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SUMMARY  

Traffic congestion has become a serious concern and hindrance to the prosperity of many 

societies. Among a variety of solutions two approaches are of significant importance: 

constructing new roads and bridges to ease traffic congestion and promoting public 

transport. For the latter, the aim is to provide more space in the heart of cities for public 

transport (buses, trams, etc) aiming to get more commuters to their destinations. 

Therefore, two central questions have been addressed in this research; (i) investment in 

the road construction: given a number of candidate projects associated with construction 

expenses and a limited budget, what is the best choice of projects. This is known as the 

road network design problem (NDP), and (ii) transit priority lanes: given a road network, 

which roads should be selected to provide a lane to be exclusively used by public transport 

modes such that the overall performance of the transport system is not adversely affected. 

This problem is called the, “transit priority lane design problem” (TPLDP). For the 

former, (NDP) a hybridized method consisting of the branch and bound algorithm and 

Benders decomposition method has been developed. For the latter (TPLDP), the concept 

of Braess paradox was employed to seek for “mis-utilized” space in congested networks 

to be utilized by public transport. To this end, a merit index aiming to spot potentially 

some Braess-tainted roads is introduced first. Then a branch and bound algorithm was 

developed to find the best subset of the Braess tainted roads that have no adverse impact 

on the overall performance of the network.  

This study advances the state of knowledge in the above mentioned problems in five 

areas:  

(i) the authenticity of the traffic model is enhanced by subjecting all the analysis to 

multimodal and multiclass traffic circulation, 

(ii) the methodologies developed in this study are tailored to real world applications as 

illustrated with numerical analysis, 

 (iii) a RAM-efficient branch and bound algorithm (BB) has been developed such that the 

expansion of the BB’s tree structure becomes memoryless, 

 (iv) inclusion of the Braess paradox in the pursuit of the transit priority lane would nullify 

possible adverse effects on the private modes, and 
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(v) a new method for the capacitated traffic assignment has been developed which is 

called inflated travel time. 
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1 INTRODUCTION 
In this chapter a snapshot of the research, background, research questions, aims and scope 

as well as contributions are provided. An outline of the research plan and a roadmap as 

well as the overall structure of the thesis is also presented. 

1.1 Research background 

Traffic congestion is emerging as a major constraint to the achievement of national 

economic goals in many cities around the world. Studies have shown that the total amount 

of travel undertaken by residents of Australian cities has grown ten-fold in the last 60 

years, and the cost of traffic congestion to the economy totalled $9.4 billion in 2005. 

These costs are amongst the highest in the world when compared with Australia’s gross 

domestic product (GDP) (Sarvi et al., 2016). As urban populations continue to grow, 

traffic congestion is expected to increase in developed and developing countries. Even if 

there is still a need to build new freeway links and roads, particularly in outer city areas, 

the congestion problem cannot for, economic and social and environmental reasons, be 

solved simply by building more and more roads. Although, in some cases, new roads, 

bridges, highways, tunnel etc. will be inevitable, making the best use of the existing 

infrastructure is equally, if not more important. The former is laborious, capital intensive 

and time consuming (called a hard approach) whereas the latter as a soft approach is much 

less onerous.   

In this study, in order to address traffic congestion the both approaches are 

investigated. The hard approach is clear, it is all about investment in new road 

infrastructure which must be as efficient and wise as possible. The viability of such 

investments can be elaborated as follows. There exists a limited budget and a number of 

road construction projects associated with expenses pertaining to the design, planning, 

land acquisition, construction, etc. The question then becomes what would be the best 

choice of projects. 

The soft approach seeks to secure the most efficient use of existing road space. Its 

mandate is to maximise the efficiency of the traffic circulation which is emerging as one 

of the key issues for urban transport planners, local government officials, and 

representatives of national governments. A traffic system comprises of a variety of 



16 

 

distinct modes such as public transport, private vehicles, freight, high occupancy vehicles, 

etc. In the context of road space optimisation, the main question that arises is: what is the 

best split of the road space between different modes. To this end the key point is to first 

realise that the purpose of mobility is to move people not vehicles, therefore, persons 

should be given the highest priority. This is the fundamental tenet of road space 

optimisation which assigns mass transit as the highest priority. In the following section 

the research questions are defined and the soft and hard approaches are elaborated on. 

1.2 Research questions 

The aim of this research is to alleviate traffic congestion for which two solutions were 

investigated. Therefore, two questions are defined as follows.  

1.2.1 Road construction as a hard solution for traffic congestion 

Given the constant increase in travel demand, road construction sometimes is the only 

solution. This includes new roads, bridges, grade-separated interchanges, tunnels as well 

as lane widening. Though the pace of such investment in developed countries has slowed 

down remarkably, it is on a sharp upward trend in some developing countries (Bagloee et 

al., 2016a).  

 Road construction or investment, also known as the network design problem 

(NDP) is not a new concept. It is the first natural and intuitive solution to the traffic 

congestion predicament for which there exists a plethora of research in the literature 

(Farahani et al., 2013). There exists a number of different definitions of the NDP. 

Nevertheless, the common and one of the most difficult is discussed as follows: on the 

one hand, there are a number of (candidate) projects associated with costs covering  

construction expenses including machinery, labour, land accusation, materials, etc. and 

on the other hand there is a limited budget which is clearly less than the expenses. In other 

words, one cannot afford to build all the candidate projects. Therefore, the question to be 

asked is: out of the candidates, which projects should be selected for construction. Efforts 

to improve mobility with such costly schemes may be compromised if no proper due 

diligent is exercised. New roads and additional capacity are expected to improve traffic 

circulation, compared to the “do-nothing” or existing road scenario. In other words, new 

roads are expected to not to degrade overall traffic circulation. It has however been proven 

mathematically and observed in real practice that sometimes, by adding more roads may 
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counter-intuitively increase the travel time which is called Braess paradox (Braess, 1968; 

Braess et al., 2005).  

1.2.2 Priority as an efficient soft approach for reducing traffic congestion 

Efficiently managing transport networks utilising a variety of measures such as travel 

demand management (TDM) have been a significant alternative implemented in many 

cities (Nelson, 2000). Mass transit modes (public transport) face significant efficiency 

and effectiveness issues in situations where traffic congestion is high and growing. To 

this end some city jurisdictions are promoting the development of traffic priority systems 

for the public transport. Given the high ridership, mass transit modes deserve to receive 

the highest priority. Traffic priority includes a wide range of measures ranging from a full 

reallocation of road space to creating on-road transit lanes (exclusive bus lanes, or simply 

transit priority lanes) to adjustments to road layouts to remove traffic bottlenecks. 

Network space management involves balancing often-conflicting pressures for limited 

space. Reallocation of road space to give priority to bus services and the like is one of 

many of such measures (see Figure 1.1). It stands to reason that moving towards the mass 

transit or public transport also has a positive impact on relieving traffic congestion as well 

as improving the environment (see Figure 1.2). 

 

Figure 1.1 The idea of transit priority lane 
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Figure 1.2 Public transport as a means to alleviate traffic congestion 

In cities where transit use is high, the case for priority is relatively easy to justify. 

However, deciding the extent to which priority should be given is not so simple. In cities 

where transit use is low and roads are congested, economic justification for transit priority 

is less clear. As a result, traffic authorities are often faced with the realities of a finite 

resource, high car usage and low transit usage. In such cases, irrespective of the 

undeniable advantages of the public transport (environmental, efficiency and reliability 

improvements) the idea of exclusive bus lanes can be made more appealing if these lanes 

can also be used by freight and high occupancy vehicles (HOV). HOV are vehicles with 

a minimum of two occupants.  Allowing HOV and freight traffic to travel in priority bus 

lanes can overcome the ‘empty lane syndrome’ common to lightly used bus lanes. This 

could provide the required justification and opportunity to introduce comprehensive 

transit priority lanes across the transport network rather than scarce, local and limited 

priorities.  

Similarly, one can move towards a more sustainable and green modes of mobility 

using bicycles by providing a safer environment for cyclists based on the concept of 

bicycle priority lanes. 
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Generally speaking, the concept of priority has received significant momentum in 

recent years (Zheng and Geroliminis, 2013a) from researchers and practitioners (Basso et 

al., 2011; Mesbah et al., 2011b). Throughout this dissertation the problem is referred to 

as the Transit Priority Lane Design Problem (TPLDP). 

Simply speaking the TPLDP can be stated as a two-fold question as follows. (i) 

Amongst congested roads which roads are deemed to be appropriate to give away one 

lane to be exclusively used by public transport, dubbed as a transit priority lane. An 

answer to this question results in a number of candidate roads yet to be further processed 

in the second question. (ii) Given the set of candidate roads derived from the previous 

question, implementation of the transit lane comes at some expense such as lane marking, 

signage, signals, etc. In other words, each candidate road is associated with a certain cost. 

Whereas, there exists a limited budget as well. Now the question to be answered is: given 

the candidate set, costs and budgets, which roads should be selected to designate a lane 

as transit lane?   

1.3 Knowledge gap 

A review of the literature indicates a number of shortcomings in past studies. Notably, 

“practicality” is relatively rare in the literature. In other words, applications of methods 

to large sized road networks –as is the case in real life situations- are yet to be addressed. 

Secondly, given the computational complexities, some aspects of the problems have been 

ignored or loosely treated. More precisely, any solution to the TPLDP or the NDP must 

be thoroughly examined based upon a reliable model to measure the traffic circulation 

which has been largely relaxed due to the theoretical and computational burdens. 

To shed more light on the above deficiencies, in the next section the structure and 

different features of the problems followed by an extensive discussion on the 

computational difficulties of them are outlined 

1.4 Structure of the problems 

The aim of this research is to address the traffic congestion on two fronts, the NDP as a 

hard measure and the TPLDP as a soft approach. In the next section, the problems are 

discussed by elaborating on three fundamental technical features of them. 
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1.4.1 Bi-level programing 

The approach towards addressing these problems must be a network-wide approach. That 

is, a change – even slightly - in one corner of a road network may ripple through the entire 

network. More precisely, people as users of the transport system react to the changes in 

the system. Therefore, it is important to come up with a mechanism by which the 

behaviour of the people with respect to the changes in the transport system is fully 

accounted for, which is called the traffic assignment problem (TAP). The TAP itself is an 

optimisation problem (Beckmann et al., 1956) to ensure Wardropian traffic flow or better 

known as the user-equilibrium (UE) that is the drivers choose the quickest paths or routes 

to get to their destinations. 

It is obvious that any initiative such as the introduction of the transit priority or 

constructing a new bridge is supposed to improve the traffic circulation or the 

performance of the transport system. The consensus in the literature centres on the cost 

of system as an intuitive index to measure the performance of the transport system. The 

travel time spent by people in the transport system is widely considered as a valid 

surrogate to measure the performance of the transport system. Overall, the aim is to 

minimize the total travel time spent in the road network inferred as the system-cost.   

Consequently, one must solve two problems simultaneously: the minimization of 

the total travel time and the TAP. In the optimisation or (Operations Research (OR) 

literature, the term to describe these kind of simultaneous problems is “bi-level” which 

are known to be of difficult problems. Accordingly, these problems are formulated as 

generalized bi-level programing problems to account for the behaviour of commuters in 

the lower level and minimization of the system-cost in the upper level.  

1.4.2 Discrete or integer variables 

This research can aid traffic planners, authorities and managers with their decision related 

to where to provide transit priority where to construct new roads. These problems involve 

a number of decision variables which are intrinsically discrete, integer or binary (1 to 

build and 0 not to build). In optimisation, integer programing (versus the continuous) are 

also known to be difficult problems. As the result, the discreteness of the problem is 

ensured by employing binary variables as decision variables. For the TPLDP, a decision 

variable is assigned value of 1; to allocate a lane of the roadway as a transit priority lane 
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and 0 otherwise. For the discrete NDP (also denoted as DNDP), decision variables are 1 

to build the road and 0 not to build. Given the inevitable presence of integer variables in 

conjunction with some continuous variables such as travel times and traffic volumes in 

the objective functions, the above problems become mixed integer programing (MIP) 

problems. In terms of the computational burden, MIPs are known to be difficult problems 

to solve. 

1.4.3 Multiclass and multimodal traffic assignment 

The literature review underscores the significant shortcoming in past studies in which 

traffic congestion is loosely treated mainly because of the computational complexities of 

bi-level programing. It is important to consider the mutual impacts of both transit and 

private modes which is known as multimodal traffic assignment. In addition, within the 

private modes, there exists a number of distinct classes such as HOV, freight, taxis which 

is referred to as a multiclass traffic assignment.  

1.5 Research barriers 

It is essential to first gain some insights of the level of the difficulties of the problems 

before attempting to solve them. This will help in looking for appropriate solution 

methods in the quest of addressing the problems. The above-mentioned triplet features 

define the level of difficulty of the problems as discussed below. 

In computational complexity theory, the time that is required to solve a problem 

is regarded as the degree to which the respective problem is “hard” or “easy”. The 

computational time varies with respect to the size of the problem, (note that, number of 

variables and parameters describe the size of a problem). Moreover, for “easy” problems 

such as shortest path finding algorithms, the computational time is a “polynomial” 

function of the size, denoted by “P” as shown in Figure 1.3.  

Unfortunately both bi-level programing problems and mixed integer programing 

problems are proven to be of highest complexities known as NP hard (non-deterministic 

polynomial-time hard). Simply stated, in an NP hard problem, as the size increases the 

problem rapidly becomes intractable. Furthermore, the problems, as set out before, carry 

some nonlinear terms such as the total travel time as an objective function (note that the 

total travel time can be formulated as “sum over all roads (traffic volume * travel time)”, 
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the terms inside the parentheses is a nonlinear terms). Nonlinearity also adds extra 

complexities. 

For bi-level programming problems, it is mathematically proven that even when 

all terms are linear the problem is still NP-hard (Ben-Ayed and Blair, 1990; Colson et al., 

2005, 2007; Dempe, 2003). Consequently, integer versus continuous, nonlinear versus 

linear, bi-level versus single-level add extra burden on the computational requirements. 

Unfortunately, the above problems (TPLDP and DNDP) bear all the difficult ingredients: 

mixed integer, nonlinear and bi-level. Therefore, in the design of the solution 

methodologies it is necessary to develop innovative schemes to address the hardness of 

these problems. 

 

Figure 1.3 How hard is NP-hard in computational complexity theory 

1.6 Strategic nature of generalised network design problems 

With respect to the central position of NDP in the literature the following remarks are 

worth noting: 
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 In light of our exposure to real projects in industry, it should be acknowledged that 

there is a large gap between academic and engineering practice, and this problem is 

becoming more relevant. The main problem is that it is difficult to find research 

that tailors methodologies for large-sized networks. In addition, cities’ traffic 

models are more complicated than some pedagogical networks such as Sioux-Falls, 

South Dakota in the United States. For instance, multiclass and multimodal features 

are indispensable parts of such models, which are largely simplified in the literature. 

So researchers have yet to offer a product meeting real needs of the industry.  

 Problems such as the NDP deserve to be viewed as milestone or benchmark 

problems which test our knowledge and computational technologies at time. 

Working toward such milestone problems may bring some other advantages or by-

products. For instance, in the quest to solve the discrete NDP, it was found that the 

Lagrangian sub-problem (of the Benders decomposition method) is in fact a 

capacitated traffic assignment problem which is still a live and relevant subject for 

both scholars as well as practitioners. Furthermore, the algorithm developed for the 

NDP can also be applied to other contemporary problems such as congestion 

pricing, facility placement, etc. 

 Types of NDP have long been of great interest to scholars in operational research 

especially when mixed integer programming (MIP) problems are of concern. MIP 

has widespread applications in management science, manufacturing designs, 

decision making and planning, etc. 

1.7 Research road map 

This research began with an extensive and comprehensive review of the relevant literature 

in the transport science as well as mathematical and optimisation literature which 

involved 168 books, papers or reports. In the next chapter the literature review covering 

themes related to the road network design as well as the transit priority is presented. In 

Section 3, a variety of mathematical methods for solving mixed integer nonlinear problem 

as the core components of the undertaken problems are described. This includes 

discussion of the Benders decomposition, outer approximation as well as branch and 

bound algorithms. The pros and cons of each method are also investigated in detail. A 

methodology developed for the network design problem using a combination of the 

Benders decomposition and branch and bound is then described. To this end, it is needed  
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to first solve a capacity-constraint traffic assignment as a prerequisite of the Benders 

decomposition, for which a new method called inflated travel time has been developed 

(see chapter 4). The DNDP is tackled in chapter 5. Chapter 6 is dedicated to the transit 

priority lanes design problem for which an efficient branch and bound algorithm is 

developed. Chapter 7 concludes the thesis in which the contributions are highlighted and 

several themes for future studies are proposed 

Before closing this chapter, an overview of the contributions as well as a report 

on the publications already arising from this research, communicated in the form of 

journal papers, book chapter and peer reviewed conference papers are provided. 

1.8 Contributions of the research 

The previous section described the knowledge gap, research problems, the research 

difficulties and various features of the research problems. The contributions of this 

research include: 

 A network based approach for the problem of transit priority lane design (TPLDP) is 

developed.  

 The discrete network design problem (DNDP) which is a benchmark problem in the 

computational complexity is solved using an exact method consisting of a Benders 

decomposition method and a branch and bound algorithm. 

 For both problems (TPLDP and DNDP), the methodologies are tailored for real life 

road networks.  

 A RAM-efficient and memoryless branch and bound algorithm based on an 

innovative concept (merit index) is developed. 

 To enhance realism of the models, in the solutions provided for the two problems, 

the models are subjected to multiclass and multimodal traffic flow. 

 A parameter-less method is developed for the capacitated traffic assignment problem. 

1.9 Communication of the research results 

Below is a complete list of the papers derived from this research which comprises of six 

peer-reviewed journal papers, one book chapter, six peer reviewed conference papers or 

presentations, one report as well as three papers currently under review. The genesis of 

the publications is described below. 
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This research started off with an extensive literature review and a significant effort 

to compile some leading algorithms proposed for the MIP which was published as a book 

chapter (paper # 7) as well as a conference paper recently presented at the Australasian 

Transport Research Forum (ATRF) in 2016, (# 13). 

It turned out that applications of the Benders decompositions to the DNDP has a 

prerequisite better known as the capacitated traffic assignment for which a new method 

was developed and presented at the TRB annual conference in 2016 (paper #11) and 

subsequent journal publication (paper # 6). This line of research was further extended to 

the applications of the GAMS a leading optimisation software which resulted in paper # 

9. Moreover, the idea of capacitated traffic assignment and GAMS’ application were 

further investigated for the emerging connected vehicle technologies and autonomous 

vehicles (papers #12 and #2). Furthermore, the concept of capacitated traffic assignment 

was also applied to the famous problem of congestion pricing (papers #14 and #17). 

The DNDP was extensively investigated which resulted in papers (#1, #10 and 

#16). In particular, paper #1 reports on the hybridised method (Benders decomposition 

and branch and bound) for the DNDP. As for priority lanes, first an application of this 

concept to bicycle lanes was published (paper #4). Paper #15 reports on the TPLDP. 

Applications of the DNDP was extended to the problems pertaining to disaster 

management, identifying critical roads and disruption scenarios (papers #3, #8, and #5). 

Peer reviewed journal papers: 

1. Bagloee, S.A., Sarvi, M., Patriksson, M. (in press) A hybrid branch-and-bound 

and Benders decomposition algorithm for the network design problem. 

Computer‐Aided Civil and Infrastructure Engineering. IF 5.28 

2. Bagloee, S., Sarvi, M., Patriksson, M., Rajabifard, A. (in press) A mixed user-

equilibrium and system-optimal traffic assignment for connected vehicles stated 

as a complementarity problem. Computer‐Aided Civil and Infrastructure 

Engineering. IF 5.28 

3. Bagloee, S.A., Sarvi, M., Wolshon, B., Dixit, V. (in press) Identifying critical 

disruption scenarios and a global robustness index in road transport networks. 

Transportation Research Part E: Logistics and Transportation Review. IF 2.80 

4. Bagloee, S.A., Sarvi, M., Wallace, M. (2016) Bicycle lane priority: Promoting 

bicycle as a green mode even in congested urban area. Transportation Research 

Part A: Policy and Practice 87, 102-121. IF 2.39 
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5. Bagloee, S., Sarvi, M., Rajabifard, A., Thompson, R., (in press) Identifying 

Achilles-heel roads in real sized networks, Journal of Modern Transportation, 

springer. Submission code: IF 0.73. 

6. Bagloee, S.A., Sarvi, M. (2015) Heuristic Approach to Capacitated Traffic 

Assignment Problem for Large-Scale Transport Networks. Transportation 

Research Record: Journal of the Transportation Research Board, 1-11. IF 0.44. 

Book Chapter: 

7. Sarvi, M., Bagloee, S.A., Bliemer, M., 2016. Network design for road transit 

priority in: Bliemer, M.C.J., Corinne, M., Claudine, M. (Eds.), Handbook on 

Transport and Urban Planning in the Developed World. Edward Elgar Publishing 

Ltd, UK. 

Peer reviewed Conference: 

8. Bagloee, S., Sarvi, M. (2016) Shannon entropy to measure road network 

redundancy and reliability Proceedings of Traffic Flow Theory (TFT2016), 

Sydney, Australia. 

9. Bagloee, S., Sarvi, M. (2016) Capacitated traffic assignment problem subject to 

variable demand, a nonlinear formulation cum solution code in GAMS. 

Proceedings of Australasian Transport Research Forum (ATRF 2016), 

Melbourne, Australia. 

10. Bagloee, S., Sarvi, M., Rajabifard, A., Thompson, R.G., Saberi, M. (2016) A 

solution to the road network design problem for multimodal flow Proceedings of 

IEEE 19th International Conference on Intelligent Transportation Systems (ITSC 

2016), Rio de Janeiro, Brazil. 

11. Bagloee, S.A., Sarvi, M. (2015) A Heuristic Approach to Capacitated Traffic 

Assignment Problem Tailored to Large Scale Networks. Proceedings of 

Transportation Research Board, Washington D.C., United States. 

12. Bagloee, S.A., Sarvi, M. (2016) Autonomous Vehicles: past, present and future 

implications. Intelligent Transportation Systems (ITS) World Congress, 

Melbourne, Australia. 

13. Sarvi, M., Bagloee, S., Rajabifard, A., Thompson, R.G. (2016) Urban transport 

system: Large scale multiclass modelling; challenges, opportunities and future 
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trend. Proceedings of Australasian Transport Research Forum (ATRF 2016), 

Australia, Melbourne. 

Report: 

14. Bagloee, SA, Florian, M, Sarvi, M., Centre Interuniversitaire de Recherche sur 

les Réseaux d'Entreprise (2016) A New Policy in Congestion Pricing: Why only 

Toll? Why not Subsidy? la Logistique et le Transport (CIRRELT), Montreal, 

Canada. 

Papers under review 

15. Bagloee, S., Sarvi, M., Ceder, A., Transit priority lanes in the congested road 

networks, Public Transport – Springer, Submission code: PUTR-D-16-00018R2 

16. Bagloee, S., Sarvi, M., Rajabifard, A., Thompson, R.G., System optimal 

relaxation and Benders decomposition algorithm for the large sized road network 

design problem, International Journal of Logistics Systems and Management 

(IJLSM), Submission code: IJLSM-161310.  

17. Begloee, S., Sarvi, M., A modern congestion pricing policy for urban traffic: 

subsidy plus toll, Journal of Modern Transportation, Springer, Submission code: 

JMTR-D-16-00121R2 
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2 LITERATURE REVIEW 
In this chapter an extensive review of the relevant literature in road network design as well 

as transit priority lanes is presented. Accordingly, this chapter is presented into two 

sections and the findings are summarised at the end of each section. 

2.1 Literature on road network design   

With respect to the types of the decision variables, the NDP is classified as discrete 

network design problem (DNDP) and continuous network design problem. The latter 

suffers from a lesser degree of realism and fidelity where the outcomes are a number of 

real values (not binary) begging for interpretations. Interested readers in the continuous 

network design problem can consult with (Lin, 2011; Unnikrishnan and Lin, 2012; Waller 

et al., 2006).  

The NDP in general and the DNDP in particular have been studied extensively in 

mathematics literature as well as transportation science. A thorough discussion of the 

problems can be found in (Farahani et al., 2013; Magnanti and Wong, 1984; Minoux, 

1989; Yang and Bell, 1998). The approaches taken in the literature can be classified as 

exact and heuristics. The exact methods aim to arrive at a global optimal solution but their 

applications to real networks are restricted. On the other hand, heuristic methods aim to 

render good solutions for sizeable networks within an acceptable computational time by 

relaxing some crucial properties of the problem (such as discreteness of the decision 

variables) (Wong, 1985). Furthermore, in recent years, rapid expansions in the developing 

and emerging economies (largely in Asia and the Middle East) have made the DNDP 

relevant even amongst practitioners. In spite of the time-effectiveness of the heuristic 

methods, they are yet to appeal to the industry. This is due in part to the fact that the 

heuristic methods provide supposedly good, but sometimes non-deterministic (or random) 

solutions. Such an uncertainty and the lack of stability of the results make them hard to 

sell. Moreover, as long as the best solution is not known, the degree of goodness of the 

solutions remains obscure.  

Fortunately, ongoing enhancements in computational technology provides 

momentum to pursue exact methods (Wang et al., 2015). It has been estimated  during the 
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course of a decade, optimisation methods have become a million times faster thanks to 

improvements in hardware as well as software (Lodi, 2010). On the other hand, although 

the size of the networks dealt with in the industry are large, the number of candidate 

projects (decision variables) is limited (say a dozen or so). It is mainly the number of 

binary variables (and not the size of the networks) that significantly determines the 

solution spaces (Bagloee et al., 2013b).  

Given the above-mentioned characteristics of the problem and available 

computational technology, in this study an exact method for the DNDP, tailored to real-

size networks is developed. Consequently, in this section, a synthesized overview of the 

literature with a primary focus on exact methods is provided. Then, the recent evolutions 

in the literature over the course of the last two decades are described  

2.1.1 Literature on the discrete road network design problem 

Among the pioneers, LeBlanc (1975) solved the DNDP using a branch-and-bound (BB) 

algorithm. Poorzahedy and Turnquist (1982) approximated the total travel time function 

in the upper level to a well behaved function and arrived at a single-level formulation that 

was then solved by a heuristic BB algorithm. Farvaresh and Sepehri (2013) proposed a 

more efficient BB. Generally speaking, one of the challenging dimensions of the DNDP 

lies in how to tune the methodology to deal with the intrinsic non-convexity that arises 

from the non-linear  UE constraints (Wang et al., 2013) to account for traffic circulation. 

Gao et al. (2005) introduced the concept of a support function to include new additional 

projects into the traffic flow by which the bi-level DNDP was transformed into a general, 

mixed, non-linear problem. They then employed the generalized Benders decomposition 

(GBD) method as a solution algorithm.  

 Wang and Lo (2010) employed complementary constraints for UE traffic flow to 

arrive at a single-level problem for which a convex-combination based piecewise linear 

approximation was developed as a solution algorithm. Luathep et al. (2011) transformed 

the DNDP to a single-level problem in which the variational inequality (VI) constraints 

represent the UE conditions, followed by a cutting plane based algorithm to seek the 

optimal solution. Farvaresh and Sepehri (2011) replaced the UE conditions with 

equivalent Karush–Kuhn–Tucker (KKT) conditions which led to a single-level, mixed-

integer linear problem. Wang et al. (2013) expanded the DNDP model to find the optimal 

number of lanes for existing candidate roads. Fontaine and Minner (2014) employed a 
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piecewise linear approximation scheme to arrive at a single-level, mixed integer linear 

problem to be solved by Benders decomposition method. There are also heuristic 

approaches for the DNDP in the literature in which a variety of methods such as genetic 

algorithms, ant colony systems and hybrid meta-heuristics are used. A thorough review of 

these methods is provided by (Bagloee et al., 2013b). 

As the above review shows, a general approach to bi-level programming problems 

such as the DNDP is to transform the problem into a single-level problem (Colson et al., 

2005, 2007; Dempe, 2003). The convention is to replace the lower level decisions by an 

implicitly-determined function (reaction function) or by corresponding KKT conditions. 

The resulting single-level MINLP problem is then solved by various methods such as 

Benders decomposition, Lagrangian relaxation, descent methods (such as sequential 

quadratic programming), outer approximation, branch-and-bound, penalty function 

methods, or trust-region methods (Floudas, 1995; Leyffer, 1993; Li and Sun, 2006). A 

detailed review of the recent literature on the discrete road network design problem is 

discussed below to shed more light one the subject. 

Gao et al. (2005) developed a methodology based on the concept of a support function to 

transform the bi-level NDP problem into a single-level MINLP. The resulting problem is 

then solved using the generalized Benders decomposition algorithm (Geoffrion, 1972). It 

is numerically shown that their method fails to find a global optimum solution in some 

cases (Farvaresh and Sepehri, 2013). 

Zhang and Gao (2009) formulated a mixed, continuous and discrete NDP as a 

single-level mathematical programming problem with complementarity constraints to 

represent the UE traffic flow. Although the numerical results presented for small-scale 

examples are promising, due to employing a locally convergent algorithm, the capacity of 

the methodology to arrive at optimal solutions has yet to be investigated. 

Wang and Lo (2010) developed a single-level optimisation formulation with 

complementary constraints for UE traffic flow that transforms the DNDP into a mixed 

integer linear programming (MILP) problem. The resulting MILP model is based on 

enumerating the paths between origins and destinations (OD) and a piecewise linear 

approximation of the link travel time functions with binary decision variables. Thus, the 

outcomes are significantly dependent upon the linearization scheme. With respect to the 

path enumeration component, its application to sizable networks has yet to be investigated. 
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Similarly, Luathep et al. (2011) formulated the DNDP as a single-level 

optimisation problem with a variational inequality constraint representing the UE 

conditions. The VI constraint efficiently obviates the need for path enumeration based on 

the accumulated number of extreme points. Nonetheless, the results are significantly 

dependent upon the linearization scheme used for the delay functions. The network of 

Sioux-Falls (of 24 nodes) is used for numerical analysis. In view of the number of extreme 

points used for representing the UE condition, application to large sized networks has yet 

to be investigated. 

Farvaresh and Sepehri (2011) developed a single-level MILP by representing the 

UE conditions as KKT conditions and employing linearization schemes. To do so, the 

non-linear delay function is replaced (or approximated) by some linear segments. Hence 

the linearization scheme refers to the location and number of segments. The final results 

vary over different linearization parameters.  

Farvaresh and Sepehri (2013) address the bi-level aspect of the problem explicitly 

by developing a branch-and-bound algorithm based on the seminal work of LeBlanc 

(1975) while a more efficient lower bound is sought. Given a feasible binary solution, the 

UE traffic assignment problem (UE-TAP) is solved to obtain an upper bound of the total 

travel time. A valid lower bound is also obtained by solving a system optimal (SO) version 

of the NDP. Due to the  gap that usually exists between these bounds (Roughgarden and 

Tardos, 2002), applications have been limited to cases in which the difference in traffic 

flow under UE and SO conditions is negligible.  

Wang et al. (2013) expanded the NDP to consider the number of additional lanes 

as decision variables. They first relaxed the bi-level programming model by formulating 

a single-level problem in which a SO (not UE) network design problem is solved. Two 

methods based on the relationship between UE and SO principles are developed. The first 

method, termed SO relaxation, takes advantage of the property that an optimal network 

design decision under SO traffic flow condition can be regarded as an approximate 

solution with UE traffic flow. The second method, termed UE reduction, reduces the gap 

between the bi-level programming model and the single-level model by adding convex 

inequalities based on the UE model’s (objective) function (Beckmann et al., 1956) to the 

constraints of the relaxed problem. Similar to the work of Farvaresh and Sepehri (2013), 
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the efficiency of the proposed methodology hinges on the assumption that the UE and SO 

solutions are close to each other.  

Fontaine and Minner (2014) developed a scheme by which the upper-level 

objective function as well as the objective function of the lower-level problem are 

approximated by piecewise linear functions as well as the Beckmann function of the UE 

traffic flow. The bi-level problem is then transformed into a single-level problem by 

representing the UE conditions through its corresponding KKT conditions. Benders 

decomposition is then employed to solve the resulting problem. Similarly, the quality of 

the solution as well as the efficiency of the methodology is highly dependent upon the 

linearization scheme. Furthermore, a linearization of the Beckmann function compromises 

arriving at a global optimum solution. Numerical results for a medium sized example with 

36 zones are reported. 

2.1.2 A summary of the review of the road network design   

As can be seen even among the most recent studies, addressing large sized networks or 

considering multiclass and multimodal traffic flow is rarely reported in the literature. 

Furthermore, a clear majority of the algorithms utilize simple approximations of the upper 

and/or lower-level objective functions. The conventional wisdom in the literature is to 

primarily move away the intractable elements of the problem with a view to arriving at a 

more simplified and well-behaved problem (Poorzahedy and Turnquist, 1982). Such 

approaches may deprive the problem from the dimensions based on which the DNDP 

stands, to the extent the solutions become overly simplified and unreliable. To this end, in 

order to enhance the realism and fidelity of the model, this study aims to establish a solid 

exact foundation embracing the DNDP in its full capacity.  

2.2 Literature on the transit priority lane design   

Given factors such as cost efficiency, environmental concerns, equity and public support, 

promoting transit even at the cost of a private mode is gaining momentum (Ceder, 2015). 

It is intuitively conceivable to assert that the priority of mobility has to be given to people 

rather than vehicles. Hence, providing priority to transit modes in terms of road space 

(Mesbah et al., 2011b) and signal timing is of interest to practitioners as well as academia 

(Bagherian et al., 2015; Diab and El-Geneidy, 2013; Guler and Menendez, 2015; 

Mirchandani et al., 2010).  
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The concept of priority lanes has been introduced in many cities (Smith and 

Hensher, 1998). It also has been adopted in special traffic access plans for large scale 

crowd gathering events such as sports games, concerts, New Year’s events, etc.  (Cova 

and Johnson, 2003). A number of studies have investigated the impact of priority 

initiatives extensively, while little is devoted to the strategic design of such schemes 

(Bagloee et al., 2016b). For evaluation, a variety of methods based on statistical analysis 

and simulations have been employed (Eichler and Daganzo, 2006; Li and Ju, 2009; Liu et 

al., 2006; Sakamoto et al., 2007; Tse et al., 2014; Viegas and Lu, 2004).  

As discussed before, for strategic design, the subject of transit priority, or in 

general, the subject of transit network design/planning can be viewed as a general network 

design problem, which is proven to be a NP-hard problem. Among the variety of methods 

available in the literature, some try to reach an optimum solution but cannot scale to handle 

large-sized networks, whilst others aim to address large-sized networks at the cost of 

compromising the quality of the solution. 

In the following section a comprehensive review of the relevant literature on the 

TPLDP is provided. 

2.2.1 Literature on the transit priority lane design problem   

Due to computational complexity involved in the TPLDP, a majority of the previous 

studies have taken a localized approach for a specific road or region. In contrast, in a few 

studies, a network based approach has been developed by Mesbah et al., (Mesbah et al., 

2008; Mesbah et al., 2011b). They developed algorithms based on the Benders 

decomposition and genetic algorithms (GA) and applied them to a grid-structured network 

consisting of 38 nodes and 49 links. Since then the literature is still leaning toward a more 

localized focus on the subject of transit priority. Basso et al. (2011) studied congestion 

management policies through numerical analysis of a local pilot area centred on a short-

length road and drew conclusions in favour of dedicated bus lanes as the best ad hoc 

policy. Guler and Cassidy (2012) investigated traffic operations of exclusive transit lanes 

at traffic bottlenecks occurring at intersections. They suggested some operational 

measures for sharing space at the bottlenecks temporarily. Xie et al. (2012) studied the 

intermittent priority of bus lanes using simulation methods. Zheng and Geroliminis (2013) 

proposed a macroscopic method for solving the problem of road space allocation based 

on a fundamental diagram, applicable to the cases of an aggregate size area such as 
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districts. Geroliminis et al. (2014) studied the dynamism of bimodal traffic flow (public 

and private modes) using the notion of fundamental diagrams which can then be utilized 

for traffic management schemes including transit priority. 

Yao et al. (2012) developed a bi-level programing method similar to that of 

Mesbah et al. (2011a) to address the optimisation of exclusive bus lanes at the network 

level. The GA has been used as a solution algorithm and the arrivals’ headways of the 

buses were optimised for a network consisting of 13 nodes, 19 links. At the lower level of 

the formulation, a path-based traffic assignment using the method of successive averages 

was employed. Hadas and Ceder (2014) addressed the TPLDP at network level through a 

single level optimisation formulation while approximating the impact of congestion. Khoo 

et al. (2014) also adopted a bi-level programing approach, while a GA was employed as a 

solution algorithm. For the lower (traffic assignment) problem, simulation software was 

used at the cost of higher computational time. Some studies have also employed a GA to 

solve the transit priority lane problem (Chen, 2015; Sun et al., 2014). In the work of Sun 

et al. (2014) the concerns of the transit enterprise in operating the transit fleet efficiently 

as a business has also been taken into consideration. The algorithm was applied to a 

network consisting of 29 origin-destination (OD) pairs and 52 nodes. Wang et al. (2016) 

also modelled the design of exclusive bus lanes as a bi-level problem for which they 

proposed a heuristic method to find the priority lanes as well as the transit assignment for 

a network of 24 nodes; 76 links. Zhang et al. (2014) addressed the simultaneous design of 

road expansion and a transit system in which the formulation was able also to find 

appropriate transit lanes. The problem was transformed to a single level mixed integer 

problem. Given the number of binary variables involved in the formulation, application to 

large-sized networks was left for further investigation.  

The adverse impacts of transit  priority lanes on private modes has also been a 

subject of research (Fang et al., 2014; Wu et al., 2013; Wu et al., 2015; Wu et al., 2014; 

Yingfeng and NaiQi, 2010; YunFei et al., 2011). In this respect, the key point is obviously, 

to take the interaction of both public and private modes into account which is a nontrivial 

task. In the above-mentioned works, the adverse impact of the transit priority lanes on 

private modes is considered a priori (i.e. a given exogenous input). Hence, there exist 

significant space for improvement to consider the mutual impacts of public and private 

modes. Nevertheless, the formulations and models developed in the above-mentioned 

articles can be used in uncongested networks such as, finding reserved lanes for transport 
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of hazardous materials on the outskirts of cities where traffic congestion is not a source of 

concern (Zhou et al., 2014; Zhou et al., 2012). In a similar fashion, Fang et al. (2013) 

sought applications of priority lanes for freight transport in which the freight demand was 

considered exclusively. 

Recently Yao et al. (2015) have taken the uncertainty in the travel times and the 

capacity of the  roads as well as travellers’ risk adverse behaviour into account. Their 

results underscore the importance of incorporating combinatorial optimisation of the 

exclusive bus lanes. 

The concept of exclusive bus lanes has also been introduced at signalized 

intersections along with an exclusive bus phase (in the timing of the signals) to reduce the 

delay to buses. A recent review on this subject is provided by (Guler et al., 2016).  

2.2.2 A summary of literature on the TPLDP   

The literature underscores the importance of adopting a network wide approach to the 

problem of transit priority lane design. This has come with extensive computational 

expense as well as theoretical complexities. To this end, a large body of research has been 

made towards the application of heuristic methods. Similar to what has been seen for the 

DNDP, practical applications of the proposed methods has been rarely presented in the 

existing literature. Moreover, a vast majority of the past studies suffer from a proper model 

to consider the interaction between private and public transport. 

2.3 Summary and conclusion  

Network design has recently witnessed a renewed interest in seeking methods that have 

more analytical strength (Fontaine and Minner, 2014; Gao et al., 2005; Wang et al., 2013; 

Zhang et al., 2014). Such new trends can be partly motivated by the great interest in better 

deterministic and not stochastic solutions. In the one hand, a number of (meta) heuristic 

methods have been developed addressing the scalability of the problems, their applications 

are extensively criticised based on some of the properties of the solutions such as the 

stochasticity of the solutions and the degree of goodness of the solutions. Moreover, the 

random elements in some of the heuristic methods are conducive to instability of the final 

solutions (known as stochasticity of the solutions). Even though heuristic methods are 

designed to yield good solutions, it is not clear how good the solutions are. 
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In the other hand, the recent rise in the use of such methods which come at the cost of 

greater computational times owes much to the recent advances in computational 

technology and knowledge of optimisation in both hardware and software (Achterberg 

and Wunderling, 2013; Bixby, 2012; D’Ambrosio and Lodi, 2013). It is noteworthy to 

highlight the fact that problems such as the DNDP or the TPLDP are of strategic nature 

(due to their pervasive impact), so that, one can afford greater computation in the scale of 

hours or even days. 

In summary, a salient shortcoming in the previous studies can be attributed to the 

lack of practical exact methods tailored to large-sized networks which is addressed in this 

research. Moreover, in the vast majority of the past studies, the interaction between the 

private and public transport is largely simplified or relaxed which casts some doubt on the 

fidelity of the outcomes. 
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3 MATHEMATICAL METHODS 
In Chapter 1, the discrete network design problem as well as the transit priority lane 

design problem (TPLDP, DNDP) were described as mixed integer nonlinear bi-level 

programming problems. In these problems the decision variables are binary (1 or 0). In 

the upper level the performance of the system is improved by minimizing the total costs 

of the system. The lower level accounts for multiclass and multimodal traffic assignment 

to thoroughly consider the impact of the changes in the road network. 

As noted before, the conventional approach to the bi-level problems is to 

transform it to a single-level problem which results in a mixed integer nonlinear problem 

(MINLP). The MINLP is then articulated as seeking a subset of the candidates subject to 

some budget constraints. In order to efficiently solve the MINLP three leading algorithms 

have been reviewed:  generalized Benders decomposition (GBD) or simply Benders 

decomposition, outer approximation (OA) and branch and bound (BB). Mathematical 

principles associated with them are presented. Then a step-by-step numerical practice 

based on a pedagogical example is provided 

3.1 Solving mixed integer bi-level programing  

A bi-level programing problem itself even with only linear constraints and objective 

functions is a NP-hard problem (Colson et al., 2007). An additional facet of being mixed 

integer and nonlinearity makes the problem more difficult. The general consensus to 

solving a bi-level problem is first to unify the levels and reach at a single-level programing 

problem (Colson et al., 2007). To this end there are two general methods suggested in the 

literature: 

 the objective functions in both levels are interlinked with support functions (Gao et 

al., 2005; Mesbah et al., 2011b), 

 the binary structure of the problem is laid down over a tree structure of a “branch and 

bound”. Each node of the tree represents a subarea of the solution space, for which 

the lower level problem is solved.  

In these methods the common denominator is the need to solve a MINLP. This 

section is dedicated to the solution methods for the MINLP problems by covering two 

general methods: enumeration and decomposition (See Figure 3.1). With enumeration 
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methods, all the combinations of the integer decision variables are implicitly evaluated 

and hence the global optimum solution is guaranteed. The most notable method of 

enumeration is the BB which uses a tree structure to processing all the combinations (note 

that the “enumeration” is a jargon in the optimisation to enumerate all possible 

combinations of a subject). In minimization problems, as the tree expands, at each node 

representing a subset of the solution space, a lower bound is calculated and branching at 

the respective node is frozen when the lower bounds are found to be greater than that of 

the best found solution. It is evident that as the size of the problem (number of decision 

binary variables) increases, the method becomes computationally prohibitive. 

Alternatively, the decomposition methods aim to address the problem efficiently 

by splitting it to easy and hard parts. Many hard problems are in fact easy problems 

complicated by a relatively small number of difficult constraints (Fisher, 2004). Such 

observations are greatly exploited by decomposition methods such that the decision 

variables are split into two sets, easy and hard. The two prominent decomposition 

methods are the GBD and OA which are investigated in this section.  

Underlying mathematical principles and the above mentioned algorithms for 

MINLP problems followed by a numerical example are provided in this chapter. Further 

details can be found in two text books (Floudas, 1995; Li and Sun, 2006). 

 

Figure 3.1, Outlook of solutions to the bi-level MINLP 

M
ake it 

Mixed integer nonlinear bi-level problem

Mixed integer nonlinear problem (MINLP) 

EnumeratiDecomposition

Branch and bound Benders decomposition Outer approximation 
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3.2 Solution algorithms for the MINLP  

The general formulation of  MINLP problems is (Li and Sun, 2006): 

),(min)( yxfMINP        (3.1) 

,0),(.. yxgts       (3.2) 

mn ZYyRXx  ,       (3.3) 

where X is a nonempty convex set in nR  (continuous variables) and Y  is a finite integer 

set in mZ (in case of binary variable mY }0,1{ ; gf , are convex in the space of ),( yx ).   

3.2.1 Generalized Benders decomposition (GBD)  

Consider MINLP (3.1) to (3.3), and let VS , to be solution space and feasible solution of 

the decision variable respectively as:  

}0),(|),{(  yxgYXyxS         (3.4) 

}0),(,|{  yxgXxYyV         (3.5) 

The algorithm starts with a feasible solution for decision variables at iteration 1i . Hence 

the MINLP becomes a nonlinear programing (NLP) problem as follows: 

),(min))(( ii yxfvyNLP         (3.6) 

,0),(.. iyxgts       (3.7) 

nRXx         (3.8) 

The )( iyNLP is solved and renders continuous variables ix . Given the newly found ix , the 

algorithm proceeds to find a new set of decision variables for the next iteration. Let’s 

relax the )(yNLP problem from the constraints using Lagrangian multipliers 0 : )(yd

),(.),(),,(min yxgyxfyxLXx   . Then the Lagrangian dual problem of )(yNLP  

becomes: )(max  yd . Furthermore, since )(yNLP is a feasible solution to the respective 

MINLP, its optimal value ))(( yNLPv yields an upper bound to MINLP, therefore: 

)),,(min(maxmin))((min),(min
),(

 yxLyNLPvyxf xVyVy
Syx




 (3.9) 

VyyxLztsz x  ),,,(min..min       (3.10) 
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where z is a lower bound to the optimal value of the original problem. The only 

constraints in equation (3.10) are called Benders cuts to the solution space which are being 

accumulated as the algorithm proceeds in the iterations. Therefore, the above mixed 

integer problem known as Master Generalized Benders Decomposition, MGBD can be 

rewritten as follows: 

zMGBDi min (3.11)
 

ikkkk
y

kkk TkyyyxLyxLzts  )).(,,(),,(.   (3.12)

Yy         (3.13) 

where iT represents the set of solutions ),( kkx  to )( iyNLP found up to the current iteration 

)(i . Now the GBD algorithm can be described as follows: 

Step 0. Initialization: Set iteration 1i and choose a feasible solution for decision 

variables Yyi  . Initialize lower bound and upper bound as 0lb , 0ub . 

Step 1. Calculate the upper bound: Solve )( iyNLP to obtain iix , . Update the value of best 

solution found so far by setting )},(,min{ 1 iiii yxfubub  . Save it as best solution 

),( ** yx if it is found to be the best solution so far.  

Step 2. Calculate the lower bound: Given iix ,  solve the master problem iMGBD to 

obtain optimal solutions of 1, ii yz .  

Step 3. Termination: Set ii zlb  , if ii ublb   stop and ),( ** yx is the optimal solution, 

otherwise set 1:  ii  and go to Step 1.■ 

Note that hereinafter, the GBD is sometimes referred to as Benders Method 

3.2.2 Outer approximation (OA)  

Similar to the GBD, the Outer Approximation (OA) alternates between solving a 

nonlinear programing sub-problem and a mixed integer linear programing master 

problem. The difference lies in how to derive the master problem. To this end, the OA 

exploits the gradient property of the problem both the objective function and the 

constraints. In fact the objective functions and the constraints are represented by their 

linear approximation as follows: 
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zMOAi min          (3.14) 

ikkkkkk Tkyyxxyxfyxfzts  ),).(,(),(.   (3.15)

ikkkkkk Tkyyxxyxgyxg  ),).(,(),(0  (3.16)

YyXx  ,       (3.17) 

where iT represents set of solution ),( kk yx found up to current iteration i , in other words: 

 }..1),(|{ ikyNLPsolvesxandVykT kkki        (3.18) 

Step 0. Initialization: Set iteration 1i and choose a feasible solution for decision 

variables Yyi  . Initialize lower bound and upper bound as 0lb , 0ub . 

Step 1. Calculate the Upper bound: Solve )( iyNLP to obtain ix . Update the value of best 

solution found so far by setting )},(,min{ 1 iiii yxfubub  . Save it as best solution 

),( ** yx if it was found the best solution so far.  

Step 2. Calculate the Lower bound: Given ix  solve the master problem iMOA to obtain 

optimal solutions of 11,,  iii yxz .  

Step 3. Termination: Set iilb  , if ii ublb   stop and ),( ** yx is the optimal solution, 

otherwise set 1:  ii  and go to Step 1.■ 

3.2.3 Branch and bound (BB)  

The basic idea of the BB is to partition the discrete solution space and discard non-

promising parts. To this end, the BB algorithm for the MINLP is made on the continuous 

relaxation of the integrality of variable y  over space of   y where  , are lower 

bound and upper bound of the respective discrete variable: 

),(min)( yxfCNLP        (3.19) 

      (3.20)

  yRyRXx mn ,,      (3.21) 

The continuous solution space is split into subsets and each subset is represented by a 

node on the tree structure of the BB method. The algorithm starts with a feasible solution 

as the best solution found so far, known as the incumbent solution. As the algorithm 

proceeds, the value of the objective function of the best feasible solution found is an upper 

,0),(.. yxgts
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bound to the original MINLP problem. At each node, the corresponding continuous 

nonlinear programing CNLP problem is solved in which the value of the objective 

function is a lower bound to the original MINLP problem (note that the CNLP is a relaxed 

version of the MINLP). If this lower bound is found to be greater than the value of the 

objective function of the incumbent solution, the respective subset is discarded. This 

process is called fathoming and it carries on until no subset is left. Subsequently a formal 

description of the BB can be written as follows: 

Step 0. Initialize the upper bound as *ub , find a feasible solution for the MINLP as 

the incumbent solution to be represented by the root node of the tree. Set the root 

node as the current node identified by 1c .  

Step 1. Solve the relaxed cCNLP problem, obtain continuous variables )..( 1
c
j

c yy  

corresponding to integer variables and )( cCNLPv the value of the objective function. 

Step 2. If *)( ubNLPv c  or the current node represents a feasible solution (all y are integer) 

then fathom the current node. Consider the current node as incumbent solution if 

the current node is a feasible solution and it renders better solution than the 

incumbent solution (i.e. the value of its objective function is lower than of the 

incumbent solution). Update the upper bound )),(min( ** ubNLPvub c . 

Step 3. If there is no unfathomed node left, stop, the incumbent solution is the optimal 

solutions. Otherwise, select an unfathomed node as the current node. Then choose 

a y  whose value in the current node is not integer ])[( yy  and split the solution 

space in two domains one by adding ][ yy  and the other one by 1][  yy in the 

constraints ( ][ y returns the first integer value before y ). Represent these two 

subareas by adding two branches at the end of the current node of the tree. Go to 

Step 1. 

3.3 A numerical example for GBD, OA and BB  

In this section using the above discussed algorithm a simple MINLP problem analogous 

to a network design problem is solved. Consider the network consisting of a single road 

or link (#4) connecting an origin-destination pair with travel demand of 10odq . The plan 

is to construct additional roads up to maximum three separate roads (#1, #2, #3). The 

available budget can afford maximum two roads )2;1( 321  Bccc  (note that B  
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represents the limited budget and 321 ,, ccc  denote the construction costs of roads 1, 2 and 

3 respectively. Figure 3.2 depicts the problem as well as the delay functions (cruise and 

waiting times combined) associated with the routes. Establish the objective function and 

the constraints. Find the best selection of the projects. 

 

Figure 3.2, A numerical example 

The objective function is defined as minimizing the total time spent on the system 

subject to budget and discrete constraints formulated as follows:  

44332211 5.25.125.),(min xxxxxxxxyxf        (3.22) 

     (3.23) 

 0. 11 yMx tCoefficienlagrangian  1  (3.24) 

 0. 22 yMx tCoefficienlagrangian  2  (3.25)

 0. 33 yMx tCoefficienlagrangian  3  (3.26) 

2321  yyy        (3.27) 

}1,0{...;0... 3141  yyxx      (3.28) 

where ix  represents the traffic flow on the respective roads, constraint (3.23) ensures that 

the traffic flow meets the travel demand. The iy is the binary decision variable, it is 1 if 

the respective candidate project is decided to be constructed and 0 otherwise. Given M as 

a sufficiently large value, constraints (3.24), (3.25) and (3.26) ensure zero traffic volume 

for a candidate project if the respective project is decided not to be constructed ( 0iy ). 

Constraint (3.27) is the budget constraint. 

Furthermore, given a feasible solution for the iy , constraints (3.24), (3.25) and 

(3.26) can be written either as 0ix or 10ix which can be considered as capacity 

10:.. 4321  xxxxts

 
  

d 

1 

2 

3 

4 

Delay functions :  

   t1(x1)=0.125.x1 

    t2(x2)=0.25.x2 

    t3(x3)=0.5.x3 

    t4(x4)=1.x4 

o 

Demand: 
qod=10 

x1
.. x4 traffic flow on respective 
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constraints. In other words, the ix traffic volume of road i  must be less than or equal to 

the right hand side value: either 0 or 10. Hereafter, constraints (3.24), (3.25) and (3.26) 

are referred to as capacity constraints. 

The optimal solution of the this example is )0,1,1(),,( 321 yyy , 

)8.0,0.0,1.3,1.6(),,( 321 xxx  and 7.7),(arg yxf . The computations provided in below were 

made using GAMS (2014) a leading optimisation software. 

GBD: 

The objective function of )( iyNLP can be defined by the Lagrangian multiplier method as 

follows: 

)(10.)5(.)25(.)125.(min),,( 33221144333222111
iii yyyxxxxxxxxyxL    (3.29) 

It is evident that 4..1,10  kxk , as the result, for 0ky  the respective constraint is binding 

which means: 0k  otherwise 1ky , 0k  hence 0. kk y  always holds. Therefore, the 

last term in the objective function is always zero. The value of )( iyNLP subject to

0...;10 414321  xxxxxx becomes: 

44333222111 .)5(.)25(.)125.(min))(( xxxxxxxxyNLPv i      (3.30) 

The Benders cuts at iteration i in the iMGBD are derived as: 

).(10).(10).(10))(( 333222111
kkkkkkk yyyyyyyNLPvz    where ik ..1   (3.31) 

Step 0. Set 0lb , 0ub , 1i choose feasible solution for binary variables

)0,0,0(),,( 0
3

0
2

0
1 yyy   

Step 1. Solve )( 1yNLP and obtain optimal solutions: )10,0,0,0(),,,( 1
4

1
3

1
2

1
1 xxxx ,

)20,20,20(),,( 1
3

1
2

1
1  and update the upper bound: }100))((,min{  ii yNLPvub  

Step 2. Solve the relaxed problem:  

}2;201020102010100..;min{ 1
3

1
2

1
1

1
3

1
2

1
1  yyyyyyztsz  

Also obtain the lower bound 3001 lb , and optimal solution )1,0,1(),,( 1
3

1
2

1
1 yyy . 

Step 3. Evaluate the termination condition 100300 11  ublb hence 1ii  and go to Step 

1.■ 



45 

 

The algorithm carries on and the optimum solution is found at the end of second iteration 

but the algorithm continues further to fill the gap between the upper and lower bounds till 

the forth iteration. The details of the calculations are shown in Table 3.1. 

OA: 

Given iy a feasible solution for the binary variables, the )( iyNLP can be solved using 

Lagrangian multipliers similar to what discussed in the GBD. It is obvious that in iMOA

the linear approximation problem at iteration i , the linearized constraints pertaining to 

),( kk yxg would reproduce the constraints in the example. Linearization of the constraints 

pertaining to the objective function ),( kk yxf leads to: 

Table 3.1 Results of generalized Benders decomposition method 

i Yi-1 Xi λi v(NLP(yi)) ubi lbi Yi 

1 0,0,0 0.0,0.0,0.0,10.0 20.0,20.0,20.0 100.0 100.0 -300 1,0,1 

2 1,0,1 7.3,0.0,1.8,0.9 0.0,1.8,0.0 9.1 9.1 -9.1 1,1,0 

3 1,1,0 6.1,3.1,0.0,0.8 0.0,0.0, 1.5 7.7 7.7 -7.7 0,1,1 

4 0,1,1 0.0,5.7,2.9,1.4 2.9,0.0,0.0 14.3 7.7 9.1 1,0,0 

}.)205.0()2025(.)20125(.min{))(( 1
4

1
4

1
3

1
3

1
2

1
2

1
1

1
1

1 xxxxxxxxyNLPv  	
}.5.)8.125(.125min{.))(( 2

4
2
4

2
3

2
3

2
2

2
2

2
1

2
1

2 xxxxxxxxyNLPv 

}.)5.15(.25.125min{.))(( 3
4

3
4

3
3

3
3

3
2

3
2

3
1

3
1

3 xxxxxxxxyNLPv  	
}.5.25.)9.2125(.min{))(( 4

4
4
4

4
3

4
3

4
2

4
2

4
1

4
1

4 xxxxxxxxyNLPv   
Benders cuts as constraints accumulated in successive iterations 
 
i=1: 201020102010100 1

3
1
2

1
1 yyyz   

i=2: 8.1101.9 2
2yz   

i=3: 5.1107.7 3
3yz   

i=4: 9.2103.14 5
1yz  	

)28.3)..(23.3(

..1|)(2)(5.2)(25.2)(125.2))((..

min

444333222111 ikxxxxxxxxxxxxyNLPvzts

z
kkkkkkkkk   (3.31) 

Step 0. Set 0lb , 0ub , 1i choose feasible solution for binary variables

)0,0,0(),,( 1
3

1
2

1
1 yyy   
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Step 1. Solve )( 1yNLP and obtain optimal solutions: )10,0,0,0(),,,( 1
4

1
3

1
2

1
1 xxxx , and update 

the upper bound: }100))((,min{  ii yNLPvub . 

Step 2. Given 4..1,1 jx j , 3..1,1 jy j  and ))(( 1yNLPv solve the linearized problem (3.31) and 

obtain the lower bound 1001  zlb  and optimal solutions of the relaxed problem 

and obtain the lower bound 3001 lb , and optimal solution )0,0,1(),,( 11
3

11
2

11
1  yyy

(and by-product of )0,0,10(),,( 11
3

11
2

11
1  xxx which will be superseded in step 1). 

Step 3. Evaluate the termination condition 100100 11  ublb , hence 1 ii and go to 

Step 1. ■ 

The algorithm carries on and the optimum binary solution is found at the end of the second 

iteration. Details of the calculations are shown in Table 3.2. 

Table 3.2 Results of outer approximation method 

i Yi Xi v(NLP(yi)) ubi lbi Yi+1 Xi+1 

1 0,0,0 0.0,0.0,0.0,10.0 100.0 100.0 -100 1,0,0 10.0,0.0,0.0,0.0 

2 1,0,0 8.9,0.0,0.0,1.1 11.1 11.1 
-
11.1 

1,1,0 0.0,10.0,0.0,0.0 

3 1,1,0 6.1,3.1,0.0,0.8 7.7 7.7 -7.7 0,0,1 0.0,0.0,10.0 0.0 

4 0,0,1 0.0,0.0,6.7,3.3 33.3 7.7 7.7 0,1,0 0.0,10.0,0.0 0.0 

Linear approximation of the last iteration iMOA : 
zmin  

10020.. 4  xzts  
1.112.22.2 41  xxz  

7.75.15.17.7 421  xxxz
 

3.337.67.6 43  xxz  
              (3.23)…(3.28) 

BB: 

Step 0: set *ub and the initial feasible solution as the incumbent solution: 

)0,0,0(),,( 0
3

0
2

0
1 yyy , 100* z  in the root node of the BB’s tree. Set the current node 

1c  

Step 1: Solve the relaxed (continuous) 1CNLP which renders optimal value of 

7.6)( 11  CNLPvub and solution )1.0,3.0,5.0(),,( 1
3

1
2

1
1 yyy . 
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Step 2: since  *1 7.6)( ubCNLPv the current node cannot be fathomed. Update the 

best upper bound ),7.6min(* ub . Since the current node does not represent a 

feasible solution hence it is considered as a unfathomed node. 

Step 3: if there is no unfathomed node, consider the incumbent solution as the optimal 

and terminate. Select the current node which is the only unfathomed node (so far) 

for branching. Then select 1y which has the maximum value for branching one with 

additional constraint 11 y and the other with 01 y  . This leads to two new nodes. 

Select the former as the current node and go to step 1. 

The configuration of the tree structure as well as the detail of calculations are shown in 
Table3.3 

Table 3.3 Results of Branch and Bound method 

i Yi Xi v(NLPi) 

0 0,0,0 0.0,0.0,0.0,10.0 100.0 

1 0.5,03,0.1 5.3,2.7,1.3,0.7 6.7 

2 1,0.3,0.1 5.3,2.7,1.3,0.7 6.7 

3 1,1,0 6.1,3.1,0.0,0.8 7.7 

4 1,1,0.2 7.3,0.0,1.2,0.9 9.1 

5 0,0.6,0.3 0.0,5.2,2.9,1.4 14.3 

 

3.4 Conclusion  

In terms of solution algorithm for the mixed integer nonlinear bi-level programing:  

 The BB algorithm has a simple structure but it becomes RAM intensive for large 

scale networks. Furthermore, the key to obtaining an efficient BB algorithm is the 

 1≤ y1  y
1
≤ 0 

 1≤ y
2
  Y

2
≤ 0 

1 

2 5 

4 3 

1  Node number 

Optimal solution 
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size of discarded solution spaces due to comparison between lower bounds and 

incumbent value. There is no guarantee for such cuts. In case of not many cuts, the 

BB would have no superiority over an exhaustive enumeration. In fact, the BB adds 

additional computation burden for computing the lower bounds.  

 The GBD is an effective method for a variety of mixed integer problems. The main 

issue dwells on the Lagrangian coefficients of the binary constraints. For example, 

for the network design problem, the traffic assignment as a nonlinear programing 

problem is widely solved using the famous Frank-Wolfe algorithm (Patriksson, 

1994) which does not render the Lagrangian coefficients. Furthermore, the traffic 

assignment problem (TAP) has to be treated as a capacitated TAP. To this end the 

Lagrangian coefficients of the capacity constraints are treated as side constraints to 

the NLP for which some customised solution algorithms such as augmented 

Lagrangian methods (ALM) or Inner Penalty Methods (IPM) are employed 

(Larsson and Patriksson, 1995; Nie et al., 2004). The major stumbling blocks of the 

application of these methods are as follows: (i) the computational expense is 

significant, some studies have shown it to be four times that of a non-capacitated 

TAP (Bagloee and Sarvi, 2015a; Larsson and Patriksson, 1995), (ii) in some of the 

above-mentioned methods, there exists a number of parameters for which the 

calibration is a non-trivial task. (iii), In addition, arriving at an initial feasible 

solution at the outset of the algorithms’ computation is also a non-trivial challenge. 

It is worth noting that, given the Lagrangian values of the capacity constraints, the 

respective mixed integer sub-problem can be solved efficiently which is the main 

selling point. 

 The OA compared to the GBD doesn’t require any element of the Lagrangian values 

of the side constraint. Instead, the respective mixed integer sub-problem comes with 

a high number of constraints and variables to linearize the traffic assignment. As 

the result the computational time becomes a prohibitive factor. 

In summary, the BB has a simple structure to be embedded in any application, 

nevertheless the efficacy and computational burden are the main factors to take into 

account. The GBD is highly efficient but comes at the cost of Lagrangian values, for 

which arriving at an efficient method is a worthy effort. To this end, in the next chapter a 

method dubbed inflated travel time to solve a capacitated TAP as well as the Lagrangian 
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values of the constraint is developed and described. The OA does a very good job as long 

as the size of the problem is not significant.  
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4 CAPACITATED TRAFFIC 

ASSIGNMENT PROBLEM 
The Benders decomposition method calls on the Lagrangian values of the capacity 

constraints in the traffic assignment. In addition, the capacity constraints can represent 

many realistic features but they are largely ignored in practice due to mathematical 

complexities in the application of the methods proposed in the literature. In this chapter, 

such complexities are relaxed by adopting an intuitive interpretation for the Lagrange 

values of the capacity constraints. Given an over-saturated road (traffic volume greater 

than capacity), its travel time is artificially increased at a gradual pace such that the 

excessive traffic volume decreases to zero. This artificially travel time is interpreted as 

the Lagrange values of the capacity constraint. In other words, the Lagrangian value is in 

fact a penalty added to the travel time of the over-saturated links to discharge the 

excessive flow. This penalty term bears some similarity to the marginal cost of the system 

optimal. Hence the capacitated traffic assignment problem (TAP) becomes a normal 

uncapacitated TAP in which the aforementioned additional penalty is updated iteratively. 

The proposed method is flexible enough to be embedded in solution algorithms for the 

TAP such as Frank-Wolfe. 

4.1 Introduction 

In the traffic analysis, the TAP is referred to as the problem of calculating traffic flow on 

a network for a given origin-destination travel demand. The widely recognised model for 

traffic flow is based on Wardrop principals ensuring commuters seeking shortest (least 

cost) paths that leads to user-equilibrium traffic flow (Boyce, 2013, 2014; Marcotte and 

Patriksson, 2007). Aggregation of travel times of the roads constituting a path is 

considered as the travel time of the respective path. The cost is considered as a collection 

of dis-utilities faced in making a trip such as travel time, fuel costs and parking fees - 

commonly referred to as (general) travel cost/time. Travel times on a road are considered 

as a non-decreasing functions of traffic volume –namely delay function- which need to 

be calibrated based on a field data (notably traffic count/survey). In order to maintain the 
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TAP to be mathematically and computationally amenable, no capacity constraints are 

considered for the delay functions. As such one may find over-saturated links in the 

equilibrium solution of the TAP. In other words, the issue of queues building up in the 

over-saturated roads is overlooked. Consideration of queue in traffic flow is however 

addressed in dynamic traffic assignment (DTA) which is still an active field of research 

(Nie et al., 2004; Shahpar et al., 2008). Capacity constraints are also studied under a 

broader umbrella, referred to as side constraints in the literature. In addition to the true 

meaning of capacity which is the physical capacity of the road to process a certain amount 

of traffic, many realistic features that are left-out can also be brought into the problem, 

embodied as side constraints such as: (i) refinement of the traffic equilibrium (Ferrari, 

1997; Larsson and Patriksson, 1999), (ii) environmental constraints (Chen et al., 2011a), 

(iii) replicating traffic count s(Bell et al., 1997), (iv) traffic control (Yang and Bell, 1997), 

(v) congestion pricing (Yang and Bell, 1997), (vi) queuing effects  (Larsson et al., 2004), 

(vii) combined/integrated modelling (Ryu et al., 2014). Moreover, as noted before, the 

main motive is to solve the DNDP. In particular, in the Lagrangian based algorithms for 

DNDP such as Benders decomposition or Lagrangian relaxation, one needs to solve an 

capacitated traffic assignment (Bagloee and Ceder, 2011; Bagloee et al., 2013b; Gao et 

al., 2005; Mesbah et al., 2011a; Mesbah et al., 2011b). Therefore, given the widespread 

applications of conventional (static) traffic assignment models in the industry, 

improvement to the method to make it more realistic, is a worthwhile endeavour (FHWA, 

2002; Larsson and Patriksson, 1999).  

The efforts to address capacitated traffic assignment problems (CTAP) can be 

classified in two general groups:  (i) Lagrangian multipliers and (ii) penalty functions. In 

addition to mathematical complexities, the main challenge of these methods is the number 

of parameters that need to be calibrated. As such, despite the interests in the industry and 

among practitioners, the commercial software has not yet met this demand. 

Alternatively, in this study the mathematical complexity of the CTAP is overcome 

by adopting an intuitive interpretation of capacity: the Lagrangian multipliers are 

interpreted as additional delay incurred, up to the level at which the traffic volume does 

not exceed capacity.  Hence the CTAP becomes a conventional un-capacitated TAP in 

which the aforementioned additional delay is updated iteratively. The proposed concept 

is flexible enough to be implemented in commercial transport planning packages. As such 

it can be coded as an open-source “macro” to be easily used in EMME 3 – a leading 
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transport planning software. The proposed algorithm is compared with previous studies 

using the Hearn benchmark example. Furthermore, the practical merits of the proposed 

algorithm are also examined using a real dataset from the city of Winnipeg, Canada.  

Throughout this chapter, it is assumed that: (i) travel demand is fixed (ii) the users 

have full understanding of the travel time and (iii) neither demand nor travel time change 

over time. Hence it is a deterministic and static traffic assignment. 

The relevant studies in the literature are reviewed in the next section. The concepts 

and underlining mathematical features of the methodology are elaborated on section 4.3. 

Numerical results are presented in Section 4.4 followed by a conclusion. 

4.2 Literature review 

The TAP is traditionally solved by the Frank-Wolfe (FW) method based on a proposition 

by which the problem can be decomposed to linearized subproblems, equivalent to single-

commodity shortest path finding problems. Explicit injection of the side constraints will 

obliterate the aforementioned proposition and turns the problem to a “multi-commodity 

least cost flow” which is by far more difficult to solve (Marcotte and Patriksson, 2007). 

Various aspects of the complexities involved in the CTAP have been comprehensively 

discussed in the literature (Larsson and Patriksson, 1995, 1999; Patriksson, 1994). The 

first mathematical remedy for the CTAP was to consider an asymptotical road delay 

function at capacity (Daganzo, 1977a, b), that is, as the traffic volume gets close to the 

capacity, the travel time tends to infinity. Such methods come at unbearable costs of 

numerical disorder near capacity flows, unrealistic high travel time and strange rerouting 

of trips (Boyce et al., 1981; Chen et al., 2011a; Ferrari, 1997; Patriksson, 1994). 

Another method is to maintain the TAP as an uncapacitated problem by moving 

the side constraints to the objective function using two general methods: Lagrangian 

multipliers (Hearn and Ribera, 1980; Larsson and Patriksson, 1992, 1995; Larsson et al., 

2004; Nie et al., 2004) or penalty function (Hearn, 1980; Inouye, 1987; Morowati-

Shalilvand and Mehri-Tekmeh, 2013; Nie et al., 2004; Prashker and Toledo, 2004; Ryu 

et al., 2014; Shahpar et al., 2008; Yang and Yagar, 1994, 1995). For the former, the 

objective function is augmented to accommodate the Lagrangian exterior penalty terms 

representing the capacity constraints which is called the augmented Lagrangian method 

(ALM). At every iteration, a new solution is found and the corresponding Lagrange 

multipliers are updated until a termination criterion is met. For the latter, which is also 
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referred to as inner penalty function (IPF), the iterative solution algorithms for the TAP 

such as FW can still be used, but the links exceeding their capacities are penalized in the 

objective function. Nie et al. (2004) concluded that achieving a feasible solution using 

the ALM is a challenge, instead the IPF methods always render feasible solutions but at 

a cost of longer computation time. 

Larsson et al. (2004) proposed a column generation method for the CTAP with 

linear side constraints which in essence is a IPF method. The computational time is 

improved largely from the adoption of a dual stabilization scheme but the algorithm needs 

to start from a strictly feasible solution which itself is a challenging. The proposed 

algorithm has yet to be examined in real size networks. 

Shahpar et al. (2008) developed a method based on a dynamic penalty function 

(DPF) for which the traffic assignment is solved with a complementarity method. The 

proposed algorithm is enable to solve two types of side constraints: link constraints and 

node constraints. 

Further to the mathematical complexities involved, the main challenge with these 

methods is the number of parameters to be calibrated. For instance, the initial choice of 

Lagrangian values plays a crucial role in the overall performance of the ALM (Bertsekas, 

1982; Nie et al., 2004). The same is the case for IPF in setting up penalty parameters to 

be used in objective functions. Therefore, one has to resort to a trial-error effort to come 

up with appropriate parameters which varies from scenario to scenario.  

4.3 Mathematical features 

In this section, the CTAP is first formulated and the Lagrangian values of the capacity 

constraints are discussed and interpreted. 

4.3.1 Formulation for capacitated traffic assignment problem (CTAP) 

Consider ),( ANG a traffic network as a graph consisting of AN ,  sets of nodes and links 

respectively on which NDO , are sets of origins and destinations. The CTAP can be 

formulated as a non-linear programing problem as follows (throughout this chapter, all 

terms are non-negative unless otherwise stated): 

[CTAP]:   Aa
ax

a dxxtxz 0 )()(min        (4.1) 

s.t.: DdOoqf odp
od
p  , --Lagrangian multipliers --  odw  (4.2) 

DdOoPpf od
od
p  ,,0     (4.3) 
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DdOoPpAafx odo d p
od

pa
od
pa     ,,,. ,    (4.4) 

AaCx aa  -----Lagrangian multipliers --- a  (4.5) 

where z : the objective function to be minimized; ax :traffic flow on link a ; )( xt a : the 

delay functions are assumed to be non-decreasing, convex and separable; odq : travel 

demand from o to d ; od
pf :the flow on path from o to d ; odP : set of all possible paths from 

o to d ; od
pa, :the link-path incidence (1: if link a  belongs to path p  from o to d , and 0 

otherwise); aC : the capacity of link a . 

It has been proven that the CTAP subject to linear constraints is a strictly convex 

problem which renders a unique global optimal solution of link flows (Hearn, 1980; 

Inouye, 1987; Larsson and Patriksson, 1995; Marcotte and Patriksson, 2007; Nie et al., 

2004; Patriksson, 1994). Let us consider aodw , as Lagrangian multipliers for travel 

demand and capacity constraints respectively, hence the Karush-Kuhn-Tucker (KKT) 

conditions are established as: 

DdOoPpwuf odAa oda
od

pa
od
p

od
p    ,,0).( ,      (4.6) 

0)(  aaa xC           (4.7) 

0.,   Aa oda
od

pa
od
p wu         (4.8) 

0 aa xC           (4.9) 

DdOoPpf od
od
p  ,,0     (4.10) 

Aaa  0       (4.11) 

DdOoqf odp
od
p  ,      (4.12) 

where   Aa a
od

pa
od
p tu ., is total travel time of the respective path. Let od

pû be the “inflated” 

travel time of the respective path as:  

   Aa aa
od

pa
od
p tu )(.ˆ ,           (4.13) 

Introduction of (4.13) into (4.6) and (4.8) results in: 

DdOoPpwuf odod
od
p

od
p  ,,0)ˆ(     (4.14) 

0ˆ  od
od
p wu           (4.15) 

With respect to equations (4.14) and (4.15), it is proven that odw  is the travel time of the 

shortest path from o to d , hence, if path p takes some traffic volume )0( od
pf , it is 

certainly the shortest path )ˆ( od
od
p wu  . In other words the first principle of Wardrop holds 
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and the global optimum solution of the CTAP is user-equilibrium traffic flow (Larsson 

and Patriksson, 1995; Nie et al., 2004; Patriksson, 1994). According to equations (4.7), 

(4.9) and (4.11), if the capacity constraint is binding which means saturation )( aa Cx  , then 

the corresponding langrage multipliers are non-zero )0( a , otherwise it is zero. There 

are two terms contributing to the inflated travel time (equation (4.13)): normal or cruise 

travel time and beta. Beta has been interpreted as additional delay or waiting time caused 

by the queue built up on the over-saturated links (Larsson and Patriksson, 1995; Marcotte 

et al., 2004; Marcotte and Patriksson, 2007; Nie et al., 2004; Patriksson, 1994; Shahpar 

et al., 2008; Yang and Yagar, 1994, 1995). 

Alternatively beta can be interpreted as a deterrence penalty imposed on the over-

saturated roads to keep them at their respective capacities. This interpretation is utilized 

to develop a straightforward methodology to easily solve the CTAP.  

4.3.2 Mathematical features 

Let us consider the delay function ))(1(.0
aaa xftt  where 0

at  is free flow travel time on 

link a and 0)( axf is a non-decreasing and convex function of ax such that 0|0)(  aa xxf

. The aforementioned function can accommodate a variety of known delay functions 

including the widely used function proposed by US Bureau of Public Roads (BPR delay 

function) (Spiess, 1990). As such, the message is intuitive and simple: as long as the road 

is empty or uncongested, the travel time is the free flow travel time )0( 0
aaa ttx  ; as the 

traffic builds up, the travel time increases, certainly higher than the free flow travel time, 

one can consider it to be a factor of 0
at , where the factor is greater than 1 )1))(1(:..(  axfei . 

According to equation (4.13), at̂ the inflated travel time for each “saturated” link a  can be 

formulated as:  

))(1().(ˆ 0
aaaa xfbtt           (4.16) 

))(1(.ˆ
aaaaa xfbtt          (4.17) 

where ab  is an additional penalty in the free flow time in equation (4.16). In other words, 

it is the value of beta at 0ax , hence referred to it as “initial beta”. The travel time in the 

CTAP is replaced by the inflated travel time )ˆ( aa tt   and the capacity constraint is also 

dropped since the beta-Lagrangian multipliers of the corresponding capacity constraint 

does now contribute in the travel time. Therefore, the CTAP is transformed to a 

(uncapacitated) TAP. If the global optimum value of beta (in the CTAP), is already known 
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one just needs to simply solve the TAP using any known algorithm such as FW or any 

commercial transport planning software. Of course it is not the case, hence, values of the 

betas are updated iteratively in the course of solving the TAP as explained in the following 

section. Moreover, the value of beta is zero unless the corresponding road is saturated. In 

other words equations (4.16) and (4.17) apply only to the saturated links. In the case of 

saturation flow, a non-zero value is assigned to beta and it is set to be updated in the next 

iteration.  

4.3.3 Heuristic method to update the (initial) beta 

The concept embedded in equations (4.16) and (4.17) is to uplift the delay function of the 

saturated links until the traffic volume stabilizes at capacity. Hence the value of the initial 

beta in the delay functions is iteratively updated for which the main challenge is to 

progressively stride towards convergence and user equilibrium. The amount of additional 

delay to be added to obtain the inflated travel time is derived from the concept of marginal 

cost proposed as follows (Beckmann et al., 1956; Patriksson, 1994; Sheffi, 1985) : 

aaaaaaaa xxtxxtxt  /)(.)()(~         (4.18) 

where )(~
aa xt  is the marginal cost or travel time experienced by an additional commuter 

added to already, ax commuters on link a , and aaa xxt  /)( is the additional travel time 

experienced by each driver among ax . The marginal cost enforces system optimal flow, 

with better and more uniformly distributed traffic across the network such that 

underutilized roads will take additional traffic off the saturated links. This notion is 

exploited to enforce a capacitated traffic assignment. Hence aaaa xxtx  /)(. the additional 

delay imposed on the respective link is considered as a template to update the initial betas 

as follows: 

))(1().( )(0)(
, a

i
aa

i
Ca Cfbtt          (4.19) 

a

i
Ca

i
a

a
i

a
i

a C

tt
Cxb

)(
,

)(
)()( ).(


         (4.20) 

)()()1( i
a

i
a

i
a bbb           (4.21) 

where superscripts i  and a denote the current iteration and respective saturated link; )(
,
i
Cat  

is the travel time at capacity )( aa Cx   over inflated delay function; )(i
ab is initial beta or an 

additional penalty to free flow travel time )( )(i
ab ; )(i

ab is the pace of the initial beta 

computed at current iteration while )1( i
ab is the updated initial beta computed for the next 
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iteration, initialized to zero )0( )1( ab . It is evident that equation (4.20) follows the 

aforementioned template where the pace value is proportional to excessive traffic volume 

as well as the difference of current travel time and travel time at capacity normalised by 

the capacity. In Figure 4.1, exhibition-1, the above formulations of equations (4.19) to 

(4.21) for three iterations on the (inflated) delay function are shown graphically.  

 

Figure 4.1 Conceptual representation of the proposed methodology on the road delay 
functions 

In the first iteration when there is no initial-beta )0( )1( ab , the volume stands at aa Cx )1( , 

and 0)1(  ab  the pace is computed as shown graphically in Figure 4.1 (a) which shifts up 

the delay function for the next iteration )0( )1()2(
aa bb  . In the second iteration the volume 

still stands above capacity )( )2(
aa Cx  (see Figure 4.1 (b)), hence value of the pace 

)0( )2(  ab is corrected followed by updating the initial-beta to be carried over to the next 

iteration to uplift the delay function )( )2()2()3(
aaa bbb  . The third iteration is executed and 

the volume stands at capacity )( )3(
aa Cx  (see Figure 4.1 (c)). Three key words or 

components of the proposed algorithm are shown in the figure which is beta )( a , initial-

beta )( ab and the pace )( ab . During this progressive approach, in an intermediate iteration, 
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if a saturated link is found unsaturated (see Figure 4.1 (d) versus Figure 4.1 (e)), its 

corresponding penalty is nullified )|0( )()1(
a

i
a

i
a Cxb   (see Figure 4.1. (f)). This process is 

shown in Figure 4.1, exhibit-2.  

The above measures to compute the initial-beta at each iteration can be summarized by 
two rules: 












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)1(

0

)20(
    (4.22) 

4.3.4 Termination conditions 

The proposed algorithm is developed based on a solution algorithm for TAP such as FW. 

Hence, given fixed rates of the initial-betas, the solution algorithm itself needs to 

converge and meet its own termination criteria which is mainly driven by a relative gap. 

Boyce et al. (2004) recommended a relative gap of 0.01% to ensure convergence to link 

flow stability. 

It is also expected that the initial-betas show convergence behaviour over the 

successive iterations. Given the gradual built up of the initial-beta, one convergence 

criteria can be considered as reaching at enough small values for the pace in descending 

manner which is defined as follows: 

 |ˆ/| )(
max a

i
a

a
tb          (4.23) 

where   is a small value called the relative pace value. Numerical results show that 1% 

as relative pace value is sufficient to obtain reliable results. Consequently, the algorithm 

does not terminate unless both criterions, the relative gap and the relative pace values 

have been met.  

4.3.5 Capacity feasibility 

In case where travel demand is higher than the capacity of the network, the problem 

becomes infeasible. It is important for any algorithm to have some mechanism to detect 

and address these infeasibility cases. To this end one can introduce a dummy node 

connected with all zones via uncapacitated links associated with fixed and high travel 

times. Therefore, problems always become feasible with solutions at the end and those 

left with residual traffic on the dummy link are detected as capacity-infeasible cases. 

Similar to the terminology used in the literature, for ease of reference, the 

proposed methodology can be referred to as the “inflated travel time” (ITT) method. 
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Dummy links not only obviate any feasibility concerns, they are also used to 

replicate reality. Therefore, consider a single origin-destination (OD) connected via a 

single road with capacity of 10 vehicles. Faced with 15 vehicles demand, the algorithm 

allows 10 vehicles to enter on the road while 5 vehicles have no chance to get on the road 

and instead they use the dummy links as leftover flow. In reality these excess 5 vehicles 

have no choice except changing their departure times which is also studied separately in 

the literature. In other words, the residual demand remains off the network until the next 

available traffic assignment interval, which is discussed under dynamic traffic assignment 

literature (Zhong et al., 2011). 

4.4 Numerical results 

This methodology has been coded into a “macro”, that is the programing language of 

EMME 3 (INRO, 2009). A desktop PC with a 3.70GHz CPU and 64 GB of RAM” is 

employed. In order to provide a comparative analysis with literature, the benchmark 

network of Hearn is used for numerical evaluation. The ITT algorithm has been further 

applied to large-scale benchmark network, the city of Winnipeg, Canada. 

4.4.1 Hearn’s benchmark case study 

The Hearn benchmark problem consists of 4 ODs, 9 nodes and 18 links associated with 

BPR delay functions )4)^/.(15.01(( 0
aaa Cxt   which has been previously employed to 

comparatively analysing the IPF (Nie et al., 2004) and the ALM (Larsson and Patriksson, 

1995; Nie et al., 2004) as well as the DPF (Nie et al., 2004; Shahpar et al., 2008). The 

ITT algorithm is applied to Hearn’s benchmark problem and the results are shown in 

Table 4.1. The global optimal solution of the problem has also been reported in the 

literature (Shahpar et al., 2008) and is presented in Table 4.1. Since these methods have 

been coded in different software and implemented with different computers, the reported 

computational time cannot be used for comparisons. Alternatively number of attempts to 

solve the shortest paths which consumes a significant CPU time (Sheffi, 1985) is 

considered as a relatively fair comparison basis (Shahpar et al., 2008). Moreover, 

compared to attempts required by the FW algorithm which is also used in the ITT, the 

other methods endure extra effort. For instance in the DPF which is a path based method 

each iteration comprises some inner iterations. Hence, each iteration in the ALM, the IPF 

and the DPF is equivalent to 2 or 3 (or a factor bigger than 1) iterations in the FW or the 
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ITT. Accordingly, for the purpose of fair comparisons, the ITT algorithm was run using 

156 FW iterations (identical to that of the ALM). 

Table 4.1 Hearn network: comparisons results. 

n i j 0t  C  

 Optimal 
(Shahpar et al., 
2008) 

 IPF(Nie et al.,
2004) 

 ALM(Nie et
al., 2004) 

 DPF(Shahpar 
et al., 2008) 

 
ITT (this study) 

 
x     

x     
x     

x     x    t  t̂  b % b

1 1 5 5 12.02 
 
12.02 0.13 

 
12.02 0.14 

 
12.02 0.22 

 
12.02 0.16  12.02 0.55 5.75 6.30 0.00 0.41

2 1 6 6 18.02 
 
17.98 0.00 

 
17.98 0.00 

 
17.98 0.00 

 
17.98 0.02  17.98 0.00 6.89 6.89 0.00 0.00

3 2 5 3 43.59 
 
43.59 5.85 

 
43.59 5.92 

 
43.59 5.94 

 
43.59 5.9  43.70 7.07 3.45 10.52 0.03 5.32

4 2 6 9 26.59 
 
26.41 0.00 

 
26.42 0.00 

 
26.42 0.00 

 
26.41 0.01  26.30 0.00 10.29 

10.2
9 

0.00 0.00

5 5 6 1 50.00 
 
0.00 0.00 

 
0.14 0.00 

 
1.21 0.00 

 
0.31 0.00  0.36 0.00 1.00 1.00 0.00 0.00

6 5 7 5 25.00 
 
20.61 0.00 

 
20.46 0.00 

 
19.4 0.00 

 
20.30 0.00  20.27 0.00 5.32 5.32 0.00 0.00

7 5 9 2 35.00 
 
35.00 0.78 

 
35.00 0.77 

 
35.00 0.68 

 
35.00 0.74  35.09 0.45 2.30 2.75 0.10 0.33

8 6 5 1 50.00 
 
0.00 0.00 

 
0.00 0.00 

 
0.00 0.00 

 
0.00 0.00  0.00 0.00 1.00 1.00 0.00 0.00

9 6 8 5 25.00 
 
20.41 0.00 

 
20.46 0.00 

 
20.66 0.00 

 
20.30 0.00  20.51 0.00 5.34 5.34 0.00 0.00

10 6 9 2 35.00 
 
23.99 0.00 

 
24.07 0.00 

 
24.95 0.00 

 
24.40 0.00  24.12 0.00 2.07 2.07 0.00 0.00

11 7 3 3 25.00 
 
25.00 5.58 

 
25.00 5.76 

 
25.00 5.59 

 
25.00 5.55  25.04 6.39 3.45 9.84 0.06 4.81

12 7 4 6 24.00 
 
24.00 0.54 

 
24.00 0.54 

 
24.00 0.54 

 
24.00 0.54  24.04 0.57 6.91 7.48 0.00 0.43

13 7 8 1 50.00 
 
5.60 0.00 

 
5.57 0.00 

 
5.34 0.00 

 
5.70 0.00  5.46 0.00 1.00 1.00 0.00 0.00

14 8 3 8 39.00 
 
15.00 0.00 

 
15.00 0.00 

 
15.00 0.00 

 
15.00 0.00  14.96 0.00 8.03 8.03 0.00 0.00

15 8 4 6 43.00 
 
36.00 0.00 

 
36.00 0.00 

 
36.00 0.00 

 
36.00 0.00  35.96 0.00 6.44 6.44 0.00 0.00

16 8 7 1 50.00 
 
0.00 0.00 

 
0.00 0.00 

 
0.00 0.00 

 
0.00 0.00  0.09 0.00 1.00 1.00 0.00 0.00

17 9 7 2 35.00 
 
33.99 0.00 

 
34.07 0.00 

 
34.95 0.00 

 
34.4 0.00  34.18 0.17 2.27 2.44 -0.13 0.13

18 9 8 2 25.00 
 
25.00 0.97 

 
25.00 0.99 

 
25.00 0.99 

 
25.00 0.98  25.04 1.30 2.30 3.60 0.01 0.98

No of iterations  N.A.  156  84  26  156 

obj function  1572.27  1572.31 11572.36  1572.29  1571.45 

obj fn error%  0.000  0.002  0.006  0.001  0.053 

total flow error  0.00  0.54  4.86  1.65  1.86 

max (x/C)% 
.
100.0000  N.A.  N.A.  99.9992  100.5589 

Note: ALM: Augmented Lagrangian Method;  IPF: Inner Penalty Function; DPF: Dynamic Penalty
Function; ITT: Inflated Travel Time; n:Link no; i:start node; j:end node; 0t :free flow travel time; C : link
capacity; x :traffic volume;  :beta or additional delay due to queue; t :cruise travel time = )4)^/.(15.1(0 Cxt 

; t̂ :inflated travel time = t ; b % pace value at the last iteration; b :initial beta or additional penalty added
to free flow travel time; total flow error: sum of difference of the links volumes of the respective method
versus the global optimal in absolute values 

As per Table 4.1 all methods including the ITT renders similar traffic flows close to the 

global solution. In addition to the traffic flow and beta values, the cruise travel time, 

inflated travel time, pace values and the initial values are also reported in Table 4.1. The 
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maximum pace values were found to be 0.0013, equivalent to relative pace value of 0.05% 

= 0.0013/2.44 which is far below the maximum accepted level of 1%.  

Across all the results, there are consistently six saturated links (highlighted in the 

table with bold font). It is evident that compared to other methods the capacity constraints 

are not strictly held in the ITT. However, it is trivial and negligible in practice, such that 

the maximum volume per capacity stands only slightly higher than the capacity 

(1.005589). Such slight relaxation results in reaching a value for the objective function 

slightly lower than the optimal value (0.053%). In terms of total differences of the traffic 

volumes versus the optimal volumes, ITT is as good as other studies reported here. Figure 

4.2 depicts the convergence behaviour of the proposed algorithm graphically.  

In Figure 4.2(a) the Beckmann value consistently converges to the optimal value 

with some trivial fluctuations. The same behaviour is also seen for the total amount of 

violating capacity constraints which converges to zero. Methods such as the IPF try very 

hard to abide by the capacity constraints during the successive iterations at excessive 

computational costs (Nie et al., 2004), In other words these algorithms converge to the 

capacity level strictly from one side of the constraints (below capacity). But in the method 

developed here the capacity constraints are relaxed across all iterations in such a way, the 

volumes on the saturated links approach the capacities from both sides of the constraints. 

That is why the Beckmann value converges in an ascending manner. Figure 4.2(b) also 

demonstrates how the six saturated links converge to their respective capacities. It is 

important to note that the ITT gains much of its convergence in earlier iterations (say 

iteration 50) compared with other methods. In the light of being essentially a heuristic 

method such efficient convergence behaviour is interesting. 

4.4.2 Large sized Winnipeg case study 

Large scale transport data of the city of Winnipeg, Canada which is widely used as a 

benchmark network in the literature (Bar-Gera, 2016) was used for numerical tests (it was 

also provided by INRO (INRO, 2009) as part of EMME 3 application software). The case 

study comprises of 154 zones, 903 nodes, 2,995 directional links with an hourly travel 

demand of 56,219. The delay functions comply with the general format of BPR functions. 

First, given a relative gap of 0.0001, the traffic assignment without any capacity 

constraints (TAP) is solved which elapses 18 seconds and it terminates at iteration 561 

with a Beckmann value of 798,531. Second, the ITT algorithm is carried out to solve the 
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capacitated traffic assignment problem (CTAP). Based on the relative pace of 1% the 

algorithm terminated at iteration number 2,164 within almost 3 minutes computation 

time, in which a Beckmann value of 1,186,670 was obtained. It is worth noting that that 

number of iterations required to solve the CTAP versus that of the TAP (3.8=2164/561) 

is close to 4 which was experienced by Larsson and Patriksson (Larsson and Patriksson, 

1995) in applications of the ALM. The residual flow on the dummy links was found to 

be 144 (equivalent to 72 =144/2 out of 56,219 trips). The algorithm is run for further 

interactions up to 2,500 to investigate the convergence behaviour of the algorithm as 

shown in Figure 4.3. 

Figure 4.3(a) shows that the flows initially taken by the dummy links are 

discharged until iteration around 1200, and it stabilizes around a solid level, hence the 

residual flow is the excess demand. As it is evident from Figures 4.3(b) and 4.3(c), the 

algorithm shows chaotic behaviour in most the first half of the iterations and it then 

stabilizes and converges. Similar chaotic behaviour in earlier iterations has been reported 

in literature (Shahpar et al., 2008). Such chaotic behaviour ought to be caused by 

excessive demand which leads to heavy flow on the dummy links in the earlier iterations. 

This hypothesis was examined in two scenarios by running the algorithm under all things 

being equal except the demand: one with half and the other with two-thirds of the travel 

demand. No excessive demand was found, the dummy links were spared from taking any 

traffic flow and chaotic behaviour never happened. Figure 4.3(c) illustrates the 

convergence of the Beckmann value. It is interesting to see that contrary to the results of 

the Hearn case study, the Beckmann value of the Winnipeg case study converges in an 

ascending fashion. One reason could be the fact that a significant number of the links in 

the Hearn case are saturated or capacity binding (6 out of 18 = 33%). As discussed before, 

our approach of relaxing the capacity constraints enables the algorithm to converge to the 

capacity from both sides of the constraints. But, for the Winnipeg case, only 162 links out 

of 2995 links (5%) were found to be capacity binding. Hence the capacity relaxation does 

not significant change the convexity of the convergence curve.  

Furthermore, the first 4 top saturated links (the ones with highest volume-per-

capacity ratio) in the last iteration are singled out and shown in Figure 4.4 (links are 

identified by “start node-end node”). As such the maximum volume-per-capacity ratio 

was found to be 1.0039.  Figure 4.4(a) shows the way those links converge to their 

respective capacities. For instance, link 759-760 takes no flow until around iteration 400, 
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from that point onward, it starts to attract discharged flow from the saturated links. Figure 

4.4(b) also shows variation of initial betas for the aforementioned links which are very 

high in the earlier iterations of the chaotic period and then stabilize from iteration 1500 

onward. 

 

Figure 4.2 Hearn network: (a) convergence, (b) fluctuation of flows on the saturated links. 
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Figure 4.3 Winnipeg network results: (a) residual flows, (b) pace values, (c) convergence. 
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Figure 4.4 Winnipeg network results, 4 top saturated links: (a) fluctuation of flow, (b) 
Initial-Beta. 
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The impact of the excessive demand on traffic assignment was further studied. 

First it is needed to derive the corresponding demand matrix out of the excessive flow 

accumulated over the dummy links to be deducted from the total travel demand. This is a 

popular exercise among, practitioners known as the “select link analysis” (Boyce and Xie, 

2013). An EMME3 macro was prepared to conduct the “select link analysis” which 

resulted in a sub-matrix of total excessive demand of 72.6 vehicle trips at the end of 

2,500th iteration. This sub-matrix was taken off the original matrix and the resultant 

matrix was assign on the network. Subsequently the results are graphically shown in 

Figure 4.5. The total traffic flow accumulated on dummy links over 2,500 iterations for 

both scenarios (with and without excessive demand) are illustrated in Figure 4.5 (a). It is 

clear that the excessive demand of 72.6 (versus total 56,219) causes a significant shift of 

volume to dummy links in early iterations. Nonetheless the excessive demand does not 

change the ultimate traffic flow on the real network. This is shown in Figure 4.5(b) in 

which the Beckmann values of the real network (excluding dummy links) for the two 

scenarios over progressive iterations are depicted. As such the Beckmann values are 

almost identical as the algorithm converges. 

4.5 Conclusion 

A heuristic approach was developed to address the capacitated traffic assignment 

problem. The approach was made based on a new interpretation of the Lagrange values 

of the capacity constraints, that is, amount of penalty added to the travel times of the over-

saturated links to discharge the excessive flow. The penalties are specified up to the level 

at which the over-saturated links become saturated. This penalty term bears some 

similarity to the concept of the marginal cost of the system optimal flow. The additional 

penalty is added to the free flow time of the delay functions to be updated in the successive 

iterations of solving a normal (uncapacitated) traffic assignment problem. The benchmark 

network of Hearn is used for comparative analysis with other methods. The main 

motivation for this study was to address the needs of the industry hence the large scale 

network of the city of Winnipeg was also used in the numerical tests. The results found 

are promising. The advantages of the proposed method are: (i) The capacitated Traffic 

Assignment Problem (CTAP) is transformed to an uncapacitated TAP for which no new 

solution algorithm for traffic assignment is needed. (ii) The only requirement is to amend 

the way the travel times are required to be updated iteratively in every normal solution 
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algorithm for the TAP such as Frank-Wolfe (FW). To this end a set of rules were devised 

(see equations (4.23)). (iii) In contrast to other methods such as the Augmented 

Lagrangian Method (ALM) or the Inner Penalty Function (IPF), there are no parameters 

that need to be calibrated. Therefore, no setup preparation is needed. (iv) The proposed 

algorithm is intuitively conceivable and straightforward, and it can easily be implemented 

even in commercial transport planning software. Hence it has potential to appeal to the 

already accumulated interests in the industry and amongst practitioners. To this end, the 

proposed algorithm was encoded in EMME 3 a leading commercial software for transport 

planning. (v) In conventional solution algorithms for TAP such as FW, a variety of link-

specific parameters and variables pertaining to delay function as well as data of gradient 

descent are saved in the RAM which can amount to a dozen of attributes per link. The 

proposed algorithm only adds two attributes (current and previous penalties) hence it is 

not RAM intensive. Considering everything being equal, the additional two variables in 

the delay functions for the Winnipeg case study resulted in 3% increase in the 

computational time. (vi) In terms of the properties of the delay function, the algorithm 

does not require anything more than what is required by the solution algorithm for the 

TAP. (vii) The problem would always have a solution. In case of over-saturated network 

where the total demand is higher than the supply (capacity), the excessive demand is 

collected on dummy links. That can also assist planners to identify where the supply 

shortage occurs. The main shortcoming of the method is the fact that it is a heuristic 

method. Despite of showing promising results, the convergence of the algorithm has yet 

to be mathematically proven. Other extensions to the traffic assignment problem such as 

multi-class, multi-modal and consideration of non-separable delay functions are left for 

further studies. 
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Figure 4.5 Winnipeg network results, sensitivity analysis between with/without excessive 
demand scenarios: (a) total flow on dummy links, (b) variations of Beckmann values 
(excluding dummy links) over iterations 
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5 THE ROAD NETWORK 

DESIGN PROBLEM 
Road investment also known as the network design problem (NDP) is discussed in this 

chapter. The previous chapter described the development of a method to solve the 

capacitated traffic assignment as well as the Lagrangian values of the capacity constraint. 

Accordingly, in this chapter the Benders decomposition is applied to the NDP. Given a 

set of candidate road projects and associated costs, this problem involves identifying the 

best subset with respect to a limited budget. The NDP is expressed as a bi-level 

programming problem. In this study, a special case of the NDP where the decision 

variables are integers known as the discrete network design problem (DNDP) is tackled. 

Although a variety of exact solution methods have been proposed for the DNDP, due to 

the combinatorial complexity, the literature has yet to address the problem for large-sized 

networks, and accounting for the multimodal and multiclass traffic flows. To this end, the 

bi-level problem is solved by the branch-and-bound algorithm. At each node of the search 

tree, a valid lower bound based on the system optimal (SO) traffic flow is calculated. The 

SO traffic flow is formulated as a mixed integer, non-linear programming (MINLP) 

problem for which the Benders decomposition method (Benders, 1962) is used.  

5.1 Introduction 

Traffic congestion is a chronic challenge for cities. In addition to the demand 

management, making wise investments into expanding the supply side is inevitable. Such 

investments have to be efficient, and this motivates formulating and solving a bi-level 

form of the DNDP. The exposition of the DNDP in the literature is as follows: There are 

a number of candidate road extension projects with associated costs and a limited budget. 

Hence the problem is postulated as finding the best choice of affordable candidate projects 

while accounting for the way the users (drivers) utilize the network. Such a premise is 

formulated as a bi-level programming problem (Magnanti and Wong, 1984) in which the 

total cost (travel time) incurred by vehicles is minimised. The problem is subject to the 

drivers’ behaviour obeying the principles of user-equilibrium (UE) which in itself is a 
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programming problem known as the traffic assignment problem (TAP). It has already 

been established that the NDP is NP-hard (Balakrishnan et al., 1997; Magnanti and Wong, 

1984); that is, as the network becomes bigger, the problem in general becomes 

computationally prohibitive. 

The complexity of the DNDP is rooted in two features: the bi-level and discrete 

nature of the problem. Any bi-level programming problem, even in its simplest 

configuration (i.e. objective functions and constraints being linear while no integer 

variable exists) is NP-hard (Ben-Ayed and Blair, 1990; Colson et al., 2005, 2007; Dempe, 

2003). The decision variables are binary (1: to build; and 0: not to build the project) and 

the objective functions are non-linear which make the DNDP a bi-level mixed integer 

non-linear programming (B-MINLP) problem. In the literature, the phrase “discrete 

network design problem (DNDP)” is used to emphasize the inclusion of binary elements 

(rather than continuous decision variables) into the general NDP. The continuous network 

design problem has been investigated by a number of researchers (Lin, 2011; 

Unnikrishnan and Lin, 2012; Waller et al., 2006). Despite such complexity, the NDP in 

general and the DNDP in particular have been studied extensively in many disciplines 

such as computer science, electrical engineering and mathematics. 

As noted before, in this study an exact method for the DNDP, tailored to real-size 

networks is developed. Throughout this study, it is assumed that travel demand is fixed, 

deterministic and exogenous. The methodology proposed here includes two important 

features of the real networks that have been largely neglected in the literature: (i) 

multimodal: consideration of private traffic flow as well as public or transit flow and (ii) 

multiclass: various distinct classes of private traffic flow including cars, trucks, and HOV, 

etc. After examining the literature, it appears that no such attempt (employing exact 

methods for real networks subject to multimodal and multiclass traffic flow) has been 

made before. 

Although some scholars may prefer a simpler and more parsimonious model 

based on single class traffic flow, by subjecting the formulation to a multiclass and 

multimodal traffic assignment this research appeals to the industry as well. Of course, 

these aspects add to the complexities of the calculations, but it is the cost incurred to 

address a real life problem and to close the gap between science and practice.  

To solve the problem, an efficient branch-and-bound (BB) algorithm hybridized 

by the Benders decomposition method (dubbed as BB-B) has been devised. The BB 
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method is employed to address the discrete nature of the DNDP (Boyce et al., 1973; Chen 

and Alfa, 1991; LeBlanc, 1975), and the Benders decomposition method is used to find 

tight lower bounds at the nodes of the BB tree. Hybridization refers to the fact that the 

Benders decomposition method is used to calculate a lower bound for a newly-generated 

node in the tree. 

To tailor the methodology for large-size networks, a variety of innovative 

techniques have been developed. Node selection and the branching rules of the BB are 

made based on a merit index computed for each of the candidate projects. To exploit the 

fact that projects are wisely chosen a term called, budget consumption has also been added 

in the formulation. Hence the optimum solution is intuitively supposed to utilize the 

allocated budget as much and effectively as possible. Also, a term, alpha (varying 

between 0 and 1) has been added, devised to speed up the algorithm when dealing with 

large-sized networks. It is embedded in the lower bound calculations as the search on BB 

proceeds, which is specified upon the employed computational technology. A 

memoryless search mechanism for the BB algorithm was also developed, that is, the 

algorithm does not need to remember the entirety of the tree which rapidly expands, 

otherwise it makes the RAM a serious cause of concern. The objective function is the 

total travel time spent in the network. The algorithm is launched by an intuitively good 

solution for which the multimodal, multiclass user equilibrium traffic assignment 

problem (MMMC-UE-TAP) is computed. It is worth noting that the sub-problem 

MMMC-UE-TAP can also be replaced with any other traffic assignment model such as 

quasi-dynamic, dynamic or stochastic etc. Nonetheless, the UE principles are widely used 

and recognized among scholars due to their widespread applications in research as well 

as practice. 

An extensive review of the relevant literature has already been provided in 

Chapter 2. In the remainder of this chapter, Section 5.2 provides the general formulation 

of the problem; in Section 5.3, a customised BB algorithm for the DNDP is introduced; 

Section 5.4 is dedicated to the Benders decomposition method; numerical results are 

provided in Section 5.5; and finally Section 5.6 concludes the chapter. 

5.2 Formulation of the discrete equilibrium network design 

problem 

Define: 
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AA , : Sets of existing roads (or arcs), and candidate road projects (projects in short), 

respectively 

N : set of nodes 

B : budget 

ay : binary decisions variable of project Aa  ; 1: to build and 0: no to build 

ac : construction cost of project  Aa   

aa xx , : auto and transit traffic flows (both in passenger car unit-PCU) on link AAa 

respectively 

)( aaa xxt  : travel cost or time or delay of link AAa  , defined by a non-decreasing BPR 

function (Spiess, 1990) of link flow aa xx   (called delay function). Some studies have 

illustrated the highly nonlinear nature of  travel time (Lo et al., 2006).  Nonetheless the 

delay functions can be of any form other than BPR as long as they are non-decreasing 

and differentiable. 


nn AA , : set of links starting and ending at node Nn  respectively; AAAA nn  ,  

M : set of distinct user classes 

m
ab : additional delay (constant bias) perceived by auto class Mm   

m
ax : traffic volume of auto class Mm  of link AAa  , in other words:   Mm

m
aa xx (see 

equation (5.7)) 

QDO ,, : set of origins, destinations and origin-destination pairs respectively, DOQ  . 

ii qq , : auto and transit travel demand in PCU for origin-destination Ii  respectively.  

iP : set of paths between origin-destination, Ii  .  

m
kk hh , : Total flow of all auto classes and flow pertaining to class Mm  on path iPk , 

respectively:   Mm
m
kk hh (combination of all traffic flow of different classes constitutes 

total volume on path k ) 

m
pa , : link-path incident index, 1 if link AAa  belongs to path p  pertaining to class 

Mm  and 0 otherwise 

kh : transit flow in PCU on path iPk   

pa , : it is 1 if link AAa  belongs to path p  pertaining to transit network 

nw : average waiting time at node Nn  pertaining to transit system 

af :  sum of frequency of service for all transit lines on link AAa   
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U : is a sufficiently large value, total demand  i ii qq )( . 

The bi-level DNDP may be written as follows: 


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Equation (5.1) describes the upper-level goal of minimising total travel time. 

Mathematical expressions (5.2) and (5.3) ensure the feasibility of projects with respect to 

their construction costs and available budget. At the lower level, (mathematical 

expressions (5.4) - (5.7)) the Beckmann formulation of UE flow consists of m  distinct 

auto classes are computed. Constraint (5.8) ensures that projects corresponding to no-

build decisions )0( ay are excluded from the traffic assignment (U is a sufficiently large 

value, total demand  i ii qq )( . Equation (5.9) carries out transit assignment based on an 

optimal strategy (Spiess, 1993; Spiess and Florian, 1989)) and it returns ax as additional 

or background traffic volume in PCU to be considered in the traffic assignment. The 

multiclass facet of the traffic assignment is embedded in the interpretation of the bias term 

m
ab  in which all distinct auto classes using link a are subject to a same congestion level 
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(based on the total traffic volume of all classes) plus an additional term (the bias term) 

exclusive to each class (i.e. m
aaa

m
a bxtxt  )()( ). It is worth noting that the Beckmann 

formulation is convex w.r.t to ax , For each class, the shortest path computations of each 

class take into account the class-specific bias as well as the travel time given by the 

volume-delay. Therefore, it is not necessary to store the class specific volumes explicitly

)( m
ax , whereas, the total volumes are sufficient )( ax (Spiess, 1984) (INRO, 2009). 

The way that a multimodal traffic assignment is conducted in EMME is as 

follows: based on the headway and transit demand a prior estimation for the transit 

volume is made (i.e. ax ). This ax is then treated as a background volume for the auto traffic 

assignment followed by conducting a transit assignment to get a more precise assignment 

result. Accordingly  ax  in equation (5.4) is treated as a constant term derived from transit 

assignment (sub-problem (5.9)). Since our primary intention was to make use of 

commercial software for the traffic assignment (i.e. EMME 3) interested readers are 

referred to the software’s manual (INRO, 2009)and (Boyce, 2014). 

Such formulations define a simplified way to consider the multiclass aspect of 

traffic flow. The roads’ delay functions are calibrated based on traffic survey data for 

which the bias term is the intersection value of the non-linear regression. In real practice 

for cities with traffic analysis models, the delay functions are already calibrated and 

provided. 

5.2.1 Treatment of multiclass and multimodal traffic 

A comprehensive consideration of the multiclass user equilibrium traffic assignment 

problem (UE-TAP) leads to an asymmetric and non-monotone user equilibrium model. 

For multiclass UE-TAP, a variety of methods such as variational inequality, 

complementarity method, fixed-points and entropy maximization have been proposed 

(Aashtiani, 1979; Bar-Gera and Boyce, 1999; Chen et al., 2011b; Dafermos, 1972; Florian 

and Morosan, 2014; Nagurney, 2000; Nagurney and Dong, 2002; Zhang and Chen, 2010). 

Nevertheless, the literature has yet to come to a consensus on how to address the 

multiclass UE-TAP which is still the subject of ongoing debate (Boyce, 2014). 

It is worth noting that the evolving knowledge in the state-of-the-art “bush”-based 

and origin-based algorithms such as algorithm B and TAPAS present a “precious” means 

of considering the multiclass feature as well. A recent review of the latest advances in the  

solution algorithms of the UE-TAP is provided by (Xie and Xie, 2014, 2015).  Since these 
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algorithms decompose the UE-TAP to the origins (i.e. one-origin to all-destinations), one 

can further decompose the UE-TAP at each origin to the number of vehicle classes. 

Nevertheless, in theory, the computational effort required to solve the multiclass UE-TAP 

is multiplied by a factor of the number of distinct classes. Usually, practitioners deal with 

a relatively large number of classes (say a dozen), hence the computation time becomes 

a significant concern. Alternatively, the bias term (Spiess, 1984) is adopted to turn any 

multiclass case (no matter how many vehicle classes are involved) into a single-class 

TAP.Similarly, the combination of (private) traffic and transit assignment (multimodal) 

results in a nonconvex programming problem for which uniqueness and stability of the 

solutions with respect to the inputs are not guaranteed (Florian and Morosan, 2014). The 

relevant studies either fail to fully consider the simultaneous interaction of private and 

transit modes, or suffer from high computation time (De Cea et al., 2005; Liu and Meng, 

2012). 

Given the complexities involved as described, the above formulation (equations 

(5.4) - (5.9)) is empirically proven to be acceptable to addressing the MMMCUE-TAP 

(Spiess, 1984) such that it has been adopted in some transport planning software (INRO, 

2009). In this study, equations (5.4) - (5.9) have been coded as a module in EMME 3 

(INRO, 2009) and is summoned when needed.  

In the next section the methodology developed to solve the DNDP is presented. 

5.3 Branch-and-bound algorithm 

A general description of the branch and bound algorithm is presented in chapter 3. In this 

section a BB algorithm is customised for the DNDP. In order to make this section self-

contained, some of the previously defined terminology is introduced again. 

5.3.1 Discreteness of the DNDP over the BB 

The bi-level DNDP expressed in equations (5.1)-(5.9) is a mixed integer nonlinear 

programming problem with || A the set of binary decision variables. The discreteness of 

the problem is laid over a tree-shaped structure where each node of the tree represents a 

sub-area of the solution space, delineated by a sub-problem. The algorithm is first 

launched with a feasible solution for which the MMMC-UE-TAP is solved, and the 

corresponding objective function value is labelled as an incumbent value (as an iterative 

algorithm proceeds, the best solution found is labelled the “incumbent solution” and the 
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corresponding objective value is called the incumbent value. In other words, the 

incumbent value is the least total travel time found as the algorithm proceeds through the 

iterations). Since the problem is of a minimisation nature, the incumbent value is an upper 

bound value denoted by .*UB  The algorithm can be initiated with any feasible solution. 

Perhaps the obvious one is the “do-nothing” scenario in which all binary variables are set 

to zero. Nevertheless, one can seek a more informed initial solution rather than the simple 

do-nothing, hoping that it facilitates the rest of the algorithm’s process. 

A tree is then planted upon a root node representing the entire solution space. 

Once a new node is generated, a local lower bound is also calculated and tagged on the 

respective node. In case the lower bound is found to be above the incumbent value, the 

corresponding node is frozen (or fathomed) and consequently the respective unexplored 

part of the tree is discarded from further exploration since a better solution (i.e. the 

incumbent value) has already been secured. As a result, it is very desirable to arrive at 

fathoming cases (lower bound > incumbent value) to cut the solution spaces as much as 

possible, otherwise the algorithm chooses an unfathomed node and branches out two new 

nodes (in other words, the respective solution space is further split into two smaller sub-

areas). 

 This three-phase process (finding no unfathomed node, a lower bound calculation 

and a comparison with the incumbent value) proceeds until no unfathomed node is found. 

In this quest, as the tree grows, the sub-areas represented by nodes deep down the tree 

become smaller and smaller. Sometimes, a sub-area or a sub-problem (represented by a 

node of the tree) becomes too small, in such a way that it contains only one feasible 

solution. When the expansion of the tree reaches a feasible solution, the corresponding 

MMMC-UE-TAP is solved and accordingly the incumbent value is updated. At the end, 

the incumbent value and the corresponding feasible solution is the final solution.The 

questions remaining to be answered are as follows: (1) Node selection: which node must 

be chosen for branching? (2) Branching rule: once a node is chosen, how should the sub-

area be split? And (3) Lower bound: how to calculate the lower bounds? The first two 

questions are discussed in the next sub-section as navigation on the tree. 

5.3.2 Navigation in the BB’s tree 

Each node in the tree represents either a sub-area or a feasible solution. A sub-area is 

encoded as a string of binary values (“1” and “0”) to indicate whether the respective 
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project is to be constructed or not constructed, and “2” is yet to be decided (either 1 or 0). 

For instance, the string “01022” depicts a sub-area consisting of five candidate projects 

where the first three components are to be build/no-build (0/1) and the last two 

(represented by “2”) are unspecified (yet to be decided). In other words, subarea “01022” 

encompasses all feasible solutions in which the first three projects are fixed as “010” and 

the last two are either of the following combinations: “00”, “01”, “11”, or “10”. 

As the tree grows, at each iteration, a node “z” representing a sub-area needs to 

be chosen for further branching. To this end, an undecided project (a project represented 

by value “2”) has to be selected to be replaced by 0 (no-build) and 1 (to-build) on two 

new branches. The result is that it will create two new nodes. 

During this mitotic phase the tree continues to expand, the algorithm is constantly 

faced with the decision of which node with which partial solution to be chosen for 

branching. Once a node is selected, the algorithm must still pick one undecided project 

of the corresponding partial solution to complete the next phase of branching. To this end, 

there are some methods that require to solve additional problems subject to retrieve the 

entire database with a view to finding the best node for branching. As the size of the 

network increases, such methods become computationally intensive. The roles described 

below  are designed to overcome such pitfalls. 

5.3.3 Branching rule based on merit index: 

Alternatively, via a novel approach, the order of the projects placed in the string from left 

to right as priority for node selection and branching is considered. Therefore, a merit 

index is first defined and calculated for each project. The projects are then sorted from 

the highest to the lowest to be placed accordingly in the string. 

The merit index aims to find the most likely projects among the candidates. As 

such, the merit index is defined as: aaa cvx // where av  stands for capacity of road Aa  . 

The rationale behind the proposed merit index is based on two considerations: (i) the 

traffic volume alone is not a good enough indicator to be a prompt to increase the 

qualification or chance of a candidate, the capacity also needs to be considered. The more 

congested a road (i.e., higher volume-per-capacity aa vx / ), the more demanding the road 

is and hence it may deserve to be put forward for the construction; and (ii) between two 

roads with similar traffic conditions, it is a wise choice to choose the one that would result 
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in the lowest construction cost; therefore, the volume-per-capacity in the merit index is 

normalised by the construction cost. 

Consequently, the branching rule becomes very simple: first sort the projects 

based on their merit indices in descending order.  For branching, there is only one rule: 

choose the very next undecided project in the corresponding string.  

5.3.4 Node selection rule  

As for the node selection, the algorithm abides by two simple rules: (i) choose the deepest 

node of the tree; and (ii) in the case of two nodes at the same level, choose the one located 

on a branch associated with 1ay .  

There are two advantages with such a convention: (i) given the fact that the 

projects are sorted on a merit basis, it makes sense to go deep into the tree to select the 

next best project for branching, and (ii) the algorithm needs not to save/retrieve/process 

the information for the entire tree. Once a new node is made, it is yet to be further 

processed for lower bound/fathoming. At each node, the algorithm just needs to move 

forward as much as possible on the paths that consist of 1ay branches. In cases where 

there is no space for such movement, the algorithm moves only one node back to the 

previous node and then moves through the 0ay  and then follows a 1ay  branch (if 

possible). This process carries on until the termination criterion is met. Figure 5.1 

illustrates the gradual build-up of the tree based on these rules.  

The algorithm does not need to remember the paths already traversed nor the paths 

ahead. As shown in Figure 5.1 as the structure expands; it just needs to know the lower 

bounds of the nodes on the current path plus the best solution found so far which is a 

string of binary values (0/1) and the corresponding incumbent value. This can be called a 

memoryless search mechanism. For example, if the current node is (11002), the next 

move is to process node (11001) followed by the node represented by (11000). For the 

third move, the algorithm moves three nodes back to reach node (10222) and carries on 

from there. 

5.4 Benders decomposition 

In this section, first a discussion how to place the Benders decomposition method in the 

BB’s tree structure to elicit a valid and tight lower bound value is presented. Although a 

basic introduction of the Benders decomposition was provided in chapter 3, here an in-
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depth elaborate on the mathematical principles underlying the Benders decomposition 

method relevant the DNDP is provided. 

 

Figure 5.1 Proposed node selection and branching in the branch-and-bound algorithm 
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5.4.1 Formulation of the lower bound 

One of the primary concerns in any application of the BB algorithm is the method of 

calculating lower bounds at the tree’s nodes. For the sub-area represented by “01022”, it 

is necessary to compute a lower bound on the objective function of (equation 5.1) 

evaluated at all possible and feasible combinations: “01000”, “01001”, “01010”, and 

“01011”. An apparent method of computing a valid lower bound is to set all undecided 

variables equal to one and solve the MMMC-UE-TAP which results in the UE flows on 

the resulting network. According to Braess Paradox (Braess, 1968; Braess et al., 2005), 

such measure may result in worse-off traffic or a higher lower-bound. To this end, 

replacing the user equilibrium (UE) flow with system optimal (SO) traffic flow (MMMC-

SO-TAP) ensures valid and decreasing successive lower bounds (LeBlanc, 1975). 

Nevertheless, in theory, there might be a significant gap between the UE flow and the SO 

flow which would lead to a very loose lower bound. This means that it is unlikely to 

truncate the solution space due to arriving at a lower bound above the incumbent value 

(upper bound). 

In such cases, the algorithm has to process every feasible solution and as a result, 

the algorithm will have no superiority over an exhaustive enumeration. In fact, it becomes 

much worse because in addition to calculating the upper bounds as required in the 

enumeration, the algorithm has to calculate the lower bounds as well.  

In order to obtain a tighter lower bound for a (new) node, one can seek a solution 

out of the following problem (LeBlanc, 1975):  


 AAa

a
m
a

m
a xtx )(min s.t (5.2), (5.3), (5.5), (5.6), (5.7), (5.8) and (5.10)    (5.11) 

In the above problem (5.11), the non-linear convex objective function is subject 

to linear constraints and the output consists of binary decision variables )( ay  as well as 

traffic flows which are continuous variables )( ax . Hence, it is a mixed integer nonlinear 

programming (MINLP) problem for which a solution algorithm based on the Benders 

decomposition method (Benders, 1962; Lasdon, 2013) is developed. In fact, the lower 

bound formulated in (5.11) is a system-optimal discrete network design problem (SO-

DNDP). In some studies, the SO-DNDP itself is treated as an approximation approach to 

address the DNDP (while employed it as a lower bound). The main advantage of such 

formulation rests in the fact that the bi-level DNDP is easily dissolved into a single-level 

problem which is easier to solve.  
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As discussed before (see equation (5.9)), in the above formulation, the output of 

the transit assignment is ax which is viewed as additional or background traffic volume 

to be considered in the UE traffic assignment. Therefore, the travel time function can be 

first updated to accommodate the ax before carrying out the traffic assignment. Hence, 

the notation ax as well as equation (5.9) can be omitted from the formulation. 

5.4.2 Benders decomposition method for a MNLP 

Consider the original problem (5.11) in the general form of MINLP as follows: 

qn

yx
YyXxyxStsyxfOP Min }1,0{,,0),(..),(:

,
       (5.12) 

where f is the objective function ))((  AAa aaa xtx , x is the vector of links flows, y  is the 

vector of binary decision variables along with set S delineate solution space to which the 

problem is subject. Note that yx,  denotes the continuous traffic volumes and binary 

decision variables respectively. Analogous to problem (5.11) consider 0),( yxS

represents constraints (5.2), (5.3), (5.5), (5.6), (5.7), (5.8) and (5.10) and 

  AAa a
m
a

m
a xtxyxf )(),( . 

Consider eliminating the binary decision variables by fixing them to some feasible 

values ( iy ; i is iteration counter), hence the problem changes to searching over feasible 

x .It is referred to as the “primal sub-problem (PSP)”: 

nii

x
XxyxStsyxfiPSP Min  ,0),(..),(:)(          (5.13) 

Once it is solved, the corresponding traffic volume ix and Lagrange multipliers of 

the constraints iare obtained.  

In order to solve the PSP and finding the traffic volumes and the Lagrangian 

values a method known as inflated travel time has been developed (Bagloee and Sarvi, 

2015a) which is discussed in the previous chapter.  

The partial dual (Lagrange) format of the objective function can be written as 

),(.),(),,( yxSyxfyxL iiiii   . According to “weak duality theorem”, each feasible 

solution )( y  to the dual problem is a lower bound to the original problem. Therefore, 

given ),( iix  , the algorithm seeks a new set of feasible binary variables for the next 

iteration )( 1iy by solving the following problem which is called “relaxed master problem 

(RMP)”: 
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ikyxLVtsViRMP kk

VYy
Min ..1;),,(..:)( min

,



      (5.14) 

The problem (5.14) is a mixed integer linear programming (MILP) problem which 

is easier to solve (compared to MINLP), even for sizable problems. The right hand side 

of the constraint is a succinct way of representing a series of linear constraints to which 

“v” must be found greater than the minimum of them. Note that Yy  ensures feasibility 

of the binary variables where Y is feasibility observing two points: (i) it entails all 

combinations of binary variables that satisfy the budget constraint (constraint 5.3); and 

(ii) the linear constraints in the relaxed problem are actually viewed as Benders cuts 

(cutting planes) to the solution space collected from the first iteration to current iteration 

i , (i.e. ik ..1 ). In order to always obtain a new 1iy at the current iteration i , the solutions 

that fail to satisfy the following constraints are discarded from Y  (Balas and Jeroslow, 

1972)): 

},0|{0;}1|{1,1|1|
01

 


k
a

k
a

Ya
a

Ya
a yaYyaYYyy      (5.15) 

where 0,1 YY represents the candidate projects that have taken a value of 1 and 0 

respectively in the respective solution k . 

On the one hand, the result of the primal sub-problem )(iPSP  is a feasible solution, 

so the value of ),( iyxf out of )(iPSP  is an upper bound on the optimal value of the original 

problem. On the other hand, as mentioned before, the relaxed master problem is in fact a 

relaxed dual problem to the original problem, hence V out of the )(iRMP is a lower bound 

on the original problem’s optimal value. Consequently, the solution algorithm is set out 

to solve the primal and relaxed problems ))(,)(( iRMPiPSP alternatively until the lower and 

upper bounds get within a close enough proximity to each other. 

5.4.3 Benders decomposition for a system optimal DNDP  

Let’s rewrite the original problem given in formulation (5.11) by expanding on the traffic 

volumes: 

 
 


Aa AAaMm

m
a

m
aaaa

Aa
aaa bxxtxxtxOP

,
.)(.)(.min s.t. (5.2),(5.3),(5.5),(5.6),(5.7),(5.8),(5.10)

           (5.16) 
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5.4.3.1 Establishing the primal sub-problem 

Given a feasible initial binary solution )( ay to start with, the original problem (5.16) for 

the first iteration )1( i is solved to return traffic volume )( ax as well as Aaa ;

Lagrange multipliers associated with the inequality (5.8). Hence the Lagrangian objective 

function can be written as follows (Note that problem (5.17), is derived based on problem 

(5.16) via a feasible binary solution. Constraints (5.2 & 5.3) contain binary variables 

which stand for the feasibility, hence both are automatically dissolved when a feasible 

binary solution is arrived at. As such there is no point to bring them into the dual problem): 





Aa

aaa
AAaMm

m
a

m
a

Aa
aaa

Aa
aaaaaa yUxbxxtxxtxyxL )(.)()(),,(

,
    (5.17) 

The Lagrange function can be rearranged as follows: 





Aa

aa
AAaMm

m
a

m
a

Aa
aaaa

Aa
aaaaaa yUbxxtxxtxyxL 

,
.))(()(),,(    (5.18) 

where U is a sufficiently large value hence, if constraint (5.8) is found binding (or 0a

), 1ay , otherwise 0a for .0ay Therefore, a complementarity constraint always 

holds ,0. aay  or equivalently 0. aax  . Accordingly, the last term in equation (5.18) 

vanishes. Given a feasible solution ay : 





AAaMm

m
a

m
a

Aa
aaaa

Aa
aaaaa

i
b bxxtxxtxxLMinUB

,
.))(()(),(       (5.19) 

s.t. (5.5), ( 5.6), ( 5.7), ( 5.10)  

The above problem has simply become a capacitated MMMC-SO traffic 

assignment while the only additional component is omega )0( a . As can be seen, the 

omega needs to be added to the travel time of the respective project. This problem is still 

convex and can be solved by the augmented Lagrangian method (ALM) (Larsson and 

Patriksson, 1995; Patriksson, 1994) or inner penalty function (IPF) (Nie et al., 2004). 

There are some challenges in both methods such as the number of parameters involved.  

Alternatively, as discussed in the previous chapter, a method based upon an 

intuitive interpretation of the omegas (Lagrangian values) for the general capacitated 

traffic assignment problem (CTAP) is developed. In the objective function of the above 

problem, the omegas sit next to the delay term. Thus the omegas can be treated as a 

penalty term to be imposed on the candidate projects (roads), those who have been 

decided as no-build in order to block them. This interpretation leads to a method dubbed 

“inflated travel time” which bears none of the aforementioned shortcomings in the AFW 
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and IPF methods (Bagloee and Sarvi, 2015b). As a result, the CTAP is transformed into 

a normal, uncapacitated TAP for which any conventional methods such as Frank-Wolfe 

are applicable. 

The value of the objective function in formulation (5.19) denoted by i
bUB  is the 

total travel time of the MMMC-SO traffic flow, which renders an upper bound at iteration

i (subscriptb refers to the Benders Method to distinguish this upper bound from the upper 

bound of the BB). 

So far, the primal sub-problem which returns ),( i
a

i
ax   is solved. Now the relaxed 

master problem can be established to seek new binary decision values for the next 

iteration ).( 1iy  

5.4.3.2 Establishing the relaxed master problem 

Considering the feasible solution that resulted from solving the previous primal sub-

problem, let’s now rewrite the original problem as follows. As discussed before, the dual 

(Lagrangian) format of the original problem (OP) is established based upon the solution 

that results from the primal Sub-problem )( ax : ),(.),(),,( yxSyxfyxL iiiii   . Note that 

the objective function of the OP (equation (5.16)) is free from any binary decision 

variables )( y , hence )(),( ii xfyxf  becomes the total travel time of the MMMC-SO traffic 

flow, which is already computed and denoted by i
bUB . As for the second term ( ),(. yxS ii

), given the already specified values of i
ax , the only constraint left in the OP is constraint 

(5.8). Using i
a  as the dual variable for constraint (5.8), it can be brought up to the 

objective function using the penalty term: )..( a
i
a

i
a yUx  . Note that it has already been 

shown the following complementarity relationship: 0. i
a

i
a x . Hence, by summing up over 

Aa  , the second term is obtained as aAa
i
a yU   ..  . Consequently, the dual lower bound 

to the OP (Benders cuts) can be finalised as: aAa
i
a

i
b yUUBV   ..   where V  is the value 

of the objective function of the relaxed master problem. The above cut, along with the 

other cuts stacked up in the previous iterations are combined and are included in the 

relaxed master problem as follows: 

,min VLB
ay

i
b            (5.20) 

,..1,.... ikyUUBVtS a
Aa

k
a

k
b  


        (5.21) 
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Aa

aa Byc          (5.23) 

where constraints (5.22) and (5.23) ensure rendering a new and feasible binary variable 

)( i
ay  solution at each iteration. So far, both primal and relaxed problems are established 

and the Benders decomposition algorithm can be established: 

Step 0 (Initialization) - set iteration counter ;1:i ;: i
bUB set initial solution for binary 

variables );0( i
ay set convergence gap  . 

Step 1- Given i
ay solve the primal problem (5.19) to find i

a
i
a

i
b xUB ,, . Set ),min( **

b
i
bb UBUBUB 

. Note that the algorithm starts with an initial solution for the binary variables, based 

on which a traffic assignment is calculated and values of xa are found. If a project 

is decided not to be constructed then xa = 0). 

Step 2- Give i
a

i
ax , solve the Relaxed Master Problem (5.20) to (5.23) to find i

a
i
b yLB ,  

Step 3- (termination) if  i
b

i
bb LBLBUB /)( *  then the convergence is achieved so it returns 

*
bUB  as the final solution. Otherwise ;1:  ii go to Step1.▄ 

In order to better understand how Benders decomposition works, a simple and 

pedagogical example is undertaken as presented in chapter 3. The merit index in the BB 

algorithm is an educated guess so as to quickly arrive at the optimum solution. It is based 

on an intuitive view on the optimum solution; that is, if a road is really necessary, upon 

completion of construction, it must become highly congested. In order to show the 

significance of the merit index, the aforementioned pedagogical example is also solved 

with a merit index and the results are compared against that of without merit index. The 

results are presented in the next section which shows that the search for the optimal 

solution is highly decreased.  

5.4.4 Evaluation of the merit index in the performance of the BB algorithm  

With respect to the pedagogical example presented in chapter 3 which is a mixed integer 

quadratic programing problem, Figure 5.2 depicts a tableau of the example solved by the 

BB in two scenarios: with and without the merit index ( ix  is continuous and iy  is binary 

variables). From the coefficient of the variables in the objective function, it is intuitively 

perceivable that the merit order of the binary variables is as ,1y ,2y 3y . The optimal 

solution was found as follows: ),0,1,1(),,( 321 yyy ),,( 321 xxx )8.0,0.0,1.3,1.6( and 7.7),( yxf . 
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A quick comparison between the two scenarios highlights the significance and 

constructive role of the merit index in efficacy of the BB, such that the number of attempts 

to reach the global solution and total computational time increases almost three-fold 

should no merit index be considered.  

 
Figure 5.2 BB’s performance with/without the merit index (note: iv is value of the 
objective function at iteration i , and *ub is the best upper bound or the incumbent value) 

44332211 5.25.125.),(min xxxxxxxxyxf      

    
010 11  yx      

010 22  yx      

  010 33  yx     
2321  yyy    

10:.. 4321  xxxxts

BB with merit index: projects sorted as y1 , y2 , y3 : 

BB without merit index: projects sorted as y3 , y2 , y1 : 
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The BB initiates on the candidate projects that are already sorted in order of their 

merit indices. Then, the algorithm takes y_a =1 branches on the tree as deep as possible 

because it is believed that the projects are wisely selected, hence the more obtained of 

y_a =1, the better it would be. Therefore, the proposed algorithm is a combination of the 

best-first-node and depth-first-node which results in a memoryless search algorithm; that 

is, no need to keep track of the whole of the tree structure. 

Before proceeding to the next section dedicated to numerical evaluations, there 

are some remarks which are discussed in the next section. 

5.4.5 Some remarks on the methodology  

Efficacy of the tree structure in the lower bound’s calculation: At each iteration a 

(parent) node renders two new (offspring) nodes, but it is only required to calculate the 

lower bound for one of the newly generated nodes. Because the other offspring node 

inherits the lower bound from the parent node, this makes the computation more efficient. 

Figure 5.3 depicts this observation graphically. The parent node corresponds to sub-area 

“1122...22”, has a lower bound corresponding to string “1110...01” with an objective 

function value of 85. Branching is made at the third project (the very next project with 

value of “2”) which results in offspring nodes “1112...22” in the left hand and “1102...22” 

in the right hand. The third project in the string corresponding to the lower bound of the 

parent node is found “1”, so if the lower bound for the left hand offspring node (which 

has “1” at the third project) is calculated,  no better solution than what has already been 

found, will be found. For the right hand node, the lower bound was found not better than 

the parent’s lower bound )8588(  . If the lower bound string for parent node happened to 

be “1100...01” and the right hand offspring node were to inherit the lower bound from the 

parent, a new lower bound would have to be calculated for the left hand node (LeBlanc, 

1975). 
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Figure 5.3 Illustration of how the lower bound values are inherited through the tree 

Benders algorithm; epsilon, convergence gap: In the proposed Benders algorithm, Step 

3, epsilon )(  is a pre-specified parameter (in percentage) for which a perfect and 

desirable value is 0%. Preliminary results of the application of Benders on large scale 

MINLP problems suggest that the global solution is likely to be arrived in early iterations, 

while the epsilon only prolongs the computational time to close the gap between the upper 

and lower bounds. In order to speed up the algorithm, instead of the perfect value of 0, a 

meagre value for epsilon was adopted (say 02.0 ). 

Benders algorithm; initial solution: In Step 0, the algorithm starts with an all-out null 

solution, that is ),0( 0 Aaya  . One option is to look at the inventory of the best solutions 

found in the preceding node of the tree to see whether there is a binary solution that 

complies with the requirement of the current node. If nothing is found, then there still 

might be a better educated guess rather than the null scenario. One possibility is to fill the 

blank string from left to right with projects based on the merit index until the budget is 

depleted. 

This technique has been implemented in the final computer code and was applied 

in the numerical analysis. 

Benders algorithm; a greedy search for better a incumbent value (I): A Benders 

algorithm was devised to render a tight lower bound based on the MMMC-SO traffic 

flow. The corresponding binary solution of the best solution emerged out of the Benders 

algorithm and might render a much better incumbent value too. As a result, at the end of 

each Benders algorithm the resulted binary solution is taken and for which the MMMC-

UE-TAP is solved. The outcome is used to update the incumbent value. The rationale 

behind the adjustment of the algorithm is as follows: the SO version of the network design 

problem is a good approximation for the UE version. It is important to note that the first 

1122..22 

LB (1110..01) = 85 

01

1112..2 1102..2
LB (1110..01) = 85 

. 

01

 no need to calculate LB 

LB (1101..10) = 88 

 at this node, the LB must be calculated 
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lower bound is calculated for the root node of the BB’s tree (where representing the entire 

solution space by the string “22...22”. In fact, this lower bound is equivalent to solving a 

SO version of the NDP which is proven to be easier and this is called SO-relaxation 

(Wang et al., 2013). This idea s strongly reinforced in the numerical analysis (next 

section) such that in most cases, the global optimal solution is achieved in the first lower 

bound calculated at the root node. 

This technique has been implemented in the final computer code and was applied 

in the numerical analysis. 

Benders algorithm; a greedy search for a better incumbent value (II): Provided the 

candidate projects have been selected wisely, a good solution is expected to consume the 

budget to its full. The more projects that contribute to the solution, the better the solution 

becomes. To this end, to force more of values of  ”1” in the binary strings )( ay , the 

objective function of the relaxed master problem (equation 5.20) is changed to: 

  Aa ayV . The newly added term   Aa ay )(  is called “budget consumption term” 

which again improves the results. In the next section (numerical tests), both cases with 

and without the budget consumption term are reported on. 

A much tighter system optimal lower bound: No matter how perfect the attempt is to 

find the maximum possible lower bound, since the lower bound is based on the system 

optimal (SO) traffic flow, the gap between SO lower bound and UE incumbent value 

might be noteworthy. Roughgarden and Tardos (2002) proved mathematically that the 

incumbent value corresponding to the UE traffic flow can be as high as 2.15 times the SO 

lower bound in networks governed by BPR delay functions. Recently, a similar result has 

been reported by (Szeto and Wang, 2015). In the following discussion, the causes of the 

aforementioned gap are highlighted.  Then a parameter to close this deep gap is proposed. 

The SO flow can be easily computed (even using commercial transport planning 

software) by replacing )( aaa xxt  the delay function in the Beckmann objective function 

of the UE flow (equation (5.4)) to )(~
aaa xxt  (Newell, 1980; Potts and Oliver, 1972; Sheffi, 

1985): 

a

aaa
aaaaaaa x

xxt
xxxtxxt





)(

.)()(~        (5.24) 

If )( aaa xxt  is considered as the cost of traveling on a road Aa  , then )(~
aaa xxt  is 

known as the marginal cost of using the respective road. The deep gap between SO and 

UE emerges from the second term in the right side of equation (5.24) which is the 
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additional externality cost imposed on the users. The two functions tt ~, show benign and 

similar behaviour as long as the volume is below capacity. As the volume gets close to or 

exceeds capacity, the externality cost increases rapidly, which results in the larger gap 

between the SO and UE flows. Since the delay functions are not capacity restricted, in 

theory, the volume and hence the delay as well as the marginal cost can increase to 

infinity. This results in a much larger gap between SO and UE.  In order to eliminate such 

an unrealistic gap, alpha 10    a coefficient to the externality term is proposed as 

follows:  

a

aaa
aaaaaaa x

xxt
xxxtxxt





)(

..)()(~        (5.25) 

As alpha gets close to zero, the SO gets close to UE and the gap vanishes.  It is 

worth noting that the alpha addresses the unfortunate trade-off between the computational 

time (CPU time) and accuracy of the final results. Lower values of alpha lead to faster 

but less accurate results. As such, the value of alpha can be set as per the user’s discretion 

depending on the computational technology at the time and how affordable the 

computational time is. In other words, alpha is a value in the hand of the modeller based 

on which the accuracy of the results along with the computational time can be adjusted 

depending on the size of the network, the available computational technology and the 

strategic value of the final solution.  

In addition, adopting any positive value below 1 for alpha is a diversion from 

solving a full SO to a semi SO network design problem. The numerical results suggest 

that even a trivial value of alpha (say 005.0 ) is enough to secure global optimal solutions 

(which were already identified through exhaustive enumeration). 

A note on convergence of the Benders algorithm; In some circumstances the Benders 

decomposition does not converge when the NLP is non-convex, (Bagajewicz and 

Manousiouthakis, 1991). In the following exposition, these circumstances and why the 

proposed algorithm does not encounter such circumstances are discussed. 

The important point to note is that given a feasible solution of binary variables 

(y), problem (5.11) is convex on the continuous variables of the roads’ traffic volume (x). 

In fact, for every feasible solution y, problem (5.11) is a system-optimal traffic 

assignment problem which has a guaranteed unique solution. According to (Bagajewicz 

and Manousiouthakis, 1991), the key to avoid stagnation in the local optimum is a 

condition coined by Geoffrion (1972) known as “property (P)”. Property P stands for the 
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situation in which the Lagrangian relaxation problem can be taken, essentially 

independently of y, so that the dual problem (equations (5.20)...(5.23)) can be solved on 

y. This is exactly what is being conducted in solving the lower bound problem. Generally 

speaking, convergence of the scheme is guaranteed if - whenever the integer values y are 

fixed to some feasible vector - the remaining continuous sub-problem is convex and is 

such that strong duality holds (the Lagrangian dual maximum value is equal to the primal 

optimum value) (Sahinidis and Grossmann, 1991).  

Before proceeding to the numerical analysis as a recap, the process for 

implementing the Benders algorithm is shown in Figure 5.4.  

5.5 Numerical evaluations 

This section, firstly examines the no-frills (unimodal and single class) versions of the 

algorithm over Gao’s 12-nodes network (Gao et al., 2005) and the Sioux Falls benchmark 

network (Farvaresh and Sepehri, 2013; LeBlanc, 1975) to cast the proposed methodology 

in the context of its peers in the literature. The algorithm is then applied in its full capacity 

(multiclass and multimodal) to the large scale network of Winnipeg. Exhaustive 

enumerations have already been carried out to find optimal solutions for all the case 

studies over various budget levels. For the Winnipeg case study, the enumeration entails 

all combinations of network scenarios with accounts for solving 1,048,576 (= 2^20) 

traffic assignment problems. The quality of the solutions resulting from the proposed 

algorithm will be compared against the optimal solutions elicited from the enumeration.  

The parameters setup for the algorithm are as follows: (i) the relative gap 

introduced in Benders algorithm, in Step 3 is assumed: %2  (ii) the value of 

introduced in equation (5.25) is initiated with zero to seek the tightest possible lower 

bound. Since 0  might compromise the quality of the solutions, should the optimal 

solution not found at 0 , more attempts with positive values of the alpha are tested. 

The algorithm is first run with alpha equals to zero. The subsequent result shows 

that the optimal solutions are likely to be found in early iterations. Hence, in real practice, 

where the optimal solutions are not known and faced with an NP-hard problem – one can 

still run with alpha-zero and expecting to find a good solution (if not the optimal) at an 

affordable computational time.  
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Figure 5.4 Benders algorithm: the flowchart graphically represents the steps 

As discussed before (in Remark 4), the first lower bound is calculated for the root 

node of the BB’s tree (representing the string “22...22”). In most of the numerical tests, 

the optimal solutions were found at the root node. As a result, in the comparative analysis 

for the Gao network and the Sioux-Falls benchmark network, the focus is set on the 

number of iterations made at the root node to arrive at the optimal solution. A comparison 

will be made against some of the state-of-the-art exact methods in past studies. In light of 

the fact that the CPU time is heavily subject to the computational technology used at the 

time, as well as the coding architect, the number of iterations can be regarded as a fair 

yardstick in comparative analysis. Furthermore, each iteration of exact methods is usually 

involved in alternately solving two sub-problems (the UE-TAP and an MILP) which is 

Consider that the algorithm at a node of the tree needs to find 
solve SO NDP for the following string: “1100122222” 

Initialize iteration counter and upper bound  

Start with an initial binary solutions, for example: “1100111100” 

Solve the capacitated MMMC-SO-TAP, the nonlinear Primal 
problem (5.19) using the inflated travel time method implemented 
in EMME 3 

Solve the mixed integer Relaxed Master Problem ((5.20) to (5.23)) 
using “intlinprog” function of MATLAB  

Check   

Mark the binary 
solution associated 

with  as the final 

solution  

Outcomes: all traffic volume and Lagrangian 

value of binding constraints (5.8) 
Update upper bound  

Outcomes: lower bound and a

new binary solution  

End 

no yes 
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analogous to the proposed method in this study. Nevertheless, the algorithm quickly 

terminated for the Gao’s 12-nodes network and the Sioux-Falls network in a matter of a 

few seconds and a few minutes respectively. Furthermore, the CPU time for solving the 

large scale Winnipeg network will be discussed in further detail.  

For all the case studies, in addition to optimal solutions and the corresponding 

objective function value (i.e. the total travel time dubbed as the incumbent value), the size 

of the solution spaces (i.e. the number of feasible solutions) are also presented. The size 

of the solution spaces gives us an indication of how rough and unlikely the path toward 

the global optimum solution may be. 

As for the computational technology, a desktop computer with Intel(R) Xeon(R) 

3.70 GHz and 64.0 GB RAM was used. The algorithm was coded with Visual Basic 

linked to MS-Excel and MS-Access as an interface and save/retrieve database. The 

computer code is also synchronized with EMME 3 to solve the multimodal and multiclass 

traffic assignment problems. The code also calls on MATLAB 14a to solve the MILP 

problems using the newly released module “intlinprog” (MathWorks, 2014). All delay 

functions associated with the links conform to the BPR type.  

For the Sioux-Falls and Winnipeg case studies, the candidate projects are two-

way roads that are found in the real world. Should a candidate project receive approval 

for construction, two directional links need to be added to the network. Instead of 

representing each directional link as a separate decision variable (which leads to an 

increase in the number of binary variables and constraints), the concept of a “directional 

switch link” to represent the two-way roads is developed and proposed. Figure 5.5 

illustrates a two-way road between A and B at the top. The same two-way road is 

disconnected into two pieces (without change to any characteristics) and is then 

reconnected with a one-way switch link (the dashed line) at the bottom (the two-way links 

are shown as bending outward to better illustrate the switch link). In this way, the switch 

link can represent the two-way links (painted by red and green colours). 

What then needs to be done is to code the disconnected two-way roads in the base 

network scenario. All components of the disconnected links, including the switch links, 

have a zero value for travel time, except the two segments that correspond with the two 

directions. These two segments inherit all of the specifications of the original direction 

such as length, travel time and the number of lanes, etc. as denoted by tAB and tBA in 

Figure 5.5. Should a decision be made to construct a (two-way road) project (i.e. y=1), 
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the corresponding one-way switch link is then added to the network to reconnect the two-

way road. The concept of a switch link can also be used to represent more complicated 

projects such as spaghetti interchanges. 

 

Figure 5.5, A one-way switch link (dashed line) representing a two-way road (red and 
green lines) 

5.5.1 Example 1: Gao’s network 

Figure 5.6 illustrates the example network developed by Gao et al. (2005) with one OD 

pair (1,12) and the travel demand of 2012,1 q . The delay function is 4008. aaa xtt  , and it 

can be rearranged as per the BPR format: ))/(15.1( 4
aaaa wxtt  where the links capacities 

are 4 008./15. aa tw  . There are six candidate (one-way) roads with a total cost of 70. Gao 

et al. (2005) developed and applied the generalized Benders decomposition (GBD) to 

various budget levels and the results are summarized in Table 5.1.  

Table 5.1 shows total number of iterations and the iteration at which the optimal 

solution was found in Gao’s GBD method as well as the proposed BB-B algorithm. As 

can be seen across all budget levels, the BB-B demonstrates significantly superior 

performance over Gao’s GBD. Furthermore, the BB-B on two avenues of the objective 

functions (with/without budget consumption term) showed close results. 

Since the proposed algorithm (as proven before) guarantees the optimum 

solutions, the merit index is devised to accelerate the algorithm. For instance as Table 5.1 

suggests, in terms of the number of iterations, Gao’s GBD (which lacks any merit index) 

lags behind in all budget levels.  
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Figure 5.6 Gao’s test network 
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Table 5.1 Example 1, Gao’s Network: GBD (Gao et al., 2005) versus proposed BB-B 

 

Budget1 
Optimal2 
solution 

Number 
of 
feasible 
solutions 

Incumbent 
Value 

GBD method3:      Proposed; BB_B method5   

 

Total iteration 
(Optimum 
solution was 
found at iteration) 

 With budget consumption 
term:  

 Without budget consumption 
term:  

 

  
No. of 
UE 
solved6 

No. of 
Benders 
(lower 
bound) 
solved6 

Benders 
iteration at 
which 
optimum 
solution 
was found 

  
No. of 
UE 
solved6 

No. of 
Benders 
(lower 
bound) 
solved6 

Total 
iteration6 
(Optimu
m 
solution 
was found 
at 
iteration)  

 10 100000 3 4076 3 (2)   3 2 04   3 2 04  

 20 101000 12 3952 6 (4) 
 
3 5 04 

 
3 5 04  

 30 100001 26 2668 7 (6) 
 
4 3 2 

 
4 3 2  

 40 100101 41 2524 9 (4) 
 
4 5 2 

 
4 5 2  

 50 101101 52 2404 10 (4) 
 
4 6 5 

 
4 6 3  

 60 101111 61 2281 8 (5) 
 
4 5 2 

 
4 6 5  

 70 111111 64 2256 5 (5)   3 1 04   3 1 04  

 

1Total construction costs 

2The digits in the binary strings represents the following one-way candidates respectively: (1,6), (5,10), (2,7), (6,11), (3,8), (7,12) 

3 (Gao et al., 2005) 
4 Iteration zero refers to the intuitive (or initial) solution, the sorted projects as per the merit index is: (1,6), (2,7), (7,12), (5,10), 
(3,8), (6,11) 

5epsilon = 2%, alpha = 0 

6No. of UE solved: number of times at which the traffic assignment is solved, no. of Benders (lower bound) solved: Number of 
times at which a pair of nonlinear Primal (problem (5.19)) and mixed integer relaxed problem (problem (5.20) to (5.23)) are solved. 
The runtimes over various budget levels are less than a minute. Since computational technologies substantially vary over time, 
there is no point inreporting them. Instead the number of iterations broken down in number of times that Benders were solved plus 
number of times that a traffic assignment was solved is reported. The former is comparable with the number of iterations reported 
by Gao, since in both, two primal and relaxed problems are alternatively solved. So “total iteration” in the B&B_B refers to number 
of times Benders is solved.  

    

5.5.2 Example 2, Sioux-Falls network 

The Sioux-Falls dataset was first introduced by (LeBlanc, 1975), and a slightly modified 

version was recently used by Farvaresh and Sepehri (2013) employing a branch-and-

bound and outer approximation (BB-OA) method. In this section, the application results 

of our study with the results reported by Farvaresh and Sepehri (2013) on the same Sioux-

Falls network are compared. There are five two-way candidate roads with a total cost of 

4,325. In a similar fashion, Table 5.2 presents the comparative results. As is evident from 

Table 5.2, in this case the proposed BB-B surpasses the BB-OA.  

It was in only one out of three budget levels (pertaining to the “without the budget 

consumption”) in which the BB_B was found slightly lagging behind the BB-OA. 

Whereas in the presence of the budget consumption term (which is the preferable 

method), our proposed algorithm (the BB_B) was by far leading the BB-OA. 
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Nevertheless, the spirit of the literature suggests that it is unlikely to arrive at an absolute 

and superior algorithm. The important point is that for the first time, the proposed 

algorithm is purposely tailored to large sized networks. So when it is applied to small and 

artificial benchmark networks, the proposed algorithm has also shown a relative 

superiority.   

 

Table 5.2, Example 2;Sioux-Falls: BB-OA (Farvaresh and Sepehri, 2013) vs proposed 
BB-B 
  

 

Budget1 
Optimal 
solution2 

Number of 
feasible solutions 

Incumbent 
Value 

B&B-OA 
method:   
Optimum 
solution  found 
at iteration3 

Proposed; B&B_B method5 

 

Without budget consumption 
term: Optimum solution was 
found at iteration 

With budget 
consumption term: 
Optimum solution was 
found at iteration 4 

 

 2000 00101 14 158.4158 2 1 1  

 3000 00111 23 113.2047 3 6 1  

 4000 10111 32 94.1993 6 4 2  

 1Total construction costs is 4325   

 
2 the digits in the binary strings represents the following two-ways candidates respectively: (6,8), (7,8), (9,10), (10,16), (13,24)   

 

3(Farvaresh and Sepehri, 2013) 

4 the sorted list of the candidate projects as per the merit index for the intuitive solution is (9,10), (6,8), (13,24), (7,8), (10,16) 

5 epsilon = 2%, alpha = 0   

 

5.5.3 Example 3: Winnipeg large-scale network 

Real-size transportation data for the city of Winnipeg, Canada is widely used in the 

literature (Bagloee and Asadi, 2015; Bar-Gera, 2016; Ryu et al., 2015) and is undertaken 

for numerical tests considering multimodal and multiclass traffic assignment. This dataset 

has also been provided in EMME 3 (INRO, 2009). The road network is comprised of 154 

zones, 943 nodes and 3075 directional links. The transit system consists of 2 transit 

vehicle types, 133 transit lines and 4345 transit line segments. 

As with the multiclass aspect of traffic flow, in addition to the inclusion of 

different types of vehicles (trucks, cars, etc.), the bias term can be applied to many other 

real life applications such as traffic restrictions, high occupancy lanes (HOV) and toll 

gates, etc. (INRO, 2009). For instance, in the case of m
ab , the respective user class m  

is prevented from entering the district denoted by link a . Accordingly, the same dataset 

that was used for the single-class Winnipeg case study is also used (but split between) the 

central business district (CBD) and non-CBD which resulted in two travel demand 
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matrices. The CBD matrix which accounts for 19,742 vehicle trips that can use all roads 

including roads in the CBD. The non-CBD commuters (36,476 vehicle trips) are 

prohibited in the CBD. The scale and location of the CBD is shown in Figure 5.7 (note 

that the roads are annotated with their respective hourly traffic volumes). The transit 

demand contains 18,211 passenger trips. In the existing scenario, the average travel time 

of the non-CBD commuters is 13.62 minutes while it is 17.10 minutes for the CBD bound 

commuters (CBD bound trips are the ones that have at least either their origin or their 

destination falling inside the CBD). As such, the average in-vehicle time experienced by 

passengers is 22 minutes. 

 

Figure 5.7 Winnipeg’s central business district,  
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Twenty two-way road projects with speeds of 50 km/h (or an equivalent free flow 

time of 60*length/50 minutes) and a capacity of 1700 vehicle per hour per direction 

(vphpd) will be considered in this case study. 

Table 5.3 presents the candidate projects sorted and based on their merit index in 

descending order. Figure 5.8 shows the location of the candidate projects and the extent 

of the undertaken case study on which the MMMC UE traffic volumes are depicted (all 

projects, irrespective of any budget constraints, are included). These projects are wisely 

set forth, to complement the ring roads around the CBD and over the river passing through 

the city. The length of roads will be considered as construction costs which amount to the 

total monetary cost of C = 23.31. With respect to the total cost (C), five levels of budget 

(B) are taken into account as follows: B/C = 20%, 40%, 60%, 80% and 100%.  

Table 5.3 Winnipeg example, two-way (candidate) road projects sorted based on the merit 
index 

Id 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
I-node 887 595 513 420 1035 437 774 1057 551 325 304 168 177 829 335 288 299 424 330 441 
J-node 889 602 595 592 301 424 739 297 610 330 423 784 853 173 449 294 1058 327 428 494

Cost1 0.44 0.59 0.79 0.58 0.75 0.86 0.6 0.88 1.51 1.3 1.29 1.09 1.52 1.24 0.64 2.5 1.35 1.61 1.73 2.04

Traffic 
volume2 1634 1554 1554 822 1059 1138 702 1025 1688 1447 1235 941 950 753 377 1338 413 469 164 165

 
Merit 
Index3 3713 2634 1967 1417 1411 1323 1170 1164 1118 1113 957 863 625 607 589 535 306 291 95 81

 
1Total Cost: 23.31 
2 It is the volume accumulated on the corresponding switch link, hence it is the sum of traffic volumes on both directions  

3 Provided that the capacity of the projects are same (1700 vphpd) the merit index is simply calculated as: traffic volume/Cost                                          

The MMMC-UE traffic assignment is solved with a relative gap of 0.001% where 

each traffic assignment lasts approximately 3 seconds. 

In the previous two examples, the budget consumption term was a contributing 

factor in reaching a faster global solution. Accordingly, in the Winnipeg case, the analysis 

was carried out using the budget consumption terms. Consequently, the numerical results 

of the BB-B pertaining to the objective functions equipped with the budget consumption 

terms are reported in Table 5.4. 

In Table 5.4, global optimal solutions are first introduced over various budget 

levels. As can be seen, the global optimal solutions have used up almost all of the budgets, 

such that the budget consumption varies from 89% to 99%. As a result, it is an 

endorsement of the introduction of the budget consumption term in the objective function. 

In other words, encouraging the algorithm to use up the full capacity of the available 
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budget results in and contributes to global solutions being arrived at quicker. A closer 

look at the binary string of the global solutions over the incremental budget levels 

suggests that the strings incline so that they are filled from left to the right. This 

observation underscores the validity of the merit index in an attempt to enhance the 

likelihood of finding the global solution.  

 

Figure 5.8 Winnipeg example, with 20 road projects. 

According to Table 5.4, for each budget level starts with 0 . In two out of the 

five budget levels, the global optimal solutions were found. In the remainder, good 

solutions ranked 4th, 6th and 3rd were achieved. However, consideration of a meagre 

value for the alpha (i.e. 001.0 ) secured global solutions for budget levels 40% and 

100%. It was only for budget level 80% where 001.0  enhanced the quality of the 

solution from 6th to 4th. In addition, a slight push on the alpha from 001.0 to 

005.0 resulted in the global optimal solution. 
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Table 5.4 also indicates the number of times and the depth at which fathoming 

occurred, both of which are a key efficacy barometer. The 11th column (“Total budget 

consumption before fathoming”) shows the average depth of the fathoming point as a 

percentage of the budget. Less depth is more desirable since it suggests that fathoming 

has occurred at the beginning of the tree structure, hence a big portion of the solution 

space has been discarded. 

The computational (CPU) time has also been reported, such that in the worst case 

(B/C = 40%, alpha = 0.001), the computation lasts for almost 6.6 hours.  The last column 

in the table represents the percentage of the total CPU time at which the best solutions are 

found, and this can vary from very early (2%) to almost half way through (62%). In six 

out of nine budget levels, optimal solutions were found in the first half of the CPU time. 

These percentages show that there is a high probability of reaching the best solution in 

early iterations. 

Furthermore, the number of attempts to solve the Benders problem (the MMMC-

SO-TAP with Lagrangian value of the capacity constraints as well as the MILP) and the 

MMMC-UE-TAP are also reported in the table. Such a breakdown in detail provides a 

better understanding of the sheer size of the computational burden over different sized 

networks.  For instance, Xie and Xie (2015) have recently reported on CPU times for 

solving various network sizes which varies from a few seconds to a few minutes for super 

large-sized networks (with +1,770 zones). In dealing with large-size networks, instead of 

a couple of hours (which was the case for the Winnipeg network), one may need to wait 

a couple of days to successfully terminate the algorithm. It is worth noting that for 

strategic planning decisions such as network design which involves significant 

investments, one can afford CPU time in the scale of hours or even days. 
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Table 5.4 Winnipeg case study: results of the proposed BB-B  

B/C% Budget 

Number of 
feasible 
solutions 

Global Optimal Solution 

Outputs of the proposed BB-B  

alpha 
No. of 
fathomed 

Total budget 
consumption 
before 
fathoming 

Average depth 
of fathoming: 
percentage  of 
budget 
consumption2  

Best solution Found 

no of 
UE 
solved2 

no of 
Benders 
(lower 
bound) 
solved 3 

Computational 
time (CPU time) 

binary string Cost1 

Budget 
consumption 
(%)  Obj Fn rank  binary string Obj Fnc 

CPU 
time 
(hr) 

Time to 
reach at 
best 
solution 
(CPU%)4 

20 4.662 6381 01111000000001100000  4.59 98.46 854011 0.000 2 0.88 10 1 01111000000001100000   854011 4 160 1.04 62 

40 9.324 222664 01110001101011100000  9.04 96.95 847252 0.000 2 0.88 5 4 '01110011001111100000  847461 4 544 3.85 22 

          0.001 15 53.23 39 1 01110001101011100000   847252 18 975 6.59 23 

60 13.986 825912 01111011101111110000  14 99.96 842523 0.000 2 0.88 3 1 01111011101111110000  842523 4 273 1.79 55 

80 18.648 1042195 11111111111111110100  18.2 97.54 840350 0.000 2 0.88 2 6 11111111111111111000   840556 3 56 0.37 2 

       0.001 39 323.72 46 4 01111111101111111100   840515 43 310 2.07 26 

       0.005 33 231.09 38 1 11111111111111110100   840350 38 162 1.11 2 

100 23.31 1048576 01111111111111111110  20.8 89.36 839462 0.000 2 0.88 2 3 '11111111111111111111 839617 3 3 0.02 33 

              0.001 37 317.49 41 1 01111111111111111110  839462 41 55 0.43 53 

1 unit of the cost is assumed to be equivalent to the length of the respective road. 

2 it is computed as follows: “total budget consumption before fathoming”/”no of fathomed”/”Budget”*100. For example: 39% = 53.23/15/9.324. 

3 no. of UE solved: number of times at which the traffic assignment is solved, no. of Benders (lower bound) solved: Number of times at which a pair of nonlinear Primal (problem (5.19)) and mixed integer relaxed 
problem (problem (5.20) to (5.23)) are solved. 

4 it is the time it took to find an optimal solution, So the remaining time was used to verify that it was the optimal solution. 
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5.6 Conclusions 

This study has approached the discrete network design problem (DNDP) via an exact 

algorithm tailored to the need, scale and nature of the problems dealt with in the industry. 

Although the DNDP has been extensively studied in academia, practitioners have yet to 

find anything usable in it. There is a two-fold reason for this: (i) the size of the realistic 

problems and the combinatorial nature of the DNDP are significant prohibitive factors; 

and (ii) in spite of the existence of efficient heuristic (but not exact) methods, their 

outcomes are treated sceptically mainly due to their non-deterministic nature. 

The ongoing growth of transportation infrastructure in Asia (Estache et al., 2013) 

on the one hand and the enhancement in computational power as well state-of-the-art 

optimisation techniques on the other hand, have raised an interest in filling the gap 

between academia and industry via exact (not heuristic) methods. In spite of the fact that 

the DNDP is an NP-hard problem, the size of the problems being dealt with in the industry 

are intractable (say a dozen candidate projects, for more information refer to (Farahani et 

al., 2013), see Table 7 and listed papers therein). All together, these make addressing the 

DNDP on realistic scales a worthwhile endeavour. To this end, the BB-B method that is 

based on branch and bound (BB), hybridized with Benders decomposition to streamline 

achieving a global optimum solution is proposed.  

Using a set of greedy rules, the tree of the BB was built upon the sorted projects 

on a merit basis, aiming to reaching the global optimum solution. To hedge against the 

Braess Paradox, the total travel time of the system optimal (SO) flow was computed as a 

lower bound at each new node on the tree (LeBlanc, 1975). To further reduce the 

computation time, a Benders Method was devised to obtain a tight lower bound. The 

algorithm proposed was evaluated numerically using a real data set from the City of 

Winnipeg, with 20 candidate projects subject to various budget levels. In the context of 

the past studies, a comparative analysis was also provided. Accordingly, the BB-B 

method developed showed superior performance in terms of computational efficiency. 

The algorithm could be further improved by considering asymmetric delay 

functions to enhance the degree of realism of the traffic flow. Furthermore, consideration 

of changes in travel demand in response to changes in the network side (known as demand 

elasticity) is a worthwhile thread for research in the context of the NDP. Furthermore, the 

conventional wisdom is to represent congestion using delay functions and the Beckmann 
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formulation. There exist a wide area that can improve the congestion representations that 

is to consider the dynamic changes of the congestion. Dynamic traffic assignment (DTA) 

is an evolving subject that takes the above concerns into consideration. As a result, 

integration of the DNDP and DTA can also be of interest for future studies. 

The NDP is based on a solid premise that the candidate projects are already 

defined. Loosening such a premise and arriving at a more sophisticated way to find 

candidate projects in conjunction with the NDP is worthy of further research. 

Furthermore, it is sometimes necessary to arrive not only at the best (global) 

optimal solution (1st), but at other good solutions belonging to the top of the list (say 2nd, 

3rd, 4th, etc.). Given many different stakeholders and vested interests in transport 

infrastructure, providing decision makers with a variety of top-performing solutions is 

appealing in the industry. In some cases, the difference between the 1st- and 2nd- best 

solutions in terms of the objective function is only mathematically marginal, but the 2nd 

best solution may have some other advantages which cannot be quantified in the objective 

function. Similar to the terminology used in the optimisation literature (k-shortest paths), 

here this new problem is called K-NDP, where the intention is to find the first “k” best 

solutions. 

Extending the discussion to selecting an optimum configuration of one-way and 

two-way roads is also a worthwhile line of research (Drezner and Wesolowsky, 1997, 

2003). Concern arose out of the vested interests involved in the road network and this 

may bring about a variety of objective functions in the DNDP including environmental 

costs (Szeto et al., 2014) and emission reduction (Ferguson et al., 2012). As such, the 

problem becomes a multi-objective DNDP (Xie, 2014). Changes to the network in the 

short and long run may affect the way commuters choose their mode of transport, their 

destination and departure time (if any). Hence, the DNDP subject to a combined traffic 

model considering these changes deserves more investigation (Boyce and Janson, 1980; 

Boyce and Soberanes, 1979). Similarly investigation of land use changes as the result of 

changes in the network infrastructure can also be noted (Szeto et al., 2010; Szeto et al., 

2013). Although the consensus in the literature is to ignore the uncertainty of the travel 

demand, one may want to explore such uncertainties involved in the DNDP (Ukkusuri et 

al., 2007).  
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6 TRANSIT PRIORITY LANES  
As discussed earlier, public and mass transport modes deserve priority in the transport 

system in general as well as more space. The aim is to address optimal reallocation of 

road space to transit modes on an existing urban transport network. In particular, this 

study is interested in finding a network of exclusive transit priority lanes in the heart of 

cities in which the congestion is a chronic stigma. In this chapter, the question of interest 

is: which roads can be nominated to give an exclusive lane to transit modes? Taking space 

away from private modes in favour of public transport may adversely affect congestion 

levels. To this end, inspired by the Braess Paradox, mis-utilized space used by private 

modes mainly on congested roads is sought to be dedicated to transit modes. To find such 

candidate roads, a merit index based on transit ridership and congestion level is first 

defined. Then based on the merit index a number of roads to be designated as transit 

priority lanes are selected. This problem is formulated as a bi-level mixed-integer, 

nonlinear programing problem in which the decision variables are binary (1: to cause the 

respective road to have an exclusive transit lane or 0: not). The adverse effects are 

minimised on the upper level represented by total travel time (public and private modes) 

spent on the network. The lower level accounts for a multimodal traffic assignment, to 

consider the impact of transit priority on private modes, an efficient low-RAM-intensity 

branch and bound as a solution algorithm has been developed. The search for the subset 

is made in such a way that improved public transport is achieved at zero cost to the overall 

performance of the network.  

In the next section, first an introduction followed by extensive discussion on the 

mathematical underlying of the problem is provided in section 6.2. The methodology is 

elaborated in Section 6.3. Section 6.4 is dedicated to the numerical evaluations followed 

by the conclusion in Section 6.5. 

6.1 Introduction 

A typical road can be considered as a directional link consisting of one or more lanes. In 

general, roads and lanes can be used by all traffic modes (cars and buses). If a road is set 

to be a transit priority lane, at least one of its lanes is dedicated for exclusive use by buses. 

Turning a lane into a transit priority lane is also associated with expenses derived from 
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road marking, special signage/signals, lighting, etc. Hence, the transit priority lanes 

design problem (TPLDP) can be discussed as follows: Given a set of candidate roads, 

which lanes should be selected as priority lanes while accounting for a limited budget? 

Taking space away from private modes in favour of public transport is a delicate task, 

which may adversely lead to gridlock congestion. Therefore, one needs to minimise such 

adverse impacts. One intuitive way is to minimise the total travel time spent in the 

network which is set as the objective function in the TPLDP. The consensus in the 

literature is to model the TPLDP as a bi-level mixed-integer, nonlinear optimisation 

problem. The objective function is placed in the upper level, while the lower level 

accounts for the user equilibrium (UE) private traffic flow as well as the transit flow. It 

has been proven that any bi-level programing problem is NP-hard so that the problem 

becomes quickly intractable as the size of the problem increases (Ben-Ayed and Blair, 

1990).  

Among a variety of methods available in the literature, some try to reach an 

optimum solution but cannot scale to handle large-sized networks, others aim to address 

large-sized networks at the cost of compromising the quality of the solution. 

To this end, a RAM-efficient branch and bound (BB) method to address the 

TPLDP tailored to large-sized networks has been developed. First, a set of roads with 

significant transit volumes is identified as a candidate set. Second, using a BB method, 

the possibility of selecting a subset of the candidate roads is investigated, such that the 

overall performance of the traffic system, including private and transit flows, is not 

negatively impacted. It is even possible to improve the overall performance of the 

transport network, as is well illustrated by the Braess paradox (BP). The BP refers to the 

fact that adding a new capacity to a transportation network might adversely degrade the 

traffic circulation. Empirical evidence, as well as mathematical theories, have shown that 

the presence of the BP is prevalent in real transport networks (Nagurney, 2010). That is, 

if there exists some Braess-tainted roads, their closure would improve traffic circulation. 

The main idea of this study (for the TPLDP) is instead of completely closing Braess-

tainted roads, to convert them to transit priority lanes. It is a utilitarian approach to take 

advantage of this stigma. 

 Further, the TPLDP while considering the multimodal feature of the traffic flow 

which enhances the authenticity of the model has been solved. The real dataset for 

Winnipeg, Canada which is readily available in the literature as a benchmark is used to 
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demonstrate the numerical impact of the solutions calculated by the method developed 

here.  

It is important to note that the structure of a transit system such as stop positions, 

transit routes, and fleet size remains intact in this demonstration. Changes may occur with 

respect to some segments of the existing transit routes currently sharing road space (lanes) 

with private modes, which may come to be dedicated as exclusive lanes. Hence, the 

challenge is to find these segments without detriment to traffic circulation.  

This research contributes to the literature on three fronts: (i) A network-wide 

approach to the TPLDP tailored to large-sized networks of congested roads is developed. 

(ii) BP is utilized to nullify the adverse effect of transit priority lanes on the private mode 

by providing faster public and even private transport. (iii) A RAM-efficient BB algorithm 

tailored to a multimodal traffic model so that its simple structure can easily be embedded 

in any programing language. 

6.2 The transit priority lanes design problem (TPLDP) 

In this section, a set the mathematical definitions of the TPLDP is presented. Then, the 

way the multimodal aspect of the traffic flow is included is elaborated upon. 

For ease of formulation, the following convention was adopted: roads considered 

as a candidate are denoted by   (with, for instance, three lanes). Suppose that it is replaced 

with two new roads A' and A'' : (i) road A'  with only one lane which is to be either 

a mixed mode road or an exclusive transit lane or road and (ii) road A'' with two lanes 

for mixed mode use. Alternatively these are referred to as transit lanes or transit roads 

(and, by doing so, they can alternatively be called transit priority lanes or transit roads). 

Therefore, having: A : a set of roads currently with mixed modes (transit and private 

modes) but considered as candidates for exclusive use by transit modes, and the rest of 

the roads are denoted by A  (the candidate road henceforth is simply called “candidate”). 

Although the exposition of the BP in the literature supports a complete closure of 

the BP-tainted roads, the road kept open to private cars for two reasons: (i) connectivity: 

in order to preserve the connectivity of the network, the roads that are closed to create 

space for buses must have at least two lanes; in the event they become nominated to give 

away one lane as a transit priority lane, they still will have at least one lane remaining (ii) 

optimality: it is proven mathematically that a partial closure (like closing a lane for the 

transit mode) is more likely to result in a better traffic circulation (this concept is highly 
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exploited in the congestion pricing, (Yang and Huang, 2005). The basic tenet of 

congestion pricing is to redistribute the traffic load evenly over the road network by 

enforcing a “toll” instead of by any physical restriction. It is important to note that any 

changes to the network or the travel demand such as adding a priority lane may change 

the BP’s status (Aashtiani and Poorzahedy, 2004; Nagurney, 2010). Nevertheless, in the 

formulation of the problem (i.e., in the objective function) these changes result in a better 

traffic circulation across the network. The following notation is used: 

N : set of nodes, 

B : budget available to cover the costs of transit lane implementations such as marking, 

pavement, curb raising, etc. 

ay : binary decision variable associated with candidate Aa ; 1: to be used as exclusive 

transit lane and 0: to remain mixed use road or lane, 

ac : implementation cost associated with candidate Aa . 

ax : hourly public passenger volume on road AAa  , 

aa xx , : hourly private and transit traffic flow in hourly passenger car equivalent or unit 

(“PCE” or “PCU”) on road AAa   respectively, (Note, (i) the network available to the 

private and transit roads/lanes are A and AA  respectively, hence 0, aa xx for Aa  and 

0,0  aa xx for Aa  , (ii) ax is the hourly volume of passenger traffic on the road while ax  

is the car equivalent value of the corresponding number of buses on the respective road 

AAa  , (iii)  the PCE reflects the physical and operational characteristics of the buses 

that can vary from 1.2 to 4.5. In traffic models, these values have already been assigned 

to the transit fleet. For instance for the Winnipeg traffic model the PCE is either 2 or 2.5 

depending on the type of bus). 

)( aaa xxt  : general travel time of link AAa  , a non-decreasing BPR function of the flow

aa xx  of the traffic (called the delay function (Sheffi, 1985; Spiess, 1990)). Note that the 

background traffic, ax , is a fixed value. In addition, switching the delay functions between 

with/without priority lanes is technically a trivial task in our proposed methodology. To 

this end, generally speaking, the new delay function must be calibrated based on field 

survey data. Nevertheless, the BPR delay functions of free flow speed and capacity are 

used. In this formulation, as the number of lanes change, the capacities are updated 

accordingly. However, this keeps the free flow speed intact for the following reason. The 

priority lanes are sought among the congested roads (there is no point to give priority to 
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the mass transit in the uncongested roads). Therefore it is conceivable that a congested 

road (which is not governed by the free flow speed) after giving away a lane is still 

congested with delays remaining more or less same. 


nn AA , : set of links starting and ending at node n respectively, AAAA nn  , , 

ax : hourly traffic volume in auto or private mode, 

R : set of OD pairs 2NR , 

rq : hourly travel demand in PCU for OD pair Rr  pertaining to the auto mode. 

ijg : hourly transit passenger demand  from node i  to destination node j . In order to 

simplify the notation, let us define   }{ jNi ijj gg  that is the total trip attraction to node j

, see (Spiess and Florian, 1989), 

rP : set of paths between OD pair Rr  available to the auto mode, 

,kh : hourly traffic flow on paths ,rPk   pertaining to the auto mode, 

,,ka : road-path incident index, 1 if road AAa  belongs to path rPk   pertaining to the 

auto mode, and 0 otherwise 

nw : average waiting time at node Nn   pertaining to transit system, 

af :  sum of frequency of service for all transit lines on roads AAa  . 

The bi-level TPLDP may be written as follows (note, all variables and parameters 

are considered non-negative unless otherwise stated): 





AAa
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The objective function (6.1) describes the upper-level goal of minimising the total 

travel time. Constraints (6.2) and (6.3) ensure the feasibility of the candidates with respect 

to the costs and the available budget. At the lower level ((6.4), (6.5), (6.6)), the Beckmann 

formulation of the UE flow pertaining to the private mode is computed. Constraints (6.2), 

(6.7) and (6.8) ensure that private flow will not enter the dedicated transit lanes. (U is a 

sufficiently large value, say the total demand r rq ). Although constraint (6.7) is 

redundant, it is placed within the constraints to emphasize that buses can use candidate 

roads either exclusively (if it turns out to be 1ay ) or mixed with private mode (i.e., 0ay

). If it is decided that candidate a  is to be an exclusive transit lane/road (i.e., 1ay ), then 

constraint (6.8) ensures the respective road will be closed to the private mode (i.e., 

01  ay ). Sub-problem (6.9) carries out transit assignment based on optimal strategy 

(Spiess and Florian, 1989) and it returns ax as passenger traffic volume per hour. The sub-

problem also returns the effective frequency of the transit lanes (or the number of buses) 

on the roads (note that the roads are also associated with transit delay functions which are 

functions of travel times experienced by the auto mode). The equivalent value of buses 

in PCU (denoted by ax ) is then considered as background traffic in the traffic assignment 

(Spiess, 1984).  

At the lower level, a combination of traffic and transit assignment (multimodal) 

theoretically leads to a nonconvex programing problem. Such problems then require some 

computationally expensive methods such as variational inequality, not to mention some 

unresolved issues such as uniqueness and stability of the solutions (Florian and Morosan, 

2014). The relevant studies either fall short of fully considering the simultaneous 

interaction between private and public modes or suffer from lengthy computation time 

(De Cea et al., 2005; Liu and Meng, 2012). Given these complexities, the above 

formulation ((6.4)...(6.9)) is proven to be able to solve the multimodal traffic assignment 

adequately, so it has been adopted in some commercial planning applications (INRO, 
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2009). In this study, the formulation (6.4)...(6.9) has been coded as a module in EMME 

3 (INRO, 2009) and it is called upon by the BB algorithm whenever needed.  

6.3 Methodology 

In this section, integration of the merits index into the BB algorithm is discussed. The BB 

has been elaborated on the previous chapters. To offer a self-contained discussion in this 

chapter, however, some basic tenets of the BB are also presented. 

6.3.1 Branch and bound in the context of optimisation methods 

The most notable method of enumeration for the mixed integer programming problems 

is BB which uses a tree structure to process all the combinations. In the minimisation 

problems, as the tree expands, a lower bound is calculated at each node and the branching 

is frozen (fathomed) wherever the lower bounds are found greater than the best-found 

solution (which is also an upper bound value and is called incumbent value). It is evident 

that as the size of the problem (number of decision variables) increases, the method 

becomes computationally prohibitive. The special BB developed in this study can be 

easily coded in any application. 

LeBlanc (1975) proposed a BB method for the DNDP, but due to the 

computational technology available at the time, it was considered inefficient. In this 

study, it is attempted to customise the structure of the BB to the TPLDP finely in order to 

achieve a more efficient algorithm. As the result, a new method for constructing the tree 

structure at node selection and branching based on the concept of merit index (Bagloee et 

al., 2016b) is proposed. 

The ways the structure of the tree is formed, as well as the presence of the merit 

index, have a significant impact on the efficiency of the BB algorithm; it results in a less 

RAM intensive and a memoryless algorithm. In the next section, It is discussed how to 

initialize the BB based on the merit index and how to arrive at a tighter lower bound value 

to serve the purpose of making the BB as efficient as possible. A detailed discussion on 

the lower bound values, node selection and branching rules, as well as the termination 

conditions, have already been discussed in Chapter 5. 

6.3.2 Merit index to find candidate roads 

The first stage is to come up with a set of candidate roads for transit priority lanes. 

Looking for transit priority lanes in a suburb or uncongested roads has no point. 
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Accordingly, in this study, the challenging task of laying down the transit priority lane 

network in the congested parts of the urban road network  (namely in downtown areas or 

CBDs) is addressed. Based on the concept of the BP, it is endeavoured to look for some 

roads, though congested to take away one lane for public transport, without worsening 

current congestion. In doing so, a merit index is defined based on which the roads are 

sorted in descending order as follows: 
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where A is the ordered list of the candidate roads (sorted in descending order) , avc  is the 

volume per capacity ratio of the link AAa  . As noted before, it is evident that taking 

away space from already underutilized roads (i.e., low avc ) to the transit bears no 

additional advantages. Hence, a threshold of 85.0avc is considered. This threshold is  

equivalent to level of service (LOS) E which is regarded as the “working at capacity 

condition” (HCM2010, 2010). This threshold or equivalently the LOS E is the 

approximate point at which the speed of the traffic suddenly drops (see  (HCM2010, 

2010): Exhibit 11-6 p. 11-8 and Exhibit 11-15, p. 11-20). As noted before, the aim is not 

to lay out a transit lane on uncongested roads (i.e., 85.0avc ). Moreover, in order to keep 

the connectivity level of the network intact, only roads with at least two lanes (per 

direction) are designated for conversion to a transit lane. Having said that, a two-lane road 

with 5.0avc  could easily become over saturated with the implementation of a transit 

lane. It is important to reiterate that the mandate of priority planning is to give priority to 

mass transit vehicles such as buses even at the cost of more delay for private cars, to 

encourage them to shift to public transport. However, without any modal shift, according 

to BP, the example road could be found of no interest by private cars, that is, its traffic 

volume could come down to zero.  In other words, these private cars may have found 

other shorter paths. This is the beauty of BP. Of course, there might be some cases in 

which some (uncongested) roads become highly congested, but, by minimising the 

objective function the overall performance of networks will not deteriorate. 

According to condition (6.10), the more congested a road is, the greater the chance 

it has to be designated as a dedicated transit lane. To ensure a road with a high percentage 

of transit flow to likely receive transit priority, term aa xx / is added to the formulation 
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(6.10). Between two roads with the same volume-capacity ratios, the one that carries more 

traffic is more likely to be designated as a dedicated transit lane. That is why the term 

aa xx   is also added. Nonetheless, the merits of the roads are normalised by their 

respective costs. This is a greedy way to push more cost efficient roads to the top of the 

merit list (the list in descending order). The numerical result shows that the above index 

is effective, such that the projects selected in the final optimum solutions are among the 

top ones in the sorted list. 

Transit lanes are just like auto lanes with passenger car equivalency (PCE) 

vehicles running in them. Nevertheless, the BP could still occur when the lanes are taken 

off existing links to be used as bus lanes. Note that the whole link is not removed, but just 

some lanes are removed from the private modes and are put in use in another form (to be 

used by the public transport modes). To address such concerns, it is worth noting that the 

aim of this approach is not to eradicate Braess paradox, rather the aim is to make the best 

out of the likely existing BP to “promote” and advocate public transport ridership. In 

other words, despite all efforts, the approach may end up reaching a situation in which a 

number of roads are designated to convert a lane to public transport while the BP still 

exists among them. However, improvement to the overall performance of the network 

compared to the existing situation may have already been achieved, even though BP may 

still exist. 

Should Braess-tainted links be completely blocked? This subject deserves further 

investigation. A complete road closure is a very sensitive action (not from the traffic point 

of view, more from politically-vested interests, its societal consequences), implications 

for land use (business, outlets, shops along the respective road ought to suffer and resist) 

etc.  

It is also important to note that, the proposed methodology provides a pro-public 

transport network (i.e. flagging some bus lanes throughout the road network) without 

compromising the integrity, connectedness and performance of the network compared to 

the do-nothing network. Any other good things, like finding BP over the rest of the 

network can be treated as boons which deserve more investigation. The reader interested 

to know more about BP detection is referred to (Bagloee et al., 2013a). 

A similar concern may arise with respect to the way the candidate set (condition 

(6.23)) is derived. A better approach seems to be to detect BP automatically and remove 

these links from the network (even not to be used as bus lane). To this end, further to what 
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is discussed above, it is important to highlight two points. First, BP detection is an 

extremely difficult problem (Roughgarden and Tardos, 2002). Second, there is a practical 

advantage in the proposed methodology regarding condition (6.23), as follows. First it 

comes up with a set of candidate roads suspected to be Braess-tainted. The BB algorithm 

is then launched over this set to identify the best subset. This initial candidate set can also 

be altered, based on other concerns (for example, traffic authorities might be interested to 

practice a number of what-if scenarios). To this end, it is widely believed that 

transportation is largely driven by non-transportation vested interests. Furthermore, a 

complete road closure, as is the case in BP detection is highly controversial. That could 

jeopardise the whole point of promoting public transport.  

6.3.3 A tight lower bound 

For the mixed integer programing problem of the TPLDP, given the candidate set A  (or 

the binary decision variables) the algorithm initiates from the existing (do nothing) 

scenario )0,0,0,0,0(jz represented by the first node of the tree )0( j . Each node in the 

tree represents either a partial or complete solution. For example, if there are five binary 

variables, solution (0,1,0,2,2) represents the situation in which only the first three 

components are determined with values of 0/1 and the last two, represented by 2, are as 

yet unspecified; hence, it is a “partial solution”. Each time a node z  is added to the tree, 

a lower bound based on the system optimal (SO) follows and the total travel time 

(objective function (6.1)) is evaluated (LeBlanc, 1975). Therefore, all the free binary 

variables “2” are set to “0” and the SO flow on the network is computed. 

The SO flow for the respective network of jz  is computed and the total travel time 

corresponding to objective function (6.1) is set as a lower bound. The UE flow for the 

network of jz  is also computed and the corresponding total travel time is saved as the 

upper bound and is called the incumbent value. As the tree expands, the incumbent value 

takes the objective value (total travel time, the objective function (6.1)) of UE flow of the 

best solution found. In other words, the incumbent value is the minimum of the upper 

bounds.  

One of the key factors contributing to the efficacy of the algorithm is rooted in 

how narrow the distance is between the lower bounds and the incumbent values. It is 

important to note that the lower bound and the incumbent values are calculated based on 

SO and UE flows respectively. As described in the previous chapter, the ratio of the travel 
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time of the UE flow to SO flow, called “price of anarchy,” can be as high as 2.15 

(Roughgarden and Tardos, 2002). In this section, a recap of the heuristic procedure 

developed to relax the SO flow in order to bridge such a wide gap between SO and UE is 

presented.  

The SO flow can be easily computed using commercial transport planning 

software by replacing the delay function in the objective function of the UE flow 

(objective function (6.4)) to (Sheffi, 1985): 

a

aaa
aaaaaaa x

xxt
xxxtxxt





)(

.)()(~ ,       (6.11) 

where, if )( aaa xxt  is considered as the cost of traveling on road Aa  , then )(~
aaa xxt  is 

known as the marginal cost of using the respective road. As for the delay function, this is 

a non-decreasing multinomial BPR function. The wide gap between SO and UE emerges 

from the second term on the right-hand side of the equation (6.11) which is the additional 

externality costs imposed on the users. The two functions tt ~, show similar behaviour as 

long as the volume is below capacity. As the volume reaches (or exceeds) the capacity, 

the externality costs increase rapidly, hence it results in a wide gap between the SO and 

UE flows. Since the capacity of the delay function is not restricted, in theory, the volume 

and hence the delay as well as the marginal cost can increase to infinity, which results in 

a much wider gap between SO and UE. In order to decrease such an unrealistic gap, alpha 

10   as a coefficient in the externality term is proposed:  
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As alpha reaches zero, the SO moves closer towards the UE and the gap vanishes. 

It is worth noting that the alpha addresses the unfortunate trade-off between 

computational time and the accuracy of the algorithm. With lower levels of alpha, the 

more quickly it leads to a less accurate solution. The value of alpha can be chosen at the 

user’s discretion depending on the current computational technology and the affordability 

of the computational time. In other words, alpha is a valve in the hand of the modeller 

based on which, the accuracy of the results along with the computational time can be 

adjusted depending on the size of the network, available computational technology and 

the strategic value of the final solution. Though, alpha, in fact, simplifies the problem to 

an SO relaxation, the validity of the results especially for real-life networks are strongly 

upheld. Recent studies have shown that the difference the UE and SO traffic patterns 
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stand in close proximity such that for the case of the city of Chicago the difference does 

not exceed sex percentage across the entire network (Boyce and Xiong, 2004; Zheng and 

Boyce, 2011). In other words, the alpha reflects on the observation that, for the real life 

road networks, the SO traffic pattern stands close to the UE traffic pattern. As the result, 

alpha can be considered as an engineering way to take advantage of this revelation 

enabling real-sized networks to be addressed. In the next section, values of alpha for the 

case study undertaken are discussed. 

6.4 Numerical demonstration 

Real-size transportation data for Winnipeg, Canada which is widely available in the 

literature (Bar-Gera, 2016) was used to evaluate the proposed methodology. The case 

study is comprised of 154 zones, 903 nodes, 2995 directional links and 133 transit lines. 

Total hourly car and transit passenger demands are 56,219 and 18,211 respectively. As 

for the computational technology a desktop computer with Intel(R) Core(TM) 3.40 GHz 

and 16.0 GB RAM was used. The algorithm was written using Visual Basic linked with 

MS-Excel as an interface and MS-Access to handle the data efficiently. It is also 

synchronized to EMME3 to carry out bimodal traffic assignments. 

Table 6.1 shows candidate roads sorted according to their merit indices (condition 

(6.10)), adding up to 15.27 km of roads to be considered in the analysis. The length of the 

roads are considered as the corresponding costs ),( Aaca  and the total budget is 00.10B

(in units of length). As for convergence of private traffic assignment a relative gap of 1% 

is used which is proven empirically to be close to an acceptable level for equilibrium 

assignment (INRO, 2009). Note that the traffic assignment problem is solved iteratively 

and in each iteration the relative gap as a termination condition is computed as the 

difference between the total travel times calculated, based on the currently used paths and 

current shortest paths, divided by the former. In each iteration, the traffic assignment 

including private and transit vehicles quickly converges in less than 3 seconds. The total 

travel time of the private cars and the transit passengers in the do-nothing scenario is 

calculated as 978,634.6 car-minutes and 466,665.7 passenger-minutes respectively. 

The algorithm was started with a meagre value for alpha 010.0 . As shown in 

Table 6.2 the algorithm terminates within almost two hours and the best solution found 

entails three links (links 1, 3 and 11 of Table 6.2) with a total length of 0.24 km out of a 

total budget of 10.00 km.  It is worth noting that the transit priorities are sought over the 
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Braess-tainted roads, and the available budget of 10.00 km roads does not imply that 

potentially there are 10 km of Braess tainted roads available. That is the reason why less 

than the entire budget has been used. The total travel time (private and public modes) of 

this solution became 972,671.1 car-minutes and 463,865 respectively, which was 0.61% 

improvement compared with those of the do-nothing scenario. The algorithm was able to 

shrink the search domain over the branch-and-bound tree on 1,290 occasions in which the 

lower bound stood above the incumbent values.In the next runs, the algorithm was tested 

for two additional values of alpha ( 015.0 and 020.0 ) as shown in Table 6.2. The 

computational times for each value of the alpha have been reported based on which the 

one pertaining to the alpha of 020.0  lasted almost three days. In these two runs of the 

alphas, the same solution was obtained, in which the total travel time (private and public 

modes) became 971,429.3 car-minutes, and 463,256.1 respectively equivalent to 

approximately 0.74% improvement compared with that of the do-nothing scenario. 

In terms of the roads identified for transit priority lanes (roads 1 to 15 and 29 of 

Table 6.2), it can be observed, that they are chosen consistently from the top of the sorted 

list in Table 6.1. It indicates that the notion of sorting the candidate roads on a merit basis 

proposed in condition (6.10) is obviously working. Furthermore, the depleted budget is 

1.61 km which accounts for 16% of the available budget. It is evident that an increase of 

1% in the value of alpha resulted in a drastic increase in the computation time. This 

implies that the value of alpha strongly influences the size of the solution domains. 

Furthermore, Figure 6.1 shows the computational cost as well as the incremental 

improvements of the value of the objective function over a range of the values of alpha. 

That is, higher values of alpha result in better solutions (i.e., lower values of the objective 

functions), but at the expense of a higher computational time. 
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Table 6.1 Candidate links to be considered as transit priority lanes, data for Winnipeg, 
Canada 

 
no I_node J_node 

length 
(km) * 

number 
of lanes 

free flow 
speed 
(km/hr) 

capacity 
per lanes 
(PCE) 

hourly car 
volume  

hourly transit volume 
(in car equivalency) 

volume per 
capacity 
(V/C) 

sorting 
Index 

1 1046 1045 0.07 4 35 375 1419.52 328.529 1.17 6761.98 
2 1047 1050 0.07 4 35 375 1002.49 283.464 0.86 4467.29 
3 1050 1047 0.07 4 35 375 1685.39 199.892 1.26 4024.8 
4 1044 1043 0.1 4 35 375 1258.42 304.892 1.04 3939.12 
5 1047 1046 0.09 4 35 375 1771.47 223.529 1.33 3720.08 
6 937 948 0.1 4 35 375 1001.74 282.24 0.86 3111.15 
7 1041 1040 0.07 4 35 375 1466.54 167.877 1.09 2913.32 
8 931 937 0.1 4 35 375 1030.56 262.24 0.86 2829.15 
9 1051 1050 0.11 4 35 375 1685.39 209.892 1.26 2703.63 
10 1045 1044 0.16 4 35 375 1258.42 304.892 1.04 2461.95 
11 917 931 0.1 4 35 375 1200.65 216.163 0.94 2397.76 
12 1042 1025 0.12 4 35 375 1023.83 254.38 0.85 2249.55 
13 1043 1042 0.18 4 35 375 1261.47 304.892 1.04 2187.37 
14 901 917 0.1 4 35 375 1196.33 194.734 0.93 2105.82 
15 1020 1019 0.05 2 25 200 286.331 83.0119 0.92 1970.24 
16 1010 1009 0.06 4 35 375 1747.37 91.6667 1.23 1977.75 
17 899 898 0.08 4 35 625 2056.45 129.375 0.87 1495.47 
18 1008 1007 0.07 4 35 375 1528.51 91.6667 1.08 1499.1 
19 606 605 0.14 4 50 625 3019.8 139.375 1.26 1312.27 
20 967 980 0.1 2 25 200 250.28 98.5119 0.87 1194.4 
21 947 967 0.1 2 25 200 249.761 98.5119 0.87 1195.1 
22 411 410 0.1 3 40 875 2843.67 89.3647 1.12 1032.34 
23 1034 1035 0.09 3 40 875 2383.62 89.3647 0.94 968.36 
24 1011 1010 0.12 4 35 375 1609.37 91.6667 1.13 912.36 
25 412 411 0.1 3 40 875 2631.72 77.3647 1.03 820.28 
26 1037 1038 0.17 4 35 375 1429.08 114.365 1.03 748.37 
27 1009 1008 0.17 4 35 375 1512.47 108.333 1.08 737.53 
28 1036 1037 0.18 4 35 375 1418.92 114.365 1.02 700.3 
29 1041 1042 0.12 4 35 375 1249.88 84.5119 0.89 669.18 
30 605 604 0.24 4 50 625 2426.03 139.375 1.03 632.51 
31 414 973 0.12 2 45 1250 2295.62 76.6667 0.95 627.21 
32 607 606 0.37 4 50 625 3205 159.174 1.35 609.61 
33 410 1034 0.15 3 40 875 2383.62 89.3647 0.94 581.01 
34 604 603 0.25 4 50 625 2426.03 129.375 1.02 556 
35 1035 1036 0.22 4 35 375 1870.51 89.3647 1.31 557.55 
36 170 169 0.23 3 50 625 2478.54 85.8036 1.37 528.78 
37 1053 1052 0.24 4 35 375 1180.54 129.089 0.87 519.12 
38 608 607 0.22 4 50 625 2993.71 84.799 1.23 487.53 
39 1012 1011 0.17 4 35 625 2384.09 76.6667 0.98 456.17 
40 415 414 0.23 2 40 875 2169.41 76.6667 1.28 441.75 
41 166 165 0.2 2 55 1250 2243.53 85.8036 0.93 414.25 
42 603 602 0.37 4 50 625 2655.43 129.375 1.11 407.03 
43 600 599 0.36 4 50 625 2331.27 129.375 0.98 371.73 
44 599 600 0.36 3 50 625 1677.41 129.375 0.96 371.61 
45 887 899 0.33 4 35 625 2056.45 129.375 0.87 362.54 
46 167 166 0.23 2 55 1250 2243.53 85.8036 0.93 360.21 
47 601 600 0.42 4 50 625 2199.21 129.375 0.93 303.33 
48 601 602 0.58 3 50 625 1759.88 129.375 1.01 241.85 
49 602 601 0.58 4 50 625 2248.88 129.375 0.95 224.1 
50 165 1055 0.37 2 55 1250 2243.53 85.8036 0.93 223.92 
51 304 412 0.38 3 40 875 2631.72 77.3647 1.03 215.86 
52 973 1012 0.35 2 45 1250 2295.62 76.6667 0.95 215.05 
53 437 436 0.46 3 50 625 2003.75 76.6667 1.11 192.08 
54 175 174 0.45 3 50 625 1711.39 79.6271 0.96 177.77 
55 441 442 0.51 3 50 625 1912.45 78.5417 1.06 169.95 
56 442 441 0.51 3 50 625 1822.49 78.5417 1.01 162.25 
57 1055 1059 0.75 2 55 1250 2243.53 85.8036 0.93 110.47 
58 436 423 0.82 3 40 875 2311.83 76.6667 0.91 87.9 
59 423 415 0.89 3 40 875 2495.26 76.6667 0.98 87.01 
60 423 436 0.82 3 50 625 1526.17 76.6667 0.85 83.46 
*Total length is 15.27 km  

 

Figure 6.2 demonstrates graphically the roads identified to provide one lane 

dedicated to transit. Apart from a few sporadic roads, the transit priority lanes are 

topographically consistent.  
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Table 6.2 Numerical result for data for Winnipeg, 

Alpha 

No. of times 
lower bound 
higher than 
incumbent 
values 

CPU 
time 
(hours)  The string of solution found (1: to-build, 0: no-build)  

Total 
Travel 
Time  
(car-
minutes)  

         
Transit 
travel time 
(passenger - 
min) 

 Budget 
used out 
of 10 

1.0 1,290 1.874 101000000010000000000000000000000000000000000000000000000000 972,671.1 463,865.7 0.24

1.5 4,995 5.297 111111111111111000000000000010000000000000000000000000000000 971,429.3 463,256.1 1.61

2.0 31,503 68.719 111111111111111000000000000010000000000000000000000000000000 971,429.3 463,256.1 1.61

 

It is worth noting that, given the current level of congestion (i.e. the do-nothing 

scenario represented by the total travel time of 978,634.6), the addition of the transit 

priority lanes not only did not degrade the traffic circulation, but in fact, it improved 

(though only slightly) the overall traffic circulation (a 0.74% reduction in the total travel 

time). This clearly shows that the initial idea of the BP exists and it worked in our favour 

as expected. 

Although the 0.74% improvement may sound minuscule, it is, in fact, a significant 

achievement. The aim was to show that bus lanes can be added to the network at no 

adverse cost. However, the consensus in the literature is to add bus lanes even at the cost 

of degrading the network for the private modes (sometimes intentionally) to encourage 

travellers to shift to public transport. Nevertheless, the 0.74% hourly time saving if 

factored to the day and year and total magnitude of travel demand would become a 

significant improvement. Moreover, in many examples of road network design (or road 

construction), the amount of expected improvement in time savings are only around a few 

percent. For instance (Poorzahedy and Rouhani, 2007) reported only a 2% improvement 

as the result of a massive investment on undertaking 10 mega grade-separation projects 

(see Table 6 of (Poorzahedy and Rouhani, 2007) ) in a real life example, whereas the 

improvement of 0.74% which is equivalent to one-third of 2%, comes at low cost.  



120 

 

 

 

Figure 6.1 Impact of the alphas on the computational time and the objective function 

With respect to BP, the algorithm sought mis-utilized capacity (even in the 

congested area), to be taken away from the private mode and to be used exclusively by 

the transit mode. Although the idea of providing priority to the transit is appealing, there 

is certainly a level above which the overall performance of the network (private and 

public) will deteriorate. The performance of the network was measured as the total travel 

time/cost formulated in the objective function (6.1) and was referred to as the incumbent 

value. Since the algorithm started with the incumbent value of the do-nothing scenario, 

in the end, the algorithm did not render any solution worse than that of the do-nothing 

scenario. For the greater cause of transit priority, should a slight deterioration of the 

private mode be acceptable, one can re-launch the algorithm with a slightly higher 

incumbent value. Therefore, more links are likely to be found as transit priority lanes. 

Such measures can be strongly justified in light of possible shifts in the travel demand 

from private to transit if greater priority and incentives are provided for public transport. 

This brings us to set out new areas for further studies which are discussed in the next 

section.  

6.5 Conclusions 

In this study, the aim was to enhance the attractiveness of the transit system by providing 

transit priority lanes at no cost, and no additional burden to the private mode. The method 

proposed in this chapter is motivated by Braess’s paradox in seeking roads for which 

closure will counterintuitively improve overall traffic circulation. Accordingly, instead of 
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complete closure, a lane was taken away for the transit vehicles use only and left the rest 

of the space for the private mode so as to maintain the same level of network connectivity. 

This problem was formulated as a bi-level, nonlinear programing problem mixed with 

binary decision variables which are proven to be extremely intractable for large-sized 

networks. At the upper level, the total system cost (or total travel time) is minimised, 

while multimodal traffic assignment is taken into account at the lower level.  

 

Figure 6.2 Winnipeg transport network and selected transit priority lanes 

To address the scalability of the methodology, a greedy and RAM-efficient branch 

and bound algorithm tailored to large-sized networks was developed. This algorithm was 

coded using MS Office applications (Access, Excel) synchronized with a commercial 

transport planning software (EMME 3) targeting the needs of industry and practitioners. 

In the first phase, a set of roads deemed appropriate for candidacy as transit 

priority lanes were identified. To this end, criteria such as current transit ridership, 

congestion levels, and even costs pertaining to implementation of a transit lane were 

considered (condition (6.10)). In the second phase, a subset of the candidate set was 
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sought using the proposed BB algorithm. In doing so, based on a number of traffic 

characteristics, a merit index for the candidate projects was calculated. The roads were 

then sorted in descending order from the most likely to be the best selection for 

designation as transit priority lanes. The tree structure of the BB is built on the sorted list 

of candidates. The branching is also done based on the sorted list from the top, descending 

steeply into the last possible candidate, subject to budget constraints or weak lower 

bounds. This would help with the use of extremely small RAM space which is a decisive 

factor in handling large-sized networks. Such a simple rule makes the search over the tree 

quite smooth, with no effort required to remember the structure of the rapidly growing 

tree. Subsequently, this offers an ideal leverage for dealing with large-sized networks. 

As advised by LeBlanc (1975), the lower bound value was calculated based on 

system optimal (SO) traffic flow. In cases in which no lower bound is found to be higher 

than the incumbent value, the wide gap between SO and UE flow may affect the 

numerical affordability of the BB adversely. Therefore, inserting the alpha coefficient in 

the marginal delay function to bridge the gap is proposed. The value of alpha controls the 

trade-off between accuracy of the solution and computational time easily.  

Given that the proposed algorithm is linked to Braess’s paradox, it may be valid 

to ask how the method would perform if it was applied to a network which was already 

designed to prevent BP from happening? To answer this question let’s first underscore 

the primary aim of transit priority, that is to give priority to the public transport-even at 

the cost of leaving less space to private cars- to encourage people to shift to public 

transport. Laying out the bus lanes on the shoulder of the Braess’s Paradox is a boon to a 

primary cause that is a conservative approach to the bus priority. Nevertheless, in previous 

studies, bus lanes are added irrespective of maintaining the same level of service for the 

private mode. In the case of dealing with a BP-free network the proposed methodology 

can still be applied by launching the branch-and-bound with a higher incumbent value 

(say infinity; as noted before the initial incumbent value is the total travel time of the do-

nothing or existing network). As a result of designating some lanes for the public 

transport, private cars are inevitably faced with longer travel times. 

The algorithm was evaluated using real data for Winnipeg. The best solution 

comprises 1.61 km of transit priority lanes primarily located in the central business 

district. It is important to note changes to the transit network structure would change the 

bus frequencies and network, but these are ignored here. Moreover, It should be noted 
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that any changes in the transit network would also change the signal phases and timing. 

In addition, giving priority to the transit is supposed to entice more ridership (modal shift 

from private modes and is aimed at doing so).  As the result, a worthy line of research is 

to develop a combined model in which modal split and traffic assignment are 

synchronized to fully take the mutual changes (network vs demand) into account. 

Accordingly, the algorithm developed can be further improved on several fronts as 

follows: (i) in this study the travel demand matrices for both private and transit modes 

were assumed to be fixed. Given the intention of transit priority to make the transit mode 

more appealing, the methodology presented here can be further improved to consider 

flexible travel demand and hence the possible shift from private mode to transit mode. 

(ii) The concept of transit priority lanes would work more efficiently in synchronization 

with transit signal priorities. To this end, road delay functions to adjust the priority signal 

settings become non-separable. This gives rise to path-based traffic assignment methods 

such as complementarity and variational inequality methods (Aashtiani, 1979; Nagurney, 

1998) which is still an evolving subject in the literature. (iii) The possible spare capacity 

of the transit lanes can provide an opportunity for promoting car-sharing schemes or high 

occupancy vehicles (HOV) as well as the bicycles. The model can be further improved 

by considering the variation of travel demand over time, as well as in response to changes 

in the network. 

In light of real-time data, big data, sensor revolution, and the internet of the things, 

some scholars advocate moving toward dynamic traffic assignment (DTA) that is to 

include the time variation features of the traffic. DTA is based on the fundamental 

diagram, a method derived from traffic flow theory, to model congestion with a greater 

realism and fidelity. Furthermore, one of the main drawbacks of the (static) traffic 

assignment method, regardless of having a priority lane, is a lack of consideration of 

vehicle-to-vehicle interactions (for example in a one-by-one road, if a car stops, all others 

should stop, too). To this end, alternative methods are DTA or a more disaggregated 

model such as microsimulation which are based on car following methods. Though the 

reward is enormous, the task is highly challenging, attributable to some theoretical 

hardship as well as computational costs. Nevertheless, DTA seems to be the future, as the 

result, integration of DTA in the proposed methodology is a thread of research deserving 

further investigation.   
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7 CONCLUSION 
This section presents a summary of the research undertaken, highlights of the findings 

and challenges as well as the contributions made. This chapter concludes with a number 

of suggestions for further investigation.  

7.1 Summary of the research 

In response to the chronic issue of traffic congestion two approaches were undertaken in 

this study. Firstly, a hard approach consisting of adding more capacity to the road 

infrastructure including constructing new roads, bridges or widening existing roads, better 

known as the discrete network design problem (DNDP) was investigated. It is called a 

hard approach, because it involves in a number of laborious, time consuming and capital 

intensive (construction) projects. In contrast, a soft approach was also investigated that 

grants road space priority to mass transit modes (public transport) better known as the 

transit priority lane design problem (TPLDP). In contrast to the DNDP, the TPLDP is 

called a soft approach, mainly because it is not a capital or labour intensive nor time-

consuming approach. 

The DNDP was defined as follows, given a number of candidate projects (new 

roads, road widenings, grade-separated interchanges, etc.) and associated construction 

costs and a limited budget, which candidate projects should be selected to ease traffic 

congestion the most. 

Similarly, the TPLDP was defined as follows, given a number of (existing) roads 

nominated to possibly designate a lane to be used exclusively by public transport modes, 

which ones should be selected to ease traffic congestion. Note that each road is associated 

with some (minor) expenses pertaining to the lane marking, signage, signals etc., and the 

final selection of the projects must respect a limited budget. An important point to note is 

that, despite leaving less space for private vehicles, the aim is still to ease traffic 

congestion. Though it seems implausible, it is theoretically possible thanks to Braess 

Paradox. Braess paradox stands for a counterintuitive phenomenon in which traffic 

circulation sometimes improves when some (Braess-tainted) roads are blocked. 

Therefore, the idea is to search for Braess-tainted roads that will not to be fully closed, 

but rather to give away a lane to public transport modes. 
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Considering the nature of these two approaches, three analogous traits can be 

observed: (i) the decisions variables are of a binary nature (1 or 0), to build or not (for the 

DNDP) and to designate a road as priority lane or not (for the TPLDP) (ii) the aim is 

always to ease traffic congestion which can be formulated as the total travel time spent 

on the network by all users. Hence, the total travel time becomes a nonlinear objective 

function which can also be considered as an index to measure the performance of the 

respective network subject to the decisions that were made. Accordingly, both the DNDP 

and the TPLDP can be expressed as optimisation problems in which the objective function 

(i.e. the total travel time) are minimised (iii) there should also exist a model to mimic the 

way the users navigate the network so as to be able to calculate the total travel time. This 

model is called the traffic assignment problem (TAP) which itself is an optimisation 

problem. Therefore, the above-mentioned problems were formulated as bi-level 

programming problems to minimise the total travel time in the upper level (subject to the 

binary decision variables, cost and budget constraints) while accounting for the users’ 

routing as a TAP in the lower level.  

Being bi-level is enough to make a problem computationally intractable known as 

NP-hard. In other words, as the size of the problem (number of roads, intersections, 

decision variables) increases which is the case in real life examples, the computational 

time becomes a prohibitive factor. 

The above problems are found to be mathematically and computationally 

intractable. That is for real life road networks, finding a reliable and valid solution 

procedure is a significant concern. Inclusion of the nonlinearity, binary (or integer) 

variables make an already difficult problem more complex. These complexities call on 

special and innovative ideas to be able to provide effective solution methodologies. 

A review of the literature indicated a number of shortcomings in past studies. 

Notably, “practicality” is relatively rare when dealing with NP-hard problems. In other 

words, applications of methods on large sized road networks, as is the case in real life 

situations are yet to be addressed. Secondly, given the computational complexities, some 

aspects of the problems have been ignored or loosely treated. More precisely, any solution 

to the TPLDP or the NDP must be thoroughly examined based upon a reliable model to 

measure the traffic circulation which has been largely relaxed due to the theoretical and 

computational burdens. 
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These shortcoming were addressed in this research. The methodologies developed 

in this study were subjected to multiclass and multimodal traffic assignment to keep a 

high level of realism and fidelity for the models.  Given the initiatives developed in this 

research, for the numerical analysis, real life datasets were used and the results were 

shown to be promising. 

7.2 Solution methodologies 

As noted earlier, the main part of the complexities is rooted in the fact that the problems 

are bi-level. To this end, a branch-and-bound algorithm was developed to represent the 

bi-level structure. In order to expedite the quest to find global optimum solutions, a merit 

index was defined and calculated for candidate projects, based on which the projects were 

sorted in descending order. The merit index was defined based on the congestion levels, 

capacity of the roads, traffic load (for the DNDP) or transit ridership (for the TPLDP) in 

such a way to give more merit to the roads that were deemed more likely to be selected 

for construction (for the DNDP) or for priority lanes (for the TPLDP). 

The merit index was then used to search for the solution over the branch-and-

bound algorithm which made the search highly RAM-efficient. 

As the BB expands over the solution space, a lower bound and an upper bound to 

the value of the objective function are recorded. The key to the success of the BB is to be 

able to quickly shrink the solution space towards the optimum solution. As the tree 

structure of the algorithm grows (over newly generated nodes), it stops at the nodes in 

which the respective lower bound is found to be higher than the upper bound. As the 

result, it is highly significant for the algorithm to calculate very tight lower bound values.  

To this end, for the DNDP, the branch-and-bound algorithm was hybridized with 

a Benders decomposition method which was shown to be highly effective. 

A prerequisite of the Benders decomposition is found to be related to the 

capacitated traffic assignment. To this end, a method dubbed inflated travel time (ITT) 

was developed in which the travel times of the oversaturated roads are inflated artificially 

to the extent they become saturated. In the context of the available literature, the main 

advantage of the ITT is to obviate any additional parameter and automatic mechanism to 

initiate a feasible solution. 

In the following section the major contributions of this research are highlighted. 
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7.3 Contributions of the research 

Contributions of this research can be summarised as follows: 

 A network based approach for the problem of transit priority lane design (TPLDP) is 

developed.  

 The discrete network design problem (DNDP) which is a benchmark problem in 

computational complexity is solved using an exact method consisting of a Benders 

decomposition method and a branch and bound algorithm. 

 For the both problems (TPLDP and DNDP), the methodologies are tailored for real 

life road networks.  

 A RAM-efficient and memoryless branch and bound algorithm based on an 

innovative concept (merit index) is developed. 

 To enhance the realism of the models, in the solutions provided for the two problems, 

the models are subjected to multiclass and multimodal traffic flow. 

 A parameter-less method is developed for the capacitated traffic assignment problem. 

7.4 Suggestions for further research 

Given the nature of the research questions a number of extensions worthy of 

further investigation have been identified and are described as follows: 

There is ample space for improvement associated with the traffic assignment 

model used in this study. As noted before, it was assumed that the travel demand was 

fixed, given and exogenous. Furthermore, it was assumed that users have full knowledge 

of traffic conditions and choose paths accordingly with no ambiguity. Therefore, a 

deterministic traffic assignment with fixed travel demand was used. The traffic 

assignment model can be further improved by not including such assumptions. To this 

end consideration of variable demand as a function of the congestion level and a 

simultaneous modal choice between competing public and private modes is worth noting.  

In addition, the deterministic traffic assignment can also be relaxed to a stochastic 

assignment in which users do not necessarily have a full understanding of the traffic 

congestion when they choose paths. 

The delay functions associated with the roads are a functions of the respective 

roads which are called asymmetric and separable delay functions. Relaxing this 

assumption results in more comprehensive functions. To this end, the TAP cannot be 
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formulated as an optimisation problem in the lower level. Alternative approaches are 

complementarity methods, variational inequality or in a more general sense, fixed-point 

methods. 

In the above assignment model, there is no provision for the variation of the 

parameters with respect to time. In other words, they are static and not dynamic models. 

However, in recent years dynamic traffic assignment (DTA) has gained significant 

momentum mainly due to its unique application to the real time simulation and modelling. 

DTA can take delays at signalized and unsignalized junction into account. 

In all the above extensions, the computational time is a significant concern, 

nevertheless, for the DTA it is much worse. 

For the TPLDP, inclusions of priority phase in the junctions’ signal timing and 

transit priority lanes can result in a more positive outcome.  

As alluded to before, for infrastructure investment (DNDP), it is of the highest 

practical value to not only arrive at the best possible solution but a number of top solutions 

that can be provided to decision makers. It is called k-DNDP, in which the k best 

investment scenarios are identified.  

The DNDP was built on the tenets of a given number of candidate projects. This 

assumption can also be relaxed such that a set of candidate projects is identified first. 

Similarly, the physical characteristics of candidate projects (number of lanes and 

capacity) can also be relaxed to be a variable in the DNDP. 

Investigation of long term impact of the transportation (such as a new road, 

priority lane, etc.) to land use changes is also important. It is well known that accessibility 

is related to economic activities and this is in turn expected to have an impact on the land 

use as well as real estate values. Nevertheless, transport and land use are intertwined 

based on mutual influences. Furthermore, partial disruption of accessibility which could 

be the case for transit priority lanes or during construction in road investments may 

adversely affect some businesses or properties. Anecdotal evidence has shown these 

negative consequences might be conducive to some contention from vested interests.  

In the above mentioned problems, when the solutions are found (to build new 

roads or convert some roads to transit priority) no regard was given to implementation. 

More precisely, though the budget is included in the formulation, due to some other 

limitations, it may not be possible to undertake all the qualified projects in one go. In 

other words, one has to prioritise or further schedule the implementation process. As the 
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result, prioritisation and scheduling can be added into the framework of the DNDP and 

the TPLDP. 

The main expectation in the DNDP and the TPLDP was to identify initiatives to 

ease traffic congestion. In other words, the objective function was set to be total travel 

time. Given the undeniable importance of the environment and societal impact of 

transportation, it is sometimes necessary to include them in the formulation which results 

in a multi-objective problem. In other words, expanding the DNDP and the TPLDP into 

the multi objective problem deserves further investigation. 
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