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A B S T R A C T

Understanding travel behaviour is important for an effective urban planning and to
enable different context-aware mobility service provisions. To this end, it is essential
to model different mobility-based activities in available trajectory data. However, the
semantics of activity varies from context to context, which poses a challenge for devel-
oping a connected knowledge flow for different services.

Currently, such mobility-based information is typically collected through manual
paper-based surveys. These surveys preserve context, but come with their own inher-
ent quality issues, and are expensive in comparison to data analytics methods. To
address this issue this research leverages the emerging concept of smartphone-based
travel surveys that collect people’s movement behaviour in terms of raw trajectories.

This research proposes an ontological framework that can model activities in a hier-
archical manner adapting to different contexts and thereby addressing the challenges
of trajectory data analytics mentioned above. This research also explores how raw tra-
jectories collected by a smartphone can be interpreted to generate mobility information
(e.g., transport modes, trips). While interpreting the trajectories this thesis models un-
certainties that may exist during people’s travel behaviour and interpretation process.

In this research, a particular focus is given to knowledge representation, that is un-
derstanding urban movement behaviour from detecting transport modes in trajecto-
ries. One presented form of knowledge representation is a fuzzy logic based approach
to mode detection. The knowledge representation is essential to extract semantics re-
lated to a given activity. This research also introduces the concept of near-real time mode
detection and investigates the performance of a purely knowledge-driven model works
effectively in a near-real time scenario. Since a knowledge-driven model at different
temporal granularities while detecting a given transport mode. The knowledge-driven
model that works in offline, typically requires kinematic features computed over suf-
ficiently long segments. But in near-real time these segments must be shorter and
requires the model to be adaptive. To address this issue a machine learning based
model has been deployed, which can learn from the historical data, and work in var-
ied conditions. But machine learning models work as a black box and cannot explain
their reasoning scheme owing to a semantic gap in the activity knowledge base. On
the other hand, a fuzzy logic based model can explain its reasoning scheme but can-
not adapt to varying conditions. To bridge the trade-off between these approaches
this research proposes a hybrid knowledge-driven framework that is capable of self-
adaptation and explaining its reasoning scheme. The results show the hybrid model
performs better than a purely knowledge-driven model and works at par with the
machine learning models for transport mode detection. This research also justifies a
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hybrid approach can model the activity in a consistent and adaptive manner while
explaining the semantics related to different mobility-based activities.

In this research different uncertainties related to a motion trajectory interpretation
process have been addressed. A particular focus is given on modelling the temporal un-
certainties that exist between predicted, scheduled and reported trips. Such a temporal
uncertainty quantification measures the reliability (or uncertainty) in an inference pro-
cess in the interest of information retrieval at different contexts. Considering the lack
of semantics in GPS trajectories an investigation is also made whether incorporating
low sampled IMU information in addition to a GPS trajectory can improve the ac-
curacy. This research also identifies existing trajectory segmentation approaches (e.g.,
clustering-based or walking-based approaches) are subjective and thus lacks adaptivity.
In order to address these issues a novel state-based bottom-up trajectory interpretation
model is developed, which can generate mobility information at different temporal
granularities. The model also demonstrates its efficacy, flexibility, and adaptivity over
the existing top-down approaches This research also demonstrates that using a GPS
trajectory, it is possible to generate modal state information comparatively at a coarser
granularity but shorter than the time required to generate information from a histori-
cal GPS trajectory. The response time is subject to a particular application domain.

The research presented in this thesis has a potential to improve the background intel-
ligence in smartphone-based travel surveys and smartphone-based travel applications
facilitating mobility-based context-aware service provisions where the notion of activ-
ity is prevalent at different granularities. However, this research cannot distinguish
composite activities, which require future work. With the emergence of Web 2.0 and
ubiquitous location sensing technologies, the location information can come from var-
ious sources with the different level of inaccuracies and space-time granularities. The
models developed in this research currently work best on GPS trajectories sampled at
1 Hz to 2 Hz frequency, which may be enriched with IMU information. However, the
models need some adjustments and incorporations of additional features and rules
when the location information comes not only from GPS but also from GSM, Wi-Fi,
smart-card. The models developed in this research are flexible, transparent and offer
provisions for further enrichment of raw trajectories and extract finer activity infor-
mation. This research has a potential to understand mobility patterns at an aggregate
and a disaggregate level, and thereby serve different application domains e.g., person-
alized activity recommendations during a travel, emergency service provisions, real-
time traffic management and long term urban policy making.
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1
I N T R O D U C T I O N

Mobility is central to any activity that involves a bodily movement from one location to
another location over a constrained or unconstrained space-time domain at different
granularities. For example, to perform an activity cooking requires a bodily movement
from the current location in the house to the kitchen. While at a coarser granularity
to participate in an activity working in the office requires a movement from home to
office. Such movement may occur through a number of transport modes starting with
the most basic type walking to more sophisticated modes (taking a) train or (taking an)
aeroplane or even (taking an) autonomous car. The interest of this research particularly
lies in how such movement occurs in terms of a particular transport mode from one
location to another location. In this research, the words ‘movement’, ‘mobility’ and
‘travel’ – all refer to a change in space at different granularities. These words will be
used interchangeably with very subtle differences throughout this thesis. This research
will address granularity from two different perspectives.

• Granularity (extent) from the perspective of space-time.

• Granularity (level of details) from the perspective of information retrieval.

The information of a given transport mode can be treated as a contextual cue used by
a context-aware device to provide more personalized and contextualized services. For
example, it is possible to retrieve the nearest restaurants within a given search radius
based on the user’s transport mode with the least for walking and comparatively
longer distance for the motorized mode (Fig 1). Another example could be activating
an auto-answer on the phone while the user is driving in order to avoid the distraction.

Understanding transport mode information at an aggregate level can help in urban
planning and transport management by estimating the travel demands in terms of
mode specific patronage, people’s mode choice and travel behaviour. In the same line,
a transport planner often looks for various mobility-based information from people’s
movement behaviour. For example, a transport planner wants to know travel demand
in terms of people’s origins and destinations, when do they make their trips (trip start
and end time), how do they travel (mode of travel), what did they do on their way
(activity), why do they travel (trip purpose) and whom do they travel with (accompa-
niment). These information will help in providing more adaptive transport services to
meet travel demand at different space-time granularities.

By combining these two aspects – mobility and context-awareness, it is then possible
to develop seamless context-aware service provisions that can assist a user at different
contexts using the same computing platform throughout all modes and activities. The

1



2 introduction

Figure 1: Retrieved location information of restaurants within walkable distance (in contrast to
distances accepted for other travel modes) from the Engineering Workshop depend-
ing on the walking mode.

service can recommend the best possible itinerary to a given user in order to travel
from location A to location B based on the user’s preference or the user’s current
transport modal state. The service can also incorporate an intermediate wayfinding
assistance system while navigating in an unfamiliar environment based on the user’s
context (Tenbrink and Winter, 2009; Timpf, 2005), e.g., providing route guidance dur-
ing transfer between two aeroplanes in an airport.

In all the above-mentioned cases (enabling context-aware mobility service provisions
to support mobility-based activities, and managing public transport infrastructure) the
authorities, service providers, and the computing devices (smartphones) need to know
people’s activity states, movement behaviour, and their current context at different tem-
poral granularities. Today, with the advent of advanced ICT and ubiquitous computing
people tend to leave their digital trails or footprints during their mobility-based activi-
ties. More recently, these footprints are being traced, sampled, and recorded for under-
standing movement behaviour and travel demand. This has been greatly supported by
a number of positioning systems e.g., Global Positioning System (GPS), Global System
for Mobile Communications (GSM), Wi-Fi, Bluetooth and a number of inertial navi-
gation sensors including accelerometer, proximity sensor, gyroscope, magnetic sensor,
mobile camera – all onboard of smartphones or other navigation devices.

In order to understand human travel behaviour and travel demand, currently man-
ual travel surveys are conducted over a region for a certain time period through face-to-
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face, telephone, paper-based, or computer assisted interview (Wolf, 2000; Stopher et al.,
2003). With growing urban complexity and population, it is an increasingly difficult ef-
fort to manage travel surveys with these approaches. Besides, the efficacy of such travel
survey methods is highly dependent on respondent’s memory and their ability to de-
scribe their travel experience with finer details. Since this process involves time gap
between the actual travel takes place, and describing the travel experience at some later
time from memory, eventually this reconstruction process results in under-reporting
or missing trips with inaccurate travel start and end time, mode taken, intermediate
transfers, trip purpose, and other finer activity details (McGowen and McNally, 2007).
With the advent of GPS based tracking, travel surveys have taken a new form where
the movement traces are captured automatically with reduced respondent’s burden
(Wolf, 2000).

Nowadays smartphones come with varieties of indoor and outdoor positioning sen-
sors and are carried by their users almost everywhere and whenever they go. Thus,
smartphones can be used to track and capture people’s movement with low survey
investment and higher accuracy and flexibility. According to a market research, the
total number of smartphone users globally was 2.16 billion in 2016, which is expected
to reach 2.56 billion by the end of 2018 (Table 1) 1

Table 1: Worldwide smartphone users and penetration rate (2012-2017 projected)

2013 2014 2015 2016 2017 2018

Users (billions) 1.13 1.64 1.91 2.16 2.38 2.56

% change 32.4 25.0 16.8 12.6 10.4 7.6

% mobile user 34.3 38.4 42.9 46.4 49.5 51.7

That said, there is an enormous amount of movement data (collected by smart-
phones) being generated at various granularities in terms of sampling frequency, ex-
tent of the tracking area. The vast amount of data is not bound to the small sample
rate of current paper-based or telephone-based surveys. In this regard if a smartphone-
based travel survey is implemented at different granularities, it can generate trajecto-
ries of whole population segments with different travel behaviour at different granu-
larities. The smartphone-based travel survey has been realized in some of the recent
ongoing smartphone-based travel surveys including Future Mobility Sensing (FMS) in
Singapore (Cottrill et al., 2013) and alike surveys elsewhere (Safi et al., 2013). These
trajectories require background intelligence process to extract mobility information
related to people’s movement behaviour. However, the results inferred from the back-

1 To be found online at (last accessed: November, 2016)
https://www.emarketer.com/Article/2-Billion-Consumers-Worldwide-Smartphones-by-2016/

1011694.
Percentage figures are based on total world’s population.

https://www.emarketer.com/Article/2-Billion-Consumers-Worldwide-Smartphones-by-2016/1011694
https://www.emarketer.com/Article/2-Billion-Consumers-Worldwide-Smartphones-by-2016/1011694
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ground intelligence still requires user’s validation in the form of prompted recall sur-
veys, which is time consuming and resource intensive. Automation is required in the
background intelligence process to interpret the smartphone trajectories more effec-
tively with the least user intervention.

Although movement takes place in a continuous manner, due to system architecture
and hardware limitations, it is captured in a discrete way, which approximates the
path taken by the user (Long, 2016). Thus, a movement trace of a moving person or a
vehicle is generally recorded in terms of a sequence of discrete location information at
given time stamps. The sequence of time-ordered spatio-temporal points is termed as
trajectory in this research. A trajectory collected in its raw form cannot provide much
meaningful information related to a user’s travel behaviour except the approximated
location information and geometrical properties of his movement history. Consider,
Figure 2a shows Joe’s home-to-office travel. Figure 2b shows a schematic representa-
tion of how Joe performed different activities at different time periods on his way. Joe
spent some time at home from 5 am to 8 am and then he walked down to the near-
est train station at 8:05 am, where he was waiting for the next connecting train for 5

mins. Then he reached the city and got off from the train at 8:30 am. Following that,
Joe started walking out of the station and took a tram at 8:33 am and got off at 8:40

am. Then he walked to a coffee shop where he had his morning coffee while reading
the newspaper. At 9 am he left the coffee shop and reached his office at 9:05 am and
worked until 3 pm.

Figure 2: Raw trajectory captured by a smartphone (a). Joe’s reported travel history (b).
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When Joe’s travel history was captured by a smartphone the raw trajectory (Fig 2a)
cannot provide information what transport mode(s) Joe used during his home-to-office
travel. Thus there exists a semantic gap between the raw trajectory and the description
of the user’s travel behaviour.

In order to gain insight and explore various mobility-based activities, the raw tra-
jectories are enriched with relevant contextual information. This enrichment process
is known as semantic enrichment and the enriched trajectory is termed as semantic
trajectory. These semantic trajectories are then analysed to understand movement be-
haviour and mobility pattern(s). Some researchers tried to enrich the trajectories and
analyse them through manual map-matching (Van-Langelaar and Spek, 2010). But this
manual approach fails when there is a massive amount of data with varied granulari-
ties and complexities. In the context of conventional travel surveys, participants do not
always note down the particular transport modes and other mobility-based activity in-
formation. They may also miss finer details. That is why a background intelligence is
required to interpret raw trajectories for further analysis at different temporal granu-
larities.

From the perspective of a context-aware service provision it is essential to under-
stand a user’s activity states to provide relevant services in different situations. The
notion of activity, however, is context-dependent. For example, considering Joe’s home-
to-office travel (Fig 2) Joe has performed different activities at different contexts. In the
first context, while looking from the perspective of an urban planner the notion of
an activity is primarily bound to the time spent at a given location. Thus, in the first
context, Joe’s activities are resting at home and working at office. In the second context,
suppose Joe seeks recommendations from his mobile device (smartphone) to follow
the quickest path to reach his office from home. In this context, travelling from home
to office is an activity in itself. Now imagine, there is a construction work going on at
the train station. Due to the construction work some of the subways and escalators are
blocked. Once reached at the train station at 8.30 am (Fig 2b), Joe requires a wayfind-
ing support from his mobile device to find the exit. In this third context, finding the
way during transfer becomes an activity.

1.1 problem definition

Thus while extracting mobility based activity information this research has identified
the following problems that will be addressed within the scope of this research.

• Trajectories collected in their raw forms cannot explain the user’s travel be-
haviour at different granularities (Fig 2). The raw trajectories thus require an
adaptive interpretation process.

• The notion of activity varies across different contexts. This poses difficulties for a
context-aware service provision to perceive a user’s activity state in a consistent
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manner at different contexts. In order to maintain a consistent definition of ac-
tivity across different domains it requires an overarching ontological framework,
which is currently missing in the state-of-the-art.

• Current approaches in spatial computing are looking at interpreting smartphone
sensor information to analyse people’s activities mainly from machine learning
point of view. However, machine learning approaches act as a black box and re-
quire substantial training data. Machine learning based trajectory interpretation
approaches also fall short in explaining the semantics of different mobility-based
activities since they are limited in explaining their own knowledge base.

• Besides, detecting activities at different granularities from people’s movement
trajectories is challenging due to various uncertainties present during the move-
ment. In order to distinguish different activity states during a travel, a segmen-
tation is performed on a given trajectory where each segment bears a specific
activity state at a given context. Current trajectory segmentation approaches are
top-down and assume predefined thresholds e.g., minimum walking distance,
or maximum speed. Such assumptions are contextual and subjective. Thus, ex-
isting segmentation approaches are not adaptive enough. In order to address
these issues, an adaptive and automated framework is required which can de-
tect the mobility-based activity states at different temporal granularities; and
this framework should allow for real-time, near-real time, and offline semantic
interpretations.

1.2 research objective

Based on the problem definition this thesis aims at closing the two semantic gaps by
the following ways.

• Closing the first gap: There exists a semantic gap in a raw trajectory captured dur-
ing a travel and activities performed along that travel. This gap has been closed
by providing hybrid knowledge-driven methods that can interpret raw trajecto-
ries to detect a number of mobility-based activity information (transport modes,
trips, transfers) from GPS and inertial measurement units e.g., accelerometer and
gyroscope (see Section 3.2).

• Closing the second gap: While addressing the trajectory interpretation process,
it is identified that there is another knowledge gap in activity definition. This
research aims to bridge this second knowledge gap by modelling an activity
from an ontological perspective.
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1.3 research questions and hypotheses

Since a context-aware mobility-based application requires activity information at dif-
ferent contexts, there is a need to understand the semantics of different activity infor-
mation consistently from smartphone sensor information. However, existing interpre-
tation processes are either machine learning based or purely knowledge-based with
the trade-off between the expressiveness and adaptivity. A hybrid model can only
bridge the trade-off and can generate more relevant information at a given context.

overarching research question : The overarching research question for the
thesis is formulated as follows:

How the knowledge gap in activity definition can be bridged while interpreting a
trajectory at different granularities?

hypothesis 1 : Based on the above facts explained earlier in this chapter, the pri-
mary hypothesis of this research states that hybrid models allow a consistent and adaptive
interpretation of activities from smartphone trajectories.

In order to justify the primary hypothesis a number of sub-hypotheses have been
formulated with the corresponding research questions, which are structured and ad-
dressed into two parts.

• Part I:
The research starts out with a fundamental research agenda on the definition
and modelling of an activity from a motion trajectory in Chapter 4. Since the
term activity is understood differently by different application domains, there is
a basic research question as follows.

research question 1 : What is an activity and how can an activity be mod-
elled to maintain the underlying semantics at different contexts on a motion
trajectory?

hypothesis 1 .1 : In order to address the above research question Chapter 4

hypothesizes that the semantics of activity depends on the spatial and temporal gran-
ularity suggested by context. Shifts in granularity will enable processing motion trajec-
tories, and activity knowledge can be represented in various contexts facilitating flexible,
appropriate and relevant information representation or provision, and thereby develops a
connected knowledge flow.

• Part II:
Following the overarching framework developed in Chapter 4, the next three
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chapters (Chapter 5, Chapter 6, Chapter 7) develop three different models to
detect transport mode information at different temporal granularities (Fig 4).
These three chapters address the following research question.

research question 2 : How can a raw trajectory be analysed to extract
transport mode information automatically at different granularities?

In order to address the research question 2 Chapter 5 investigates how different
transport modes can be detected over historical trajectories in offline. Whereas
Chapter 6 explores transport mode information generated in near-real time, com-
paratively at a finer temporal granularity than that of an offline strategy. On the
other hand, Chapter 7 has developed a more adaptive and flexible framework
that can be applied in different scenarios and at different temporal granularities.
Assuming there exist several uncertainties in a trajectory the following research
questions have been posed.

research question 3 : What are the different uncertainties that exist in a
trajectory interpretation process especially in transport mode detection? How
can such uncertainties be modelled?

While addressing the uncertainties Chapter 5 has primarily investigated the kine-
matic uncertainties whereas Chapter 7 has addressed the issue of temporal un-
certainties in a trajectory interpretation process.

hypothesis 1 .2 : The model developed in Chapter 5 hypothesizes that A
multiple-input multiple-output fuzzy logic based knowledge-driven approach is able to
detect different transport modes effectively based on the expert knowledge from historical
trajectories. The knowledge-driven approach will also model the uncertainties present in
the movement behaviour in a transparent way.

As extracting semantics related to a given activity is essential to perceive a given
context, this thesis primarily focuses on knowledge-driven aspects in comparison
to the existing machine learning aspects used in transport mode detection. While
interpreting motion trajectories this thesis has posed the following research ques-
tion in order to investigate the performance and expressiveness of different mode
detection models.

research question 4 : What are the advantages and disadvantages of a
machine learning approach and a knowledge-driven approach while detecting
transport modes from the raw trajectories? How can the trade-off between a
machine learning model and knowledge-driven model be bridged so that it is
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possible to represent the reasoning scheme of a predictive model that works on
motion trajectories and at the same time the model is able to self-adaptation?

hypothesis 1 .3 : The model proposed in Chapter 6 states that in near-real
time scenario a neuro-fuzzy based hybrid knowledge-driven framework will perform bet-
ter than a purely knowledge-driven model. This will also bridge the trade-off between a
purely knowledge-driven model and machine learning model in terms of expressiveness
and learning ability.

In an offline trajectory interpretation process, a segmentation strategy is used
once the entire travel is complete. Such segmentation involves temporal uncer-
tainties at different granularities especially during a trip start or trip end, which
has been addressed in Chapter 7. Such temporal uncertainties are essential to
understand travel behaviour at a finer granularity and to measure the reliability
(or uncertainty) in an inference process to enable a given context-specific appli-
cation.

hypothesis 1 .4 : With this view, the research presented in Chapter 7 hypoth-
esizes that a state-based bottom-up approach is more adaptive than any top-down ap-
proach, and in addition, it will be flexible enough to detect activity states in a progressive
manner at different temporal granularity.

This translates into the fact that the temporal uncertainty of trip transition de-
pends on the length of chosen space-time kernel. The shorter the kernel the less
is the uncertainty, but at a cost of overall detection accuracy.

1.4 contributions

This research has made contributions both at a conceptual level and also at a method-
ological level. The contributions are divided into two parts. Part I presents a conceptual
framework that models activity at different contexts. Part II consists of a set of chapters
each having a number of contributions that interprets raw trajectories (Fig 3).

part i : towards modelling the activity : In this research, an ontological
framework has been proposed that can develop a connected knowledge flow for mod-
elling an activity at different contexts (Chapter 4), and thereby bridge the gap while
defining the activity by different application domains.

A particular focus has been given on the mobility-based activities from motion tra-
jectories, e.g., travel by a given transport mode, transfer, and making a trip – which are
some of the basic aspects of urban mobility.
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part ii : detecting the mobility-based activity : Second part of this re-
search explores the uncertainties exist in movement behaviour and develops a fuzzy
logic based knowledge-driven model (Fig 4) to detect the mobility-based activities
(in particular travelling on a given transport mode(s)) from motion trajectories in offline
(Chapter 5).

To bridge the trade-off between the expressiveness and adaptivity of a trajectory in-
terpretation process a hybrid knowledge-driven framework (Fig 4) has been developed
that can detect transport modes in near-real time to generate just-in-time information
(Chapter 6).

The length of response time required to fetch different (mobility) information varies
from one service domain to another. To address this issue a more sophisticated and
adaptive framework is proposed (Fig 4) that can handle different uncertainties and
data qualities that are inherent in people’s movement behaviour (Chapter 7). Such an
adaptive framework consists of a predictive model that can serve as the background in-
telligence for interpreting the motion trajectories in real time, near-real time and offline
mode to generate relevant information to support smartphone-based travel surveys.

The signal gap in GPS trajectories has been a critical problem while interpreting mo-
tion trajectories. Thus, a final contribution of this research is to investigate how signal
gaps present in trajectories can be bridged at different temporal granularities using
knowledge-driven and hybrid techniques by using GPS and other inertial sensors.

Figure 3: The contribution of the thesis: from a conceptual framework for activity modelling to
mobility-based activity discovery.
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Figure 4: Contribution of part II: Three different frameworks: MIMO MFIS - a knowledge
driven fuzzy mode detection model; MLANFIS - a hybrid knowledge-driven model;
State based bottom-up approach - an adaptive and robust framework that can work
in different granularity and in different contexts. The time line shows the length of
response time to fetch mobility information by different models, shortest for the state
based bottom-up model and the longest for the MIMO MFIS.

The models developed in this research work effectively on GPS trajectories. How-
ever, the models may need further information and (pre)processing phases when the
location information comes from other sources e.g., GSM, Wi-Fi, a smart-card or a
Bluetooth.

1.5 organization of the thesis

The thesis is organized as follows. Chapter 1 introduces the background of the re-
search. Chapter 2 presents a literature review that covers different aspects of mobility
surveys and an overview of activity modelling and trajectory interpretation methods.
Chapter 3 describes some basic concepts and data sets used in this research. Chapter 4

presents a conceptual framework that models activity at different contexts. Chapter 5
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develops a knowledge-driven model for detecting urban transport modes. Appendix A
contains the fuzzy rule base used to construct the knowledge-driven model in Chap-
ter 5. Chapter 6 proposes a hybrid knowledge-driven framework to detect transport
modes in near-real time. Chapter 7 presents an adaptive state-based bottom-up ap-
proach to interpret trajectories with different response time to serve different service
provisions. Chapter 8 discusses the critical aspects of the research followed by the
future research directions and concluding remarks in Chapter 9.



2
L I T E R AT U R E R E V I E W

This chapter presents background of the research and current state-of-the-art. The
literature review touches on different aspects of urban mobility starting with the data
collection strategies and practices through traditional mobility surveys to GPS-based
travel surveys and the recently emerging concept of smartphone-based travel surveys.
Since this research is motivated by context-aware mobility service provisions, a section
is presented with different facets of mobility-based services. The literature review also
gives an overview of how motion trajectories are modelled and interpreted to infer
different mobility-based activities along with a conceptual modelling of activity from
different perspectives.

2.1 mobility surveys

A mobility survey is the process of collecting movement data to understand people’s
movement behaviour and travel patterns over a given space-time region. In an urban
context, a mobility survey generally involves collecting people’s movement data with
additional information over a certain period of time. This can help transport planners
and policy makers to understand current travel behaviour and travel demand, future
trend and response to the change in household demographics, socio-economic facets,
environment and transport infrastructure in a short-term as well as in a long-term
basis. Mobility surveys are also known as travel surveys or travel demand surveys or
travel behaviour surveys in the literature with similar underlying concepts. Ortuzer
and colleagues gave an overview of traditional mobility surveys at different scales and
intervals (Ortuzar et al., 2010).

Urban mobility survey can be broadly classified into two categories: a one-off survey
that takes place once over a certain region within a large scale temporal window and
a regular survey that continues for a longer period (generally year after year) and is
repeated over a certain region. A regular survey is always better and promising than
a one-off survey since it is conducted for a long time (literally for an indefinite time).
A regular survey reflects a general movement pattern and travel demand at different
situations and various spatio-temporal granularities, whereas a one-off survey some-
times reflects biased travel behaviour affected by circumstantial influence at a given
time period. For example, in 1973-74 the National Travel Survey, a one-off large scale
mobility survey in France took place during the first oil crisis. In 1993-94 the survey
was again conducted during an extreme financial crunch. In both cases, due to adverse
socio-economic situations numbers of trips were reduced compared to non-surveyed

13
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times and thus the overall travel data was biased (Ampt and Ortuzar, 2004; Ampt
et al., 2009). On the other hand, a regular survey e.g., National Mobility Survey in the
Netherlands, which is repeated every year, can capture travel behaviour at different
conditions across the country. In this context a concept of large-scale ongoing urban
mobility surveys have come up. This type of survey takes place continuously in a
city under the administration of a local planning authority. This type of survey takes
place every day over a time frame set by the survey requirement. In the case of one-off
surveys there is a gap in consistency and loss of expertise and resources during inter-
survey periods, whereas regular surveys retain the resources, smooth flow of funding
and overall consistency. Geographical scale wise both the surveys can be further cate-
gorized as nationwide mobility survey and regional or metropolitan mobility survey.
A nationwide mobility survey takes place across the country whereas a regional or
metropolitan survey takes place at a regional level or metropolitan level. Ampt and
Richardson discussed advantages and disadvantages of regular large scale and one-
off surveys (Ampt and Ortuzar, 2004; Richardson and Battellino, 1997). The following
section gives an overview of past and current regular large scale mobility surveys in
different parts of the world at national and regional level.

2.1.1 Nationwide regular mobility survey

The Netherlands’ National Mobility Survey was started as the longest and perhaps the
oldest nationwide regular mobility survey in 1978. Over the course of time the survey
methodology was redesigned at different epochs at 1985, 1998, 2004 and 2009 in order
to have more participation and less attrition rates. This survey has involved about 1.8
million participants from more than 800,000 households up to 2008 (Ampt et al., 2009;
Ortuzar et al., 2010).

The former Federal Republic of Germany carried out regular mobility surveys in
1976, 1982 and 1989 named as Continuous Survey of Travel Behaviour (KONTIV) un-
der the administration of the Ministry of Transport. In 2001-2002 a new travel survey
named as Mobility in Germany (MiD) was conducted. In 2008, the survey was modi-
fied and again restarted. The survey is being conducted through telephone interview
and a paper based approach. There are around 25,000 households selected for the
survey. Main objective of this survey is to understand people’s travel behaviour in-
cluding origin and destination, trip purpose, mode taken, accompaniment and their
socio-demographic and household characteristics.1

After five one-off surveys, in 1998 another nationwide mobility survey was started
in England named as National Travel Survey which also expanded into Scotland, Wales
and in the northern part of Ireland by 1999. The survey was started with only 5040

households in 1998 which was subsequently increased up to 15000 by 2002. The sur-

1 To be found online at (last accessed: November, 2016)
http://daten.clearingstelle-verkehr.de/223/

http://daten.clearingstelle-verkehr.de/223/


2.1 mobility surveys 15

vey was performed with a 7 day self-completion travel diary filled by the respective
household member (Ampt et al., 2009). In 1992 Denmark started the Danish National
Travel Survey with around 16,000 computer assisted telephone interviews with the
help of Statistics Denmark. In 1998, the travel survey showed an unexpected drop in
travel behaviour. The most recent travel survey started in 2006 based on internet and
telephone interviews. However, the new trend has been shifted from activity based to
trip based approach (Ampt et al., 2009).

Since 2001 Italy is conducting their national mobility survey named as Audimob with
the help of the Istituto Superiore di Formazione e Ricerca er i Trasporti (ISFORT). This is
based on telephone-based interview where every year 15,000 phone calls are made to
randomly selected respondents to record their travel behaviour (Ampt et al., 2009).

New Zealand has started a nationwide New Zealand Travel Survey in 2002 with 2200

households per year until 2007. In 2008, the sample size has been increased to 4600,
a major contribution coming from the cities. The survey required the participants to
record their travel behaviour on specific two days.

In the USA first national travel survey – Nationwide Personal Travel Survey (NPTS)
was conducted in 1969, 1977, 1983, 1990 and 1995. Later in 2001 the survey got a new
form and was performed as National Household Travel Survey (NHTS). The most recent
national large scale travel survey was conducted in 2009 (FHWA, 2014).2

Apart from these surveys there are several other countries including Sweden and
South Africa who have conducted their nationwide large scale regular mobility sur-
veys in the past, and some of them are still continuing with different sample sizes and
gradual modifications.

2.1.2 Regional level mobility survey

This section briefly describes some of the well known regional level mobility surveys
in Australia and South America. The first long standing mobility survey started in Aus-
tralia in 1993 under the flagship of the Victorian Activities and Travel Survey (VATS)
(Richardson et al., 1995). The survey involved a paper-based self-completion travel
diary fill up. VATS was a significant regional travel survey initiative in Victoria. Fol-
lowing this survey, various short-range similar regional surveys were undertaken in
various parts of Australia and New Zealand by the Urban Transport Institute (TUTI) in
Perth (2002-2005), Brisbane (2003, 2006), Melbourne (2004, 2005), Sunshine Coast (2004,
2007), Gold Coast (2004, 2008), Auckland (2006) (Richardson et al., 1995).

In 2006-2007, VATS was transformed as Victorian Integrated Survey of Travel and Ac-
tivity (VISTA), which follows a paper-based self-completion travel survey approach.

2 To be found online at (last accessed: November, 2016)
http://www.fhwa.dot.gov/policyinformation/nhts.cfm

http://www.fhwa.dot.gov/policyinformation/nhts.cfm
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VISTA survey was conducted from 2007 to 2008 and again from 2009 to 2010 in Greater
Melbourne, Geelong and some selected parts of Victoria. 3

In 1997 Sydney started its first ongoing regional travel survey as Sydney Household
Travel Survey (HTS) with 5,000 households per year sample size. However, in practice
the survey reached around 3,500 households due to sample losses. HTS is still running
in Sydney Greater Metropolitan Area (GMA). This survey has been benchmarked as
the best regional survey in Australia.4 Unlike VATS and VISTA, Sydney HTS is a face-
to-face travel survey where the field staff interviews the household respondents about
their travel over 24 hours periods. Sydney HTS employs a cross-sectional strategy to
select its samples every year. However, in order to provide more consistent and high
quality data 3 years of survey data are pooled over regions in Sydney GMA. The
questionnaire mainly focuses on household characteristics, number of persons in the
household, vehicle ownership and travel history.

In 2001 the The Santiago de Chile Mobility Survey started a mobility survey in Chile
with 15,537 households. After 2002 the survey was stopped by the government due to
unsatisfactory results. In 2004 the survey was again started and ran until 2007. This
survey was based on self-completion paper based travel diaries as well as face-to-face
interviews similar to the Sydney HTS, with respective advantages and disadvantages
(Ampt et al., 2009). A paper based self-completion approach is more flexible and could
be completed by the participants at any time at their discretion, whereas a face-to-face
interview is temporally constrained. At the same time a self-completion travel diary is
more suitable for participants who do not have time to attend a face-to-face interview.
On the other hand, self-completion travel diaries are not effective for those who cannot
follow the instructions or cannot complete the questionnaire due to language problems.
In such situations face-to-face interviews are found to be a better option (Ampt et al.,
2009).

2.1.3 Technological revolution in travel survey

With technological advancement, mobility surveys have also passed through several
improvements over last few years. Earlier mobility survey or travel surveys were based
on face-to-face and paper-based questionnaires. This was followed by telephone as-
sisted and computer assisted surveys. But there was a significant burden on the sur-
veyor’s side in order to design and execute the survey. Since these surveys also re-
quired respondents’ mental effort to recall their past travel activities, most of the time
this resulted in under reporting or missing trips. This problem was highly mitigated
by GPS based surveys where the trip activities were captured automatically with fewer
burdens on respondents and surveyors. But GPS based surveys turned out to be sub-

3 To be found online at (last accessed: November, 2016)
http://www.transport.vic.gov.au/research/statistics/victorian-integrate-survey-of-travel-and-activity

4 http://www.bts.nsw.gov.au/Statistics/Household-Travel-Survey

http://www.transport.vic.gov.au/research/statistics/victorian-integrate-survey-of-travel-and-activity
http://www.bts.nsw.gov.au/Statistics/Household-Travel-Survey
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ject to several limitations such as uncertainty in origin destination of the trip, data
loss, battery depletion and thus sometimes respondents could not perform their real
travel behaviour. With growing use of smartphones, more recently researchers started
looking into smartphone based mobility survey which can overcome the previous is-
sues with face-to-face, paper-based, computer-based or GPS based mobility survey as
the smartphone can be used to record a person’s travel behaviour continuously at a
finer granularity using the sensors onboard. Based on the technological revolution, this
report has categorised the mobility survey into three classes as follow.

2.1.3.1 Face-to-face, paper, telephone based travel diary and Computer assisted survey

The earlier mobility surveys are done manually through either face-to-face interviews
or paper based questionnaires – starting from selecting the sample, distributing the
survey brochure, executing the survey process and collecting the response. In both
the cases, field staffs were subject to manual labour. Both of these surveys use cross-
sectional or longitudinal sampling strategies. VATS was one of the significant self-
completion paper-based travel diaries. A standard workflow of VATS is discussed be-
low (Ampt et al., 2009).

• Sample households are selected from Census Collection Districts (CCD) GIS
database.

• Existence and validity of household addresses are checked followed by dispatch-
ing pre-contact letters with survey brochure to each household. This generally
took place on Tuesday of the respective survey week.

• Based on the validation sample addresses are corrected and GIS database is up-
dated. The correction procedure is performed on Wednesday of the survey week.

• Once all the sample household addresses are fixed, paper-based questionnaires
are delivered to the respective household on Saturday or Sunday. The duration
of travel days generally ranged from next Monday to Sunday.

• A motivational phone call is made to remind the participants about their travel
day and clarify any doubts they may have.

• Over the next 7 days, the participants record their trip records on the travel diary
by filling out the questionnaire. On seventh day, field staffs use to collect the
questionnaires in person.

• Once the travel data are collected the data are cleaned and processed. VATS used
special software named Speedit for this purpose. This process involves geocod-
ing of addresses where the participants travel. There are six geocoding options
such as geocoding of home address, full street, partial street address, landmark,
cross-street and centroid of the town or suburb mentioned by the participants.
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• Once the data are geocoded there are further checked against range error and
logical error.

• This process is followed by correcting any error in the processed data and inte-
grates them together in a separate file made for each household.

• If still problem persists, a phone call is made to the respective participants for
further information in order to resolve the issues.

• After 1 week a reminder call and letter are used to make to those households
who have not submitted their questionnaire.

The success of face-to-face and self-completion travel diaries is highly dependent on
the ability of the field staff to motivate the respondents. In order to keep the field staff
focused and motivated, regular team meetings and training are held. However, it has
been found that wage is one of the motivational factors for field staffs.

Apart from a paper-based strategy, another popular approach is using telephone or
computer or internet to conduct mobility survey. A computer-based approach is par-
ticularly suitable at intercept survey where travellers at a certain transit, toll, corridor
or a given region are interviewed ad-hoc. Computer-based intercept surveys have also
been conducted in certain locations e.g., rest area and shopping mall where people
generally have more free time to participate. A computer-based travel survey consists
of GUI, icons and visual cues. In contrast to paper-based and face-to-face interview,
telephone assisted travel surveys have also been conducted where a phone call is made
to the predefined participants to record their trip-activity pattern. Although these sur-
vey types are highly manual labour intensive both from surveyor’s side as well as
respondent’s side, which is quite burdensome and tedious.

2.1.3.2 GPS assisted survey

Since 1994 GPS gained a significant attention in travel survey or mobility survey in
order to collect high quality travel data with more detailed information. GPS based
travel survey was found to be quite flexible and effective in terms of quality and quan-
tity of travel data and reducing respondent’s burden. Table 2 presents a comparative
study between different survey strategies.

Initially, GPS based travel surveys were performed as proof-of-concept to prove the
efficacy and flexibility offered by GPS over traditional paper-based travel surveys. The
first of this kind of study took place in Lexington, Kentucky MPO as a part of its large
household travel survey (Auld et al., 2009; Battelle, 1997; Murakami and Wagner, 1999).
This study was performed on 100 households sample selected from the total pool and
asked to record their movement using in-vehicle GPS receiver and on-board computer
for additional trip information. Some of the earlier works were intended to assess the
applicability and acceptability of GPS based approach in traditional paper based travel
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Table 2: Comparison between different survey strategies (Zhang, 2012)

Survey type Advantage Disadvantage

Roadside interview
High response rate Low sampling rate

Accurate information

provided

Expensive and time

consuming

Mail-back/Paper

based survey

Less expensive
Sampling rate can be

large

Low response rate
Inaccurate

information

exists

Online survey
Less expensive Comprehension issue

Low response rate
Inaccurate

information

exists

Telephone survey
High response rate

Moderate sampling

rate

Inaccurate information

exists

Expensive and time

consuming

survey (Draijer et al., 2000; Guensler and Wolf, 1999; Murakami and Wagner, 1999; Zito
et al., 1995).

Early GPS assisted travel surveys were based on in-vehicle tracking due to heavy
weight and battery issues (Stopher et al., 2003; Wolf et al., 2004). These studies showed
a promising result with more accurate travel data. However, in-vehicle GPS based
travel surveys have lots of shortcomings. First of all, the exact origin and destination
of the person was not clearly understood since the tracking took place only when
the vehicle was moving. Besides, in-vehicle GPS studies used to provide biased sam-
ple data mostly on private vehicles movement behaviour and thus it excludes other
modalities such as walking, biking and public transits. These modalities involve with
more mode sharing and route sharing by the daily commuters which play an impor-
tant role in travel demand modelling. Although GPS was proved to be a critical travel
data collector but it involved a lot of efforts made in post-processing stage in order
to extract semantic information relevant to travel behaviour from the raw GPS traces
or movement trajectories. From 2005 onwards, there was a significant improvement in
GPS receivers in terms of weight, accuracy, data storage, affordability and portability,
and this advancement made a drastic shift from in-vehicle GPS based travel survey to
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handheld GPS based travel survey. Handheld GPS based travel survey was able to gen-
erate activity-trip data with finer details including trio origin and destination, route
taken, travel on public transit etc which were difficult to infer or capture using earlier
in-vehicle GPS based studies.

The efficacy of handheld GPS survey has been proved in various research works
(Auld et al., 2009; Bohte and Maat, 2009; Chen et al., 2010; Chung and Shalaby, 2005;
Elango and Guensler, 2010; Gong et al., 2012; Roorda et al., 2011; Schuessler and Ax-
hausen, 2009; Shen and Stopher, 2011; Tsui and Shalaby, 2006). A handheld GPS travel
survey is more flexible and can record activity-trip behaviour continuously with accu-
racy up to 10-15 m. The participant has to carry the GPS logger along his or her travel
and the device can record automatically. When the participant finishes his or her travel,
he or she can directly upload he data to a central server or download the data from
the device and then can upload the data to the server. The duration of survey can
span from one day to several weeks depending on the survey requirement. However,
handheld GPS are subject to theft or lost and thus it may lead to data loss. The accu-
racy of the recorded data also depends on where the GPS logger is kept and if it can
view at least four satellites. Thus, the positional data use to vary depending on the
position of the logger. If it is kept in the pocket then the result would be different than
when it is kept in hand. Handheld GPS loggers are also subject to quick battery deple-
tion. The participants have to always remember to carry the logger with them, which
creates extra mental burden on the survey participants. Due to this stringent survey
practice participants can not follow their real travel behaviour (Safi et al., 2013), and
the collected data lacks the actual travel behaviour. This problem is further mitigated
by using smartphones for activity-trip data collection.

2.1.3.3 Mobile phone and smartphone assisted survey

In 1999 a mobile phone based mobility survey was carried out on 100 participants in
Japan (Asakura and Hato, 2004). The study proved the usefulness of mobile phone
based travel survey. The trip legs were identified as move and stay by an episodic
trajectory segmentation algorithm.

Following this study in 2004 Ohmori and colleagues developed a mobile phone
based travel survey application where respondents were supposed to enter trip infor-
mation manually (Ohmori et al., 2005). The application contained a questionnaire that
required input from respondents about their trip start/end time, activity location and
type, transport mode(s) along the trip, accompaniment etc. Once the memory was full
respondents can send the information to the surveyor through email. This research
was conducted in two stages on total 50 respondents. The authors also compared the
delay time and frequency of recording an activity on mobile phone as well on paper
based questionnaire and in both the cases, a mobile phone based travel survey out-
performed the traditional paper based survey. It was found that mobile phone based
travel survey takes less time to pre-process and analyse the data. However, since the
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respondents were to input their trip information manually into their travel diaries, it
was a burden on them. The application also faced negative financial issues with expen-
sive data transfer rate which was 900 JPY (roughly 10.9 AUD at that time). Besides the
application was not able to run in background and thus the respondents were not able
to make calls or send messages while running the application (Ohmori et al., 2005).
Besides, in order to save the battery power the application was set to sample at 10

minute intervals and due to such low sampling frequency the information was not
reliable and accurate enough.

In the same year 2004, Itsubo and Hato also conducted a mobile phone based travel
survey on 31 respondents over 5 days with 30 seconds sampling interval and com-
pared the result with paper-based survey on the same respondents (Itsubo and Hato,
2006). It was found mobile phone based survey produce better accuracy and response
rate. A web based validation survey was also performed followed by the mobile phone
travel survey in order to enhance the accuracy check. However, like the earlier applica-
tions (Asakura and Hato, 2004; Ohmori et al., 2005), battery depletion, inflexibility in
using other mobile functionalities and expensive data transfer rate were some of the
key issues in their research. These limitations caused respondents to alter their real
behaviour which made the travel data biased.

With recent emergence of smartphones, researchers started coming up with more
user friendly survey applications. Gonzalez and colleagues developed a smartphone-
based travel survey application named as TRACT-IT on Java ME platform in 2008. The
main objective of their research was to detect various transportation modes using neu-
ral network approach. The research involved 14 respondents. The application recorded
positional information at 4 seconds interval and transmitted to a data server immedi-
ately (Gonzalez et al., 2010). However, TRACT-IT was also subject to battery depletion
problem and expensive data transfer rate.

Charlton and colleagues developed a smartphone-based travel survey named as Cy-
cleTracks mainly focused on cyclists. This was implemented in 2009 in San Francisco to
understand cyclist’s movement behaviour. This application required the respondents
to click finish or save button after finishing their trip. Once clicked, the logged data
was sent to web server. The application also included a bike bell and vibration alert
which started alerting the respondents after 15 minutes of data logging and after every
5 minutes thereof. This was respondents could track the battery resource. Although
the application was quite useful but it suffered from various issues such as cold start,
lack of user-friendliness, data transfer and GPS positioning issues mostly in urban
canyon (Charlton et al., 2010).

In order to save battery power Jariyasunant and colleagues came up with another
smartphone-based movement tracking application named as Quantifiable Traveller.
This application was based on Wi-Fi and GPS with 2 minutes sampling interval. Due
to low sampling frequency and Wi-Fi the data quality was not so promising and led
inaccuracies in detecting transport modes and routes taken by the respondents. How-
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ever, the application was developed to give various statistics to the users on their travel
behaviour. The information included carbon foot print, burned calories (Jariyasunant
et al., 2011).

Recently Singapore-MIT Alliance for Research and Technology (SMART) has devel-
oped a smartphone-based travel survey as a part of Singapore Household Travel Survey
named as Future Mobility Survey (FMS). FMS consists of four phases (Fig 5) such as-
registration, pre-survey, activity diary and feedback or exit survey (Cottrill et al., 2013;
Pereira et al., 2013).

Figure 5: Future mobility survey (FMS) app installed on smartphone; reproduced from (Cottrill
et al., 2013).

In registration phase the household responsible (HR) registers on the FMS portal
on getting an invitation from FMS team and provides basic household information
including age range, genders at home, family education status, relationship between
members and contact email ids of members. In pre-survey phase more information is
provided by the HR reflecting socio-economic, demographic, vehicle ownership infor-
mation. Next phase is activity diary phase where participants download and install
the application on their mobile devices and start recording their trips. After finish-
ing, the recorded data is transferred to the server and a trajectory map is generated
with activity trip information on the respective web page (Fig 6).5 This follows by a
prompt recall survey where respondents can validate the imputed results by editing,
adding, deleting on the web page. Once done the validation, respondents give their
feedback and experience in feedback phase (Fig 7). The application was developed on
iOS and Android platform. The initial project was conducted on 30 respondents with
SG$ 30 incentive in Singapore mostly young generation. In order to manage the bat-
tery resources, Cottrill and colleagues implemented phased sampling concept where
the application collects data using GPS and accelerometer alternatively (Cottrill et al.,
2013). Respondents were also given autonomy to upload the data either continuously
based on mobile data plan or opportunistically based on presence of Wi-Fi hotspot.
FMS was first performed on February, 2012 and showed a promising result. Unlike

5 To be found online at (last accessed: December, 2015)
http://its.mit.edu/fms.

http://its.mit.edu/fms
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the previous applications FMS application can be minimized while other using other
mobile functionalities which helps respondents to maintain their regular behaviour.
However, battery depletion, user comprehension and improvement in background in-
telligence were still a major challenge.

Figure 6: FMS activity diary.

Figure 7: FMS validation- validating stop (a); validating segment between two stops (b).

Following the FMS survey, Safi and colleagues developed an iOS based mobile appli-
cation – Advanced Travel Logging Application for Smart-phone (ATLAS). The application
employs an active travel survey approach where the respondents have to provide in-
formation on trip start, trip mode, and trip purpose before starting a new trip. A
questionnaire is also attached in the application which collects critical information on
socio-economic and demographic status of the respondents including age range, gen-
der, income, vehicle ownership and mode choice of the respondent on weekdays and
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weekends. So far the project is done in two stages. First stage focuses on data collec-
tion strategy while the second stage is more in to resource management and increasing
participation through prompted recall survey from respondents (Safi et al., 2013).

2.1.3.4 Prompted recall (PR) survey

With growing positioning technologies, capturing positioning data has become easier.
But the semantic enrichment and knowledge discovery from trajectories is still in their
infancy. Following several technological waves in travel diary survey starting with the
face-to-face, paper-based, GPS assisted surveys respondents are still required to pro-
vide additional trip and household information in order to supplement background
intelligence. Active travel surveys such as face-to-face or telephonic interview survey
requires respondent’s complete attention in order to answer survey questions which
are quite memory intensive, time consuming and expensive. Passive travel surveys
such as GPS based surveys can collect respondent’s movement data automatically but
it poses problem in post-processing of trajectories and understanding respondent’s
activity-trip behaviour without further information. Thus to overcome these issues
recently travel surveys are designed in hybrid manner where the data is collected pas-
sively without bothering the respondents and after data collection or before the survey
starts the respondents are asked to recall their travel behaviour and supplement with
additional information (Auld et al., 2009). This hybrid surveys are more commonly
known as promoted recall (PR) survey.

Doherty and colleagues discussed different types of PR surveys such as sequential,
temporal or tabular and spatial PR surveys (Doherty et al., 2006). In sequential PR
survey respondents are asked for more information after or during the survey. This
is generally accomplished by telephonic interview post travel diary phase. However,
some surveys used computer logger to input trip information including trip purpose,
trip start end, and route taken etc during the survey process (Murakami and Wagner,
1999). Temporal or tabular PR survey involves arranging the imputed activity-trip his-
tory in chronological order and presented in tabular format with corresponding time
stamp and other information. This includes trip start, trip end, activity performed,
mode used etc. This is very useful way of validation for those who are not famil-
iar with the map but maintain their calendar or personal activity schedule. Another
sophisticated method discussed by Doherty and colleagues is spatial PR survey. This
method includes post-processing based on GIS and displays the imputed result in map
format with spatial cues, icons and text boxes for validation. In this method, respon-
dents can visualize their movement history; they can see the imputed routes, activities
and locations they passed through. They can easily add, delete or modify this infor-
mation wherever necessary from their memory. Thus the burden on respondents is
greatly reduced. Currently a hybrid form of spatial and tabular PR surveys have been
performed with promising result where GIS generated maps are produced for further
validation followed by eight page questionnaire to collect more recalled information
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(Stopher and Collins, 2005). Current smartphone based surveys also need validation
and input after data collection and analysis. FMS also involves post-analysis valida-
tion phase where the respondents can validate their activity and trip on the webpage
(Cottrill et al., 2013). Respondents can add or delete or modify a stop, segment or other
trip history (Fig 7).

Safi and colleagues in their ATLAS project made a provision to collect post-survey
input from respondents in order to obtain additional information such as trip purpose
and transport mode. They have also attached a questionnaire in the end of the survey
to collect socio-economic and demographic characteristics of the respondents (Safi
et al., 2013).

In summary, mobility survey is important to understand people’s travel behaviour
and their activity patterns in an urban environment. Current survey practices are man-
ual – paper based or telephonic which involves quality issues in terms of accuracy and
the information details. In order to cope with this issue currently smartphone based
approaches are being explored. Smartphones come with different location and inertial
sensors which can be used to capture its user’s travel behaviour and activity pattern in
the form of a trajectory or a sensor trace at finer granularity. However, such raw sensor
information needs to be interpreted to extract various mobility based information. This
thesis proposes a number of frameworks to improve such a background intelligence
to interpret such sensor information collected by smartphones.

Based on the existing survey practice a composite summary of different kinds of
survey strategy and their categorization is presented in tabular form (Table 3).
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2.2 mobility-based services

Mobility surveys capture people’s travel behaviour, which can be used for different
transport planning purposes as well as in order to enable various mobility-based ser-
vices to improve people’s travel experience. The most common type of mobility-based
service provisions are recommendation systems. A recommendation system assists a
user to perform a given activity. In order to support mobility-based activities the most
common type of recommendation systems are travel recommendation systems (also
known as advanced traveler information system), and activity or place recommenda-
tion systems during a travel.

A travel recommendation system suggests routing sequences using a single mode
or multiple mode with a predefined origin and destination given by a user. The infor-
mation can be shown on a web application on computer or on a mobile device (Lathia
et al., 2012). Such systems use the underlying route network and scheduled arrival
and departure temporal information of different transport services and then suggest
all possible travel plans or the shortest route depending on the user’s interest and sys-
tem design. Chen and colleagues developed a computer-based multimodal daily travel
planner (Chen et al., 1999). Liu and colleagues used a switch point based algorithm to
develop a multimodal trip planning application (Liu and Meng, 2009). Zhang and col-
leagues developed a trip planning application in the USA (Zhang et al., 2011b). Su and
Chang developed a similar application in Taiwan (Su and Chang, 2010). Houda and
others proposed a conceptual framework for modelling public transportation service
(Houda et al., 2010).

Earlier travel recommendation systems used to generate static information and could
not cope with the real time delays in the network or changes occurred in real time. In
order to address the real time changes in the transport network Li and colleagues de-
veloped a more sophisticated trip planning application that could support Park-n-Ride
activity states (Li et al., 2010a). They used the locations of parking lots near different
stop locations and intersections in their model. The algorithm is based on K-shortest
path method to suggest the most optimal routes given an origin and destination. Bo-
role and colleagues developed a real time intra-city travel recommendation system
in India (Borole et al., 2013). Borole and colleagues considered the delay times in ar-
terial roads and the GPS signal shortage. Like Li and colleagues, Borole’s model is
also based on K-shortest path algorithm to generate the shortest routes from a given
origin to a destination in real time. Unlike the other researchers who mainly focused
on multimodal public trip planning applications, Su and others developed a futuristic
multimodal trip planning system in Taiwan that can establish a coordination between
different types of transport services for a seamless and effective transportation (Su and
Chang, 2010). Such a coordinated trip planning application is gaining interest in the
context of mobility-as-s-a-service (MaaS) where public and private partners are aiming
to provide an integrated mobility solution through a unified gateway (Hietanen, 2014).

27



Although there is no generalized definition of MaaS yet, but MaaS can be described
as a business model and a technological platform that can integrate different transport
service types, ICT, and financial institutions to better manage transport resources, and
improve travel experiences. Current transport services lack the coordination among
different service types especially private and public players. A given MaaS application
can generate more personalized travel plans with different offerings and subscriptions.
Thus an MaaS application provides more flexibility and mobility options. In Sweden
a pilot project named as Ubigo 6 was tested in 2014 followed by another proposed
project known as MaaS.fi 7 in Finland. The main driving forces behind such an inte-
grated and flexible mobility services are emerging concept of shared economy, shared
resources, urbanization and climate change (Holmberg et al., 2016). In 2015 another
MaaS-alliance framework was developed by European network for ITS deployment 8.
Holmberg and colleagues mentioned in their report the current status of MaaS still lies
at a conceptual level with few test cases mostly in European countries. They have also
mentioned different conceptual MaaS models in their study (Holmberg et al., 2016).
The main component in MaaS is the way a person mediates between two locations on
a given transport mode. Hence understanding a person’s travel behaviour and usage
of different transport modes is very important to provide more personalized offerings
and recommendations.

Bertou and Shahid developed a more personalized public transportation planning
application based on a user’s preferences (Bertou and Shahid, 2013). The model devel-
oped by Bertou and Shahid provides travel suggestions at different granularity. Lathia
and colleagues proposed a multi-layered personalized mobility service application
(Lathia et al., 2012). Lathia and colleagues considered four aspects while developing
their prototype e.g., a) personal preference information, b) personal route planning
and execution, c) natural language processing, and d) personalized mobile interface
for relevant information representation.

With the advancement of ubiquitous computing the concept of context-awareness
has become prevalent (Schilit et al., 1994). Although there is no commonly agreed
definition of context, however, from an operational perspective, the word context can
be defined as any information that characterizes a situation of an entity where the entity
could be a person or a physical object at a different spatial scale (including a location) which are
relevant to the interaction between a human user and the application. The entities also include
the user and the application as well (Dey and Abowd, 2000). As described in Chapter 1

the notion of context depends on a particular application domain and the situation
of a given entity, Dey and Abowd (2000) categorized a context in terms of location,
time, identity, and activity from a generic operational perspective. On the other hand,

6 To be found online at (last accessed: February, 2017)
http://www.ubigo.se/

7 https://maas.global/

8 http://www.ertico.com
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from web engineering point of view Kaltz and colleagues categorized a context in
terms of user and role, process and task, location, time, and device. In both the typology
four elements are common and they are required to develop the context-awareness in
a system that relies on a person’s activity state at a given location and time. These
elements are an actor which is termed as user by (Kaltz et al., 2005), the identity of
an user by (Dey and Abowd, 2000), location, time, and activity which is analogous to
process by (Kaltz et al., 2005).

Understanding a user’s context can enable a given service provision to assist the user
to perform the activity more efficiently and effectively. However, current context-aware
computing service provisions are mainly dependent on user’s location and proximity
to a given point of interest (POI). For example, Google place recommendation system
uses current location of the user and preferences selected from a predefined list and
nearby POIs 9. Claus and Raubal developed an application to find the suitable hotels
by a given user based on her current location, spatio-temporal constraints, and prefer-
ences (Claus and Martin, 2004). Marmasse and Schmandt developed a model that can
recommend a user to perform an activity from her to-do list depending on the vicin-
ity of the corresponding activity centre or the POI (Marmasse and Schmandt, 2000).
Although much of the research in context-aware services done based on user’s loca-
tion but there is a need to explore other contextual cues e.g., user’s activity state. In
this line Mokbel and Levandoski proposed a recommendation framework known as
careDB that can suggest nearby restaurants depending on the user’s current location,
user’s dietary requirements, and reachability based on road traffic condition (Mokbel
and Levandoski, 2009).

In summary, understanding a user’s current or historical modal state can also help
in augmenting more personalized mobility offerings as a part of MaaS. This thesis
presents frameworks to detect a transport modal state at different temporal granularity
(see Chapter 6, Chapter 7) that can be used to increase the context-awareness of a given
user while recommending a given location or service.

2.3 semantic trajectory modelling and knowledge discovery

Over last few years with the growing use of portable location sensing devices includ-
ing the smartphones, it has been possible to obtain enormous amount of movement
tracks and trajectories. These raw movement tracks and trajectories, however, cannot
say much about the movement behaviour except the location information and geomet-
ric patterns such as convergence, encounter, flock, leadership, chasing and avoidance
(Alvares et al., 2011; Laube et al., 2005). Whereas, a planner wants to get more out
these trajectories for their planning and analysis such as for urban mobility study,
one needs to know trip purpose, activity undertaken, mode taken, route taken, travel
experience. This is partly mitigated by spatio-temporal aspects related to movement

9 https://developers.google.com/places/web-service/search
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behaviour (Alvares et al., 2007; Nanni and Pedreschi, 2006; Pelekis et al., 2007). Space
and temporal information, however, is not sufficient to understand detailed movement
behaviour and related facts. In order to interpret raw trajectories, a number of different
algorithms have been proposed as follows.

2.3.1 Episodic trajectory segmentation

In order to analyse raw trajectories in offline, the most popular approach is performing
trajectory segmentation once the entire travel is complete. Then the analysis takes
place over each segment. Spaccapietra and colleagues developed an episodic algorithm
known as stop-and-move-on-trajectories (SMoT) from a top-down perspective: first the
trajectory is segmented into a number of segments and then an activity state is detected
over a particular segment using a machine learning approach or expert system-based
model (Spaccapietra et al., 2008). This algorithm assumes a person will stop at a certain
location for minimal amount of time in order to perform a certain activity and then
start moving until reaching the next destination. Thus a raw trajectory is segmented
into two different episodes and each episode is semantically enriched. A move episode
reflects a person’s travel behaviour, whereas a stop episode reveals a person’s activity
behaviour within a constrained space

The SMoT algorithm was implemented in different forms (Fig 8). Alvares and col-
leagues developed an intersection-based approach (IB-SMoT) to model the stop and
move episodes. IB-SMoT evaluates which spatio-temporal points of the trajectory inter-
sect a given candidate region for a minimal time duration (Alvares et al., 2007). If the
respective points satisfy the spatio-temporal condition those points will be considered
as stop points, and the points that do not fall within a candidate region will be con-
sidered as move points. Palma and colleagues developed clustering-based stops and
moves (CB-SMoT) where a clustering kernel is run over a trajectory, and the clusters
containing low speed points with respect to a predefined threshold are called potential
stop clusters (Palma et al., 2008). Then each potential stop cluster is investigated if the
cluster intersects any given region of interest and labeled as stop episode.

Rocha and colleagues developed a direction-based algorithm (DB-SMoT) based on
change of directions of GPS points in a trajectory (Rocha et al., 2010). Application of
IB-SMoT and CB-SMoT is context dependent. For example, in tourist movement study
IB-SMoT can be used where the main goal is to understand where the tourist went
and what did he or she visit within a ROI. Whereas, in traffic analysis CM-SMoT is
very useful which can indicate slow movement of vehicles by clustering alike spatio-
temporal points and the corresponding POI or ROI (Bogorny et al., 2011). Moreno and
colleagues have used rule based model to detect stops and substops using semantic
information (Moreno et al., 2010). The work leaves open questions in order to detect
ambiguous activities at some stop location. For example it may be inferred that a
person may is at a shopping mall (stop) but it is difficult to detect if he or she is
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watching a movie (substop) or shopping (substop). Some others used the notion of
POI and region of interest (ROI) in order to enrich semantic information base.

Figure 8: IB-SMoT (a); CB-SMoT (b); reproduced from (Bogorny et al., 2011)

Ashbrook and Starner developed a predefined clustering method to detect the stops
from GPS trajectories (Ashbrook and Starner, 2003). On the other hand, Zimmermann
and colleagues developed a spatio-temporal clustering method to detect the stops and
moves (Zimmermann et al., 2009). In the same line, Andrienko and colleagues devel-
oped a stop detection framework by considering temporal duration and a user defined
distance threshold (Andrienko et al., 2013). Gong and colleagues extended the tradi-
tional clustering based stop detection approach by incorporating a machine learning
module. They have developed a two stage model for detecting stops and stop types.
Gong and colleagues used an improved clustering algorithm (C-DBSCAN) to detect
the stops based on the spatial proximity of the GPS points. Then they have used a
SVM-based supervised machine learning technique to infer the stop type in terms
of activity or non-activity (Gong et al., 2015). Clustering-based approaches, however,
work well on the dense GPS trajectories with good to moderate positional accuracy.
During signal gap or in urban canyon clustering-based approach does not work well.
Assuming walking is necessary between two non-walking episodes, Zheng and col-
leagues proposed a walking-based segmentation approach in their transport mode
detection research (Zheng et al., 2008).

Yan and colleagues in their first piece of contribution developed a semantic enrich-
ment process using three sets of spatial object such as point, line and region (Yan et al.,
2011). They used various topological relationships, movement attributes and spatial
join operation between each points of the trajectory and the spatial object in order to
discern specific episodes. In this context definition of POI and ROI is application de-
pendent. Some researchers used frequency of visit or pass through a certain location
in order to define it as a POI or ROI (Giannotti et al., 2007; Uddin et al., 2011). This
further helps to understand what possible activities could be conducted at those stop
locations or along the move episode. From travel demand perspective, some specific
activities along a move episode include modality, route taken etc. Detailed discussion
on modality is given in activity-travel section. Yan and colleagues developed a hier-
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archical approach for semantic trajectory construction with three logical layers. The
first layer involves cleaning and compressing the raw trajectories. Second layer detects
portions of movement and stop in the trajectory based on velocity, change in direction
and density of points. Third layer adds contextual information to different segments
of the trajectory and construct a semantic rich trajectory (Yan et al., 2011).

Mao and others developed a trajectory similarity measure based on trajectory seg-
mentation approach (Mao et al., 2017). Mao and colleagues presented a segment-based
dynamic time warping method by integrating three different distance measures e.g.,
point-segment, prediction distance and segment-segment. The method presented by
Mao and colleagues achieves better accuracy compared to the existing methods e.g.,
longest common subsequence, edit distance method and traditional dynamic time
warping (Mao et al., 2017).

In order to annotate raw trajectories various smartphone based semantic enrich-
ment applications have been developed which require user’s interaction more or less.
Some of the online or real time annotation tools are EasyTracker (Doulamis et al.,
2012) which allows on-the-fly annotation for trajectory segmentation in the first phase
and then manual transport mode labelling in the next phase. Another application is
TripZoom (Broll et al., 2012) which allows observing an individual’s movement be-
haviour and social networking activities. Some of the annotation work also used open
source movement tracking application on smartphones for collecting crowdsourced
movement data (Zilske and Nagel, 2012). However, annotating in real time sometimes
poses difficulties while the person is driving or in hurry or he or she is too casual to
annotate the small movements but significant activities such as going to an ATM for
cash out. In order to address these issues offline semantic annotation process is quite
useful. Recently several offline desktop level annotation tools have been developed
such as DayTag (Rinzivillo et al., 2013) which allows the user to visualize and anno-
tate trajectories. Similar concepts are used in background intelligence of smartphone
based travel survey to analyse activity-trip behaviour (Cottrill et al., 2013).

Existing trajectory segmentation approaches are subjective and creates spatial and
temporal ambiguity (Cich et al., 2016). A vast majority of literature on transport mode
detection and trip generation does not address this ambiguity during the trajectory
inference process. Recently, from the transport mode detection perspective Prelipcean
and colleagues developed a new error measure based on the quality of alignment of
inferred segment to their groundtruth counterpart to address such uncertainty during
segmentation based on Allen’s temporal calculi (Prelipcean et al., 2016). Prelipcean and
colleagues modelled three types of error measures using a cardinality of the measure-
ment and spatial and temporal discrepancy e.g., implicit, explicit-holistic, and explicit-
consensus-based segmentation (Prelipcean et al., 2016). Their framework, however, is
limited and cannot model all the possible temporal relations in the context of trips.

In this thesis a density-based clustering algorithm based on the CB-SMoT approach
has been explored in Chapter 7 to detect the transfers. The assumption behind the
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research presented in Chapter 7 is, a transfer breaks a trajectory into a number of
distinct trips. However, in this thesis it is argued that a density-based clusters can be
of arbitrary shape and size, which poses ambiguity in inferring a trip start and end.
In order to address such temporal and spatial ambiguity Chapter 7 develops a novel
state-based bottom-up approach that can address the limitations of existing trajectory
segmentation approaches e.g., a clustering based approach. This thesis also addresses
the temporal ambiguity that may exist during an inference process using nine Allen’s
temporal relationships in Chapter 7 that supports prior research on temporal ambigu-
ity.

Discovering mobility-based knowledge from motion trajectories is a challenging
task. Earlier researches were focused into non-semantic trajectory knowledge discov-
ery and understanding movement pattern mostly based on movement attributes. With
recent conceptualization of semantic trajectory, most of the trajectory knowledge dis-
covery process employs geographic and contextual information in order to under-
stand trajectory behaviour and extract more meaningful application specific knowl-
edge. There are three well known techniques in order to understand trajectory be-
haviour and pattern mining as follows.

• Clustering

• Classification

• Frequent behaviour mining

Clustering is an unsupervised technique which is commonly performed in order to
group trajectories or some segments of trajectories which share some similar charac-
teristics. Clustering has also been applied to an individual trajectory as well as group
of trajectories to discover certain interesting behaviour at certain segment in space and
time of the trip. Pelekis and others used distance measure on a set of trajectories’ move-
ment attributes to group them. They used the whole trajectory (Pelekis et al., 2012)
whereas, Lee and colleagues used segment of trajectories to evaluate their similarity
and group them. Investigating a trajectory as a whole or segment-wise is application
dependent. On the other hand, clustering a trajectory once the entire travel is complete,
can help to understand origin-destination of a group of people or from one traffic anal-
ysis zone to another traffic analysis zone along with the intermediate stop episodes.
This can also help understand similar behaviour of a set of trajectories. For example
this can reflect if the trajectories represent home to office trip or tourist trip, whereas,
segment wise clustering helps in finer information extraction and behaviour mining
at various granularities. Lee and colleagues used segment wise clustering algorithm
on tourist trajectories in Paris to understand how they moved together, where they
diverged (Lee et al., 2007).

This idea can be extended to understand how people share route, modality, perform
similar activities upto a certain distance etc which are quite relevant information in or-
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der to understand travel demand. Laube and others developed relative motion (REMO)
framework based on movement attributes such as speed, acceleration, azimuth in 8

cardinal directions (Jeung et al., 2011; Laube et al., 2005). Classification is a supervised
technique which is also used to group trajectories to predefine classes as whole or part
there-of. Lee and colleagues used segment wise trajectory analysis to classify them if
they belong to container ship, tanker ship or fishing ship from seeing their detouring
pattern (Lee et al., 2007). Others used segment wise trajectory classification in urban
mobility studies- for transport mode detection (Zheng et al., 2008), route taken and so
on.

2.3.2 Trip characterization from motion trajectories

Trip characterization from a motion trajectory involves deriving various movement
attributes from the trajectory such as trip start and end location, trip travel time, trip
distance, transport mode and trip purpose.

Before GPS based travel survey came in to existence, trip origin and destination
were used to retrieve from respondent’s memory which sometimes resulted in under
reporting of trips or inaccurate trip origin and destination. GPS based survey no doubt
a significant improvement and can produce more accurate trip information including
trip origin and destination. Earlier car mounted GPS studies only track the car trajec-
tory and thus the actual origin and destination of the person before getting on the car
or after getting off the car is not known (Wolf, 2000). This problem was largely over-
come by using wearable or smartphone based GPS sensors to some extent. However,
these low quality sensors take time (15 seconds to 4 minutes or more) to get fix on the
satellites (cold start) even after the trip started and thus recorded trip starting point
and actual origin do not coincide which leads to inaccurate trip origin. GPS trajectories
also subject to discontinuity due to GPS signal loss in urban canyon and heavy foliage
and thus create semantic gap and sometimes false origin and destination. Besides in
case of multi day travel survey due to randomness of GPS signal or different parking
positions, although the destination is same but the trip ends do not coincide with the
destination and thus gives false trip destination. This problem can be mitigated by
simple clustering approach where neighbourhood of each trip end is queried and if
there is sufficient number of trip ends within the close proximity then all the trip ends
in the cluster are assigned as the same destination and the process iterates until all the
trip end points are visited. Unknown trip ends are assigned to the nearest destination
(Schonfelder and Samaga, 2003). Trip start and end are also detected using land use in-
formation with satisfactory accuracy (Axhausen et al., 2003; Stopher et al., 2008; Wolf,
2000). A multi sensor approach is expected to increase the accuracy and reduce Type I
and II error.

Traditional travel surveys fail to report the exact trip timing. This problem was
solved by using GPS and other sensors. Car based GPS cannot give the actual trip start
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and end time since in-vehicle GPS only records during car movement. However, nowa-
days using smartphone this problem has been greatly reduced as the smartphones are
carried by the users almost everywhere they travel unlike an in-vehicle GPS receiver
that can only sense the location of the car. Thus if the user parks her car in a parking lot
and starts walking, then the last known position shown by the in-vehicle GPS would
be the parking lot whereas the smartphone can sense the user’s next whereabouts.
In-vehicle GPS receivers have limited capacity and does not work when the car engine
stops.

Trip length can be calculated using point-to-point (PP) approach or link-to-link (LL)
approach. In PP approach the distance between two successive points is calculated
using Pythagorean formula in Euclidean space or by multiplying instantaneous speed
by the time interval between two successive points. In PP approach no additional
information (including GIS network) is required and the approach is simple and could
be used in real time. In urban canyons or indoor environment, however, the distance
is overestimated or underestimated due to the error in GPS position. This problem
could be solved by considering distance travelled after certain time interval (typically
10 seconds) instead of considering immediate time interval. LL approach requires GIS
network information. This involves matching the trajectory points with the underlying
road network. Then calculating the length of corresponding road segments which is
covered by the trajectory and add them up which is actual trip length or trip distance.
This way this can solve the signal loss. Since this relies on map-matching, the accuracy
depends on quality and quantity of GPS points (Murakami and Wagner, 1999).

Trip purpose identification is important to understand people’s intention to travel
(why people travel) and that in turn help in travel demand modelling when applied
in large scale at different granularities. As mentioned in previous section, some re-
searchers used map matching (point-in-polygon) to understand trip purpose (Forrest
and Pearson, 2005; Wolf, 2000). The issue with this approach is it requires comprehen-
sive and accurate GIS network information. Sometimes, a trip end cannot be correlated
with the exact land use type or polygon due to inherent GPS randomness or parking
or stopping at different locations close to different point of interest(s). In order to ad-
dress this problem, Wolf and colleagues came up with a clustering algorithm (Wolf
et al., 2004). This algorithm creates a cluster of potential trip end points. Then the
cluster centre is estimated and all the POIs are spatially queried within a given search
radius (300 m considered by Wolf). Then each POI is given some weightage based on
its proximity to the cluster centre (POIs within 50 m of buffer zone are given 1.5, POIs
within 50 m to 100 m are given a weightage of 1, POIs which fall within 100 m to 200

m are given a weightage of 0.7 and POIs falling within 200 m to 300 m are assigned a
weightage of 0.4). A similar approach was introduced by others where they used 200

m tolerant radius from the trip end to identify if it is home and visiting frequency to
identify as work. Some of the trip ends were not classified as home or work. Those
were labelled as “most probable” trip purpose which were later labelled using rule
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based map matching (Axhausen et al., 2003; Schonfelder et al., 2002; Schuessler and
Axhausen, 2009). Some researchers used pre-defined trip purpose categories to classify
the trip purpose based on the distance between the trip end and POI. Clifford and col-
leagues used eight categories such as home based work, home based education, home
based shopping and home based others, non-home based work, non-home based edu-
cation, non-home based shopping and non-home based others and the tolerant radius
from the trip end to the POI was considered as 200 m (Clifford et al., 2008).

Detecting trips provides valuable information on travel demand estimation. Ear-
lier travel demand models were mostly based on the 4-step aggregate approach. The
main thrust in post-processing mode was to extract only trip information for creat-
ing origin-destination (OD) matrix to understand trip characteristics at regional levels.
This includes, trip generation over a particular region, distribution of trips between re-
gions, modal choices and route taken (Jovicic, 2001). With the advent of in-vehicle GPS
travel survey, researchers were mainly interested in detecting car trip ends and trip
purpose to understand movement behaviour and how it affects over all travel demand
in the network. With progressive paradigm shift in travel demand modelling from
4-step aggregate perspective to activity based perspective, a great deal of thrust was
put on activity recognition from movement traces and trip characterization to better
understand individual travel demand. This is generally supplemented by additional
information regarding household, socio-demographics and financial condition of the
person.

Recent post-processing phase involves characterization of activities and trips at dif-
ferent granularities to model activity-trip pattern. The following section discusses var-
ious facets of activity and trip behaviour from movement data. More recently, travel
has been recognized as a derived activity to achieve some goal in space-time domain.
In this regard, a trip is essentially required to perform activities at different locations
in spatial domain. Hence, a trip can be conceptualized as a connection between two
subsequent disjoint activities in space-time domain.

2.3.3 Detecting transport modes from motion trajectories

The existing literature explores historical trajectories (i.e., solves the interpretation of
the raw data once the trip is complete) in order to infer different transport modes that
had been used during the travel, based on different features. Such detection frame-
works are called offline mode detection models. An offline mode detection workflow
generally involves a preprocessing stage that removes erroneous or uncertain GPS
points based on positional inaccuracy, number of satellite visible (NSAT), trajectory
smoothing through path interpolation, time conversion if required, data projection
from one coordinate system (commonly WGS84) to another coordinate system for var-
ious spatial computation. (Wu et al., 2016).

36



In order to perform preprocessing operation, Stenneth and colleagues used speed-
based measures and positional (in)accuracy (Stenneth et al., 2012). Lari and colleagues
used maximum speed value to clean a trajectory (Lari and Golroo, 2015). Assuming
the fact that for cheap GPS sensors installed on the smartphones the speed is generally
calculated from geographical coordinates. Hence the speed measure is subject to posi-
tional inaccuracy. Zheng and colleagues also used a speed a based filtration method to
get rid of noisy GPS points (Zheng et al., 2010). Reddy and colleagues used speed, po-
sitional accuracy and temporal information in their preprocessing stage (Reddy et al.,
2010). Biljecki and colleagues used positional information, signal gap in their work
(Biljecki et al., 2012).

On the other hand, Xiao and colleagues developed a rule base to clean a raw tra-
jectory (Xiao et al., 2015). In the first stage any incomplete record is discarded. In the
second stage based on the number of satellites or HDOP value > 4 are removed. In the
third stage any GPS point which has altitude value greater than 200 m are removed.
Following this Xiao and colleagues converted the temporal information from UTC to
local time, and then create user specific data repository for further analysis. Based on
a current literature survey (Wu et al., 2016) and existing research Table 4 summarizes
some preprocessing operations performed by selected authors.

Since a travel can take place by more than one modality, there is a need to break
the entire trajectory into trajectory segments travelled in the same mode. This process
is known as segmentation or trip identification (TI) or segment identification (SI) (Wu
et al., 2016). Thus in the second stage in offline mode detection the preprocessed tra-
jectories are undergone a segmentation operation where each segment bears a homo-
geneous (single) modal sate. Following this a mode is predicted over a given segment.
Thus the accuracy of offline mode detection depends on the efficacy of the segmenta-
tion strategy. Current segmentation approaches are generally top-down which is based
on either detecting a stop episode or extracting a low speed or walking segment.

Assuming walking is necessary between two motorized (or bicycle) mode Zheng
and colleagues developed a change point based approach that segment a given trajec-
tory into low speed and high speed segments (Zheng et al., 2010). Eventually the low
speed segment indicates a higher chance of being a walking trip. Such approach uses
speed information and a critical distance threshold. Zheng and colleagues used a low
speed threshold to first separate different segments based on speed. Then they used a
distance threshold to detect a sufficiently long low speed segment that is deemed to
be a walking segment that connects two consecutive non-walk segments.

Zhang and colleagues used a low speed, direction change and distance measure for
segmentation (Zhang et al., 2011a).They used five continuous points to measure the
distance threshold (5 m), speed threshold (6 0.5 m/s), and direction change threshold
(> 100 degrees).

Biljecki and colleagues have developed two different types of segmentation strate-
gies in their work (Biljecki et al., 2012). In the first strategy the trajectories are seg-
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mented into journeys. A journey is a segment of a trajectory that connects two mean-
ingful locations (say home and office). In order to extract the journey a signal shortage
information is used. The assumption was user will perform some activity for a pro-
longed period of time at these locations and during that time period they will turn
off their device, or there may be signal gap as the user is in indoor. Once the jour-
neys are extracted Biljecki and colleagues segmented a given journey into a number
of segments based on stop episodes. Due to positional and kinematic uncertainties
the number of segments may be more than or less than the actual number of trips
that took place during a given travel. Having said that Biljecki and colleagues argued
while segmenting a trajectory an over segmentation is always better than under seg-
mentation. In case of an over segmentation if two consecutive segments are found to
be same modal state then they can be merged in post-processing stage.

Mountain and Raper used a direction and speed change measure to segment a tra-
jectory (Mountain and Raper, 2001). Such approaches may fail during signal loss or in
urban canyon where the positional information is not very accurate.

Liao and colleagues used geodata for proximity analysis – mainly the stop infor-
mation (e.g., bus stop) in order to detect the transfers (Liao et al., 2007). A transfer
essentially separates a trajectory into two different modes. However, this approach is
limited and does not work well in areas where the stops are densely distributed or
fall in the GPS positional confidence ellipse. This approach also fails when there is a
signal loss.

Motivated by other research agenda apart from mode detection there are several
instances of work that aimed at extracting different episodes of travel from a trajectory
using different approaches such as stop-and-move, clustering based, direction based,
intersection based and other types (see Section 2.3.1). Such segmentation approaches
are also relevant in this context and can be applied in mode detection.
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Table 4: Summary of preprocessing operations by selected authors

Authors Device
Features

used for preprocessing
Preprocessing method

Xiao et al. (2015)
GPS onboard

smartphone
NSAT, HDOP, altitude

Rule based

3 stage operation

Lari and Golroo (2015)
GPS, accelerometer

onboard smartphone
Maximum speed value Speed based filtering

Nitsche et al. (2014)
GPS onboard

smartphone
Positional information

Kalman filter based

position

estimation;

Tri-axial accelerometer

signal transformation

Stenneth et al. (2011)
GPS onboard

smartphone

Positional accuracy,

speed

Heuristics based:

Low speed – high speed

containment

Reddy et al. (2010)
GPS, accelerometer

onboard smartphone

Accuracy measure in

horizontal,

vertical reading,

heading,

speed value

_

Zheng et al. (2010)
Dedicated and

mobile phone GPS
Speed, heading

Heuristics based:

low speed – high speed

containment

Biljecki et al. (2012) Dedicated GPS
Positional information,

signal loss
Rule based



In the third stage of offline mode detection process a particular transport mode is
detected over a given segment based on a number of computed features. In order to
develop a predictive model three different approaches can be used such as machine
learning, knowledge driven and hybrid approaches.

Zheng and colleagues used mean velocity, expectation of velocity, heading rate
change and top three acceleration measure as input variables. They tested four differ-
ent machine learning models, decision tree (DT), Bayesian network (BN), conditional
random Field (CRF) and support vector machines (SVM) with accuracy 74%, 70%, 47%,
and 59% respectively (Zheng et al., 2008). They classified four modalities such as walk,
car, bus and bike.

Since GPS comes with varying positional accuracy due to various environmental
factors and signal shortages, recently, there is a trend to integrate different inertial
navigation sensors, such as accelerometers, with GPS, which is explored in (Reddy
et al., 2010). Reddy and colleagues distinguished five modalities such as still, walk,
run, bike and motor.

Stenneth and colleagues used infrastructure information and speed information to
distinguish five modalities such as car, bus, train, bike, stationary and walk. Stenneth
and colleagues used several features such as average bus locations, candidate bus
locations, proximity to rail network, bus stop closeness, average speed, average accel-
eration, heading rate change, positional accuracy. Stenneth and colleagues developed
five predictive models based different machine learning algorithms with varied accu-
racy such as a Bayesian network (92.5%), decision tree (92.2%), random forest (93.7%),
naive Bayes (91.6%) (Stenneth et al., 2011).

Ohashi and colleagues developed a vibration-based mode detection model using a
Bayesian network with 80% accuracy with a focus on a fine distinction between a car
and a motorbike, which is deemed to be a challenging problem, since both of them
share the same route network and show almost a similar speed and acceleration profile.
They have collected the vibration sensor signal on-board a smartphone to capture the
vibration profile of different modalities without segmenting the trajectories. They also
do not attempt to address the issue of composite modes (Ohashi et al., 2013).

Gonzalez and colleagues developed a neural network-based mode detection model
using GPS sensors. They distinguish three modalities such as car, bus, walk using
a number of features (Gonzalez et al., 2010). They used average acceleration, aver-
age speed, maximum speed, ratio of critical points over a trip distance and duration.
Gonzalez and colleagues mainly focused on managing the data transmission rate and
computational overhead in mode detection. Thus they have designed two experimen-
tal setup. In the first setup they used all the GPS points that are sampled and obtained
88.6% accuracy. In the second setup they used only the critical points with 91.23%
accuracy. This shows while interpreting a trajectory not all points are relevant. The
accuracy may be affected by irrelevant points.
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Nitsche and colleagues used 5th, 50th, and 95th percentile of maximum speed, accel-
eration, deceleration, heading rate change, standard deviation of acceleration profile
sampled at 50 Hz, power spectrum of acceleration signal and other features (77 in to-
tal). They detected eight modes such as walk, bicycle, motorcycle, car, bus, tram, metro
and train. The accuracy varies from 65% to 95% with average accuracy 75% (Nitsche
et al., 2014).

Hemminki and colleagues used accelerometer to detect modality with 1.2 s time win-
dow with 100 Hz sampling frequency. Since gravity component obscures accelerometer
signals while interpreting movement behaviour, Hemminki and colleagues paid a spe-
cial attention to model the gravity component while extracting the acceleration profile
of different modes. They have used a discrete hidden Markov model (DHMM) and
AdaBoost, with which they obtained 84.2% accuracy (Hemminki et al., 2013).

Xia and colleagues proposed a GPS and accelerometer-based model with 50 Hz
sampling frequency without any walking-based or clustering-based segmentation ap-
proach. Xia and colleagues detected four activity states such as stationary, walking,
bicycle, motorized modes using a SVM with 96.3% accuracy (Xia et al., 2014).

Dodge and colleagues used GPS trajectories and developed an SVM-based model
with 82% accuracy for four modes using three kinematic features (Dodge et al., 2009).
Dodge and colleagues have introduced the concept of global features and local features
computed from a trajectory. They have primarily used variation in sinuosity and the
deviation of different kinematic features, such as velocity and acceleration, from the
median line (Dodge et al., 2009).

Xiao and colleagues developed a number of tree-based ensemble models for mode
detection (Xiao et al., 2017). They developed global and local features to evaluate
three different models based on a random forest (RF), gradient boosting decision tree
(GBDT) and a XGBoost respectively. Xiao and colleagues evaluated their models on six
transport modes e.g., walk, bus and taxi (combined in a single class), bike, car, subway,
train. Their proposed models have been compared with the existing models based
on a K-nearest neighbour, a decision tree and a support vector machine. Xiao and
colleagues have shown that the proposed XGBoost model achieved 90.77% accuracy
which outperformed existing mode detection models (Xiao et al., 2017).

Liao and colleagues also used GPS information to develop a CRF-based model to
infer the modes along trajectories (Liao et al., 2005). Lari and colleagues used speed,
bearing, accuracy and acceleration information to detect three modes such as car, bus,
and walk. In order to develop a predictive model they used random forest. They split
the data into 70%-30% in training and testing samples and obtained 96% accuracy.

Compared to the rich offline mode detection research, there have been only a few
near-real time mode detection attempts made so far. In one of them, Byon and col-
leagues developed a neural network-based mode detection model using three kine-
matic features in near-real time on five modalities such as auto, bus, car, bike and
walk. They claim the model works best on ten-minute query windows, for which they
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obtained 82% accuracy. However, ten-minute time windows may be too long for certain
applications, such as emergency services or context-sensitive location-based services
(Byon and Abdulhai, 2007; Byon et al., 2009), and may lose out with more frequent
change of modes.

In the same line, Reddy and colleagues’ mode detection framework that works on
a second-by-second basis with 74% accuracy (Reddy et al., 2010) is more relevant in
real-time scenarios. Since GPS sensors on a commercial smartphone cannot sample
at finer granularity due to hardware and software limitations, the literature shows
that such small temporal query windows require additional sensors (at least an iner-
tial navigation sensor) that can sample at higher frequencies. Reddy and colleagues
utilized the accelerometer on-board a smartphone to calculate acceleration-based fea-
tures. They also used the GPS sensors to get the speed value over one-second intervals.

Yang and colleagues developed a two-stage approach for detecting modes with a
core focus on distinguishing bus and car modality on a set of trajectories collected by
handheld GPS devices (Yang et al., 2016). In the first stage a machine learning algo-
rithm was used to distinguish walk, bicycle and motorized trips. Then in the second
stage a motorized mode is further identified as bus or car using a critical point method
(Yang et al., 2016). Mountain and Raper used a change in speed and direction for seg-
menting a trajectory (Mountain and Raper, 2001). That said, a low speed (or walking)
based segmentation approach creates ambiguity in certain cases especially when a ve-
hicle moves slowly in heavy traffic or due to bad weather condition. Xia and colleagues
proposed a GPS and accelerometer-based model with 50 Hz sampling frequency with-
out any walking-based or clustering-based segmentation approach. Xia and colleagues
detected four activity states such as stationary, walking, bicycle, motorized modes us-
ing a SVM with 96.3% accuracy (Xia et al., 2014).

Assuming the fact that location sensors consumes a considerable amount of energy
resource which limits the smartphone usage for other purpose (talking, using internet
for news update and communication), recently Fang and colleagues developed a low
powered consumption model that uses low dimension feature space computed from
inertial sensors only such as an accelerometer, a gyroscope and a magnetometer (Fang
et al., 2016). They have also investigated memory usage and response time along with
the accuracy improvement on a 1000 h smartphone inertial sensor data supplied by
HTC. The model developed by Fang and colleagues is similar to Hemminki’s two
stage framework (Hemminki et al., 2013). In the first stage basic type of transportation
modes are classified such as (still, walk, run, bike, vehicle) followed by a finer vehicular
distinction in between motorcycle, car, bus, metro, train and high speed rail. Fang and
colleagues used three machine learning models to develop their inference framework
such as a DT, KNN and a SVM. They have designed two different experimental setups
one with 7 features and another one with 14 features. When using 14 features, the
accuracy is 79.59% using DT, 86.86% using KNN and 86.94% using SVM (Fang et al.,
2016).
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As machine learning-based mode detection models are data specific, the models re-
quire a substantial training data to train the models and also lack explanatory power.
On the other hand, fuzzy logic-based mode detection models do not require any train-
ing. Here, the model is developed based on expert knowledge. Fuzzy logic-based
models express the knowledge base in simple IF-THEN rules. The models can also
handle uncertainty, vagueness and imprecision. Schussler and Axhausen developed
a fuzzy logic-based mode detection model on five modalities using three speed-only
features (Schuessler and Axhausen, 2009). Xu and colleagues developed a fuzzy logic
based model that can distinguish four modalities with 93.7% accuracy (Xu et al., 2010),
and Biljecki and colleagues developed a Sugeno-type fuzzy logic-based mode detec-
tion framework that can classify ten modalities with 91.6% accuracy (Biljecki et al.,
2012). That said, in existing fuzzy logic based knowledge driven models the reasoning
scheme is still not transparent and they do not explain the rules in linguistic forms
to reflect different movement behaviour – and thus there exists still a research gap in
knowledge driven aspect as how to represent the reasoning scheme that can capture
different kinematic uncertainties and movement patterns.

The success of any fuzzy logic-based model depends on the expert knowledge
brought in and the consistency between a particular observation and the universe
of discourse for each fuzzy linguistic label. Since traditional Mamdani-type or Sugeno-
type fuzzy logic-based models cannot tune their membership parameters, they suffer
from low performance when there is a lack in expert knowledge, when they are ap-
plied on noisy observation data or when they are applied on observations from an-
other spatial context. On the other hand, the neural network-based models developed
by (Byon et al., 2009; Gonzalez et al., 2010) and others can adjust well in a varied
condition.

Table 5 and Table 6 provide a brief summary of state-of-the-art mode detection work
in terms of study area, sampling duration, sensors used, modes to be distinguished,
use of spatial (GIS) information, models used, and the accuracy reported by the au-
thors. The abbreviations used in Table 6 are as follows:

ANN: Artificial neural network; RF: Random forest; DT: Decision tree; KNN: K Near-
est neighbour; ACO: Ant colony optimization; EPS: Ensembled probabilistic classifier;
SVM: Support vector machines; DHMM: Discrete hidden Markov model; PSO-NN:
Particle swarm optimization-neural network. ’Y’ stands for Yes and ’N’ stands for No.
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Table 5: Summary of selected mode detection literature: Experimental design. A GPS sensor is
installed on the smartphone unless otherwise stated as dedicated receiver. The dura-
tion reported in different papers are in different ways such as in terms of days, weeks,
months or even at finer temporal precision such as hours and minutes. The data set
also collected as a part of travel survey (with longer duration) as well as experimental
survey (with shorter duration).

Authors
Study

area
Duration

Bohte et al. (2008) Netherlands 1 week

Byon et al. (2009) Canada _

Liao et al. (2007) _ 6 days

Gonzalez et al. (2010) USA 114 trips

Tsui and Shalaby (2006) Canada _

Biljecki et al. (2012) Netherlands 3.25 months

Stenneth et al. (2011) USA 3 weeks

Ohashi et al. (2013) _ _

Xu et al. (2010) China 142 days

Hemminki et al. (2013) Four different countries 150 hrs

Xiao et al. (2015) China 4 months

Zheng et al. (2010) China 6 months

Lari and Golroo (2015) Iran 2 weeks

Yang et al. (2015) China _

Nitsche et al. (2014) Austria 2 months

Wang et al. (2010) China 12 hrs

Xia et al. (2014) _ 3.6 hrs

Bolbol et al. (2012) UK 2 weeks

Gong et al. (2012) USA 49 segments

Fang et al. (2016) _ 1000 h
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Table 6: Summary of selected mode detection literature: Models used to detect transport
modes, and maximum accuracy obtained (in round figures).

Authors Modes GIS Criteria Model
Segme-

ntation

Avg

accuracy

(%)

Bohte et al. (2008) 4 Y 2

Rule

based
N 70

Reddy et al. (2010) 4 N 3 HMM N 74

Schuessler and Axhausen (2009) 5 N 3

Fuzzy

logic
Y _

Byon et al. (2009) 5 N 3 ANN N 82

Liao et al. (2007) 3 Y 2 CRF Y 90

Gonzalez et al. (2010) 3 N 8 ANN N 88

Tsui and Shalaby (2006) 4 Y 3

Fuzzy

logic
Y 91

Biljecki et al. (2012) 10 Y 2

Fuzzy

logic
Y 91

Stenneth et al. (2011) 5 Y 5 DT Y 93

Ohashi et al. (2013) 4 N 2 Bayesian N 80

Xu et al. (2010) 5 N 4

Fuzzy

logic
Y 93

Hemminki et al. (2013) 5 N 12

DHMM,

Adaboost
N 84

Xiao et al. (2015) 4 N 6 PSO-NN Y 94

Zheng et al. (2010) 4 N 5

DT, CRF,

SVM,

Bayesian

Y 74

Lari and Golroo (2015) 3 N 6 RF N 95

Yang et al. (2015) 4 N 4 ANN Y 85

Nitsche et al. (2014) 8 _ 77

EPC-

DHMM
Y 75

Wang et al. (2010) 6 N 23

DT, KNN,

SVM
N 70

Xia et al. (2014) 4 N 134

ACO,

SVM
N 98

Bolbol et al. (2012) 6 Y 3 SVM _ 88

Gong et al. (2012) _ Y 3

Rule

based
Y 82

Fang et al. (2016) _ N 10

SVM, DT

KNN
N 86

Xiao et al. (2017) 6 N 15

RF, GBDT

XGBoost
Y 91
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Thus the existing transport mode detection research can be broadly categorized into
either a machine learning based or a knowledge-driven approach. A machine learning
based approach is data specific and cannot explain the semantics of a given mobil-
ity based activity. A machine learning based approach also falls short in modelling
the kinematic uncertainties which can be addressed by a fuzzy knowledge-driven ap-
proach. Existing fuzzy logic based models, however, cannot produce the multiple possi-
bilities and lacks the transparency. In order to address that in this thesis a fuzzy logic
based model has been proposed with more transparency (Chapter 5). On the other
hand, a purely knowledge-driven model cannot adapt in varying conditions and thus
when the duration of a feature vector is shorter which is a typical case in near-real
time a purely knowledge-driven model does not perform well. In order to address
this issue a novel hybrid knowledge-driven model has been proposed in Chapter 6.
This thesis also developed a more robust and adaptive framework based on machine
learning approach in Chapter 7 to detect transport modes at even a shorter temporal
interval as well as in offline mode. Thus this thesis improves the existing knowledge-
driven mode detection models and bridges the gap between machine learning based
and purely knowledge-driven approaches.

2.3.4 Frequent behaviour mining and extracting significant places

From travel demand perspective it is important to know significant places or activity
centres in order to characterize travel and activity behaviour. In human geography,
cell phone call data has been used to identify personal point of interest(s) such as
home or office (Ahas et al., 2010). Another popular method is visual analytics which
is in use for a long time (Andrienko et al., 2007). However, with the growing mobility
data it is impossible to analyse each trajectory and identify the significant places or
POIs. Some researchers used geographic information along with raw trajectories to
extract POIs. Assuming that similar activities consume somewhat similar duration
temporal signature has been added to enrich semantics of the trajectories. Andrienko
and colleagues developed spatio-temporally constrained filtering process to extract
significant POIs. They used three different datasets as follows (Andrienko et al., 2013).

• GSM trajectories of 67 persons in France for 49 days

• GPS trajectories of a single person in the USA for 351 days

• Georeferenced tweets from 2607 Twitter users for 60 days in the USA

Andrienko and colleagues used minimum bounding box to cluster the spatio-temporal
points to group them in stop locations. Then they estimated temporal signature or
dwell time at each stop locations and based on temporal signature stops are cate-
gorised in different predefined POIs and corresponding activities. The visualization
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of their imputed result was presented in map, temporal and spatio-temporal cube for-
mats. In their work they characterise temporal signature based on frequency of visiting
the stop, time of visiting- day, week, and month and time series of visit.

Ying and colleagues worked on MIT Reality data set to predict a person’s next loca-
tion using two broad modules such as offline training module and online prediction
module (Ying et al., 2011). The offline training module consists of three basic steps
such as data pre-processing, semantic trajectory pattern mining and geographic min-
ing. In data pre-processing step, individual trajectories are transformed in to sequence
of stay locations using density based clustering approach and user defined temporal
and crowd threshold. In the next step semantic trajectory patterns are created where
each stay location is semantically annotated with closest landmark information and
based on a set of movement behaviour each set of semantic locations is given a support
value. For identifying individual frequent movement behaviour they used sequential
pattern mining algorithm Prefix-Span which is detailed in Pie and colleagues work
(Pei et al., 2001). They also figured out longer the trajectory pattern they mine, more
subsequences are generated which becomes computationally inefficient while match-
ing the person’s current movement pattern with subsequences generated activity. They
used clustering to group similar trajectories based on longest common subsequence al-
gorithm. In the third step, they developed stay location pattern tree from geographic
mining which was used in online prediction module. Online prediction module was
used to develop candidate paths.

Yavas and colleagues developed association rules based on support and confidence
to predict an individual’s next location (Yavas et al., 2005). Morzy and colleagues
also used similar approach and used a modified Apriori algorithm to detect frequent
pattern of group movements. However, Morzy and colleagues did not use semantic
location information (Morzy, 2006). Monreale and colleagues developed prefix tree
based on order of locations, travel time and frequency of visit to predict next location
(Monreale et al., 2009).

Using individual location history Ashbrook and colleagues also developed Markov
models based on density based clustering approach and time spent at a certain loca-
tion to identify significant location and future location of the person (Ashbrook and
Starner, 2003). In this work, they considered GPS inaccuracies and thus the same place
indicating different coordinates at different times. They used an iterative clustering
approach to locate the same location from different GPS spatio-temporal points by
shifting the mean. Once the locations are confirmed they used dwell time at each lo-
cation to measure its potential. Then a Markov model is used to predict next location
based on previous location history.

Liao and colleagues developed personal maps where they considered individual’s
significant locations, activities at those locations, routes taken and transport mode
(Liao et al., 2006). They used 10 minutes temporal threshold for detecting stay locations
followed by Relational Markov Network (RMN) for place classification. They also de-
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tected anomaly in movement behaviour using dynamic Bayesian Network. Although
main motivation for their work was to contribute in assisted cognition system (Kautz
et al., 2003; Patterson et al., 2004) for cognitively impaired persons but this work has a
potential to be used in context-aware smartphone based travel survey application.

Zheng and colleagues contributed to location prediction through generic and per-
sonalized travel recommendation system (Zheng and Xie, 2011; Zheng et al., 2009).
They have modelled travel recommendation system in two ways. The first approach is
generic one which is based on Tree Based Hierarchical Graph (TBHG) structure. The
generic approach is developed using multiple users’ GPS traces. First stay locations of
the users are clustered in at different granularities. Each cluster can again be divided
in to several clusters and form the children nodes and thus a tree based hierarchical
model is built. Each level of this tree structure represents peer connected graphical
structure which represents travel sequence from one cluster (stay point) to another
cluster (stay point) in a chronological order. Then a Hypertext-Induced Topic Search
(HITS) model is used to mine top ‘m’ locations and top ‘k’ travel sequences based on a
geospatial query region using users travel experience and location interest in mutual
reinforcement manner. The second approach was developing a personalized travel rec-
ommendation system where Zheng and colleagues estimated users travel experiences
using hub score from TBHG and HITS model. Then they estimated correlation between
locations and sequence of travel between them. Then based on the correlation between
locations a Collaborative Filtering (CF) model is used to predict a single user’s interest
to visit next location.

2.3.5 Privacy issues in motion trajectories

Since daily trajectories indicate people’s daily activities which involve their personal
spheres including home, workplace, meeting place and hence these trajectory informa-
tion are critical and need to be protected against privacy threats (Parent et al., 2013).
With recent mobile applications and location based services privacy issues have be-
come more prominent. Many countries have governed various privacy rules and poli-
cies to preserve and protect the personal information. However, these privacy policies
are not sufficient to protect the personal information from malicious third parties who
can deliberately access to the personal information through spatial trajectories and
pose privacy threats. In order to ensure privacy from untrusted third parties various
privacy enhancing technologies (PET) have been formulated. Parent and colleagues
discussed contributions from various authors and researchers in the domain of privacy
preserving research (Parent et al., 2013). They have also discussed two PET approaches
in their survey. They have characterized PET from three perspectives as follows.

• Data model which involves preserving privacy at single positional level which is
a typical case for streaming process for a potentially untrusted third party and
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preserving privacy as a whole on all the trajectories in case of data publishing
through a trusted third party.

• Privacy goal that defines the purpose of privacy of personal information. Per-
sonal information could be related to personal identity, location information and
both.

• Application context- which includes whether the trajectories are treated in stream-
ing process or data publishing.

Chow and colleagues discussed various privacy enhancing techniques in their loca-
tion based service research (Chow and Mokbel, 2011). They have mentioned how dif-
ferent de-identified microdata can be linked to discern a person’s personal information
including identity and location. They have pointed out the weakness of k-anonymity
due to lack of diversity in the equivalence class which leads to use of l-diversity ap-
proach. A thorough discussion of l-diversity has been governed by Machanavajjhala
and colleagues (Machanavajjhala et al., 2007). Chow and colleagues categorized PET in
to three broad categories such as false location, space transformation and spatial cloak-
ing. They have also discussed in detail about various techniques such as group based
and distortion based spatial trajectory preservation, mix-zones, vehicular mix-zones,
path confusion and introduction of dummy trajectories.

Since a location reflects different degree of sensitivity depending on the context
hence, a degree of sensitivity has been proposed by Damiani and colleagues (Damiani
et al., 2010, 2011). This approach is particularly useful in travel demand analysis at
aggregate and disaggregate level. A person can define a privacy degree for a certain
location and based on that cloaking algorithms would generate coarse regions con-
taining person’s location. On querying, the algorithm would return the coarse region
instead of person’s actual precise location and in that way, the positional information
can be saved.

There are instances when the untrusted party may have a person’s background infor-
mation or POI sequence information which helps to correlate a de-identified trajectory
sequence with background information and can reveal personal information. Terrovi-
tis and Mamoulis has proposed a suppression technique which can remove certain
number of POIs from a person’s trajectory and maintain k-anonymity and thus cre-
ate ambiguity in identifying and extracting person specific information (Terrovitis and
Nikos, 2008). Abul and colleagues developed an anonymization technique where the
trajectories are clustered in a cylindrical volume and made them indistinguishable
from each other (Abul et al., 2008).

Monreale and colleagues developed a hierarchical ontology of POIs in order to pre-
serve the privacy (Monreale et al., 2009). Their privacy approach contributed at seman-
tic level rather than just spatial level like spatial cloaking. They proposed to replace
each POI by their generic types such as Eiffel Tower by tourist place. In that way, even if
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the attacker has knowledge of POI sequence but the attacker cannot reveal person’s ac-
tual POI since the actual POI is converted to a generic type. This approach can be used
in travel demand analysis at disaggregate level in order to understand the sequence of
travel of people in a generic way while preserving their personal information.

In summary, trajectory interpretation can provide travel behaviour at different reso-
lutions. An offline trajectory interpretation requires an episodic segmentation prior to
an actual activity detection takes place over a given segment. Existing segmentation
approaches use a redefined threshold, hence the existing methods are subjective and
lacks the adaptivity. The interest of this thesis is focused on extracting transport mode
information from raw trajectories (see Chapter 5, Chapter 6). This thesis presents an
adaptive trajectory segmentation approach based on homogeneous activity state at
different temporal granularities (Chapter 7).

2.4 towards the notion of activity

Following the above discussion, it is evident that identifying activities and their pattern
in space and time would result in understanding the movement of the person and
how demand for travelling takes place at different granularities. However, there has
been a semantic gap while defining the concept of activity by different application
domains. FOr example in time geography and urban science activity a considerable
time spent at a given location is considered as an activity whereas in pervasive and
mobile computing body parts movements are considered as an activity. This raises
consistency problem among different disciplines ranging from transportation science
and time geography to cognitive science and pervasive computing.

The interest in activities of this thesis is driven by the challenges of motion analysis
to model activity out of trajectories under different contexts, as studied by various
disciplines. Hence there is a need to revisit all the conceptualizations of activities
prominent in these different disciplines, and bring them together on a common ground.
This section discusses the state of the research in the various disciplines.

2.4.1 Activity in time-geography

Many activities on an urban scale are bound by location and time (the where and the
when), which determine opportunity, and shape of the located object, which deter-
mines affordance. Shopping is possible only where a shop is, when the shop is open,
and whether there is a potential customer (to perceive and realize the affordance). In
time geography (Hägerstrand, 1970) this located object would be a space-time station,
and shopping would be characterized by the bundle of the space-time station and the
trajectory of a person over a period of time. Constraints such as opening hours can
be represented by interrupting the space-time station over periods. Other activities
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are linked to change of location (‘travel’ on urban scale), which is similarly linked to
opportunity and affordance.

In time-geography this is represented by non-stationary segments of a person’s
trajectory; a mediated travel, on board of a vehicle, would be represented by a non-
stationary bundle of the person’s and the vehicle’s trajectory, although there exists
some amount of space-time uncertainties in one’s movement behaviour (Winter, 2009).
Again other activities do not depend on location and time: interaction with systems, in
terms of ubiquitous computing, can happen anywhere, anytime. With the emergence
of advanced ICT the concept of time geography has been extended from a physical
space to a virtual space, and this transformation led to change in activity pattern in ur-
ban environment (Shaw and Yu, 2009). For example, in order to buy an air ticket people
no longer need to go to the airline’s office (located in a physical space), rather people
can purchase the ticket online (in a virtual space). Golledge and Stimson (Golledge
and Stimson, 1997) explained collective activities in terms of two space-time paths and
their relationships such as whether the space-time paths are meeting over a certain
time window (co-location in time), whether the paths are meeting over a certain geo-
graphical space (co-location in space), or whether the two space-time paths meet over a
given space and time window (co-existence). The idea can be extended for multiple in-
dividuals and their collective activity pattern through space-time bundle (Miller, 2004).
Couclelis discussed how ICT influences a gradual transformation in activity pattern
through fragmentation and reorganization of activity over a given space (Couclelis,
2004).

A physical interaction always happens with a tangible part of the world : be it a
physical space or virtual space. An activity in physical space requires interaction with
different objects and at the same time an activity in a virtual space requires at least
an internet enabled smartphone or computing device to enter in that virtual space
and perform different activities (such as e-banking, tele-conference) (Shaw and Yu,
2009). In all these cases especially, during the interaction with the smartphone, e.g.,
to start an app and to browse through the ‘pages’, and all this while the individual
is somewhere at some time. Thus, activities are generally oriented towards certain
objects in the world, and hence the properties of the given object are an important
facet, especially its availability and its affordance. These properties can be expressed as
spatio-temporal constraints by time-geography. But time geography lacks guidance on
the level of granularity with which these space-time constraints should be formulated
for a particular analysis, and it also lacks the notion of the cognitive constraints what
objects in space facilitate to offer (Raubal et al., 2004).
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2.4.2 The concept of activity in situated action modelling, activity theory, and distributed
cognition

The concept of activity has also been reflected in situated action modelling where the
basic unit of analysis is “the activity of person-acting in setting” Nardi (1995). The
focus of situated action modelling is the person and the setting. A setting is concep-
tualized as the relation between the person and the arena within which the person
is acting (the concept of arena is equivalent to the concept of environment or world
in activity theory and affordance theory). Lave (1988) mentioned arena as a stable in-
stitutional framework. If a person is shopping in a supermarket, then the particular
supermarket is an arena of the institution supermarket.

According to activity theory (Nardi, 1995), an activity is not a monolithic concept;
rather it is a hierarchical concept consisting of activity at the top layer, action in the
middle layer, and operation in the bottom layer. In activity theory the unit of analysis
is an activity, which consists of subject, object, actions and operations. Each of these
layers can be broken down into finer layers with growing complexity of expressiveness.
For example, an activity can be broken down into actions, which can be broken down
into subactions, which can again be broken down into sub-subactions, and so on. A
subject in activity theory can be a person or a group of persons or an organization
having an objective that motivates them to perform an activity in relation to the envi-
ronment (Lave, 1988; Leont’ev, 1978). Hence, actions are goal-directed; they contribute
to performing an activity. A goal can be achieved by different actions. For example, a
person can eat food at a restaurant or at home in order to achieve the activity “having a
meal”. On the other hand operations are unconscious. An action becomes an operation
over routine execution, and vice versa, an operation may be lifted to an action if there
is a sudden change in the condition or the environment such that a routine is inter-
rupted and conscious decisions have to be made. Thus the constituents of activity can
change their semantics. In the HCI literature (Norman, 1991) as well as in wayfinding
and navigation (Nardi, 1995; Hirtle et al., 2011; Timpf, 2005) actions are termed tasks,
however, in this research the term action will be used consistently.

The concept of activity has also been explored in distributed cognition. In dis-
tributed cognition, the unit of analysis is a cognitive system which consists of in-
dividuals and artefacts with which the individuals interact (Nardi, 1995; Hutchins,
1995). Distributed cognition considers individuals, artefacts and the environment as a
system, unlike traditional cognitive science that concentrates on an individual’s cogni-
tive aspects (Newell and Simon, 1972). Distributed cognition analyses how individuals
coordinate and share their actions to perform a goal.

All these theories are limited in terms of their activity modelling in the light of space,
time and context. Thus, in this research an overarching framework has been developed
to explore different activities based on location, time, needs and context – that can
connect different facets of cognitive science, HCI, pervasive computing, and urban
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transport geography. We further set our scope to an individual’s interactions with
systems in an urban sphere, i.e., activities that go beyond urban scale (e.g., travelling a
country), or are confined to the private space (e.g., house cleaning) or to the own body
(e.g., gesturing) are out of scope of this thesis. An elementary activity in the urban
sphere is travelling from one location to another location to fulfill certain need(s). An
earlier work by Hirtle and colleagues (Hirtle et al., 2011) discussed how granularity
impacts on the conceptualization of an action or activity in the context of navigation.
In this thesis a similar concept to explore travel activities in urban context at different
granularities.

Activity theory does not specify or define human needs. Therefore in this research
the typology of fundamental human needs defined by Max-Neef and colleagues (Max-
Neef, 1991; Max-Neef et al., 1989) has been used that stretches across all spheres
including urban environments. Unlike Maslow’s hierarchy of needs Max-Neef’s nine
fundamental human needs are not hierarchical; rather they exhibit properties of simul-
taneousness and complementarity that involves four elements such as being (qualities),
having (things), doing (actions), and interacting (settings). 10 The nine fundamental hu-
man needs are subsistence, protection, affection, understanding, leisure, creation, identity,
and freedom.

In this research the reason why the categorization of Max-Neef’s fundamental needs
is chosen as this categorization is finite, classifiable, and constant throughout different
human culture and historical time periods. What has changed over time is only the
mediation of satisfying a given need through varying artefacts.

Thus activity can be viewed as is a hierarchical, qualitative and contextual concept.
Activity can be reasoned and explained from different perspectives such as situational
action modelling, distributed cognition and activity theory. However, activity is always
oriented towards an objective to fulfil a need. The model presented in Chapter 4 will ex-
tend the concept of activity from activity theory and develop a conceptual framework
to model activity out of a trajectory that explains an agent’s movement behaviour and
activity knowledge from a given trajectory.

2.4.3 Concept of activity in travel demand modelling

In the field of transport engineering a long-standing challenge is predicting transport
demand. Methodologically two approaches can be distinguished: the (still prevalent)
Four-step Model of trip generation, trip distribution, mode choice and route choice,
and the (substantially more complex) activity-based travel demand models (McNally
and Rindt, 2007). Unlike four-step model the activity-based approach in transportation
science estimates travel demand by assuming activity have to be performed, instead of

10 To be found online at (last accessed: January, 2017)
http://www.rainforestinfo.org.au/background/maxneef.htm
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locations have to be visited, in order to satisfy economical, physical and social needs.
The needs can be of two types (Jones, 1979) as follows.

• Subsistence needs: basic needs such as clothing, food, income from work or
school.

• Socio-cultural and user defined needs: various needs based on leisure and recre-
ation.

Travel demand models consider activities throughout a day, determining their level
of granularity. Some of the activities can be performed at home, or without travel.
Some activities need to utilize some resources and opportunities (which is equivalent
to affordance in affordance theory (Gibson, 1979) or motives in activity theory in HCI
(Kaptelinin and Nardi, 2006). However, resources and opportunities are dispersed at
different locations and for certain time duration. Hence in order to use a particular
resource an individual should change their position, giving rise to travel from one
location to another location in order to use certain resources and opportunities. Thus in
activity-based travel demand models travel is viewed as a derived demand for activity
participation in space and time.

Existing activity-based travel demand models consider activities are constrained by
location (resources, opportunities) and needs. However, such models are not specific
about the granularity of the location or time of an activity. The models mainly consider
activities for longer duration at a given location such as home, office, school, or shops
since they describe activities over the course of a day. The needs for travel depend on
several factors such as activity type, individual role and responsibilities in the family,
life style, space time and budget constraint, individual demographic profile (Jovicic,
2001). The activities themselves are modelled through activity patterns. But activity-
based travel demand models cannot reason about the modelling of activity through
actions. In contrast the model proposed in this thesis will explore and model activities
at different granularities, which supplements activity-based travel demand models
through more reasoning capability and more flexibility to extract activity knowledge
at different level of detail.

2.4.4 Concept of activity in pervasive and mobile computing

Existing research in pervasive or mobile computing or even public health research
generally aims at recognizing activities at a micro level using low level sensor sig-
nals. Since these activities are ubiquitous hence in some literature these activities are
also termed as activities of daily living (ADL). The concept of ADL is generally con-
cerned with the physical activities involving body part movements. Understanding
such activities and behaviour from users’ perspective can allow computing systems
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to help the users to perform given tasks (Abowd et al., 1998). Humans are always ac-
tive in some sense to some extent and understanding their active state is important
in a number of situations such as in public health research and medical science un-
derstanding patient’s needs and their emergency situations based on their activities
and modelling the rehabilitation task (Chen et al., 2005), understanding individual
lifestyle such as brushing teeth (Choudhury et al., 2008), hand wash or taking food
(Amft et al., 2007), medication intake (Oliveira et al., 2010). In urban analytics it is
important to understand a person’s mobility state (Byon et al., 2009). Understanding
and recognizing activity is also important in many entertainment and sports scenarios
to respond based on user’s need. For example, in gesture based gaming models such
as Nintendo Wii and Microsoft Kinect and Philips DirectLife or Nike’s context-aware
shoes can improve user interaction with its environment and improve physical fitness
by providing feedback especially in sports activities (Bulling et al., 2014).

In earlier days activity recognition research used to be performed in a constrained
research environment using still images and video cameras through image processing
and analysis (Aggarwal and Ryoo, 2011; Mitra and Acharya, 2007). But in order to
address more real issues there is a shift in research paradigm in recognizing ADL now
different sensors on smartphones or sensors worn on body parts are being explored.

Nowadays, smartphones can be used to track people’s indoor and outdoor move-
ments for a variety of purposes such as health monitoring, extracting contextual infor-
mation, or behavioural information. In mobile computing and biomedical domain ac-
tivities are generally modelled around ambulatory movement, i.e., locomotion. Choud-
hury and colleagues showed how smartphone based accelerometer and microphone
can be used to detect micro-activities such as walking, sitting, running, climbing stairs,
jumping, or talking (Choudhury et al., 2008). Bao and colleagues used accelerometers
at different parts of the body to understand different activities (Bao and Intille, 2004).
However, these sensor data are subject to significant noise caused by their varying
position and orientation in relation to the body. In addition, it is still a challenge to
distinguish different concurrent activities (e.g., walking while talking over phone).

Based on the notion of location-based services and ADL in mobile computing, activ-
ities can be categorized into two types as follows.

• High level activity based on location and stay time such as work.

• Micro-level (or low level) activities based on body movements such as walking,
running, or climbing stairs.

This distinction is relevant for interpreting trajectories at different levels of granular-
ity. Even adaptive sampling can be implemented in order to better manage the battery
resources (Cottrill et al., 2013; Pereira et al., 2013).

Until 1990 activity recognition research were mainly focused on gesture detection. A
more recent classification of activities, based on the complexity of the activity, shows
four different levels: gestures, actions, interactions and group activities (Aggarwal and
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Ryoo, 2011). Aggarwal and Ryoo discussed the methodological framework to model
and detect activities at different layers such as single layer and multiple layers. Ag-
garwal and Ryoo also highlighted different approach-based perspective to address
activity at different levels such as from space-time perspective, sequential approach
and hierarchical approach which can further be broken down into space-time volume,
trajectories, different space-time feature based, exemplar-based, state-based, statistical,
syntactic and descriptive (Aggarwal and Ryoo, 2011).

Single layer approaches are simple in the sense the active state is recognized based
on sequence of images whereas multiple layer (hierarchical way) consists of simple ac-
tions for modelling complex activities. Aggarwal and Ryoo demonstrated different cat-
egorization schemes for taxonomic activity classification such as statistical approaches
based on statistical model, syntactic approaches based on grammar syntax involved
with sequential notion. Aggarwal and Ryoo aim at classifying activities at all the lev-
els, starting from individual bodily movement (gesture), individual simple activities
(action), engagement of an individual with another individual or an object (interac-
tion) or coordinating among themselves (group activities) (Aggarwal and Ryoo, 2011).
However, the model developed by Aggarwal and Ryoo is more focused on activity
recognition, not activity modelling per se at different contexts. Hence the distinction
between activity and action is blurred and not properly defined. They also do not
address the conceptualization of need and goal. Their work is also specialized in com-
puter vision research where analysis of an activity can be performed from images or
videos.

In another work, Aggarwal and Park worked on articulated motion analysis and
understanding high-level activities from video and still images (Aggarwal and Park,
2004). They have modelled a high-level activity based on low level simple actions
which are dependent on movement of body parts. The authors, however, did not
clearly define the semantics of activity and action in their model. It is only understood
an activity is composed of actions but the model cannot explain the hierarchical struc-
ture of activity and action based on context. Aggarwal and Park developed their model
on four basic components such as a) human body modelling in the image, b) level of
details needed to address the human action, c) high-level recognition scheme coupled
with domain knowledge (Aggarwal and Park, 2004). Aggarwal and Park demonstrate
activity recognition can be based on “object-based” perspective (specific to a model)
or “appearance-based” perspective (ad hoc basis). Thus Aggarwal and Park devel-
oped two activity recognition schemes e.g., recognition by reconstruction and direct
recognition with varied level of granularity in activity knowledge. Nevertheless, their
work cannot explain activity and action from need-based, goal-based and contextual
perspectives.

Figo and colleagues explored different techniques used in activity recognition (Figo
et al., 2010). There focus was on low level bodily movement such as jumping, run-
ning and walking. Their main focus was to detect the activities in order to enable

56



different context-aware services based on user’s active state. Figo and colleagues have
compared the activity detection performance of different features either captured in
time domain, frequency domain or symbolic representation. In order to correctly de-
tect user’s active state Figo and colleagues have discussed efficacy of using different
features computed from accelerometer data such as root mean square metric, signal
correlation coefficient, sample difference, zero-crossings, DC component, spectral en-
ergy, information entropy, Euclidean and non-Euclidean distance measure in signal
value and dynamic time warping between a portion of signals (Figo et al., 2010). Their
result demonstrates in three-activity situation frequency domain techniques are more
robust than time domain techniques.

Bulling and colleagues gave an overview on activity recognition research with a fo-
cus on low level physical activities. They discussed specific challenges in activity recog-
nition such as a proper definition of activity and diverse nature of activities. Bulling
and colleagues pointed out taxonomic classification of activities based on different
aspects such as metabolic activities which is vastly used in medical sector (Bulling
et al., 2014) as well as time use pattern (Partridge and Golle, 2008). Bulling and others
also discussed low level implementation of the models and class imbalance problems
during training phase along with diverse nature of sensor signals, trade-off between
sampling duration and accuracy (Bulling et al., 2014).

In order to detect the activities at different levels there has already been a significant
thrust on integrating various sensors to generate a rich movement and activity data
to understand travel behaviour. However, there is no clear definition of activity in the
field of mobile computing or public health research so far. In this thesis, the ontological
framework that will be designed can address the different levels of activity in activity
recognition research (see Chapter 4).

2.4.5 Activity recognition from GPS sensors

During in-vehicle GPS studies, trip end detection and trip purpose identification were
the most important stages in post-processing phase. Most of the trip end or activity
detection algorithms are rule based. An activity is identified if there is a longer period
of non-movement or longer dwell time at a same point in space. An activity can be
a trip end, going home or office, meeting friends at a restaurant, having coffee at a
cafeteria and so on. Prior studies suggested that if the dwell time is greater than 120

seconds then that could be a probable trip end (Bohte and Maat, 2009; Clifford et al.,
2008; Forrest and Pearson, 2005; Schonfelder et al., 2002; Stopher, 2004; Wolf et al.,
2004). Earlier in-vehicle GPS travel survey assumed to have a trip end if there is no
GPS points recorded in the logger for a long time due to turning-off the engine.

Over last few years, due to emergence of wearable GPS devices and smartphones,
activity is no longer limited to stopping the engine or having a trip end (see 2.3.2).
However, there might be cases of shorter stops than 120 s e.g., when a car stops for
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passengers to get-on or drop-off of the vehicle while the engine is still running or may
be a person quickly entering a shop to purchase a cigar or recharging his smart-card
on his way.

To address such diverse activities, several hierarchical deterministic dwell time al-
gorithms have been devised by many researchers. For example, GeoStats developed
Trip Identification and Analysis System mainly to detect trip ends. This algorithm uses
three temporal dwell time thresholds (Axhausen et al., 2003). If the dwell time is above
300 seconds then the trip end is defined as “confident” trip end. If the dwell time is in
the range of 120 seconds to 300 seconds then the trip end is defined as “probable”. If
it is in the range of 20 seconds to 120 seconds then the trip end is “suspicious delay”.
A GIS road network is used for map-matching purpose to again filter the trip ends
which are “probable” and “suspicious delay”.

In order to detect the trip end during signal loss rule based algorithms have been
developed based on trip characteristics before and after signal loss with predefined
dwell time without using any external GIS information (Stopher et al., 2002) and using
GIS information for more accuracy (Stopher et al., 2008). Since travel is derived from
activity participation, activity can also be identified by understanding trip purpose.
Along this line, some of the seminal work was done by Wolf. In order to understand
trip purpose land use information has been used in conjunction with the trip end
identification algorithm backed by “point-in-polygon” approach (Wolf, 2000). Wolf
used 25 pre-defined land use types and 11 trip-purpose classes. After identifying the
trip ends those are matched with the land parcels and checked which land use type the
trip end is matching to and a trip purpose is manually labelled based on the land use
type, and other heuristics namely time of the day and dwell time or activity duration
at that point. Trip purpose identification is discussed in more detail in subsequent
sections.

Since rule based and deterministic activity recognition models are not able to ad-
dress dynamic activities with various dwell time and spatial constraint, machine learn-
ing and probabilistic approaches have been explored to improve the recognition pro-
cess. Liao and colleagues used conditional random field (CRF) and Relational Markov
Network (RMN) to detect various activities and rank them (Liao et al., 2005, 2007). Li
and colleagues used sequential mining to detect activity locations and activity pattern
based on dwell time and location information (Li et al., 2010b). In order to explore
travel demand at different granularity, activity at different levels (individual and col-
lective) should be understood and hence a paradigm shift have occurred from under-
standing individual activity pattern to collaborative activity pattern by using reinforce-
ment inference approach. This concept has been explored in Microsoft’s Geolife project
where activity locations are mined using user’s comments and geotagged information
(Zheng et al., 2008).

In summary, activity can be associated to travel or movement or navigation from one
location to another location. The activity knowledge can be explored at different gran-
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ularity that depends on the nature of analysis or the problem at hand. Based on the
activity and its granularity relevant route directions and wayfinding information can
be disseminated that would influence certain travel based actions at decision points
or at planning, tracking or assessing phase during a travel. It turns out that the lin-
guistic ambiguity between activity and action can be addressed in the hierarchies of
activity theory in Section 2.4.2, can further be supported by the concept of granularity
(Section 2.6).

2.4.6 Relating the concept of activity and action with the notion of event and process

The recursive concept of activity and action presented in this research (Chapter 4) is
comparable to the long standing preoccupation with event and process respectively in
GIScience. The concepts of event and process have been studied for a while, however,
the recent need to integrate two distinct GIS functionalities i.e. data modelling and
process modelling, into a unified model (Galton, 2015). Galton has pronounced a need
to formally describe these two concepts (Galton, 2006). An event could be viewed as a
phenomenon with a clear start and end in time, whereas a process is a homogeneous
phenomenon without any temporal bounds. For example, Galton (2015) explained
the gradual erosion of a cliff along a coastline, the yearly growth of a tree, walking,
eating – all these can be treated as processes. On the other hand, collapse of a cliff,
fall of a tree, walking from home to office on a particular day, or having lunch on
a particular day could be treated as events as in the latter case the phenomena are
bounded in time or a discrete chunk(s) of happening (Galton, 2015). Prior research shows
the concept of process and event is context-sensitive (Worboys, 2005; Galton, 2015).
The formalization of process and event suggested by Galton (2006) partly aligns with
the concept proposed by Yuan (2001) and Langran and Chrisman (1988).

While representing and modelling complex geographical phenomena using rainfall
Yuan (2001) described a process as being measured by its footprint in spatial and temporal
domain and an event is a spatial and temporal aggregation of a number of connected processes.
To illustrate further, Yuan (2001) mentioned the occurrence of rainfall at a given loca-
tion at a given period of time could be considered as an event whereas the way it rains
could be viewed as an associated process. In a different work, Langran and Chrisman
(1988) viewed an event as an instantaneous transition between two states, however, the
time of transition between two states is context-sensitive and could be zoomed in or
out at different temporal granularity. The idea of event and process proposed by Yuan
(2001) aligns with Galton (2006) in terms of recursiveness. That means, based on the
earlier work of Worboys (2005) an event can be broken down into a number of process
and a process can be broken down a number of events. Although the model suggested
by Langran and Chrisman (1988) does not provide an explicit hint of recursiveness be-
tween event and process, their idea also aligns with Galton (2015) in terms of changing
the temporal granularity depending on the context. Thus based on the above discus-
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sion it can be said that the concepts of process and event are context-sensitive. In this
context, time plays an important role. Galton (2015) mentioned a process is an experi-
ential phenomenon happening over a fluid time without no bounds whereas an event
is a historical (or scheduled) phenomenon over a frozen time with a definite bound.
These concepts are important while modelling the real world phenomena at different
temporal granularity.

The concept of activity and action introduced in this thesis (Chapter 4) could be
related to these concepts of event and process (Langran and Chrisman, 1988; Yuan,
2001; Worboys, 2005; Galton, 2006). Both concepts are recursive and context-sensitive
in nature. In this regard, an activity could be viewed as an event with a known start
and end time (in a given space). An activity consists of a number of actions, which is
similar to an event subsumes a number of processes. With a change of the application
context, an activity could be viewed as an action, in a similar way a process can be
viewed as an event in another context.

In the context of mobility-based activities Abler et al. (1971) proposed a travel can
be viewed as an activity whereas a trip (which is required to realize the travel) could
be viewed as an action (Galton, 2015). From the perspective of process and event
this thesis also conforms to the previous conceptualisation of Abler and others (Abler
et al., 1971). Thus a trip can be viewed as an event as it has a reported or predicted
or scheduled (crisp or fuzzy) start and end in time and space, whereas a travel is a
phenomenon of changing location without a fixed origin, destination and start and
end time. Thus the concept of travel is more general compared to a trip. However,
relating to the recursiveness or mutual subsumption property of activity and action
(also process and event) this thesis assumes the notion of travel is context-sensitive. A
travel can be viewed both as an activity or action (see Chapter 4).

In a different work, Hornsby and Cole (2007) developed a foundational framework
in order to analysing movement patterns in terms of their semantics from a sequence
of events that are experienced by the moving object. Such a foundational work could
be used to develop an automated event notification system (during a travel) or query-
ing specific mobility-based events from a database. In order to model the movement
patterns Hornsby and Cole (2007) used three primary attributes e.g., object identity,
event location and event description.

Thus the literature provides a support and foundation of conceptualising the notion
of mobility-based activity in the light of event and process. Although the connection
between activity–action and process–event is not empirically established within the
scope of this research, however, the state-of-the-art shows both the concepts (activity
and action; event and process) could be comparable. As Galton (2015) highlighted
the importance of the aspect of event and process in GIScience, particularly while de-
veloping agent-based models or a model that captures a real world spatio-temporal
phenomenon as close as possible, where time is a critical factor. In this research the
context-sensitive activity ontology also demonstrated that the notion of activity or ac-
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tion depends on the temporal granularity suggested by the context (Section 4.1). Going
back to Galton’s idea of fluid time and frozen time (Galton, 2015), if an activity is cur-
rently being undertaken (as an experiential phenomenon) then that activity becomes
a process. In order to perform the activity there are a number of actions performed
with a definite start and end time sequential manner. Those actions could be viewed
as events. However, in a different context when the focus lies on a past activity with
a known start and end time then that activity will transform into an event. All the
actions subsumed by that activity will also be events with a known start and end time.
Thus the transformation between an activity–action and process–event is context de-
pendent. As mentioned earlier, with the emergence of activity-based service provisions
in mobile computing, the resemblance of activity and action with process and event is
useful for conceptualising a user’s experience and interaction with her surroundings
over time (past, present, future). This will enable more detailed and personalized ser-
vice solutions depending on a user’s current activity state (over fluid time) or using
the past activity behaviour with start time, end time and duration (over frozen time) to
predict her future activity state(s) and trigger specific context-aware services.

2.5 concept of affordance

Objects in the environment offer different degrees of action potential which is contex-
tual and often assessed by the agent or subject given the specific action that involves
an object with a given affordance. These offerings for action potential are considered
as affordance of given object in the environment. The concept of affordances is rooted
in affordance theory (Gibson, 1977, 1979) which was motivated by the propositions
of Gestalt psychology that governs perception as a whole rather than through its con-
stituents (Koffka, 1935). Gibson linked the affordance of an object in the environment
with the properties of both the object and the agent who needs to carry out a given
action (Stoffregen, 2003). His initial concept of affordance was centred purely on visual
spatial perception (Gibson, 1979). Some researchers put more emphasis on properties
of the environment rather than agent’s part (Turvey, 1992). Overall this concept is
similar to the motive with the object in activity theory.

Affordance theory does not decompose or construct activity in a top-down or bottom-
up approach, but it helps to model the suitability of an object in order to perform an
action within the scope of an agent’s capability. The concept of affordance has been
used in many action-oriented scenarios starting from assessing the ability of a person
on climbing stairs where the affordance depends on the ratio of the height of stair steps
and the person’s leg (Warren, 1984). It also has been used in wayfinding and naviga-
tion in an unfamiliar environment where the agents need to perceive the affordance of
different objects in support of their decision making (Raubal, 2001). Affordance theory
is not only limited to objects but also this has been used in modelling the suitability
of places or locations for certain facilities. Considering the fact that different locations
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provide different degree of affordance which is perceived differently by the agents, a
suitability model for a restaurant has been studied depending on different actions it
may offer such as eating, reading, socializing (Jordan et al., 1998). Affordance theory
has also been used to evaluate the suitability measure for urban networks for pedestri-
ans (Jonietz et al., 2013).

Inspired by Gibson’s affordance theory of agent-environment mutuality, Zaff argued
affordance can be characterized with respect to an agent and its context and its prop-
erties. This enables affordance to be viewed as a measurable aspect only in the context
of an agent (Zaff, 1995). Norman explored affordance of everyday things such as tele-
phones, radios, or doors (Norman, 1988). On the other hand Gaver viewed affordance
from the perspective of agent’s socio-cultural and intentional aspects (Gaver, 1991).

Raubal and Moratz developed a relational functional model for affordance-based
agent framework by extending the traditional affordance theory through integration of
cognitive aspects, situational aspects and social constraints (Raubal and Moratz, 2008).
In this model they have categorized affordances into three classes such as physical af-
fordance, social-institutional affordance and mental affordance. Their model is based
on abstract functional representation of different affordance aspects and operational
aspects of an agent. In this model, physical affordance is characterized by physical
structure of the agent and the object, spatial cognitive capability of the agent, and a
goal. Physical affordance is constrained by social-institutional affordance. However, in
a spatio-temporal environmental setup an agent chooses certain affordances based on
its requirements and decision strategy, which gives rise to third category of affordances
called mental affordances, which are manipulated and processed mentally. Based on
the action and environmental condition the agent perceives different affordances and
performs an internal operation which depends on the agent’s historical experience
with the object. This results in an internal outcome. Following this stage, agent exe-
cutes an external operation (equivalent to an action in this research) that results in
an external outcome through some changes in the external environment (Raubal and
Moratz, 2008).

In this regard transport modes being mobile objects offer an affordance to mediate
people from one location to another location and thereby helps to perform an action
(or activity) during a travel. This thesis explores four different mediation types e.g.,
mediated by a bus, train, tram or by walk.

2.6 granularity in movement behaviour

Since travelling is an important facet in daily life as travel embeds various activities
(or actions) this section will look into previous work on how travel has been mod-
elled at different spatial and temporal granularity. Travel or movement is a continuous
phenomenon. However, movement history is captured in a discretized way, whether
recorded by sensors or by human reports post-travel. The recording is by waypoints.
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The movement can be perceived at different level of details and thus can represent
varying information. This level of detail at which the world is perceived at a given
context is known as granularity: a certain grain size at which a phenomenon is per-
ceived (Hobbs, 1990).

“Our ability to conceptualize the world at different granularities and to switch among these
granularities is fundamental to our intelligence and flexibility.”

- J. R. Hobbs (1985)
The time-ordered set of waypoints of an agent and its interaction with its environ-

ment can be refined by additional waypoints, or coarsened by thinning out. Struc-
turally equivalent to space-time paths in time geography (Miller, 1991), lifelines, or in
their discrete form, lifeline threads, have been suggested in order to model movement
behaviour in terms of precisely defined geometrical structures with varied granularity
(Miller, 1991). A lifeline is a time-ordered set of waypoints an individual has passed
through or occupied for a given time period (Hornsby and Egenhofer, 2002). Similarly,
lifeline beads are equivalent to space-time prisms, and a lifeline necklace is equivalent
to sequence of space-time prisms (Hornsby and Egenhofer, 2002; Miller, 1991). On a
coarser granularity a lifeline bead can be transformed into a lifeline trace that contains
only starting point and ending point or a necklace can be transformed into a convex
hull that connects all the rim points and generalize the movement behaviour of an
individual over a time period (Hornsby and Egenhofer, 2002).

Since activity is contextual and depends on the details of analysis and any occur-
rence is a function of time, temporal granularity plays an important role in defining
an activity. Hornsby developed a set of temporal zoom operators to shift the temporal
granularity over the identity states of an object and other objects that links during any
transitional change (Hornsby and Egenhofer, 2002). There are also instances of work
on spatial granularities for place descriptions (Richter et al., 2013). Hornsby and Egen-
hofer showed how a refinement operation can enhance the granularity and explores
more information on temporal, spatial and speed aspects whereas an abstraction oper-
ation does the opposite and reduces the information content (Hornsby and Egenhofer,
2002). A fine grained lifeline model reveals more activity or action information as more
relevant timestamps and locations that were otherwise unknown. At the same time a
coarser grained representation can simplify the knowledge and give a general trend
or high level activity knowledge.

The role of granularity has also been studied in wayfinding and navigation. Fonseca
and colleagues proposed a model to explore spatial information at different granular-
ity in order to disseminate varied level of details (Fonseca et al., 2002). Generally the
choice of granularity in wayfinding depends on previous knowledge of the agent in
the environment. Tenbrink and Winter proposed a framework for variable granularity
in wayfinding and navigation. They have considered linear (1D) and areal (2D) granu-
larities, and elaboration (Tenbrink and Winter, 2009). In the framework developed by
Tenbrink and Winter, they have represented 1D granularity as a line with segments of
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varying lengths. 2D granularity has been represented by polygons. Both 1D and 2D
granularities are finite and discrete since network structure and zoom levels are finite
and discrete, whereas elaboration is infinite as the route description can be enumerated
at infinite level. They also discussed how route directions and descriptions can vary
with varied details depending on person’s knowledge of the environment, travel di-
rection, location and more specifically pragmatic information needs. They have drawn
a comparison on flexibility in providing direction information by humans and ma-
chines. The granularity of human-provided route descriptions is more adaptable to the
information need than that of a machine. Machine generated route directions do not
consider varied information needs based on travel direction and a-priori knowledge
of the environment. Motivated by the works of Norman (Norman, 1988) and Kuipers
(Kuipers, 1982), Timpf has studied the notion of granularity on spatial knowledge rep-
resentation on a mobile device depends on the existing knowledge in the world (in
terms of signage, landmarks, spatial cues), knowledge in the head (cognitive map of
a place), and knowledge in the pocket (information contained in a mobile device in
terms of maps and other spatial information) (Hirtle et al., 2011; Timpf, 2005). Timpf
has developed a three-fold framework for any wayfinding activity such as wayfinding
from place A to place B and this activity consists of three tasks (actions) such as plan-
ning, tracking and assessing. Each of these tasks can be implemented through different
operations. Operations that implement the planning task include information gather-
ing, finding routes, determining constraints, producing instructions. Operations that
implement the tracking task include orientations, tracking locations, and comparisons
to plan. Operations that implement the assessing task include assessing instructions
and determining complexity of routes (Timpf, 2005).

With technological advancement there is a growing need of incorporating HCI in
urban context for providing information to mobile information seekers for various
location-based services (LBS). The information can be related to route recommendation
(Klippel et al., 2005) or activity recommendation (Crease and Reichenbacher, 2013). In
both cases spatio-temporal granularity and relevance play vital role in disseminating
the information in the user’s context (Hirtle et al., 2011; Hornsby, 2001; Raper, 2007).
Hirtle and colleagues explored the influence of activities on relevance and granularity
of route information by analysing different lexical indicators corresponding to certain
activity types. They argued the concept of activity is a relative notion (Hirtle et al.,
2011). Hirtle and others showed an example (Table 7) where taking a friend to an
emergency room in a hospital is an activity that forms different actions (tasks) such as
drive the car as fast as possible or call an ambulance, park the car next to the emer-
gency room and take the friend to the emergency room. Whereas at a finer granularity
if “driving the car to the hospital” is considered as an activity then this can be broken
down into different tasks such as planning the fastest route, tracking the position and
assessing the movement behaviour of oneself to reach the destination effectively and
quickly.
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Hirtle and colleagues also mentioned routine navigation (travelling) can be assumed
as action to fulfill a purpose of an activity whereas in some cases navigation itself can
be seen as an activity such as hiking, sailing or jogging (Hirtle et al., 2011).

Table 7: Activity and actions for different activity targeted to a same location. This table has
been taken from (Hirtle et al., 2011).

Activity
Take a friend to emergency

room at the hospital
Visit a friend at the hospital

Purpose Get medical help fast Socialize

Action 1 Drive your car to the hospital
Drive your car

to the hospital

Goal
As fast as possible,

fastest route
Take shortest path

Action 2

Park next to

emergency room
Park where available

Goal Nearest parking space Least expensive

Action 3 Go to emergency room Go to main entrance

Goal As fast as possible
Find directory or

information booth

Action 4 _ Go to friend’s room

Goal _ Try not to get lost

2.7 towards an approximate reasoning about mobility-based activi-
ties

Most of our cognitive processes and experiences revolve around the dynamics of the
real world. Any dynamic phenomenon essentially involves a change in some way for
example, in qualitative form, quantitative form or in visual form. In this regard, an
activity could be viewed as a change (in state) over a given space and time depending
on the context (see Chapter 4). Previous studies have demonstrated that any change
requires integration of at least three basic concepts – space, time and movement (Gal-
ton, 1993). In real world the knowledge about any concept (a phenomena, an object, or
a measurement) is often incomplete and imperfect. This also applies to the knowledge
extracted by interpreting spatial trajectories. The inference is generally made through
approximation based on the current state of the knowledge, which is either incomplete
or partly unreliable, or presented in a subjective and (vague) linguistic form (Bhatna-
gar and Kanal, 1986). For example, although a movement takes place in a continuous
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manner, however, due to system architecture and storage capacity the movement data
is sampled (and stored) in a discrete way, which affects the completeness of the data
that is being captured. Incompleteness may also take place due to signal gap or turning
of the device abruptly. At the same time, the sources (e.g., GPS, GSM, Wi-Fi) used to
record the movement data involve positional errors, which makes the measurements
unreliable to some extent. The ground truth recorded or reported by the users may
contain linguistic vagueness and sometimes associated with low reliability. All these
issues affect the confidence in the measurement as well as in the inference. The lack in
confidence introduces the aspect of uncertainty, both in measurement and inference.

According to Wordnet, uncertainty can be defined as the state of being unsure of some-
thing. In case of a mobility-based activity this notion can relate to sensor measurements
and observations (positional accuracy), inference strategies (choosing the relevant fea-
tures, developing the optimum propositions, setting up the optimal parameters) and
activity states (detecting the mean of travelling).

Kosanovic (1995) and Palancioglu (2003) have pointed out that uncertainty can be
addressed both through a stochastic approach or a fuzzy approach. However, a stochas-
tic uncertainty is based on probability of an event occurrence with a given state of the
knowledge. The limitation of a conventional stochastic process lies in its bivalent na-
ture. On the other hand, a fuzzy approach measures the degree of truth of a fact
or possibility of occurrence of an event with a given certainty factor. Stallings (1977),
Cheeseman (1986), Lindley (1987) and others advocated in favour of probability theory
by suggesting that any uncertainty can be modeled by probability theory. On the other
hand, Zadeh (1986), Kosko (1990), and Mendel et al. (2006) argued that probability
theory fails when the event or concepts are not well-defined. Probability theory also
provides limited capacity while explaining the belonging of an element to different
concepts. For example, based on the particular social setup the notion of "tall" varies
from region to region. In a society where the average height is 150 cm, a person with
a height of 165 cm could be considered as tall. On the other hand, in a different setup
where the average height is 170 cm, a person with a height of 165 cm is not as tall as
in the previous case. In this example, the belonging of the height to the concept of tall
or not tall is a matter of degree of truth. This also applies to demarcating the bona
fide boundary of a geographical object (Smith and Varzi, 2000; Vogt et al., 2012) e.g.,
delineating the boundary of a grassland from the adjacent forest area. The belonging
of the elements around the margin often tends to be fuzzy. These vague situations can-
not be addressed by a probability theory, rather an approximate reasoning mechanism
e.g., a fuzzy logic is required to model these vague concepts. Probability theory also
fails while modelling the vagueness in linguistics, e.g., average speed, and predicate
quantifiers, e.g., very, likely, slightly, extremely, almost. Thus, probability theory offers
limited capacity while dealing with subjective perceptions and uncertain qualitative
state of affairs. In the context of mobility-based activity this can be further illustrated
as follows.
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Suppose, Joe was waiting for a bus at 7:00 AM. At 7:10 AM Joe saw the bus for
the first time within his field of view. In a while, Joe boarded the bus and took a seat.
Around 7:11 AM, he felt the vibration and realized the bus started moving. In this
example, using a probability theory it is not possible to define the changes in Joe’s
activity states from waiting at the bus stop to boarding the bus. At what point in time
we should say Joe has entered the bus? The epoch when Joe lifts his leg to make his
first move inside the bus, or the moment when Joe puts one of his legs in the bus, or
the moment when he puts both of his legs inside the bus? Thus, the transitions in the
activity states are often fuzzy (and uncertain). Intuitively from the perspective of fuzzy
logic, it can be said, when Joe lifts his leg with an intention to enter the bus can be
considered as about to enter the bus, however, at the same time, since the bus has not
started yet, it can also be said Joe’s waiting activity is almost over. When Joe stepped
into the bus, the activity state can be viewed as almost entering the bus, yet waiting
for the bus to move11. Thus, Joe’s activity state from 7:10 AM to 7:11 AM can be both
waiting and boarding the bus with a gradual change in degree of truth as time elapses.
On the other hand, a probability theory can tell given some apriori information, what
the likelihood is that Joe is waiting for the bus at 7:00 AM.

Following the above example, it is worth noting that this thesis particularly looks
at the activities performed while changing locations using a given transport mode. In
this research a person who is moving from one location to another, or a vehicle in
which the person is moving, are both considered as a moving object. Within the scope
of this thesis, it is possible to interpret a trajectory using a probabilistic approach (Xu
et al., 2011; Feng and Timmermans, 2016) as well as fuzzy approach (Biljecki et al.,
2012; Sauerlander-Biebl et al., 2017), and infer a possible outcome (transport mode
in this case) from an erroneous measurement (location or speed information from a
GPS sensor). In this research, an uncertainty relates to the lack of confidence about a
GPS-based measurement or in the ground truth collection (exact trip start, and end
time), and also in inference process. Specifically, in order to model the confidence in
the inference process, this thesis has contributed to the state-of-the-art in transport
mode detection by introducing the concept of multiple transport mode possibilities
with varied confidence (in terms of certainty factors). On the other hand, ambiguity
relates to the linguistic values used to model each fuzzy set (e.g., high, moderate, low)
of a given fuzzy variable (e.g., average speed). That said, the quantitative notion of
“high average speed” may vary from person to person or from situation to situation.
However, qualitatively the notion will generally remain same in all the situations. For
example, it makes sense to say that a train moves at a high average speed of 80 km/h
in cities, whereas a train moves at a high average speed of 150 km/h in the outskirt. It
also makes sense to say that a train generally moves with higher average speed than
a bus. Thus, the concept of “high speed” is ambiguous. In the same line, given a low
speed profile during traffic congestion, the modal state could be either walking, riding

11 The predicate quantifiers about to, almost provide fuzzy connotations.
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a bicycle, travelling in a bus or in a tram. Thus, in this case, the inference could be
ambiguous given a limited number of fact(s). Fuzzy logic can encode such (linguistic)
ambiguities and uncertainties (in measurements) in the antecedent (IF) and consequent
(THEN) part while constructing a transparent rule base (Klir and Yuan, 1995).

The main motivation of using a fuzzy logic based approach in this research (Chap-
ter 5) is its capability of inferring multiple possibilities of being different transport
modes, given a set of spatial and kinematic facts. With a vast amount of unlabelled
trajectory data being generated worldwide both from commercial vendors and user-
generated sources with different granularities and accuracies, it is difficult to use
data-driven approaches (e.g., machine learning based models) to interpret those (unla-
belled) movement data due to lack of training samples. In this context, a multiple-input
multiple-output fuzzy logic based approach can effectively interpret trajectories (with
limited/no ground truth information) and can provide useful insights about people’s
movement behaviour or travel demand estimation at a given confidence level (see
Chapter 5).

Past research has shown that in order to manage the moving object and to under-
stand its behaviour, it is important to model the uncertainties associated with the
movement during data collection, data indexing and inference stage (Sistla et al., 1997;
Wolfson et al., 1999). Movement occurs in space and time. Thus, reasoning a moving
object can be viewed as an extension of spatio-temporal reasoning with an added ca-
pacity of changing location through locomotion along a rectilinear or curvilinear path.
Since current spatio-temporal systems are based on two-valued logic (Boolean logic),
they provide limited inference ability (Dragicevic and Marceau, 1999). Conventional
spatio-temporal reasoning schemes cannot address the vagueness in human percep-
tion and the varied confidence in an inference process. However, with the emergence of
ubiquitous mobile devices and location-based context-aware service provisions, there
is a growing need to incorporate human perceptions in the spatio-temporal systems.
This requires both qualitative and quantitative reasoning (Peuquet, 1999). However,
qualitative reasoning is more robust as it can handle the uncertainties more effectively,
both from the measurements and linguistics. Qualitative reasoning can also provide
better interpretation, which is required to extract the mobility signatures of a moving
object (Palancioglu, 2003). In case of a trajectory, an interpretation could explain how
a moving objects is related to another object during its discourse (Van de Weghe et al.,
2005). An interpretation can also provide insight about a person’s transport mode
information.

Movement can be viewed as a function of time, which is realized over a given space.
To date, there has been a significant contributions made in modelling and reasoning
an object (or a set of objects) in space and time through a number of spatial (Egenhofer
and Franzosa, 1991; Randell et al., 1992; Cohn et al., 1997) and temporal logics (Allen,
1983; Ligozat, 2013) separately. However, there is not much work done in reasoning
movement behaviour of an object. While much of the qualitative spatio-temporal rea-
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soning, particularly in the field of movement analysis, is based on symbolic represen-
tation and topological relationships (Van de Weghe et al., 2005; Bogaert et al., 2007;
Ibrahim and Tawfik, 2007; Delafontaine et al., 2011), there is a growing interest to in-
corporate propositional rules that can provide the approximate reasoning about the
movement behaviour of an object. In contrast to a probabilistic approach, a fuzzy
propositional rule-based approach can handle uncertainties in a more effective way
and can provide better transparency. Such transparency is important in order to ex-
tract movement knowledge and enrich the activity ontology at different contexts (see
Chapter 4 and Chapter 5).

Although probability theory and fuzzy logic have fundamental difference in their
modus operandi, the likelihood in probability theory and a membership value in a
fuzzy logic both range from 0.0 to 1.0, where 0.0 and 1.0 indicate the minimum and
maximum likelihood or degree of membership respectively. In 1995, Zadeh demon-
strated that the two theories have their own applicability in different contexts, and thus
they should not be treated in a competitive way (Zadeh, 1995). In this way Zadeh has
bridged the gap in the initial argument in favour of fuzzy logic (Zadeh, 1986; Kosko,
1990) and the argument in favour of probability theory (Cheeseman, 1986; Lindley,
1987). Although an initial attempt was made by Loginov (1966) to bring a fuzzy logic
and probability theory close to each other by transforming fuzzy membership func-
tions into probability values based on the concept of consensus or voting. However, as
Loginov’s approach was based on bivalent notion of an event occurrence Zadeh (1995)
argued that the complementarity between fuzzy logic and probability theory should
not be bridged through consensus theory. Rather based on the previous studies (Good-
man and Nguyen, 1985), Zadeh and others (Gudder, 2000; Beer, 2010) demonstrated a
fuzzy set can be deduced from a random set and depending on the type of uncertainty
a random variable can be converted to a fuzzy random variable, an event can be con-
verted to fuzzy event which leads to a hybrid fuzzy probabilistic reasoning. Although
a conventional fuzzy logic can not tune its membership function parameters, when in-
tegrating a machine-learning based approach (namely a neural network) through back
propagation and least square optimization a hybrid neuro-fuzzy model can learn from
historical data while modelling the uncertainty in an automated way (Jang, 1993).

As mentioned earlier fuzzy logic and a neuro-fuzzy approach have been previously
used in trajectory interpretation mostly in map-matching (Syed and Cannon, 2004;
Quddus et al., 2006), travel demand estimation (Seyedabrishami and Shafahi, 2011),
and single-output based transport mode detection (Biljecki et al., 2012). In this the-
sis a fuzzy approach has been explored in order to develop a multiple-output based
transport mode detection framework both in offline and in near-real time. The model
presented in Chapter 5 can work in different kinematic situations with scarce or no
ground truth information. The fuzzy approach can also be useful for modelling activ-
ity states (from waiting to boarding a bus) from an ontological perspective. Since the
fuzzy rules can serve as an approximation of the movement signature of a moving ob-
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ject, the fuzzy rule base can also be used as a qualitative trajectory reasoning scheme
along with the existing topological and symbolic trajectory calculus (Van de Weghe
et al., 2005; Delafontaine et al., 2011).

In summary, this chapter reviews different mobility surveys that took place across
the world. Existing mobility surveys are subject to quality issues, which can be ad-
dressed by smartphones due to their capability to record people’s travel behaviour
continuously and at a finer details. Based on the existing literature it is evident that
raw trajectories can be interpreted to reveal mobility based activity information at dif-
ferent resolutions. A particular focus is given on trip characterization and transport
mode detection from raw trajectories. This research has presented a number of models
that can interpret raw trajectories and extract transport mode information at different
temporal granularities (Chapter 5, Chapter 6, Chapter 7). This research also reviews
the notion of activity approached by different disciplines and a semantic gap in the
definition of an activity. Chapter 4 presents a framework that aligns different disci-
plines together at different contexts. The framework extends the concepts of “activity
theory" (Nardi, 1995) and supports existing work by (Raubal and Moratz, 2008) and
(Hirtle et al., 2011). This chapter also presents reasoning mechanism of a moving ob-
ject and the applicability of fuzzy logic based approach over a probabilistic approach
while interpreting trajectories in the interest of transport mode detection.
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3
P R E L I M I N A R I E S

This chapter provides definitions of basic concepts used in this research. This list is
not exhaustive. Some concepts that are too specific to a given chapter, are defined in
the particular chapter.

3.1 definitions

3.1.1 Activity (AY)

Activity is a phenomenon where an agent (e.g., human) interacts with an object situ-
ated in an environment to satisfy some need(s) at a given context. For detailed expla-
nation on activity refer Section 4.3.2.2.

3.1.2 Context (C)

Context is important while defining an activity. Context can be defined as any infor-
mation that characterizes a situation that is relevant to the interaction of an actor with
the objects in its environment in order to participate in a given activity (Abowd et al.,
1997). For detailed explanation of context see Section 4.3.2.4.

3.1.3 Travel

Travel is a phenomenon of moving from one location to another location over time.
Travel can be viewed as an activity—a temporally extended process—or an action—a
not further expanded event—depending on the context of the travel analysis. Further-
more, this notion of travel is open across a range of spatial scales. Inner-urban travel
happens generally at environmental scale (Montello, 1993), but single parts, such as
transfers between modes, can happen in vista scale. Inter-city travel is travel on geo-
graphic scale. This research is mainly interested in urban travel.

In this regard, the concept of vista scale used in this thesis is based on vista space.
Vista space is a type of psychological space propounded by Montello (1993). The scale
of a vista space is not absolute, rather it is based on the projective size relative to the
user’s body, which is often subjective and based on the user’s physical structure and
cognitive perception of her surroundings and based on the structure of the environ-
ment, i.e., what is in view. In this thesis, vista scale means any small scale indoor space
such as a bus stop, train station, a portion of the airport terminal that is in view, where
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a transfer may take place on user’s feet (walking, climbing stairs or standing and wait-
ing for the next connecting vehicle). However, bigger space such as the entire airport,
office building are in Montello’s terms, environmental space, because they cannot be
seen from a single vantage point and require locomotion for exploration.

3.1.4 Sensor Trace (Γ )

A sensor trace is a time ordered set of sensor observations that captures a user’s activ-
ity states at a specific granularity defined by the sampling frequency. In this research
the sensors are assumed to be installed on a smartphone, and may include a location
sensor as well as an inertial measurement unit. A sensor trace Γ consists of signals of
one or more sensors Ii (including sensors operating on different channels), i ∈ [1,n],
each expressed as a set of {s(k)} where k ∈ [1,m] and m is an integer. A sensor trace
can be mathematically expressed as:

Γ = {Ii} : Ii = {s(1)i, ......, s(m)i, ti}|∀i : ti−1 < ti, i ∈ [1,n] (1)

3.1.5 Trajectory (Π)

A trajectory is a sequence of time ordered spatio-temporal points that represents a per-
son’s travel history with coordinates in a three-dimensional Euclidean space (xi,yi, zi)
at a given time (ti). In this research the ‘z’ value will be ignored as this value is not rel-
evant to the models developed in this research. However, a ‘z’ value can be integrated
where the altitude information is vital, for example, travels between levels of a com-
plex built environment. From the definition of a sensor trace, all the trajectories that
are captured using GPS sensors, Wi-Fi or 3G/4G localization onboard a smartphone
are a type of sensor trace. A trajectory can be mathematically expressed as follows:

Π = {Pi} : Pi = (xi,yi, [zi], ti)|∀i : ti−1 < ti (2)

Depending on the information content and level of processing a trajectory can be
classified into three distinct types as follows.

• Raw Trajectory (ΠR): A raw trajectory is an unprocessed set of time ordered spatio-
temporal points with varying levels of inaccuracy due to the noise present in the
sensor signals. A raw trajectory may also contain a number of signal gaps.

• Preprocessed Trajectory (ΠP): A preprocessed trajectory is a set of time ordered
spatio-temporal points which is pre-processed and filtered to some extent in
order to discard inaccurate spatio-temporal points and other noise present in the
data set. The level of processing depends on the application context.
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• Semantic Trajectory (ΠS): Both raw and preprocessed trajectories suffer from a
semantic gap between the movement history of the traveller and their move-
ment behaviour. Such a semantic gap can be bridged by enriching a raw or pre-
processed trajectory by domain information including spatial, non-spatial and
temporal information. A semantic trajectory is constructed from a raw trajectory
through a semantic enrichment operation.

3.1.5.1 Segment (Seg)

A segment is a connected sequence of a sensor trace between a defined start and end
point in time. A segment may include a portion of GPS trajectory, and/or other sensor
observations at each time stamp.

3.1.5.2 Atomic Segment (ASeg)

An atomic segment is the smallest segment of a sensor trace, defined by a context-
dependent kernel length.

3.1.5.3 Atomic Kernel (Kη)

An atomic kernel is an operator that extracts an atomic segment of a sensor trace,
including a GPS trajectory. An atomic kernel has a defined, constant length (η) within
a specific context (Fig 9).

Figure 9: A raw trajectory is shown in Figure (a); Atomic segments are generated using an
atomic kernel of time length η on the raw trajectory in Figure (b); Using a state-
based bottom-up approach a given trajectory is then segmented into four segments
that are detected as four distinct trips based on different transport modes with three
transfers in Figure (c).
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3.1.5.4 Trip (T )

A trip is an action of changing location with a purpose. A travel can consist of more
than one trip. A trip is characterized by a constant transport mode. Thus, the trips are
attributed by their start location and time, end location and time, and a given transport
mode. There may be different types of trips:

• Actual Trip (TA): An actual trip is what happens in reality while traveling from
one location to another location.

• Reported Trip (TR): A reported trip is the trip that is annotated or reported by the
traveler from memory, which often involves quality and granularity issues.

• Scheduled Trip (TS): A scheduled trip is a trip that is predefined by a given trans-
port service with its trip origin, destination, trip start time, end time, route and
the intermediate stops that are to be visited along during the travel.

• Predicted Trip (TP): A predicted trip is a trip that is inferred from a predictive
framework based on the features computed from a given sensor trace that may
include a GPS trajectory and IMU information.

In transportation engineering the concept of trip is based on travelling from one
activity location to another activity location by one or more than one transport modes.
Conventionally a trip may consist of multiple travel segments (trip legs) and a number
of transfers. Each of these phenomena can be viewed as an action (see Chapter 4

for more detailed discussion on action and activity). As this thesis has demonstrated
the notion of activity is context-sensitive, and thus the concept of a “trip leg” and a
“trip” is also context-dependent. For example, conventionally a transfer connects two
different trip legs. However, if the transfer becomes an activity in itself then the trip
legs will be transformed to trips. Chapter 4 in this thesis has presented such contextual
transformation of an action to an activity or vice-versa. It is assumed in this thesis that
when a transfer becomes an activity, a travel segment with a constant transport modal
state can be viewed as a trip (and when a transfer is an action, the preceding and
succeeding segment is a trip leg). In order to avoid the confusion and to conform
different disciplines (e.g., spatial information, transportation engineering, cognitive
science, mobile computing), any movement using a constant (similar) transport mode
between any two locations is termed a trip. And thus, walking to a tram, taking a tram
and walking to the final destination is viewed as three different trips.

3.1.5.5 Transfer (Trans)

A transfer is an action of changing from one transport mode to another transport
mode.
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3.1.5.6 Transport Mode (M)

A transport mode is a mediation of mobility, either by locomotion or by some vehicle.
In the following experiment data was collected for four public transport modes: bus,
train, tram, and walk. Other modes of urban mobility are cycling, driving a car, or riding
in a car (being passenger in a car).

3.2 data set

In this research two personalized data sets have been used for evaluating the hypothe-
ses and addressing the research aim. The experiments performed in Chapter 4, Chap-
ter 6, Chapter 7 use a same trajectory data set. However Chapter 7 uses an additional
data set to further evaluate the model on fine grained sensor traces containing only
inertial sensor information. Both the data sets were collected by an Android app in-
stalled on Samsung Galaxy smartphone. The application has been tested on different
smartphones e.g., Samsung Galaxy, HTC, Asus, Motorola and LG Nexus. The appli-
cation can adaptively sample different signals depending on the sensor available on
the phone (Fig 10, 11, 12). The application supports all the modern inbuilt sensors e.g.,
GPS, accelerometer, gyroscope, light sensor, proximity sensor, barometer, magnetic
sensor, sound sensor (Fig 10, Fig 11). It can be also understood how battery is draining
over the sampling period which could be useful for adaptive sampling in future. There
is also a user interface where the user can see her location in the application using the
GPS sensor (Fig 12).

The data sets cover different travels in Greater Melbourne, Australia, over three
months (Fig 19).

3.2.1 Data set 1

The data set contains 0.6 million GPS points over approximately 85 h sampled at 1

Hz-2 Hz. The data set reflects different trip behaviour in terms of kinematic profile
and data quality mediated by four transport modes, e.g., walk, bus, train and tram,
collected between 7 am to 11 pm along different routes. In order to capture the real
world problems, the data set also covers cases of overlapping routes of different modes
and single modes with different speed profiles (e.g., a bus moving slowly in the CBD
and fast along an expressway, whereas maintaining a moderate speed in the suburb).
Table 9 shows duration of different transport modes used.

Since different transport networks frequently overlap or located very close to each
other along with the POIs (Fig 20,13), it is often difficult to distinguish between differ-
ent modes from GPS-only data points. The problem becomes more challenging when
there is frequent GPS signal loss or high positional uncertainty due to multipath effects.
In order to estimate the overlapping area by the present transport networks (bus, train,

75



Figure 10: Sensor readings I: GPS, accelerometer, gravity, light sensor, magnetic sensor.

tram) a spatial analysis is performed where a set of minimum bounding rectangles
(MBR) is developed that contains a given set of route networks. Then an intersection
operation is performed to extract the common region that shows a significant overlap
by all the public transport route networks. Such a region containing different route
networks in close proximity is termed as zone of ambiguity (ZA), which is measured
around 222 sq km (Fig 14a). Another spatial operation is performed on the trajectory
data set to generate a convex hull to estimate an extent of the area covered by the
trajectories for this experiment (Fig 14b). It is estimated that the data set collected for
this research covers 139 sq km of the ZA, which is approximately 63% of the total ZA
(Fig 14a) which poses significant challenge to distinguish between different transport
modes particularly bus and tram.

Figure 15 shows a database schema for raw data collection with the selected sensors.
The last column (state) is linked from the ground truth data. Figure 16 shows a transi-
tion from walking mode to tram mode. It is also observed that in CBD or under dense
foliage or in indoor environment sometimes there was an interruption in GPS signal
reception (Fig 17) which was later resolved by an interpolation technique (Fig 18).
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Figure 11: Sensor readings II: Magnetic sensor, gyroscope, proximity sensor, battery status,
sound sensor, timestamp on the smartphone clock.

3.2.2 Data set 2

In order to evaluate the framework in absence of location information, a second set of
data has been collected using high frequency IMU only (linear accelerometer and gyro-
scope) information across Greater Melbourne. The second data set has been recorded
at a 50 Hz sampling frequency over approximately 8.5 h that covers bus, train, tram
and walk trips.

Since a high frequency sensor data may contain noise mainly due to sudden hand
movement, change in body inertia, or a jerk due to sudden brake, a low pass filter is
applied to the signals collected along three axes of accelerometer and gyroscope. A low
pass filter has been implemented on a x, y and z axis of an accelerometer as follows,
where af[kt] is the filtered acceleration signal along k axis at t timestamp. Similarly,
a[kt] denotes the raw acceleration signal along k axis at t timestamp. β controls the
smoothness of the filtered signal. A low pass filter allows the low frequency signal
whereas blocks the high frequency signal. Thereby while recording the trajectories, if
there is a sudden jerk or sudden change in activity state (e.g., from sitting to standing)
while travelling the noise could be eliminated.
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Figure 12: Location of the user at a given timestamp.

af[kt] = β ∗ a[kt−1] + (1−β) ∗ a[kt]; (3)

Once the acceleration and gyroscope values are filtered a linear acceleration(La)
along a given axis is computed by subtracting the gravity component (g[k]) from the
accelerometer component along that axis at a given timestamp.

Laf[kt] = a[kt] − g[kt]; (4)

Table 10 shows which data set and sensor information are used in which model.

3.3 data modelling

Each raw observation Ii (data point) in a given sensor trace consists of following
attributes (Table 8).

Figure 21 shows different axes of a smartphone in different positions (Saeedi and El-
Sheimy, 2015). Conventionally the axes will remain constant irrespective of the phone’s
orientation.

A raw spatio-temporal point (Oi) in a GPS trajectory consists of following attributes.
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Figure 13: Bus stop located nearby to a tram stop.

• FID: Integer

• Date: String

• Time: String

• Latitude: Double

• Longitude: Double

• Accuracy: Double

• Speed: Double

In an urban environment a raw GPS trajectory is subject to signal gap and irregular
pattern due to multipath in urban canyon which poses problem in near-real time mo-
bility information retrieval from GPS only data set. Figure 22 shows a typical raw GPS
trajectory with intermittent signal gaps especially in the city centre due to obstructions
from the tall buildings.

79



Figure 14: Map (a) shows the zone of ambiguity with a significant overlap between different
public transport routes; Map (b) shows the overlap between the convex hull of the
trajectory data set (Data set 1) and the zone of ambiguity.

Unlike GPS sensor, inertial sensors e.g., accelerometer and gyroscope do not de-
pend on the external signal source. Hence while collecting the raw data sensor traces
are recorded in such a way that when there is a signal loss the location information
(Latitude, Longitude, Altitude) is logged as the last known position until there is a
reacquisition of signal.However this ensures logging the inertial sensor information
consistently at a given timestamp although the location information may not be correct
at a given time period. Since this research mainly focuses on near-real time mobility
knowledge discovery, in order to capture the real world situation adequately (during
occasional signal gap) no interpolation is performed, rather an adaptive model is de-
veloped, which can bridge signal gaps by using the inertial sensor information (see
Chapter 6, Chapter 7).
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Figure 15: A portion of database schema for the raw data for a given trajectory.

Figure 16: State transition from walk to tram.
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Figure 17: Signal gap in raw GPS trajectory (in projected coordinate system GDA94 zone 55).

Figure 18: Interpolated trajectory.
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Figure 19: Data set 1: Low frequency (1Hz, 2Hz) GPS trajectories in Greater Melbourne.

Figure 20: The tram network is 23.02 m away from a bus route which is within a GPS confi-
dence ellipse with a radius of 40 m in urban environment.
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Table 8: Data Model

Attribute Data type

FID Integer

Geometry Point

Date String

Time String

Latitude Double

Longitude Double

Altitude Double

Accuracy Double

Number of satellites Integer

Speed Double

Bearing Double

Acceleration (Magnitude in x, y, z direction) Double

Linear acceleration (Magnitude in x, y, z direction) Double

Gravity (Magnitude in x, y, z direction) Double

Azimuth Double

Roll Double

Pitch Double

Table 9: Modal specification

Transport mode GPS points Duration (mins)

Bus 91469 761.6

Walk 335802 2796.8

Train 76630 638.0

Tram 108474 903.3

Total 612375 5099.9
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Table 10: Data set used in different models

Chapter Model Data set Sensors used
Primary

information

4

Context-sensitive activity

model
Data set 1 GPS Location

5

Fuzzy logic based offline

model
Data set 1 GPS

Location,

speed

6

Neuro-fuzzy based

hybrid near-real time

model

Data set 1 GPS
Location,

speed

7

State-based bottom-up

model

Data set 1,

data set 2

GPS,

accelerometer,

gyroscope

Location, speed,

angular speed,

linear

acceleration

Figure 21: Smartphone axes in different directions. This figure has been reproduced from
Saeedi and El-Sheimy (2015).
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Figure 22: Signal gap present in a GPS trajectory.
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4
A C O N T E X T- S E N S I T I V E O N T O L O G I C A L F R A M E W O R K F O R
A C T I V I T Y M O D E L L I N G

This chapter 1 presents the first contribution of this research that addresses the seman-
tic gap present in the definition of activity approached by different application domains
with a focus on activity knowledge discovery at different contexts from a motion tra-
jectory. Human motion trajectories, however captured, provide a rich spatio-temporal
data source for human activity recognition, and the rich literature in motion trajec-
tory analysis provides the tools to bridge the gap between this data and its semantic
interpretation. But activity is an ambiguous term across research communities. For
example, in urban transport-geography activities are generally characterized around cer-
tain locations along with the time spent at that location, assuming the opportunities
and resources are present in that location (Fig 23), and travelling happens between
these locations for activity participation, i.e., travel is not an activity, rather a mean to
overcome spatial constraints (Fig 23). In contrast, in Human-Computer Interaction (HCI)
research and in Computer vision research activities taking place ‘along the way’, such as
‘reading on the bus’, are significant for contextualized service provision (Fig 24). On
the other hand in public health research and mode-specific transport management main fo-
cus lies on low level physical body parts movements and different modes of transports
people are using (Fig 25). Similarly activities at coarser spatial and temporal granular-
ity, e.g., ‘holidaying in a country’, could be recognized in some context or domain.

Thus the context prevalent in the literature does not provide a precise and consis-
tent definition of activity, in particular in differentiation to travel when it comes to
motion trajectory analysis. Hence in this research, a thorough literature review studies
activity from different perspectives, and develop a common framework to model and
reason human behaviour flexibly across contexts. This spatio-temporal framework is
conceptualized with a focus on modelling activities hierarchically. Three case studies
will illustrate how the semantics of the term activity changes based on scale and con-
text. They provide evidence that the framework holds over different domains. In turn,
the framework will help developing various applications and services that are aware
of the broad spectrum of the term activity across contexts.

1 The contribution presented in this chapter has been peer-reviewed and published as follows:
Das, RD., Winter, S. (2016): A Context-Sensitive Conceptual Framework for Activity Modelling, Jour-
nal of Spatial Information Science, issue 12
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4.1 introduction

With the emergence of pervasive and mobile computing, and especially location-based
services, there has been a growing interest in a theoretical framework facilitating the
processing and sharing of activity information more effectively between human and
computer (Crease and Reichenbacher, 2013; Kaptelinin and Nardi, 2006; McDonald,
2000; Rasmussen, 1986; Raubal, 2001). While individual disciplines have worked to-
wards their own frameworks, the research presented in this chapter will demonstrate
that they are incompatible, and an overarching framework is still lacking.

In principle, activity, and synonymously action, requires agency, or a purposeful,
goal-directed performance that is available to awareness (George Wilson, 2012). Based
on the usage of the word activity in natural language, WordNet (Fellbaum, 1998) de-
fines activity as any specific behaviour or an action or bodily function. In this view,
travel, which is understood here as any purposeful, goal-directed change of location,
is an activity (or action). Furthermore, any complex travel can be composed of simpler
activities, some of them forming travel activities themselves (such as ‘taking the bus on
the way to work’), and others are non-travel or stationary activities (such as ‘reading
the papers on the bus’). In contrast to many other disciplines, human-computer inter-
action research (HCI) actually applies this understanding by modelling activity from a
purely motivational, goal-oriented and operational perspective (Kaptelinin et al., 1995;
Kaptelinin and Nardi, 2006, 2012) where the activity is motivational and oriented to-
wards an objective, actions (which are subsumed by activity) required to perform the
activity are oriented towards goals and realization of the entire phenomena happens
through operations. HCI assumes activity as interaction of a subject with an object to
fulfil certain needs through mediation which may involve the process of externaliza-
tion and internalization (Kaptelinin and Nardi, 2006). Thus in HCI activity is character-
ized mostly by the why, what and how, but less so by the where (location) and when
(time), despite most activities being generally constrained by space or time or both.
Obviously this understanding can cope with travel as well as non-travel activities.

In pervasive computing, the common subject of research into activity recognition
are human motion trajectories (Spaccapietra et al., 2008), whether captured, for exam-
ple, from diaries (Stopher et al., 2003), social networks (Damiani et al., 2011), check-
points or cordons (Duckham, 2013), GPS (Wolf et al., 2004; Zheng, 2015) or CCTV
cameras (Rodríguez-Serrano and Singh, 2012). Accordingly, a variety of disciplines,
from geography over data mining (Gutting et al., 2000; Moreira et al., 1999; Sellis,
1999; Sistla et al., 1997; Wolfson et al., 1998) to computer vision (Aggarwal and Ryoo,
2011), provide tools for motion analysis. But across these disciplines activity remains
an ambiguous term, to the point of direct contradiction. For example, in (urban) trans-
port research activity generally bears semantics related to times spent at home, work,
restaurants or shops (Jovicic, 2001; Liao et al., 2005; Wolf, 2000), and is the cause for
travel between the locations of these activities (Jovicic, 2001). In this view, travel is
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Figure 23: In transport geography activity involves time spent at a given location. In this figure
a person has spent some time at home and then travelled to his office with the
help different transport modes (a). The space-time geography shows two different
activities (home and office) in the form of two vertical cylinders where as the line
connecting those two cylinders are travel – which is not considered as an activity in
itself (b).

not considered as an activity, rather an undefined mean to overcome spatial constraint
(Shaw and Yu, 2009). In contrast, pervasive and mobile computing (e.g., in its desire
to provide context-aware travel support) and similarly computer vision (in its desire
of scene recognition) consider motion central: here activity generally refers to loco-
motion defined at a finer granularity such as walking, running or moving body parts
(Bao and Intille, 2004; Shoaib et al., 2015; Aggarwal and Ryoo, 2011; Rao et al., 2002).
Taking middle ground, trajectory data mining (from the data end, e.g., (Zheng, 2015))
and time geography (from the conceptual end, e.g., (Hägerstrand, 1970)), both taking
a space-time approach to modelling, accept motion as well as stationary activities, and
structure behavioural patterns by disruptive changes in the motion trajectory.

Furthermore, most, but not all disciplines share an understanding that more com-
plex activities are composed of simpler activities (Aggarwal and Ryoo, 2011). The daily
home-work commute, for example, which is for travel demand modelling an atomic
activity with no further need for differentiation, is an aggregated (complex) activity
in other disciplines. Time geography as well as HCI would see this commute trip as
a concatenation of locomotion activities such as walking, taking a bus, and then a
train, especially since HCI aims to provide purposeful information for each of these
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Figure 24: Depending on the origin, destination two different route recommendation system
are suggesting two different set of activities (or actions)

commuting segments. This argument can be carried forward for an even finer level
of granularity. There are other activities being part of the commute, such as buying a
ticket for the public transport, buying and drinking a coffee while transferring from
bus to train, waiting for the train at the platform, or reading a newspaper on the train.
Again, HCI research is keen to capture these activities as well in order to provide
appropriate information services, such as smart ticketing, recommendations of coffee
places, or newsfeeds related to places of interest.

These examples illustrate a semantic gap in the notion of activity between the disci-
plines involved with human mobility in the city. This gap exists despite the vagueness
inherent in all definitions. For example, whether a worker going out for lunch, a tourist
strolling in a city, or a person jogging in the evening is travelling or pursuing an activ-
ity is not clear in travel demand modelling. And from an HCI perspective it is hard to
decide whether a transfer between bus and train, or grabbing a coffee-to-go between,
is an activity.

In the above examples, it is evident that the concept of activity depends on the con-
text within which the analysis takes place, and the context determines an appropriate
(default) level of granularity in space and time – always allowing for abstraction (zoom-
ing out) or refinement (zooming in) should a change of context require so. A closely
related property of activities revealed by the examples above is their nestedness. A
person can do a number of activities in sequence that form an aggregate activity (e.g.,
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Figure 25: In public health research and near-real time mode specific travel demand modelling
activity focus has shifted from a static location (home and office) to different types
of bodily locomotion and boarding different transport modes.

the above described commuting trip as a sequence of walking and taking the bus), and
even two activities at the same time (e.g., travelling by bus and reading a newspaper as
part of the commute). Although WordNet does not draw any distinction between activ-
ity and action but there is a semantic gap in the conceptualization of activity structure
in different domains including HCI, transportation science, cognitive science, public
health research, mobile computing and context-aware location based services. This
calls for a hierarchical approach to modelling activities, which will be provided by
activities that consist of actions in one context, and in another context these actions
becoming activities themselves consisting of actions.

Assuming a trajectory indicates the intention of the agent to participate in different
spatio-temporal setups to fulfil certain needs, it is possible to model or retrieve activ-
ities from a given trajectory or parts thereof. However, this process is determined by
context, which defines the semantics of need (and hence of the activity). In addition,
there is no precise correspondence between the concept of activity and the mobility
patterns extracted from motion trajectories. Hence, this research presents a conceptual
analytical framework that aims to bridge the semantic gap between trajectories and
activities on one hand, and the disciplines’ understanding of activity on the other,
the latter through integration of activity theory and space-time concepts in an urban
environment. With the distinction of activity as an abstract concept oriented towards
certain needs and actions defined at concrete granularities of space and time, it is
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hypothesized that the semantics of activity depends on the spatial and temporal granularity
suggested by context. Shifts in granularity will enable processing motion trajectories and ac-
tivity knowledge can be represented in various contexts facilitating flexible, appropriate and
relevant information representation or provision and thereby develops a connected knowledge
flow. Here granualrity relates to the concept of scale in space and time and also level of
details in contextual perspective.

This research work contributes to the existing knowledge in the following ways,
such as

• Currently there exists a trajectory ontology (Hu et al., 2013) that represents the
knowledge of a trajectory conceptualization. There also exists few activity ontol-
ogy in indoor (Lee et al., 2013) or based on its components (Kuhn, 2001). But
there is no attempt made so far to model activities on trajectories at different
contexts and how that can maintain a smooth and connected knowledge flow
from one contextual level to another contextual level. Thus the proposed frame-
work is novel and improving the existing work not by replacing them, rather by
enriching them with more structured way.

• This research also goes beyond the existing trajectory ontology (Hu et al., 2013)
by extending a trajectory ontology to activity ontology with actor as the key
concept. Unlike earlier work (Hu et al., 2013) this research illustrates the entire
ontology and its knowledge base through instantiating the relevant concepts and
using few SPARQL queries.

• This research incorporates the concept of a set of needs defined in human-scale
development (Max-Neef, 1991), and the notion of space and time in the existing
activity theory in HCI. Thus the framework bridges the gap between the notion of
activity in spatial science, transport geography, HCI and other domains.

The rest of the chapter is organized as follows. Section 4.1 introduces the prob-
lem definitions and the hypothesis behind the research presented in this chapter. Sec-
tion 4.2 presents a brief overview of existing ontologies for trajectory modelling and
activity reasoning. Section 4.3 presents the conceptual framework that models activi-
ties from a trajectory at different contexts through formal semantics and a reasoning
scheme. Section 4.4 implements the model and illustrates different contexts as a func-
tion of granularity. Section 4.5 discusses the framework and its efficacy in different
contexts followed by summary and future research direction in Section 4.6.

4.2 ontologies in trajectory modelling and activity reasoning

Ontologies are very efficient way to represent the domain knowledge in a formal way.
Ontology can be defined as “explicit specification of conceptualization” (Gruber, 1993,
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2009). Ontologies can be of different types by the nature of their knowledge representa-
tion. There are several top level ontologies developed through logical design patterns
such as DOLCE (Gangemi et al., 2002) and BFO (Grenon and Smith, 2004) which are in-
dependent of any particular domain. On the other hand ontologies are also developed
with a domain specific focus based on content patterns, such as the above mentioned
semantic trajectory ontology (Hu et al., 2013). With the emergence of Linked Data and
Semantic Web (web 3.0) enormous amounts of trajectory data sets are now generated,
processed based on semantic relations between different entities and their properties
over time (Hu et al., 2013; Kuhn, 2001).

While modelling a context-aware computing system with a focus on movement be-
haviour of an agent it is important to understand its context and the intention of the
movement, and that can only be understood from the activity (and actions) the agent
performs at a given location and time. Additional information such as a road network
or a point-of-interest database is often used to enrich the trajectory to extract the activ-
ity information (Spaccapietra et al., 2008).

Lee and colleagues developed an indoor activity based ontology model to support
shopping related information search based on user’s location (Lee et al., 2013). They
have devloped their model in four stages. In the first stage a geocoding operation was
performed based on character matching followed by shopping activity ontology devel-
opment. In the third stage inferencing rules are defined for semantic query followed
by a 3D topological model. However the model developed by Lee and others cannot
model activity from different contexts in a hierarchical approach. Thus, the model fails
to address different situations at different granularity.

In activity modelling domain Kuhn developed an ontology based on semantics of
natural language in terms of activities and actions and different entailment relations
among the verbs (Kuhn, 2001). Scheider and Janowicz suggested a framework for
place reference system where the authors mentioned about the notion of actions agents
perform to refer a given place (Scheider and Janowicz, 2014).

To the best of author’s knowledge there has been no attempt made so far on mod-
elling and formalizing activity from a semantic trajectory, but there has been work
presented on a general content-based trajectory ontology (Hu et al., 2013), on which
the proposed framework is based on. Especially the proposed framework extends (Hu
et al., 2013) by fusing with an activity ontology, introducing a concept actor as a con-
necting concept. With the emergence of spatial intelligence in various domains there
is a need to share and process the information between human and computer in order
to capture and represent knowledge about a given context in a given domain.

Here especially relevant is the general content-based trajectory ontology by Hu and
colleagues (Hu et al., 2013). Their flexible, self-contained and reusable semantic trajec-
tory ontological design pattern is based on the atomic unit of fixes or spatio-temporal
points. Based on the notion of fix and segments in a semantic trajectory (Hu et al.,
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2013) , an ontological framework for activity is now presented that models activity at
different contexts.

4.3 conceptual ontological framework

In this chapter a semantic trajectory based activity ontology framework has been de-
veloped with an activity as the central concept. The conceptual framework consists of
an activity layer and a semantic trajectory layer with actor being the common concept
between two layers. The concept actor used in this research is same with the concept
subject used in HCI.

The framework has been developed based on a content-based ontology pattern
which involves two independent ontologies: an activity ontology and a semantic tra-
jectory ontology. The semantic trajectory ontology is based on the design pattern of
(Hu et al., 2013) which is extended in this research, and applied not on trajectory se-
mantics as such, but on activities. And also (Hu et al., 2013) develops rather a general
content-based trajectory ontology that was not instantiated in different context. In the
proposed model each concept has been instantiated with data properties and object
properties and fused it with an activity ontology and developed a more complex on-
tology. In order to model any ontology, typical queries are considered that capture
generic use cases (GUC) and guide the ontology design. The GUCs are assumed to
be optimal for developing an ontology with a possibility of inferring new facts during
reasoning phase. Here, the competency questions are as follows:

• What activity actor X has participated in context Ci?

• What action(s) actor X has performed from time stamp t1 to t2 at a context Ci?

• Extract the actions (ANkj ) involved in an activity AYj at a context Ci?

• Extract the trajectories that have at least one transfer at context Ci?

• Extract the action(s) that are not spatially or temporally constrained?

• What action(s) have been performed over a segment Si?

• Extract the object(s) involved in an activity AYj at a context Ci?

• What are the action(s) embedded in a given semantic trajectory?

4.3.1 Context-based recursive activity model

The semantics of activity depends on a context. Hence by changing the context the
semantics of activity also changes recursively and represents a nested structure at
different granularity. By changing a situation or shifting through granularity (hence
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changing the context completely or partially), the object(s) of interests also changes
vis-a-vis an activity structure. Action plays an important role in activity modelling. An
activity (AY) is characterized by its objective (O), and an action (AN) is characterized
by its goal (G). A shift in granularity or change in situation can transform an objective
to goal(s) at finer granularity or a goal to an objective at a coarser granularity (Fig 26).

Figure 26: Context-based recursive activity model

4.3.2 OWL Formalization

The ontology has been formalized and encoded in Web Ontology Language (OWL)
which is based on Description Logic (DL). OWL has been successfully used in se-
mantic web for knowledge representation and developing ontologies that can share
information between a human and a machine. OWL is standardized by World Wide
Web Consortium (W3C). OWL-DL has been used in previous literature as it is deemed
to improve the readability, reasoning ability and compactness of concepts and relation-
ships and enables an intelligent communication on semantic web.

DL provides the formal semantics to specify the meaning of an ontology (Krotzsch
et al., 2014). The basic building blocks in DL are three entities such as concept, role
and individual. A concept is a collection of individuals. A role is a binary relation
between two individuals (or concepts). An individual is an instantiation of a respec-
tive concept. A DL ontology does not manifest the complete knowledge of the world,
rather a partial knowledge of the world through a set of statements that must hold in
a given situation (Krotzsch et al., 2014). Those statements are called axioms. In order
to model a knowledge base DL provides three types of axioms such as A-Box axiom,
R-Box axiom, T-Box axiom. A-Box axioms assert knowledge about the individuals and
their concepts. R-Box axiom relates to individuals through a binary role. T-Box axioms
provide knowledge about the concepts through concept equivalence or concept inclu-
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sion. In this framework, the different boxes (namely- A-Box, R-Box and T-Box) are not
explained in details but that are there in the knowledge base without specifying them
explicitly. The reason was to focus on the contextual model rather than the intricacies
of DL. Interested readers can refer to (Krotzsch et al., 2014) for basics of DL.

In the implementation phase, in order to address the above competency questions
basic relations (roles) are developed based on any two entities from a set of concepts
CS (see Table 11). Some of the key concepts are formalized as follows.
CS = {Actor, Activity, Objective, Need, Action, Object, Affordance, Constraint, Objec-
tive, Semantic_trajectory, Segment, Fix, Device}

Table 11: Basic relations and their entity types

Competency

Question
Relation Entity Type Semantics

1 hasParticipatedIn Activity x Actor
An activity in which an

actor has participated

2 hasPerformedBy Actor x Action
Action(s) performed

by an actor

3+4 hasAction Action x Activity
Actions involved in a

given activity

5

isMediatedBy Object x Action
An action is mediated by

an object

isConstrainedBy Constraint x Object
Constraint(s) of

an object

6+8

traversedBy
Actor

x Semantic_trajectory

A semantic trajectory

traversed by an actor

hasSegment
Semantic_trajectory

x Segment

A segment of a

semantic trajectory

hasPerformedBy Actor x Action
An action performed

by an actor

7

isMotivatedBy Objective x Activity
An activity motivated

by an objective

seeksAffordancce Afffordance x Objective
An object of finding

some affordance

offersAffordance Object x Affordance
Affordances offered

by an object
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4.3.2.1 Actor

Actor is an agent that has an objective to fulfill, at least one need, and interacts with
at least one object by performing respective actions that in turn enable the actor to
participate in an activity. Actor can be instantiated by a specific person or a vehicle in
an urban environment. The concept actor can be defined as a subclass of some agent
having some need and objective and performs some actions and participating in an
activity. The concept of actor can be formalized as follows:

Axiom 1

Actor v ∃subclassOf.Agentu ∃hasNeed.Needu hasObjective.Objective
u∃isPerformedBy−.Actionu hasParticipatedIn.Activity

4.3.2.2 Activity

Activity is a contextual phenomenon in which an actor participates to fulfill its need(s).
An activity consists of actions and motivated by an objective to satisfy the need(s) of
the respective actor. Activity can be defined as having some action is motivated by
some objective. A simple DL formalization of an activity concept can be expressed as
follows:

Axiom 2

Activity v ∃hasAction.Actionu ∃isMotivatedBy.Objective

4.3.2.3 Action

Action is one of the atomic units of the semantic trajectory based activity model. An
action is contextual phenomenon that is embedded in an activity at a given context
which is performed by an actor and directed by a goal and generally achieved by
affordance. Actions involve a complex interaction of an actor to its surrounding objects
and hence an action is generally mediated by a given object. An action can be defined
as something that is performed by some actor and is directed by exactly one goal and
mediated by objects and achieved by corresponding affordance. The concept of action
can be formalized in DL as follows:

Axiom 3

Action v ∃isPerformedBy.Actoru ∃!isDirectedBy.Goal

uisAchievedBy.Affordanceu isMediatedBy.Object
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4.3.2.4 Context

In this research a context must have exactly one actor and exactly one activity and
one or more than one actions. The notion of context will be used to instantiate each
concepts at different situations (For definition of context see Section 3.1.2). Context can
be expressed as something that has exactly one unique actor and an activity. A context
can be formalized in DL as follows:

Axiom 4

Context v ∃!hasActor.Actoru ∃!hasActivity.Activity

4.3.2.5 Object

Object is an entity of physical or cognitive existence that is perceived at a given con-
text through at least one of its affordances. An object can be constrained in a given
space or time or both. Following the definition of actor, the significance of an object is
subjectively perceived through an interaction with an actor who is performing some
action(s).
An object can be defined as something that offers a unique affordance and which may
be constrained by some constraints.
An agent (OtherAgent) can be an object if it is relevant in a given context when an
agent offers certain affordances for an actor to perform certain action(s):

Axiom 5

Object v ∃!offersAffordance.Affordanceu isConstrained{(true), (false)}
u∃isConstrainedBy.Constraint

4.3.2.6 Semantic Trajectory

A semantic trajectory consists of temporally indexed fixes in terms of (xi,yi, ti) that rep-
resent an agent’s (actor’s) movement history supplemented by additional background
information and domain knowledge. The definition of semantic trajectory varies in
different research with additional knowledge to enrich the semantics. However the
basic representation of a semantic trajectory involves a set of fixes and having an ac-
tor and activity. Here having an actor and activity means the semantic trajectory is the
movement record of an actor in terms of fixes who is shifting its position in order
to perform some activity. But in order to make the formalization simple, the concept
semantic_trajectory is formalized as follows:

Axiom 6

Semantic_trajectory v ∃!hasActor.Actoru ∃hasFix.Fixu ∃!hasActivity.Activity
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4.3.2.7 Segment

A segment is a part of a semantic trajectory that is traversed by an actor. A segment
is represented by a starting fix (xi−n,yi−n, ti−n) and an ending fix (xi,yi, ti) where
∀n, ti−n < ti. The starting fix of segmenti is the ending fix of segmenti−1 if there is
no semantic gap or hole (a deliberate gap) between i and i-1. A deliberate gap happens
when the user turns off the GPS by her own from the concerns related to privacy or
battery drainage or any other reason. A semantic gap is generally considered in this
research when there is a signal loss in urban canyon or indoor environment such as a
tunnel. The following formalization of a fix can be encoded as follows

Axiom 7

Segment v ∃!startsFrom.Fixu ∃!endsAt.Fix

4.3.2.8 Fix

A fix is another atomic unit in a semantic trajectory based activity model. A fix can be
defined by its data property in the form of a spatio-temporal point (xi,yi, ti), and in
a more abstract but understandable form such as a semantic name (home, restaurant,
office) and a unique identification for a given semantic trajectory. A fix can be captured
by a location or positioning sensor or by manual reporting. The formalization of a fix
can be encoded as follows:

Axiom 8

Fix v ∃atTime.Time_stampu ∃hasAttribute.Attributeu ∃hasLocation.Position

4.4 implementation and evaluation

The ontology has been implemented in Protege, an ontology editor supporting OWL-
DL. The model has been encoded in Java in back end with each concept as a class.
Unlike functional language (such as Haskell) Protege provides more expressiveness
in terms of DL and flexibility through its graphical user interface and object-oriented
paradigm. Protege also offers a distributed environment to share and query a knowl-
edge base using Jena-Fuseki web server.

In order to develop the model, first a high-level content based ontology is developed
through some concepts and object properties (Fig 27). The model is then instantiated
in three different contexts (see illustration section). In this research each context is
modelled separately. It is assumed that if a given query cannot generate a satisfactory
result in one context then it will assess the next context until all the contexts are evalu-
ated (without any conflict) or a search result is found. The ontology has been checked
through HermiT Reasoner in Protege (Glimm et al., 2014). HermiT provides a sub-
sumption checking and logical consistency checking in order to validate an ontology.
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Figure 27: Semantic trajectory based activity ontology

The raw trajectory collected for this framework is first preprocessed in two steps- a)
noise removal and , b) coordinate transformation. A raw trajectory can give only ge-
ometrical information. In order to semantically enrich the raw trajectory and convert
it to a semantic trajectory, infrastructure information (route network), domain knowl-
edge (opening time of market) and other situational aspects (focus of analysis at a
given granularity) are considered. Figure 28 shows a flow chart how a raw trajectory
is transformed into a semantic trajectory.

Figure 29 illustrates the implementation in terms of all the entities in the ontology.
Each panel contains a set of entities (concepts, object properties, data properties and
individuals). The arrow annotated with an alphabet shows the direct connection be-
tween different entity types. For example, connection a signifies a concept (in class
hierarchy panel) may have individual(s). Connection b and c signify each concept is
related to another concept or an individual by an object property. Connection d shows
each individual and their data properties.

In this research, three contexts are considered based on three different situations on
a same trajectory. Since these three sets of contextual information are extracted from
the same trajectory, each context shows a given level of granularity.

A trajectory (Fig 30) shows Joe’s movement history from his home to market (00:00:00

AM to 11:48:00 AM), a part of his movement trajectory of the day. However the same
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Figure 28: Raw trajectory to semantic trajectory conversion

approach can be used for an entire trajectory with defined context. Table 12 shows
Joe’s travel diary on 13th June, 2015 from 00:00:00 AM to 11:48:00 AM.

Table 12: A portion of travel diary

start_time end_time Action/Activity Transfer

0:00:00 10:08:00 Home _

10:08:00 10:18:00 Walk transfer_0

10:18:00 10:46:00 Bus _

10:46:00 10:50:00 Walk transfer_1

10:50:00 11:04:00 Train _

11:04:00 11:09:00 Walk transfer_2

11:09:00 11:48:00 Market _

In each context the key concepts are instantiated by respective individuals with their
data property, data type and value. Hence for three different contexts, three different
sets of instantiations are made to develop three sets of knowledge base with a focus
on activity. The examples illustrate how an action in one context is transformed to an
activity in another context (Table 13,14,15) at a finer granularity. The same has also
been depicted in Fig 31 which shows contextual recursive transformation of action
into activity and vice-versa (Fig 31).

The model has also been tested by issuing SPARQL queries at different contexts.
The queries are kept simple, for illustration purposes, but can easily be made more
complex and nested based on information needs at a finer granularity and situations
which is subject to the design of knowledge base in a given context.
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Figure 29: Ontology implementation in Protege

In Fig 31 AY indicates activity and AN indicates action. The Figure 31 shows how
a singular (atomic) action (AN10) in context layer C1 (in Fig 31a) becomes activity
(AY0) in context layer C2 which is broken down into four new actions AN0k where k
ranges from 0 to 3 (in Fig 31b). One of the singular actions in C2 (in Fig 31b) is again
transformed to activity in C3 with four new actions (in Fig 31c).

In order to make the activity (AY) and action (AN) defined in each context easily
identifiable by the readers, the following notations are used.
Ci_AYk = kth activity in Context i
Ci_ANkj = jth action in kth activity in Context i

Context 1 (Fig 31a) reflects a travel survey type knowledge base captured for travel
demand analysis, where time spent at a particular location (or place) is considered as
an activity, which are home and market respectively in this case (“Where have you been
today?” – “First at home, then I went to the market”). Travel demand analyses as-
sume travel as a derived demand for activity participation. Hence, travel influences
the chance of taking part in an activity which is not otherwise possible at a current
location. However travel demand models do not consider travel as an activity or an
action. Hence it grossly ignores time spent at certain locations during travel (such
as transfer or having coffee or buying tickets) and does not give much emphasis on
travel-based activities (activities embedded in a travel) or travel as action (Table 13).
Conforming with the travel demand models, in Context 1 travel is a phenomenon of
changing location from home to market over a given route network. Thus, in Con-
text 1 two activities are presented in the knowledge base such as (being at) home
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Figure 30: Joe’s home to market travel record (Trajectory_13062015). The shift in position over
time is from south to north. The figure shows on refining the granularity from
(a → b → c), more action knowledge is discovered. In a walking action is not
properly visible. In b and Figure c walking action (in green dots) is visible which
took place while Joe was changing from bus mode to train mode.

(C1_AY0) and (shopping at) market (C1_AY1) without giving any treatment to travel,
with an assumption that there is no other activity embedded in this travel and left it
as a singular (atomic) action (C1_AN10). Figure 31a also shows some possible actions
(C1_AN11,C1_AN12,C1_AN13) in the market place such as shopping at two different
shops (C1_AN11,C1_AN13)and changing the location from one shop to another within
the market (C1_AN12). However, actions e.g., (C1_AN11,C1_AN12,C1_AN13) are not fur-
nished in Table 13 for as these are not relevant from travel demand perspective. Gen-
erally, travel demand modelling focuses on significant time spent at a given location-
not on the actions performed within that location.
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Figure 31: Context based recursive activity layers on temporal zooming.

Table 13: Knowledge base schema for Context 1

Context 1: Number of activity: 2

Situation: Fill out a Travel Survey form for travel demand analysis

Concept Individual Data Property Value

Activity Activity_0

Name Being at home

ActivityType semantic

Duration 36480

start_time 13062015_00:00:00

end_time 13062015_10:08:00

start_location (-37.851795, 144.982711)

end_location (-37.851795, 144.982711)
Activity Activity_1 Name Shopping at market

ActivityType semantic

Continued on next page
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Table 13 – Continued from previous page

Concept Individual Data Property Value

Duration 2340

start_time 13062015_11:09:00

end_time 13062015_11:48:00

startLocation (-37.739033, 145.001965)

endLocation (-37.739033, 145.001965)

Need
Need_0 Type Subsistence

Need_1 Type Subsistence

Action Action_0

Name Travel

startTimeStamp 36480

endTimeStamp 40140

Goal Goal_0 GoalType Reaching at the market

Actor Agent_0

Name Joe

ID 0

Segment
Segment_0 SegmentName Home

Segment_1 SegmentName Market

Fix

Fix_0

Name Home

Spatio_temporal point
(-37.851795, 144.982711,

00:00:00 )

Fix_1

Name Home

Spatio_temporal point
(-37.851795, 144.982711,

10:08:00 )

Fix_2

Name Market

Spatio_temporal point
(-37.739033, 145.001965,

11:09:00)

Fix_3

Name Market

Spatio_temporal point
(-37.739033, 145.001965,

11:48:00)

Device Device_0

SensorType GPS

DeviceType Smartphone
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Context 2 (Fig 31b) illustrates a knowledge base for transport mode analysis (“how did
you go to the market?”) which is a refinement of Context 1, and may be an important
facet in urban analytics and various context-aware location-based services.

Although the analysis is made on the same trajectory as that of Context 1, the in-
formation needs in both the contexts are different. Hence, there is a change in activity
and action characterization between the contexts. In Context 2 the activity is the travel
from home to market (C2_AY0) with actions are transfer_0 (C2_AN00), travel on train
(C2_AN01), transfer_1 (C2_AN02), travel on bus (C2_AN03) (see Fig 31b, Table 12, Table
14). Accordingly, for Context 2 information are captured at a finer granularity, espe-
cially the way Joe has changed his location over space and time in order to travel from
home to market. The focus is now on transport modes and transfers as actions with
different conscious goals (Table 14).

Table 14: Knowledge base schema for Context 2

Context 2: Number of activity: 1

Transport mode analysis from home to market

Concept Individual Data Property Value

Activity Activity_0

Name Travel from home to market

ActivityType Semantic

Duration 3660

start_time 13062015_10:08:00

end_time 13062015_11:09:00

startLocation (-37.851795, 144.982711)

endLocation (-37.739033, 145.001965)

Need Need_0 Type Subsistence

Action Action_0

Name transfer _0

startTimeStamp 36480

endTimeStamp 37080

Action

Action_1

Name Travel on bus

startTimeStamp 37080

endTimeStamp 38760

Action_2

Name transfer_1

startTimeStamp 38760

endTimeStamp 39000

Action_3 Name travel on train

Continued on next page
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Table 14 – Continued from previous page

Concept Individual Data Property Value

startTimeStamp 39000

endTimeStamp 39840

Action_4

Name Walk to market

startTimeStamp 39840

endTimeStamp 40140

Goal

Goal_0 GoalType Getting on the bus

Goal_1 GoalType
Reaching the bus stop at

the train station

Goal_2 GoalType
Getting on the

bus

Goal_3 GoalType
Reaching the train station

at the market

Goal_4 GoalType
Getting to the

market

Actor Agent_0

Name Joe

ID 0

Segment

Segment_0

SegmentName Home_to_bus_stop1

startTimeStamp 36480

startLocation (-37.851795, 144.982711)

endTimeStamp 37080

endLocation (-37.852669, 144.983735)

Segment_1

SegmentName Bus_stop1_to_bus_stop2

startTimeStamp 37080

startLocation (-37.852669, 144.983735)

endTimeStamp 38760

endLocation (-37.788104, 144.994969)

Segment_2

SegmentName Bus_stop2_to_train_stop1

startTimeStamp 38760

startLocation (-37.788104, 144.994969)

endTimeStamp 39000

endLocation (-37.788112, 144.994975)

Continued on next page
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Table 14 – Continued from previous page

Concept Individual Data Property Value

Segment_3

SegmentName Train_stop1_to_train_stop2

startTimeStamp 39000

startLocation (-37.788112, 144.994975)

endTimeStamp 39840

endLocation (-37.788639, 144.995391)

Segment_4

SegmentName Train_stop2_to_market

startTimeStamp 39000

startLocation (-37.788112, 144.994975)

endTimeStamp 40140

endLocation (-37.739033, 145.001965)

Fix

Fix_0

Name Home

Spatio_temporal point
(-37.851795, 144.982711,

10:08:00)

Fix_1

Name Bus_stop1

Spatio_temporal point
(-37.852669, 144.983735,

10:18:00)

Fix_2

Name Bus_stop2

Spatio_temporal point
(-37.788104, 144.994969,

10:46:00)

Fix_3

Name Train_stop1

Spatio_temporal point
(-37.788112, 144.994975,

10:50:00)

Fix_4

Name Train_stop2

Spatio_temporal point
(-37.788639, 144.995391,

11:04:00)

Fix_5

Name Market

Spatio_temporal point
(-37.739033, 145.001965,

11:04:00)
Object

Object_0

Name Bus_stop

isAgent FALSE
Object_1 Name Bus

Continued on next page
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Table 14 – Continued from previous page

Concept Individual Data Property Value

isAgent FALSE

Object_2

Name Train_stop

isAgent FALSE

Object_3

Name Train

isAgent FALSE

Object_4

Name route_network

isAgent FALSE

Affordance Obj0_Affordance0 Type positive

Offering
Embarking and

disembarking

Obj1_Affordance0

Type positive

Offering Mediated travel

Obj2_Affordance0

Type positive

Offering
Embarking and

disembarking

Obj3_Affordance0

Type positive

Offering Mediated travel

Obj4_Affordance0

Type positive

Offering Navigation

Device Device_0

SensorType GPS

DeviceType Smartphone

Context 3 (Fig 31c, Table 15) demonstrates human movement behaviour during
transfer which is analysed in order to support any potential non-travel activities along.
A transfer involves at least disembarking from a vehicle, walking a given distance
from point of arrival to point of departure, waiting for next connecting vehicle, and
embarking on that vehicle.
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Table 15: Knowledge base schema for Context 3

Context 3: Number of activity: 1

Situation: Human movement behaviour analysis during modal transfer

Concept Individual Data Property Value

Activity Activity_0

Name transfer_1

ActivityType semantic

Duration 240

start_time 13062015_10:46:00

end_time 13062015_10:50:00

startLocation (-37.788104, 144.994969)

endLocation (-37.788112, 144.994975)

Need Need_0 Type Subsistence

Action

Action_0

Name Disembarking

startTimeStamp 38760

endTimeStamp 38765

Name Walking

Action_1 startTimeStamp 38765

endTimeStamp 38880

Action_2

Name Waiting

startTimeStamp 38880

endTimeStamp 38990

Action_3

Name Embarking

startTimeStamp 38990

endTimeStamp 39000

Goal

Goal_0 GoalType Get down at the bus stop

Goal_1 GoalType
Get to the nearest train

station

Goal_2 GoalType
Catching the next

connecting train

Goal_3 GoalType
Mediated travel to the

market
Actor Agent_0 Name Joe

Continued on next page
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Table 15 – Continued from previous page

Concept Individual Data Property Value

ID 0

Segment Segment_0

SegmentName Bus_stop2_to_train_stop1

startTimeStamp 38760

startLocation (-37.788104, 144.994969)

endTimeStamp 39000

endLocation (-37.788112, 144.994975)

Fix

Fix_0

Name Bus_stop2

Spatio_temporal point
(-37.788104, 144.994969,

10:46:00)

Fix_1

Name Train_stop1

Spatio_temporal point
(-37.788112, 144.994975,

10:50:00)

Object

Object_0

Name Bus_stop

isAgent FALSE

Object_1

Name Bus

isAgent FALSE

Object_2

Name Train_stop

isAgent FALSE

Object_3

Name Train

isAgent FALSE

Affordance
Obj0_Affordance0

Type positive

Offering
Embarking and

disembarking

Obj1_Affordance0

Type positive

Offering Mediated travel

Obj2_Affordance0

Type positive

Offering
Embarking and

disembarking

Obj3_Affordance0

Type Positive

Offering Mediated travel
Device Device_0 SensorType GPS

Continued on next page
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Table 15 – Continued from previous page

Concept Individual Data Property Value

DeviceType Smartphone

In order to test the model, SPARQL queries are issued at different contexts. In Con-
text 2, all the activities and corresponding action information are retrieved from the
knowledge base (Fig 32). Since Context 2 contains only one activity, the output pro-
duces only one activity (travel from home to market) with corresponding five actions that
are required to perform that activity.

Figure 32: SPARQL query in Context 2: Extract all the activities and actions in Context 2

In context 3, a more complex query is issued to extract all the actions along Seg-
ment_0 (Fig 33).

From the illustration it is seen that Context 1 conforms with the transportation do-
main where understanding the causes behind people’s travel behaviour has been a
long standing research endeavour (which is generally addressed by travel surveys
in different sorts). Context 2 purports the domain of mobile computing and context-
aware computing (along with transportation science) where one may be interested to
know a person’s current active state in terms of modality and movement behaviour
and customize different location based and context-aware services. Context 3 aligns
with public health research where one is more interested in a person’s low level move-
ment beahiour such as whether standing or walking or running.
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Figure 33: SPARQL query in Context 3: Extract all the actions along Segment_0

Thus the model will work in all the domains based on the situational aspects, need
and goal set by the actor. The model will also work in ambient assisted environment
where the main focus lies in indoor activities such as brushing teeth, bathing, having
coffee, watching television, cooking, talking on a phone- all can be addressed based
on a need and corresponding actions with their goals defined at a given context and a
granularity (level of details and space-time scale). For example, the activity eating can
be modelled with need as subsistence, component actions such as taking food from
bowl, using forks and spoons, chewing. This activity structure also involves different
objects with given affordances such as bowl for containing the food, fork for cutting
the food and spoon for lifting the food from the plate to mouth. The space-time in-
formation can also be populated in this case at a finer granularity (may be the spatial
dimension can be transformed into a Cartesian coordinate in indoor or a qualitative
information say Room 1 to Room 2).

Since the main interest of this research lies in trajectory based activity modelling in
urban environment, three case studies are shown with their corresponding knowledge
bases on a single trajectory at different contexts. The knowledge bases can easily be
extended or shrinked at different spatial and temporal scope.
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4.5 discussion

In this research, a framework of activities has been developed, implemented as an
ontology, and tested for three different contexts.

The three contexts illustrate that activity can be modelled for different contexts with
different semantics, or level of spatial and temporal granularity. The contexts presented
in this research are all related to each other in terms of a common need. It has been
shown how action in one activity layer (in one context) can be transformed to an
activity in another layer (in another context). In terms of refinement of granularity
the presented contexts are ordered in terms of space and time from coarsest to finest
granularity (see Fig 31):

Context 1 ≺ Context 2 ≺ Context 3

The symbol "≺" indicates a binary granularity relationship between two contexts in
terms of situational relevance. Since Context 3 represents knowledge within a smaller
spatial and temporal scope with detailed information on mobility phase than that of
Context 1, Context 3 can be viewed at a finer granularity than that of Context 1. The
three contexts show how on refining the granularity more information is revealed at
a given segment. For example, in Context 1, the most relevant information required
is time spent at a given location (such as home or market) which is characterized as
activity and hence any more detailed information pertaining to travel (such as modes
and transfers) is irrelevant and is presented as single (atomic) action in the knowledge
base (Fig 31a, knowledge base for Context 1). Whereas in Context 2, since the way
of movement is now relevant, detailed information about transport modes and trans-
fers are presented in the knowledge base, together with further object and affordance
information (Fig 31b, knowledge base for Context 2). Context 3 shows again more de-
tails but here only for a shorter movement segment (within a constrained spatial and
temporal scope), such as transfer (Fig 31c, knowledge base for Context 3).

Based on a context an activity is the interaction of an agent with its environment to
satisfy some need(s). In order to satisfy a need, agent follows an objective. An objective
is composed of goals set by the agent which are constrained by the affordances offered
by object(s). Each activity contains one or more actions which are oriented towards an
object (that offers affordance) to fulfill a given goal. However the concept of activity
and action is highly context-sensitive. On spatial and temporal zooming and by chang-
ing the situation, the semantics and role of an activity or action changes in a given
context.

Based on the illustration presented in this research (Fig 31), the concept of “activity
and action” are very much aligned with ‘’process and event” in spatial information
science. An activity resembles to a process and an action contained in an activity re-
sembles to an event as an action is like a snapshot and building block of a given activity.
But as it is established context plays an important role in defining an activity or action
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hence context would also affect the conceptualization of a process and event which
both can be refined or simplified and change the semantics recursively (a process may
transform into an event at a given context and vice versa) which is left for future work
in the same line.

There has been a long standing question if travel is an activity or a need to participate
in an activity and thus there exists an ambiguity in urban activity patterns while
addressing the aspect of travel. It has been illustrated that the ambiguity lies in context-
dependency. In Context 1 travel is not an activity (Table 13); rather it induces some
activities that are not possible at a current location. Hence a travel can be viewed as
an action in Context 1. Thus this bridges the gap between the notion of activity in HCI
and activity in travel demand modelling.

However, at a different situation, travel can be viewed as an activity with embedded
actions (see Context 2 in Table 14, Fig 31b) that also conforms some of the earlier
literature where travel has been considered as activity (Hirtle et al., 2011). On a coarser
granularity and a different context, say, for an activity “holidaying in Melbourne” with
a need of recreation, travel can also be considered as an action. However changing
position in a same campus (university or office) or indoor environment (one terminal
to another terminal in an airport or train station, one floor to another floor in a same
building) are left for further treatment in future which can be explained through scale
of objects and situational aspects.

Representing activity knowledge is important at different contexts for knowledge
sharing and reasoning purpose. Activity knowledge can be best represented and shared
through activity ontology and a contextual knowledge base. In this research, activity is
modelled based on some key concepts (see Table 13,14,15) at different contexts. How-
ever the main concepts are activity itself, an actor, a need for an activity, action(s),
goal(s), and object(s). Each of the key concepts is instantiated with respective data
type, data property and data value at a given context and linked together through an
actor.

Figure 31 depicts how activity knowledge can also be represented visually on a
temporal scale. Thus a change in context and shift in granularity in time (and space)
can also affect activity knowledge representation with varied details and situational
relevance.

This research shows a raw trajectory can be used for activity modelling and ex-
tracting different mobility based information at urban scale. A raw trajectory encodes
agent’s movement behaviour and state of activeness (doing something) in the form
of spatial information (coordinate) and temporal information (time stamp) with ad-
ditional sensor signals at different granularity across a wide range of urban scale
(holidaying in Melbourne, travelling from home to office, movement history inside
office campus, movement history inside the office building over a given time period).
A trajectory can be collected through different sources such as check-in points, static
sensors or cordons laid in the environment (Duckham, 2013), continuous recording
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through location and positioning sensors onboard a smartphone. A raw trajectory col-
lected through different sources can be transformed to semantic trajectory by integrat-
ing number of domain specific information including route information (Spaccapietra
et al., 2008) or indoor infrastructure information. Based on a given context a semantic
trajectory can then be segmented in a number of segments where each segment can
be used to represent an action or activity with a starting and ending fix (spatial and
temporal information). Hence, a raw trajectory can be used for activity modelling of a
respective actor based on segmentation strategy and context at hand.

This research also demonstrates the extensible nature of an earlier version of a
content-based semantic trajectory ontology (Hu et al., 2013). In this research some
of the concepts and relationships are borrowed from the earlier work while develop-
ing the semantic trajectory part such as “fix” and an extended version of “segment”.
However this context-sensitive activity model has extended the earlier trajectory ontol-
ogy and developed different sets of knowledge base to represent activity knowledge
from trajectory data through instantiation of different concepts.

The relevance of three contexts is based on the given situations. For example for
Context 1, the relevance is to gain insight of time spent at a particular place over a con-
siderable duration which is important for modelling travel demands. For Context 2, the
relevance lies in understanding the modality information to reflect agent’s preferences,
location-based services and route recommendations. In Context 3 the relevance is fo-
cused on the agent’s movement behaviour during transfer for various context-aware
computing services.

This research has shown affordance theory reasons the usability of an object to
fulfill certain need(s) at a given context, which can be connected to activity theory,
namely the mean that satisfies an objective of an activity or a goal of an action. In
the framework presented in this chapter affordance has a place in relationship to the
needs of a person and the properties of a location at a particular time, in the spirit –
but not at the detail – of Raubal and Moratz (Raubal and Moratz, 2008).

In order to keep the model simple, the three contextual knowledge bases are rather
basic. But the knowledge bases can be populated and extended with more detailed ac-
tion information on getting more sensor signals especially indoor positioning sensors
and inertial navigation sensors such as accelerometer, gyroscope or proximity sensor
that in turn can give information at a finer level of bodily movement, and thus can
model semantic activity (at a high level) as well as physical activity (at a low level).

In addition to that, in this research any atomic unit in the activity model is not
discussed, however, action is used as the fundamental building block for an activity.
An action can be broken down into sub-action. A sub-action can be broken down
into sub-sub action. But this research, limits into only action and do not break an
action into its subsequent parts. This research assumes a different context when an
action is broken down into its components and the action then transforms into an
activity in that given context. On the other hand, the concept of granularity is used
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several places in this research. The granularity can be user defined (by relevance) or
system defined (concerned with details of data-hardware and software configuration
and external influences). In the same line, this research also admits the constraints
involved with a given granularity. The constraints depend on the sampling frequency
and the sensor configuration and also the level of details suited for the analysis. Since
this work is on structuring and building a common knowledge base for activities in
different contexts from a generic point of view and not to develop a new predictive
model for activity recognition, this research does not illustrate much on the constraints
on the granularity of the data. Granularity will only affect the extraction of knowledge,
but not the design of the model.

4.6 summary

In this chapter, a context-sensitive semantic trajectory based activity model has been
developed at a conceptual level. A semantic trajectory based activity modelling will
enable an efficient communication between human and machines and extracting rel-
evant geographic information retrieval. This research demonstrates the notion of ac-
tivity and action is contextual. A context defines a situation with a set of concepts,
individuals and their properties. An activity can be modelled based on a given con-
text. An activity is mainly characterized by an objective and a need whereas an action
is characterized by a goal. An activity consists of action(s). A semantic trajectory shows
movement pattern of an agent. Hence it is assumed that a trajectory contains agent’s
activity information. In this chapter, activity and action information are extracted from
a portion of a given trajectory. In order to demonstrate the varied semantics of activity,
three contexts are illustrated with three different situations. In the first context a travel
survey type activity knowledge base is developed. In Context 2, a more detailed activ-
ity knowledge base is developed based on the same trajectory with action information
and space time information in terms of fixes and segments. In Context 3, more detailed
activity knowledge (transfer) is evaluated over a shorter time frame.

In order to demonstrate the validity of the hypothesis, an ontological framework is
developed. The framework is implemented in Protege in OWL-DL. The model has also
been tested using simple SPARQL queries. The illustrations presented in this chapter,
are somehow demonstrate that the contexts are related to each other in terms of the
need (subsistence in three cases) on the same trajectory. But in a more complex set up,
the contexts can be entirely different such as reading newspaper (need: understand-
ing), while travelling on the bus to work (need: subsistence).

The model proposed in this chapter considers a trajectory captured by a GPS sensor
onboard a smartphone in order to illustrate the working of the ontological framework
across contexts and levels of granularity. However, the approach can be used for trajec-
tories captured by different sources such as trajectories of check-in points, generated
by cordons, by static sensors, or from indoor tracking, where each method may have
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its own granularity and context. The model can also address complex activity models
at any level of granularity. Thus the approach presented in this research can be ex-
pected to be both flexible and scalable. This research also demonstrated the approach
can be used to represent activity knowledge in different domains.

In this research the three different illustrative contexts are treated separately. Future
research may connect different contexts in a single model (of variable granularity)
based on situational relevance in order to structure more complex activities and extract
different action and activity information (disjoint or joint) happening or overlapping
on the same space-time window through temporal calculi (Ligozat, 2013) and context-
sensitivity. As the focus of this thesis lies on how a person mediates during a travel,
following three chapters (Chapter 5, Chapter 6, Chapter 7) will explore three different
approaches to detect the transport mode information and trip information at different
temporal granularities.
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5
A F U Z Z Y K N O W L E D G E - D R I V E N A P P R O A C H F O R T R A N S P O RT
M O D E D E T E C T I O N

Transport mode detection is an emerging research area in different domains e.g., ur-
ban mobility, context-aware mobile computing and intelligent navigation. Current
approaches are mostly data centric – based on machine learning approaches. How-
ever, the machine learning approaches require substantial training data and cannot
explain the reasoning or infer procedure. Machine learning based approaches also
fall short in providing different possibilities with varied certainty levels. To overcome
such shortages, there is a need to develop a novel approach for transport mode detec-
tion: a knowledge-driven approach that can work without any training, based solely
on expert knowledge and can generate multiple possibilities. This is useful particu-
larly when the ground truth information or expert knowledge is limited. Thus in this
chapter 1 a fuzzy multiple-input multiple-output (MIMO) knowledge-driven model is
developed using kinematic and spatial information with a well explained fuzzy reason-
ing scheme through a fuzzy rule base. Different membership function combinations
are evaluated in terms of accuracy and ambiguity. The results justify that the model
performs best using a Gaussian-Gaussian combination, and is comparable to machine
learning approaches.

5.1 introduction

In order to travel, a wide spectrum of transportation modes are in use, which are
broadly classified into motorized and non-motorized modes. Examples of the popu-
lar motorized modes are bus, car, motor bike, train and tram, and some of the non-
motorized modes are walking, human-powered rickshaw, and bicycle. Transport mode
information, i.e., the travel mode on each part of a travel, is valuable in order to un-
derstand the dynamics of people’s movement behaviours and preferences as well as to
develop various context-aware services (Ashbrook and Starner, 2003; Dey and Abowd,
2000; Schilit et al., 1994).

As described in Chapter 1 and Chapter 2, currently transport mode information is
collected through manual travel survey methods with inherent quality issues (Stopher,
2004; Stopher and Collins, 2005; Wolf, 2000). In order to resolve the quality issues, au-
tomated surveys have been conducted deploying handheld GPS receivers with high

1 The research has been submitted and currently under review.
Das, RD., Winter, S. (2016): Fuzzy Logic based Transport Mode Detection Framework in Urban Environ-
ment, Journal of Intelligent Transportation Systems (under review)
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accuracy (Wolf, 2000), which, however, is costly and cumbersome. Hence, recently var-
ious sensors on board of smartphones have been trialled for mobility surveys (Cottrill
et al., 2013; Safi et al., 2013; Stopher et al., 2008). The raw data collected by smartphones
requires an automatic (post-event) detection of transport modes. In this chapter, an at-
tempt is made to explore the efficacy of the data provided by GPS sensors on board of
smartphones to detect a given transport mode.

The existing researches in transport mode detection using velocity-based measures,
or rigid threshold-based kinematic measures in urban environments (Bohte et al.,
2008), cannot handle uncertainties present in an object’s movement behaviour. The
existing researches also fail typically when the speeds of different modalities are the
same. In this regard, a wide range of transport mode detection work is based on ma-
chine learning (Byon et al., 2009; Hemminki et al., 2013; Reddy et al., 2010; Stenneth
et al., 2011; Gonzalez et al., 2010; Zheng et al., 2009, 2008; Gong et al., 2012) that re-
quires a substantial amount of training to develop a mode detection model. Machine
learning models inherit the uncertainties embedded in any training data, but cannot
represent the uncertainties in their own classification(s) – posing a gap in knowledge
representation. This knowledge gap is the motivation of some of the recent works
exploring knowledge-driven aspects in mode detection (Biljecki et al., 2012; Tsui and
Shalaby, 2006). In this research a fuzzy logic based purely knowledge-driven model
is proposed for mode detection. Purely knowledge-driven models do not require any
training data. The models are developed based on expert knowledge in terms of a set
of fuzzy rules. The models are applicable in different conditions provided the expert
knowledge is sufficient enough to capture different movement behaviours. On the
other hand hybrid knowledge-driven models require a training data to generate its
initial knowledge base. This chapter investigates if a purely knowledge-driven model
works effectively on historical trajectories.

In the context of transport mode detection, so far suggested fuzzy logic based
knowledge-driven models in the literature are not easily comprehensible in human
understandable format and lack the transparency in knowledge representation (see
Chapter 2). They were designed to highlight a single rule for each (transport) modal
class based on a multiple-input single-output (MISO) approach that assigns the mode
of the maximum certainty factor (CF), i.e., of highest possibility. Thus existing fuzzy
mode detection models are unable to address the fuzziness of belonging to different
modal classes with different certainty levels. Say, if the speed profile of a particular tra-
jectory is inconclusive between bus and tram, but this trajectory segment is spatially
close to the bus network, then there is a ‘high’ chance that the travel mode of this seg-
ment would be a bus ride, and ‘low’ to be a tram ride. The existing models ignore such
alternative possibilities. They will classify a given segment either as a bus ride or tram
ride without any certainty factor. Similarly, they do not address the linguistic values
with different degrees of certainties associated with each variable. In this chapter, a
more robust and flexible multiple-input multiple-output (MIMO) model has been de-

120



veloped in order to lift the expressiveness. The transparency and comprehensiveness
in the reasoning process can also generate relevant kinematic knowledge related to a
given action (or activity) to enrich the ontological framework developed in Chapter 4.

This research states that a multiple-input multiple-output fuzzy logic based knowledge-
driven approach is able to detect different transport modes effectively based on the expert
knowledge from historical trajectories. The knowledge-driven approach will also model the un-
certainties present in the movement behaviour in a transparent way.

A trajectory may contain a number of trips with different transport modes. The trips
are first detected based on a speed-based approach and then a particular modal state
is predicted over each trip segment using a fuzzy inference process. The framework
in this research is developed and tested for four transport modes: walk, bus, tram and
train, but can be extended for additional modes by incorporating more rules. This
work contributes to the existing mode detection researches in the following ways.

• The proposed model explores the efficacy of cheap GPS sensors onboard smart-
phones. Although the proposed model uses GPS sensors alone, but is easily ex-
tensible by incorporating other sensors available on smartphones (such as ac-
celerometer).

• The proposed Mamdani fuzzy model is based on MIMO architecture. The model
can explain the reasoning scheme in a more comprehensive way with an ability
to quantify the cognitive certainty of being different modes with varied degree.
Such comprehensiveness is missing in the existing fuzzy logic based models.

• This research investigates the efficacy of combining different membership func-
tions rather than only a trapezoidal membership function which has been used
in earlier researches.

The rest of the chapter is organized as follows. Section 5.2 and Section 5.3 present
the fundamental concepts and fuzzy mathematics along with the proposed fuzzy logic
based framework for travel mode detection. This framework is put to a test in Sec-
tion 5.4, which presents the experimental set up and the evaluation. In Section 5.5, the
results are discussed with regards to the novelty and the limitations of the framework.
Section 5 contains the summary and future research directions.

5.2 theory

5.2.1 Expert system

Expert systems emulate an expert’s reasoning process and decision making ability
through complex situations (Buchanan and Duda, 1982). The core of an expert system
is based on IF-THEN rules. The IF part includes the fact or evidence, whereas THEN
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part includes the hypothesis or conclusion. An expert system has two components,
a knowledge base and an inference engine. The knowledge base contains the facts
or evidences (e) whereas the inference engine contains the rules (R) and applies the
rules to known facts to deduce new facts or arrive at a conclusion or hypothesis (h).
A Mamdani fuzzy logic based model is a type ofexpert systems that can reason with
uncertainty, and to represent their reasoning scheme (Shortliffe, 1975; Siler and Buck-
ley, 2004; Nickles and Sottara, 2009). In this chapter a forward chaining fuzzy expert
system is developed.

5.2.2 Fuzzy expert system

A fuzzy expert system is based on fuzzy set theory (Zadeh, 1965). Unlike a crisp set
theory where an element is either present or absent in a given set, fuzzy set theory
assigns a membership value to an element and, thus, introduces the concept of a
partial membership of that element in a number of different set(s). If A is a fuzzy set
defined on a universe of discourse U, then the membership of an element y ∈ A can
be defined by a membership function (MF) µA(y) within an interval of [0,1]. This can
be mathematically expressed as follows.

A = {(y,µA(y)|y ∈ U),µA(y) : U→ [0, 1]} (5)

A fuzzy variable is expressed through a fuzzy set, which is attributed with a set of
fuzzy values. Thus, a fuzzy variable A can be characterized by a set of fuzzy values,
known as term set {T },and a set of membership functions {M}, where:

TA(y) = T
1
y , T2y , ......., Tky (6)

MA(y) = µ
1
y,µ2y, ........,µky (7)

There are two types of fuzzy models used in general: the Mamdani fuzzy model and
the Takagi–Sugeno–Kang (TSK) fuzzy model (more popularly known as the Sugeno
fuzzy model). In a Mamdani fuzzy model, both the antecedent (IF) and consequent
(THEN) are fuzzy. The IF part contains the fact, and the THEN part contains the
conclusion. In the case of a Mamdani fuzzy approach, both the fact and the conclusion
are not certain, which occurs in most of the real-life situations due to limitations in
system architecture, data acquisition, subjective perception of the user, the quality
of data and the predicted outcome in a given context. The model developed in this
chapter is based on Mamdani approach. A Mamdani fuzzy inference system (MFIS)
is more transparent (compared to a Sugeno model) due to its ability to represent the
fuzziness both in antecedent and consequent part in an offline scenario. Whereas a
Sugeno approach is more suited where the antecedent part is fuzzy but consequent
part is crisp. This chapter develops a Mamdani approach for transport mode detection
on historical trajectories whereas Chapter 6 investigates whether a Sugeno approach
works better than a Mamdani approach in near-real time.
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5.2.3 Mamdani fuzzy inference systems

An MFIS fuzzy inference system comprises a fuzzifier, a rule base, an inference engine,
and a defuzzifier (Iancu, 2012). A fuzzifier takes an input feature vector, and maps
each numerical value to a fuzzy membership value. To develop the rule base, each
rule consists of a number of facts related to the kinematic and proximity measures
(e.g., speed, closeness to the bus route). The facts are combined using a t-norm or t-
conorm or a negation operator. In this research the rule bases developed are all based
on a t-norm operator. On firing a given rule, a MIN operator is used to select the
minimum membership value from a number of fuzzy antecedent variables (Ai) to
obtain the corresponding consequent (Ci) lamina in the consequent function. Once all
of the rules are fired, all of the selected consequent lamina are aggregated; in order to
generate the final (crisp) output value from the combined consequent lamina, which
corresponds to the centre of gravity (cg) of the combined consequent lamina. Figure 34

illustrates how each rule is fired, and the consequent lamina are combined once all of
the rules are fired. In Figure 34, two rules are shown where the rules state,
R1 : IF A1 is T1 and A2 is T2, THEN C1 is T1.
R2 : IF A1 is T1 and A2 is T3, THEN C2 is T2.
For given inputs, when fuzzy variable A1 = y1 and A2 = y2, each rule is fired, and

the corresponding fuzzy consequent is inferred. In order to defuzzify the consequent
part and to obtain the final output (Fo) a centre of gravity’ method is used as follows.

Fo =

∑
ui.yi∑
ui

(8)

5.3 a mamdani fuzzy inference system for mode detection

In a mode detection model, each consequent variable is a modal state. The linguistic
values of different consequent variables represent low, moderate, and high certainties.
Each linguistic value is quantified over a range of 0 to 100.

Based on the observations and common sense knowledge 74 fuzzy rules have been
developed (see first 74 rules in Appendix A), with five antecedent variables and four
consequent variables in each rule statement. The notion behind the multiple conse-
quent parts is that a given set of facts (antecedent part) may indicate different modes
with varied degree of certainty. The evidences (inputs) in an antecedent part are fuzzi-
fied using a given fuzzy membership function, which are aggregated using an AND
operator and fed to a fuzzy inference engine containing the rule base for generating
conclusions as consequent variables with different values. The consequent variables
are also combined using an AND operator. Then a defuzzification is performed to
generate the crisp certain factor for each consequent part. Finally, the modal state with
the maximum certainty factor is chosen as the predicted class for a given input feature
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Figure 34: A Mamdani fuzzy inference system with two rules.

vector (Fig 35. Some of the fuzzy rules are as follows. Due to space limitation all rules
are not shown here (for the complete set of rules refer Appendix A).

R1: If (avgSpeed is low) and (maxSpeed is low) and (avgBusProx is moderate) and
(avgTrainProx is moderate) and (avgTramProx is moderate) then (walk is high)(bus is
low)(train is low)(tram is low)

R2: If (avgSpeed is high) and (maxSpeed is moderate) and (avgBusProx is far) and
(avgTrainProx is proximal) and (avgTramProx is far) then (walk is low)(bus is moder-
ate)(train is high)(tram is moderate)

R3: If (avgSpeed is moderate) and (maxSpeed is moderate) and (avgBusProx is mod-
erate) and (avgTrainProx is moderate) and (avgTramProx is proximal) then (walk is
high)(bus is low)(train is low)(tram is high)
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Figure 35: A MIMO Mamdani fuzzy inference system for mode detection.

Since choosing a proper membership function is a challenge in designing a fuzzy
model, this research evaluates different membership function combinations (antecendent-
consequent) by considering three basic mathematical functions, e.g., a) Triangluar (T);
b) Gaussian (G); c) Trapezoidal (Trap), which can be expressed as follows. The pa-
rameters for each function are based on the heuristics and trial-and-error similar to
previous studies (Biljecki et al., 2012).

triangluar function

µ(x) =


0, x 6 a
x−a
b−a , a 6 x 6 b
c−x
c−b , b 6 x 6 c

0, c 6 x

(9)

trapezoidal function

µ(x) =


0, (x < a)or(x > d)
x−a
b−a , a 6 x 6 b

1, b 6 x 6 c
d−x
d−c , c 6 x 6 d

(10)
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gaussian function

µ(x) = exp
−(x− c)2

2σ2
(11)

5.4 evaluation

5.4.1 Data set

In order to evaluate the model a data set is collected in Greater Melbourne, Australia
(see Section 3.2). Unlike the current telephone or web-based surveys relying on peo-
ple’s memories (Doherty et al., 2006; Stopher and Collins, 2005), the groundtruth of
transport mode information is highly reliable as it was recorded instantly on the fly on
a paper diary with start time, end time and modal state. During the data collection it
is observed that there is a GPS update delay each time when getting off any motorized
mode, and occurrence of signal loss for a certain duration, which may be caused by a
certain implementation of the sampling in the Android app. This update process typi-
cally takes 8 s-10 s which creates semantic gaps in the location information for certain
duration.

The speed distribution shows that in this survey buses generally maintain an av-
erage speed of 25 km/h with a maximum speed around 60 km/h with occasional
higher speed (>100 km/h) especially on the expressways (Fig 38). Trains show an aver-
age speed of 40 km/h with maximum speed around 80 km/h in the inner city. Trams
show an average speed of 20 km/h with a maximum speed of 60 km/h occasionally
(mostly in the night and during off peak hours). However, average walking speed
was recorded around 9 km/h with occasional spikes exceeding 15 km/h either due to
brisk walking or momentary running or multipath effect (Fig 36). Table 9 presents the
temporal distribution of different modes.
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Figure 36: Average speed profile for different modes (derived from raw location information
before filtration).

Figure 37: Maximum speed profile for different modes (before filtration).
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5.4.2 Data preprocessing

Data preprocessing is performed as follows.

• GPS data pruning (noise removal) is done based on positional (in)accuracy. Any
GPS sample point with accuracy less than 40 m is removed.

• Followed by the pruning a smoothing operation is performed on the trajectories
using a spatial linear interpolation technique. Linear interpolation estimates the
coordinate of an unknown location using the coordinates at two known locations
along a straight line. Prior research have shown and tested the efficacy of linear
interpolation technique due to its simplicity (Long, 2016; Nelson et al., 2015; del
Mar Delgado et al., 2014; Wentz et al., 2003), and usefulness in comparatively on
a fine grained trajectory.

Figure 38: Linear interpolation at time tu

A linear interpolation estimates the coordinate at an unknown location P(tu)

at time tu using two known locations [P(ti), P(tj)] recorded at time ti and tj,
where ti < tu < tj. In this research Z is composed of (x,y) in R2 space. Figure 39

shows how the linear interpolation operation populated the missing locations of
a GPS trajectory.

P(tu) = P(ti) +
tu − ti
tj − ti

[P(tj) − P(ti)] (12)

• Once the trajectories are interpolated, a speed-based filtering is done with the
assumption that no high speed point should lie in between two low speed point
and vice-versa with a 9 km/h low speed threshold. This ensures removing any
sudden inaccurate GPS points for walking or waiting or moving in a vehicle. In
order to perform spatial computation, especially proximity analysis, the trajecto-
ries are projected onto GDA94 coordinate system (zone 55) from WGS84. Follow-
ing this, a walking-based segmentation segments a trajectory into a number of
low speed and high speed segments. Over each segment, features are computed
and then fed to a fuzzy inference system (FIS). A particular modal state is pre-
dicted based on maximum certainty factor. Figure 40 shows the entire workflow.
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Figure 39: A raw trajectory with occasional signal loss (a), an interpolated smoothed trajectory
after linear interpolation (b).

In this research five features are considered: average speed, 95th percentile of
maximum speed, average spatial proximities to bus network, to tram network,
and to train network.

5.4.3 Experiment

In order to compare the accuracies using only kinematic versus kinematic along with
spatial information, different experiments are set up. Since earlier work (Bohte et al.,
2008; Schuessler and Axhausen, 2009; Tsui and Shalaby, 2006) used velocity-based fea-
tures to predict transport modes, the first experimental setup is designed with velocity-
only features.

In the second experimental setup, spatial information is incorporated with kine-
matic information. In order to strengthen the reasoning process, spatial proximity of
each GPS point in a trajectory to its nearest route network is evaluated. Walking is
a very flexible type of transport mode taking place anywhere along any network ex-
cept train networks, the proximity information to the different networks does not give
much distinct information for the walking mode (Fig 36d). Hence while reasoning for
walking, the focus was on speed as the average speed of walking is low. For trams
the speed is low to moderate and close to the tram network. Bus and tram networks
can occasionally coincide in inner city environments. However, the maximum speed
of trams is less than the maximum speed of a bus in the observed environment. For
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Figure 40: A workflow for MIMO Mamdani fuzzy inference system for mode detection.

trains, average speeds range from moderate to high and close to the train network, with
less signal loss or multipath effects. In the second experimental setup 74 fuzzy rules
are used.

it has been observed that due to signal loss and positional inaccuracy, sometimes
proximity information is not useful. In order to address this issue a third experimental
setup was designed consisting of 76 (74+2) fuzzy rules.

5.4.4 Results

In order to measure the accuracy of the models, precision accuracy, and recall accuracy
are used, which are based on true positives (tp), false positives (fp), true negatives (tn),
and false negatives (fn). An F1-score is also used that combines the precision and recall
together. The formula for precision accuracy, recall accuracy and F1-score are provided
as follows:

precision =
tp

tp+ fp
(13)

recall =
tp

tp+ fn
(14)

F = 2.
precision.recall
precision+ recall

(15)
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For first experimental setup, two linguistic variables (features), average speed and
the 95th percentile of maximum speed, are considered with the linguistic values high,
moderate and low. The average accuracy ranges from approximately 56.68% to 52.91%.
This happens as some of the modes show similar movement behaviours especially due
to traffic congestion or GPS signal loss.

In the second experimental setup, the average recall accuracy is 70.98% and precision
accuracy is 79.92%. The F1-score for walk is 0.81, for bus is 0.65, for train is 0.62, and
for tram is 0.78. Most of the train trips are misclassified as bus trips and walking trips
(Table 16).

Table 16: Confusion matrix of second experimental setup

Actual Walk Bus Train Tram

Predicted

Walk 148 7 1 31

Bus 8 61 3 7

Train 13 24 37 6

Tram 15 99 0 14

In the third experimental setup when adding two more new rules (rule 75, 76) in the
rule base, the accuracy has improved (see Appendix A, Table 17). In terms of average
recall accuracy a G-G combination outperforms other combinations (Fig 42). In this
experimental setup three different combinations are tested: G-G, Trap-Trap, and T-T. for function

acronyms see
Section 5.3

.
The basic assumption for developing the rule base is that a given GPS point that

belongs to a given transport mode should be located closer to the respective route
network than that of the other networks. For example the GPS points during a bus trip
should be closer to a bus route than that of a tram or train route. In terms of speed,
train should show the highest speed compared to bus and tram, followed by walk. But
this can only be comprehended in the presence of consistent and good-quality GPS
signals. Figure 41 shows a distinct speed profile and proximity behaviour by three
different transport modes in a given trajectory.

Figure 42 and Figure 43 demonstrate performance measure of the fuzzy model. The
average recall accuracy ranges from 68% to 75% whereas the precision accuracy is 81%
for all the combinations. However, in some cases for some feature vectors over given
segments the predicted class scores for each mode were equal (50, 50, 50. 50). Such
ambiguous segments reduce the recall and precision accuracy for a given mode. A G-
G combination show no ambiguity whereas Trap-Trap and T-T combination show 25

ambiguous trips. In terms of individual modal accuracy, G-G combination produces
maximum recall accuracy (90%) for the walk mode, followed by bus (78.48%), tram
(69.76%) and train (61.72%). On the other hand, a T-T combination yields 100% preci-

131



Figure 41: A trip from the University of Melbourne in the CBD to Jacana train station. Figure
(a) shows the interpolated trajectory, (b) shows the space-time lamina to indicate
how time elapsed during the travel, (c) exhibits different speed profile for walking,
bus and train, and (d) exhibits the proximity to the respective route network during
bus and train trip.

sion accuracy for train, followed by tram (88.88%), walk (72.36%) and bus (66.31%). For
G-G and Trap-Trap combinations, the pattern is also same (Fig 43). Figure 44 shows
the accuracies for all the combinations in terms of F1-score are always higher for walk
mode .

The recall accuracy for bus is approx 78% in three combinations (Table 18). On the
other hand, the precision accuracy for bus varies from 65% to 70%. For the train mode,
recall accuracy varies from 39% to 61% whereas the precision accuracy is quite high,
varying from 97% to 100% (Table 19). That means the rules developed for train mode
are not exhaustive enough to retrieve all the train trips but the rules are accurate
enough to detect train trips as true positives from the retrieved information. However,
due to multipath effect and signal loss in some cases, train route proximity was too
distal owing to difficulty to identify train modes. For tram mode, recall accuracy varies
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from 58% to 69%, and precision accuracy varies from 87% to 89%. For walking, the re-
call accuracy varies from 85% to 90% and precision varies from 69% to 73%. Some of
the non-walk modes are misclassified as walking especially during low speed condi-
tion subject to Type I error for walking. The rules, however, developed for train mainly
emphasize on the fact that, in order to be a train mode a given moving object should
move in close proximity to the train network with a high speed profile. This assump-
tion is found to be true with most of the predicted train classes. This results in less
Type I error for train mode compared to the other modes (Table 17). In order to mea-
sure the combined accuracy a F1-score is computed for each mode which shows for
walk mode F1-score is highest for G-G and Trap-Trap combination which 0.81 and 0.76

respectively, and for T-T combination for walk and tram similar F1-score (Table 20).
The results signify that appropriate selection of membership functions and their

shape is important. The results also demonstrate the proper rule(s) inclusion is neces-
sary to detect a given modal state. For example, using 74 fuzzy rules, 25 train trips
and 19 train trips are misclassified as bus and walk respectively. But after including
two additional fuzzy rules that can handle the proximity issue, the accuracy for train
mode has increased with less Type II error with a drop in false bus mode from 25 to
12. To see the detailed rule base refer to Appendix A.

Table 17: Confusion matrix of third experimental setup using 76 fuzzy rules (G-G combination)

Actual Walk Bus Train Tram

Predicted

Walk 171 15 0 4

Bus 10 62 0 7

Train 19 12 50 0

Tram 32 7 0 90

Table 18: Recall accuracy using 76 fuzzy rules

Function

Combination
Walk Bus Train Tram Avg

G-G 90.00 78.48 61.72 69.76 74.99

Trap-

Trap
85.78 77.21 55.55 58.91 69.36

T-T 86.84 79.74 39.5 68.21 68.57
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Figure 42: Average recall accuracy (vertical bars indicate accuracy measures for different trans-
port modes. Different colours indicate different membership function combina-
tions).

Table 19: Precision accuracy using 76 fuzzy rules

Function

Combination
Walk Bus Train Tram Avg

G-G 73.70 65.26 98.03 89.10 81.52

Trap-

Trap
69.36 70.93 97.82 87.35 81.36

T-T 72.36 66.31 100.0 88.88 81.89

5.5 discussion

In this research, a fuzzy logic based transport mode detection framework is developed
and evaluated on a multi modal dataset collected across Greater Melbourne. The main
contribution is developing a MIMO-Mamdani fuzzy inference model and testing differ-
ent membership function combinations. The model is developed based on kinematic
and non-kinematic (spatial) information.

Extending existing fuzzy models, a MIMO fuzzy model has been developed assum-
ing a segment may contain possibility of different classes (modes) with varied certainty
level. Earlier fuzzy models do not consider the fuzziness in their consequent part based
on cognition in terms of linguistic labels and alternative possibilities. The earlier mod-
els directly quantified the consequent part based on rule firing without considering
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Figure 43: Average precision accuracy (vertical bars indicate accuracy measures for different
transport modes. Different colours indicate different membership function combi-
nations).

Table 20: F1-score using 76 fuzzy rules

Function

Combination
Walk Bus Train Tram

G-G 0.81 0.71 0.75 0.78

Trap-

Trap
0.76 0.73 0.70 0.70

T-T 0.78 0.72 0.56 0.77

any linguistic value assigned to a consequent part. But this research expresses the
varied degrees of certainty for a given modal class.

The results show that incorporating spatial information can increase accuracy sig-
nificantly from 56% to 81%. However, by combining different membership functions
in terms of number of ambiguous modal classes, a Gaussian-Gaussian combination
works best compared to other combinations. The reason behind this is that for other
membership functions (e.g., Trapezoidal, Triangular) the function itself is crisp in na-
ture over a given range for a given linguistic value, and hence any value falling outside
that range gets a membership value of zero. Thus in some cases, the model gets con-
fused when the given input feature vector does not fall within the range defined by
given membership functions owing to similar certainty value for four modes. Am-
biguous results are also produced when the knowledge base is insufficient to capture
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Figure 44: F1-score for different mode detection by different membership function combina-
tion.

different movement behaviour in terms of limitation in expert knowledge or sensor
information.

Since a raw GPS trajectory involves occasional signal loss, it is important to smooth
the trajectory using an interpolation technique. In this research a linear interpolation
has been implemented (see Section 5.4.2). A linear interpolation works satisfactorily
only when the signal gap is not very large as the interpolated points are plotted along
a straight line between two known locations. In the case of a bigger signal gap, the
uncertainty is higher and a simple linear interpolation would result in misleading lo-
cation information. This particularly affects the proximity measurement which in turn
will trigger the rules in improper way resulting in high Type I and Type II error. For
example, during a train trip in the underground metro tunnel in the CBD, there was
a signal gap for a certain period (Fig 45a). A linear interpolation has produced loca-
tion information during that train trip. However, due to the geometrical nature of the
interpolated GPS points, they show closer proximity to bus network which is 31 m for
a queried point (see Fig 45b) and 191 m from the train network (Fig 45c). Whereas in
reality the point is supposed to be closer to the train network. In order to deal with this
kind of problem, more robust interpolation methods can be implemented in the future
work such as a kinematic interpolation that relies on velocity measure at two known
locations (Vishen et al., 2015), or a Bezier curve which assumes a curvilinear move-
ment rather than a beeline movement (Long, 2016), or other probabilistic estimation
techniques (Koyama et al., 2009).

Although the results show strong evidence supporting the hypothesis, the model
still has some limitations at this stage. First of all, since the model is based on GPS
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Figure 45: A train trip in the Melbourne CBD with occasional signal loss (a), proximity to bus
network (b), proximity to train network (c).

readings only, it generates false positives and false negatives for different modalities
during signal loss or in urban canyons. For example, sometimes the observed walk-
ing speed is unnaturally high due to multipath effects or passing through indoor
environments. In urban environment in low speed condition where the vehicles are
moving slowly, it is important to incorporate spatial proximity information. Though
in a freeway when a bus moves at a high speed, there is a signal loss or noisy GPS
measurement, it would be difficult to distinguish between bus and train modes.

That said, since the model is heavily dependent on speed and proximity, if both
of these indicators pose ambiguous behaviours, additional information is required to
resolve the ambiguity. For example, evidence of walking can be strengthened in indoor
by measuring the radio signal strength (RSS) of nearby known hotspots or Bluetooth
devices. The model has limitations with the average speed value calculated from two
consecutive coordinates. This happens because of the noisy nature and semantic gap in
the trajectories. This problem can be addressed by incorporating other infrastructure
and inertial sensor information along with additional expert rules.

In this research, a speed based walking based segmentation is performed to segment
a given trajectory into a number of low speed and high speed segments which are then
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used to compute several kinematic and spatial features. The basic assumption behind
such an approach is people need to walk in between two motorized or bicycle modes.
But walking is context-sensitive and subjective which poses problem while setting the
appropriate low speed threshold and distance threshold (for detailed discussion refer
to Chapter 7).

The knowledge-based fuzzy model developed in this chapter is solely based on ex-
pert knowledge. The fuzzy rules are based on real world observations. As mentioned
earlier in this Chapter, three different fuzzy membership functions are modelled man-
ually through a trial and error method motivated by earlier work in the same line
(Biljecki et al., 2012). Eventually, this is one of the limitations of a fuzzy knowledge
driven approach where the model lacks adaptivity and automation. In order to auto-
mate the derivation of the sets and the rules, the fuzzy knowledge driven approach
has been integrated with a machine learning based approach (neural network) and
a hybrid neuro-fuzzy model (MLANFIS) is developed in Chapter 6, which is more
adaptive and at the same time, can explain its reasoning process through the rule
based generated automatically. Since a hybrid model can learn from the training data,
the membership functions are automatically tuned to their best possible configuration.

5.6 summary

Existing models on transportation mode detection are primarily based on machine
learning algorithms, which require a considerable amount of training and falls short
in representing the knowledge base and reasoning scheme. In order to address the
incapability to handle the uncertainties and vagueness in the human thought process,
a MIMO Mamdani-type fuzzy mode detection model is developed in this chapter. The
model demonstrates that a fuzzy approach can yield 81% precision accuracy and 75%
recall accuracy, which is at par with machine learning models, but without any require-
ment for a priori training. The results demonstrate that the way rules are developed
can influence the mode prediction. For example, during signal gap or multipath effect
some of the train modes do not show close proximity to the train network which has
been handled by Rule 75 and 76 (see Appendix A).

The fuzzy model developed in this research shows that incorporating spatial in-
formation with kinematic information can improve the mode detection accuracy. The
model also demonstrates its ability to model the kinematic uncertainties and the rea-
soning process in a human understandable format. In order to evaluate the model,
a test runs with four modalities (walk, train, tram, bus) in an urban environment.
However, the model can easily accommodate more modalities by extending the fuzzy
inference engine in terms of variables and rules. The model can also allow integrat-
ing more sensor information. The fuzzy model presented in this chapter is a purely
knowledge-driven model, which works effectively once the entire travel is complete.
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Further investigations are required to understand how a purely fuzzy logic based
knowledge-driven model behaves in near-real time.
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6
D E T E C T I N G U R B A N T R A N S P O RT M O D E S U S I N G A H Y B R I D
K N O W L E D G E - D R I V E N F R A M E W O R K

Existing mode detection approaches extract travel information by interpreting the his-
torical GPS trajectories. The existing approaches provide information in offline, once
the entire travel is complete. Thus, the existing approaches are limited in terms of
generating just-in-time mobility information. A just-in-time information can assist in
understanding various dynamic phenomena e.g., real time mode specific patronage
estimation. As mentioned in Chapter 5, in order to detect the transport modalities
from GPS trajectories, various machine learning approaches have already been ex-
plored. But majority of them produce only a single conclusion from a given set of
evidences, ignoring the uncertainty of any mode classification (see Chapter 5). Also,
the existing machine learning approaches lack the expressiveness. In contrast, a fuzzy
knowledge-driven model can explain its reasoning scheme in a human readable for-
mat along with a provision of inferring different outcome possibilities, but lacks the
adaptivity and learning ability. In this research1 , a novel hybrid knowledge-driven
framework is developed by integrating a fuzzy logic and a neural network to comple-
ment each other’s limitations. Thus the aim of this research is to automate the tuning
process in order to generate an intelligent hybrid model that can perform effectively
in near-real time mode detection using GPS trajectory. Tests demonstrate that a hybrid
knowledge-driven model works better than a purely knowledge-driven model and at
per the machine learning models in the context of transport mode detection.

6.1 introduction

The majority of transport mode detection research uses offline inference strategies
on historical GPS trajectories (Section 2.3.3). In contrast, near-real time transport mode
detection from a GPS trajectory is comparatively a new concept. Transport mode detec-
tion, being a classification problem, has been approached by artificial neural networks
(ANN), support vector machines (SVM), decision trees (DT) and several other machine

1 The initial findings from this research was presented in the following conference workshop.
Das, RD., Winter, S. (2016): A Neuro-Fuzzy based Hybrid Intelligent Framework for Transport Mode
Detection, ACM SIGSPATIAL Workshop on Mobile Entity Localization, Tracking and Analysis,
Burlingame, USA

An extended and revised version of this research is later published as follows:
Das, RD., Winter, S. (2016): A Hybrid Knowledge-driven Framework for Urban Transport Mode De-
tection from GPS Trajectory, ISPRS International Journal of Geo-information, 5(11)
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learning techniques so far (Byon and Abdulhai, 2007; Byon et al., 2009; Gonzalez et al.,
2010; Reddy et al., 2010; Stenneth et al., 2011; Zheng et al., 2010, 2008), and less so by
knowledge-driven models (Biljecki et al., 2012; Tsui and Shalaby, 2006). However, tradi-
tional machine learning techniques used in existing mode detection research provide
limited functionality to express the uncertainties in a user’s movement behaviour.

Besides, a machine learning model needs to be trained every time with a new train-
ing sample when there is a need to upgrade the model. A machine learning approach
also lacks the transparency and expressiveness in its reasoning mechanism. On the
other hand a knowledge-driven expert system approach is more expressive and al-
lows semantic extraction from a given trajectory based on the kinematic observations.

In a near-real time scenario a purely knowledge-driven approach (see Chapter 5)
does not perform well as the (expert) rule base may not capture all the possible sit-
uations. To address this issue, in this research, a hybrid knowledge-driven model is
proposed that can bridge the trade-off between the learning ability and the expres-
siveness. The hybrid model proposed in this chapter is based on a Sugeno-type fuzzy
inference process. Since a knowledge-driven (expert system) model can explain its rea-
soning scheme, the model can also reflect any anomaly in user’s movement pattern
or his/her driving behaviour based on the set of rules that are fired for a given set of
input features, which is not very prominent by a machine learning model.

Although fuzzy logic based models are transparent and works based on an expert
knowledge, but the success of a fuzzy knowledge-driven model lies in its proper se-
lection of membership functions and their parameters. In case of a fuzzy logic based
knowledge-driven model the membership functions and their parameters are selected
manually. Thus, the model lacks the self-adaptivity and provide limited capacity under
varying conditions, especially when there are large numbers of fuzzy variables (Siler
and Buckley, 2004). Applied to trajectory interpretation, fuzzy models may not be of
consistent quality with their given rule sets along with their membership function(s)
over a given travel due to GPS multipath and signal loss, especially on shorter seg-
ments in the context of near-real time mode detection. Thus, a fuzzy inference model
needs an automation to select its membership function parameters automatically by
learning from a given input-output mapping. This is accomplished by integrating ma-
chine learning with a fuzzy system: only a neuro-fuzzy system is capable of develop-
ing a fuzzy expert system automatically with the provision of making modifications
by experts in later phases without having proper training data.

Therefore, this research proposes an integrated multi-layered hybrid neuro-fuzzy
framework for transport mode detection in the interest of public transport infrastruc-
ture. The framework combines an artificial neural network (ANN) with a Sugeno-type
fuzzy logic (see Section 5.2.2) in order to enable the fuzzy inference system (FIS) to
tune its parameters through an iterative learning process. At the same time, the model
also makes the ANN more transparent by expressing the fuzzy knowledge base and
reasoning scheme. The aim of this chapter is to develop a novel multi-layered neuro-
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fuzzy-based hybrid intelligent knowledge-driven model that can perform better than
Mamdani-type fuzzy models (see Section 5.2.2) and work at par with some of the
state-of-the-art machine learning models, but has the ability to explain the reasoning
scheme for near-real time mode detection. Thus, this research hypothesizes that a hy-
brid neuro-fuzzy approach will bridge the gap of ability to represent knowledge and learning
capacity in an uncertain condition and compensate the trade-off between a machine learning-
based approach and a fuzzy logic expert system and can develop a more robust and transparent
classification than that of its counterparts in transport mode detection in near-real time.

The contributions of this chapter are as follows:
(a) To the best of the author’s knowledge, this is the first work in the field of transport
mode detection where a hybrid intelligent model is developed using a machine learn-
ing approach and a fuzzy expert system.
(b) This work investigates the performance of a hybrid knowledge-driven model com-
pared to a purely knowledge-driven model and machine learning models.
(c) This research also presents a novel approach to deal with multi-class problems, us-
ing a multi-layered neuro-fuzzy model. Most of the hybrid models used in other areas
of transportation research so far, deal with regression problems such as travel time es-
timation, demand estimation, mode choice behaviour or flow behaviour. However, this
research develops an adaptive and multi-layered hybrid intelligent model to address
the transport mode classification problem.

In this research, the term “near-real" time has been introduced for the first time
in transport mode detection research. Detecting transport modes in near-real time
resembles to activity recognition on a second-by-second basis in pervasive and mobile
computing (Bao and Intille, 2004; Bulling et al., 2014). However, for practical reasons,
activity recognition (in the context of body part movement and gesture recognition)
at a finer granularity based on inertial sensor data can be performed comparatively
within a shorter time window (typically in the order to 1 s–10 s) than the length
required for transport mode detection using GPS (typically in the order of 60–120 s).
This temporal difference is due to the temporal delay in GPS signal updates typical
on commercial smartphones. Thus, instead of using the term “real time", this research
uses the term “near-real time" to indicate the granularity of the query window in a
qualitative way. The model presented in this research is compared with a multiple-
input multiple-output (MIMO) Mamdani fuzzy inference system (MFIS) and some
machine learning models, and the results demonstrate the efficacy of the model in
terms of its consistency in performance and reasoning ability.

The remainder of the chapter is organized as follows. Section 6.2 presents a brief
theory of the fuzzy and neuro-fuzzy model. In Section 6.3, a near-real time mode
detection architecture is presented, followed by an implementation and evaluation in
Section 6.4. A discussion is presented in Section 6.5. In Section 6.6, summary and
possible future research directions are presented.
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The hybrid approach has been successfully used in other contexts already, such as
in traffic modelling, different transportation control systems and people’s mode choice
behaviour.

For example, Panella and colleagues developed a neuro-fuzzy model to address ve-
hicular traffic flow in an urban environment. They developed a centralized system
where the vehicular movement data are transmitted and based on the kinematics, a
particular flow state is determined. They used a hyper-plane clustering technique in
the training stage (Panella et al., 2006). Neuro-fuzzy systems have been also used in
traffic control in different types of intersections. Henry and colleagues show a neuro-
fuzzy model working satisfactorily at intersections with simple and medium complex-
ity. At more complex intersections, a neuro-fuzzy model needs integration with an
optimal control (Henry et al., 1998). Wannige and colleagues developed a neuro-fuzzy-
based traffic control system in their simulated study. They used two four-way traffic
junctions and a road connecting both the junctions. They have investigated how traf-
fic behaviour changes on that particular road segment between the two junctions and
how the traffic system adapts with varying conditions. Their study shows that a neuro-
fuzzy logic-based traffic control system works better than a fixed-time signal control
system. The model also minimizes the delay time significantly during red light phases
at each junction. Wannige and colleagues also showed how traffic lights at both of the
junctions synchronize adaptively when the volume of traffic increases significantly at
one of the two junctions (Wannige and Sonnadara, 2009). In a slightly different work,
Dell’Orco and colleagues developed a neuro-fuzzy model to predict users’ decisions
in transport mode choice (Dell’Orco et al., 2008). Their assumption is based on the un-
certainty and imprecision in data in an urban environment. Using simple fuzzy rules,
they have demonstrated how users’ perception can be encoded in linguistic attributes.
The model performs better in forecasting users’ mode choice behaviour than that of a
random utility-based model.

Although neuro-fuzzy models have been used in regression problems e.g., traffic
estimation, but the models have not been used to solve transport related classification
problems yet, for example, travel mode detection. Due to the particularities of travel
modes, the presented model will have some distinctive properties, which are discussed
in the subsequent sections.

6.2 theory

In this section, some basic concepts are presented related to the proposed hybrid
model presented in this chapter.
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6.2.1 Near-real time mode detection

In contrast to a real-time mode detection, this research deals with a near-real time
mode detection. The difference between the two concepts lies in the delay in response
time. For a real-time detection the location information is pinged on a second-by-
second basis or at a very fine granularity. The commercial Android-based smartphones,
however, suffer from battery drainage on heavy usage of GPS. In addition to that, in
an urban environment, the GPS trajectory involves frequent signal gaps and multi-
path effects, which make a fine-grained sample unreliable for detecting the modes. On
the other hand, in contrast to body part movement in the context of activity recogni-
tion in pervasive and mobile computing (Bao and Intille, 2004), the transport mode
does not change so frequently within a few seconds, and thus, a comparatively more
coarser-grained time window containing more than one piece of GPS location infor-
mation is deemed to be useful for detecting modes in the interest of close to real-time
information retrieval for various mobility-based service provisions. Figure 46a shows
a real-time mode detection concept where the smartphone continuously pings its lo-
cation information to a central server on a second-by-second basis (or at an interval
set by the sampling frequency), whereas Figure 46b shows fora near-real time scenario
a shorter sequence of GPS points being sent to the central server over a given time
window containing richer kinematic information for mode detection.

Figure 46: This figure illustrates how the location information is pinged at a real time scenario
(a) and at a near-real-time scenario (b), while travelling from home to office.

Chapter 5 presents a Mamdani fuzzy logic based framework to detect transport
modes on historial trajectories. In contrast, in this chapter a Sugeno fuzzy model is
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developed to detect transport modes in near-real time. The model is also compared
with a Mamdani based model in near-real time. A Sugeno fuzzy model involves a
fuzzy antecedent and a crisp consequent part, which is generally expressed in terms
of a polynomial function of order ‘n’. A Sugeno fuzzy rule can be represented as
follows.
Rs1 : IF avg_speed is high and avg_acceleration is uniform, THEN delay_time is 10

sec.
Unlike Mamdani fuzzy model, in the case of a first order Sugeno fuzzy model, on

firing each, rule the consequent part takes on a crisp value in terms of a number of
coefficients (p,q, r) based on a given function. For example, in the previous example,
in Rule 1, when A1 = y1 and A2 = y2, the output C1=f(y1,y2), where:

f(y1,y2) = py1 + qy2 + r (16)

Each rule (Ri) weighs its output by a firing strength wi. Once all of the rules are
fired, a weighted average is used to generate Fo for a given Sugeno model.

Fo =

∑
wi.Ci∑
wi

(17)

In the case of a zero order Sugeno model, p and q essentially become zero. Both
the conventional Mamdani and Sugeno fuzzy models are dependent on proper rule
base and membership functions. Often, it is difficult to choose a proper membership
function along with its characteristic parameters for a given fuzzy set. Fuzzy expert
systems also cannot learn in varying conditions and need a human expert intervention
for modification. In order to select the membership function parameters automatically
and in turn construct the rule base, a hybrid knowledge-driven technique, such as
an adaptive neuro-fuzzy inference system (ANFIS), is required.

6.2.2 Adaptive neuro-fuzzy inference system

An adaptive neuro-fuzzy inference system (ANFIS) is a neuro-fuzzy-based hybrid
model that is equivalent to a Sugeno fuzzy model by its operation and reasoning pro-
cess, whereas it is equivalent to a neural network (with a connectionist structure) by its
architecture and learning ability (Negnevitsky, 2002). ANFIS requires a training phase
that initializes the knowledge base with a set of rules and membership functions with
automatically-selected function parameters. The training takes place through a num-
ber of iterations. A standard ANFIS model follows a hybrid learning using a forward
and backward pass (Jang, 1993). An ANFIS model consists of five layers.

Layer 1 is a fuzzification layer. The inputs are fuzzified in this layer based on the
respective membership functions. In Figure 47, the nodes Ai and Bi are linguistic
values of input x and y, respectively. The parameters involved in the given membership
function are called antecedent parameters. The nodes in Layer 1 are adaptive nodes
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in the sense that the nodes will keep on changing the antecedent parameters during
the training stage to achieve minimum errors. Layer 2 contains the rule base with a
t-norm operator which is generally considered as equivalent to a MIN or a product
operator (Bobillo and Straccia, 2011). The nodes in Layer 2 are all fixed nodes. Each
node in Layer 2 emits a firing strength (wli) of the corresponding rule, where (wli)
can be expressed as:

wli =

V∏
i

{µA(xi)} (18)

where µA(xi) is the membership function of fuzzy set A for a linguistic variable i for a
given rule r, assuming the total number of linguistic variables is V . The firing strengths
are then normalized by the nodes in Layer 3 as follows:

sr =
wli∑n
l wli

=

∏V
i {µA(xi)}∑n

l

∏V
i {µA(xi)}

(19)

where l is the layer number, and r is the node number in a given layer and n is the
total number of nodes in Layer l.

Figure 47: A basic adaptive neuro-fuzzy inference system (ANFIS) architecture.
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Layer 4 computes the consequent part of each rule based on the firing strength. An
ANFIS model is based on a Sugeno architecture for computing its consequent part. A
first order Sugeno model computes a consequent part as follows:

Or = sr(arx+ bry+ p) (20)

where Or is an output in a consequent part for rule r, sr is the normalized firing
strength and ar, br and p are consequent parameters. Layer 5 aggregates all of the
individual consequent parts from of the respective rules and defuzzifies to generate
the overall output (Of):

Of =
∑

srfr =

∑n
r sr(arx+ bry+ p)∑n

r sr
(21)

In the case of a zero-order Sugeno model, the consequent part simplifies into p. The
consequent parameters are tuned in a forward pass using a least square estimation
where the error term (E) can be expressed as:

Ek(a,b) =
N∑
t=1

(Tk − (akx+ bky+ p))
2 (22)

where Ek(a,b) is the error term for the k− th entry in the training data,Tk is the target
output for the k− th entry, and N is the total number of iterations. Thus, the overall
error is:

E =
∑

Ek (23)

The objective is to minimize Ek(a,b), and hence, the objective functions can be math-
ematically expressed as

∂(Ek(a,b))
∂a

= 0,
∂(Ek(a,b))

∂b
= 0 (24)

In order to determine the antecedent and consequent parameters a hybrid back
propagation technique is used. The consequent parameters, are determined through
a least square estimation in a forward pass, whereas the antecedent parameters are
determined using a gradient descent technique in backward pass. The rules can be
generated in one of three ways: grid partitioning, subtractive clustering or fuzzy c-
means clustering (FCM). In this research, a grid partitioning technique has been used
to search the entire input space and generate all of the possible rules. Hence, if V is the
number of linguistic variables, and m the number of linguistic values for each variable
then the total number of rules n is:

n = Vm (25)
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6.3 knowledge-driven frameworks for near-real time transport mode

detection

In this section, two fuzzy logic-based knowledge-driven models are developed. In the
first framework, a MIMO Mamdani fuzzy inference system (MFIS) is developed, which
is based on a priori expert knowledge (without any training). In the second framework,
a hybrid knowledge-driven model is developed using a neuro-fuzzy approach.

6.3.1 Framework 1: Multiple-input multiple-output Mamdani fuzzy model

The MIMO MFIS presented in this research consists of a fuzzy inference engine con-
sisting of 76 fuzzy rule sets (rule base). The antecedent part contains five fuzzy vari-
ables with three fuzzy values for each of the variables (Table 21). The consequent part
consists of four alternative solutions (bus, train, tram, walk) with their corresponding
certainty factors (CF) ranging from 0 to 100. The rules are developed in such a way
that they can handle different quality (inaccuracy level) in positional information and
different kinematic behaviour shown by a given transport mode. In order to combine
different facts in the antecedent and consequent part, a t-norm operator (AND) is
used. The fuzzy variables in the consequent part are independent of each other; how-
ever, their certainty value (CF) depends on the rule firing and a given input feature
vector. In order to defuzzify the consequent outputs, a center of gravity method is
implemented. The membership functions are all selected manually. Figure 48 shows a
MIMO MFIS model developed in this research. Some of the fuzzy rules (out of 76) are
as follows.

R1: IF avgSpeed is low AND maxSpeed is low AND avgBusProx is far AND avg-
TrainProx is far AND avgTramProx is moderate, THEN CF for walk is high AND CF
for bus is low AND CF for train is low AND CF for tram is low.

R2: IF avgSpeed is moderate AND maxSpeed is moderate AND avgBusProx is near
AND avgTrainProx is far AND avgTramProx is far, THEN CF for walk is low AND CF
for bus is high AND CF for train is low AND CF for tram is low.

R3: IF avgSpeed is moderate AND maxSpeed is moderate AND avgBusProx is mod-
erate AND avgTrainProx is far AND avgTramProx is moderate, THEN CF for walk is
low AND CF for bus is moderate AND CF for train is low AND CF for tram is high.

R4: IF avgSpeed is high AND maxSpeed is high AND avgBusProx is far AND avg-
TrainProx is near AND avgTramProx is far, THEN CF for walk is low AND CF for bus
is moderate AND CF for train is high AND CF for tram is moderate.

R5: IF avgSpeed is moderate AND maxSpeed is high AND avgBusProx is far AND
avgTrainProx is far AND avgTramProx is far, THEN CF for walk is low AND CF for
bus is high AND CF for train is low AND CF for tram is low.
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Table 21: Fuzzy variables and their fuzzy values for MIMO Mamdani fuzzy inference system
(MFIS).

Fuzzy Variable Fuzzy Value

Antecedent

Average speed (avgSpeed)
low, moderate, high

Maximum speed (maxSpeed)

Average proximity to the bus network

(avgBusProx)

near, moderate, farAverage proximity to the train network

(avgTrainProx)

Average proximity to the tram network

(avgTramProx)

Consequent

CF for bus

low, moderate, high
CF for train

CF for tram

CF for walk

Figure 48: A MIMO MFIS model with M number of input and N number of classes with their
varied certainty values. In this research, M = 5 and N = 4.
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6.3.2 Framework 2: Multi-layered adaptive neuro-fuzzy model (MLANFIS)

In existing transportation research and traffic control systems, ANFIS models deal with
regression-type problems. In contrast, in this research, a multi-class problem has been
posed, requiring to developing a multi-layered ANFIS (MLANFIS) model in order to
provide a near-real time transport mode detection framework (Fig 49). The core of the
framework is a processing layer that contains a number of ANFIS modal blocks in
parallel connection, where each ANFIS modal block corresponds to a given class. If
there are K numbers of classes, then there will be K numbers of ANFIS modal blocks.
Hence, the cardinality of the framework is K. Since each ANFIS modal block is trained
in parallel without any direct connection in between them, each ANFIS modal block
contains its own rule base.

In this research, transport modes are categorical in a classification problem,which is
not possible to deal with in a standard neuro-fuzzy approach due to its very nature
of generating continuous real values. Hence, the classification problem is converted
to a regression problem first, where each ANFIS modal block deals with a binary
evaluation of a given modal class. An ANFIS modal block is attributed by a specific
modal class (categorical value) it deals with and a level of certainty (real value) of being
a given modal class. For each modal class, a separate set of training samples (training
instances) and an ANFIS model are developed. In each training set, each feature vector
is of a certainty factor (CF) of either zero or one, which quantifies the belongingness
of that given feature vector to a given class. Hence if there are K numbers of modal
classes, then there are K numbers of training sets, where each set of training samples
contains the same set of feature vectors, but different output patterns. For example,
the modal class bus contains samples in the given feature vector that are segments of
a trajectory representing a bus ride, then the output is quantified in terms of a CF of
one (see Section 5.2.2). If the feature vector is not of a bus ride, then the output CF is
quantified as zero. This process is iterated for all of the instances in each training set
for K modal classes. The logic behind such certainty quantification is that each ANFIS
block (corresponding to a given modal class) will be trained in such a way that if it
(ANFIST ) is fed with a test sample (fvt : testfeaturevector), it will assign some CF
as an output through its reasoning process depending on the input feature vector. If
the sample represents a given modality, it will get the maximum CF corresponding to
that ANFIS modal block.

The framework consists of four layers (Fig 49). Layer 1 is the input layer, which
contains the input feature vector. Layer 2 is the processing layer, which consists of
trained ANFIS modal blocks (ANFIST ), one for each class. Layer 3 is the output layer
for each ANFIS modal block. Layer 4 is the evaluation layer where all of the CF outputs
are aggregated and evaluated using an argmax operator to select the maximum value.
The predicted class for that given input feature vector is then determined based on
the maximum CF generated by the respective trained ANFIS modal block. Thus, in
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near-real time each query is assessed in parallel in different ANFIS modal blocks, and
a modal class is predicted based on the maximum CF value.

Figure 49: Multi-layered ANFIS framework for mode detection (MLANFIS).

6.4 evaluation

6.4.1 Data set

In order to evaluate the hypothesis and test the model, a GPS dataset had been col-
lected in Greater Melbourne, Australia, for 85 h which covers four modalities, bus,
train, tram and walk, which are four common public modalities in an urban environ-
ment (see 3.2, Fig 19).

The data set covers modalities of similar features on different routes, as well as dif-
ferent modalities on overlapping routes e.g., portion of the bus network overlaps with
the tram network (Fig 14). Since in this research, a near-real time mode detection is per-
formed, i.e., no prior segmentation can be produced, there is a possibility that within
any given time window, two modalities may exist together. In this case, it is assumed
that always one of them is walking, as only a walk connects between two different
non-walking modalities. For this to hold always true, the extent of the time window
must be chosen smaller than any individual walking segment. That co-existing modes
over a given time window is termed as a composite mode. From observation within
a shorter temporal window (say 60 s to 120 s) there could be a maximum of two co-
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existing modes, one of which must be walk. Hence, all of the composite modes in this
research are labelled as walk.

6.4.2 Preprocessing and feature preparation

Before generating the feature vectors, each trajectory is pre-processed. A preprocessing
stage involves filtering a trajectory based on positional accuracy, where any GPS point
with positional accuracy <40 m (i.e., the major axis of the confidence ellipse is > 40

m) is considered as noise and eliminated from the trajectory. The raw GPS data were
collected in WGS84 coordinates. In order to perform spatial analysis, the dataset was
projected onto the GDA94 coordinate system followed by feature computation.

In this framework, five features are computed: average speed, maximum speed (which
is actually 95th percentile of maximum speed), average proximity to bus network, average
proximity to tram network, and average proximity to train network. Since walking can take
place anywhere (say close to a bus route or a street or a train network during transfer)
the nearness to the street network is not utilized in this research. Proximity values are
computed using a spatial buffer of 40 m (assuming standard GPS positional accuracy
in this research) of each GPS point to its nearest bus network, train network and tram
network. In case there is a network absent within a 40 m radius, the proximity value
to that network from a given GPS point is assigned as 100 m to avoid a null value, or
zero proximity. The data set is split up into training, checking and testing data sets.
The trajectories selected as the training data set are of higher travel time duration than
the trajectories used to generate checking and testing data set, and hence the number
of features for training is always higher than the checking (and testing data) in all the
experimental setups (Table 22). After training the four ANFIS modal blocks, each of
them generates 243 distinct fuzzy rules.

6.4.3 Experiment

Five sets of experimental setups are designed based on growing time window size
starting from 30 s, 40 s, 50 s, 60 s and 120 s. In order to compare the performance
of the proposed framework (MLANFIS) a number of machine learning models are
also developed based on a multi-layered perceptron neural network (MLP), a radial
basis function-based neural network (RBF), a decision tree (DT), K-nearest neighbor
(KNN),and a naive Bayes (NB). The result shows at a 60 s and a 120 s time window
that MLANFIS yields significant accuracy for detecting different transport modes in
near-real time.

In order to evaluate, the same training and testing data have been used for the
MLANFIS model and all of the machine learning models. Since MFIS does not require
to be trained, hence an MFIS model evaluated using only a testing dataset, which has
been used to test the predictive ability of MLANFIS and the machine learning models.
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A checking dataset is used while building the MLANFIS model in order to make sure
the model does not get over-fitted. Table 22 shows the number of features used as train-
ing, checking and testing datasets for different models. Figure 50 shows how checking
error and training error vary with the number of iterations (epochs). A total of 200

iterations are performed for each MLANFIS modal block building. A training error
shows a gradual decrease in magnitude over 200 iterations. On the other hand, the
checking error shows a gradual decrease in magnitude up to a certain epoch followed
by a sudden increase in magnitude. That critical epoch point indicates the moment
when the model starts getting over fitted. The membership function parameters are
selected at that particular given epoch before the checking error gets increased.

In order to measure the accuracy of the models, precision accuracy, and recall accu-
racy are used, which are based on true positives (tp), false positives (fp), true negatives
(tn), and false negatives (fn).

Figure 50: An over-fitting in walk modal block in MLANFIS.

Tables 23 and 24 show recall and precision accuracy of seven different predictive
models, including an MLANFIS and MFIS at 60 s time window. In terms of recall accu-
racy, MLANFIS outperforms the MFIS model and performs on par with the machine
learning models for walk, train, tram mode. On the other hand, MLANFIS performs
poor in terms of recall accuracy for bus when compared to the machine learning mod-
els. On the other hand, the MFIS model performs better than MLANFIS and other
machine learning models in terms of precision accuracy, particularly for train (96.86%)
and tram (87.91%). MLANFIS works best and very close to an RBF model in terms of
precision accuracy for bus (92.19%). This suggests the rules generated for bus ANFIS
block in MLANFIS model are properly tuned and thus giving rise to less Type I error
for bus when evaluated by a MLANFIS. However, the rules in the bus ANFIS block are
not sufficient enough to capture all of the kinematic behaviour and signal quality dur-
ing a bus ride, and hence, although MLANFIS generates less Type I error, but higher
Type II error for bus, that led to low recall accuracy for bus mode, when compared
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Table 22: Number of features used for training, checking and testing.

Time Window (s) Features Type MLANFIS Machine Learning MFIS

30

Training 21,279 21,279 -

Checking 13,459 - -

Testing 10,099 10,099 10,099

40

Training 15,665 15,665 -

Checking 9894 - -

Testing 7433 7433 7433

50

Training 12,390 12,390 -

Checking 7814 - -

Testing 5876 5876 5876

60

Training 10,243 10,243 -

Checking 6456 - -

Testing 4859 4859 4859

120

Training 5011 5011 -

Checking 3132 - -

Testing 2371 2371 2371

with the machine learning models. Since different predictive models perform differ-
ently for different modes in terms of precision and recall, hence in order evaluate the
overall performance of the models, an F1-score (F) is considered, which combines the
precision and recall together.

In terms of F1-score, MLANFIS performs similarly as MLP and DT for walk mode
detection and outperforms a MFIS and all other machine learning models (Fig 51).
MLANFIS outperforms all other models for train mode detection. For train mode
detection, MLANFIS yields 0.91 F1-score followed by 0.88 by MLP, which is the highest
F1-score generated by any machine learning model. For tram mode, MLANFIS yields
0.82, which is very close to MLP, which yields 0.84,and a DT model, which generates
a 0.81 F1-score. On the other hand, for bus mode detection, MLANFIS generates 0.76

F1-score, which is less than the machine learning models, but higher than the MFIS
model (Fig 51).
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Table 23: Recall accuracy (%) at a 60 s time window.

Mode MLANFIS MFIS RBF MLP NB KNN DT

Walk 92.58 93.47 85.60 91.10 83.80 88.60 89.30

Bus 65.21 61.20 69.60 77.60 74.90 77.30 74.70

Train 93.33 61.77 93.80 93.30 91.30 88.60 95.30

Tram 84.16 60.06 79.30 85.10 89.80 79.50 82.60

Table 24: Precision accuracy (%) at a 60 s time window.

Mode MLANFIS MFIS RBF MLP NB KNN DT

Walk 88.94 80.33 88.40 91.90 92.80 90.10 91.30

Bus 92.19 65.12 92.00 85.00 87.50 80.10 85.60

Train 89.74 96.86 73.10 80.90 85.80 82.20 77.40

Tram 80.78 87.91 70.30 84.10 64.80 77.20 79.40

Figure 51: F1-score at a 60 s time window.

When evaluated within a 120 s time window, MLANFIS shows the same pattern in
terms of recall and precision accuracy, as well as the F1-score. MLANFIS yields the
highest recall accuracy for walk mode, which is 92.87%, seconded by MFIS and DT,
which are approximately 91.4%. For train mode detection, RBF yields the highest re-
call accuracy, which is 99.10%, whereas an MLANFIS generates 94.31% accuracy. On
the other hand, an MFIS generates 74.40% accuracy for train mode detection show-
ing worse performance than MLANFIS and the machine learning models. MFIS also
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performs poor compared to MLANFIS and the machine learning models in terms of
recall accuracy for bus and tram mode detection. In terms of precision accuracy for
train, MFIS works best, generating 94.57% accuracy, followed by MLANFIS, which
generates 89.23% accuracy, whereas the highest precision accuracy was generated by
the machine learning model (NB in this case), which is 87.70% (Table 25). However, in
terms of F1-score, MLANFIS outperforms all of the predictive models for train mode
detection, whereas it works on par with the machine learning models (and outper-
forming a MFIS) for walk mode, detection (Fig 52). For tram mode MLANFIS yields
0.84, which is very close to MLP (0.86) and DT (0.83) and outperforms MFIS (0.74),
RBF (0.78), NB (0.76) and KNN (0.80).

Table 25: Precision accuracy (%) at a 120 s time window.

Mode MLANFIS MFIS RBF MLP NB KNN DT

Walk 92.05 86.12 94.10 96.10 95.80 92.30 93.50

Bus 85.93 66.14 88.10 85.60 86.80 80.40 88.10

Train 89.23 94.57 73.90 76.50 87.70 77.70 83.90

Tram 84.08 83.13 75.10 84.00 66.50 79.80 82.00

Figure 52: F1-score at a 120 s time window.

When a comparison is made only between two different types of knowledge-driven
models (e.g., MLANFIS and MFIS), the results suggests MLANFIS performs better
than MFIS (Figs 51 and 52). For a 60 s time window MFIS generates high Type II
error for bus, train and tram mode compared to a MLANFIS. Thus an MFIS shows a
drop in recall accuracy for different transport modes except walk (Table 23). On the
other hand, an MFIS model yields higher precision accuracy for train and tram mode
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(Table 24) than that of the MLANFIS model, whereas MFIS performs worse compared
to MLANFIS in terms of bus and walk mode detection. This can be justified as due to
the particularities in rule base to capture the different kinematic behaviour in the MFIS
model typically at a low speed condition, and near to moderate proximity to the tram
network or train network, some portion of the actual tram or train trip is detected as
walk. Most of the retrieved tram and train instances are correctly detected owing to high
precision accuracy in train and tram mode detection. The MFIS rule also does not work
well when there is an overlap between tram network and a bus network. A MLANFIS
can typically work better than the MFIS model in such ambiguous situations and
shows an overall better performance than that of the MFIS model (Fig 51). Some of the
fuzzy rules (out of 243) generated by the MLANFIS bus modal block are as follows:

R1: IF avgSpeed is low AND maxSpeed is low AND avgBusProx is low AND avg-
TrainProx is low AND avgTramProx is low, Then CF for Bus is out1mf1;

R2: IF avgSpeed is low AND maxSpeed is low AND avgBusProx is low AND avg-
TrainProx is low AND avgTramProx is moderate, THEN CF for Bus is out1mf2;

Where outimfjis the CF value for the ith consequent part for jth fuzzy rule.
Table 26 shows a confusion matrix for MLANFIS at a 60 s time window. The con-

fusion matrix illustrates that most of the Type II error for non-walk modes are mis-
classified as walk, and that happened during signal loss or typically at a low speed
condition. This suggests a more rigorous rule formation by incorporating more sensor
information, such as an accelerometer.

Table 26: Confusion matrix for MLANFIS at a 60 s time window.

Actual
Predicted

Walk Bus Train Tram

Walk 2711 19 37 161

Bus 192 390 1 15

Train 25 4 420 1

Tram 120 10 10 744

The MLANFIS framework developed in this research can also produce alternate so-
lutions with varied degrees of confidence. For a given feature vector where the average
speed is 64.6 km/h, the maximum speed is 73.9 km/h, the average proximity to bus
network is 88.4 m, the average proximity to train network is 7.15 m, and average prox-
imity to the tram network is 88.4 m, MLANFIS produced a certainty factor for being a
train as 0.782 (Fig 53a) and for being a bus as 0.106 (Fig 53b). Due to the space limita-
tions, Fig 53 shows only 29 rules out of 243 rules for each train and bus ANFIS modal
block. This also explains the explanatory power and multiple output possibility from
the proposed MLANFIS framework, which is missing in machine learning models.
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Since choosing the appropriate membership function is important while developing
a knowledge-driven model, two different fuzzy membership functions e.g., a Trape-
zoidal function and a Gaussian function are tested while developing MLANFIS and
MFIS models. However, due to crisp geometrical nature of Trapezoidal function, there
are cases when an input feature may fall outside a given range of fuzzy membership
function and thus may bear a zero membership value owing to low performance in its
predictive process. On the other hand since a Gaussian function is asymptotic in na-
ture, it guarantees to generate a certain membership value µ always in the range of [m,
1] where limm→0. A trapezoidal membership function is characterized by four charac-
teristic points (upper left, upper right, lower left and lower right), whereas a Gaussian
membership function is characterized by only two characteristic parameters such as
the center (c) and the width (σ). Table 27 shows different parameters for MLANFIS
which are selected automatically based on a hybrid learning involving a gradient de-
scent and least square estimation whereas the parameters for MFIS chosen manually
resulting higher ambiguity and low performance in near-real time scenario. Figures 54

and 55 show two sets of three different Gaussian membership functions for average
proximity to the train network in MLANFIS and MFIS respectively. Figure 56 shows
how the certainty factor changes with two different fuzzy variables. The figure shows
a prominent contrast between change in CF for a bus and train when considering the
same fuzzy variables such as average proximity to the bus network and average speed
(Fig 56a,b). Since walking can take place anywhere hence in this research nearness to
the street network is not used as the streets in Melbourne show a significant overlap
with the tram and bus network. Thus in order to detect the walking mainly a low
speed behavior is considered (Fig 56d).
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Figure 53: Certainty factors for train (a) and bus (b) for a given feature vector.

Figure 54: Fuzzy membership functions for average proximity to the train network in MLAN-
FIS.
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Figure 55: Fuzzy membership functions for average proximity to the train network in MFIS.

For trapezoidal membership function, the recall accuracy at the 60 s time window
for MLANFIS and MFIS drops significantly. For MLANFIS, for walk, recall accuracy
drops from 92.58% down to 89.31%, for bus accuracy, drops from 65.21% down to
57.52%; for train, from 93.33% down to 88%; for tram accuracy; down from 88.94%
down to 85.42%. For MFIS, the drop is more prominent. For MFIS, recall accuracy
for bus drops from 61.20% down to 51.67%; for train, it drops from 61.77% down to
40.22%, and for tram the accuracy drops from 60.06% down to 35.74%. Thus, the result
suggests that a Gaussian function is better than a trapezoidal membership function
for near-real time mode detection using fuzzy logic-based knowledge-driven models.
The results also suggest a hybrid neuro-fuzzy (MLANFIS) works better than a purely
knowledge-driven fuzzy logic-based MFIS model and performs on par with some of
the state-of-the-art machine learning models, and even sometimes outperforms them
for many places (Fig 51).

6.5 discussion

Transport mode classification is an emerging research problem approached by dif-
ferent research communities. In this research the concept of a near-real time transport
mode detection have been introduced. We have developed a multi-layered neuro-fuzzy
based model (MLANFIS). In order to choose the optimal temporal window in near-real
time, five sets of experiments were performed. Based on the results a 60 s time window
is selected as an optimal window which can generate satisfactory accuracy, however,
deciding an optimal temporal window is subjective and may vary from one service do-
main to another. For example, a traffic management organization may accept a longer
temporal window (>120 s) if the main objective is to understand mode preference and
patronage over a given route type (say, train route) assuming the downside that, there
may be some quick transfers with in 2 min which may be missed by the proposed
model when evaluate over a longer time window.

On the other hand for an emergency service provider or location-based e-marketing
organization a shorter time window (6120 s) is required since the main focus is to
communicate with the user in awareness of their current travel mode (say, a gas station
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Figure 56: illustrates how CF for a given class changes with any two different fuzzy variables.
z-axis indicates CF value whereas xy plane indicates fuzzy variable space. The figure
shows how CF for bus changes with change in average proximity to the bus network
and average speed (a); The figure also shows how CF changes for a train mode when
considering the same fuzzy variables that is average proximity to the bus network
and average speed (b); followed by the CF for train with average speed and average
proximity to the train network (c); A change in CF for walk is shown with change
in average speed and maximum speed (d).

wants to advertise some discounted gas coupons to all private cars within 1 km). The
shorter temporal window is necessary for all context-aware systems that relate to the
current travel modality (say, auto-answering an incoming phone call while the called
person is driving). Compared to the ANN model by Byon and colleagues who used
longer time windows (in the order of 5 min and 10 min) (Byon et al., 2009), this
research is an improvement allowing shorter time windows of 1 min or 2 min using
GPS only samples and infrastructure information. It is observed that by using GPS
only samples it is not feasible to get a shorter temporal window than that of indoor
activity recognition due to hardware and software limitations of the sensing system
(and also to preserve the battery). Table 26 shows the accuracy of MLANFIS drops
mainly due to the fact that all the non-walk modes are most of the times misclassified
as walk mode during signal loss or at a low speed condition, which can be resolved
in the future by integrating different inertial sensors, which can sense at significantly
higher sampling rates than a GPS sensor on board of smartphones.
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Table 27: Different parameters for MLANFIS and MFIS for a Gaussian function at a 60 s time
window.

Fuzzy Variable Fuzzy Value
MLANFIS MFIS

σ c Range σ c Range

avgSpeed (km/h)

low 23.32 −0.21

0–110.9
5.30 0.21

0–45moderate 23.68 55.29 7.81 21.9

high 24.30 110.6 5.54 44.00

maxSpeed (km/h)

low 23.29 −0.48

0–110.9
13.19 2.65

0–100moderate 24.26 54.17 14.74 45.90

high 24.26 109.5 13.20 97.93

avgProxBusRoute (m)

near 20.73 −0.3
0.03–100

10.59 1.02

0–100moderate 20.96 49.92 8.28 25.25

far 21.36 99.91 20.33 83.80

avgProxTrainRoute (m)

near 21.17 0.19

0.06–100

12.04 1.02

0–100moderate 21.3 50.03 8.28 25.25

far 21.20 100 18.99 83.30

avgProxTramRoute (m)

near 21.14 0

0.03–100

11.23 1.02

0–100moderate 21.02 49.95 7.36 25.30

far 21.29 99.93 25.15 83.30

MLANFIS shows a performance improvement for some of the modes on increasing
the time window in particular for walking, and tram. The model also demonstrates
different accuracy while choosing different membership functions. This research also
shows how knowledge-driven (MFIS) and hybrid knowledge-driven model (MLAN-
FIS) can explain their reasoning scheme unlike conventional machine learning models.

The success of MFIS depends on the number of fuzzy rules and their relevance.
The success of MFIS also lies in proper membership functions and their shape, which
can be automatically handled by a MLANFIS. However, the MLANFIS model devel-
oped in this research is based on a grid partitioning approach, which exhaustively
searches the entire input space. Thus increasing the number of features (fuzzy vari-
ables) along with their term set will also increase the number of rules, which raises
scalability issues (Jang, 1993). Although in this research complexity associated with
the models is not addressed, in general a grid partitioning suffers from higher tem-
poral complexity and memory usage. This issue can be addressed in more complex
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hybrid models by adopting a subtractive clustering or fuzzy c-means clustering (FCM)
approach.

6.6 summary

This chapter addresses the challenges of detecting transport modes in near-real time
particularly for real time travel demand estimation in the interest of public transport
authorities and different context-aware service provisions. This research presents a
neuro-fuzzy based hybrid knowledge-driven framework for an inference system in
the context of urban mobility. Since this research is focused on a near-real time ap-
proach, there is no need to segment the trajectories like the existing practice in trans-
port mode detection on historical trajectories; and thus this approach will reduce the
computational overhead and response time. To the best of the authors’ knowledge this
is the first work where a hybrid, multi-layered ANFIS (MLANFIS) model is developed
to address the classification problem of transport mode detection. In this research an
optimal time window is also suggested for querying in near-real time. We have also
drawn a comparison in performance between a number of knowledge-driven models
and a number of machine learning models.

The result shows in some cases some of the machine learning models perform well
but they act like a black box and lack the capacity to explain their reasoning process.
A DT based model can explain the reasoning process in a more deterministic way
based on some threshold at each level which however varies in different conditions
and cannot represent a generic kinematic behavior in a linguistic way for human un-
derstanding. On the other hand, MFIS is based on predefined generic rule sets which
is understandable by a machine and a human, but since the process involves expert
knowledge in constructing the rule base and the membership functions, a MFIS model
fails in the situation, which is not explained to the model by the expert or in a situ-
ation where the expert knowledge is outdated. This problem is mitigated by the sug-
gested multi-layered neuro-fuzzy based model with its capacity to encode knowledge
through n-ary relationships through different t-norm operators and expressed in a hu-
man readable format. Thus a neuro-fuzzy model is more robust and effective than that
of a fuzzy model. The results demonstrate that a neuro-fuzzy model can perform at
par with machine learning algorithms for most of the modalities while outperforming
a traditional fuzzy logic model (Fig 51). The hybrid model presented in this research
is capable of generating alternate possibilities with different certainty factors. The rea-
soning scheme can also explain the driving behavior of a person and deviation from
regular behavior based on the type of rules fired, which can then trigger various mode
specific context-aware service provisions. The result also demonstrates a knowledge-
driven approach (fuzzy and neuro-fuzzy) can also achieve a higher accuracy with a
transparent reasoning scheme (Tables 23 and 24). Table 24 shows MLANFIS outper-
forms all the machine learning models in terms of precision accuracy for bus at 60 s
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time window. In the same line, a MFIS also outperforms the machine learning models
in terms of precision accuracy for train and tram.

At 60 s time window, MLANFIS yields 83% average accuracy which is at per with a
RBF, DT, and a NB model and outperforms a purely knowledge-driven fuzzy model,
which generates only 69% average accuracy. However, an MLP based neural network
model generates 87% average accuracy, which is higher than the neuro-fuzzy model
developed in this research. But at the same time the neuro-fuzzy framework developed
in this research can explain its reasoning process, which is missing in an MLP or RBF
or even in a DT based model. In addition to that, a conventional fuzzy model cannot
learn adaptively and thus is not robust to noise. In contrast, the presented neuro-fuzzy
model can tolerate noise and adapt to varying conditions. The neuro-fuzzy model
developed in this research shows more consistent performance than that of a fuzzy
logic based model in near-real time scenario. The neuro-fuzzy model is also tested
against some other machine learning models (e.g., SVM) where the model shows better
performance than those machine learning approaches.

The framework shows that a MLANFIS model can learn and explain its reasoning
scheme, which overcomes limitations of a conventional MFIS type fuzzy expert sys-
tems developed by (Biljecki et al., 2012; Xu et al., 2010) as well as machine-learning
models (e.g., neural network) (Byon et al., 2009; Gonzalez et al., 2010). In this research
four urban transport modes are used for testing the MLANFIS model, where the train,
tram and the walk modes are detected with high accuracy, followed by bus mode. How-
ever, the model can easily be extended for more modalities along with more input
features. This may increase the ambiguity especially when two modalities show simi-
lar movement patterns and share the same network (say, a car and a bus are moving
on an express way with the same high speed). In such situations more features are
required such as stop rate, heading change rate, vibration and ambient sound profile:
All of these can easily be incorporated in the model.

Future research will investigate how the model behaves on integrating different
sensor signals such as accelerometer, gyroscope and GPS. This integration also leads
to new challenges as how to fuse sensors with their different data quality and ability
to sample at different frequency. Future research will also look into how a Sugeno-
based rule set can be converted to a MIMO Mamdani-type fuzzy rule set in order to
improve the expressiveness. In the same line, future research could investigate the top-
k most relevant rule sets for each modal block in an MLANFIS model in the context of
travel mode detection. Although the hybird knowledge-driven model presented in this
chapter is more adaptive than that of a purely knowledge-driven model in near-real
time but the hybrid model poses scalability issues. Chapter 7 has picked up theses
issues, and proposed a more adaptive and sophisticated model.
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7
A U T O M AT E D U R B A N T R AV E L I N T E R P R E TAT I O N : A
B O T T O M - U P A P P R O A C H

This chapter investigates how travel behaviour information can be extracted from
smartphone sensor traces in a more adaptive way. Sensor traces can be used to inter-
pret travel modes, both for generating automated travel diaries as well as for real-time
travel mode detection. Current approaches segment a trajectory by certain criteria, e.g.,
drop in speed. However, these criteria are heuristic, and, thus, existing approaches are
subjective and involve significant vagueness and uncertainty in activity transitions in
space and time. Also, segmentation approaches are not suited for real time interpreta-
tion of open-ended segments, and cannot cope with the frequent gaps in the location
traces. In order to address all these challenges in this chapter1 a novel, state-based
bottom-up approach is proposed. This approach assumes a fixed atomic segment of a
homogeneous state, instead of an event-based segment, and a progressive iteration
until a new state is found. The research investigates how an atomic state-based ap-
proach can be developed in such a way that can work in real time, near-real time and
offline mode and in different environmental conditions with their varying quality of
sensor traces. The results show the proposed bottom-up model outperforms the exist-
ing event-based segmentation models in terms of adaptivity, flexibility, accuracy and
richness in information delivery pertinent to automated travel behaviour interpreta-
tion.

7.1 introduction

Travel is an inevitable part of human life, required in order to perform an activity
which is not possible at a current location. Changing the perspective, as evident from
Chapter 4 travel itself can become an activity in its own right, and again changing per-
spective, travel can be conceived as a sequence of activities, each consisting of a segment
travelled in a single mode. This chapter focuses on the automatic interpretation of a
travel as a sequence of activities, i.e., segments travelled in a single mode of travelling,
from sensor traces collected on smartphones (Section 3.1.4). In particular, the role of
granularity will be highlighted (e.g., between getting on board of a bus, taking the bus,
or going to work), along with the ambiguity about the mode that comes along with it
(Chapter 4). The elementary trips of a travel are connected by transfers, at certain gran-

1 The contributions presented in this chapter has been peer-reviewed and published as follows.
Das, RD., Winter, S. (2016): Automated Urban Travel Interpretation: A Bottom-up Approach for Trajec-
tory Segmentation, Sensors, 16(11)
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ularities. Travel can be mediated by moving objects in the form of different transport
modes, but this research explicitly include unsupported body movement (walking,
running, stationary) as a mode. Since any mode is mixed with unrelated movements,
e.g., walking through a bus, taking a smartphone out of a pocket while sitting on a
bus, or turning the head while cycling, the interpretation of sensor traces has to deal
also with other noise than only from the sensor characteristics.

Identifying trips automatically is important for understanding the travel demand in
a city, people’s movement behaviour, modal preferences, route choice, patronage, and
for enabling various personalized context-aware service provisions.

In order to understand people’s travel activities, traditional methods rely on paper-
based, telephonic or face-to-face travel survey techniques in order to generate travel
diaries. A travel diary contains the mobility information of a person in terms of trips,
with their start time, end time, origin, destination and transport mode(s). Current
travel diary generation process is manual and involves lack of detailed (and accurate)
travel information. With the recent emergence of smartphones equipped with position-
ing and other location sensors along with inertial measuring units (IMU) it has been
now possible to continuously track an individual across any mode of travelling and
thus it is possible to provide detailed and more accurate information (Cottrill et al.,
2013).

The remaining challenge is to automatically interpret these sensor traces for travel
activities (single mode trips) and transfers. In the current state-of-the-art, a trajectory
is top-down segmented based on some critical events (e.g., a drop in speed) and then
activity states are detected for each segment (Rocha et al., 2010; Zheng et al., 2008).
However, segmenting a trajectory based on some heuristics is subjective and involves
vagueness and uncertainty in activity transition in space and time, and thus, obscures
the recognition and modelling of transfers. Prior work, discovering activities (includ-
ing transfers) using clustering techniques, has to deal with clusters of any shape and
any size, and hence comes with a significant uncertainty and ambiguity as to where a
transfer begins and ends along with a trip start and end. In contrast, the present work
assumes that within a very fine grained space-time frame the activity state will remain
same: A finer kernel involves less uncertainty than that of a longer segment, and the
trip end of one segment becomes the trip start of the next segment. The common point
in time defines a transfer precisely in space and time, and thus involves less ambigu-
ity than that of a clustering-based approach. The research presented in this chapter
hypothesizes that a state-based bottom-up approach is more adaptive than any top-down
approach, and in addition it will be flexible enough to detect activity states in a progressive
manner at different temporal granularity.

This translates into the temporal uncertainty depending on the length of space-time
kernel. The shorter the kernel the less is the uncertainty, but at a cost of overall detec-
tion accuracy.
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In the state-based bottom up approach an atomic kernel is ran over the entire sensor
trace and a particular activity state is detected iteratively. The assumption behind this
approach is, shorter the temporal kernel more homogeneous the activity state will be.
A transfer is then modelled with a given temporal uncertainty when there is a change
in the activity state. The approach can be extended to a multi-grained atomic kernel
approach to drill down the activity states, e.g., first detecting the travel activities, then
the finer grained activity states during any transfer. The hypothesis has been tested
on two different data sets: A trajectory data set of multi-modal inner-urban trips, and
also a data set of inertial measurement unit (IMU) observations on-board a smart-
phone (without location information). The experiments prove that the new approach
is not only more expressive in terms of richer travel information, but also capable of
near-real time trip analysis as required for context-aware services. The contributions
of this chapter are as follows.

(a) Unlike the earlier approaches which are mostly behaviour-based depend on a
particular event(s) (say, drop in speed), this research presents a novel state-based
bottom-up framework to segment the trajectories in a progressive way at different
granularity.

(b) The aspect of temporal uncertainty in activity transition is explored and mod-
elled using Allen’s temporal calculus (Allen, 1983)—which was missing in the ear-
lier trajectory segmentation, trip generation and transport mode detection research
(Fig 57).

(c) The framework presented in this research is modular, adaptive, flexible and ro-
bust, and yet accurate. Since the framework uses an atomic kernel of definable length,
it can work in different granularities (e.g., for travel mode or transfer interpretation),
and even in near-real time (defined by the kernel length). The framework can also
handle varying data quality and richness in information content in the sensor trace.

Thus, in case of a top-down approach depending on a certain behaviour or event, a
trajectory is first segmented into a number of segments; and then an activity state is
detected over each segment. On the other hand, for a bottom-up approach, a given ac-
tivity state is detected within a short temporal kernel without considering any change
in behaviour of the moving object. Then the subsequent states are discovered itera-
tively, and a progressive segmentation takes place along the given trajectory.
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Figure 57: Trip uncertain temporal relationships between a reported trip (TR) and predicted
trip (TP) based on Allen’s temporal calculus. In this figure t1 and t2 are the start
time and end time of a given trip respectively.

Existing top-down segmentation approaches first segment the trajectory based on
either a stop episode or a low speed or walking episode, and then attempt to detect
a particular activity state or travel behaviour over other segments. But as mentioned
in Section 7.1, this approach is subjective and creates spatial and temporal ambiguity
(Cich et al., 2016), and thus, if each of the segments is viewed as a specific trip then
there is a temporal uncertainty (or misalignment) of trip start and end (from segmenta-
tion perspective) and uncertainty of activity state (e.g., transport mode) along a given
trip (from activity detection perspective). A vast majority of literature on transport
mode detection and trip generation does not address this ambiguity during the trajec-
tory inference process. In this research four different types of trips have been figured
out that may be possible during a single mobility-based action and their temporal
inter-relationships.

In order to detect mobility-based activities in real time other researchers developed
a temporal window-based approach (Hemminki et al., 2013). Reddy and colleagues
integrated an accelerometer and a GPS sensor to detect the modality in 1 seconds
(Reddy et al., 2010). Byon and colleagues used comparatively higher time window (10

min) to detect modalities without segmenting the GPS trajectories (Byon et al., 2009).
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A similar approach has also been developed in detecting micro-level activities in-
volved with body parts movement or small scale locomotion in an indoor environment
(Kautz et al., 2003; Krumm and Horvitz, 2006; Choudhury et al., 2008; Shoaib et al.,
2016). Thus the existing research in real time urban transport mode detection as well
as most of the activity recognition research in public health and mobile computing
attempt to detect the activity within a queried time window and do not attempt to
model the uncertainty of the continuity of a given activity. That means, the existing
activity recognition research lacks in providing the information on activity start and
end.

In this research an existing temporal window (kernel)-based approach will be used
but with an introduction of iterative temporal merging in order to detect an activity
in real to near real time as well as detecting activity transition at different granularity
using different sensor combinations. In contrast to the existing real time approaches
(Hemminki et al., 2013; Reddy et al., 2010; Byon et al., 2009), where a time window is
given and an activity state is to be detected, the framework presented in this chapter
has extended that approach and can detect an activity within a given time window
as well, and given an activity the model can detect its start time and end time. In
contrast to the offline approaches on trajectories where a subjective segmentation is
performed, this chapter presents a simple yet effective approach for segmenting the
trajectory based on activity states in a fine grained time window. In this research it is
also investigated how activity detection accuracy varies with different sensor combi-
nations and different feature types. The state-based bottom-up framework proposed
in this chapter is also a hybrid model in the sense it combines a machine learning and
deterministic (crisp) rules for further refinement unlike a neuro-fuzzy based hybrid
knowledge-driven model (Chapter 6), which is a combination of a machine learning
(ANN) and fuzzy rules.

Allen’s temporal predicates are qualitative in nature. Thus, the temporal mismatch
of predicted trip (or trip leg) with the reported trip can be qualitatively modelled using
Allen’s temporal predicates. Such a qualitative representation can enrich the activity
knowledge base in a qualitative way and it would be useful for a context-aware service
provision that leverage the activity ontology at different contexts (where the temporal
mismatch may vary quantitatively), particularly during trip start, trip end or transfer
from one travel segment (trip) to another travel segment (trip) where the knowledge of
dwell time is critical for various service provisions (e.g., recommending next connect-
ing vehicle, recommending nearest POI for a specific activity). However, this thesis has
delimited the temporal uncertainty within a crisp temporal bound, which is, however,
subjective and context-sensitive. That said, Allen’s qualitative temporal relationships
used in this thesis will remain same and thus can be implemented in different mobility
applications in different environments.

The remainder of the chapter is organized as follows. Section 7.1 gives an overview
of the current state of knowledge and research gap. Section 7.2 defines some key
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concepts used in this research. Section 7.3 outlines the methodology used for data
pre-processing and model building. Section 7.4 presents the experiments and results.
Section 7.5 reflects on the framework, which is followed by a summary in Section 7.6.

7.2 theory

This section will introduce the proposed bottom-up framework along with some key
concepts.

7.2.1 Uncertainties in trips

Trips are characterized by start and end time locations, and a travel mode. Each of
these characteristics can vary between the reported trip, the scheduled trip, the actual
trip, and the predicted trip, leading to temporal, spatial and semantic uncertainties.
These uncertainties may occur due to synchronization problems between clocks (such
as the smartphone’s and the transport provider’s) or the memory or attention of the
traveller when reporting a trip. The uncertainties also stem from the varied ontolog-
ical commitments and cognitive perceptions of trip starts and transitions in actions
(e.g., resolving a transfer into subsequent actions). The uncertainty can also arise from
actual travel times other than the scheduled time, wrong inferences from the predictive
model on the mode, and also uncertainties in sensor signal information (e.g., signal
loss or multipath effects in case of a GPS trajectory).

7.2.2 Trip uncertain temporal relationships

The experiment below is designed with trips reported in-situ, not from memory in
hindsight. These reported trips will form the ground truth in the experiment, i.e., they
are assumed to be correct representations of the actual trips. In this case it is difficult
to model the temporal uncertainty between the reported trip and actual trip, although
it must exist. Temporal deviations will also occur between the reported trip and the
predicted and the scheduled trip. Such temporal uncertainties can be modelled quali-
tatively by using Allen’s interval calculus (Allen, 1983). Figure 57 shows nine possible
relationships between a predicted trip (TP) and a reported trip (TR) where σ is the crisp
uncertainty for time observations predefined at a given context. It will be shown later
how the inference accuracy varies by varying the σ value. The relationships also hold
between a reported trip (TR) and a scheduled trip (TS), or a scheduled trip (TS) and a
predicted trip (TP).
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7.2.3 Predictive model

A predictive model is a module in this framework in Layer 1 in the processing phase
(Fig 58) that detects a given activity state. A predictive model is basically a classifier
constructed based on a number of features (Section 7.3.3.4). In this chapter a number
of machine learning algorithms have been investigated to construct the best predictive
model in Layer 1 which is explained in Section 7.4.

Figure 58: A state-based bottom-up framework for travel dairy generation.

7.3 trajectory segmentation frameworks

In this section the existing trajectory segmentation frameworks will be presented that
detect the trips based on different criteria. Then the novel state-based trip detection
framework is presented, which detects the trips more adaptively along with rich be-
havioural information (e.g., transport mode state).

A trip can be modelled as a particular segment with a homogeneous state and dis-
tinct behaviour. Trajectory segmentation approaches can be classified into two broad
categories: behaviour-based and state-based approaches. Behaviour-based approaches
segment a trajectory into meaningful parts and then infer a state for each segment.
Thus, these approaches are top-down. The number and type of segmentation oper-
ations is context dependent. In contrast, the state-based approach developed in this
chapter extracts an atomic segment assuming the state will remain constant in that fine
grain, and then the state is detected using a hybrid approach (machine learning and
heuristic rules), whereupon homogeneous segments are generated using an advanced
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merging operation, which will generate the trips. Thus, the second approach is richer
in information content and more adaptive. This approach is bottom-up. This chap-
ter presents the novel state-based bottom-up approach, which is compared with the
two state-of-the-art top-down approaches: a walking-based approach and a clustering-
based approach (and its variants), which is basically a realization of the SMoT algo-
rithm (Alvares et al., 2007; Spaccapietra et al., 2008). Based on the literature and current
research trajectory segmentation approaches has been categorized in Figure 59.

Figure 59: Different types of trajectory segmentation strategies.

7.3.1 Trip detection by a walking-based approach

A walking-based approach is a variant of the behaviour-based approaches where the
behaviour is attributed to drop in speed. It is generally used in order to segment a
trajectory in the context of transport mode detection.

The assumption behind a walking-based approach is that people need to walk in
between two different transport modes (Zheng et al., 2008). In this regard, a walking
segment is detected by deterministic rules where the key parameters are speed (dldt ),
merging distance (δl), and total distance (L) travelled over a segment. However, by
relying on these parameters this approach is subjective and thus it is difficult to set the
threshold parameters.

Since a GPS trajectory is prone to signal loss and multipath effect, a walking-based
approach needs a thorough pre-processing of the raw trajectory. The trajectory is fil-
tered in such a way that no high speed points remain in between two low speed points
and vice-versa. The filtering process should also remove points with high DOP values
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(or spatial uncertainties). In this research the speed threshold is considered 9 km/hr
based on prior research (Minetti, 2000), and the merging distance is 20 m based on trial
and error. The total distance threshold for a segment to qualify as a walking segment is
iteratively tested from 10 m to 200 m. Algorithm 1 presents a two stage pre-processing
operation where a GPS trajectory is first filtered based on spatial uncertainty (Spa-
tial_Filter) followed by speed outliers (Velocity_Filter). The walking-based technique
is then presented in Algorithm 2.

Algorithm 1 Preprocessing of a GPS trajectory in two stages

1: INPUT 1)ΠR : rawTlist(), 2)lowSpeed: LST
2: OUPUT ΠP [spatialFiltered: sfTlist(); velocityFiltered:vfTlist()]
3: PROCEDURE Spatial_Filter()
4: rawTlist.size() = k1
5: for i=0 to k1-1 do
6: if rawTlist.get(i).getAccuracy() > 40 then
7: sfTlist.add(Pi) {rawTlist.get(i)=Pi, where Pi is a GPS point in raw trajectory

ΠR}
8: end if
9: end for

10: END PROCEDURE
11: PROCEDURE Velocity_Filter()
12: sfTlist.size() = k2
13: for i=1 to k2-1 do
14: if sfTlist.get(i−1).getSpeed() > LST ||sfTlist.get(i+1).getSpeed() > LST then
15: vfTlist.add(Pi)
16: else
17: if sfTlist.get(i).getSpeed() < LST then
18: if sfTlist.get(i− 1).getSpeed() 6 LST ||sfTlist.get(i+ 1).getSpeed() 6 LST

then
19: vfTlist.add(Pi)
20: end if
21: end if
22: end if
23: end for
24: END PROCEDURE
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Algorithm 2 Trip generation using walking-based approach

1: INPUT 1)ΠP : pTlist(), 2)lowSpeed: LST, 3)mergingDistance: δl, 4)totalDistance: L

2: OUPUT a set of trips
3: PROCEDURE Trajectory_Segmentation()
4: pTlist.size() = k3
5: for i=0 to k3-1 do
6: if pTlist.get(i).getSpeed() 6 LST then
7: templist.add(Pi)
8: else
9: if pTlist.get(i).getSpeed() > LST then

10: if templist.size() > 0 then
11: seglist.add(newlist(templist))
12: templist.clear()
13: end if
14: end if
15: end if
16: end for
17: END PROCEDURE
18: PROCEDURE getPotential_Walking_Segments()
19: if seglist.hasMergeableSegments(δl) then
20: mergedSeglist = segmentMerging(seglist) {merging all the mergeable short

low speed segments}
21: end if
22: mergedSeglist.size() = k5
23: for i=0 to k5-1 do
24: if mergedSeglist.get(i).getLength > L then
25: walkingSeglist.add(mergedSeglist.get(i) {walking segments are detected}
26: end if
27: end for
28: nonWalkingSeglist = getNonWalkSegments(walkingSeglist) {non walking

segments are extracted}
29: END PROCEDURE

7.3.2 Trip detection based on clustering-based approach

A clustering-based technique is another popular approach for trajectory segmentation.
Since a clustering technique is based on proximity of GPS points , the clusters gener-
ated over a trajectory bear a semantic significance, for example, where the traveller has
been stationary or had limited body movement for a certain time period. The notion
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behind a clustering-based approach is that during traveling on different modes people
transfer or do some static activity (say, in a station, office, or home) where the GPS
points are located very close to each other and tend to form a dense cluster (Fig 60). In
this research the clusters are assumed as the extent in space and time where a transfer
takes place in order to change from one transport mode to another.

Figure 60: Spatial proximity of the GPS points during transfer.

A clustering-based algorithm is implemented using a spatial clustering application
with noise (DBSCAN). DBSCAN is initialized with an arbitrary point (Pi) in the trajec-
tory. The algorithm then searches for neighbor points (N) within an ε-neighborhood of
point Pi. If N > minPts then Pi is defined as core point. The parameter ‘minPts’ is the
minimum number of points to be present in the neighborhood of any given point in
order to qualify that point as a core point. The algorithm then evaluates the next point
and grows the cluster(s) until all the points are visited.

Once the clustering operation is performed there may be a number of clusters of dif-
ferent shape and size. In order to extract the most potent clusters (in the context of trip
detection) a merging operation is performed followed by a relevance measure check.
The merging operation is performed based on inter-cluster spatial distance threshold
(ICSD) and inter-cluster temporal duration threshold (ICTD). However, a spatial clus-
tering may raise the risk of clustering the to and from points together and thus leading
to erroneous trip modelling. In order to deal with this issue a temporal proximity (td-
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iff) is used along with the spatial proximity (ε) to modify the basic DBSCAN into
spatio-temporal DBSCAN (ST-DBSCAN).

There may also be some clusters that form without characterizing a transfer, for
example, due to vehicle stops for pickup or drop-off or at traffic lights, or over a
walking trip where the speed of walking is low, such as a stroll in a park or moving
in a crowd. In order to filter such irrelevant clusters a temporal relevance check is
performed over all the clusters. If the duration (Φ) of the cluster is greater than or
equals to a temporal threshold then that cluster qualifies as a relevant cluster or a
potential transfer zone. That said, clusters can be of any shape and size and hence from
ontological point of view it is difficult to model the trips with their start and end in
space and time. Algorithm 3 demonstrates a spatio-temporal clustering on trajectories
to retrieve the transfer information.

Algorithm 3 Spatio-temporal clustering on trajectories

1: INPUT 1)ΠR : rawTlist(), 2)Neighbors: minPts, 3)search radius: ε,
2: INPUT 4)temporal proximity: tdiff, 5)ICSD, 6)ICTD
3: OUPUTa set of clusters denoting possible transfers in a trajectory ΠR
4: PROCEDURE ST_Clustering()
5: clusterlist=getST_DBSCAN (rawTlist, minPts, ε, tdiff)
6: clusterlist.size()=k1
7: for i=0 to k1-1 do
8: if spatialDistance(clusterlist.get(i), clusterlist.get(i+ 1)) 6 ICSD then
9: if temporalDistance(clusterlist.get(i), clusterlist.get(i+ 1)) 6 ICTD then

10: clusteri = merge(clusterlist.get(i), clusterlist.get(i+ 1))
11: clusterlist.remove(i,i+1)
12: clusterlist.add(clusteri)
13: end if
14: end if
15: end for
16: clusterlist.size()=K2
17: for i=0 to K2-1 do
18: if clusterlist.get(i).getDuration > Φ then
19: clusteri = clusterlist.get(i)
20: transferlist.add(clusteri)
21: end if
22: end for
23: END PROCEDURE

In this chapter two existing top-down approaches (walking-based and clustering-
based) have been implemented along with the proposed state-based approach for a
comparative study. Although there could be different variations of the two above men-
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tioned top-down approaches, but in general such approaches are inadequate in certain
circumstances. For example, the walking-based approach requires a consistent and
good quality GPS signal, it cannot handle IMU information, and it completely fails
when there is no GPS signal for a prolonged period of time. On the other hand the
clustering-based approach is robust to GPS noise, but also cannot deal with the IMU
information, and does not work very well on sparse GPS trajectory data. More sig-
nificantly, the clustering-based approach suffers from the ontological ambiguity about
start and end of a trip.

7.3.3 Trip detection using a state-based bottom-up approach

In order to address these issues a more robust and adaptive state-based bottom up ap-
proach is proposed. The proposed approach can handle GPS noise as well as IMU in-
formation. The proposed approach is less subjective than the walking-based approach,
and at the same time tends to generate activity transitions with a clear provision of
trip start and end, which is missing in the clustering-based approach. A state-based
bottom-up approach also generates rich activity information (in terms of transport
mode along a given trip) and thus this proposed approach is more effective in terms
of generating travel diaries at different granularity with different level of uncertainty.

A state-based bottom-up approach is a hierarchical framework consisting of three
layers (Fig 58). The first layer is the input layer where a raw trajectory is fed in. The
second layer is the processing layer that consists of further three sub-layers (LAYER 1,
LAYER 2, LAYER 3), where the third layer is the output layer that generates the travel
diary containing the trip information. In the first processing layer (LAYER 1) an atomic
kernel is ran over the trajectory based on the query time that detects the activity states
using a set of machine learning algorithms over each atomic segment. Thus, the first
layer can also infer activity states (transport mode in this case) in near-real time. In
the second processing layer (LAYER 2) an advanced merging operation is performed
based on a set of heuristic rules. This will merge the consecutive atomic segments
with similar activity states and predict the trips. In order to raise the confidence and
strengthen the inference process, especially on trip start and trip end along with the
transport mode used in that particular trip, a general transit feed specification (GTFS)
information is used to evaluate the initial predicted trips in the third processing layer
(LAYER 3). Figure 9 illustrates how the atomic kernel bounded in time [tk−1, tk]
of duration (tk-tk−1=η | k > 1) is ran over the trajectory and how different trips
are inferred based on given transport modes. In the following section each layer is
explained in detail. The model presented in this chapter is a hybrid approach that
leverages the machine learning algorithm(s) for the initial activity state prediction
followed by processing the rule base.

179



7.3.3.1 LAYER 1: Near-real time activity state detection

Since a trip is characterized by a set of time-ordered homogeneous sensor data points
(that may include GPS data points), in the first layer a predictive model is developed
that will detect the activity state based on a classifier. In order to train the classifier
different types of kinematic and spatial features are computed using sensor signals.

In this context the activity state is traveling on a given transport mode, and the trans-
port mode is the mediation of this activity. In order to detect the transport mode an
atomic kernel is applied (with 50% overlap) over the trajectory (or sensor trace) to ex-
tract a set of atomic segments. Then a number of features are computed within each
atomic segment and a feature vector is created. Thus, if there are N atomic segments
then there will be N feature vectors for a given trajectory. In some literature the atomic
kernel is termed as sliding window or sliding kernel. The overlap is necessary in or-
der to capture all the possible kinematic behaviour especially during state transition
and sudden change in behaviour. Once the feature vectors are generated training is
performed on a number of classifiers. Then all the classifiers are evaluated using test-
ing trajectories separately. Once all the atomic segments are inferred (from all the test
trajectories) an advanced merging operation is performed to generate longer segments
of homogeneous activity states, which will turn into predicted trips. The six machine
learning-based classifiers are chosen based on prior research in transport mode detec-
tion and trajectory analysis.

7.3.3.2 LAYER 2: Advanced merging operation and potential segment generation for trip
detection

In the second layer the atomic segments are merged sequentially based on similarity
in their predicted transport mode (queried from Layer 1). The assumption behind
such a merging operation is that all the points in a sensor trace or a portion of GPS
trajectory that form a particular trip will bear a uniform activity state: travelling on
one transport mode along one and the same trip from a given origin to a (temporary
or final) destination. Thus, when there is a change in activity state, a new trip has
started. The point in time and space where the transition occurs is the transfer point.

In the first stage in Layer 2, an initial merging operation is performed based on the
initial transport mode inference. However, due to the diverse performance of classifiers
and depending on the data quality and uncertainties in movement behaviour there
may be false positives. In order to address this issue a set of rules refines the merging
operation of the consecutive atomic segments (Algorithm 4).

7.3.3.3 LAYER 3: Trip refinement using GTFS and spatial information

Once the merged segments (predicted trips) are generated from Layer 2 a further
refinement operation is performed using GTFS and other spatial information realizing
the following five lemmas. In this layer a matching is carried out that matches the
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predicted trips with the scheduled trips based on spatial and temporal information
along with the trip start and trip end with the scheduled stop information. For the
following lemmata an ith predicted trip (TP) is represented by a tuple of trip origin
(Oip), trip destination (Dip), and predicted mode over trip i (Mi

p(Ti)). However, in order
to match against the scheduled transit information the framework requires predicted
stop and route information. Thus, a pair of stops at predicted trip origin (Sip(O)) and
destination (Sip(D)) are queried using a variable search radius of 50 m, 100 m and 300

m progressively until at least one stop is retrieved around the trip origin point (Oip)
and trip destination point (Dip). This information is then used to match the predicted
trips with the scheduled trips and refine the prediction through the following lemmata.

Figure 61 shows different component tables of GTFS schema with their common
primary keys (pkey) and a consistency check between the predicted trip generated
from Layer 2 in processing layer (with stop information at trip start and end) and a
suitable scheduled trip, which is retrieved from the GTFS data.

Figure 61: General transit feed specification (GTFS) schema and consistency check between the
predicted trip and the scheduled trip.

• Lemma 1: Stop type similarity

Since a trip is a segment of the trajectory, which consists of sensor data points
that bear the same transport mode state (Mi

p), the stops at trip start and end
must be of type (Mi

p). For example if a trip is made by a tram then the start stop
and end stop of this trip must be two tram stops.

Mi
p(S

i
p(O)) =M

i
p(S

i
p(D)) (26)

• Lemma 2: Disjoint stop relationship
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Since the GPS signal is prone to multipath effects and occasional signal loss due
to obstruction must be expected, not all GPS points are recorded, and instead
of updates in the GPS feed successive points will be recorded as the last known
point. However, technically the stop at the trip start and end must be spatially
different if it is not a return trip.

Sip(O)l 6= Sip(D)l (27)

=⇒ (XSip(O), YSip(O),ZSip(O)) 6= (XSip(D), YSip(D),ZSip(D)) (28)

• Lemma 3: Stop sequence (un)ambiguity

No pair of trip origin and destination stop may be the members of more than one
scheduled trip. That said, two scheduled trips may have a portion of their routes
overlapping with each other. There may also be two routes with the same pair
of origin and destination stops but in reverse order (which is a typical case in a
return travel along the same route but in different direction). In this case routes
may overlap. Figure 62 illustrates some of these ambiguities in stop sequences
for different routes.

For the time being the first case in lemma 3 will be ignored. In order to address
the latter case the following proposition should be followed.

Figure 62: Some possible stop sequence ambiguity along different routes: SO(Ri) and SD(Ri)

denote an origin and destination stop along route Ri. In order to hold the lemma 3,
departure time at SO must be earlier than arrival time at SD.

Proposition L3.1: The end stop or destination stop (Sip(D)) should occur after
start or origin stop (Sip(O)) in terms of time of visit (t).

Sip(O)t > S
i
p(D)t (29)
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• Lemma 4: Closest time selection

The arrival and departure time at predicted origin and destination stops should
be close to the scheduled stops in that location. However, there always exists
a temporal uncertainty that makes the predicted trip start and end time deviate
from the scheduled trip start and end time. For this purpose a temporal threshold
(δt) is used. For origin stops this can be expressed as follows, and similarly for
destination stops. This will also conform with the first case in Lemma 3.

|Sip(O)t − S
i
s(O)t| = δt (30)

• Lemma 5: Use of WTi±1 OD information

Due to signal loss and uncertainties in the inference process in Layer 1, some
(predicted) non-walking trips may have wrong trip start and end time. And these
trip origin and destination stops may not have any scheduled trips in common
within a given temporal threshold (δt). To address this issue following proposi-
tion is made.

Proposition L5.1: If there is no scheduled trip (TS) found in the GTFS data base
that matches a predicted trip i (T iP) in terms of the mode type (M) or temporal in-
formation (arrival/departure time) then the mode type (Mi

p(S
i−1
p (D))) at the des-

tination stop of the previous predicted trip (T i−1P ) or mode type (Mi
p(S

i+1
p (O))) at

the origin stop of the next predicted trip (T i+1P ) stops are considered, whichever
is a walking trip (WT) in between T i−1P and T i+1P .

The lemmata developed in this chapter are not exhaustive. Depending on the sit-
uation new lemmata can be added. However, the lemmata presented are sufficient
enough to deal with different spatio-temporal and predictive uncertainties of trip pat-
terns. That said, the thresholds set to quantify the lemmata and length of the temporal
kernel depend on the type of data quality, sampling frequency and mode types to
be distinguished. For temporal kernels the length has been evaluated starting with
the shortest possible duration depending on the sampling frequency. Empirically the
length of the temporal kernel must be greater than the minimum sampling rate used
to capture the sensor trace.
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Algorithm 4 Rules for segment merging

1: INPUT All the atomic segments in a given trajectory (seglist), temporal threshold: Ψ

2: OUPUT a set of merged segments (mergedSeglist)
3: PROCEDURE Segment_Merging()
4: seglist.size() = k
5: boolean flag = false

6: for i=0 to k-2 do
7: current_seg = seglist.get(i)
8: next_seg = seglist.get(i+ 1)
9: RULE 1:

10: if current_seg.mode_type == next_seg.mode_type&&next_seg.duration 6
Ψ then

11: merge_seg = merging(current_seg,next_seg)
12: mergedSeglist.add(merge_seg)
13: flag = true

14: end if
15: RULE 2:
16: if current_seg.mode_type == next_seg.mode_type&&next_seg.duration >

Ψ then
17: merge_seg = merging(current_seg,next_seg)
18: mergedSeglist.add(merge_seg)
19: flag = true

20: end if
21: RULE 3:
22: if current_seg.mode_type! = next_seg.mode_type&&next_seg.duration 6 Ψ

then
23: merge_seg = merging(current_seg,next_seg)
24: mergedSeglist.add(merge_seg)
25: flag = true

26: end if
27: RULE 4:
28: if flag == false then
29: mergedSeglist.add(current_seg)
30: mergedSeglist.add(next_seg)
31: end if
32: end for
33: END PROCEDURE

184



7.3.3.4 Feature computation for detecting near-real time activity states in layer 1

In order to construct the predictive model, a number of features are generated using
different machine learning classifiers, inferring the activity state on a queried trajec-
tory using a given kernel length (η) over In number of data points. Three different
case studies are presented (Context 1 Scenario 1, Context 1 Scenario 2, and Context 2)
depending on the quality and granularity of data using different sensor combinations
(e.g., GPS, 3-axis accelerometer, gyroscope and gravity sensor). Prior work has investi-
gated the aspects of sensor calibration in the context of activity recognition (Saeedi and
El-Sheimy, 2015). However, in real to near-real time scenario the sensor information
can come from different (unknown) smartphone sources owned by different users to a
centralized server where the inference model is running. In such situation it is not al-
ways possible to get the hardware type, or mobile manufacturer information and thus
poses difficulty in calibrating the particular source(s). To emulate the real world con-
dition, thus in this work no attempt has been made to calibrate the sensors. However,
a low pass filter has been used to remove the noise present in the IMU signals used
in the proposed framework (see Section 7.4). For different orientation of the phone
readers are referred to Figure 21.

A total of 34 features are computed using different sensor signals, based on accel-
eration in three directions such as (X: Ax, Y: Ay, Z: Az), rotational vectors in three
directions (X: rx, Y: ry, Z: rz), pitch (rx), yaw (rz), roll (ry), speed (v), and spatial prox-
imity to the nearest route network using latitude, longitude information from a GPS
sensor. In order to eliminate the gravity component a linear acceleration in three axes
is chosen (X: ax, Y: ay, Z: az). The features generated are as follows:

• Average of linear acceleration in X-direction (Avgax), Y-direction (Avgay) and
Z-direction (Avgaz)

Avgax =
Σax

In
(31)

Avgay =
Σay

In
(32)

Avgaz =
Σaz

In
(33)

• Average of resultant linear acceleration (Avgaxyz)

Avgaxyz =
Σaxyz

In
(34)

• Average of resultant rotational vector (AvgRxyz)
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AvgRxyz =
Σrxyz

In
(35)

• Average of rotational vectors in X-direction (Avgrx), Y-direction (Avgry) and Z-
direction (Avgrz)

Avgrx =
Σrx

In
(36)

Avgry =
Σry

In
(37)

Avgrz =
Σrz

In
(38)

• Variance of linear acceleration in X-direction (Varax), Y-direction (Varay), Z-
direction (Varaz) and resultant linear acceleration (Varaxyz)

Varax =
1

In − 1

∑
(ax −Avgax)

2 (39)

Varay =
1

In − 1

∑
(ay −Avgay)

2 (40)

Varaz =
1

In − 1

∑
(az −Avgaz)

2 (41)

Varaxyz =
1

In − 1

∑
(axyz −Avgaxyz)

2 (42)

• Variance of rotational vector in X-direction (Varrx), Y-direction (Varry), Z-direction
(Varrz) and resultant rotational vectors (Varrxyz)

Varrx =
1

In − 1

∑
(rx −Avgrx)

2 (43)

Varry =
1

In − 1

∑
(ry −Avgry)

2 (44)

Varrz =
1

In − 1

∑
(rz −Avgrz)

2 (45)

Varrxyz =
1

In − 1

∑
(rxyz −Avgrxyz)

2 (46)
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• Signal magnitude area in 2-channels (SMA2) and 3-channels (SMA3) respec-
tively

SMA2 =
1

In

∑
(ax + ay) (47)

SMA3 =
1

In

∑
(ax + ay + az) (48)

• Average of Fourier coefficients of the resultant acceleration (FFTA) over kernel
length η

FFTA = fft({Axyz}) (49)

• Average of Fourier coefficients of the resultant acceleration (FFTR) over kernel
length η

FFTR = fft({Rxyz}) (50)

• Number of zero crossings along in linear acceleration over η in X-direction (zax),
Y-direction (zay), Z-direction (zaz)

• Average speed (AvgV) and 95th percentile of maximum speed (MaxV)

• Correlation of linear acceleration in X-Y direction (corrxy), Y-Z direction (corryz)
and X-Z direction (corrzx)

• Entropy of resultant rotational vector (ER) and linear acceleration (EA) based on
normalized power spectrum density (PSD) of resultant rotational vectors (pri) in
the time domain and normalized PSD of resultant acceleration (pAi)

ER =
∑

−pri log2 pri (51)

EA =
∑

−pAi log2 pAi (52)

• Average spatial proximity (Euclidean distance) to the bus network (avgBusProx),
tram network (avgTramProx), train network (avgTrainProx), street network
(avgStreetProx)

Table 28 gives an overview of the different features that are used in different contexts
to detect the activity states over atomic segments that leads to trip detection after
further merging and refinement.
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Table 28: Feature selection in different contexts. A • denotes the corresponding feature is se-
lected under the given context. Likewise ◦ denotes the feature is not selected.

FID Feature
Context 1

Scenario 1

Context 1

Scenario 2
Context 2

1 Avgax • ◦ •
2 Avgay • ◦ •
3 Avgaz • ◦ •
4 Avgaxyz • ◦ •
5 Avgrx • ◦ •
6 Avgry • ◦ •
7 Avgrz • ◦ •
8 AvgRxyz • ◦ •
9 Varax • ◦ •
10 Varay • ◦ •
11 Varaz • ◦ •
12 Varaxyz • ◦ •
13 Varrx • ◦ •
14 Varry • ◦ •
15 Varrz • ◦ •
16 VarRxyz • ◦ •
17 FFTA • ◦ •
18 FFTR • ◦ •
19 SMA2 • ◦ •
20 SMA3 • ◦ •
21 zax ◦ ◦ •
22 zay ◦ ◦ •
23 zaz ◦ ◦ •
24 corrxy ◦ ◦ •
25 corrxz ◦ ◦ •
26 corryz ◦ ◦ •
27 EA • ◦ •
28 ER • ◦ •
29 AvgV • • ◦
30 MaxV • • ◦
31 avgBusProx • • ◦
32 avgTramProx • • ◦
33 avgTrainProx • • ◦
34 avgStreetProx • • ◦
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7.4 evaluation

In order to evaluate the developed approach, two different types of data sets have
been used, each on one context. Data set 1 consists of low frequency sensor data
including GPS and IMU sensor signals. Data set 2 consists of a high frequency IMU
signal without location information.

7.4.1 Context 1: Availability of location and speed information along with IMU signals sam-
pled at a coarser granularity

In the first context, a low frequency (1 Hz, 2 Hz) sensor trace containing GPS and IMU
has been used. This is the typical context of smartphone based travel surveys, which
generally sample at a low frequency to preserve battery power, as well as to capture
real life kinematic behaviour during signal loss and in urban canyons.

Since Data set 1 contains GPS points, this data set is well suited for testing also the
two existing methods (walking-based and clustering-based). In the subsequent section a
comparative study is performed showing how the three methods perform on the same
data set.

7.4.1.1 Data Set 1: Low frequency GPS and IMU data

The first data set that is used in this research contains a low frequency GPS and IMU
sensor information that covers different parts of Greater Melbourne, Australia (Fig 19).
The data set mainly covers tram route, train route, bus route and different portions of
street network.

The data set has been pre-processed using a spatial filter that removes any noise
point where the positional inaccuracy is more than 40 m. The data set is collected in
the WGS84 coordinate system, which is then projected on to GDA94 zone 55 reference
system in order to perform spatial computation on the trajectories in an Euclidean
space.

7.4.1.2 Experimental setup and results

In Context 1, two different scenarios are tested. In the first scenario, the full sensor
trace is used (GPS and IMU), whereas the second scenario investigates how the model
behaves with GPS only signal and how the accuracy improves when the semantic gap
created by the signal loss is bridged by a set of IMU signals sampled at a coarser
granularity. A GPS feed sampled at a frequency of >1 Hz is state-of-the-art practice in
smartphone based travel surveys (Cottrill et al., 2013; Forrest and Pearson, 2005; Gon-
zalez et al., 2008) and various location based context-aware service provisions (Zheng
et al., 2008). Hence, although the IMU is sampled at a lower frequency, the framework
is able to detect the trips and the transfers in between the trips effectively. A prior study
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on stop detection from smartphone-based travel surveys that also includes GSM trajec-
tories and 3-axis accelerometer signals sampled at a lower frequency demonstrates the
efficacy of such sampling strategy (Zhao et al., 2015). The sampling rate is sufficient
for trip or transfer detection, which are phenomena of significantly coarser temporal
granularity.

In order to evaluate the framework, 56 trajectories are used as the training sample
and 49 trajectories are used as the testing sample for both the scenarios in Context 1.
The experiments are realized in three stages. In the first stage (LAYER 1) an atomic
kernel of time length η is run over each trajectory to generate atomic segments. Each
atomic segment is then used to compute a number of features to train a predictive
model in Layer 1. In this stage, a near-real time mode detection is performed in order
to infer the given activity state. In the second stage (LAYER 2) the atomic segments
are merged based on a rule base, where the primary goal is to merge the consecu-
tive atomic segments that bear the same activity state (see Section 7.3.3.2). This stage
generates potential predicted trips. In the third stage (LAYER 3) the predicted trips are
further refined based on GTFS information and the lemmata. The basic assumption be-
hind such modular approach is the higher the consistency in mode detection accuracy
in Layer 1 the better the inference performance for trip detection in Layer 3.

In order to select the best predictive model in terms of average accuracy and con-
sistency in Layer 1 six different machine learning based classifiers are constructed
through supervised learning: a decision tree (DT), a multi-layered perceptron arti-
ficial neural network (MLP), a random forest (RF), a K-nearest neighbor (KNN), a
naive Bayes (NB) and an ensembled meta classifier (EC-Voting). An EC-Voting based
method predicts through majority voting by combining three learning algorithms to-
gether (e.g., RF, KNN and MLP) to construct the meta-classifier. These classifiers are
tested against each test trajectory separately. The classifiers are chosen based on prior
studies on transport mode detection and activity recognition. There are ten experi-
ments performed for each of the classifiers using different kernel lengths with differ-
ent time windows η. Table 29 presents the number of total instances used as training
and testing in ten experimental setups by changing the kernel length. Table 30 shows
the average accuracy of near-real time mode detection for each atomic segment for all
the test trajectories in Layer 1 at different η.
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Table 29: Total number of instances used for training and testing at different kernel length

η Training instances Testing instances

10 87063 70260

20 38646 31188

30 24818 20022

40 18262 14733

50 14438 11645

60 11935 9626

120 5824 4693

180 3831 3090

240 2845 2294

300 2258 1812

Table 30: Average accuracy (%) in Layer 1 for near-real time mode detection using GPS, inertial
measuring units (IMU) and spatial information.

Kernel length η in s

Classifier 10 20 30 40 50 60 120 180 240 300

DT 80.47 83.11 83.48 84.19 83.67 83.91 91.01 90.93 90.63 89.72

MLP 83.25 85.25 85.21 88.04 85.55 89.21 92.32 93.25 91.05 91.13

RF 86.47 87.53 88.42 89.67 90.12 90.37 92.48 93.48 93.94 93.83

KNN 79.74 81.36 82.11 82.25 83.21 84.09 86.03 86.92 86.08 86.92

NB 55.84 56.08 57.89 57.69 59.61 57.57 59.87 60.59 62.63 63.58

EC-Voting 83.61 85.73 86.01 86.79 86.85 87.55 92.51 93.41 91.04 91.95

Average accuracy reflects the representative measure of each classifier’s prediction
accuracy. In order to measure the consistency of the performance of each classifier
standard deviation of average accuracy is computed for each kernel length for the
same set of test trajectories (Table 31). The result shows a RF based classifier generally
yields the maximum accuracy in all the ten experiments with least standard deviation
followed by MLP and EC-Voting. A low standard deviation value essentially indicates
high consistency with less variation in the accuracy value. However, the difference in
average accuracy between a RF based classifier and an MLP based classifier (Table 30)
is less. In order to evaluate the statistical significance of their performance measure
a paired t-test is performed using the individual prediction accuracy made on all
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the test trajectories. It shows the difference in performance between RF and MLP is
statistically significant in eight experimental setups (from 10 s to 60 s and then from
240 s to 300 s) out of 10 experiments (Table 32). This draws a clear contrast between
a RF based and MLP based classifier. The result also suggests a RF based classifier
outperforms all other learning algorithms used in this research to infer the activity
state (transport modes) in near-real time when using GPS and IMU signal to generate
the feature vectors. Figure 63 shows how six different classifiers perform at 10 s and
60 s kernel lengths on all the test trajectories. Table 33 and 34 show two confusion
matrices to demonstrate the classification accuracy of an MLP and RF classifier at 60

s window when evaluated on all the test samples together by combining all the test
trajectories.

Table 31: Measure of standard deviation at different kernel length by different classifiers in
Context 1, Scenario 1.

Kernel length η in s

Classifier 10 20 30 40 50 60 120 180 240 300

DT 3.31 2.8 1.76 1.66 2.73 2.59 0.61 1.05 0.81 2.65

MLP 3.79 3.12 2.73 1.83 3.58 1.53 0.88 1.27 2.1 0.75

RF 1.88 1.72 1.61 1.48 1.51 1.29 0.86 0.72 0.71 0.74

KNN 3.34 3.22 3.28 3.36 3.13 3.27 2.85 2.74 2.57 1.83

NB 3.67 3.72 3.48 3.62 3.63 3.72 3.71 4.18 4.26 3.46

EC-Voting 3.51 3.24 3.05 2.84 3.02 2.85 0.63 0.82 2.27 0.67
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Table 32: Context 1, Scenario 1: Measuring statistical significance of prediction accuracy be-
tween MLP and RF based classifiers at 5% significance level. A p-value 6 0.05 and
h-value=1 signifies the result is statistically significant.

Kernel length in s p-Value h

10 6.65 × 10−7 1

20 2.14 × 10−5 1

30 2.55 × 10−10 1

40 5.37 × 10−6 1

50 9.50 × 10−13 1

60 9.74 × 10−5 1

120 3.5 × 10−1 0

180 2.8 × 10−1 0

240 1.18 × 10−14 1

300 4.33 × 10−32 1

Figure 63: Performance of various classifiers in Layer 1 when using GPS and IMU information
at 10 s (a) and 60 s (b).

In Context 1 Scenario 2 when a sensor trace consists of GPS only information, the
performance of different classifiers are evaluated at different kernel lengths. The result
shows an MLP based classifier outperforms an RF based classifier in terms of average
accuracy (Table 35). In terms of consistency of performance MLP and RF based classi-
fier behave close to each other, however the average accuracy of a RF based classifier is
less than that of an MLP based classifier (Table 36). The result also demonstrates that
the difference in performance of RF and MLP is statistically significant (Table 37) in
nine experiments, except the 240 s window.
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Table 33: Confusion matrix by MLP based classifier using GPS and IMU information at 60 s

Predicted Bus Train Walk Tram Composite

Actual

Bus 1245 14 269 72 0

Train 14 1023 61 36 0

Walk 31 53 4723 303 0

Tram 95 16 164 1476 0

Composite 4 3 19 5 0

Table 34: Confusion matrix by RF based classifier using GPS and IMU information at 60 s

Predicted Bus Train Walk Tram Composite

Actual

Bus 1477 6 76 41 0

Train 14 1046 43 31 0

Walk 122 64 4747 177 0

Tram 56 10 133 1552 0

Composite 3 4 18 6 0

Table 35: Average accuracy (%) in Layer 1 for near-real time mode detection using GPS and
spatial information.

Kernel length η in s

Classifier 10 20 30 40 50 60 120 180 240 300

DT 77.81 83.38 85.02 85.24 81.46 84.45 89.61 91.21 91.54 90.85

MLP 82.99 84.36 87.38 87.28 89.15 90.28 93.03 93.37 92.91 91.86

RF 76.95 79.12 84.62 85.82 87.13 89.24 91.07 92.69 93.01 92.71

KNN 75.26 77.51 78.75 79.02 84.71 86.43 89.05 86.21 90.28 89.61

NB 76.07 81.93 83.93 84.88 85.67 86.62 90.76 92.56 92.69 92.76

EC-Voting 77.86 79.65 81.78 82.36 87.28 89.05 91.83 93.16 93.65 92.52
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Table 36: Standard deviations at different kernel lengths by different classifiers in Context 1,
Scenario 2.

Kernel length η in s

Classifier 10 20 30 40 50 60 120 180 240 300

DT 4.11 1.59 1.31 1.19 4.41 3.81 1.07 1.11 0.79 1.05

MLP 2.08 1.27 1.53 1.84 1.26 1.35 1.26 1.08 0.84 0.84

RF 4.55 4.55 1.28 1.11 1.01 1.21 0.86 0.97 0.79 0.77

KNN 4.18 3.93 4.02 3.79 1.27 1.51 0.88 3.47 1.53 1.29

NB 3.95 2.23 2.12 1.93 1.98 1.96 1.58 1.41 1.01 0.95

EC-Voting 4.83 3.93 4.31 3.94 0.87 1.23 0.58 0.69 0.73 0.82

Table 37: Context 1, Scenario 2: Statistical significance of prediction accuracy between multi-
layered perceptron artificial neural network (MLP) and random forest (RF)-based
classifiers at 5% significance level. A p-value 6 0.05 and h-value =1 signifies the
result is statistically significant.

Kernel length in s p-Value h

10 3.26 × 10−13 1

20 9.22 × 10−12 1

30 8.29 × 10−16 1

40 7.15 × 10−6 1

50 7.05 × 10−14 1

60 1.19 × 10−4 1

120 2.81 × 10−14 1

180 1.50 × 10−3 1

240 4.77 × 10−1 0

300 1.75 × 10−6 1

Once the atomic segments are generated with a given activity state (transport mode)
a rule-based merging operation is performed to generate a set of homogeneous seg-
ments for each queried trajectory. Then a pair of stops is retrieved using a ring buffer
corresponding to the beginning and ending of the segment. Following that, the seg-
ments are now transformed to potential predicted trips with trip start and end in
space-time with their stops. These trips are then fed to the Layer 3, where a spatio-
temporal consistency check is performed and a refinement process takes place which
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generates the final trips with their start time and end time, start stop and end stop
along with the given transport mode taken during that trip.

For validation purposes in Context 1, the final predicted trips are compared with the
reported trips based on trip start time, end time, and the mode. The origin and desti-
nation is not validated in this research as the reported trips did not have the complete
origin-destination information, but a detailed information on trip start time, end time,
and transport mode. However, the framework has a provision to validate the origin,
destination and route information if needed (or if the reported data incorporates such
detailed ground truth data).

Since there is a temporal uncertainty (Fig 57) associated with the trips due to sev-
eral reasons (from data end, user end, device end, service end, inference end, and
the environmental aspects including the noise and signal loss introduced in the data),
while validating the final predicted trips against the reported trips two temporal un-
certainty bounds σ are used. Table 38 shows at 10 s kernel length MLP outperforms
an RF based classifier in terms of trip detection. But with the growing window RF
outperforms MLP in terms of precision and recall accuracy both when 0 6 σ 6 3

and 0 6 σ 6 4.
Figure 64 shows an RF based classifier performs better in general over an MLP

classifier—and other classifiers, which is not shown here but evident from the perfor-
mance in their respective Layer 1 (Table 30). The result shows that with growing upper
bounds of temporal uncertainty (σ) the accuracy improves significantly especially for
an RF based classifier, where the precision jumps from 57.96% to 65.50% at η of 10 s,
70.30% to 76.36% at 20 s, 72.18% to 79.30% at 60 s and 82.78% to 88.07% at 120 s.
Table 38 also demonstrates there is a significant improvement in recall when σ is in-
creased from 3 min to 4 min. Figure 65 shows the false discovery rate (thus the Type
I error) of a RF based classifier also decreases with growing time window, suggesting
that the uncertainty is reduced with growing the kernel length (vis-a-vis the window
size). The result also shows when the upper bound of temporal uncertainty is raised
from 3 min to 4 min the Type I error has reduced for each kernel length. Since the
temporal uncertainty may vary from 3 min to 4 min in this research atomic segments
with kernel length of 2 min have been tested assuming there is no change in activity
state within that shorter window. The result shows the maximum accuracy is reached
at a 120 s window, which is followed by a 60 s window. However, in some situations a
quick transfer may take place within 60 s which may be difficult to detect.
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Table 38: Context 1, Scenario 1: Trip detection accuracy by RF and MLP based classifier using
GPS, IMU and spatial information.

Classifier: RF 0 ≤ σ ≤ 3 0 ≤ σ ≤ 4

η Precision (%) Recall (%) F1-Score Precision (%) Recall (%) F1-Score

10 57.96 59.01 0.58 65.50 65.60 0.65

20 70.30 75.32 0.72 76.36 81.81 0.78

30 70.10 77.27 0.73 74.70 82.16 0.78

40 67.25 74.67 0.71 76.02 84.41 0.79

50 72.50 75.32 0.73 79.37 82.46 0.81

60 72.18 79.20 0.75 79.30 87.01 0.82

120 82.78 81.16 0.81 88.07 86.36 0.87

Classifier: MLP 0 ≤ σ ≤ 3 0 ≤ σ ≤ 4

η Precision (%) Recall (%) F1-Score Precision (%) Recall (%) F1-Score

10 65.86 71.42 0.68 71.85 77.90 0.74

20 64.28 75.97 0.69 67.03 79.22 0.72

30 63.74 70.77 0.67 69.00 76.60 0.72

40 63.63 72.72 0.67 69.31 79.22 0.74

50 65.53 75.32 0.70 81.16 70.62 0.75

60 57.22 66.88 0.61 63.88 74.67 0.68

120 74.25 80.51 0.77 76.64 83.11 0.79

Figure 64: Precision of RF and MLP classifier at different temporal uncertainties.
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Figure 65: False discovery rate (FDR) of a RF based classifier for trip detection at different σ
using a state based bottom up approach.

In Scenario 2, Context 1, in absence of the IMU signal the detection accuracy drops
significantly than that of Scenario 1, Context 1. When the sensor trace consists of
only GPS based location information without further IMU observations an MLP based
classifier performed better in processing Layer 1 as well as in processing Layer 3 and
detects trips more accurately than that of a RF based classifier (Table 39). The results
in Scenario 1 clearly indicate that although IMU information is sampled at a low
frequency this information can bridge the gap present in a GPS trajectory to some
extent and helps in detecting the trips. In Scenario 2 using a GPS-only data set the
maximum recall and precision obtained using a RF based classifier are 70.77% at 60

s and 64.93% accuracy respectively when 0 6 σ 6 3, and 79.22% recall at 60 s and
72.72% precision at 120 s when 0 6 σ 6 4. On the other hand an MLP based classifier
yields 75.32% recall and 72.51% precision at 120 s when 0 6 σ 6 3 and 83.76% recall
at 50 s and 75.01% precision at 120 s when 0 6 σ 6 4.

In order to compare with the existing trajectory segmentation and trip detection
approaches the data set has also been evaluated using a walking-based and clustering-
based approach. Walking can take place anywhere (along the street, along the train
station, close to the bus stop or tram stop) or over any distance (Fig 66). In order to find
the most suitable walking distance threshold (L) for the given data set a set of eleven
experiments are performed starting with 10 m to 100 m incremented by 10 m, and 200

m separately. The existing walking-based approach segments a trajectory into either
a walking or non-walking mode. Thus, for validation purposes any motorized mode
is labelled as non-walk. The validation is also performed by measuring the difference
between predicted trip start and end time (inferred from walking based model) with
the reported trip start and end time. Like the state-based bottom-up approach, if the
difference for start and end of the trip falls within a given temporal uncertainty then
that predicted trip is considered as a true positive.

Table 40 shows for the given data set and given movement that behaviour maxi-
mum accuracy is obtained when the distance threshold (L) ranges from 60 m to 70
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Table 39: Context 1, Scenario 2: Trip detection accuracy by RF and MLP based classifiers using
GPS and spatial information.

Classifier: RF σ ≤ 3 σ ≤ 4

η Precision (%) Recall (%) Type I Precision (%) Recall (%) Type I

10 32.41 38.31 123 44.51 52.59 101

20 35.38 44.81 126 47.17 59.74 103

30 39.11 51.29 123 48.51 63.63 104

40 38.74 48.05 117 48.16 59.74 99

50 47.33 57.14 98 59.13 71.42 76

60 60.55 70.77 71 67.77 79.22 58

120 64.93 64.94 54 72.72 72.72 42

Classifier: MLP σ ≤ 3 σ ≤ 4

η Precision (%) Recall (%) Type I Precision (%) Recall (%) Type I

10 40.41 50.64 115 46.11 57.79 104

20 46.96 60.38 105 52.52 67.53 94

30 52.42 70.12 98 60.19 80.51 82

40 49.46 60.38 95 58.51 71.43 78

50 60.21 72.72 74 69.35 83.76 57

60 62.92 72.72 66 70.78 81.81 52

120 72.51 75.32 44 75.01 77.92 40

m. When σ 6 3 the maximum precision accuracy by the walking-based approach is
66.85% and recall accuracy is 75.97% at 70 m distance threshold. The walking-based ap-
proach generates many irrelevant segments for shorter distance thresholds, denoting
false positive trips when a motorized mode moves very slowly in traffic. On the other
hand, a longer distance threshold would miss some true positive walking trips owing
to reduction in precision accuracy. However, in this research while implementing the
walking-based approach the models starts with a very short distance threshold—10 m
to 100 m (based on heuristics). Prior studies found a critical distance threshold (>100

m) for effective trajectory segmentation in cities like Beijing (Zheng et al., 2008). The re-
sult shows a shorter distance threshold tends to over-segment the trajectory and gives
rise to high FDR and thus to reducing the accuracy of the model (Fig 67). When com-
paring between the proposed state-based bottom-up model and the walking-based
model, it is evident that a walking-based model generates high Type I error owing to
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high FDR (Fig 65 and Fig 67). For a state-based bottom-up model the maximum FDR
obtained is 0.42 (at σ 6 4) and the minimum is 0.12 (at σ 6 3) (see Fig 65), whereas for
walking-based model the maximum FDR is 0.71 and the minimum is 0.32. Both the
max-min FDR generated by walking-based approach is higher than the state-based
bottom up model. Thus, it is clear the proposed approach is less context-sensitive and
less subjective and can work in any environment with a diverse topology of different
region of interest (say, transfers between a train stop to the nearest bus stop may be
different between cities, which is difficult to model by a walking-based approach but
can be effectively detected by the proposed method in this research).

Figure 66: Average proximity of some of the trips to different route types. Although there is an
overlap by the routes of different public transport modes, a trip with a given mode
type (for bus (a); train (b); tram (c)) shows a distinct proximity behaviour to the
given route type. However, since walking can happen anywhere for walking trips,
there is no discernible visual pattern for walking (d).
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Table 40: Accuracy measure of trip detection by walking-based approach.

σ ≤ 3 σ ≤ 4

L (m) Precision (%) Recall (%) F1-Score Precision (%) Recall (%) F1-Score

10 28.98 51.94 0.37 33.69 60.38 0.43

20 37.65 60.38 0.46 40.98 65.58 0.5

30 50.47 68.83 0.58 53.33 72.72 0.61

40 55.94 73.37 0.63 58.41 76.62 0.66

50 61.45 76.62 0.68 63.02 78.57 0.69

60 65.53 75.32 0.70 67.23 77.27 0.71

70 66.85 75.97 0.71 67.42 76.62 0.71

80 66.67 74.02 0.70 67.83 75.32 0.71

90 63.58 71.42 0.67 64.73 72.72 0.68

100 61.21 65.58 0.63 62.42 66.88 0.64

200 61.78 49.35 0.54 61.78 49.35 0.54

Figure 67: False detection rate (FDR) generated by the walking-based model.

For illustration a test trajectory and its inference process is explained in Figure 68.
Table 41 presents a comparison between the reported trips and the predicted trips gen-
erated by an RF classifier with 60 s kernel length on trajectory ID 150615_1. Using a
state-based bottom-up approach six out of six trips are correctly detected with trip start
and end time and respective transport modes. Using the walking-based method only
four out of six trips are detected, and with less detailed mode information (Table 42).
The raw trajectory is shown in 2D; except location information no other semantics is

201



known (Fig 68a), whereas in Figure 68b the same trajectory is shown in 3D in the
form of a space-time path with inferred semantics such as different trips with differ-
ent modes, trip start and end in space and time. In that figure (Fig 68b) the X-Y space
denotes the geographical space and Z the time. From the space-time path it is also
evident that there are two semantic gaps in the trajectory due to signal loss. The ex-
isting approaches such as the walking-based or the clustering-based approach tend to
generate misleading information within such gaps. However, the state-based approach
bridges these gaps since it is able to handle IMU information. The IMU signals show
a distinct kinematic behaviour for the different modes (Fig 69).

The data set is also tested with a clustering-based approach. A clustering-based
model has been developed that produces the geometric clusters of points based on the
spatial proximity between the GPS points. The clusters are not semantically enriched.
Based on the neighborhood (ε) and the dwell time (φ) over each cluster three sets of
experiments (based on φ) are performed where each of the sets contains further ten
sets of setups (based on ε). The minimum number of neighbor points are considered
as three, so the total number of points to form a cluster is the core point itself and
at least three neighbors. The value of ε is chosen from 1 m to 10 m assuming the
GPS inaccuracy will vary from 1 m to 10 m and beyond in the urban environment us-
ing cheap commercial smartphone GPS receivers. However, in real world applications
where the location information comes only from GPS feeds (without other location
sources such as GSM, Wi-Fi, checkpoints installed in the environment, or from social
media) and without semantic enrichment of the clusters, it is evident that the temporal
uncertainty is quite high between the predicted trips and the reported trips leading to
a low accuracy for all the clustering based experiments (Table 43). The result shows
that using a clustering-based method without any semantic enrichment (i.e., without
considering the intersected point of interest or other contextual information) a state-
based approach outperforms a clustering-based model.

Table 41: Trip comparison between reported trips and predicted trips in an automated travel
diary generated by a state-based bottom-up approach (TrajectoryID150615_1).

Reported Predicted

Trip ID Trip Start Trip End Mode Trip ID Trip Start Trip End Mode

1 12:48:00 12:49:00 walk 1 12:48:45:412 12:49:43:413 walk

2 12:49:00 12:58:00 bus 2 12:49:43:413 12:58:10:913 bus

3 12:58:00 13:03:00 walk 3 12:58:10:913 13:03:00:913 walk

4 13:03:00 13:14:00 train 4 13:03:00:913 13:14:22:413 train

5 13:14:00 13:16:00 walk 5 13:14:22:413 13:16:03:912 walk

6 13:16:00 13:27:00 train 6 13:16:03:912 13:26:56:413 train
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Table 42: Trips generated by a walking-based method on Trajectory ID 150615_1.

Trip ID Trip Start Trip End Mode

1 12:48:16:412 12:49:53:413 walk

2 12:49:53:413 12:57:52:912 non-walk

3 12:57:52:912 13:03:00:413 walk

4 13:03:00:413 13:26:59:412 non-walk

Figure 68: A raw trajectory ID 150615_1 in 2D without any semantic information (a); and in
3D as a space-time path with semantic information such as different trips with their
start and end in space-time, modes used, travel direction, signal gap, and travel
speed (b).
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Figure 69: A continuous acceleration profile showing distinct behaviour of different trans-
port modes even through the semantic gap due to GPS signal loss on the
(TrajectoryID150615_1).

Table 43: Trip detection accuracy by a geometric clustering-based model.

total minPts = (3 + 1) = 4;

φ = 60 s
σ ≤ 3 σ ≤ 4

ε (m) Precision (%) Recall (%) Type I Precision (%) Recall (%) Type I

1 48.01 15.58 26 48.01 15.58 26

2 46.15 15.58 28 46.15 15.58 28

3 40.32 16.23 37 40.32 16.23 37

4 44.61 18.83 36 46.15 19.48 35

5 41.42 18.83 41 42.85 19.48 40

6 38.15 18.83 47 40.78 20.12 45

7 36.25 18.83 51 38.75 20.12 49

8 36.71 18.83 50 39.24 20.12 48

9 35.71 19.48 54 38.09 20.78 52

10 34.48 19.48 57 36.78 20.77 55

total minPts = (3 + 1) = 4;

φ = 120 s
σ ≤ 3 σ ≤ 4

ε (m) Precision (%) Recall (%) Type I Precision (%) Recall (%) Type I

1 46.93 14.93 26 46.93 14.93 26

2 46.93 14.93 26 46.93 14.93 26

3 48.97 15.58 25 48.97 15.58 25

4 44.23 14.93 29 44.23 14.93 29

5 43.13 14.28 29 43.13 14.28 29

6 43.39 14.93 30 43.39 14.93 30

7 42.59 14.93 31 42.59 14.93 31

8 42.59 14.93 31 42.59 14.93 31

9 43.63 15.58 31 43.63 15.58 31

10 43.85 16.23 32 43.85 16.23 32
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7.4.2 Context 2: Fine granular inertial sensor information in unknown location

Existing approaches (walking-based and clustering-based) rely on the consistent avail-
ability of location information. But a GPS signal is not available everywhere and also
the GPS receiver on the smartphone draws on significant amount of energy, hence in
Context 2 it has been investigated how the proposed state-based bottom-up approach
behaves without location information. It turns out to be adaptive to different contexts,
while the existing approaches are not applicable due to lack of location and speed
information. Context 2 is also applicable to public health research where one needs to
know the current activity state of the user at an even finer granularity (including body
movements). As the location information is unknown and a normal body movement
frequency is generally 20 Hz (Karantonis et al., 2006; Xia et al., 2014) the sampling
frequency is chosen as 50 Hz (which is roughly double of 20 Hz) which also aligns
with the prior studies in intelligent transportation systems (Xia et al., 2014). Such a
high frequency is required mainly due to the lack of location information in the sensor
trace. The inference process will solely rely on the IMU signals.

7.4.2.1 Data Set 2: High frequency IMU Only data

In order to evaluate the model a high frequency IMU only data set has been used (see
Section 3.2). Most of the prior transport mode detection research that used IMU signals
did not attempt to distinguish between different motorized modes (Reddy et al., 2010;
Xia et al., 2014), and only detected pedestrian modes and motor modes. Prior studies
also used additionally speed information using a GPS receiver. Here, the inference
process is solely based on accelerometer and gyroscope.

7.4.2.2 Experimental setup and results

In order to detect the trips using only high frequency IMU data, nine sensor traces
are used as training data and nineteen sensor traces are used as testing data. The
experiments are performed in two setups. In the first setup a 5 s kernel is run over
each sensor trace, and feature vectors are computed from the extracted atomic sensor
segments with 50% overlap after passing the atomic segments into a first order low
pass filter (LPF) in order to remove any sudden jerk or noise. In the second setup a
10 s kernel is used to generate the feature vectors. In order to avoid the correlation
effect (and thus the overfitting of the model) training and testing sensor traces are
used separately. The result shows that without using speed information, a sensor trace
containing only accelerometer and gyroscope cannot yield very high accuracy due to
the ambiguity in groundtruth information (which is in line with a prior research (Wang
et al., 2010)). For example, a reported tram trip with its trip start and end may have
several waiting events in between (at stops), which may not be reported and thus can
be misclassified. Also, the vibration of trams and trains may produce similar effects,
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especially when the train and tram move at a similar speed. During walking changes
of speed can happen more abruptly compared to other modes of transport, and thus
there is a sharp distinction between walk and non-walk modes in their acceleration
profile. Figure 70 shows the accuracy in processing Layer 1 for mode detection on
IMU sensor traces. The result shows an RF classifier generally works better than other
classifiers and yields accuracies from 60% to 78%. In order to train different classifiers
a total 2285 feature vectors are used, whereas a separate set of feature vectors are used
for each of the test sensor traces to infer the trips for each of those testing sensor traces.
The number of feature vectors ranges from 190 (very short sensor trace) to 1571 .

Figure 70: Transport mode detection accuracy using a 5 s kernel over different test sensor
traces.

In Context 2, once the activity states (transport modes) are detected, the atomic sen-
sor segments are fed to Layer 2 where a rule based advanced merging is performed
and potential predicted trips are generated. Since in this case the location information
is missing, the predicted trips are not further fed to Layer 3 for location consistency
checking. Rather the predicted trips generated by Layer 2 are treated as the final pre-
dicted trips. Since there is no consistency check, there are ambiguities in detecting
motorized modes, however the models can correctly distinguish between a walking
and non-walking mode (bus, train, tram). Hence during validation for the trips gen-
erated by IMU only sensor trace, only the predicted trip start and trip end time is
matched with the reported trip excluding the activity state (transport mode) at a given
temporal uncertainty. When 0 6 σ 6 3 the recall accuracy for trip detection is 71.05%
and precision accuracy is 67.50% using a 5 s kernel.

7.5 discussion

In this chapter a novel state-based bottom-up framework is proposed that can inter-
pret a raw sensor trace and can generate an automated travel diary containing a rich
travel information from smartphone based sensor information. A travel diary gener-
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ated through this framework contains the number of trips, their start and end time,
and the particular transport mode used during that trip(s). The model presented in
this research is adaptive and modular in nature. The model is adaptive because it
can be applied in different contexts with different types of sensor data and different
granularity. The model can generate the activity state information based on a user de-
fined kernel length. The model consists of three phases: an input phase, a processing
phase and an output phase. The core of this model is the processing phase which con-
sists of three layers. Depending on the situation each of the layers can be activated or
deactivated. For example, if the interest lies in near-real time activity detection (trans-
port mode in this case) then the Layer 1 will be activated and the subsequent layers
(Layer 2 and Layer 3) can be deactivated. On the other hand, if one is interested in trip
detection from GPS trajectories all three layers can be activated. On the other hand, if
the same task (trip detection) is to be performed based on IMU only then the third
layer is no longer required—thus the model can adapt depending on the requirements
and workload effectively.

In this research the concept of temporal uncertainty (σ) is introduced while mod-
elling the trips using Allen’s temporal calculus (Allen, 1983). The upper bound of σ is
considered to vary from 3 min to 4 min depending on the observation for this partic-
ular research. The quantification of such temporal uncertainty is done from the fuzzi-
ness in traveller and driver behaviour, uncertainties in hardware performance (sensors
and clock), and the uncertainty present in user’s perceptions of activities while re-
porting the trips. Since in this research the precision used in temporal information on
reported trips is limited to minutes and not seconds, there is always an uncertainty of
at least 59 s. Thus, the minimum temporal uncertainty that can be improved in future
research will be 2 min by shortening the 3 min minimum uncertainty modelled in this
research, which can be further improved if a finer temporal precision is available while
recording the ground truth.

In order to illustrate the efficacy and performance of the proposed model for tra-
jectory segmentation and trip generation, it has been compared with two state-of-the-
art approaches (walking-based and clustering-based). A walking-based approach is
subjective and context-sensitive and thus subject to proper functioning in different
situations and for different users. The success of a walking-based approach depends
on proper selection of walking speed, distance merging threshold and total distance
threshold, which are difficult to set. On the other hand a clustering-based approach
depends on the minimum number of points to form a potential cluster based on their
spatial proximity. A potential cluster can be treated as a stop or slow walking trip
depending on the chosen ε. The relevance of a cluster can be measured based on
the dwell time and other contextual information. In this research, the clusters formed
are simple geometric clusters without any semantic enrichment but limited by spatial-
temporal constraints. The clusters can be of any shape and size, thus raising more
uncertainty especially when there is frequent signal gap and randomness in GPS loca-
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tions. Since both the methods work only when there is a consistent location information
(say from a GPS feed) with reasonable accuracy they do not perform well in sparse GPS
trajectory data (Context 1) and cannot cope without location information (Context 2).
The state-based bottom-up method presented in this research can incorporate different
IMU information, and hence can work in diverse situations with a reasonable accuracy
for mode detection as well as trip detection. The proposed model can also work on a
low frequency GPS, combination of GPS and IMU signals, and a high frequency IMU
only signal. The model can be made more robust and more intelligent by extending
the layers in its processing phase to deal with more diverse and challenging situations,
for example, detecting trips and modes on a GSM trajectory, which is generally coarser
and more uncertain than that of a GPS trajectory depending on the distribution of cell
phone towers.

Despite of the richness in mobility-based activity information the proposed model
has some limitations. For example, in Layer 3 while performing the consistency check-
ing an alternate possibility checking is missing at this moment, and that is due to
the fact that machine learning algorithms cannot generate an alternate prediction in a
human understandable format.

This research also investigated the optimal kernel length for detecting transport
mode in near-real time. The length of kernels ranging from 5 s to 300 s conforms
with the prior studies that attempt to detect mobility-based activities from different
perspectives (Byon et al., 2009; Xia et al., 2014). The results show that an RF-based
classifier performs better than the other classifiers, and an optimal kernel length can be
60 s to 120 s. However, since some activities, e.g., a transfer, can take place within a 120

s interval, the kernel length can further be reduced to 10 s with the given accuracy. The
experimental results show that the performance of the model drops in high frequency
IMU only information. This is because the public transport modes (bus, train and
tram) can stop at different locations due to traffic signals, congestion, passenger drop
off and pick up. During all these events the traveller was most likely being stationary
and sitting (or standing) in the vehicle, and the acceleration profile would show a
momentary drop during that period. But while reporting the trips, it is difficult to get
such a fine ground truth information including how many times a vehicle stopped
during a given trip and why. The reported trip is generally annotated as trip start and
end time with origin, destination information with a single trip mode type. Thus, if a
reported trip mode is bus, all atomic segments of the trip are labelled so, although some
of them may be actually stationary. This can cause miss-classification as well when the
predictive model is wrongly trained and detects some of the stationary atomic segment
as bus and others as train or tram. When merging the segments in Layer 2, due to this
issue some of the trajectories show unreasonable travel behaviour, especially Trip ID
1 to 3 (Table 44), where a bus mode has been detected in between two tram modes,
which is not realistic due to the two reasons: (a) if the trip duration (|t3 − t2|) is very
short that means it was actually a continuation of tram trip, but some portion of that
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particular tram trip has been wrongly detected as bus; (b) For some reason if the given
trip (Trip ID: 2) is a bus trip then there has to be two walking trips before and after
the bus trip as walking can only connect two motorized (or bicycle) modes, which is
missing in this case (Table 44).

Table 44: Unreasonable trips.

Trip ID Trip Start Trip End Mode

1 t1 t2 tram

2 t2 t3 bus

3 t3 t4 tram

4 t4 t5 walk

Such ambiguity can be resolved in a number of ways. In the first approach all the
consecutive non-walk trips can be merged together until a discontinuity in activity
state occurs or a walk trip is encountered (assuming walking is necessary between
two non-walking modes). The first approach is used in this research.

There may be some cases when a quick transfer may take place shorter than the
kernel length, which will generate a Type I error, and wrongly detects a trip with its
end time higher than the end time in reported trip. The second approach is collect-
ing even finer ground truth data that should contain intermittent stationary states at
different locations (stop, traffic light, congestion, driver fatigue), while travelling in a
particular mode in order to train the classifier accordingly. Then while predicting the
trips, all the consecutive stationary atomic segments will be merged together until a
non-stationary atomic segment is found. The merged segment will be labelled as the
immediate non-stationary mode found. However, this approach is tedious, puts cog-
nitive burden on the travellers keeping records for groundtruthing, and also deviates
these travellers from their normal travel behaviour. The third approach can be using a
phased sampling strategy (whenever a there is a drop in speed a higher sampling rate
can be deployed to record the movement behaviour). And lastly the IMU information
can be supplemented by speed information from a GPS sensor. Prior studies show
using speed information along with the acceleration profile improves mode detection
accuracy (Reddy et al., 2010).

7.6 summary

Understanding travel behaviour is important for developing different context-aware
services that can enrich mobility as a service (MaaS). Understanding travel behaviour
is also critical for urban planning and traffic management. Mobility-based activities

209



can also generate information in the interest of public health, analysing a person’s
movement behaviour at a finer granularity.

In this chapter a novel and adaptive state-based bottom-up approach for travel diary
generation is proposed, which can detect individual trips with their trip start and end
in space and time and the transport mode used to mediate the trip. The approach
presented in this chapter first detects the activity state on a finer segment (which
is called an atomic segment) and then progressively models the trips based on the
consistency in the activity state. The reasoning process incorporates a set of machine
learning algorithms, heuristic rules and transit feed information. The model is also
compared with existing approaches.

In order to test the model, three situations were evaluated using two different real
word data sets. The model shows that an RF-based model outperforms other machine
learning models in the presence of GPS and IMU information with 0.75 F1-score at
0 6 σ 6 3 and 0.82 F1-score at 0 6 σ 6 4 using a 60 s kernel length. On the contrary
an MLP-based model works better compared to an RF-based model in absence of IMU
information but with a low frequency GPS information, yielding 72.72% and 81.81%
recall accuracy at 0 6 σ 6 3 and 0 6 σ 6 4 respectively. The model also demonstrates
its efficacy in a high frequency IMU only context in absence of location information
with accepted loss in granularity in trip information (missing or ambiguous trip mode
type). The model also contributes to the knowledge in travel behaviour analysis by
modelling different types of trips possible at an abstract level (such as actual trip, re-
ported trip, predicted trip and scheduled trip) with their different level of granularity.
The results show the proposed model performs better in different situations on differ-
ent types of data. The model works well even when the existing approaches completely
fail especially in absence of location information. The model can also detect a return
travel and its direction (Fig 68).

Future research will investigate the notion of alternate solutions in Layer 1. The
model also can be improved by more intelligent reasoning schemes to be incorporated
during merging operations and consistency checking, such as introducing the longest
common subsequence strategy while matching the stop behaviour. The model can also
be strengthened by implementing a phased sampling strategy to detect finer mobility
based activity states especially in the absence of location information. The core of the
framework developed in this chapter is a hybrid approach which is based on machine
learning and a set of heuristics, which can be further enhanced by introducing a further
clustering concept whenever there is a consistent location information. Future research
can also test other contexts such as on a trajectory with the location information with
varied accuracy (e.g., when the source is not only a GPS but also GSM and Wi-Fi).
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8
D I S C U S S I O N

This chapter presents a critical reflection on all the models that are developed within
the scope of this thesis. The section first discusses the research questions that were
framed in order to investigate the primary hypothesis in Chapter 1. Then a high level
discussion is presented that revolves around the four major contributions in Chapter 4,
Chapter 5, Chapter 6, Chapter 7. This chapter also highlights the limitations of this
work, which can be addressed in future.

8.1 addressing the research questions

8.1.1 Overarching research question

How the knowledge gap in activity definition can be bridged while interpreting a
trajectory at different granularities?

The knowledge gap in activity definition can be bridged by developing an overar-
ching activity ontology that can integrate different disciplines by defining activity at
different contexts. The knowledge gap can also be bridged by interpreting trajectories
using a (hybrid) knowledge-driven model (see Chapter 4, Chapter 5, Chapter 6, Chap-
ter 7). In order to address the overarching research question, a number of secondary
research questions are answered as follows.

8.1.2 Research question 1

What is an activity? How can an activity be modelled at different contexts on motion
trajectories? Is travel an activity?

As developed in Chapter 4, an activity is a recursive phenomenon where an agent
satisfies some need by interacting with an object in the environment. One of the motiva-
tions of this thesis is to develop a framework that can improve the context-awareness
of a (mobile) computing device. A context-aware device can improve the user expe-
rience by assisting a user while performing an activity. However, in order to assist
effectively the device needs to understand the user’s activity state at a given context.
That said, it is already shown in this thesis (Fig 2) that the notion of activity depends
on the context, which requires an adaptive framework that will model an activity in
different contexts in a structured way.

Chapter 4 has proposed an ontological framework that is capable to model an ac-
tivity at different contexts from a motion trajectory. The ontology presented in this
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research consists of two parts – a trajectory part and an activity part with an actor as
the common concept. The framework developed in this research assumes an activity
is composed of at least one action. Depending on the context an activity can become
an action or an action can be lifted to an activity (Fig 26).

For example, when the focus lies on route recommendations, depending on the
origin and destination, a number of trips with different transport modes can be formed
where making a trip itself is an action that contributes to perform the activity travelling
from a given origin to a destination. From the perspective of mode specific patronage
estimation it is important to know the transport mode information and people’s mode
choice behaviour. In this context making a trip on a given mode can be viewed an activity
by itself, whereas transferring from one mode to another is an action in this case. Again
in another context, say assisting people in wayfinding during transfer the focus lies on
bodily movements between trips. In this context transfer is an activity that is composed
of a number of actions e.g., alighting from a given transport mode, navigating to the
next stop, waiting and boarding the next connecting transport mode.

While modelling an activity some of the key concepts used in this research are actor,
activity, action, object, need, fix, segment (Fig 27). As an activity is motivated by a user’s
need, the framework has suggested one of the nine fundamental needs (Max-Neef,
1991) to be used while modelling a specific activity. However, the framework is evalu-
ated using a subsistence need throughout. But other types of needs can be addressed by
the framework. This research has also demonstrated that a shift in granularity plays an
important role while modelling an activity from a motion trajectory at a given context.

Depending on the context travel can be viewed either as an activity or an action
(Fig 31). When the focus lies on how a person mediates between two different loca-
tions, travel becomes an activity. On the other hand when the focus lies on how a
person interacts with an object situated at a given location over a considerable time,
the interaction between the person and the object becomes an activity. In the latter case
travel can be viewed as an action that facilitates that interaction.

Thus an activity can be modelled from a motion trajectory in a recursive way at
different contexts by shifting the granularities. This research has contributed to the
state-of-the-art by proposing a novel context-sensitive framework that can model a
hierarchical (activity) knowledge base (see Chapter 4). The knowledge base has an
ability to provide relevant contextual cues to a context-aware device while perceiving
a user’s need so that the device can trigger service(s) to the user in awareness relevant
to the given context.

8.1.3 Research question 2

How can a raw trajectory be analysed to extract transport mode information auto-
matically at different granularities?
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Transport mode information being a critical component of travel behaviour has been
an interest for urban and transport planners, and various personalized mobility service
providers. This research primarily focuses on extracting transport mode information at
different temporal granularities from raw trajectories. Depending on the information
need the temporal granularities can be modelled in three different ways as follows
(Fig 4).

• Offline interpretation: In case of an offline interpretation, the inference takes
place over a raw trajectory once the entire travel is complete. A segmentation op-
eration is performed that breaks the entire trajectory into a number of segments
where each segment bears a homogeneous modal state. The segments resemble
to a number of distinct trips.

Following that, a number of transport modes are detected over the segments
generated from the segmentation operation. Chapter 5 developed a knowledge-
driven framework to detect a transport mode over a given trip through an offline
interpretation process. An offline interpretation is particularly useful in order to
understand a user’s historical travel behaviour over several days.

• Near-real time interpretation: In near-real time interpretation, the inference pro-
cess takes place on the go by using a temporal kernel. A near-real time interpre-
tation is relevant for an urban traffic management system that requires dynamic
travel demand estimation. In order to extract mode information in near-real time,
a temporal query of different length is issued and a modal state is predicted
within that query window. Two different types of models have been developed
in this thesis. The first one is a hybrid knowledge-driven model (MLANFIS) that
works satisfactorily on GPS only data (see Chapter 6) by combining a machine
learning approach and a fuzzy inference process. The second type of model is
also a hybrid one, but based on a machine learning approach followed by a num-
ber of crisp rule integration. The second model can work on GPS as well as IMU
data.

The results obtained in Chapter 7 suggested that the optimal response time in
near-real time is 120 s using GPS only information and 60 s using GPS and IMU
information when sampled at 1 Hz to 2 Hz.

• Real time interpretation: In this case the interpretation process takes place on the
go but based on a comparatively shorter temporal kernel than that of a near-real
time strategy. A real time interpretation is essential to realize various personal-
ized mobility services in real time. Chapter 7 proposed an optimal response time
in real time could be 5 s using IMU only signals sampled at 50 Hz. However,
the proposed model yields lower accuracy in real time compared to the accuracy
produced in near-real time (see Chapter 7). The reason behind such discrepancy
can be justified due to the lack of finer details in the groundtruth information
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recorded for training and validation purpose (see Section 7.5 for the detailed
explanation).

This research suggested that the finer and more accurate the sensor information is, the
more effective the model is in terms of response time and prediction accuracy. The
detection process also depends on types and number of features computed from the
trajectory (or a sensor trace). A trajectory interpretation process can be influenced by
the following factors.

• Types of sensors used

• Quality of sensor signals

• Sampling frequency

• Availability of domain specific information

• Design of the background intelligence framework

Getting back to the research question 2, this research has shown a trajectory can
be analysed to extract transport mode information at different temporal granularities.
This thesis has contributed to the knowledge by proposing three different mode detec-
tion models from three different angles. The first one is a knowledge-driven model that
works offline (Chapter 5). The offline model expects a number of trips as inputs. The
trips are deduced by segmenting a trajectory based on the similarity in the kinematic
observation(s). The second one is a hybrid model that works in near-real time (Chap-
ter 6), which does not require any segmentation. Instead, the near-real time model uses
a temporal kernel over the trajectory on the fly. The third one proposed in Chapter 7

is deemed to be more flexible and adaptive compared to the previous ones (Chapter 5,
Chapter 6). The three models developed in this research demonstrate that the objective
of semantic extraction has been achieved at different temporal granularities. The mod-
els also demonstrate that it can be possible to interpret a raw trajectory automatically
either by using a predefined knowledge base (Appendix A) or supervised predictive
model or by integrating a rule base to a supervised model in its post-prediction stage to
raise the confidence and transparency in the interpretation process (see Section 7.3.3.3)
.

8.1.4 Research question 3

What are the different uncertainties that exist in a trajectory interpretation process
especially in transport mode detection? How can such uncertainties be modelled?

This research has primarily modelled two types of uncertainties e.g., kinematic un-
certainties and temporal uncertainties that may exist during a trajectory interpretation
process. The uncertainties may be influenced by several factors. While developing and
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evaluating the three mode detection models developed in Chapter 5, Chapter 6, Chap-
ter 7, the following factors have been identified.

• Uncertainties introduced by the sensing: The quality of a GPS trajectory is
subject to signal availability especially in the urban canyons. The quality also
degrades depending on the atmospheric condition and the seasonal variation
which have not been studied within the scope of this research. But these factors
contribute to the positional uncertainties.

In terms of sampling frequency the cheap GPS sensors installed on the smart-
phones cannot sample at a higher frequency due to hardware and software lim-
itations. On the other hand, inertial sensors can sample at a higher rate but the
quality of the signal is subject to body parts movements and the orientation of
the phone.

• Uncertainties due to data logging and sampling frequency: The quality of a
trajectory is also affected by the way data is logged and the precision used while
logging the data. The sampling frequency is another aspect while recording the
movement behaviour. A GPS trajectory sampled at 1 Hz to 2 Hz is deemed to be
of reasonable quality for mode detection, provided it does not have longer and
frequent signal gaps. A trajectory captured at a coarser granularity may save
memory but at a cost of higher response time for information delivery and low
accuracy in near-real time scenario.

From observation it is also found that in commercial smartphones cannot ensure
that the sensors will log the observation(s) at a prescribed sampling interval. In
particular, for GPS sensors the actual timestamp of logging an observation may
differ from the predefined sampling interval by a few seconds to a few minutes
depending on the signal reception.

In the context of near-real time it is assumed that a query can come at any time.
However, there may be a signal gap or lack of sufficient samples within a given
query window. The state-of-the-art interpolation technique such as inverse dis-
tance weightage works well on historical trajectories (Schuessler and Axhausen,
2009). But an inverse distance weightage technique cannot be realized in real to
near-real time applications due to data insufficiency. In order to avoid the gap
in a trajectory, the data has been recorded continuously. When there is a signal
gap encountered, the last known location has been recorded as the new locations
until a new observation is sensed.

• Temporal uncertainties due to user’s perception: Temporal uncertainties may ex-
ist during groundtruth collection or validation process. The uncertainties mainly
come from user’s perception about an event and their ability to report the event
with the appropriate details. For example, while recording a start time of an ac-
tion for groundtruth, it is difficult to capture the exact time when a shift occurs
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from one action to another action, e.g., between standing at a tram stop and
riding a tram.

The temporal uncertainties also exist for trip inference with a temporal shift
in start time and end time between a predicted trip, reported trip, and sched-
uled trip (see Chapter 7). The temporal uncertainties may also exist due to asyn-
chronous clocks of the person recording the groundtruth, the clock used by the
respective vehicle in order to keep to schedule, and GPS time.

• Temporal uncertainties from service providers: Due to unforeseen events a par-
ticular transport service can be slowed down, cancelled, or re-routed. In this
situation using predefined information such as (static) GTFS is not well suited
for trajectory interpretation. Figure 71 shows a temporal deviation of a sched-
uled train trip from North Melbourne to Sunbury Station in Greater Melbourne.
On the other hand, a vehicle can also move ahead of scheduled time due to
particular driving behaviour or during late night when traffic is very low.

Figure 71: Temporal uncertainties from the service provider. The train is initially scheduled
at 2:46 pm but delayed by few minutes. The time stamp 2:44:21 pm shown in the
bottom right corner is the current time when the scene was recorded.

In this research, temporal thresholds of 3 mins and 4 mins have been used to
quantify the temporal uncertainties that may exist in the trip detection process
(Chapter 7). This means a near-real time mode detection using a query window
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less than 180 s can fall within the temporal uncertainty and may affect a context-
aware service that leverages the mode information within that time period.

This is also required to model the transfer effectively. From an ontological per-
spective, a transfer can be defined at different granularities. However, at the
finest granularity a transfer (with its start and end) that happens within such
quantified temporal uncertainty zone may not be precisely detected in time (and
space).

Thus a quantification of temporal uncertainty can provide a reliability measure
for a context-aware computing service for certain application where time is being
a critical factor.

• Uncertainties due to movement behaviour: Assuming movement is subjective,
the kinematic uncertainties may also take place due to a respective user’s move-
ment behaviour depending on personal walking speed, personal preference of
transport modes.

The uncertainties also exist due to a specific driving behaviour or road condi-
tion. For example, during traffic a bus may move very slowly owing to a false
impression of walking and delay in arriving at the next destination.

This research has modelled the kinematic uncertainties through a purely knowledge-
driven model in a human understandable format in Chapter 5. The uncertainties are
captured through an expert knowledge and expressed through a number of linguistic
values in a fuzzy knowledge base. Similarly, in Chapter 6, a hybrid knowledge-driven
model is presented that can capture the kinematic uncertainties automatically from
the training data and then develop a fuzzy rule base.

On the other hand, the temporal uncertainties during a trajectory interpretation pro-
cess has been modelled using Allen’s interval algebra from a qualitative perspective
(Allen, 1983). Chapter 7 has explained nine different temporal relationships that may
exist between a scheduled trip, reported trip and a predicted trip. Chapter 7 has also
suggested quantifying temporal uncertainties during a trajectory interpretation pro-
cess is essential to measure the reliability of an inference process.

In this research kinematic and temporal uncertainties have been modelled. Mod-
elling the uncertainties enables action (or activity) specific semantic extraction from a
given trajectory at a given context. Depending on the kinematic uncertainties present
in an object’s movement behaviour Chapter 5 and Chapter 6 have proposed the con-
cept of alternate possibilities of being different transport modes at different certainty
levels. The temporal uncertainties are quantified within a crisp temporal bound that
limits temporal uncertainties in activity (or action) transition in space and time. While
addressing the uncertainties a number of contributing factors are discussed. However,
there may be other factors from statistical perspective which are out of the scope of
this thesis.
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8.1.5 Research question 4

What are the advantages and disadvantages of a machine learning approach and a
knowledge-driven approach while detecting transport modes from the raw trajec-
tories? How can the trade-off between a machine learning model and knowledge-
driven model be bridged so that it is possible to represent the reasoning scheme
of a predictive model that works on motion trajectories and at the same time the
model is able to self-adaptation?

Transport mode detection is mostly addressed by machine learning approaches and
less so by knowledge-driven approaches. However, both of these approaches have
their advantages and disadvantages. Machine learning approaches are data specific.
Their performance depends on the way the model is trained. For transport mode
detection speed, acceleration profile, and spatial proximity to different route types
and their derived features are some of the critical indicators, which can be handled
by machine learning models. Machine learning models can also handle complex fea-
tures e.g., signal magnitude area of triaxial accelerometer signals, or entropy. However,
machine learning approaches are limited in terms of expressing the reasoning mech-
anism, which poses difficulty in semantic extraction of action specific behaviours. A
machine learning approach provides limited flexibility to incorporate heuristics in the
post-processing phase in order to refine the prediction results (Chapter 7).

That said machine learning models can handle a wide range of feature types with
their inherent complexity. During signal gap the models can still leverage the signals
generated by inertial sensors and predict a given modal state (and other mobility-
based information as required).

On the other hand, knowledge-driven models do not need to be trained. The knowledge-
driven models operate solely based on the rule base developed by a domain expert.
Since a knowledge-driven model is based on the set of rules that encodes the percep-
tion about the world, the model in particular, a fuzzy logic based model offers more
flexibility and ability to model uncertainties compared to a machine learning model.
A knowledge-driven model can also include crisp rules (based on common sense) to
raise the confidence of an interpretation process.

However, from observation, a rule based model is limited in an urban environment
where bus routes, tram routes and street networks are located close to each other or
even overlap. In an urban environment if an object moves at a moderate speed and
very close to a bus network and a tram network, it could be a tram with a certainty as
much as a bus (Fig 20). In such ambiguous conditions stop rates at given POIs play an
important role in discriminating different modes: a bus will stop at the given bus stops,
and a tram will stop at the given tram stops. Only due to the unreliability of positional
information it may be difficult to use proximity to a given POI. This approach is also
subject to availability of infrastructure information (route information, stop location,
and schedule information). In order to address these challenges inertial sensor infor-
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mation is deemed to be useful. The use of an inertial sensor in this situation can be
justified as an inertial sensor can sample at a higher frequency and can capture finer
kinematic details. However, as described earlier in this chapter due to limited knowl-
edge of the domain expert (who will setup the rule base), it is difficult to incorporate
the inertial sensor information in a conventional fuzzy logic based knowledge-driven
model.

Although for a sufficiently long segment a fuzzy logic based knowledge-driven
model may work effectively (Chapter 5), it may not work well over a shorter segment
as required in near-real time scenarios (Chapter 6). On the other hand, a machine learn-
ing based model can work in near-real time and can handle different types of features
but lacks the expressiveness.

To bridge the trade-off between a machine learning model and a knowledge-driven
model a hybrid neuro-fuzzy model has been proposed in this research (Chapter 6).
The hybrid model can work better than a traditional Mamdani-type fuzzy logic based
knowledge-driven model and at par with some of the state-of-the-art machine learn-
ing models. However, the neuro-fuzzy based hybrid model (MLANFIS) presented in
Chapter 6 suffers from the scalability issue. A more sophisticated and adaptive hybrid
model has been developed in Chapter 7 using a machine learning approach integrated
with a number of crisp rules.

Thus this research has investigated the advantages and disadvantages of a ma-
chine learning and a knowledge-driven approach. The research has shown although
a knowledge-driven model works effectively offline it may not work well in near-
real time. This research has also explained the trade-off between a knowledge-driven
model and a machine learning model in terms of their expressiveness and perfor-
mance. Two hybrid models have been proposed in this research to bridge the trade-off
while interpreting the raw trajectories for transport mode detection.

8.2 evaluation of the hypotheses

This research has investigated the primary hypothesis (Hypothesis 1) that hybrid models
allow a consistent and adaptive interpretation of activities from smartphone trajectories. In or-
der to address the primary hypothesis four major research questions (Section 8.1) and
a number of sub-hypothesis had been formulated. Some of the research questions cor-
respond to more than one sub-hypothesis. Based on the illustrations and evaluations in
Chapter 4, Chapter 5, Chapter 6, Chapter 7 this section will justify the sub-hypotheses.

8.2.1 Hypothesis 1.1

The semantics of activity depends on the spatial and temporal granularity suggested by context.
Shifts in granularity will enable processing motion trajectories and activity knowledge can
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be represented in various contexts facilitating flexible, appropriate and relevant information
representation or provision and thereby develops a connected knowledge flow.

Chapter 4 has shown the semantics of activity varies from context to context. Fig-
ure 31 depicts how a motion trajectory can be processed at different granularities to
explore activity and action information at different contexts. Based on the context-
adaptive framework (Fig 27) it is evident that it is possible to develop different con-
textual knowledge bases only by instantiating each of the concepts every time a new
context is perceived. But the structure of the framework and relationships between the
different concepts will remain same. The three tables (Table 13, 14, 15) illustrate three
different contextual knowledge bases can develop a connected knowledge flow in dif-
ferent contexts by altering the granularity. Due to this recursiveness of the framework
any phenomenon can be modelled as an activity or action depending on the given sit-
uation. As discussed earlier (Section 8.1.2), the framework uses a modular approach –
a portion to model a trajectory and a portion to model an activity. Thus the framework
provides enough flexibility and can bridge the gap while defining an activity from
different perspectives.

The information extracted from a particular knowledge base is relevant and appro-
priate in a given context. For example, Figure 32, 33 provide a number of information
which are relevant to Context 2 and Context 3 respectively.

Thus this research has established Hypothesis 1.1 by illustrating a motion trajectory.
Although this research has primarily used GPS trajectories and IMU information to
evaluate the subsequent hypotheses but the ontological framework developed in this
research (Fig 27) can be used to extract activity (or action) information from motion
trajectories collected not only by a GPS sensor but also other sources.

8.2.2 Hypothesis 1.2

A multiple-input multiple-output fuzzy logic based knowledge-driven approach is able to detect
different transport modes effectively based on the expert knowledge from historical trajectories.
The knowledge-driven approach will also model the uncertainties present in the movement
behaviour in a transparent way.

While addressing the second research questions (Section 8.1.3) it is already ex-
plained a knowledge-driven model performs effectively on historical trajectories. The
results (Section 5.4.4) and the rule base (Appendix A) provide evidence that the Hy-
pothesis 1.2 will hold in offline given the GPS trajectories are sampled comparatively
at a reasonable granularity (in the order of 1 Hz-2 Hz). Chapter 5 shows how a
knowledge-driven approach can reason based on the expert knowledge. Initially, by
using 74 rules the train accuracy was low. However, by adding two new rules (Rule 75,
76) the accuracy has increased. This suggests that more the expert knowledge brought
in the model, better the accuracy is achieved.
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In order to evaluate the Hypothesis 1.2 it is already described in the third research
question (Section 8.1.4) that a knowledge-driven approach is more flexible than a
machine learning based approach while modelling the kinematic uncertainties. The
rule base shown in Appendix A demonstrates that a Mamdani-type multiple-input
multiple-output knowledge-driven approach models different kinematic uncertainties
through simple IF-THEN rules in a human understandable format. The proposed
multiple-input multiple-output approach also demonstrates its ability to provide al-
ternate predictions with varied degree of certainties which was missing in the earlier
knowledge-driven models (Xu et al., 2010; Biljecki et al., 2012).

8.2.3 Hypothesis 1.3

While detecting transport modes in near-real time, a neuro-fuzzy based hybrid knowledge-
driven framework will perform better than a purely knowledge-driven model. The hybrid model
will also bridge the trade-off between a purely knowledge-driven model and machine learning
model in terms of expressiveness and learning ability.

The quality of a GPS trajectory may be affected by several factors (see Section 8.1.4)
that lead to varied kinematic uncertainties and lack of location information in the tra-
jectory. A purely knowledge-driven model, for example, the knowledge-driven model
developed in Chapter 5 cannot capture all the uncertainties within a shorter temporal
period. To address this issue a neuro-fuzzy based hybrid knowledge-driven model is
developed, which is self-adaptive (Chapter 6).

In order to evaluate the hypothesis a set of experiments are performed. The results
(Table 24) show that although a knowledge-driven model (Chapter 5) achieves higher
precision accuracy it suffers from lower recall accuracy (Table 23). This can be justified
by the fact that the rules in a purely knowledge-driven models can only reason a
portion of the several possibilities. However, the rules are not exhaustive enough to
capture all the kinematic possibilities from the GPS trajectories. On the other hand,
a hybrid model performs consistently better than a knowledge-driven model in near-
real time. As shown in Table 24 and Table 23 the results show the hybrid knowledge-
driven model can perform at par with the machine learning models. As addressed
in the fourth research question (Section 8.1.5) a hybrid knowledge-driven model is
expressive in one hand and adaptive on the other hand, showing a clear evidence that
the Hypothesis 1.3 has been justified.

8.2.4 Hypothesis 1.4

A state-based bottom-up approach is more adaptive than any top-down approach, and in addi-
tion will be flexible enough to detect activity states in a progressive manner at different temporal
granularity.
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In order to evaluate Hypothesis 1.4 a number of experiments are performed emu-
lating different situations (Chapter 7). The results (Section 7.4.1.2) demonstrate that
the existing top-down approaches (e.g., walking based approaches) are subjective and
do not work well in the absence of location information. Likewise, a clustering based
approach is also deemed to be dependent on a fine-grained GPS trajectory – and gives
rise to high spatial-temporal uncertainty because of its very nature of producing clus-
ters of arbitrary geometrical shape and size.

In order to make the model flexible the processing layer (Fig 58) is developed in
such a way that depending on the information need and the data type (in presence
or absence of location information), the modules can be activated or deactivated. This
provides evidence that the model is adaptive enough. In addition to that, the temporal
kernel used to detect the atomic state(s) is user defined and thus it can grow or shrink
depending on the sampling frequency and type of sensor information that makes the
model highly flexible.

The framework is developed based on a basic assumption that the activity state
will remain the same within a shorter temporal window and thus a progressive merg-
ing based on homogeneity of the activity state will result in information extraction
at different temporal granularities. The results (Section 7.4.1.2) demonstrate that the
assumption was reasonable and thus the aim is achieved.

8.2.5 Hypothesis 1

Based on the evaluation of the four hypotheses there is enough evidence that sup-
ports the primary hypothesis (Hypothesis 1). The ontology (Fig 27) supports an adap-
tive modelling of activities at different contexts whereas the two predictive models
(Fig 49, 58) demonstrate hybrid models are able to interpret smartphone trajectories in
a consistent manner.

8.3 relevance of the research contributions

This research has addressed two different semantic gaps – one in the activity defini-
tion and the other one related to the activity detection through trajectory interpretation.
The major contributions of this research (Section 9.2) are presented in Chapter 4, Chap-
ter 5, Chapter 6, Chapter 7. This section will present an overall discussion of the four
models and how they are connected to the state-of-the-art.

8.3.1 Context-sensitive ontological framework

The framework proposed in Chapter 4 can help a context-aware mobile device to
understand semantics of different activities (or actions) in different situations and act
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accordingly. The framework extends an existing trajectory ontology developed by (Hu
et al., 2013) through instantiating the concepts and fusing an activity part. On the
other hand, the framework enriched existing activity ontologies (Nardi, 1995; Kuhn,
2001; Chen et al., 2014; Meditskos et al., 2013) by adding space-time dimension.

Previous works have used a set of temporal zooming operators to refine or abstract
a user’s movement history from time-geography aspect (Hornsby, 2001; Hornsby and
Egenhofer, 2002). The proposed framework (Chapter 4) uses the similar concept of
temporal zooming to extract activity information at different granularities. The onto-
logical framework presented in this research also aligns with the concept of process
and event in terms of recursiveness and context dependency suggested by previous
researchers (Abler et al., 1971; Yuan, 2001; Worboys, 2005; Galton, 2006, 2015; Hornsby
and Cole, 2007).

The framework suggests need is the key concept that defines an activity. A need can
be satisfied through a given affordance. Although this research does not differentiate
the type of affordances, but the framework is flexible enough to link with an existing
relational-functional model for affordance based agent framework (Raubal and Moratz,
2008). The framework also enriches an earlier mobility-based model for information
retrieval from motion trajectories (Hirtle et al., 2011) by introducing the concept of
context.

The granularity addressed in this research while modelling an activity is represented
in terms of space-time scales and amount of relevant information retrieval. As dis-
cussed in Section 4.5, the granularity and information extraction may be hindered
during signal gaps – but that does not affect the ontological structure of the model.
This only affects the details of information retrieval. Although, the framework is evalu-
ated on a GPS trajectory, motion trajectories captured by other sources such as cordons
or check-ins (Duckham, 2013), smart-cards (Sun et al., 2012), or Wi-Fi (Li et al., 2015)
can also be used.

As mentioned earlier, the model can be applied both in outdoor and indoor and
thus is general enough to apply in any application domain where activity is a key
facet. The ontology has been developed in a modular way by integrating two sub-
modules – one is the activity part, and the other is a semantic trajectory part with
an actor as a common concept. Thus, the framework can be applied to a trajectory
collected by a GPS, GSM, Wi-Fi, smart-card or other infrequent sources such as credit
card transactions, check-in on social media, or a self-reported diary with a varying
activity details.

There are still challenges as how to model different activities in indoor and outdoor
from similar action sequences. For example, the following sequence of actions has been
detected:

[walking > entering into a cafe > sitting on a chair > leaving the cafe]

223



One possible need for this sequence of actions is to have a cup of coffee which falls
under a broader need of subsistence. An alternative need is to meet someone in the cafe
which can fall under a broader need of participation. The framework developed in this
research has a capacity to distinguish these two different activities (based on two differ-
ent needs) from the same set of action sequences and location information, provided
the subsequent actions in the cafe are captured by the available sensors. For example,
a need participation can be attributed by actions such as expressing an opinion, cooper-
ating or interacting with others whereas a subsistence need can be attributed by actions
such as feeding or resting (Max-Neef, 1991). Such actions can be understood on getting
different types of sensor information inside the cafe. Such a need-based activity cate-
gorization with similar action sequences are interesting to interpret for understanding
an individual’s activity patterns to enable personalized service provisions.

8.3.2 A Knowledge-driven approach for transport mode detection

The knowledge-driven model proposed in Chapter 5 investigated different member-
ship function combinations. The results suggested a Gaussian-Gaussian combination
works best in offline. Unlike the earlier models (Tsui and Shalaby, 2006; Schuessler and
Axhausen, 2009), the proposed knowledge-driven model (Chapter 5) has shown that
using kinematic-only features, the accuracy decreases compared to the cases when spa-
tial information and the kinematic information both are included. The results demon-
strated that the proposed knowledge-driven offline model works at par with some of
the existing machine learning based models and more expressive than any machine
learning models (Zheng et al., 2008; Byon et al., 2009; Wang et al., 2010) and some of the
existing rule-based models e.g., (Tsui and Shalaby, 2006; Bohte et al., 2008; Schuessler
and Axhausen, 2009; Xu et al., 2010; Gong et al., 2012; Biljecki et al., 2012). The pro-
posed model is also an improvement over the existing knowledge-driven models in
terms of expressiveness and alternate predictions (Xu et al., 2010; Biljecki et al., 2012).
The developed model can detect four modalities (walk, bus, tram, train) with a pos-
sibility to incorporate other modalities (Chapter 5) e.g., car, bike, or taxi, and other
variables e.g., stop rate, proximity to a given POI, vibration, or heading rate change.

8.3.3 Hybrid Knowledge-driven framework for transport mode detection in near-real time

It has been already demonstrated in this research that a fuzzy logic based knowledge-
driven model performs well offline (see Chapter 5) but the model provides limited
performance in real- or near-real time (see Chapter 6). A knowledge-driven model
also suffers from tuning its membership function parameters.

To address the shortcomings of a knowledge-driven model, Chapter 6 has presented
a neuro-fuzzy based hybrid model that can adapt and learn from the historical move-
ment data. Although the hybrid model uses only five fuzzy variables (average speed,
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95th percentile of maximum speed and average proximity to bus network, train net-
work, and tram network), other features can easily be incorporated in the model. As
described in Chapter 6 in order to generate the fuzzy rules automatically currently a
grid partitioning approach is used in this research, which is an expensive strategy in
terms of processing time and memory usage. Despite the limitations, the hybrid model
developed in this research outperforms some of the machine learning based models
e.g., an RBF, DT, KNN based models and a knowledge-driven model in near-real time.

The proposed hybrid model (Chapter 6) yields 88% average precision accuracy at
60 s time window which is an improvement over the earlier work by Byon and col-
leagues (Byon et al., 2009) in terms of response time. The proposed model is also an
improvement over the previous knowledge-driven attempts in terms of adaptivity in
varying conditions (Tsui and Shalaby, 2006; Schuessler and Axhausen, 2009; Xu et al.,
2010; Biljecki et al., 2012).

Although the complexity of the hybrid model could be a critical factor in near-real
time implementation, however, it is observed that the hybrid model is computationally
expensive at this moment due to its very nature of exhaustive search while construct-
ing the rule base. However, as the main interest of this thesis lies in GIScience rather
than computational science, thus, the complexity is only qualitatively mentioned in
the text and not investigated in-depth. The experiments evaluated a trade-off between
the detection accuracy and different time windows in near-real time predictions. This
partly gives an idea about the performance and complexity (in terms of response time
during inference) of the models. A future study will investigate the complexity of the
algorithms used in terms of execution time and memory usage.

8.3.4 Automated urban travel interpretation through a state-based bottom-up approach

Chapter 7 develops a hybrid state based adaptive framework that can handle the tra-
jectory segmentation challenges caused by a walking or a clustering based approach.
The result (Section 7.4.1.2) shows that the performance of the framework stretches
on a wide temporal range – from a very fine temporal granularity (5 s) to a moder-
ate granularity (300 s) or even more that approaches to the completion of the travel.
Thus the framework also conforms the earlier works which have been done separately
for transport mode information retrieval at different response time (Byon et al., 2009;
Hemminki et al., 2013; Xia et al., 2014).

In this research due to the nature of groundtruth collected spatial uncertainty of
a trip origin and destination is not explored, rather the temporal uncertainties are
modelled (Fig 57) through Allen’s interval algebra (Allen, 1983). The model can work
on the different quality of movement data such as GPS only, GPS and IMU and IMU
only sampled at coarser to finer granularity (see Chapter 7).

Currently in the processing layer (Fig 58) there is no provision for alternate pre-
diction(s). But considering the uncertainties involved in the kinematic behaviour of a
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moving object (user or the vehicle carrying the user), more rigorous merging operation
can be performed on getting an alternate solution through a neuro-fuzzy based hybrid
knowledge-driven technique. Chapter 7 has also shown while developing a predictive
model using a supervised learning approach the precision and quality of groundtruth
is to be taken into account.

In this research to the best of the author’s knowledge, GTFS information is used
for the first time for modelling the temporal uncertainty while detecting the trips
and travel modes. When GTFS information will not be available a more advanced
predictive modelling should be developed.

8.4 overall limitations

Despite the efficacy of the models developed in this research (Chapter 4, Chapter 5,
Chapter 6, Chapter 7) there are some limitations as follows.

• The context-sensitive ontological framework developed in this research (Chap-
ter 4) is limited while explaining a composite activity at this moment. For ex-
ample, the ontology will provide limited reasoning ability while resolving two
composite activities occurring concurrently – reading newspaper while traveling.
Thus the framework may pose challenges while satisfying a user’s more than
one needs at the same time. Although each of the component events that oc-
cur concurrently, can be modelled separately based on their respective objectives
or goals but the model offers a limited explanation if there is any connection
between those concurrent events happening at the same time by the same actor.

The ontological framework mainly uses a temporal zooming to distinguish dif-
ferent activities of varied entailments (actions, operations). Thus the contexts laid
out in this research are inherently connected to granularity in terms of time and
details of information, which are relevant to a given situation. The model pro-
vides limited capacity to detect a particular need that motivates to do an activity.
This will require analysis of different sensor information in outdoor and indoor
at varied granularity to develop a sequence of action chain.

The ontology has been evaluated through Hermit Reasoner embedded in Protégé
and illustrated using a real GPS trajectory along with a number of SPARQL
queries, however, the framework has not been implemented in reality and thus
it is not tested how the quality of a trajectory can affect the performance of the
ontology. The reliability of the ontology depends on the level granularity adopted
while developing the concepts, their object properties and data properties. The
reliability also depends on the intricacies in the competency questions that are
to be formulated in the conceptualisation stage.

Although in this thesis the framework is evaluated using three different contexts
at three different granularities, the framework can be extended to any number of
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contexts in a recursive way. That said, the instantiation of various concepts at a
given context depends on the application domain – but the functionality and the
relationships between different concepts will remain same.

• In this research three different types of knowledge bases are considered as fol-
lows.

– The first one is the contextual activity knowledge base (Chapter 4) that
contains the concepts and the properties related to an activity at a given
context.

– The second one is the fuzzy knowledge base (Chapter 5, Chapter 6) that
contains the fuzzy rules to model and reason an object’s mobility-based
activities (or actions).

– The third one is the crisp knowledge base represented in terms of a number
of lemmata (Chapter 7), which is used to refine the prediction results during
the trajectory interpretation process.

The ontological framework developed in Chapter 4 is based on (crisp) DL-OWL,
which provides limited functionality to handle the fuzziness in space and time.
This poses a gap in between the contextual activity knowledge base and the
fuzzy knowledge base. In order to bridge the gap a fuzzy-DL reasoner (Bobillo
et al., 2012) is to be implemented while developing the ontological framework in
future work.

• The offline fuzzy logic based model and a near-real time hybrid model developed
in Chapter 5 and Chapter 6 respectively work best on a relatively finer GPS
trajectory sampled at 1 Hz to 2 Hz. But assuming location information can come
from other sources such as GSM, Wi-Fi, check-ins, user-generated contents (UGC)
with varied level of positional accuracy and semantic gaps, there is a need to
develop more robust and adaptive model. In order to find the missing locations
during signal gap, currently a linear interpolation is performed in the offline
based model due to its simplicity (Long, 2016). But during a longer semantic
gap or in presence of GSM trajectory where the positional uncertainty is higher
(see Fig 72) in such situations a linear interpolation may not be a good choice. In
these scenarios more advanced interpolation and filtering strategy, for example,
a Kalman filter could be used.

• The hybrid model developed in Chapter 6 currently uses a grid partitioning to
search its input space to generate the rule base. This is an expensive strategy and
due to the “curse of dimensionality" (Bellman, 2003; Keogh and Mueen, 2010) the
model fails when the number of fuzzy variables are more (Jang, 1993). Currently,
the hybrid model is based on Sugeno-type fuzzy inference system, where the
antecedent part is fuzzy but the consequent part is not fuzzy in itself. Thus
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the model offers limited expressiveness in its output part. Currently the model
generates all the rules that can be possible from a combinatorial approach. The
model is not able to discover the most relevant or top-k fuzzy rules based on the
input features which is required for extracting the behavioural knowledge that
is relevant to a given context.

Figure 72: A mixed location trajectory using GPS and GSM network with varied buffer size
for different accuracy level around the respective spatio-temporal point (a); the po-
sitional accuracy varies from 10 m to more than 1000 m. Particularly for GSM loca-
tions, the inaccuracy is more than 300 m and sometimes even greater than 1000 m
(b).

• The hybrid state based bottom-up trajectory segmentation model (Chapter 7)
lacks the ability to provide the alternate prediction. The model currently uses a
simple low pass filter to preprocess the accelerometer signal information to get
rid of the noise. But in practice, a sudden jerk may take place during transfer
which may indicate a change in state. Such high frequency signal components
need to be further investigated. The model does not consider the energy con-
sumption of different sensors while collecting a trajectory, which has been a
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critical issue in mobile computing and smartphone based travel surveys (Cottrill
et al., 2013; Yu et al., 2014).
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9
C O N C L U S I O N S

Understanding people’s travel behaviour is essential to enable different mobility ser-
vice provisions e.g., personalized activity recommendations based on a user’s travel be-
haviour, or transport planning at an aggregate or disaggregate level. Currently, paper-
based or telephonic manual travel surveys are capturing information related to var-
ious mobility-based activities by asking respondents about their travel patterns. But
such approaches are subject to miss-reporting and under-reporting due to a memory-
based reconstruction process. To cope with these issues smartphone travel surveys are
emerging (Cottrill et al., 2013). A smartphone-based travel survey records people’s
travel behaviour and provide improved data quality. Beyond these surveys, large cor-
pora of smartphone-based trajectory data sets emerge, in silos of commercial service
providers. With regard to travel demand these latter trajectory data sets are typically
limited to a singular mode, but on the other hand, they have the tendency to sample
the population instead of small numbers of survey participants. In the future, however,
a continuous and volunteered, incentivized provision of smartphone-based mobility
data – of all mobility modes – can be envisioned, and then the challenge of mode
detection arises at a massive scale and for multiple purposes, some offline, some real-
time. A smartphone-based mobility data set leverages the location and other motion
sensors installed on a smartphone to capture a person’s travel behaviour and activity
patterns, which are recorded as a sequence of spatio-temporal points.

Current context-aware mobility applications consider location information as one of
the primary contextual cues. Moving one step further, this research has proposed trans-
port mode information as another contextual dimension to be used by a context-aware
application while perceiving a user’s activity state. Thereby the research has made an
attempt to improve the intelligence of the context-aware mobility applications by in-
terpreting the raw trajectories. This research aims to understand how a user mediates
between two locations from her trajectory.

As described earlier in Chapter 1 the raw trajectories can only provide the location
information and lack the semantics related to different mobility-based activities per-
formed by a user e.g., transport modes used during a travel, trips made on the way.
Thus, the raw trajectories need further enrichment to reconstruct semantics related to
various activities and actions. This thesis has approached the challenge of reconstruct-
ing semantics from trajectories from four angles.

• The first one was a context-sensitive ontology of activities and actions that can
adapt in different situations (Chapter 4).
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• The second one was a fuzzy logic based knowledge-driven model to handle the
kinematic uncertainties and extracting semantics of activities or actions related
to a user’s mediation of travel (Chapter 5).

• The third one addressed the limitations of a knowledge-driven model in near-real
time by suggesting a hybrid knowledge-driven model bridging a fuzzy reasoning
and a machine learning aspect (Chapter 6).

• The fourth one interpreted raw trajectories in near-real time, overcoming the
limitations of most approaches that are actually doing retrospective analysis of
semantics (Chapter 7).

9.1 overall summary

As described in Chapter 1, the semantics of activity is context-dependent. Since activ-
ity is understood differently in different disciplines (and application domains), there is
a semantic gap in the definition of activity across different domains. While developing
a context-aware service it is essential to understand the semantics of activities at dif-
ferent contexts to provide relevant services in different situations. In order to address
this challenge an overarching ontological framework is proposed in Chapter 4.

In order to interpret the smartphone trajectories, current background intelligence
relies on machine learning based approaches. Although the machine learning based
transport mode detection approaches have proven satisfactory performance in the past
(Zheng et al., 2008; Byon et al., 2009; Reddy et al., 2010; Stenneth et al., 2012; Hem-
minki et al., 2013; Xia et al., 2014), they cannot extract semantics related to a given
mobility-based activity (or action). On the other hand, knowledge-driven approaches
provide transparency and can extract semantics related to a particular activity (or ac-
tion) in varied contexts (Rodríguez-Serrano and Singh, 2012). As understanding the
meaning of an activity (travelling on a particular transport mode) is essential to enable
a context-aware service, this research has primarily investigated the knowledge-driven
approaches for mode detection at different temporal granularities. Existing knowledge-
driven approaches for transport mode detection (Tsui and Shalaby, 2006; Xu et al., 2010;
Biljecki et al., 2012) lack the transparency. To address this challenge, a novel Mamdani-
type fuzzy logic based knowledge-driven model is presented in Chapter 5, which is
an improvement over the existing models presented in the literature.

Although, the knowledge-driven model proposed in Chapter 5 is transparent enough,
but it lacks the capacity of self-adaptation. In order to bridge the trade-off between
self-adaptation and expressiveness Chapter 6 suggested a hybrid knowledge-driven
model.

The state-based bottom-up model presented in Chapter 7 introduces the concept
of segmentation of a trajectory through progressive merging of homogeneous mobil-
ity state. Assuming temporal granularity is a critical aspect in information retrieval,
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the proposed knowledge-driven model interprets a trajectory once the travel is com-
plete and thus requires the longest response time among the three proposed models
(Chapter 5, Chapter 6, Chapter 7). The hybrid knowledge-driven model developed in
Chapter 6 requires shorter response time compared to the offline model proposed in
Chapter 5. On the other hand the model proposed in Chapter 7 is flexible and can
provide information at different temporal granularities (ranging from 5 s to 300 s).

In this research different uncertainties related to a motion trajectory and interpreta-
tion process have also been addressed. In particular, the state based bottom-up model
presented in Chapter 7 has addressed the temporal uncertainties that may exist dur-
ing a trajectory interpretation process. Quantifying temporal uncertainties can serve as
the reliability (or uncertainty) measure(s) in a trajectory interpretation while retrieving
information at different contexts. Considering semantic gaps present in a GPS trajec-
tory due to signal gaps, an investigation is made whether incorporating low sampled
IMU information in a GPS trajectory can improve the prediction accuracy. The results
(Section 7.4.1.2) confirm a trajectory enriched with location information along with the
IMU information even sampled at a low frequency can improve the accuracy.

The primary data set (Section 3.2) used in this research covers four different trans-
port modes. However, while recording the groudtruth any activity performed on the
feet is labelled as walking. For example, being stationary in indoor or outdoor, brisk walking,
slow walking – these are all recorded as walking. Some of the stationary activities take
a longer duration from 30 mins to 2 h, e.g., waiting during transfer, shopping, working at
the office. Thus the total duration of walking is longer than the other modes. But the
data set is spatially well distributed and covers different kinematic uncertainties.

In the beginning of this research a use case was provided (Fig 2) in order to illus-
trate the semantic gap between a raw trajectory and the description of a user’s travel
behaviour. Based on the models developed in this research it is now possible to extract
the portions of the trajectory (Fig 73), where Joe used a train, or a tram or walked on
his feet. It is also possible to understand where (and when) Joe transferred from one
transport mode to another mode. Extracting such mobility-based activity information
on multiple users can generate mobility patterns at an aggregate level. This aggregated
information can be further used for urban transport management and policy making.
Returning to Section 8.2 this research has introduced novel trajectory interpretation ap-
proaches with more transparency and adaptivity. From the evaluations and results it
can be inferred that the research has provided evidence that hybrid models are more
effective and expressive while interpreting raw trajectories and thereby justifies the
primary hypothesis (Section 8.2.5).

9.2 major contributions

The major contributions of this thesis are as follows.
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Figure 73: Raw trajectory is semantically enriched and different transport mode information
along with the trip information are discovered.

• As addressed in the first research question (Section 8.1.2), this research has con-
tributed to the knowledge by introducing an ontological framework for mod-
elling activity at different contexts from motion trajectories. The ontology is ca-
pable of developing a connected knowledge base that can bring different appli-
cation domains on a common ground while modelling an activity (Chapter 4).

• This research has developed a more transparent knowledge-driven model that
is capable of providing alternate predictions with varied certainty factors in
comparison to the previous works that provides limited transparency. Such a
knowledge-driven approach will help in perceiving the characteristic behaviour
of different modal states in different conditions while modelling the kinematic
uncertainties (Section 8.1.3).

• In addition to that, the fuzzy knowledge base can supplement an activity knowl-
edge base, which can be shared across different applications (Chapter 5).

• As pointed out in the third research question (Section 8.1.4), this research has
introduced the concept of near-real time transport mode detection from GPS
trajectories.

• To detect transport modes in near-real time a multilayered neuro-fuzzy based
hybrid knowledge-driven model (MLANFIS) has been developed (Chapter 6)
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that can bridge the trade-off between the expressiveness and adaptivity (Sec-
tion 8.1.5).

• This research identified different uncertainties that may exist in a trajectory in-
terpretation process (Section 8.1.4). The temporal uncertainties are first modelled
in a qualitative way followed by a quantification of such temporal uncertainty to
measure the reliability of a trajectory interpretation result.

• Existing trajectory segmentations are subjective, requires a consistent GPS trajec-
tory (with less signal gaps), and generally works retrospectively, i.e., once the
entire travel is complete. In contrast, in this research a novel state-based bottom-
up approach is proposed, which is more adaptive and flexible and can fetch
information at different temporal granularities (Chapter 7).

9.3 practical implications

Over the last few years there has been a considerable effort put forward to improve
the performance of the context-aware devices (e.g. smartphones) that can assist in
different mobility-based activities (Prekop and Burnett, 2003). A context-aware device
needs to perceive a user’s activity state and his need at a given context. In order
to address this issue Chapter 4 presents an ontological framework that provides a
more structured and flexible framework to model a user’s activity states at different
contexts from motion trajectories. The ontological framework impacts on the context-
aware application design in two ways.

• Reusability: The ontological framework proposed in this research enables dif-
ferent context-aware mobility applications to use the concepts and their rela-
tionships (Chapter 4) with different entailments and data properties (see Ta-
ble 13, 14, 15). This will save time and effort while developing the theoretical
framework for a new user-specific context-aware mobility application.

• User experience: Instead of using multiple applications at different contexts, the
framework allows using a single application that can adapt at different contexts.
Thus the user does not need to be familiarised with different interfaces, rather a
single interface can serve different needs of a user during her travel. This will in
turn improve user experience while interacting with the application.

While reconstructing the semantics related to a user’s mobility behaviour this re-
search impacts on urban planning and transport management in the following ways.

• Understanding the urban dynamics: The models proposed in Chapter 6 and
Chapter 7 can provide mode-specific patronage information in near-real time.
This will help transport planners to identify the most demanding routes, most
demanding modes, and urban dynamics. Based on a just-in-time information
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ad-hoc decisions can be made to better utilize the transport resources. A near-
real time application can also be useful for providing emergency services as and
when necessary.

• Long term transportation planning: The knowledge-driven model proposed in
Chapter 5 generates historical travel behaviour at an aggregate or disaggregate
level. The travel behaviour may include people’s trip making patterns and mode
specific patronage information. These information can be useful for long term
urban policy making to meet travel demands.

• The rise of mobility-as-a-service: In order to improve the users’ travel experi-
ence many countries have already integrated different modes of public transport.
Users can use different applications (web-based or smartphone-based) to plan
their travel and pay from their smart-cards, e.g., Myki card in Melbourne1, Oys-
ter card in London2. However, the current options from an integrated mobility
service offer only public modes of transport. Moving one step further, the emerg-
ing concept of mobility-as-a-service integrates not only public transport modes
(bus, train), but also private modes e.g., tram, car, bike. MaaS provides multiple
travel options given an origin and destination, with a cardless payment system.
A user can choose an integrated travel plan from a monthly subscription or pay-
as-you-go option3. In one hand, MaaS integration improves user’s satisfaction
and resource optimization. On the other hand, this integration opens up new
business opportunities by connecting different stakeholders ranging from public
and private transport providers, telecommunication and IT companies, payment
processors, local and regional transport authorities (Hietanen, 2014).

While MaaS is still in its early stage, the new business model requires insight
about people’s mobility-based activities and their mode preferences. The contri-
butions presented in this research has a potential to unravel people’s transport
choice behaviour from historical trajectories (Chapter 5) and real time informa-
tion delivery (Chapter 7). For example, a smartphone-based MaaS application
can inform a user if the next connecting vehicle is delayed and at the same
time the application can recommend an alternative based on the user’s previ-
ous travel behaviour (and mode choice). Thereby the travel will become more
seamless, user-friendly, and sustainable.

By introducing the aspect of knowledge representation, certainty factors and tem-
poral uncertainty during a trajectory interpretation process, this research is an im-
provement over the existing data specific interpretation models. While proposing the

1 For more information refer to (last accessed: April, 2017)
https://www.ptv.vic.gov.au/tickets/myki

2 https://oyster.tfl.gov.uk/oyster/entry.do
3 https://dupress.deloitte.com/dup-us-en/deloitte-review/issue-20/smart-transportation-technology-

mobility-as-a-service.html
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knowledge-driven mode detection model, the research provides a way to explore tra-
jectory data where the groundtruth information is limited. This research also presents
more adaptive and flexible models to interpret motion trajectories to extract people’s
transport mode information, which can be used as a critical information to enable
MaaS.

9.4 future research directions

Though the results demonstrate that the research objective has been achieved but the
proposed models suffer from a number of limitations (Section 8.4). There are several
areas that need further improvements in future.

• The ontological framework developed in Chapter 4 can be extended to model
composite activities that are occurring concurrently with some degree of overlap.
Currently, the model uses a temporal zooming to distinguish between different
activities. Future research will seek to model the inter-relationship between dif-
ferent activities. Moving away from an individualistic view, addressing activity
system models (Engestrom, 1987) is also required to understand group activity
patterns from motion trajectories of different users (Laube et al., 2005; Duckham,
2013; Miller et al., 2016). The ontological framework currently cannot cope with
the uncertainties that may exist while modelling and detecting an activity. A fu-
ture research should look into integrating the fuzziness that exists in a motion
trajectory to the activity ontology.

While modelling complex mobility-based activities the ontological framework
requires more rigorous activity constraints to improve the reasoning capability.
For example, a person cannot travel by a car and a train at the same time. On
the other hand, it is possible that a person can travel by a car and can talk on a
phone concurrently. In order to model complex activities the ontology presented
in this thesis should incorporate temporal reasoning (Brush et al., 2010; Ligozat,
2013) in future.

• The concepts of process and event are important in spatial science, while explain-
ing any phenomena and its dynamics (Galton, 2006, 2015). In this regard, an
activity and action can resemble to a process and an event respectively. A future re-
search can look into such ontological resemblance to align the aspects of human
interactions in activity theory with the temporal dynamics.

• The knowledge-driven models developed in this research represent the knowl-
edge base that is either defined by an expert or through an exhaustive combinato-
rial search. However, in practice, the rules may not all be relevant. In other words,
the rules may be relevant to different degrees. Future research should investigate
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the sensitivity for the individual rules, and mechanisms that select a portion of
the knowledge base which is relevant to a given situation (or a context).

• The membership functions used in both the fuzzy models developed in Chap-
ter 5 and Chapter 6 are crisp in nature. Future research will look into higher
order fuzzy modelling where the membership function itself is fuzzy in nature
(Mendel et al., 2006; Pedrycz, 2015).

The hybrid model proposed in Chapter 6 currently uses a grid partitioning to
generate its rule base. This is an expensive strategy and thus poses scalability
issues. Future research will address this disadvantage by implementing other
strategies e.g., a subtractive clustering or a fuzzy c-means clustering approach.

• The state-based bottom-up model developed in Chapter 7 can be made more
robust and intelligent by incorporating more information. Currently, the model
primarily relies on GTFS information for consistency checking. But GTFS may
not be available everywhere. This raises the concern how to make the model
more robust in absence of GTFS information. One way could be increasing the
sampling frequency at a cost of higher energy consumption and computational
overhead. Future research should develop a strategy that can balance these is-
sues.

• The research uses a reasonable quality GPS data set sampled at 1 Hz to 2 Hz
to evaluate the models. But in reality, while dealing with a massive trajectory
data the location information may come from different sources with varying
positional uncertainties. This will require more adaptive analysis strategies. Al-
though the research suggests using inertial sensor information in tandem with
the location information can cope with the signal loss, but the quality of the in-
ertial sensor signal is subject to orientation of the phone. Future research should
address how the detection accuracy varies depending on the phone’s orientation
and position.

• The models presented in this research can be used as a background intelligence
for smartphone based travel surveys or any large scale movement data analysis.
The analysis could be transport mode detection at different temporal granulari-
ties, transfer detection, and trip detection. With the growing advanced ICT and
various OGC standards there is an unprecedented amount of movement data
being generated from different sources at different granularities, with varying
quality. Future research can explore how such dynamic, fast paced movement
data with different quality can be used to model the complex dynamic processes
in an urban space.
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9.5 concluding remarks

The introduction of Web 2.0 has generated a volume of movement data over the years
through ubiquitous location sensing technologies and IoT (such as GPS, GSM, Wi-Fi
enabled smartphones, check-ins, smart-cards, geo-tags and geo-tweets). This data can
be used to reconstruct semantically meaningful movement patterns at different spa-
tial and temporal resolutions. In particular, the concept of smartphone travel surveys
is gaining popularity over manual (paper-based or telephone based) surveys due to
its flexibility, ubiquity, and richness in information content. On the other hand, with
the technological evolution, the activity pattern is changing from a physical space to
even a larger and abstract virtual space increasing the complexity in activity patterns
(Shaw and Yu, 2009; Sveda and Madajova, 2012). The accessibility of an object (rele-
vant to an activity) is transforming from something, somewhere, sometime to anything,
anywhere, and anytime (Couclelis, 1996). For example, people can participate in a dis-
tant business meeting or enjoy watching the Niagara Falls sitting at home in front of a
computer without actually travelling to the given locations. And with that, the concept
of “death of distance" (Couclelis, 1996, 2004) is becoming more pronounced over time.
As shown in this thesis an integrated sensor based approach (GPS and IMU) will help
in detecting activities (and actions) in a more effective and accurate manner. Although
this research has primarily used a smartphone-based GPS, accelerometer and a gy-
roscope, given a diverse smartphone manufacturing market (in terms of number of
different sensors available on a phone and their quality), there are issues with choos-
ing the proper sensor combination, orientation of the sensor, sampling frequency and
the scale of analysis in the light of context-aware activity modelling.

This leads to further future research questions:

• How can complex activity patterns be modelled from an ontological perspective?

• What type of trajectory data is required to address different complex activity
patterns that spread across a physical and virtual space?

• How different mobility-based activity state can be detected from a multiple IMU
sources sampled at different frequencies?

• How the detection accuracy may vary with different orientations and positions
of the phone?

• How an advanced phased sampling approach can be implemented that can lever-
age a user’s activity state (stationary/moving) as well as her spatial surround-
ings (indoor/outdoor)?

• How composite activities can be distinguished using IMU and GPS sensors on
board a smartphone in a given temporal period (detecting travelling on a train
while reading news on the smartphone)?
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With the paradigm shift from paper-based travel surveys to smartphone travel sur-
veys, there has been a constant improvement in terms of understanding behavioural
information at a finer granularity with increasing flexibility. But these surveys use a
predefined design, a software and hardware architecture targeted for a particular type
of trajectory data, and are also limited to a specific spatial-temporal region and typi-
cally small numbers of respondents. In the age of big data, there is a significant scope
to fuse different information sources such as GPS, GSM, IMU, smart-card, geo-tweets
to reflect the location and body parts movement information at different granularities.
The concept of fusing data sources will enrich a movement data. This is also useful
when GPS signal is lost in one hand and supplementing an inertial signal with location
information on the other hand. Such an enriched movement data will not only provide
the clues on where and when; but also other contextualized information on how, why,
and what else. This will in turn help to undertake more informed decisions in urban
planning and realize more intelligent contextualized service provisions where mobility
is the primary aspect.
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Part I

A P P E N D I X

This section contains additional information relevant to this thesis.





A
T H E S E T O F F U Z Z Y R U L E S U S E D I N M I M O M A M D A N I F U Z Z Y
L O G I C B A S E D M O D E L

1. If (avgSpeed is low) and (maxSpeed is low) and (avgBusProx is moderate) and
(avgTrainProx is moderate) and (avgTramProx is moderate) then (walk is high)(bus
is low)(train is low)(tram is low)

2. If (avgSpeed is moderate) and (maxSpeed is moderate) and (avgBusProx is prox-
imal) and (avgTrainProx is far) and (avgTramProx is far) then (walk is low)(bus
is high)(train is low)(tram is low)

3. If (avgSpeed is moderate) and (maxSpeed is high) and (avgBusProx is proximal)
and (avgTrainProx is far) and (avgTramProx is far) then (walk is low)(bus is
high)(train is low)(tram is low)

4. If (avgSpeed is low) and (maxSpeed is moderate) and (avgBusProx is far) and
(avgTrainProx is far) and (avgTramProx is proximal) then (walk is low)(bus is
moderate)(train is low)(tram is high)

5. If (avgSpeed is high) and (maxSpeed is moderate) and (avgBusProx is far) and
(avgTrainProx is proximal) and (avgTramProx is far) then (walk is low)(bus is
moderate)(train is high)(tram is moderate)

6. If (avgSpeed is high) and (maxSpeed is high) and (avgBusProx is far) and (avg-
TrainProx is proximal) and (avgTramProx is far) then (walk is low)(bus is low)(train
is high)(tram is low)

7. If (avgSpeed is moderate) and (maxSpeed is moderate) and (avgBusProx is prox-
imal) and (avgTrainProx is far) and (avgTramProx is moderate) then (walk is
low)(bus is high)(train is low)(tram is low)

8. If (avgSpeed is moderate) and (maxSpeed is moderate) and (avgBusProx is mod-
erate) and (avgTrainProx is far) and (avgTramProx is proximal) then (walk is
low)(bus is low)(train is low)(tram is high)

9. If (avgSpeed is moderate) and (maxSpeed is moderate) and (avgBusProx is mod-
erate) and (avgTrainProx is far) and (avgTramProx is moderate) then (walk is
low)(bus is moderate)(train is low)(tram is high)

10. If (avgSpeed is moderate) and (maxSpeed is high) and (avgBusProx is proximal)
and (avgTrainProx is moderate) and (avgTramProx is moderate) then (walk is
low)(bus is high)(train is low)(tram is low)
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11. If (avgSpeed is moderate) and (maxSpeed is high) and (avgBusProx is proximal)
and (avgTrainProx is far) and (avgTramProx is moderate) then (walk is low)(bus
is high)(train is low)(tram is moderate)

12. If (avgSpeed is moderate) and (maxSpeed is high) and (avgBusProx is far) and
(avgTrainProx is proximal) and (avgTramProx is far) then (walk is low)(bus is
low)(train is high)(tram is low)

13. If (avgSpeed is low) and (maxSpeed is moderate) and (avgBusProx is proximal)
and (avgTrainProx is far) and (avgTramProx is far) then (walk is low)(bus is
high)(train is low)(tram is low)

14. If (avgSpeed is high) and (maxSpeed is moderate) and (avgBusProx is far) and
(avgTrainProx is proximal) and (avgTramProx is far) then (walk is low)(bus is
moderate)(train is high)(tram is moderate)

15. If (avgSpeed is high) and (maxSpeed is high) and (avgBusProx is far) and (avg-
TrainProx is proximal) and (avgTramProx is far) then (walk is low)(bus is moder-
ate)(train is high)(tram is moderate)

16. If (avgSpeed is moderate) and (maxSpeed is moderate) and (avgBusProx is mod-
erate) and (avgTrainProx is moderate) and (avgTramProx is moderate) then (walk
is low)(bus is moderate)(train is low)(tram is high)

17. If (avgSpeed is moderate) and (maxSpeed is high) and (avgBusProx is proximal)
and (avgTrainProx is far) and (avgTramProx is far) then (walk is low)(bus is
high)(train is low)(tram is moderate)

18. If (avgSpeed is moderate) and (maxSpeed is high) and (avgBusProx is far) and
(avgTrainProx is proximal) and (avgTramProx is far) then (walk is low)(bus is
low)(train is high)(tram is low)

19. If (avgSpeed is high) and (maxSpeed is high) and (avgBusProx is moderate)
and (avgTrainProx is proximal) and (avgTramProx is moderate) then (walk is
low)(bus is low)(train is high)(tram is low)

20. If (avgSpeed is low) and (maxSpeed is low) and (avgBusProx is far) and (avg-
TrainProx is moderate) and (avgTramProx is moderate) then (walk is high)(bus
is low)(train is low)(tram is low)

21. If (avgSpeed is low) and (maxSpeed is low) and (avgBusProx is far) and (avg-
TrainProx is far) and (avgTramProx is far) then (walk is high)(bus is low)(train is
low)(tram is low)

22. If (avgSpeed is low) and (maxSpeed is low) and (avgBusProx is proximal) and
(avgTrainProx is far) and (avgTramProx is far) then (walk is high)(bus is low)(train
is low)(tram is low)
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23. If (avgSpeed is low) and (maxSpeed is low) and (avgBusProx is proximal) and
(avgTrainProx is far) and (avgTramProx is proximal) then (walk is high)(bus is
low)(train is low)(tram is low)

24. If (avgSpeed is low) and (maxSpeed is low) and (avgBusProx is moderate) and
(avgTrainProx is far) and (avgTramProx is proximal) then (walk is high)(bus is
low)(train is low)(tram is low)

25. If (avgSpeed is high) and (maxSpeed is moderate) and (avgBusProx is moderate)
and (avgTrainProx is proximal) and (avgTramProx is moderate) then (walk is
low)(bus is moderate)(train is high)(tram is moderate)

26. If (avgSpeed is moderate) and (maxSpeed is moderate) and (avgBusProx is far)
and (avgTrainProx is far) and (avgTramProx is far) then (walk is low)(bus is
high)(train is low)(tram is moderate)

27. If (avgSpeed is moderate) and (maxSpeed is high) and (avgBusProx is far) and
(avgTrainProx is far) and (avgTramProx is far) then (walk is low)(bus is high)(train
is low)(tram is low)

28. If (avgSpeed is moderate) and (maxSpeed is high) and (avgBusProx is moderate)
and (avgTrainProx is far) and (avgTramProx is far) then (walk is low)(bus is
high)(train is low)(tram is low)

29. If (avgSpeed is moderate) and (maxSpeed is moderate) and (avgBusProx is mod-
erate) and (avgTrainProx is far) and (avgTramProx is far) then (walk is low)(bus
is high)(train is low)(tram is low)

30. If (avgSpeed is moderate) and (maxSpeed is moderate) and (avgBusProx is far)
and (avgTrainProx is far) and (avgTramProx is moderate) then (walk is low)(bus
is moderate)(train is low)(tram is high)

31. If (avgSpeed is moderate) and (maxSpeed is high) and (avgBusProx is proximal)
and (avgTrainProx is proximal) and (avgTramProx is proximal) then (walk is
low)(bus is moderate)(train is high)(tram is low)

32. If (avgSpeed is high) and (maxSpeed is high) and (avgBusProx is proximal) and
(avgTrainProx is proximal) and (avgTramProx is proximal) then (walk is low)(bus
is moderate)(train is high)(tram is low)

33. If (avgSpeed is high) and (maxSpeed is high) and (avgBusProx is moderate)
and (avgTrainProx is proximal) and (avgTramProx is moderate) then (walk is
low)(bus is low)(train is high)(tram is low)

34. If (avgSpeed is low) and (maxSpeed is low) and (avgBusProx is far) and (avg-
TrainProx is far) and (avgTramProx is far) then (walk is high)(bus is low)(train is
low)(tram is low)
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35. If (avgSpeed is low) and (maxSpeed is low) and (avgBusProx is moderate) and
(avgTrainProx is moderate) and (avgTramProx is proximal) then (walk is high)(bus
is low)(train is low)(tram is moderate)

36. If (avgSpeed is low) and (maxSpeed is low) and (avgBusProx is proximal) and
(avgTrainProx is moderate) and (avgTramProx is moderate) then (walk is high)(bus
is moderate)(train is low)(tram is low)

37. If (avgSpeed is low) and (maxSpeed is low) and (avgBusProx is moderate) and
(avgTrainProx is proximal) and (avgTramProx is moderate) then (walk is high)(bus
is moderate)(train is low)(tram is low)

38. If (avgSpeed is low) and (maxSpeed is low) and (avgBusProx is far) and (avgTrain-
Prox is far) and (avgTramProx is proximal) then (walk is high)(bus is low)(train
is low)(tram is moderate)

39. If (avgSpeed is low) and (maxSpeed is low) and (avgBusProx is far) and (avgTrain-
Prox is proximal) and (avgTramProx is far) then (walk is high)(bus is low)(train
is moderate)(tram is low)

40. If (avgSpeed is low) and (maxSpeed is low) and (avgBusProx is proximal) and
(avgTrainProx is far) and (avgTramProx is far) then (walk is high)(bus is moder-
ate)(train is low)(tram is low)

41. If (avgSpeed is low) and (maxSpeed is low) and (avgBusProx is far) and (avgTrain-
Prox is far) and (avgTramProx is moderate) then (walk is high)(bus is low)(train
is low)(tram is low)

42. If (avgSpeed is low) and (maxSpeed is low) and (avgBusProx is moderate) and
(avgTrainProx is far) and (avgTramProx is moderate) then (walk is high)(bus is
low)(train is low)(tram is low)

43. If (avgSpeed is low) and (maxSpeed is moderate) and (avgBusProx is proximal)
and (avgTrainProx is far) and (avgTramProx is proximal) then (walk is low)(bus
is moderate)(train is low)(tram is high)

44. If (avgSpeed is low) and (maxSpeed is low) and (avgBusProx is far) and (avgTrain-
Prox is moderate) and (avgTramProx is far) then (walk is high)(bus is low)(train
is low)(tram is low)

45. If (avgSpeed is moderate) and (maxSpeed is moderate) and (avgBusProx is prox-
imal) and (avgTrainProx is far) and (avgTramProx is proximal) then (walk is
low)(bus is moderate)(train is low)(tram is high)

46. If (avgSpeed is moderate) and (maxSpeed is moderate) and (avgBusProx is mod-
erate) and (avgTrainProx is moderate) and (avgTramProx is proximal) then (walk
is high)(bus is low)(train is low)(tram is high)
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47. If (avgSpeed is moderate) and (maxSpeed is moderate) and (avgBusProx is far)
and (avgTrainProx is far) and (avgTramProx is proximal) then (walk is high)(bus
is low)(train is low)(tram is high)

48. If (avgSpeed is moderate) and (maxSpeed is moderate) and (avgBusProx is prox-
imal) and (avgTrainProx is far) and (avgTramProx is far) then (walk is low)(bus
is high)(train is low)(tram is low)

49. If (avgSpeed is moderate) and (maxSpeed is moderate) and (avgBusProx is prox-
imal) and (avgTrainProx is moderate) and (avgTramProx is far) then (walk is
low)(bus is high)(train is low)(tram is low)

50. If (avgSpeed is moderate) and (maxSpeed is moderate) and (avgBusProx is prox-
imal) and (avgTrainProx is moderate) and (avgTramProx is moderate) then (walk
is low)(bus is high)(train is low)(tram is low)

51. If (avgSpeed is moderate) and (maxSpeed is high) and (avgBusProx is far) and
(avgTrainProx is proximal) and (avgTramProx is far) then (walk is low)(bus is
low)(train is high)(tram is low)

52. If (avgSpeed is high) and (maxSpeed is high) and (avgBusProx is far) and (avg-
TrainProx is proximal) and (avgTramProx is far) then (walk is low)(bus is low)(train
is high)(tram is low)

53. If (avgSpeed is high) and (maxSpeed is high) and (avgBusProx is moderate)
and (avgTrainProx is proximal) and (avgTramProx is moderate) then (walk is
low)(bus is low)(train is high)(tram is low)

54. If (avgSpeed is high) and (maxSpeed is high) and (avgBusProx is far) and (avg-
TrainProx is moderate) and (avgTramProx is far) then (walk is low)(bus is low)(train
is high)(tram is low)

55. If (avgSpeed is low) and (maxSpeed is low) and (avgBusProx is proximal) and
(avgTrainProx is proximal) and (avgTramProx is proximal) then (walk is high)(bus
is low)(train is low)(tram is low)

56. If (avgSpeed is low) and (maxSpeed is moderate) and (avgBusProx is far) and
(avgTrainProx is far) and (avgTramProx is far) then (walk is high)(bus is low)(train
is low)(tram is low)

57. If (avgSpeed is low) and (maxSpeed is moderate) and (avgBusProx is far) and
(avgTrainProx is far) and (avgTramProx is proximal) then (walk is low)(bus is
low)(train is low)(tram is high)

58. If (avgSpeed is low) and (maxSpeed is moderate) and (avgBusProx is far) and
(avgTrainProx is far) and (avgTramProx is moderate) then (walk is low)(bus is
low)(train is low)(tram is high)
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59. If (avgSpeed is low) and (maxSpeed is moderate) and (avgBusProx is far) and
(avgTrainProx is proximal) and (avgTramProx is proximal) then (walk is low)(bus
is low)(train is moderate)(tram is high)

60. If (avgSpeed is low) and (maxSpeed is high) and (avgBusProx is far) and (avg-
TrainProx is far) and (avgTramProx is proximal) then (walk is low)(bus is low)(train
is low)(tram is high)

61. . If (avgSpeed is moderate) and (maxSpeed is high) and (avgBusProx is far) and
(avgTrainProx is far) and (avgTramProx is proximal) then (walk is low)(bus is
low)(train is low)(tram is high)

62. If (avgSpeed is moderate) and (maxSpeed is moderate) and (avgBusProx is far)
and (avgTrainProx is proximal) and (avgTramProx is proximal) then (walk is
low)(bus is low)(train is moderate)(tram is high)

63. If (avgSpeed is low) and (maxSpeed is moderate) and (avgBusProx is far) and
(avgTrainProx is proximal) and (avgTramProx is proximal) then (walk is low)(bus
is low)(train is moderate)(tram is high)

64. If (avgSpeed is moderate) and (maxSpeed is moderate) and (avgBusProx is mod-
erate) and (avgTrainProx is proximal) and (avgTramProx is proximal) then (walk
is low)(bus is low)(train is moderate)(tram is high)

65. If (avgSpeed is high) and (maxSpeed is high) and (avgBusProx is proximal)
and (avgTrainProx is far) and (avgTramProx is far) then (walk is low)(bus is
high)(train is low)(tram is low)

66. If (avgSpeed is high) and (maxSpeed is high) and (avgBusProx is moderate)
and (avgTrainProx is far) and (avgTramProx is far) then (walk is low)(bus is
high)(train is low)(tram is low)

67. If (avgSpeed is moderate) and (maxSpeed is moderate) and (avgBusProx is mod-
erate) and (avgTrainProx is proximal) and (avgTramProx is proximal) then (walk
is low)(bus is low)(train is moderate)(tram is high)

68. If (avgSpeed is moderate) and (maxSpeed is high) and (avgBusProx is moderate)
and (avgTrainProx is far) and (avgTramProx is far) then (walk is low)(bus is
high)(train is low)(tram is low)

69. If (avgSpeed is moderate) and (maxSpeed is high) and (avgBusProx is proximal)
and (avgTrainProx is far) and (avgTramProx is far) then (walk is low)(bus is
high)(train is low)(tram is low)

70. If (avgSpeed is low) and (maxSpeed is low) and (avgBusProx is far) and (avg-
TrainProx is proximal) and (avgTramProx is proximal) then (walk is high)(bus is
low)(train is low)(tram is moderate)
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71. If (avgSpeed is low) and (maxSpeed is low) and (avgBusProx is far) and (avgTrain-
Prox is proximal) and (avgTramProx is far) then (walk is high)(bus is low)(train
is low)(tram is low)

72. If (avgSpeed is low) and (maxSpeed is low) and (avgBusProx is moderate) and
(avgTrainProx is moderate) and (avgTramProx is moderate) then (walk is high)(bus
is low)(train is low)(tram is low)

73. If (avgSpeed is low) and (maxSpeed is low) and (avgBusProx is far) and (avg-
TrainProx is far) and (avgTramProx is far) then (walk is high)(bus is low)(train is
low)(tram is low)

74. If (avgSpeed is low) and (maxSpeed is low) and (avgBusProx is moderate) and
(avgTrainProx is far) and (avgTramProx is far) then (walk is high)(bus is low)(train
is low)(tram is low)

75. If (avgSpeed is high) and (maxSpeed is high) and (avgBusProx is far) and (avg-
TrainProx is far) and (avgTramProx is far) then (walk is low)(bus is moder-
ate)(train is high)(tram is low)

76. If (avgSpeed is moderate) and (maxSpeed is high) and (avgBusProx is far) and
(avgTrainProx is far) and (avgTramProx is far) then (walk is low)(bus is moder-
ate)(train is high)(tram is low)
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