites. For instance, the induction of CD103 via TGF-β signalling plays a key role in 

the formation of TRM cells in the skin, gut and lung (98,103,570,577,579,580). TGF-

β, IL-33, and TNF have been shown to synergistically up-regulate CD103 expression 

and induce tissue resident phenotype (556), as well as reduce KLF2 expression levels 

in CD8+ T-cells (105). Also, long-term persistence of TRM cells in the skin and lung 

require IL-15 dependent signal (103,579,581). Increased levels of the pro-survival 

molecule BCL2 (B-cell lymphoma 2) in murine brain CD103+ TRM cells, implicated 

its involvement in facilitating TRM cell survival and prolonged maintenance (100). 

Similarly, the role of antiviral molecule IFITM3 (Interferon-induced transmembrane 

protein 3) in protecting lung TRM cells from viral infections and promoting their 

survival has been demonstrated. Elevated expression of Ifitm3 has also been reported 

in brain TRM cells, indicating that it might be a key survival gene required for long-

term maintenance of TRM cells (558).  

 
Transcriptional signature of TRM cells. Comparative analysis of microarray-based 

expression profiles of murine CD103+ TRMs isolated from different peripheral sites 

(skin, gut, lung, and brain) with their circulating counterparts revealed that TRM cells 

from various tissues exhibit a distinctive transcriptional signature, which 

demonstrates considerable similarity to one another (88,103,582). This further led to 

the establishment of a shared core residency signature comprising of up-regulated 

genes known be involved in adhesion (Itgae, Itga1, and Cdh1) and tissue homing 
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(Rgs1, Rgs2), and down-regulated genes involved in tissue exit (e.g. S1pr1) (103). 

Similarly, TRM cells from murine liver, and human lung and skin also displayed a 

unique transcriptional profile (583).  

 
Several transcriptional factors have been identified as differentially expressed in TRM 

cells. KLF2 is a key driver controlling the movement of T-cells. The loss of 

expression of both Klf2 and its downstream target gene S1pr1, noted in almost all 

TRM cells, facilitates tissues retention of TRM cells (105). As discussed in Chapter 

1, the reciprocal interplay between T-Bet and EOMES play a central role in effector 

and memory cell-fate decisions during CD8+ T-cell differentiation (584). T-bet and 

Eomes are both down-regulated in TRM cells in the skin, gut and lungs (88,103). 

Their down-regulation has been shown to be necessary for TRM cell generation, 

whereby TRM cells failed to develop in the skin and lung when expression of either 

Eomes or T-bet was forced in maturing T-cells (579). Moreover, TGF-β signalling 

dependent generation of TRM cells is reinforced by positive feedback mechanism. 

TGF-β inhibits the expression of EOMES and T-bet, which are negative regulators of 

its receptor, and the suppression of these two transcription factors further augments 

TGF-β activity promoting TRM cell differentiation (577,579). Unlike the 

transcription factors discussed so far, whose down-regulation is associated with the 

TRM phenotype, the up-regulation of two other central players (BLIMP1 and 

HOBIT) is essential for TRM cells (582). The combined effect of transcription factors 

BLIMP1 and HOBIT (homolog of Blimp1 in T cells; also referred to as ZFP683 or 

LOC100503878) is not only essential for the establishment of TRM cells in the skin, 

gut, liver and kidney, but also in other resident populations such as resident natural 

killer T (NKT) cells form the liver (582). This highlights that BLIMP1 and HOBIT 

transcriptionally programs a residency-affiliated signature universal to an assortment 

of tissue resident populations (582). Additionally, analyses of ChIP Sequencing data 

further revealed that these two transcriptional promote tissue residency by directly 

binding to and down-modulating tissue egress genes such as Tcf7, Klf2, S1pr1, and 

Ccr7 (582). High expression levels of other transcription factors such as Litaf, Nr4a1, 

Ahr, has also been recorded in TRM cells, and have been shown to be involved in the 

generation and persistence of TRM cells (103,585–587).  
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Transcriptional signature extends beyond TRM cells. The Majority of studies 

describing tissue residency so far have largely focused on CD8+ T cells. However, 

evidence for antigen-specific tissue resident cells from several lymphocyte lineages 

also exists. CD4+ memory T cells expressing CD69 and no or low levels of CD103 

have been isolated from various non-lymphoid sites in both human and mice (588–

590). In addition, regulatory T cell (Treg) subsets showcasing specialised function 

and phenotype are also present in the adipose tissue, lung, liver, and skin (591,592). 

Tissue residency also spans innate lymphocyte lineages such as natural killer (NK) 

and NKT cell (593). Few recent studies examining expression profiles have just 

started to reveal that the transcriptional requirements for tissue residency in various 

lymphocyte lineages are shared to some degree (545,582). Li et al. demonstrated that 

the transcriptomes of Tregs and CD4+ memory T-cells found in human skin were 

enriched for genes previously identified to be part of the common core transcriptional 

program associated with tissue residency in murine skin, gut and lung TRM cells 

(545). In another study, Mackay et al. also provided consistent evidence and further 

highlighted that sharing of residency signature is not only confined to adaptive 

lymphoid resident cells found at epithelial sites but also spans both innate lineage and 

non-epithelial tissues (582). The authors performed RNA-seq based comparative 

transcriptional analyses of murine tissue resident lymphocytes, which consisted of 

innate (NK and NKT cells) and adaptive (TRM cells) subsets from various peripheral 

sites, leading to the identification of a universal transcriptional signature common to 

all these cell types (582). This shared universal signature of 30 genes are mainly 

involved in chemokine receptor signalling (Xcl1, Cxcr6, and Cxcr4), regulating tissue 

exit (S1pr1, Klf2), and the establishment of tissue residency (Osgin1, Hobit, Tcf7, 

Arhgef18, Fam65b, S1pr4, S1pr5). 

 

4.1.2 Existing gap in the understanding of tissue residency 

Results from genome-wide transcriptome analyses of TRM cells isolated from various 

tissues have made it clear that residency in TRM cells is transcriptionally 

programmed. However, understanding how this program is fine-tuned to facilitate the 

development and maintenance of TRM cells in tissues is still in its early stages. 

Nearly all studies transcriptionally characterising TRM cells so far have assessed 
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changes in the mean expression level of individual genes between TRM cells and 

their circulating counterparts, resulting in a list of differentially expressed genes 

(88,103,582). The most differentially expressed genes, based on either fold change or 

statistical significance, were then prioritised as candidate genes associated with the 

tissue residency. The change in expression of these top candidate genes, which might 

not be causally linked to the residency phenotype, could be a consequence of mild 

expression changes of an upstream gene. Hence, differential expression analysis does 

not take into account the correlation structure that exists amongst differentially 

expressed genes. Network-based approaches are being increasingly applied to 

transcriptomic data to delineate the gene-gene interactions, and have also been used in 

defining networks of coexpressed genes involved in immune cell differentiation and 

lineage fates (594,595). Recently, differential network analysis tools, which assess the 

change in pairwise correlations between genes across conditions, have been 

developed to supplement differential expression analysis (252,253,255). To identify 

groups of residency-related genes exhibiting altered dependencies across resident and 

circulating states; a suitable approach would be to construct sub-networks within the 

boundaries of differentially expressed genes between resident and circulating groups 

(596,597). The identification of such differentially coexpressed sub-networks will 

provide deeper understanding into regulatory programs and pathways that might be 

essential for tissue residency. Additionally, potential drivers of residency can be 

inferred from the identification genes most central (hub genes) to the network.  

 
Moreover, comparative analyses of transcriptional profiles have also revealed that 

some degree of shared residency-related transcriptional identity exists between tissue 

resident cells within and across lineages. However, gaining insight into how widely 

this shared residency signature is maintained across tissue resident cells present in 

haematopoietic lineage requires a large compendium of expression profiles. The 

availability of expression profiles from an array of immune cell types through large 

consortia such as the ImmGen project (598,599) makes it possible to directly assess 

the enrichment of the residency-related genes sets.  
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4.2 Research objectives  

The central aim of this chapter was to use network-based approach to characterise 

gene network(s) underlying the transcriptional signature regulating the development 

and establishment of tissue resident memory T cells.  

 

In this chapter, two previously published microarray datasets (88,103) generated from 

murine TRM cells isolated from skin, gut, lung, and brain were integrated for network 

analysis.  

 

The specific objectives of this research chapter were: 

 

1. To perform differential co-expression analysis on genes differentially expressed 

between TRM and circulating CD8+ T-cells and identify residency-related gene 

network(s) in TRM cells. 

 

2. To infer potential drivers of the residency-related gene network(s).  

 

3. To assess whether the residency-related gene signature identified in TRM cells 

share transcriptional similarity in different populations of tissue resident immune 

cells.  
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4.3 Methods  

4.3.1 Gene expression data  

An overview of data analysis workflow employed in this study is given in Figure 4.1. 

The microarray gene expression profiles of murine TRM and circulating memory 

CD8+ T-cells analysed in this chapter have been previously published in (103) and 

(88). All the microarrays were generated on the Affymetrix Mouse Gene 1.0 ST array 

platform. The raw gene expression data (Affymetrix CEL files) were downloaded 

from the Gene Expression Omnibus (GEO) database (GEO accession numbers; 

GSE47045 (103) and GSE39152 (88)). A total of 25 samples, which included both the 

TRM and circulating memory T-cells, were analysed. The resident samples (N=14) 

were obtained from TRM cells isolated from skin (at day 30 post-infection (p.i.) with 

HSV), gut (at day 60 p.i. with LCMV), lung (at day 30 p.i. with influenza virus), and 

brain (at day 20 p.i. with VSV-OVA) as described in (88,103). The circulating 

samples were obtained from spleen, which consisted of CD103−CD8+ T-cells 

(isolated at day 20 p.i. with VSV-OVA), and CD8+ TCM and TEM cells (isolated at 

day 30 p.i. with HSV) as described in (88,103). There were three biological replicates 

for each tissue type, except brain TRM cells and their circulating splenic 

(CD103�CD8+ T-cells) counterparts, which had five replicates each. The resident and 

circulating samples are hereafter referred to as “resident” and “circulating” groups, 

respectively. 

 

4.3.2 Microarray data processing and normalisation  

Affymetrix CEL files containing the raw microarray intensities of expression for 

34,760 probes across all the 25 samples were processed with the Bioconductor “affy” 

package (184,600) in R. First, each CEL file was background corrected for non-

specific hybridisation effects using the robust multichip average (RMA) algorithm. 

Next, probe-specific correction was performed using the “pmonly” method (184,600). 

Finally, the probes in each probeset, perfect match (PM) and its corresponding 

mismatch (MM) probe, were summarised into a single expression value for each 

probe using the median polish method (184,600).  
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Figure 4.1: Overview of data pre-processing and analysis workflow 
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Study related batch effects are common when data from different microarray studies 

are combined. Batch effects were removed from the log2-transformed expression 

values using the SNM normalisation method implemented in the “snm” R package 

(195),. SNM jointly fits a study-specific model to all probes and samples using two 

types of defined variables: those that are of interest to the biological outcome 

(biological variables), and those that are not (adjustment variables). Here, the resident 

and circulating phenotypes were modelled as biological variables, and the expression 

data was adjusted for the effects of study-specific batches (adjustment variable). All 

downstream analyses were performed with SNM normalised expression values.  

 

4.3.3 Global analysis of the transcriptome 

For exploratory analyses of the global expression profiles, lowly expressed probes 

were excluded to retain only those (N=10,428) with a variance of expression within 

the 70th percentile. Principal component analysis (PCA) was performed using the 

“prcomp” function with default settings in R. The samples were hierarchically 

clustered, with Wards clustering algorithm based on Euclidean distances as a 

similarity measure, using the “dendextend” R package (601).  

 

4.3.4 Differential gene expression analysis between resident and 
circulating groups 

For differential gene expression analysis, only probes with a gene symbol annotation 

were considered. The analysis was performed on 24,534 annotated probes using the 

Bioconductor “limma” R package (602). Briefly, a linear model was fitted to each 

gene using limma’s “lmFit” function. Then, for each gene, the significance of the 

differential expression between resident vs. circulating groups was assessed using the 

empirical Bayes moderated t-statistics computed with limma’s “eBayes” function 

(202). An FDR adjusted P-value significance threshold of 0.05 was implemented to 

identify differentially expressed (DE) genes. The DE genes were used for network 

analysis as described below.  
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4.3.5 Differential gene co-expression network analysis  

To identify gene network(s) that were differentially coexpressed between the resident 

vs. circulation groups, the DiffCoEx method described in Tesson et al. (253) was 

employed. DiffCoEx is built on a widely used framework for constructing weighted 

gene co-expression networks, known as weighted gene co-expression network 

analysis (WGCNA) (239,395). Expression profiles of 2,197 unique genes DE between 

the resident and circulating groups were used as an input for network analysis. Prior 

to the analysis, multiple DE probes (> 1) corresponding to the same gene were 

collapsed to a single representative, using the “CollapseRow” function with the 

“Max-Mean” method in WGCNA. The Max-Mean method chooses the probe with the 

maximum mean expression across all samples.  

 
Differential co-expression analysis with DiffCoEx involved four steps. First, an 

adjacency matrix ![#] was computed, with each group % (resident or circulating), by 

calculating the pair-wise Pearson correlation c between all the DE gene pairs (i,j). 

C
[']
∶ 	 c

+,

[']

= 	cor(gene
+
	, gene

,
)		 

Next, an adjacency difference matrix 6 was obtained by raising the absolute value of 
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The cut off value for b was determined based on the scale-free topology criterion 

(239) using the “PickSoftThreshold” function in WGCNA. Then, the topological 

overlap matrix (TOM) was calculated using the adjacency matrix followed by 

hierarchical clustering of genes using 1-TOM as a dissimilarity measure. Finally, 

module identification was performed using the “Dynamic Hybrid” tree cut algorithm 

implemented in WGCNA (241) with the following parameters: deep split = 3 and 

minimum cluster size of 15. DiffCoEx assessed the statistical significance of module-

wise co-expression changes between the resident and circulating groups using 

permutations. Briefly, 1000 permutations of sample labels between the resident and 

circulating groups were performed. For each permutation, the absolute mean of the 

module-wise correlation changes (dispersion) between the groups was calculated. 

This was used to generate a null distribution for each module. The P-value for each 
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module was calculated as the number of permutations with dispersion values greater 

than or equal to the original value. Connectivity, the degree of interaction between 

genes, was calculated by summing the weights of the overall edges of a gene. The 

median co-expression of each module in the resident and circulating groups was 

calculated as the median absolute value of the correlations between genes within a 

module. A module with a higher median co-expression in the resident group 

compared to the circulating group was defined as a RESIDENT module. 

 

4.3.6 Partial correlation analysis in the resident group to infer 
potential network drivers of the RESIDENT module 

To infer potential network drivers of the RESIDENT module, partial correlation 

analysis was carried out in the resident group using the “ppcor” package in R. Partial 

correlation can be used to infer a direct correlation relationship between genes a and b 

by removing the linear effect of gene c (603,604). As a result, the disruption of the 

extent of co-expression between genes within the network can be used to infer the 

regulatory role gene c. The partial correlation coefficient (rab,c) was calculated for all 

DE gene pairs (a and b) in the resident group by iteratively conditioning on each gene 

(gene c) present in the RESIDENT module. For each of the partial correlation matrix 

obtained, the mean of the difference between the absolute value of the correlation 

coefficient between genes a and b (rab) with and without adjusting for gene c was 

calculated, to identify which gene c had drastically perturbed the co-expression when 

its effect was removed.  

KLMA	( N
OP

− N
OP,I

) 

A high positive mean value indicates that gene c is a potential key hub gene, which 

greatly affects the co-expression amongst genes present in the resident and other 

modules 
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4.4 Results 

4.4.1 Overview of the study samples and analyses 

In this chapter, I utilised two previously published microarray datasets (88,103) of 

expression intensities generated from murine TRM cells isolated from skin, gut, lung, 

and brain, and their circulating memory counterparts from the spleen (Figure 4.1). A 

total of the 25 samples were analysed, which included 14 TRM cell samples from 

various tissues classified as “resident”, and 11 samples from the spleen (TEM and 

TCM) classified as “circulating”. All samples were profiled on the Affymetrix Mouse 

Gene 1.0 ST arrays, and raw data was then pre-processed using the RMA algorithm 

(184). The expression profiles from both studies were combined and batch-corrected 

with the SNM normalisation method (195). DE genes between the resident and 

circulating groups were identified using the limma statistical analysis package (602). 

These 2,197 DE genes (significant at an FDR < 0.05) were then utilised for 

constructing differentially coexpressed gene networks between the resident and 

circulating groups using the DiffCoEx tool (253). Next, to infer key module 

regulators, partial correlation analysis was performed to statistically knockdown each 

gene iteratively in the RESIDENT module, a module identified as highly coexpressed 

in the resident group. Finally, the 2,197 genes DE in TRM cells were used as TRM-

specific transcriptional signature to assess their enrichment across a subset mouse 

immune cell profiles in the ImmGen dataset (598,599). 

 

4.4.2 Global analysis of the transcriptome in resident and circulating 
memory T cells reveals differences between their expression 
profiles 

Comparison of the overall distributions of probe expression between samples from the 

two different microarray studies showed an uneven distribution across studies, which 

clearly indicates study-specific batch effects (Figure 4.2A). After SNM 

normalisation, the median expression values were very similar across all samples 

(Figure 4.2B), suggesting that the normalisation procedure used performed well and 

the normalised data was suitable for downstream analyses.  
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Figure 4.2: Boxplots of log2-transformed expression values of 34,760 probes across all 
the 25 resident and circulating samples (A) before and (B) after normalisation. 

Raw expression intensities were obtained from two independent microarray studies, 
GSE47045 (red boxplots) and GSE39152 (blue boxplots). For each boxplot, the boxes 
represent the interquartile range of expression (25% –75%), and the median 
expression value is denoted by the horizontal black line within the box. The whiskers 
show the maximum and minimum expression values. The resident (TRM) samples 
were obtained from the gut (Gt), lungs (Lg), skin (Sk), and brain (Br). The circulating 
samples were obtained from the spleen (Spl: TCM, TEM and CD103− CD8+ T-cells). 
Numbers at the end of the sample labels indicate biological replicates  
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An exploratory analysis was performed on 10,428 probes, after removing genes with 

low expression variance across the 25 samples. PCA revealed that the first five 

principle components (PCs) captured 47% of the variation in the expression data 

(Figure 4.3A). Grouping within the resident and circulating samples indicate that the 

TRM cells exhibit a distinct transcriptional signature compared to their circulating 

counterparts (Figure 4.3B). The resident and circulating samples separated along the 

PC1 axis, which accounted for 15% of the total variance (Figure 4.3B). Hierarchical 

clustering of the samples based on their similarity in gene expression profiles showed 

clear separation of the resident samples from the circulating, which further 

highlighted the differences in gene expression profiles between these two groups 

(Figure 4.3C). 

 

4.4.3 DE genes in resident vs. circulating memory T-cells 

To identify genes DE between the resident and circulating groups, differential 

analysis was performed on 24,534 annotated probes with the LIMMA statistical 

package (602). A total of 2,197 unique genes were significantly DE (FDR < 0.05) 

between the resident and circulating groups. Of those 1,551 were up-regulated and 

646 were down-regulated in the resident group. It was observed that there were more 

up-regulated genes (more than 65%) in both the total set of DE genes and the list of 

top 50 most DE genes when ranked by statistical significance as shown in the 

heatmap (Figure 4.4). The top 10 most differentially up-regulated and down-

regulated genes are given in Table 4.1, and the detailed list of all DE genes is 

provided in Table B.1 in Appendix B. Itgae was the most highly expressed gene in 

resident group. It encodes for CD103, a well-characterised TRM cell surface marker 

known to mediate the homing and retention of TRM cells at tissues sites 

(89,100,103,556,565,566). The most down-regulated gene was S1pr1, which encodes 

for a tissue exit receptor (105). 

 

  



Chapter 4: Differential network analysis identifies a transcriptional network involved in  
tissue resident memory T-cell development 

 

 147 

 
 
Figure 4.3: Global analysis of the expression profiles obtained across a total of 25 
resident (N= 14) and circulating (N=11) samples.  

(A) Principal component analysis (PCA) of the transcriptome for the 25 samples. Scree plot 
showing the amount of variance (bar height) captured by each of the top five principal 
components (PCs; bars). The cumulative proportion of variance explained by the first five 
PCs (red line) was 47%. (B) The plot of PC1 versus PC2 shows the separation of the 
samples into resident and circulating clusters along the PC1 axis. The numbers in 
parenthesis beside the PC labels denote the percentage of variance explained by the 
respective PCs. Each sample, represented by either three or five biological replicates (1-5), 
is denoted by dots. (C) The dendrogram obtained from the hierarchal cluster analysis 
(HCA) of the samples based on their transcriptome further confirms the resident vs. 
circulating separation. Clustering was done using the Ward’s method with the “Euclidean” 
distances measure provided as the dissimilarity matrix. The dendrogram branches are 
coloured according to sample group: resident (blue) and circulating (pink). Dots at the tip of 
the leaves represent each sample. For both PCA and HCA, the dots representing samples are 
coloured according to the respective resident or circulating cell type, where biological 
replicates (indicated by numbers next to each sample label) have the same colour. All 
analysis was performed on 10,428 probes, log2-transformed SNM normalised.  
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Table 4.1: The top 10 most significantly up-regulated and down-regulated genes DE 
between resident vs. circulating groups. 

Probe ID Gene 
symbol 

Gene name FC  
(log2) 

FDR Adj.  
P-value 

Up-regulated  

10378286 Itgae Integrin alpha E, epithelial-
associated 

5.36 4.15 x 10-18 

10575052 Cdh1  Cadherin 1 3.34 1.54 x 10-13 
10538892 LOC641050 Uncharacterised 2.68 2.28 x 10-13 
10447056 Qpct Glutaminyl-Peptide 

Cyclotransferase 
2.69 1.59 x 10-12 

10554240 Isg20 Interferon-stimulated protein 2.83 1.84 x 10-12 
10491300 Skil SKI-like 2.07 2.71 x 10-12 
10451110 Hsp90ab1 Heat shock protein 90 alpha 

(cytosolic), class B member 1 
1.09 3.61 x 10-12 

10450369 Hspa1a Heat shock protein 1A 4.29 4.71 x 10-12 
10573082 Inpp4b Inositol polyphosphate-4-

phosphatase, type II 
2.26 9.08 x 10-12 

10358408 Rgs1 Regulator of G-protein signalling 1 3.20 9.27 x 10-12 
Down-regulated 

10501586 S1pr1 Sphingosine-1-phosphate receptor 1 −4.04 1.19 x 10-14 
10439583 Sidt1 SID1 transmembrane family, 

member 1 
−2.94 1.54 x 10-13 

10569733 Arhgef18 Rho/rac guanine nucleotide 
exchange factor (GEF) 18 

−1.43 9.20 x 10-13 

10460968 Rasgrp2 RAS, guanyl releasing protein 2 −2.33 1.84 x 10-12 
10358717 1700025G04

-Rik 
RIKEN cDNA 1700025G04 gene −1.98 1.43 x 10-11 

10404152 Fam65b Family with sequence similarity 65, 
member B 

−1.96 3.21 x 10-11 

10555510 Pde2a Phosphodiesterase 2A, cGMP-
stimulated 

−2.00 1.21 x 10-10 

10530145 Tlr1 Toll-like receptor 1 −2.67 1.32 x 10-10 
10351691 Slamf6 SLAM family member 6 −2.76 3.88 x 10-10 
10404132 Cmah Cytidine monophospho-N-

acetylneuraminic acid hydroxylase 
−3.23 4.66 x 10-10 

 
FC – refers to fold change. FDR Adj. – refers to FDR adjusted P-values. P-values were 
adjusted using the Benjamini-Hochberg false discovery rate (FDR) procedure.  
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Figure 4.4: Heatmap from the hierarchical clustering of top 50 most differentially 
expressed genes between resident vs. circulating groups.  

The genes were ranked according to statistical significance. The normalised 
expression values for each gene across the 25 samples were standardised (mean of 0 
and standard deviation of 1), such that red denotes increased expression and blue 
denotes decreased expression. The dendrogram shows the clustering of the samples 
based on the expression of these 50 genes, and the branches are coloured blue for 
resident samples and pink for circulating samples. The log2 fold change (FC) and 
FDR adjusted P-values (Adj.P) for each gene is given in the table. 
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4.4.4 Transcription factors (TFs) and cofactors differentially expressed 
in resident vs. circulating groups  

Transcription factors and their cofactors are important transcriptional regulators of 

gene expression and they have been shown to play a fundamental role in 

programming immune cell fate decisions (70). To identify differentially expressed 

TFs and cofactors between the resident and circulating groups, the list of DE genes 

was cross-referenced against known mouse TFs and cofactors downloaded from the 

AnimalTFDB (605). Among the 36 TFs found to be differentially expressed (|log2FC| 

> 1) between the resident and circulating groups, 27 were up-regulated and 9 were 

down-regulated (Table 4.2). Additionally, 6 transcription cofactors (5 up-regulated 

and 1 down-regulated) were also identified as differentially expressed (Table 4.2). 

 

4.4.5 Functional enrichment analysis of DE genes 

To assess function of the DE genes (FDR < 0.05, |log2FC| > 1), GO (Biological 

Processes) enrichment analysis was performed using GOrilla (269) on DE genes 

against the background list of 20,577 genes, which were present on the Mouse Gene 

1.0 ST Array and also annotated to a GO term. GO enrichment was performed on 

three sets of DE genes: up-regulated genes, down-regulated genes, and both sets 

combined. Significant GO terms (FDR < 0.05) were further condensed into non-

redundant representative terms by clustering them based on semantic similarity using 

the REVIGO tool (398). The analysis identified a total of 136 and 15 significantly 

enriched REVIGO-summarised GO terms among genes up-regulated and down-

regulated in the resident group, respectively. The top 10 most over-represented GO 

terms for DE genes, sorted by their enrichment P-values, are shown in Figure 4.5.  
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Table 4.2: Differentially expressed transcriptional factors (TFs) and cofactors between 
resident vs. circulating groups  

Probe ID Gene 
symbol 

FC 
(log2) 

Adjusted 
P-value 

Probe ID Gene 
symbol 

FC 
(log2) 

FDR Adj. 
P-value 

TFs TFs continued  

10437687 Litaf 2.66 1.21 x 10-10 10354111 Aff3 -1.18 1.68 x 10-4 

10520862 Fosl2 2.12 6.20 x 10-9 10391301 Stat3 1.05 3.03 x 10-4 

10427035 Nr4a1 3.16 8.18 x 10-9 10452633 Tgif1 1.55 3.49 x 10-4 

10589994 Eomes -2.03 1.07 x 10-8 10384725 Rel 1.21 4.92 x 10-4 

10521913 Rbpj 2.20 2.05 x 10-8 10522051 Klf3 -2.95 8.36 x 10-4 

10457205 Crem 1.82 2.21 x 10-8 10363735 Egr2 1.89 9.08 x10-4 

10580282 Junb 1.62 5.00 x 10-8 10425283 Maff 1.06 1.71 x 10-3 

10482772 Nr4a2 3.03 5.00 x 10-8 10511416 Tox 1.03 2.11 x 10-3 

10514466 Jun 1.68 2.91 x 10-7 10405918 Rsl1 -1.03 4.84 x 10-3 

10409278 Nfil3 2.26 4.73 x 10-7 10468517 Mxi1 1.76 7.97 x 10-3 

10404389 Irf4 2.41 7.41 x 10-7 10397346 Fos 1.56 1.29 x 10-2 

10505911 Dmrta1 -1.12 1.22 x 10-6 10492997 Etv3 1.50 1.62 x 10-2 

10540472 Bhlhe40 1.76 1.49 x 10-6 10368970 Prdm1 1.01 1.78 x 10-2 

10504838 Nr4a3 3.18 1.89 x 10-6 10400006 Ahr 1.24 2.63 x 10-2 

10385776 Tcf7 -2.28 3.19 x 10-6 10560481 Fosb 1.64 4.38 x 10-2 

10463930 Mxi1 1.19 3.57 x 10-6 Cofactors 

10545921 Mxd1 1.04 3.62 x 10-6 10491300 Skil 2.07 2.71 x 10-12 

10496091 Lef1 -1.48 5.82 x 10-6 10520950 Pdlim1 −1.75 3.27 x 10-6 

10454782 Egr1 2.08 6.31 x 10-6 10405994 Med10 1.30 1.97 x 10-5 

10572800 Klf2 -1.32 2.10 x 10-5 10406551 Ssbp2 1.56 3.35 x 10-5 

10482448 Zeb2 -1.61 6.46 x 10-5 10411126 Jmy 1.76 6.47 x 10-4 

10361091 Atf3 2.19 9.49 x 10-5 10531707 Lin54 1.54 6.24 x 10-3 

 
FC – refers to fold change. FDR Adj. – refers to FDR adjusted P-values. P-values were 
adjusted using the Benjamini-Hochberg false discovery rate (FDR) procedure. 
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Figure 4.5: Gene Ontology (GO) terms enriched among genes differentially expressed 
between resident and circulating groups.  

Top representative GO (biological processes) terms based on REVIGO output, enriched 
among (A) all the DE genes, (B) up-regulated genes, and (C) down-regulated genes in the 
resident group. The enrichment of each GO term is represented by -log10 (P-value). The 
numbers next to each bar denote the total number of up- or down-regulated genes with 
annotations for a particular GO term. All GO terms listed were significant at FDR < 0.05.  
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4.4.6 Network analysis identifies a RESIDENT module differentially 
coexpressed in the resident group 

Next, to gain insight into residency-specific gene sets associated with TRM cells, I 

employed network analysis to identify gene networks with varying co-expression 

patterns across resident and circulating groups (see Methods). Differential co-

expression networks were constructed for 2,197 DE genes (FDR < 0.05) in resident 

vs. circulating groups using the DiffCoEx tool (253). The resulting network was 

organised into 44 modules, ranging in size from 22 to 124 genes, which were 

identified as significantly (P-value < 0.001) differentially coexpressed between 

resident and circulating groups. The top 15 most coexpressed modules in the resident 

group were selected, by ranking their absolute median co-expression, and their 

differential co-expression patterns were compared to those in the circulating group 

(Figure 4.6). To further identify a resident-related module, the median co-expression 

values for all differentially coexpressed modules in both groups were plotted against 

each other. The co-expression of one particular module, the “blue” module (hereafter 

referred to as the “RESIDENT” module), was higher in the resident group (median 

correlation = 0.57) compared to the circulating group (median correlation = 0.30) 

(Figures 4.6 – 4.7). 

 

4.4.7 Characterisation of the RESIDENT module 

The RESIDENT module contained 88 genes; of which 71 were up-regulated and 17 

were down-regulated in the resident group compared to the circulating group. The 

heatmap of pairwise correlations between these 88 genes in the resident group shows 

that majority of genes in the RESIDENT module were positively correlated (Figure 

4.8). Functional enrichment analysis showed that this module was significantly (FDR 

< 0.05) enrichment for GO biological processes terms mostly related to the regulation 

of immune processes such as leukocyte differentiation, interleukin-6-production, of 

interleukin-8 production, and cell-cell adhesion (Table 4.3). The top 10 most highly 

connected hub genes, identified by ranking their connectivity, were Tnf, Tjp1, Tigit, 

Gem, Dusp1, Csf1, Styk1, Areg, Fndc3a, Fos. 

 



Chapter 4: Differential network analysis identifies a transcriptional network involved in  
tissue resident memory T-cell development 

 

 154 

 
 
Figure 4.6: Gene modules differentially coexpressed between resident and circulating 
groups.  

Comparative heatmap showing the intra- and inter-module correlation calculated as the 
pairwise Pearson correlation between genes. Red and blue denote positive and negative 
correlations, respectively, as depicted by the correlation colour scale on the right-hand side. 
The upper triangle of the symmetric heatmap shows the pairwise correlation between genes in 
the resident group. The lower triangle shows the pairwise correlation between the same genes 
in the circulating group, which follow the same order as in the resident group. The Top 15 
coexpressed modules in the resident group were selected (upper triangle), and the changes in 
their co-expression patterns were compared with those in the circulating group (lower 
triangle). Modules are highlighted by black boxes on the heatmap with a corresponding 
colour bar at the bottom. The blue module, which is highly coexpressed in the resident group, 
is referred to as the RESIDENT module. Bars below the heatmap indicate the median 
expression of each module in the resident and circulating groups, where light yellow to dark 
red colour scale represents low to high median expression levels as shown by the median 
expression (log2-transformed) colour scale shown on the right-hand side. 
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Figure 4.7: Scatter plot comparing the median correlation (absolute values) for each 
module in the resident (y-axis) and circulating (x-axis) groups.  

The median correlation was compared for all the 44 modules detected by DiffCoEx as 
differentially coexpressed between resident and circulating groups. Each dot represents a 
module and is coloured according to their respective module colour assignment. The blue 
module is referred to as the RESIDENT module. The orange dashed line represents the x=y 
line.   
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Figure 4.8: Triangular heatmap showing the pairwise correlation coefficients between 
genes in the RESIDENT module within the resident group.  

Each square represents the Pearson correlation coefficient calculated between the genes 
present in the RESIDENT module within the resident group. The correlation matrix was 
hierarchically clustered using 1-absolute value of the correlations as the dissimilarity 
measure. 
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Table 4.3: Significant GO (biological processes) terms enriched among genes (N=88) 
present in the RESIDENT module. 

GO terms  P-value  Genes with GO term annotations 

Regulation of leukocyte 
differentiation (GO:1902105) 

1.33 x 10-7 Tnfsf9, Ifng, Fos, Tmem176b, Il2ra, 
Nfkbid, Car2, Tnf, Csf1, Ctla4 

Regulation of interleukin-6 
production (GO:0032675) 

9.81 x 10-6 Tnfsf9, Ifng, F2r, F2rl1, Tnf  

Regulation of cell-cell adhesion 
(GO:0022407) 

2.29 x 10-5 Tnfsf9, Klf4, Ifng, Cdh1, Nfkbid, Tnf, 
Tigit, Ctla4  

Positive regulation of nitric oxide 
metabolic process (GO:1904407) 

2.68 x 10-5 Klf4, Klf2, Ifng, Tnf 

Positive regulation of membrane 
protein ectodomain proteolysis 
(GO:0051044) 

3.20 x 10-5 Ifng, Snx9, Tnf 

Positive regulation of calcidiol 1-
monooxygenase activity 
(GO:0060559) 

5.29 x 10-5 Ifng, Tnf  

Homeostasis of number of cells 
(GO:0048872) 

6.26 x 10-5 Bcl2a1a, Klf2, Kif3a, Il2ra, F2r, Csf1 

Regulation of interleukin-8 
production (GO:0032677) 

7.45 x 10-5 Klf4, F2r, F2rl1, Tnf 

Immune system process 
(GO:0002376) 

8.24 x 10-5 Bcl2a1a, Hist1h2bc, Ifng, Klf2, 
Otud7a, Cd38, Tnfsf9, Itk, Sbds, Il2ra, 
Il2rb, F2rl1, Styk1, Tnf, Ctla4, Csf1  

 
GO – refers to Gene Ontology. The GO terms listed are significant at FDR < 0.05.  
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4.4.8 Partial correlation analysis infers TNF as a top potential 
regulator of the RESIDENT module 

To infer key potential regulators of the RESIDENT module, partial correlation 

analysis was performed on genes in the resident group. The pairwise partial 

correlation coefficient was calculated between the 2,197 DE genes while iteratively 

conditioning on the 88 genes present in the RESIDENT module. After each iteration, 

the co-expression pattern changes for the top 15 aforementioned modules before and 

after partial correlation analysis was observed. The calculated average of the co-

expression differences across all these modules revealed that conditioning on Tnf 

produced the greatest disruption in the co-expression patterns (Figure 4.9) Tnf, which 

was the most highly connected gene in the RESIDENT module, greatly affected the 

coexpresssion within the RESIDENT module, causing a decrease in median module 

correlation from 0.57 to 0.01 after partial correlation analysis. Additionally, the inter-

module co-expression between the RESIDENT and other modules was also lost 

(Figure 4.9). 

 

4.4.9 The underlying transcriptional program in TRM cells extends to 
other tissue-residing lymphocyte populations 

Next, I asked if the transcriptomic fingerprint defining TRM cells shared similarity 

with other murine tissue resident lymphocyte subpopulations present in the ImmGen 

dataset (93,94). To do so, comparative analysis of the TRM-associated genes, 

identified as DE (|log2FC| > 1.5) between resident and circulating groups in section 

4.4.3 of this chapter, was performed on a subset of ImmGen immune cells. Expression 

profiles of ImmGen cell types including splenic CD8+ effector T-cells, CD8+ memory 

T-cells (brain TRM, TCM, and TEM cells), Tregs (from the adipose, lymph node, and 

spleen), and NKT cells (from the liver, lung and spleen) were obtained and averaged 

across replicates. It is worth noting that the brain TRM samples present in the 

ImmGen data and those analysed in this chapter are the same. 

 
Comparison of expression profiles of 165 TRM-associated genes across the 26 

ImmGen samples revealed that the expression profile of adipose Tregs was more 

similar to brain TRM and CD103− T-cells than its circulating counterparts (Figure 

4.10). The Pearson correlation coefficients calculated for the TRM-associated genes 
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across these samples ranged from 0.65 (adipose Tregs vs. brain TRM cells) to 0.74 

(adipose Tregs vs. brain CD103− T-cells). The resulting dendrogram generated from 

the hierarchical clustering of the samples based on their similarity in expression 

profiles further subdivided the samples. I observed a clear separation of the adipose 

Tregs and brain samples into a separate cluster (Figure 4.10; red branches). The 

circulating effector and memory CD8+ T-cells, and NKT cells were also seen to 

cluster into two distinct groups (Figure 4.10; green and blue branches). Furthermore, 

I identified genes that had been previously established as part of the core TRM 

transcriptional signature (103) to be similarly expressed in both adipose Tregs and 

brain TRM cells. This included up-regulated genes such as Skil, Vps37b, Nr4a1, 

Nr4a2, Hspa1a, Sik1, Ctla4, Rgs2, Fgl2, and Inpp4b, and down-regulated genes such 

as Cmah, S1pr5, Sidt1, Slamf6, Elovl7, and Fgf13. These results indicate that resident 

adipose Tregs and brain TRM cells share a notable similarity in expression of genes 

related to tissue residency.  

 

To further demonstrate that the similarity seen between adipose Tregs and brain TRM 

cells is related to the residency phenotype as opposed to tissue similarities, I 

compared the global expression profiles of most highly expressed genes across the 26 

ImmGen cell types. Using an arbitrary cut-off of standard deviation < 0.35 (default is 

usually between 0.2 – 0.5), 7,474 representative set of genes were identified as highly 

expressed. Based on their overall expression these two resident cells types appear 

quite different from each other, which most likely reflect tissue-specific and function-

specific differences (Figure 4.11). Hence, this further confirms that the observed 

similarity of the residency genes is not merely a reflection of average similarity of 

expression profiles in the brain and adipocyte. 
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Figure 4.9: Heatmap comparing the co-expression changes between genes in the resident group (A) before and (B) after conditioning on Tnf gene.  

The heatmap is symmetrical along the diagonal, and the top 15 coexpressed modules in the resident group are shown. The black box indicates the loss of 
inter-module co-expression between the RESIDENT and other modules after partial correlation analysis.  
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Figure 4.10: Heatmap of 165 TRM-associated genes across 26 lymphocyte populations 
obtained from the ImmGen data.  
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Figure 4.10: Heatmap of 165 TRM-associated genes across 26 lymphocyte populations 
obtained from the ImmGen data.  

Each row represents a gene, and each column represents an immune cells type obtained from 
the ImmGen data. The expression values for each gene across the 26 samples were 
standardised (mean of 0 and standard deviation of 1), such that red denotes increased 
expression and blue denotes decreased expression. The dendrogram shows the clustering of 
the samples based on the expression of these 165 genes. The samples clustered into distinct 
groups based on their expression similarity, which is denoted by the colour of the dendrogram 
branches: circulating effector and memory CD8+ T-cells (green); NKT cells (blue); brain 
TRM cells, brain CD103− T-cells, and adipose Tregs (red). The genes labelled are part of the 
core transcriptional signature previously defined in TRM cells (103), which show consistent 
expression across adipose Tregs and brain TRM cells.  
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Figure 4.11: Heatmap of global expression profiles of the 26 lymphocyte populations 
obtained from the ImmGen data.  
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Figure 4.11: Heatmap of global expression profiles of the 26 lymphocyte populations 
obtained from the ImmGen data.  

The global expression profiles of 7,474 most highly expressed genes across the 26 cells types.  
Each row represents a gene, and each column represents an immune cells type obtained from 
the ImmGen data. The expression values for each gene across the 26 samples were 
standardised (mean of 0 and standard deviation of 1), such that red denotes increased 
expression and blue denotes decreased expression. The dendrogram shows the clustering of 
the samples based on the expression of 7,474 genes. The samples clustered into distinct 
groups based on their expression similarity.  
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4.5 Discussion 

The role of TRM cells in providing localised protective immunity at tissue niches is 

well documented. Understanding the mechanisms that regulate the homing and long-

term maintenance of these cells has implications for TRM-based vaccine design. 

Although traditional transcriptome-wide analysis of TRM cells from various tissues 

has been reported, this approach fails to provide insight into regulatory interactions 

among the DE genes underlying tissue residency.  

 
In this chapter, I took advantage of the growing number of publically available 

microarray data sets from TRM cells isolated from a range of tissues and circulating 

splenic TCM and TEM cells to perform a network-based analysis. First, I confirmed 

findings of previous studies that TRM cells from various tissues cluster together and 

their transcriptional profiles are more similar to each other than their circulating 

counterparts (88,103). TRM cells have been shown to exhibit a distinct transcriptional 

signature (88,103,582). In this chapter, more than 2,000 genes were identified as 

differentially expressed between the resident and circulating groups. This DE gene list 

included all the 37 genes previously established as the core TRM signature (103). 

 

Next, differential network analysis was used to identify a network of coexpressed 

genes with altered connectivities between the resident and circulating groups. This led 

to the identification of a residency-related sub-network that was highly coexpressed in 

the resident group. The RESIDENT module comprised of genes that are involved in 

diverse functions such as transcription (Fos, Fosb, Klf2, and Klf4), cytokine/cytokine 

receptor signalling (Ifng, Tnfsf9, Il2ra, Il2rb, and Tnf), adhesion (Tigit, Cd38, Cdh1, 

and Fndc3a), and cell development (Areg, Csf1, and Styk1). The GO terms associated 

with genes present in this module further revealed that interactions between diverse 

biological processes are required for residency of TRM cells. Moreover, two key 

genes, Cdh1 and Klf2, previously described to play a crucial role in homing TRM 

cells within tissues (95,101,103,105,556,558,563,564) were part of the RESIDENT 

module. Hence, it is likely that the RESIDENT sub-network plays a role in mediating 

tissue retention of TRM cells. 
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The RESIDENT module identified through network analysis contains 88 genes that 

were highly correlated with each other, which poses a challenge to identify putative 

regulatory genes. Studies have shown that key driver analysis can highlight novel 

condition-specific (disease) genes (232,606). To further infer key residency-related 

regulatory genes, partial correlation analysis was performed with genes in this 

module. Here, Tnf was inferred as a potential key driver of the RESIDENT module. 

As a result of Tnf conditioning, the intra-and inter-module disruptions in co-regulation 

patterns found in the resident group indicates that this gene is not only a potential key 

regulator of the RESIDENT module, but also facilitates interaction between the 

RESIDENT and other modules required for tissue residency. Tnf has been shown to 

be expressed by both effector CD8+ T-cells as well as antigen exposed memory 

subsets (70,607). Similarly, in agreement with these studies, Tnf was found to be up-

regulated in TRM cells. This finding also provides further support for the role of 

cytokines in tissue residency, where previous studies have shown that TRM cells 

produce cytokines upon antigen re-exposure (608,609). Additionally, the role of 

tissue-derived cytokines including TNF in TRM cell development has also been 

established (105,556). TNF induces the expression of CD69, a key surface molecule 

expressed on TRM cells that facilitate TRM cell homing by inhibiting tissue egress 

signals (105,556). Tnf represses Klf2 expression (105), a gene that is also a part of the 

RESIDENT module. The down-regulation of both Klf2 and its downstream target 

S1pr1 promotes tissue retention by disabling TRM cells to respond to chemotactic 

signals required for tissue exit (103,533,574). These studies further provide support 

for the role of TNF in regulating the tissue homing of TRM cells. The fact that TNF is 

produced both locally in tissues and by TRM cells suggests that an increased or 

sustained dose of the TNF signal might be required for the retention of TRM cells 

within tissues. 

 
There is considerable evidence indicating that a number of immune cell 

subpopulations tend to be tissue resident and disconnected from circulation (610,611). 

This raises the question whether these resident cells are transcriptionally related to 

each other. Finally, based on available expression data from various immune cells, I 

demonstrated that residency-related transcriptional similarities exist between brain 

TRM cells and adipose Tregs. Consistent with two recent studies, which also confirm 

the validity of my analysis, this finding suggests that shared commonality exists 
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between the transcriptional programs driving residency across various subsets of 

tissue-resident lymphocytes (545,582). As previously highlighted, genes linked to 

promoting tissue homing and suppressing tissue exit tend to be similarly expressed 

across resident populations (103,582). However, many of the signature TRM cell 

genes were not consistently expressed in adipose Tregs, e.g. Itgae, Klf2, and S1pr1, 

reflecting the tissue-specific influence on the transcriptional profile. In agreement 

with other studies, it was seen that adipose Tregs did not express the key TRM cell 

surface marker CD103 (Itgae) (591,612). Effector and memory-like Tregs, but not 

resident adipose Tregs, have been shown to express high levels of CD103 (613). This 

raises the fundamental question about the necessity of CD103 expression for 

residency. Hence, further supports the idea that tight local transcriptional regulation 

might be important for the specialised functions of resident immune cells at tissue 

sites.  

 

A limitation of this study is that the sample size was small. In such case a subset of 

outlying expression data points can lead to extremely high Pearson correlations, 

particularly when most of the data points are not correlated (614). This may impact 

the scale-free topology fit. As a result, there is a possibility of detecting unstable gene 

networks. However, studies have shown that WGCNA perform well with relatively 

small samples size (~ n<20) and can robustly infer biologically meaningful gene 

modules (395,615,616). As a precaution to avoid detecting noisy gene networks (false 

positives) for the reasons discussed above, gene networks in this chapter were inferred 

from differentially expressed genes. 

 

In summary, this chapter provides a residency-related co-expression sub-network, 

furthering our understanding into the molecular mechanisms underpinning TRM cell 

development and persistence in tissues. Additionally, results of this chapter 

consistently support previous findings that the transcriptional signatures of tissue 

resident populations are shared to some extent. This shared feature might be an 

essential requisite for tissue dwelling. Understanding the molecular mechanisms 

underlying tissue residency and the degree to which they are shared may provide 

insights for designing vaccines and immunotherapies that will provide rapid and site-

specific immunity. 
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Chapter 5  
 

Comparative transcriptional analysis reveals the role 

of TGF-β in defining the transcriptional signature in 

TRM cells 

5.1 Introduction 

This chapter focuses on the role of transforming growth factor-beta (TGF-β) signalling, 

a local extrinsic factor present at tissue sites, in influencing the transcriptional program 

of TRM cells.  

 
The local tissue-derived signals that control the development and persistence of TRM 

cells at tissue sites is not well understood. The role of cytokines in the differentiation 

and maintenance of circulating memory T-cell subsets is well documented (70,607). 

Few studies have established links between local tissue-derived cytokines and tissue 

residency (98,103,105,556,569,570), but the precise mechanisms by which these 

cytokines regulate the establishment of TRM cells are lacking. In particular, TGF-β has 

been shown to regulate few key genes involved in the homing and tissue egress of TRM 

cells. Recently, through comparative transcriptional analysis, it has become clear that 

TRM cells isolated from various tissues exhibit overlapping residency-related 

transcriptional signature that distinguishes them from their circuiting TCM and TEM 

counterparts (88,103). Even though it is known that TGF-β imprints homing potential 

on TRM cells to some extent (98,103,556,569,570), its role in shaping the 

transcriptional signature of TRM cells is still not clear. In vitro characterisation of the 

TGF-βinduced
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transcriptional signature in CD8+ T-cells will provide insight into the underlying 

mechanisms by which TGF-β signalling at tissue sites regulate residency of TRM cells. 

 

5.1.1 TGF-β plays a role in up-regulating CD103 and the acquisition of 
TRM phenotype 

As mentioned previously, several studies have demonstrated that TRM-specific cell 

surface markers CD103 and CD69 are crucial for TRM cell formation and retention in 

multiple tissues (95,103,556,558). However, factors regulating their expression remain 

largely unknown. The tissue-restricted expression of CD103 and CD69 suggests that 

TRM cells are under the influence of local tissue-derived signals. Studies have 

implicated the role of local cytokines such as IL-15, IL-33, TGF-, and TNF in the 

acquisition of residency in TRM cells (98,103,105,556,569,570). 

 
In particular, accumulating evidence has shown that TGF-β activity is critical for the 

development of TRM cells in the skin, gut and lungs via the induction of CD103 

(98,103,556,569,570). TGF-β is commonly appreciated as an anti-inflammatory 

cytokine for CD8+ T-cells and is essential to prevent autoimmunity and maintain 

immune homoeostasis (617). TGF-β signalling is initiated by the binding of active 

TGF-β to the extracellular domain of the TGF-β type II receptor (TGF-βRII), which 

then phosphorylates and activates TGF-β type I receptor (TGF-βRI) followed by the 

activation of both smad-dependent and -independent signalling pathways (618). It has 

been known for some time that addition of TGF-β to in vitro cultures greatly enhances 

the expression of CD103 on effector CD8+ T-cells obtained from mice and humans 

(556,619–622). Moreover, constitutive expression of TGF-β has been observed at 

epithelial sites, including the skin and small intestine (623–625). 

 
Also, in vivo studies have also demonstrated that TGF-β induces the up-regulation of 

CD103 on T-cells, which then promotes their retention in several peripheral tissues 

(556,569,626). Using a mouse model of graft-versus-host disease (GVHD), El-Asady et 

al. showed that effector CD8+ T-cells expressing a dominant-negative mutant TGF-βRII 

(dnTGF-βRII) were devoid of CD103 expression in the small intestinal epithelium 

(626). In a similar finding, Casey et al. reported that transgenic mice deficient in TGF-
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βRII were defective of CD103 expression on CD8+ T-cells infiltrating the gut following 

infection with either vesicular stomatitis virus encoding ovalbumin (VSV-Ova) or 

lymphocytic choriomeningitis virus (LCMV) in separate experiments (556). Their 

findings further provided support that TGF-β dependent induction of CD103 on these 

cells was a necessary requisite for their maintenance in the gut (556). Likewise, CD8+ 

T-cells from dnTGF-βRII mice that migrate to the lungs following influenza virus 

infection failed to express CD103 (569). Although the findings of these studies provide 

insight into the role of TGF-β in driving the residency phenotype in CD8+ T-cells, they 

have focused on T-cells from the effector phase of immune response. Besides, these 

earlier work have utilised a transgenic mouse model expressing the truncated form of 

the TGF-βRII (missing the kinase domain), which has been shown to be mildly 

functional (627). As a result, detectable levels of CD103 expression were noted in cells 

with this leaky mutation (556,569,626). 

 

More recent studies have assessed the role of TGF-β signalling in retaining memory 

phase CD8+ T-cells and have employed a model system that is completely deficient in 

TGF-βRII activity on T-cells (98,103,570). Zhang and Bevan showed that conditional 

deletion of TGF-βRII on T-cells led to dramatically reduced expression of retention 

markers CD103, CD69, and integrin β7 in the IEL compartment of the gut following 

LCMV infection (570). They further showed that absence of TGF-β responsiveness 

severely impaired the homing and long-term retention of TRM cells (570). Another 

study utilising the same transgenic model system also reported consistent findings, 

whereby TRM cells that were incapable of responding to TGF-β could not be 

maintained in the gut after oral infection with Listeria monocytogenes (98). Similarly, 

defective generation and maintenance of TRM cells devoid of TGF-βRII were observed 

in skin (103). 

 

5.1.2 Existing gap in understanding the role of TGF-β in establishing 
tissue residency in TRM cells 

The above studies have not only provided compelling evidence to support the role of 

TGF-β in the development and lodgement of TRM cells in the peripheral tissues, but 
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have also implicated its role in TRM cell maintenance. However, since these studies 

have utilised a knockout system where TRM development was already impaired, there 

has been no direct assessment of whether or to what extent TGF-β signalling is required 

for the maintenance of TRM cells in tissues. Also, previous studies investigating the 

role of TGF-β in TRM cell development have only assessed a few TRM-related genes. 

Moreover, it has recently been shown that TRM cells isolated from various tissues share 

a core transcriptional program, suggesting a common molecular machinery underlying 

their development, maintenance, and possibly function in peripheral tissues (103). 

Hence, characterising the global transcript of CD8+ T-cells induced in vitro by TGF-β 

and linking this transcriptional profile to the previously identified core TRM signature 

will give insight into the role of TGF-β signalling in establishing the residency 

phenotype in TRM cells. 
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5.2 Research objectives 

 

The central aim of this chapter was to utilise an in vitro inducible model system with 

exogenous TGF-β to understand the role of TGF-β signalling in establishing tissue 

residency in TRM cells. 

 

The specific objectives of this research chapter were: 

1. To use RNA-seq analysis to characterise the global transcriptional profiles of 

murine CD8+ T-cells stimulated in vitro with TGF-β.  

 

2. To compare the overall transcriptional profiles of the TGF-β stimulated T-cells 

with the known core TRM-specific transcriptional signature previously 

established in TRM cells isolated from murine lung, skin, and gut.  
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5.3 Methods 

5.3.1 In vitro cell culture and RNA extraction 

The schematic diagram of the experimental protocol is illustrated in Figure 5.1. 

C57BL/6 (wild-type [WT] B6) and gBT-I female mice, 8 to 15 weeks old, used in this 

study were bred and maintained under specific pathogen-free conditions in the 

Department of Microbiology and Immunology, University of Melbourne. The gBT-I 

mice express a transgenic T-cell receptor (TCR) that recognises the herpes 

simplex virus type 1 (HSV-1) glycoprotein B (gB) peptide (628). Spleen was harvested 

from gBT-I and C57BL/6 mice and processed into single cell suspensions by teasing the 

cells through a mesh. The B6 cells were incubated with gB peptide (100 µg/ml) at 37°C 

for 15 minutes, washed and stimulated with 2 mg/ml of Lipopolysaccharides (LPS) in 

10ml RPMI-1640 liquid medium. 5ml of peptide coated B6 splenocytes were added to 

gBT-I cells present in each of the two T75 flasks containing half of a spleen cell 

suspension in 35ml of RPMI-1640 liquid medium. The gBT-I cells in culture were then 

activated and expanded with 500 U/ml of recombinant human interleukin-2 (rhIL-2), 

which was added on day 2, 3, and 4. At day 5, cells were seeded at 12 million/5ml 

RPMI-10 in 4 conditions: untreated cells (Untreated); cells treated with TGF-β only 

(TGF-β); cells treated with IL-2 only (IL-2); cells treated with both IL-2 and TGF-β 

(IL-2/TGF-β). Subsequently, the TGF-β treatment groups (TGF-β; IL-2/TGF-β) were 

then stimulated with 3 ng/ml of TGF-β for 40 hours. The experiment was repeated three 

times, for three independent biological replicates. A total of 12 samples were prepared.  

 
Total RNA was extracted from each sample by adding 200µl chloroform per 1mL 

TRIzol directly to cells, vortexing briefly, and incubating at room temperature for 5 

minutes. The samples were centrifuged at 12,000g for 20 minutes at 4°C. The colourless 

upper aqueous layer was transferred to a new tube containing 500µl of Propan-2-ol, 

kept at room temperature for 10 minutes, and then centrifuged at 12,000g for 20 

minutes. The supernatant was removed, RNA pellet was washed with 1ml of 75% 

ethanol, and the samples were centrifuged at 7,500g for 5 minutes at 4°C.  
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Figure 5.1: Schematic overview of the experimental design.  

gBT-I splenocytes from gBT-I mice were harvested and co-cultured with gBT-I peptide coated splenocytes harvested from C57BL/6 mice. Exogenous 
IL-2 was added at day 2, 3 and 4 to stimulate the gBT-I CD8+ T cells, which recognise the gBT-I peptide and subsequently expand and differentiate into 
effector cells. On day 5, the cells were stimulated with TGF-β for 40 hours in the presence or absence of IL-2. Four different samples were prepared from 
the in vitro culture: untreated cells (Untreated); cells treated with TGF-β only (TGF-β); cells treated IL-2 only (IL-2); cells treated with both IL-2 and 
TGF-β (IL-2/TGF-b). Total RNA was extracted from each of the four samples using the combination of TRIzol and phenol/chloroform procedure. The 
experiment was repeated three times, for 3 independent biological replicates. A total of 12 RNA-seq libraries were prepared using the TruSeq Stranded 
mRNA sample prep protocol (Illumina) and subsequently sequenced on the Illumina HiSeq 2500 system. 
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Following the removal of the supernatant, the RNA pellet was air dried no longer than 5 

minutes, and then resuspended in 20µl of sodium citrate dissolved in RNase-free water. 

DNA digestion with DNase-I was carried out with the RNeasy MinElute Cleanup Kit 

(Qiagen, CA). 

 

5.3.2 DNA Library construction, paired-end (PE) RNA sequencing and 
data pre-processing 

Library preparation and sequencing were both performed by the Australian Genome 

Research Facility (AGRF; Melbourne, Australia). All the 12 RNA samples were 

processed with the TruSeq Stranded mRNA sample prep protocol (Illumina) to make 

cDNA libraries. The resulting normalised and pooled libraries were clustered on the 

Illumina cBot cluster amplification system using the HiSeq PE Cluster Kit v4 reagents 

followed by sequencing on the Illumina HiSeq 2500 system with the HiSeq SBS Kit v4 

reagents. Base calling and quality scoring were done with the standard Illumina 

pipeline, Real-Time Analysis (RTA) version 1.18.64 software. De-multiplexed raw 

FastQ files containing 100bp PE reads were generated using Illumina’s bcl2fastq 

version 1.8.4 pipeline.  

 
An average of 22.84 million PE 100bp reads were obtained per sample. The qualities of 

the raw sequence reads were assessed using FastQC version 0.11.3 (629). Based on the 

quality reports, adapter and quality trimming was not required. 

 

5.3.3 Read mapping, gene expression estimation and differential 
expression analysis 

The analysis pipeline is summarised in Figure 5.2. The reads from each sample were 

aligned to the mouse (mm10) reference genome, downloaded and indexed from UCSC 

Genome Browser, using Tophat2 version 2.1.1 (630). Briefly, Tophat2 uses Bowtie2 

version 2.2.9 (631) first to map reads that fall entirely within an exon and later tries to 

map reads that span splice junctions by segmenting them. All mappings were performed 

with default options, except the mate pair inner distance and standard deviation, which 

was set to 0 and 65, respectively. The alignment for each biological replicate was 
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performed independently and only reads that mapped uniquely as pairs were retained 

for downstream analysis. Assembly and quantification of transcripts were carried out 

with Cufflinks2 version 2.2.1 (196) using the reference annotation file (GTF format 

downloaded from the UCSC browser). Gene-level abundance was expressed as 

fragments per kilobase of exons per million mapped (FPKM) values. Differential 

analysis was performed using Cuffdiff2 version 2.2.1 (206), which employs a beta 

negative binomial distribution model and estimates the between-group variance from 

the FPKM values using Student’s t-tests. The model takes into account variability 

between replicates and read mapping ambiguity. Three comparisons were made: (1) 

TGF-b vs. Untreated, (2) IL-2/TGF-b vs. Untreated, and (3) IL-2/TGF-b vs. IL-2. Genes 

with Benjamini and Hochberg (213) adjusted P-values < 0.05 were considered as 

significantly differentially expressed. Genes DE with FPKM values higher or lower in 

the TGF-b-treated groups than those in the -untreated groups were defined as “up-” and 

“down-regulated” genes, respectively. List of DE (FDR < 0.05) genes obtained in each 

of these comparisons were: (1) TGF-b vs. Untreated (N=103), (2) IL-2/TGF-b vs. 

Untreated (N=184), and (3) IL-2/TGF-b vs. IL-2 (N=118). 

 

5.3.4 Assessment of the global quality of the RNA-seq data 

An important preliminary step in RNA-seq analysis is to assess how the samples in 

different treatment groups separate based on their global gene expression profile. Before 

such analysis, lowly expressed genes (FPKM ≤ 0.3) for any sample were removed. 

Exploratory analysis of the global FPKM expression values across all the samples was 

performed on 10,941 genes, log2 transformed. Principal component analysis was 

performed using the “prcomp” function with default settings in R. Samples were 

hierarchically clustered using the Wards clustering algorithm. Similarities were 

calculated using the maximum distance measure. The dendrogram was generated using 

the “dendextend” R package (601).  
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Figure 5.2: Analysis pipeline for RNA-seq data.  

Quality control of raw PE reads (FASTQ format) was performed using FastQC. Bowtie2 and Tophat2 were used to align the raw reads to the mm10 
version of the mouse reference genome (downloaded from the UCSC browser). Mapped reads from BAM files together with a reference gene annotation 
file (GTF format) were supplied to Cufflinks2 for transcript assembly and quantification. Differential analysis was performed using Cuffdiff2. Three 
pairwise comparisons were made: (1) TGF-b vs. Untreated; (2) IL-2/TGF-b vs. Untreated; (3) IL-2/TGF-b vs. IL-2.  
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5.3.5 Functional enrichment analysis of differentially expressed (DE) 
genes  

I compared the overlap between the lists of DE genes across the three comparisons. The 

subset of common genes was functionally characterised for enriched GO (biological 

processes) terms among up- and down-regulated genes in the TGF-b treated groups. As 

described in Chapter 2, GO biological processes enrichment for up- and down-

regulated genes was carried out using GOrilla (269), with 23,997 annotated genes in the 

Mus musculus genome (UCSC version mm10) provided as the background set. GO 

terms reaching significance (FDR < 0.05) were then summarised into representative 

terms based on semantic similarity using REVIGO (398). Summarisation analysis was 

performed using the RELSIM semantic similarity measure with a medium similarity 

cut-off (C = 0.7) on genes from Mus muluscus. Top ten summarised GO terms, ranked 

by enrichment P-values, were represented on a bar plot. 

 

5.3.6 Comparison with the core TRM transcriptional signature 

I next sought to gain insight into the role of TGF-β in influencing the transcriptional 

signature of TRM cells, by examining the degree of overlap between genes induced by 

TGF-β with those present in the previously defined TRM core signature. The TRM core 

signature comprises of 37 genes that were identified as commonly DE in murine TRM 

cells from skin, gut, lung with respect to their circulating spleen (TEM and TCM cells) 

counterparts (103). Since the TRM core genes were profiled on microarray-based 

platform (Affymetrix Mouse Gene 1.0ST arrays), only 35 core TRM signature genes, 

which were common to both platforms (RNA-seq vs. microarray), were considered. 

These 35 genes were compared to the DE gene list obtained in each of three TGF-b-

treated vs. TGF-b-untreated comparisons. Only genes expressed in the same direction 

were considered as overlapping. 

 
Additionally, bootstrapping was used to evaluate the statistical significance of the 

observed overlap. A total of 10,000 bootstraps were performed. Each time the 

intersection between k and m number of genes randomly selected (with replacement) 

was calculated, where k is number of genes in the TRM core (N=35) and m is the 
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number of genes DE in each of three comparisons. Enrichment P-value was calculated 

as the probability of observing an overlap as extreme as the true overlap. 

 

5.3.7 Gene set enrichment analysis (GSEA) with TRM gene sets 

GSEA was further carried out to test the enrichment of TRM associated gene sets 

against the ranked list of genes DE between TGF-b-treated vs. TGF-b-untreated groups 

using the GSEA version 2.2.3 software downloaded from the Broad Institute website 

(http://www.broadinstitute.com/gsea/index.jsp) (271). The predefined TRM-related 

gene sets analysed included genes previously identified as significantly up- or down-

regulated (|log2FC| > 1.5) in TRM cells isolated from skin, gut, lung, brain (88,103). 

The list of genes DE between TCM and naive T-cells was used as negative control gene 

set. A total of 12 different gene sets were tested, which includes 6 up-regulated and 6 

down-regulated gene sets (Table C.1 in Appendix C). I performed enrichment analysis 

on standardised, log-transformed FPKM values for 10,941 expressed genes (FPKM > 

0.3) across the 12 samples. First, GSEA ranked all the genes differentially expressed 

between the TGF-b-treated vs. TGF-b-untreated groups by expression fold change using 

the ‘Signal2Noise’ ranking metric, which scales the mean expression within each group 

by their respective standard deviation. This resulted in a list of genes sorted according to 

their association with TGF-β treatment, with the most up-regulated genes at the top end 

and the most down-regulated genes at the lower end. Next, the genes in the predefined 

gene set were tested for their overrepresentation at the top (or bottom) end of the ranked 

list. The degree of enrichment was defined by an Enrichment Score (ES). The 

enrichment P-values were computed by running 1,000 permutations of gene sets and an 

FDR < 0.05 was used for significance threshold.  
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5.4 Results  

5.4.1 Experimental design and analysis of the RNA-seq data 

As outlined in the experimental design workflow (Figure 5.1), RNA samples were 

harvested from in vitro activated murine gBT-I cells that were stimulated with or 

without TGF-β in the presence or absence of IL-2. The experiment was repeated with 

exogenous IL-2 to mitigate any potential negative effects on cell survival in vitro. Three 

biological samples were obtained for each TGF-b-stimulated (TGF-b; IL-2/TGF-b) and 

TGF-b-unstimulated (Untreated; IL-2) groups. A total of 12 RNA-seq libraries were 

prepared and sequenced on the Illumina HiSeq2500 platform at depths of 19.8 – 24.6 

million 100-bp PE reads per sample (Table 5.1). Raw reads were processed using the 

pipeline in Figure 5.2. Transcriptome assembly, gene level quantification and 

differential expression analysis was performed using the Tophat2/Cufflinks2/Cuffdiff2 

pipeline as detailed in Methods. 

 
Table 5.1: Summary of PE reads alignment to the mm10 reference genome 

Samples Treatment Biological 

replicate 

Total PE 

reads 

Mapped reads 

(%) 

Untreated No treatment 1 
2 
3 

24,596,360 
24,418,403 
24,437,275 

21,097,751 (85.8) 
20,821,933 (85.3) 
21,222,305 (86.8) 

TGF-b Only TGF-b added 1 
2 
3 

23,087,215 
20,076,757 
22,174,312 

19,859,206 (86.0) 
17,088,647 (85.1) 
18,900,874 (85.2) 

IL-2 Only IL-2 added 1 
2 
3 

19,761,593 
23,396,138 
22,543,083 

16,874,005 (85.4) 
20,324,917 (86.9) 
19,241,102 (85.4) 

IL2/TGF-
b 

Both IL-2 and TGF-b 
added 

1 
2 
3 

23,135,036 
24,157,669 
22,290,252 

19,897,388 (86.0) 
20,717,517 (85.8) 
19,125,150 (85.8)  
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Quality assessment of the raw reads with FastQC tool (629) reported high quality reads 

with average quality (Phred) score greater than 35 for all the libraries. After mapping 

the reads to the reference genome using Bowtie2/TopHat2, about 86% were aligned as 

pairs to the mm10 mouse genome across all libraries (Table 5.1). 

 

5.4.2 Global expression profiles are distinct between the TGF-b-treated 
and TGF-b-untreated groups 

The mapped reads generated by Tophat2 were assembled and quantified by Cufflinks2. 

Gene-level abundance estimates obtained from Cufflinks2, expressed as FPKM values, 

were used as expression values. Exploratory analysis was performed on 10,941 genes 

that achieved FPKM > 0.3 across all samples. The distribution of gene expression 

was observed to be similar across all the 12 samples (Figure 5.3A). PCA analysis 

was carried out to characterise the patterns of covariance in gene expression between 

the TGF-b-treated and TGF-b-untreated samples. The PCA results showed that the 

first 5 PCs explained a combined 87.2% of total variation in expression levels of 

10,941 genes (Figure 5.3B). The TGF-b-treated samples separated from the TGF-b-

untreated groups along the PC2 axis (Figure 5.3C). Hierarchical cluster analysis of 

the samples further supported these results (Figure 5.3D). 

 

5.4.3 Identification of genes DE between TGF-b-treated and TGF-b-
untreated groups 

Cuffdiff2 was used to identify genes DE between TGF-b-treated and TGF-b-untreated 

groups. Differential expression analysis was performed using Cuffdiff2 (196) on three 

pairwise comparison groups: (1) TGF-b vs. Untreated; (2) IL-2/TGF-b vs. Untreated; 

and (3) IL-2/TGF-b vs. IL-2. The numbers of significantly DE genes obtained in each 

comparison are summarised in Table 5.2. 
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Figure 5.3: Global gene expression analysis of 10,941 expressed genes. 

All analyses were performed on log2-transformed FPKM values. There were three biological 
replicates (Rep.1-3) for each treatment (A) Boxplots of log2-transformed FPKM values for 
each sample. (B) Principal component analysis (PCA) performed on the transcriptome across 
all the 12 samples. The scree plot shows the amount of variance (bar height) captured by each 
of the top 5 principal components (PCs; bars). The cumulative proportion of variance 
explained by the first 5 PCs (red line) is 87.2%. (C) The first two PCs are plotted against 
each other. The numbers in parenthesis beside the PC labels denote the percentage of 
variance explained by the respective PCs. The dots represent biological samples, which are 
coloured according to the treatment they received. Clusters of TGF-b-treated (TGF-b and 
IL-2/TGF-B) and TGF-b-untreated (Untreated and IL-2) groups, which separated along 
PC2, are circled. (D) Dendrogram from hierarchical cluster analysis of the 12 samples based 
on their expression profiles. Clustering was done using the Ward’s method with the 
“maximum” distances measure provided as dissimilarity matrix. Dendrogram branches are 
coloured by TGF-b treatment: TGF-b-treated groups (blue) and TGF-b-untreated groups 
(orange). Dots at the tip of the leaves represent biological samples coloured according to 
TGF-b treatment. Biological replicates (Rep.1-3) for each treatment have the same colour.  
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Table 5.2: Differentially expressed genes identified by Cuffdiff2  

Comparisons  FDR < 0.05 |log2FC| > 1 & 
FDR < 0.05 

|log2FC| > 2 & 
FDR < 0.05 

 Total (up-regulated / down-regulated genes) 

TGF-b vs. Untreated 849 

(373 / 476) 

240 

(131 / 109) 

57 

(41 / 16) 

IL2/TGF-b vs. Untreated 1261 

(839 / 422) 

448 

(358 / 90) 

93 

(86 / 7) 

IL2/TGF-b vs. IL-2 951 

(436 / 515) 

274 

(162 / 112) 

60 

(52 / 8) 

 
|log2FC| refers to absolute value of log2 fold change (log2FC). FDR refers to false discovery 
rate. 
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The list of DE genes was further narrowed down based on fold change: greater than 2 – 

(|log2FC| > 1) and 4 – fold (|log2F| > 2) (Table 5.2). Across all fold change cut-offs, in 

all the three comparisons, it was seen that TGF-b treatment resulted in mostly up-

regulated genes. 

 
Next, the lists of DE genes obtained from the three comparisons were overlapped to 

identify those genes that were consistently up- or down-regulated in the TGF-b-treated 

groups. It was observed that approximately 25% (N= 254) of up-regulated and 18% (N= 

162) of down-regulated genes overlapped between the comparisons (Figure 5.4).  

 

 

 
 
Figure 5.4: Venn diagrams of overlapping up-regulated and down-regulated genes in the 
TGF-b-treated groups.  

(A) Up-regulated and (B) down-regulated genes significant at FDR < 0.05. The numbers 
denoted as percentages in parentheses are the percentage of differentially expressed genes 
overlapping across all three comparisons. 
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Also, further assessment of the top 30 most DE genes (based on |log2FC| > 2) in this 

common subset showed that majority of the genes (90%) in the TGF-b-treated groups 

were up-regulated (Figure 5.5). All the 30 genes were similarly expressed in both the 

TGF-b-treated groups, suggesting that cells behaved similarly in both settings (without 

and without IL-2). Extended list of all the common DE genes at FDR < 0.05 can be 

found in Table C.2 in Appendix C. 

 

5.4.4 Functional analysis of genes DE in TGF-b-treated groups 

To further functionally characterise the genes differentially regulated in response to 

TGF-β stimulation, GO enrichment terms associated with biological processes were 

assigned to 416 common DE genes among the TGF-b-treated groups. GO enrichment 

was performed using GOrilla (269) on three sets of DE genes: up-regulated genes, 

down-regulated genes, and both sets combined. The significant GO terms (FDR < 0.05) 

were then further summarised into representative terms using REVIGO (398). The top 

10 over-represented GO terms among the DE genes in the TGF-b-treated groups, ranked 

by enriched P-values, are shown in (Figure 5.6). All the 254 up-regulated genes were 

associated with at least one GO term. The most enriched biological processes among the 

up-regulated genes were related to regulation including the regulation of signalling, 

signal transduction, cell communication and cell movement (Figure 5.6B). 160 out of 

162 down-regulated genes had GO term annotations. These genes are largely involved 

in regulation of cell adhesion and response to stimulus (Figure 5.6C). 
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Figure 5.5: Heatmap from the hierarchical clustering of top 30 most differentially 
expressed genes (FDR < 0.05, |log2FC| > 2) common in all three comparisons.  

The FPKM expression values for each gene across the 12 samples are presented after being log2 
transformed and scaled (mean of 0 and standard deviation of 1), such that red denotes increased 
expression and blue denotes decreased expression. The dendrogram shows the clustering of the 
samples based on the expression of the 30 genes and the branches are coloured blue for TGF-b-
treated groups and orange for TGF-b-untreated groups. Circles represent the samples, which are 
coloured according to the treatment they received, and the numbers inside denote each 
biological replicate.   
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Figure 5.6: GO term enriched among genes DE genes in the TGF-b-treated groups 
compared to their untreated counterparts.  

Top representative GO (biological processes) terms based on REVIGO output, enriched among 
(A) all the DE genes, (B) up-regulated genes, and (C) down-regulated genes in the TGF-b 
treated groups. The GO terms (y-axis) were ranked according to their enrichment P-values (x-
axis). The numbers on top of the bar plots in parenthesis denotes the number of up- and down-
regulated genes with GO term annotations. The numbers at the end of each bar represent the 
actual number of DE genes, up-regulated genes or down-regulated genes that were classified to 
a particular biological process. All GO terms listed were significant at FDR < 0.05. All of the 
254 common up-regulated genes in the TGF-b-treated groups were associated with GO terms. 
160 out of 162 common down-regulated genes in the TGF-b groups were annotated with GO 
terms.   
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5.4.5 Transcriptional profiles of TGF-b-treated T-cells are significantly 
enriched for TRM signature genes  

I next sought to determine if TGF-b influenced the TRM-related transcriptional profile 

by comparing the list of DE genes in each of the TGF-b-treated groups with genes 

previously established as the TRM core signature (103). The TRM core signature 

analysed here comprised of 35 genes. Most of the genes present in the TRM core 

signature were consistently expressed in a similar manner in the TGF-b-treated groups 

(Figure 5.7A– C). The overlap in all the three comparisons was confirmed to be 

statistically significant, P-values of < 0.001, using bootstrapping. The majority of these 

overlapping genes were up-regulated in the TGF-b-treated groups, consistent with the 

hypothesis that TGF-β induces genes that promote the maintenance of TRM cells in 

tissues. The TRM core genes that were consistently up-regulated in all the TGF-b-

treated groups included Cdh244, Chd1, Chn2, Hpgds, Inpp4b, Itga1, Itgae, Qpct, Rgs1, 

Rgs2 and Skil. While Fam65b was the only TRM core gene that was similarly down-

regulated across all the TGF-b-treated groups. 

 
GSEA was performed with pre-defined TRM-associated gene sets to further explore the 

role of TGF-β signalling in regulating residency-related transcriptional profile of TRM 

cells. Genes previously identified as DE (FDR < 0.05 and |log2FC| > 1.5) in murine 

TRM cells from skin, gut, lung, and brain in comparison to their circulating 

counterparts (103,533) were divided into up-regulated and down-regulated gene sets. 

GSEA confirmed that all the 4 up-regulated and 4 down-regulated gene sets were 

significantly (FDR < 0.05) enriched (Figures 5.8 – 5.9). Genes that were up-regulated 

in TRM cells had higher expression in the TGF-b-treated group (Figure 5.8), whereas 

down-regulated genes had higher expression in the TGF-b-untreated group (Figure 5.9) 

This suggests that TGF-β plays a role in inducing and repressing the expression of 

genes up-regulated and down-regulated in TRM cells, respectively. As expected, the 

TGF-b-treated group showed no enrichment for TEM-related gene sets, which served as 

a negative control. Since TEM cells are circulating and do not share a common 

precursor with TRM cells, TGF-β is not expected to influence the transcriptional profile 

of these cells. Hence, these results strongly support that the transcriptional signature in 

TRM cells is largely driven by TGF-β signalling.  
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Figure 5.7: TGF-b induced transcriptional profiles are enriched for the TRM core 
signature genes identified in murine TRM cells.  

The bar plot shows the log2 fold change in expression (x-axis) of the 35 TRM core signature 
genes in each of the pairwise comparison of the TGF-b-treated groups vs. TGF-b-untreated 
groups: (A), (B), and (C). The bars are coloured based on their expression in both TRM cells 
and TGF-b-treated groups. Red represents genes significantly up-regulated, blue represents 
genes significantly down-regulated, and grey represents genes that were significantly DE in 
TGF-b group. The asterisks denote genes that are significantly differently expressed in the 
TGF-b treated groups: *FDR < 0.05, ** FDR < 0.05 and |log2FC| > 1.5. The numbers in the 
pie chart denote the percentage overlap between the genes in the TRM core and genes DE 
(FDR < 0.05) in the TGF-b-treated groups. The contingency table below each plot shows the 
observed overlap between the genes in the TRM core and genes DE (FDR < 0.05) in the 
TGF-b-treated groups, and genes with no change in expression out of the 19,561 genes 
common across the RNA-seq and microarray technologies. The enrichment P-values were 
calculated using bootstrapping. 
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Figure 5.8: Enrichment plot for the 4 TRM-related up-regulated gene sets in the TGF-b-
treated group.  

The enrichment scores (ES; y-axis) of up-regulated gene sets from skin, gut, lung, or brain 
TRM cells (88,103) in the ranked list of genes DE between TGF-b-treated-group and TGF-b-
untreated group (x-axis). The genes in the rank list are ordered along the x-axis based on fold 
change, where the most up-regulated genes in the TGF-b-treated group are on the far left and 
the most down-regulated genes – far right. The dotted vertical grey line represents fold 
change of zero. The curved lines, coloured by tissue type, show the cumulative enrichment 
score. The dots denote the positions in the ordered ranked list where the genes in each gene 
set appear. The TEM gene set served as a negative control for no enrichment.   
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Figure 5.9: Enrichment plot for the 4 TRM-related down-regulated gene sets in the 
TGF-b-treated group.  

The enrichment scores (ES; y-axis) of down-regulated gene sets from skin, gut, lung, or brain 
TRM cells (88,103) in the ranked list of genes DE between TGF-b-treated-group and TGF-b-
untreated group (x-axis). The genes in the rank list are ordered along the x-axis based on fold 
change, where the most up-regulated genes in the TGF-b-treated group are on the far left and 
the most-down-regulated genes – far right. The dotted vertical grey line represents fold 
change of zero. The curved lines, coloured by tissue type, show the cumulative enrichment 
score. The dots denote the positions in the ordered ranked list where the genes in each gene 
set appear. The TEM gene set served as a negative control for no enrichment.  
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5.5 Discussion 

Compelling experimental evidence have demonstrated that TGF-β is one of the 

necessary niche signals required for the differentiation of TRM cells in the skin, gut 

and lungs (98,103,556,569,570). TRM cells with defective TGF-β receptors are 

unable to respond to TGF-β signals, and as a consequence do not up-regulate CD103 

expression and are incapable of maintaining residency at tissue sites 

(98,103,556,569,570). However, apart from the role of TGF-β in regulating 

expression of homing and adhesion receptors in CD8+ T cells, how exactly this 

cytokine impacts on the establishment and long-term maintenance of TRM cells 

within tissues remains largely unexplored. Recently, it was revealed that TRM cells 

exhibit a distinct transcriptional program that distinguishes them from their TEM and 

TCM circulating counterparts (98,103,556,569,570). Based on the fact that TGF-β is 

essential for tissue residency in TRM cells, it was hypothesised that the gene 

signature of TGF-β induced CD8+ T-cells established under in vitro conditions may 

comprise of genes that are part of the transcriptional program previously defined in 

TRM cells.  

 
To generate a TGF-β specific gene signature, in this study RNA-seq was used to 

profile the expression of murine CD8+ T-cells stimulated in vitro with exogenous 

TGF-β. The transcriptional profiles from the TGF-b-treated groups were compared 

with the TGF-b-untreated groups, and it was seen that the two groups differed based 

on their gene expression signature, revealing that TGF-β stimulation had a 

widespread effect on gene expression. Differential gene expression analysis further 

led to the identification of 254 up-regulated and 162 down-regulated genes 

common across all the three pairwise comparisons made between the TGF-b-

treated and TGF-b-untreated groups (TGF-b vs. Untreated; IL-2/TGF-b vs. 

Untreated; and IL-2/TGF-b vs. IL-2). Functional analysis of these DE genes 

suggests that changes in gene expression most likely affect a wide range of 

regulatory processes such as regulation of signalling cell communication, cell 

movement, cell adhesion, and response to a stimulus. It is likely that these processes 

might be mediated through TGF-β signalling.  
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Direct comparison of genes differentially expressed between TGF-b-treated and 

TGF-b-untreated groups with those previously identified to be part of the core 

TRM gene signature (103) revealed a significant overlap of nearly 50% of genes, 

which also exhibited consistent expression pattern. Several core TRM genes that 

play an essential role in tissue residency were common in TGF-β induced gene 

signature. Itgae, which encodes for CD103, was one of the most significantly up-

regulated genes in the TGF-b-treated group, which is consistent with previous 

findings that TGF-β induces CD103 expression on TRM cells (556,569,626). 

CD103 binds to its ligand E-cadherin expressed on the epithelial surfaces of the skin 

and gut; possibly mediates the retention of TRM cells by tethering them within these 

tissues (567,620). Its has been shown that CD103-deficient mice had lower T-cell 

numbers in skin, intestinal, and vaginal epithelium (103,567,632) in the memory 

phase, further suggesting that TGF-β induced expression of CD103 is important for 

the homing of TRM cells. Additionally, Chd1 and Itga1, which also encode for 

adhesion molecules, were up-regulated in the TGF-b-treated group. Cdh1 and Itga1 

genes encode for E-cadherin and alpha 1 subunit of integrin receptors, respectively, 

and have been previously reported to be up-regulated in TRM cells (88,103,582). In 

Langerhans cells (a subtype of dendritic cells), TGF-β dependent induction of E-

cadherin is crucial for their residency and maintenance in the skin (633), 

implicating a similar requisite in TRM cells. Increased expression of the chemokine 

Xcl1 was also noted in the TGF-b-treated group. Similarly, several studies have 

reported high expression levels of Xcl1 in TRM cells (88,103,582). This finding 

and those of others have led to the speculation that TRM cell-derived XCL1 

facilitates the recruitment of CD103+ dendritic cells (DCs), which express both the 

receptor (XCR1) for XCL1 and produce TGF-β. As a consequence, the CD103+ 

DC-derived TGF-β promotes the persistence of TRM cells in the skin and gut 

(634,635). Other genes previously found to be highly expressed in TRM cells were 

also consistently up-regulated in the TGF-b-treated group analysed in this chapter. 

This includes genes encoding for costimulatory receptors involved in 

immunomodulation (Ctla4, and Icos), enzymes (Inapp4b and Qpct), and signalling 

regulators that mediate tissue retention (Rgs1 and Rgs2) (88,103,582). Hence, the 

significant overlap seen between genes involved in TRM cell retention and those in 

TGF-induced signature suggests that TGF-β dependent tissue homing might be an 
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important process for the establishment of residency by TRM cells at tissue sites. 

Moreover, gene set enrichment analysis showed that genes associated with TRM cells 

from various tissues were significantly enriched in the TGF-b-treated group, which 

further demonstrated an overlap in the transcriptional profile of TRM cells and TGF-β 

induced gene signature.  

 
A possible limitation of this study is using in vitro stimulated CD8+ T-cells as a 

surrogate for the differentiation of TRM cells. The development and tissue specific 

activation of TRM cells will require precise temporal and spatial regulation of gene 

expression, which is achieved by epigenetic mechanisms such as histone 

modifications and DNA methylation. The epigenetic state of TRM cells is most likely 

to be influenced by signals derived from the local tissue microenvironment. Hence, 

one cannot exclude the possibility that epigenetic changes and/or tissue-specific local 

cues may have an impact on the TGF-β induced signature of TRM cells at tissue sites 

in vivo. In light of caveats of this experiment, the findings do not negate the important 

role TGF-β plays in imprinting tissue homing transcriptional profile on TRM cells. 

The in vitro induced cells appear very similar to TRM cells, since more than half of 

the genes were regulated in a way that is reminiscent of the regulation of genes in 

TRM versus circulating cells. However, further in vivo studies are required to 

establish if constant “education” by TGF-β is required for TRM cells to acquire long-

term maintenance capacity. An approach to address this question is to carry out time-

point conditional knockout of the TGF-β receptor or antibody blockade of TGF-β to 

assess to what extent TGF-β signalling is required for the establishment of tissue 

residency.  
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Chapter 6  
 

Conclusions 

The immune system has evolved to provide effective host defence against a diverse 

range of internal and external threats, and its aberrant regulation has been associated 

with a number of diseases (636). Understanding the mechanisms underlying immune 

function and its regulation may offer strategies to harness and manipulate the immune 

system to treat diseases and improve health. The highly complex and multi-level 

nature of the immune system means that systems-wide analysis is necessary to 

achieve mechanistic insights. High-throughput “-omic” profiling technologies have 

yielded large-scale data characterising the immune system at multiple organisational 

levels. Integrative methods applied to such large-scale data allows one to 

comprehensively evaluate the immune system and its relationship with other 

biological systems at a level of detail previously restricted to a single organisational 

layer. This thesis interrogated various aspects of immune processes in terms of 

genetics, transcriptional networks, cytokine signalling, and interactions with 

metabolism using multi-omic analysis. The findings demonstrate the power of 

bioinformatics approaches in providing fine resolution insights into immune function 

and its regulation, that would not have been possible with traditional methods. 

 
In the first part (Chapter 2), to gain insight into these complex interactions, I 

integrated blood transcriptomic, metabolomic, and genomic profiles from two Finnish 

population-based cohorts, including a subset of individuals profiled 7-years apart. 

Through gene co-expression network analysis, I identified networks enriched for 

diverse immune functions, which topologically replicated between cohorts. I then 

performed association analysis of these immune-related modules with circulating 

metabolites and CRP, showing that each of these modules were significantly 
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associated with at least one metabolite including lipoprotein subclasses, lipids, fatty 

acids, amino acids, and CRP. Further, genome-wide scans revealed mQTL with both 

cis and trans effects. Finally, I assessed the long-term stability of these interactions, 

finding that the metabolite associations for a mast cell and basophil-related module 

and the trans-QTL effects of rs1354034 were largely maintained over a seven-year 

period. Taken together, this study provides a detailed map of natural variation at the 

immuno-metabolic interface in human blood, which may be used to explain 

differential disease susceptibility between individuals. Several genetic drivers of 

immune-related gene networks and genes were identified in this chapter, which 

strongly supports the notion that individuals differ considerably in the magnitude of 

their immune responses. Consequently, this may affect the cross talk between immune 

and metabolic systems. This implies that perturbations in the immune-metabolic 

interplay might further modulate the magnitude of an immune response or contribute 

to an altered metabolic state, and hence influence susceptibility to cardiometabolic 

diseases. The catalogue of metabolite interactions identified here strongly support an 

intimate relationship between the immune response and systemic metabolism, which 

is consistent with the view that this interplay contributes to many complex diseases of 

metabolic, cardiovascular, autoimmune or infectious aetiology. Moreover, these 

interactions can be explored experimentally to gain insight into immuno-metabolic 

disease mechanisms, as well as stratify patients into subgroups who are enriched for 

specific mQTLs, gene co-expression network levels, or metabolites. Future studies 

can expand on the immunometabolic map by exploring interactions between the 

immune processes, the microbiota and metabolites (1). 

 
In the second part (Chapter 3), I performed multivariate GWAS on a network of 11 

correlated cytokines using data from over 9,000 individuals. The findings are 

consistent with and add upon previous knowledge of genetic variation regulating 

circulating cytokine levels. This study also demonstrated the power gains of a 

multivariate approach, which led to the identification of two novel loci. These two 

loci also harboured whole-blood eQTLs and have previously been shown to exhibit 

tissue-specific regulation of gene expression across various tissues. Recently, studies 

have begun to characterise genetic variants influencing cytokine production in human 

immune cells in response to ex-vivo stimulation with bacterial, fungi or viruses 

(498,503). These studies have identified distinct patterns of correlated cytokines 
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released in an infection-dependent manner (498,503). However, these studies have 

associated individual cytokines with SNPs while ignoring the correlation structure 

among the cytokines. The multivariate-versus-univariate comparison provided in this 

chapter and other publications (478–481) should motivate future researchers to 

consider multivariate analysis of cytokine data for association studies so that we can 

better understand the genetic basis of inter-individual differences in immune function 

and response.  

 
In the third part (Chapter 4), to identify residency-related sub-networks, network 

analysis was performed on genes that were differentially expressed between resident 

and circulating murine memory T-cells. This led to the identification of a RESIDENT 

module, most likely involved in tissue homing, which was highly coexpressed in the 

resident cells. Key driver analysis further revealed TNF as a potential regulator of the 

RESIDENT module. Furthermore, comparative transcriptome analysis revealed that 

the residency-related transcriptional signature of brain TRM cells shared similarities 

with that of resident adipose Tregs. As shown in this chapter, the application of 

network analysis to expression profiles from immune cells subtypes is useful to 

furthering our understanding of lymphocyte biology, as it may lead to the 

identification of sub-networks underpinning lymphocyte development and function. 

Leveraging trancriptomic data from large-scale consortia such as ImmGen and public 

repositories will increase the sample size and immune cell subtypes for performing 

network analysis. This chapter also shows that key driver analysis can identify 

potential regulators of coexpressed sub-networks as candidate gene targets that can be 

further investigated through experimental studies. 

 

Finally (Chapter 5), to gain insight into the role of tissue-derived TGF-β in driving 

the transcriptional program of TRM cells, I performed RNA-seq-based transcriptome 

analysis of T cells stimulated in vitro with TGF-β. Here, I showed that TRM cells are 

enriched for a TGF-β-driven transcriptional signature. The local instructions provided 

at tissue sites shape the TRM gene profile, which may ultimately affect their survival, 

function, and interaction with other immune cell subtypes within tissues 

(103,105,637). The findings here further support the hypothesis that the cellular 

environment plays an important role in shaping an immune response (637,638). 
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Hence, local environmental cues should be taken into consideration when designing 

vaccine or therapeutic strategies to establish TRM for local immunity. 

 

Integrative and comparative bioinformatics can be applied to characterise the immune 

system and its role in health and disease. Recently, a 10-year megaproject called the 

Human Cell Atlas (HCA) has been launched to map out 35 trillion human cells, which 

also include immune cells from the hematopoietic lineage. The HCA project will 

employ single-cell genomics and high-throughput measurements of other “omes” to 

generate large-scale omic datasets. This will allow us to create comprehensive 

interaction maps of immune cells, which can then be used to infer how immune cell 

interactions differ between and within individuals, and change over time, during 

human development and disease.  

 

Our understanding of immune cell differentiation and function has mainly come from 

studies in mice. Despite similarities in the expression pattern of orthologous genes 

between human and mice, notable transcription differences have been identified 

across these two species (639,640). This may pose a challenge when translating 

research results obtained from mice studies to human, mainly with regards to 

understanding disease mechanisms and designing therapeutics (641). The availability 

of genome-wide gene expression profiles across a multi-species compendium of 

immune cells from the ImmGen and HCA project means that it is now be possible to 

do comparative analyses of immune cell types using similar methods applied in 

Chapters 4 and 5. Creating a reference chart of species-, lineage- and immune cell-

specific transcriptional signatures may guide in translating mice findings to human 

settings. In addition, as demonstrated in Chapter 2, network analysis and replication 

methods can also be applied to ImmGen and HCA datasets to assess conservation of 

cross-tissue or cross-species co-expression patterns. Few studies have investigated the 

conservation of tissue-specific gene modules across and within species (251,642), but 

doing so may help prioritise tissues and pathways that are pertinent to humans when 

using mouse models to understand the human immune system. Moreover, Chapter 4 

revealed a tissue residency-associated gene network and showed that its 

transcriptional signature might be shared across resident immune cells of different 

lineages in mice. Although such analysis has so far been limited to mouse data, the 

analyses in Chapter 4 can be applied to human data from the HCA project. 
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Integrative bioinformatics may create opportunities in personalised medicine to better 

treat and predict disease risk. Through this thesis, I have demonstrated examples 

where integrative and comparative bioinformatics methods can be applied to 

multidimensional omics data to gain novel insight into immune function and its 

regulation. Such approaches can not only be applied to large-scale data obtained from 

population studies, but also to small datasets generated from experimental studies 

with mouse models and in vitro setups. Overall this thesis offers a general framework 

for future studies to integrate and make the most out of multi-level omics data.  
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Appendices 

The excel tables mentioned in text can be accessed through figshare using the link 

below: 

https://figshare.com/s/8554ee02c49e6cb54622 
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