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The measurement of soil pH using a field portable test kit represents a fast and inexpensive method to assess pH. Field based pH
methods have been used extensively for agricultural advisory services and soil survey and now for citizen soil science projects. In the
absence of laboratory measurements, there is a practical need to model the laboratory pH as a function of the field pH to increase
the density of data for soil research studies and Digital Soil Mapping. The accuracy and uncertainty in pH field measurements were
investigated for soil samples from regional Victoria in Australia using both linear and sigmoidal models. For samples in water and
CaCl, at 1:5 dilutions, sigmoidal models provided improved accuracy over the full range of field pH values in comparison to linear
models (i.e., pH < 5 or pH > 9). The uncertainty in the field results was quantified by the 95% confidence interval (CI) and 95%
prediction interval (PI) for the models, with 95% CI < 0.25 pH units and 95% PI = +1.3 pH units, respectively. It was found that
the Pearson criterion for robust regression analysis can be considered as an alternative to the orthodox least-squares modelling

approach because it is more effective in addressing outliers in legacy data.

1. Introduction

The assessment of soil pH provides information for diagnosis
of soil condition and contributes to routine field surveys of
soil properties [1]. The pH is probably the most commonly
measured soil property [2, 3], yielding information on “plant
nutrient availability, aluminium and heavy metal availability,
organic matter decomposition, liming requirements, and
microbial activity.” The measurement of soil pH can vary
markedly depending upon sample collection and treatment
procedures including soil-to-solution ratio and addition of
indicators or reagents.

The pH of soil samples taken in the field is often measured
in situ using a colorimetric indicator method that is based

on subjective assessment between a standard pH colour
chart and the colour of the soil in response to indicator
reagents [4] or flocculating agents [1]. Field pH measure-
ments are cost-effective, accessible and convenient, and safe,
require minimal training, and are almost instantly available.
Although colour matching is a fast and inexpensive method
for field pH assessment (pHp), there is uncertainty in the
prediction accuracy and precision, or error, in the results.
Laboratory pH is routinely measured in a 1:5 soil-to-water
suspension (pHyy) with possible addition of a salt solution
(typically CaCl, or KCI) to account for seasonal variations
or management interventions [5]. The lab pH measurement
is used as the reference, given that its relative accuracy and
precision is typically +0.1 units [6].
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In the absence of laboratory measurements there has been
high dependence on field pH measurements for screening
and soil classification purposes. The rapid uptake of Digital
Soil Mapping (DSM) [7, 8] combined with citizen science
has the potential to increase the geographic spread and
density of observations to improve mapping and predictions
of soil properties [9]. There are opportunities to exploit the
thousands of legacy field pH measurements in government
databases in combination with contemporary measurements
from citizens to better understand the distribution and
changes in soil acidity. Methods and mathematical models
will be required to transform these field measurements into
laboratory equivalents for soil mapping and science purposes.

The relationship between laboratory and field pH using
a colorimetric indicator method has been the subject of
studies in the quest for reliable field methods. Wherry [10] led
initial discussions on the implementation of field assessment
methods to measure pH. Numerous commercially available
pH kits were developed over the following two decades but
questions remained as to the reliability and relative merits
of using these kits in preference to laboratory analysis [11].
Some kits achieved comparable accuracies but the simple
and rapid operation of a kit was found to be important also.
In Australia, Raupach [12] pioneered an indicator method
that satisfied these requirements of accuracy and simplicity.
Further refinement and testing by Raupach and Tucker [4]
established that a single determination of pH using the indi-
cator method resulted in a standard deviation of 0.42 units
from the laboratory reference method. Farr [1] also found that
the standard deviation between a field colorimetric method
and laboratory method was of a similar magnitude.

Assessment of pH with colour cards from soil test kits can
be affected by a range of errors associated with manual appli-
cation of the test kit in operational conditions. Steinhardt and
Mengel [13] identified that there were potential sources of
uncertainty leading to a variation between field and labora-
tory methods including poorly adjusted indicators, seasonal
variation of pH, sample variation, and overlap in pH intervals
for the chemicals used in the indicator solution. Baker et al.
[14] provide an example where, with one operator performing
all field pH assessments, there can be strong agreement with
laboratory pH measurements (r* = 0.91, n = 288).

Uncertainty in pHy, interpretation is introduced by such
factors as user experience with colorimetric indicator kits,
visual deficiencies, daylight spectral content, and variability
in test kits. Recognition of the possible sources of error in
the assessment of field pH will help to reduce the dispersion
of results for pHy through the implementation of concise
and practical quality assurance procedures (see discussions
on risk and uncertainty [15-17]). This will ultimately benefit
the soil science community including those in DSM that can
make use of this “soft” data resource [18].

There are numerous examples where laboratory pH meth-
ods have been harmonised using datasets of various sizes
for different regions (see Minasny et al. [3]). However, we
are unaware of any attempts to harmonise field pH measure-
ments with laboratory methods using extensive datasets that
potentially contain a vast range of error sources. This has
been identified as a challenge in the integration of citizen
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supplied measurements with those that are more precise
[9].

The objectives of this investigation were to (a) establish
a functional relationship between field pH and lab pH with
an extensive dataset from regional Victoria, (b) quantify
accuracy and uncertainty of the field pH measurements, and
(¢) identify possible sources of error in field pH data includ-
ing visual interpretation of the colour card measurement.
In establishing a functional relationship between field and
laboratory pH measurements, an experiment was designed
to compare (i) linear and sigmoidal models, (ii) least-squares
and Pearson performance indices, and (iii) quantised data
and randomised data.

2. Materials and Methods

2.1. Study Area and Soil Data. The dataset used for analysis
is derived from the Victorian Soil Information System (VSIS)
which contains field and laboratory pH observations from
soil profiles collected across regional Victoria.

In practice, n = 2436 soil samples were used to
establish a mathematical relationship for field pH with the
corresponding laboratory pH measurements (Figure 1). Lab-
oratory measurements were undertaken with a 1:5 soil-to-
water suspension (Method 4Al) and a 0.01 M CacCl, extract
(pH; Method 4B1) [6]. Field pH measurements were taken
according to Method 4G, the field determination method [4]
as described in Rayment and Lyons [6].

2.2. Field Measurements of pH. In the field determination
technique, a colour card with predefined pH levels is used
to make a subjective assessment against a paste composed
of indicator solution (phenol red, bromocresol purple, and
bromocresol green) mixed with soil and dusted with barium
sulphate powder. The reagents used in the field pH tech-
nique have remained the same since method development
including the quantity of reagents in the indicator solution.
The colour chart was developed with the combination of
reagents in mind to “find the best range of colours” [4].
The current version of the colour chart features 16 colour
intervals to represent soil pH values between pH =2 and pH =
10, as shown in Figure 2 (Inoculo Laboratories, Australia,
2014). The variability in pH measurements is shown in
Figure 3.

2.3. Laboratory Measurements of pH. Measurements for pH,,
and pH since 2010 are acquired automatically using a
Radiometer Analytical SAS titration system comprising a
PHM92 pH meter, a CDM240 conductivity meter, and a
SAC950 sample changer. These instruments are calibrated
according to the methods described by Rayment and Lyons
[6]. A similar automated system from the same company was
used between 1992 and 2010 according to the methodology
described by Rayment and Higginson [19]. The pH,, and pH,
results were determined manually using earlier models of the
same manufacturer’s equipment prior to 1992. Instruments
were calibrated according to the manufacturer’s specifica-
tions. The error in laboratory pH measurements is reported
as 0.1 pH units [6].
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FIGURE 1: Locations for soil pH measurements in Victoria using a soil pH indicator test kit.
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FIGURE 2: Example soil pH colour indicator card (Inoculo Labora-
tories, Australia, 2014).

2.4. Data Processing. The field pH measurements and corre-
sponding laboratory pH measurements were used as inputs
to evaluate a range of proposed mathematical models used
to predict lab pH from field pH. Model fitting was carried
out using SYSTAT Software TableCurve 2D V5.01. More than
3000 different mathematical models were fitted using an
automated process covering a variety of functional types: for
example, polynomial types, transition functions, exponen-
tial types, linear types, and mixed models. Indications of
goodness of fit were provided by various statistical criteria,
including coeflicient of determination (%), the ANOVA F-
statistic, and sum-of-squares errors (SSE). The best fits based
on the foregoing criteria (and presented in this paper) were
associated with linear and sigmoidal functions, depending on
the input range selected in field pH measurements.
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FIGURE 3: Box plot shows variability in field pH measurements.

2.5. Data Randomisation. A field measurement of soil pH is
determined by treating the sample with an indicator solution
with barium sulphate and then comparing the resultant
colour with colours from a card with pH values quantised
according to a colour step wedge (Figure 2). The available
discrete colour palette (N = 16) is associated with a series
of increasing pH values, with 0.50 increment; that is, x =
2,2.5,3,3.5,...,10. The possible error in the step wedge
reading is therefore 0.50 pH units due to misclassification to
an adjacent colour.

The transformation used for randomisation, in order to
compare results with the fixed discrete palette, is as follows.



For each value of the field pH, x, at a specified fixed increment

along the x-axis, replace x with a random value x,,,4 over the
interval [X ;> Xax] according to
Xtand = ¥min T R [xmax - xmin] > (1)

where R is a real random number which is then scaled to
occupy the defined interval [x,;,, Xax]- A set of contiguous
intervals of this width covers the full domain.

Therefore, in the step wedge, each value of x4 is

Xrand = f (xmin’ X max> R) >

where x_;, = x — 0.25, x,,, = x+0.25, R=rand[0,1].

)

By a process of inductive reasoning in mathematics, this
procedure can be generalised for an arbitrary dataset. For
each value x in the original dataset, replace it with x4 in
the new dataset with the following transformation:

xrand:(x_%)w[(m%)—(x—%)], 3)

where x, x,,,4 € R,

ran

where r is the random variable (in this case, the uniform
probability distribution) and w is the width of the class
interval about the quantised variable x in the step wedge.
This operation produces a random scatter plot suitable for
regression analysis. The operation is consistent with the
theory of quantisation error in digital-to-analog conversion
[20] and the uniform prior distribution in Bayesian theory
[21]. It reflects the uncertainty in the input of x due to the
quantised nature of the colour card.

A metric of uncertainty for random data in the interval
(X1 Xoma] 1S the variance, o2, and for a uniform distribu-
tion, S, is given by

S =U (%14pa:0”)» (4)

where

21 2
o = E (xmax - xmin) : ©)
The uncertainty in the result due to quantisation of data
is associated with a fixed increment step wedge and is
equivalent to the error in measurement from an analog-to-
digital (A/D) converter.

2.6. Model for Functional Relationship. In the case of a perfect
match between field pH and lab pH, the 1:1 plot of the
functional relationship would follow a straight line (y o, ;1 =
a + bypaqpn with a = 0and b = 1) indicating one-to-
one correspondence and zero average bias. This approach is
associated with a “calibration” exercise. It is prudent, however,
to also consider a functional relationship that is nonlinear.
This is because the field pH and lab pH are measured under
different physical and methodological conditions and are
likely to show some divergence at the extremes of the pH
range. Data processing and experimental results described
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later suggest the two model types that fitted the data best
(linear and sigmoidal) were range dependent.

The models were tested on the experimental data and
compared under different modelling conditions. First, the
linear model with two parameters (a and b):

y' =a+ bx. (6)

The second model was a generic S-shaped curve, the so-called
sigmoidal model with 4 parameters 4, b, ¢, and d:

Mgy b )
(1+exp(-((x—c)/d)))

(7)

Given the pH domain (pH; = 2-10), it may be that
a piecewise approximation of functions provides the best
relationship over the full range; that is,

y', if pHp > a or pHp < f3,
Y= (8)
y", if pHp <« or pHp > f5,

where « and  are pH, values bounding the linear approxima-
tion, near the toe and shoulder of the curve. Concatenation
of regression-based models, however, introduces problems of
continuity at the interface and a single model covering the full
domain is more desirable.

Two error minimisation schemes were tested, with the
first being the standard least-squares regression analysis, J;,
where

Minimise §; = Z (yi - )71')2‘ )

i=1

There is a problem with least-squares fitting based on min-
imisation of the sum-of-squares residuals. In the presence of
significant outliers, the square of the residuals may shift the
fitted curve away from the main data in some subregions. An
ad hoc approach often used is to exclude data beyond three
standard deviations of the mean, but such deletion changes
the sample set used by a “cookie cutter” approach and was
not considered.

A more robust approach is the Pearson index, §,, for
curve fitting. This index is much less sensitive to outliers than
the least-squares criterion and is given by

n
Minimise §, = Zln <\/1 +|yi - )7i|2>. 10)
i=1

Outliers in this case have much less impact on the fitted curve
due to the logarithmic transformation, which compresses
the difference between measured and predicted values. The
operation is effective for large differences that are due to
isolated outliers. The Pearson index is robust compared with
least-squares fitting and is appropriate for the case where
unpredictable random errors may appear in the original
dataset. This situation can occur in the case of field pH
measurements where quality control (QC) is not observed,
in contrast to laboratory pH measurements.
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Finally, a corollary note on uncertainty in the linear
model: the well-known expression for error propagation in
a multivariate predictive model, y = f(x;), is given by
differential error analysis, often referred to as the chain rule
or delta rule [22]:

*0)-3 [%"“)]a (). mn

i

In the case of a simple univariate linear model with unity
slope and zero average bias, the last expression can be
simplified to the following (for (6)):

o’ (y) = o* (x). 12)

That is, the error or uncertainty in the x value is transmitted
directly to the output value y without expansion or compres-
sion. A linear model represents an ideal “calibration” plot
between field pH measurements and lab pH measurements.
A linear approximation, however, may not necessarily be
appropriate at very low or very high pH values due to the
physics of the measurement apparatus and soil properties.

2.7. Goodness of Fit. The performance of all models was
evaluated by various criteria to confirm goodness of fit to
the data. This included coefficient of determination (r?)
for explained variation by the model, sum-of-squares errors
(SSE), also known as fit standard error (FitStdErr), and the F-
statistic for significance of the regression from ANOVA. For
the linear model, prediction accuracy and dispersion (uncer-
tainty) were both important, as well as bias (i.e., proximity to
optimum values: a = 0 and b = 1). Also computed were the
uncertainty intervals, that is, the confidence interval (95% CI)
and prediction interval (95% PI). The CI and PI are computed
as follows.

The CI for the average value of y from the model, denoted
by ¥, is specified for a given x*, with s for standard deviation
of residuals, and, using the ¢-distribution, is given by [23]

1 (%" - 3_6)2

T S 13
n (n-1)s2’ )

)7 = itn—ZS

Also, the PI for a single future value of y from the model,
denoted by ¥, specified for a given x*, is broader by a factor
of unity in the square root sign:

M. (14)

:‘*

y =+t

The CI accounts for the uncertainty in estimation of the mean
value y whilst the PI covers fluctuations and is therefore wider
in span.

3. Results

3.1. Field pH versus Lab pH in Water (pHj versus pH,,).
A factorial experiment (2 x 2 x 2) was implemented for
modelling the relationship between field pH and lab pH

TABLE I: Nested factorial design for linear model: field pH versus lab
pH in 1:5 water (pHy, versus pH,,).

Model Linear

Data type Original data Randomised
Performance  Least Pearson Least Pearson
index squares criterion squares criterion
Figure Figure 4(a) Figure 4(b) Figure 5(a) Figure 5(b)

TABLE 2: Nested factorial design for sigmoidal model: field pH
versus lab pH in 1: 5 water (pHj versus pH,,).

Model: Sigmoidal

Data type Original data Randomised
Performance  Least Pearson Least Pearson
index squares criterion squares criterion
Figure Figure 6(a) Figure 6(b) Figure 7(a) Figure 7(b)

using (a) the linear and sigmoidal models, (b) least-squares
and Pearson performance indices, and (c) fixed and data
randomisation regimes, as shown in Tables 1 and 2. The
results are illustrated in Figures 4(a)-7(b) with the 95% CI
and 95% PI presented and in greater detail in the following
sections.

The dataset for field pH is plotted against laboratory
measurements in Figure 4(a), where field pH appears in
increments of 0.5, as vertical arrays of data at fixed horizontal
increments, which is referred to as quantisation in the field
pH measurements. This vertical linear structure in the field
data, although used in the past by others [12], may have
introduced problems with respect to assumptions underlying
model fitting by statistical methods (regression), which is
normally applied to random scatter plots. For the purpose of
experimental comparison, random values were generated to
replace discrete vertical columns of data points, as depicted
in Figure 5(a).

3.1.1. Linear Model: Original Data for pHy versus pH,, A
plot of lab pH versus field pH for the experimental dataset
is presented in Figure 4(a) with the linear model fitted by
least-squares. The corresponding linear model fitted with
the Pearson criterion rather than least-squares is shown in
Figure 4(b). These model parameters (Table 3) show that 77%
percent of the variation is explained by linear regression in
both cases but the result for the Pearson fit to the data is
slightly less significant. The Pearson criterion is less sensitive
to outliers and is more robust but conservative, whereas
the least-squares criterion may have been affected by some
outliers. Both models are highly significant and acceptable,
according to the F-statistic, with the Pearson model having
an advantage of following the 1:1 line more closely in a
“calibration” sense.

3.1.2. Linear Model: Randomised Data for pHy versus pH,,.
In the case of the randomised data, in Figure 5(a) the linear



2 = 0.77411575, DF adj r* = 0.77392293
FitStdErr = 0.64329678, Fstat = 8032.9961
a = 0.35064395
b = 0.93301101
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Lab pH
~N
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(a) Linear model (original data) for field pHy versus pHy, with least-
squares minimisation and 95% CI (narrow band) and 95% PI (broad

band). Note the degree of variation possible at different pH levels (cf.
Figure 3, Steinhardt and Mengel [13])
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? = 0.77237316, DF adj r* = 0.77217885
FitStdErr = 0.64577338, Fstat = 7953.5552
a = 0.098508249
b = 0.96494636
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Lab pH
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(b) Linear model (original data) for field pHy versus pHyy with Pearson
minimisation and 95% CI (narrow band) and 95% PI (broad band)

FIGURE 4
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(a) Linear model (randomised data) for field pHp. versus pHy, with least-
squares minimisation and 95% CI (narrow band) and 95% PI (broad band)

(b) Linear model (randomised data) for field pHy versus pHy, with
Pearson minimisation and 95% CI (narrow band) and 95% PI (broad
band)

FIGURE 5

model was fitted by least-squares estimation, and the corre-
sponding linear model fitted with the Pearson criterion rather
than least-squares is shown in Figure 5(b). The difference
between ordered pairs of quantised and randomised data for
field pH in Figures 4(a) and 5(a) was tested for significance
by using the parametric paired t-test for observations. With
null hypothesis Hy: p; — 4, = pp, a two-sided test produced

no significant difference for yup, (p < 0.01). This means that
randomisation did not introduce any significant difference or
bias to the data apart from less significance in the model fitted
but slightly wider uncertainty bands, as expected.

In the case of least-squares fitting in Figure 5(a), note that
the intercept or average bias of 0.414 is positive (Table 3),
which is nearly 0.50, that is, the step increment in the colour
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r* =0.7905303, DF adj r* = 0.79017239
FitStdErr = 0.6197469, Fstat = 2946.2049
a = 47368967, b = 4.6391273
¢ = 7.1427633, d = 0.94804557

11

11
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Lab pH

Field pH

(a) Sigmoid model (original data) for field pHy versus pHy, with least-
squares minimisation and 95% CI (narrow band) and 95% PI (broad band)

* = 0.78818084, DF adj r* = 0.78781891
FitStdErr = 0.62321282, Fstat = 2904.8671

a = 4.7500275, b = 4.7350986

1 ¢ =7.2331405,d = 0.9187158
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(b) Sigmoid model (original data) for field pHp, versus pHyy with Pearson
minimisation and 95% CI (narrow band) and 95% PI (broad band)

FIGURE 6
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FitStdErr = 0.63347401, Fstat = 2786.4355 FitStdErr = 0.6377568, Fstat = 2738.6874
a = 4.7602493, b = 4.6554227 a = 4.8056113, b = 4.6858961
11 ¢ =7.1845441, d = 0.96248405 11 11 ¢ =7.2770202,d = 0.90491715 1
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(a) Sigmoid model (randomised data) for field pHy versus pHy, with

least-squares minimisation and 95% CI (narrow band) and 95% PI (broad
band)

Lab pH
Lab pH

3 5 7 9 11
Field pH
(b) Sigmoid model (randomised data) for field pHy. versus pHy, with

Pearson minimisation and 95% CI (narrow band) and 95% PI (broad
band)

FIGURE 7

card. Note also that the slope is 0.924, which is nearly unity.
This result captures the uncertainty in the input value of field
pH and also provides a linear relationship with lab pH.

3.1.3. Sigmoidal Model: Original Data for pHy versus pH,,.
The four-parameter sigmoidal model fitted to the original
data is shown in Figure 6(a) and the corresponding sigmoidal
model fitted with the Pearson criterion rather than least-
squares is shown in Figure 6(b). That is, 79% percent of the
variation is explained by sigmoidal regression in both cases

but the result for the Pearson fit to the data is slightly less
significant (Table 4). Whilst the global fit for the sigmoidal
model is slightly improved with respect to explained variation
(%), the significance of the fit (F-value) is much less, despite
having more degrees of freedom with respect to the number
of parameters. The sigmoidal model is a better fit in the
extremes; that is, field pH < 5 and field pH > 9.5. This is clearly
evident by visual inspection of Figure 4(a) versus Figure 6(a)
at pH; = 4 which shows that nearly all scatter points lie
above the mean prediction in the linear case, whereas, in the



TABLE 3: Model parameters (rounded to three significant figures)
for the linear model of field pH against lab pH using both the least
squares and Pearson index for the quantised and randomised data.

Quantised Randomised

Model fit Least Pearson Least Pearson

squares index squares index
r 0.774 0.772 0.764 0.763
Fiops 8033 7954 7608 7543
p <0.00001 <0.00001 <0.00001 <0.00001
Fit s.e. 0.643 0.646 0.657 0.659
a 0.351 0.099 0.414 0.171
b 0.933 0.965 0.924 0.955

TABLE 4: Model parameters for the sigmoidal model of field pH
against lab pH with least squares and Pearson index fit for the
quantised and randomised data.

Quantised Randomised

Model fit Least Pearson Least Pearson

squares index squares index
r 0.791 0.788 0.781 0.778
Fya5 2946 2905 2786 2739
p <0.00001 <0.00001 <0.00001 <0.00001
Fit s.e. 0.620 0.623 0.635 0.638
a 4.737 4.750 4.760 4.806
b 4.639 4.735 4.655 4.686
c 7143 7.233 7185 7277
d 0.948 0.919 0.962 0.905

sigmoidal case, the mean prediction nearly bisects the scatter
data. The toe of the curve is fairly constant for lab pH < 5.

3.1.4. Sigmoidal Model: Randomised Data for pH, versus pH .
The four-parameter sigmoidal model was also fitted to the
original data, as shown in Figure 7(a). The corresponding
sigmoidal model fitted with the Pearson criterion is shown in
Figure 7(b). Both models using sigmoidal regression explain
around 78% percent of the variation but the result for the
Pearson fit to the data is slightly less significant (Table 4).
Overall results are similar but slightly worse than the linear
models for the quantised data. This is expected, due to accom-
modation for the uncertainty in the step wedge increments in
the colour card.

3.2. Field pH versus lab pH in CaCl, (pHy versus pH_).
A plot of pHy versus pH, for the quantised data is given
in Figure 8(a) with a linear model fitted by least-squares
estimation, where r* = 0.751, F 5435 = 4441 (p < 0.00001),
and Fit s.e. = 0.689. The least-squares intercept is a = 0.890
and slope is b = 0.987.

A plot of pHy, versus pH, for the quantised data with the
sigmoidal model fitted by least-squares estimation is given in

Applied and Environmental Soil Science

Figure 8(b), where r* = 0.766, F| 5,35 = 1607.3 (p < 0.00001),
and Fit s.e. = 0.668. The least-squares parameters for the
sigmoidal model are a = 3.952, b = 4.711, c = 7.233, and d =
0.9030. In Figure 8(c), the quantised data is plotted with the
Pearson criterion, where r* = 0.755, Fy 435 = 15101 (p <
0.00001), and Fit s.e. = 0.684. The least-squares parameters
for the Pearson sigmoidal model are a = 4.050, b = 4.752, ¢ =
7.413, and d = 0.8044.

4, Discussion

4.1. Comparison between Field pH versus Lab pH in Water
(pHy, versus pH,,,). The original data with the linear model
and least-squares fitting produced a good fit with average
bias of a = 0.35 as can be seen in Figure 4(a). The fit was
not as good below pHy; = 5 and above pHy = 9, where a
number of points fell outside the 95% CI, but mostly within
the 95% PI. Replacing the least-squares criterion with the
Pearson criterion for robust fitting, in order to minimise the
effect of outliers or spurious results, was more effective, with
the coefficients producing an excellent linear relationship
(average bias of a = 0.10 and slope b = 0.96), as can be seen in
Figure 4(b). Both the 95% CI and 95% PI were only slightly
broader, despite less weighting given to outliers. This model,
using the Pearson criterion, was perhaps the most useful
linear relationship because of the fit with the 1:1 line, with
nearly zero bias and unity slope. As the logarithmic transfor-
mation compresses the range that limits the weighting given
to outliers, this has effectively reduced the impact of outliers
(with potential high error due to interpretation error in the
field). In contrast, the least-squares approach amplifies the
effect of outliers appearing in the sum-of-squares difference
expression comparing predictions and measurements. The
uncertainty interval in the field pH was about +1.3 units with
reference to lab pH @ pHy = 7 for the 95% PI, with this error
band being similar across the full domain.

When the quantised data were randomised, which was
equivalent to an injection of uniform random noise to
account for the uncertainty due to step width on the colour
card, the model fit was still very good but the average
bias had increased to a = 0.41, as evident in Figure 5(a).
The uncertainty intervals were similar in width. This model
with randomised quantised predictions arguably reflected
the uncertainty due to the colour matching best because the
average bias was 0.41, which is nearly the width of the step
wedge increment of 0.5 pHp units. This assumes, however,
that the colour card was the main source of uncertainty, which
has not been confirmed. Finally, the uncertainty interval in
the field pH was about +1.3 units with reference to lab pH at
pHy = 7, with this error band being similar across the full
domain.

A combination of randomised data and Pearson criterion
produced the result depicted in Figure 5(b), which was a
pragmatic real-world result for the linear model. The average
bias was only 0.17 and slope 0.96. Overall, the regression
statistics were very significant for all four linear models,
which could all be used to represent the relationship between
field pH and lab pH, with the main difference being the values
of the model coefficients for bias and slope.
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% = 0.75093937, DF adj * = 0.75060097
FitStdErr = 0.68939322, Fstat = 4441.2226
a = —0.89025065

10 b :‘0.98680‘001

Lab pH (CaCl,)
Lab pH (CaCl,)

4 6 8 10
Field pH

(a) Linear model (original data) for field pHy versus pH¢ with least-
squares minimisation and 95% CI (narrow band) and 95% PI (broad band)

* = 0.76624732, DF adj > = 0.76561126
FitStdErr = 0.66832514, Fstat = 1607.3254
a =3.9521586,b = 47107352
¢ = 7.2326353,d = 0.90294834
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(b) Sigmoidal model (original data) for field pHy. versus pH with least-
squares minimisation and 95% CI (narrow band) and 95% PI (broad band)

r* = 0.75488875, DF adj > = 0.75422178
FitStdErr = 0.68437026, Fstat = 1510.1188
a = 4.0504492, b = 4.7520732

10

pH (CaCl,)

c =7.4124867,d = 0.80438693

pH (CaCl,)

8 10

pH Field

(c) Sigmoidal model (original data) for field pHp. versus pH with Pearson
minimisation and 95% CI (narrow band) and 95% PI (broad band)

FIGURE 8

The sigmoidal model was also fitted under the specified
conditions, that is, with (a) original data with least-squares,
(b) original data with Pearson minimisation, (c) randomised
data with least-squares, and (d) randomised data with Pear-
son minimisation. Adding white noise by randomisation to
account for step wedge uncertainty produced visible but small
broadening in the uncertainty intervals on the plots. The
most significant result was that the Pearson criterion and
randomisation did not lead to appreciable increases in the
95% CI and 95% PI.

Although the linear model was sufficient for most of the
pH range and is suitable for general use, the sigmoidal model
produced a better fit to the data than the linear model below
pHy = 5 and above pH; = 9, which is clearly visible on
all plots for the 95% PI (where the mean value lies at the

centre of the scatter data in contrast to the linear model).
This is consistent with models derived by Henderson and Bui
[24] and Minasny et al. [3] in the prediction of pH where a
nonlinear model (sigmoidal in our example) performs better
than a linear model for the highly buffered soil at extremely
low and high pH values. The results provided by Figure 6(a)
for the original data produced the best overall relationship
between the field pH and lab pH. The result for Figure 6(b)
using the Pearson index indicates no additional advantage
from using this approach.

4.2. Comparison between Field pH and Lab pH in CaCl, (pH
versus pH). Modelling field pH against lab pH in CaCl,
solution using the original data was completed first with the
linear model. Although the linear model produced statistical
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significance in the regression analysis and provided a useful
model (#* = 0.75), it revealed an average bias of —0.89 and
slope of 0.99 with less accurate curve fitting in the toe and
shoulder of the plot. This result is similar to Slattery et al. [2],
where a difference of 0.84 was determined. In contrast, the
sigmoidal plot produced an improved fit to the data below
pHy = 5 and above pHp = 9, as evident in Figure 8(b),
where r* = 0.77. This represents an improvement over the
linear approximation. Application of the Pearson criterion as
illustrated in Figure 8(c) resulted in slight broadening of the
uncertainty interval with this error band being also similar
across the full range, that is, about +1.3 pH,, units for the
95% PI with reference to lab pH @ pHy, = 7 in the sigmoidal
plot, and similar across the full range. Randomisation was not
applied to the sigmoidal plot as it was found from the previous
results that a marginal increase in the uncertainty intervals
(95% CI and 95% PI) added no significant advantage to the
models with quantised field pH observations.

Models fitted for samples in water (pH,,) were superior
on statistical metrics to models fitted in CaCl, (pH), for
both standard least-squares and Pearson error minimisa-
tion approaches (cf. Figure 4(a) versus Figure 8(a) and also
Figure 6(a) versus Figure 8(b)).

4.3. Sources of Error in Field pH Determination. Using soil
pH test kits introduces a number of factors that increase
uncertainty but are not greatly appreciated by users. There are
four primary factors in field pH testing which relate to human
vision and the interpretation of the colour cards in the test kits
including

(i) colour vision deficiencies;
(ii) changes in daylight spectral content;
(iii) atmosphere light scattering;

(iv) variability in pH test kits.

Detailed discussion on these error sources can be found in
the literature (see, e.g., DeMarco et al. [25], K. K. Benke and
K. E. Benke [26], and Self [27]).

It is recommended that more attention be given in future
to

(a) quality control of test kits to monitor manufacturing
variability;

(b) initial eye testing for new operators of test kits to
check for colour vision deficiencies;

(c) field application of test kits to reflect time-of-day
effects on colour rendition, for example, noon versus

dusk;

(d) warnings of possible colour misinterpretation due to
wearing sunglasses, or indoor use of test Kkits.

4.3.1. Seasonal Variability in pH Effects. Change in soil pH
during a year can be in the order of 0.5 pH units. This
temporal trend can be cyclical or dominated by periods of
extreme seasonal conditions such as high rainfall and tem-
perature differences that impact the soil water content [28].
Whilst temporal changes have been observed in laboratory
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pH measurements due to these factors, it is unclear if changes
will likewise occur in field pH measurement. Samples for field
pH assessment should be in a field moist state; however, this is
sometimes impractical due to logistical constraints that may
constrain the time of year in which sampling took place and
the environmental conditions leading up to and at the time of
sampling.

4.3.2. Sample Variability. The field determination method
recommends the use of a small quantity of field moist
soil (about half a gram) for assessment against the colour
card. Although field pH kits recommend replication of such
pH assessments, this rarely occurs in field situations. As a
consequence there is the potential to inadvertently assess a
subsample that is “atypical” of the sampled depth or horizon.
An example is where extreme differences have been recorded
between field and laboratory measurements. From 18 records
in the dataset for this study, where lab pH was >1.5 pH units
above field pH, 15 were from northwest Victoria and exhibited
strong to very strong effervescence with the addition of 1M
HClI to the sample. This suggests that the subsample used for
field pH assessment contained concentrated carbonates that
were unrepresentative of the total homogenised sample.

A further consideration is where a gradation in pH exists
for peds of the subsample. There is a possibility that the
field pH result may vary with the lab pH measurement on a
homogenised sample which has been prepared with all coarse
material (>2 mm) removed.

5. Conclusion

5.1. General Comments. Characterisation of the field pH
dataset for Victoria was accomplished and documented using
a range of fitted models under different constraints and
modelling conditions. In particular, the linear and sigmoidal
models fitted to the data provided statistically significant
relationships between field and laboratory pH measurements.
The results suggest that a portable test kit with a colour card
is a rapid and inexpensive approach to soil pH estimation
because the results can be readily calibrated with laboratory
measurements. There is, however, greater uncertainty in the
field results as quantified by the 95% CI and 95% PI.

Although the linear model represents a good general
model, the sigmoidal relationship provided a better fit across
the full range of pH measurements, especially for extreme
values. With respect to the field pH observations overall,
the field pH uncertainty is represented by 95% CI (<0.25
pH units) and 95% PI (+1.3 pH units), with reference to
laboratory pHy, versus pH (which are both measured to
within a tolerance of +0.1 pH units).

This study has quantified the level of uncertainty in
field pH measurements with reference to laboratory pH,
supporting the use of field pH data from citizens for mapping
and monitoring purposes. Field pH observations can be of
value where accurate and precise laboratory measurements
are absent in the space-time inventory of soils. Harmonising
pH; with pHy, versus pH via predictive models will assist
the application of legacy data and contemporary citizen-
sourced measurements in Digital Soil Mapping applications.
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Uncertainty introduced by interpretation of the colour
card arises from its discrete nature (16 levels) with a notional
classification error of 0.50 pH units. Possible environmental
sources of error in the colour card readings were noted,
including misclassification due to variability in ambient
lighting, colour vision deficiencies, quality of test kits, and
temporal and sample variability issues. These are subjects
requiring further research. The current dataset was based on a
pooled population of observers and there is scope for future
refinement to identify individual variations in performance
between experienced and inexperienced operators.

The extensive statistical analysis of different models and
their application with respect to the Victorian soil database,
under a variety of conditions, provides detailed information
for modellers and researchers in soil science, landscape stud-
ies, geography, environmental engineering, and hydrology.

5.2. Specific Comments

(1) More than 3000 different mathematical models were
fitted to the experimental data using an automated
process covering a variety of functional types, for
example, polynomial types, transition functions,
exponential types, linear types, and mixed models.
Indications of goodness of fit were provided by
various statistical criteria, including coefficient of
determination (r?), ANOVA F-statistic, and sum-of-
squared errors (SSE). The best fits based on statistical
metrics were found to be linear and sigmoidal models.

(2) A factorial experiment (2 x 2 x 2) was implemented
for modelling the relationship between field pH and
lab pH using (a) linear and sigmoidal models, (b)
least-squares and Pearson performance indices for
error minimisation, and (c) fixed and data randomi-
sation regimes

(3) A data randomisation scheme was introduced for
the purpose of uncertainty analysis; that is, the class
intervals in the pH data were treated as uniform priors
in the Bayesian interpretation.

(4) The error minimisation scheme used for the regres-
sion models was subject to comparison between stan-
dard least-squares and the Pearson criterion for treat-
ment of scatterplots with significant outliers (which
can skew results for standard regression analysis).

(5) Models fitted for samples in water (pH,,) were
superior on statistical metrics to models fitted in
CaCl, (pH) solution, for example, linear and sig-
moidal models, using both standard least-squares
and Pearson error minimisation approaches (cf.
Figure 4(a) versus Figure 8(a) and also Figure 6(a)
versus Figure 8(b)).
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