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Comparison of linear and nonlinear extreme wave statistics 

 

Summary 

 

 An extremely large (‘freak’) wave is a typical though rare phenomenon observed in the 

sea. Special theories (for example, the modulation instability theory) were developed to explain 

mechanics and appearance of freak waves as a result of nonlinear wave-wave interactions. In this 

paper it is demonstrated that the freak wave appearance can be also explained by superposition 

of linear modes with the realistic spectrum. The integral probability of trough-to-crest waves is 

calculated by two methods: the first one is based on the results of the numerical simulation of a 

wave field evolution performed with one-dimensional and two-dimensional nonlinear models. 

The second method is based on calculation of the same probability over the ensembles of wave 

fields constructed as a superposition of linear waves with random phases and the spectrum 

similar to that used in the nonlinear simulations. It is shown that the integral probabilities for 

nonlinear and linear cases are of the same order of values.  

 

Introduction 

 

 Freak waves have always been a part of the marine folklore, but over the past 15-20 years 

have firmly found a place in the mainstream oceanography
1
. The meaning of the term ‘freak’ (or 

‘rogue’) waves in science and life is quite different. According to the marine folklore, freak 

waves are described as ‘monster’ waves appearing like ‘walls of water’ (high crests) or ‘holes in 

the sea’ (deep troughs), or both. Another folklore variety of freak waves is ‘three sisters’ which 

can be interpreted as either a sequence of rogue waves or, more likely, an anomalous wave 

group.  

In science ‘freak’ wave is defined as a wave whose trough-to-crest height exceeds twice 

the significant wave height sH  ( sH is a characteristic mean wave height usually defined as a 

mean value of 1/3
rd

 of the highest waves). What seems remarkable is that the sea folklore 

provides a better description of the freak wave properties focusing on their shape rather than the 

height, while assuming, of course, that such waves are very big. The term ‘vertical walls’ 

definitely indicates a wave surge in front of the observer, i.e., the wave undergoes an active 

phase of breaking. However, the current scientific definition of the term ‘freak wave’ has a solid 

theoretical background since it is based on the fundamental properties of the adiabatic motion 

described by the Euler equations, i.e., these equations are self-similar, because, being 

transformed into a nondimensional form they do not contain a nondimensional parameter. 

Hence, the nondimensional equations describe the whole class of motions. Thus, for obtaining 

specific dimensional results, it is enough to multiply the solution by an appropriate length scale

L . It can still be concluded that for the nondimensional equations the scientific definition of 

freak waves is justified. 

 For a long time scientists were not paying attention to the stories describing the events of 

‘monster’ waves, reasonably presuming that big waves during strong storms do not suggest 

anything unusual. However, later it became clear that such waves do exist and look perhaps too 

big to be explained from the point of view of statistics. It was a starting point for developing 

many theoretical schemes (see an excellent review
1
). Some researchers explained generation of 

freak waves by external factors, such as an effect of wave energy focusing on the ocean currents 
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of specific configurations. Obviously, such events deserve being investigated; however, the 

problem of freak waves appears to be much broader, since such waves have been detected in 

many areas of World Ocean with no special oceanic structures such as a surface current. 

 The most popular theory recently employed to explain the freak wave phenomenon is the 

so-called ‘modulational instability theory’ originally known as ‘Benjamin-Feir (B.-F.) instability 

theory’
2
. The concept of this theory is quite transparent, i.e., the one-dimensional nonlinear wave 

in the presence of certain disturbances can produce additional modes arising in the vicinity of the 

main mode. Roughly speaking, the B.-F. theory explains redistribution of wave energy in a 

frequency (wavenumber) space up to the final homogenization of the initially discrete spectrum
3
. 

Most scientists believe that this mechanism can explain an abnormal growth of one wave mode. 

In case of the broad spectrum, typical for the wind-generated waves, such explanation is difficult 

to accept. First of all, it is unclear why one mode enjoys such preference and why this mode 

preserves its individuality in the course of its long development in a wave field with random 

phases. The original B.-F. results, as well as the and numerical investigations of B.-F. (Chalikov, 

2007) showed that the period of new mode growth for the typical sea wave steepness exceeds 

hundreds or thousands of the carrying wave period. Thus, the freak wave should undergo a long 

course of development. Why do not interactions with other waves stop this growth, as if other 

waves do not exist?  

The modulation instability theory of freak waves operates with such a poorly defined 

measure as the so-called BFI (Benjamin Feir Index) parameter calculated as a ratio of wave 

steepness 
pAK ( A  is a wave amplitude at spectral peak and pK  

is its wavenumber, both being 

dimensional), to the spectral bandwidth / pK K∆ ; K∆  being a measure of width of the spectrum 

estimated as a half-width at the half-maximum of spectrum
4 

. Actually, the amplitude A  at 

spectral peak essentially depends on spectral resolution. The value of ’width’ of spectrum is also 

uncertain since wave spectrum normally embraces a wide range of frequencies, so the value of 

BFI finally depends on somewhat arbitrary definitions.  

 Spectral analysis seems to be effective when it describes more or less uniform process 

like quadruplet interactions or energy input to waves, while it is rather pointless when applied to 

the analysis of extremely rare events represented by the single or multi-peak disturbances of a 

vast wave field. Such disturbances are evidently created locally in a physical space while they 

cannot manifest themselves in the wave spectrum which characterizes a large area.  

 No detailed data on time/space development of large waves are available, however, the 

results of the 2-D and 3-D mathematical modeling based on full equations show that the process 

of ‘freaking’ is very fast while the period of life of extreme waves is short. Such data do not 

prove an importance of the modulational instability theory for explanation of a freak wave 

phenomenon. The aim of this paper is to demonstrate new views on a freak wave problem. 

 

 2. Numerical simulations 

 

 The results presented below are obtained with the two-dimensional (2-D) and three-

dimensional (3-D) wave models. Both models are based on full nonlinear Euler equations in 

potential approximation. The 2-D model exploits conformal transformation of the coordinates, 

while the 3-D model uses the surface-following coordinate system and a direct solution of the 

three-dimensional equation for the velocity potential (see Appendix). The description of the 
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models and demonstration of their accuracy are given in
5,6,7

. It is assumed here that the models 

are able to describe a real process with the sufficient accuracy. Both models were used in a 

quasi-adiabatic mode. It means that a small output of energy due to the flux of energy to subgrid 

domain is compensated by the input energy which is proportional to the wave spectrum. Below 

the non-dimensional variables with the following scales are used: length L suggesting that 2 Lπ is 

a horizontal dimensional period; time 1/2 1/2L g − ; and velocity potential 3/2 1/2L g ( g is the 

acceleration of gravity). The characteristics of the models are given in Table 1 (
pt is the time of 

integration expressed in a peak wave period). 

 

Table 1. Characteristics of numerical models used for generation of the ensembles of surfaces.  

 

 Spectral 

resolution 

Grid 

resolution 

Peak 

wavenumber 

Time step Number of 

time steps 

Integration 

time ( )pt  

3-D model 

1
st
 run 

256 128×  1024 512×  16 0.005 200,000 636 

3-D model 

2
nd

 run 

512 128×  2048 512×  64 0.0025 100,000 318 

2-D model 1000 4000 16 0.001 2,000,000 1273 

 

 

The initial conditions in the models were assigned as a superposition of linear modes with 

random phases and amplitudes corresponding to the Pierson-Moskowitz spectrum
8
. In the 3-D 

model, a symmetric directional distribution was assigned for the energy-containing part of the 

spectrum proportional to ( )coshn θ where 4n =  was taken. The fields of surface elevation with  

time interval of 1tδ =  were recorded. 

 Analysis of the results was done in terms of the non-dimensional trough-to-crest wave 

height tcH .
 
The value t cH was defined as a difference between the maximum maxH  and 

minimum minH values of elevation normalized by the significant wave height: 

  

 ( )1

max mint c sH H H H−= −         (1)  

 

in the window with the size of 1.5 1.5p pL L× where 2 /p pL kπ= is the nondimensional peak 

wavelength. In 1-D case the window turns into a linear segment. The window was moved 

discreetly in both directions by 0.5 pL step. Such window parameters were chosen in order to take 

into account all the range of possible values of 0 tcH≤ . Actually,  99% of t cH exceeds 1. The 

shift being equal to 0.5 pL , but few values of t cH were sometimes taken more than once; anyway,  

it does not influence the statistics. 

 Such type of processing needs some explanation. Actually, we do not see any other ways 

to construct the true ensemble of 
t cH values; however, there is a big difference between the 1-D 

and 2-D cases. In 1-D case  the maximum and minimum of the elevation fall on the same 

direction. In 2-D case these values can fall on different y-positions. That can be the main reason 
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why the probability of large waves in 1-D case is normally lower than that in 2-D case. 

Naturally, with narrowing of the spectrum (i.e., at increase of power n) the 2-D distribution 

should approach the 1-D distribution. The probability of t cH
 
wave height in 2-D case can also 

be calculated with a unidirected algorithm, when each vector of elevations along x is processed 

as a result of the unidirected modeling. In this case the maximum and the nearest minimum of 

elevation coincide with a general direction of wave propagation.  Note, however, that the 2-D 

algorithm (based on the square window) appears to be more practical.  

A typical example of freak wave appearance is given in Fig. 1 where five consequent 

surfaces in a small fragment of the simulated domain are shown. The surfaces are reproduced 

through interval of 0.32 pt ( 1.57pt ≈  

is the period of peak wave). As seen, 

the trough-to-crest height for a short 

period of the order of one peak wave 

period varies in the range of 

1.90 2.66tcH< <  

 

 

Fig.1. Example of a short-term evolution of 

elevation. The same fragment of the surface 

is given for different moments separated by 

the interval of 0.32 pt . The largest 

normalized trough-to-crest wave height in the 

fragment is indicated. 

(value 2.66tcH =
 
is the top value 

obtained in these simulations). In 

general, a shape of surface changes 

for such a short period significantly. 

Evolution of surface in Fig. 1 looks 

rather like an effect of dispersing 

superposition of different modes than 

the appearance of modulation 

instability. 

A ‘history’ of extreme waves 

in domain 0 2y< <  for the period

600 640t< <  is shown in Fig. 2 

where locations of large trough-to-

crest waves (independent of their x-

locations) are indicated: blue dots 

correspond to the values of 1.7t cH >
 

while red dots correspond to the 

values of 2t cH > . As seen, the dots 

are concentrated in groups, which proves their belonging to the same physical object. Many of 

the groups start from the blue dots and end also with the blue dots, while in the middle of the 
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groups the red dots indicate freak waves. What is remarkable is that all these groups are short. It 

seems that freak waves arise suddenly with no prehistory, which also looks like as effect of 

superposition.  

Let us consider local characteristics of wave fields, i.e. the average over ‘jumping’ with 

the step 0.5 pL squared domain size of 1.5 1.5p pL L×
 

 

 
 

Fig.2. History of the extreme wave appearance in the coordinates  ( ),t y  for the period 600 640t< <  and  the 

strip 0 2y< < . Blue dots correspond to the values1.7 2t cH< < , while red dots correspond to the values

2t cH > .  

( )
1/2

2
21.5 p x

x y

Lσ η
− 

=  
 

∑∑                (2) 

 

Examples of the instantaneous field of rms steepness calculated in this moving window are
 

given in Fig. 3. The upper panel refers to the data generated by the 3-D nonlinear model, while 

the bottom panel represents the data generated as a random superposition of linear waves.  

 

 ( ), ,cos ,k l k l

k l

a kx lyη φ= + +∑∑               (3) 

 

where k and l  are wavenumbers along the axes x  and y , 
,0 k lϕ π< <  is a random phase; 

amplitudes ,k la are calculated as follows:  

 

 ( )1/2

, ,
2

k l k j
a S k l= ∆ ∆                (4)  

 

( 1k l∆ = ∆ = ), 
,k lS

 
is the energy density spectrum.  

Different sizes of dots in Fig. 3 characterize height of a freak wave. The field shown in 

the bottom panel of Fig. 3 looks as a typical member of the entire ensemble. Note that generating 

the fields with the nonlinear models took about two months of calculations, while the same size 

of ensemble of the fields calculated as a superposition of linear waves was generated for just 30 

minutes.  It can be expected that the wave fields obtained in so different a manner should be 

different as well. In particular, we expected that the averaged over windows wave steepness of a 

random superposition of linear modes should be more or less uniform. To our surprise, the 

pictures and animations generated for both cases demonstrated very similar features, i.e., the 
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more or less uniform fields always contained small areas with a highly increased steepness. The 

locations of freak waves (marked as black dots in Fig. 3) always fell into these areas. It is 

difficult to understand what primary cause of such collocations is: either freak waves themselves 

increase local steepness or the increased local steepness is followed by appearance of freak 

waves (the ‘chicken-and-egg’ dilemma). Anyway, it is quite evident that the local steepness and 

height of an extreme wave in the window are connected with each other. This connection is 

demonstrated in Fig. 4 where an extreme trough-to-crest wave height is plotted as a function of 

the local steepness 

 

 
 

Fig.3. Examples of the instantaneous field of rms steepness calculated in the moving window (see description in the 

text). The upper panel refers to the data generated by the 3-D nonlinear model; the bottom panel represents the data 

generated as a random superposition of linear waves. The size of spots characterizes the height of freak waves (see 

legend on a top of picture). 

Note that the high order moments such as skewness and kurtosis should demonstrate a 

much closer connection with extreme wave height than steepness. Of course, neither of all these 

characteristics can serve as predictors of freak waves (see Janssen, 2003), nor the freak waves 
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can be predictors for the high order moments. The connection between the high order moments 

and height of waves is essentially local, which restricts applicability of the spectral analysis for a 

freak wave phenomenon. 

 

 

Fig.4.The rms steepness of elevation calculated over moving windows 

(see the text) vs. t cH found in each window. 

Note that connection between the high order 

moments and height of extreme waves is well pronounced 

only for small domains. With extension of domain size this 

connection disappears (see Fig. 20 in Chalikov, 2007). 

 

 
 

Fig. 5. Lagrangian evolution of trough-to-crest height t cH . The horizontal line indicates value 2t cH =  

 

A transient nature of freak waves demonstrated in Fig. 2 is well seen in the animations 

constructed from the pictures of Fig. 3. Both series demonstrate a very similar behavior. A 

transitory character of the extreme wave life can be also proved by Lagrangian tracing of the 

wave height represented in Fig. 5. More or less random choice of freak wave events 
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demonstrates that a freak wave develops rapidly and exists over a very short time, i.e., 

approximately one peak wave period. Such behavior cannot be explained by the modulation 

instability theory; it looks rather like manifestation of a linear superposition of modes with 

different wave numbers and amplitudes. 

The most convincing demonstration of a linear nature of extreme waves is given in Figs. 6 and 7 

showing integral probability of the trough-to-crest height tcH of the waves. In Fig. 6 curves 1 and 

3 are calculated using the results of a numerical simulation with the 3-D model (runs 1 and 3 

refer to different resolutions); curves 2 and 4 are calculated over the same size ensembles of the 

fields represented as a superposition of linear waves. Surprisingly, the linear calculations give 

the same high values of large trough-to crest heights. Despite the fact that the data on the 

extremely high waves ( )2.5t cH >
 
are not stable, they do not allow us to state that probability of 

rare events is clearly different in all the cases considered. Note that the probability of 
c tH

 
shown 

in Fig. 6 is considerably larger than that obtained with 1-D models (see, for example, Fig. 17 in 

Chalikov, 2009). It can be explained by a more general definition of freak waves in 2-D case (see 

Eq. 1).  

 

 

 

Fig. 6. Integral probability of trough-to-crest height t cH .  

1, 2 – resolution 256 128× , 3,4  – resolution 

512 128× ; 1,3 – full 3-D nonlinear model; 2,4 – 2-D 

superposition of linear modes; 5,6 -  1-D treatment of  

t cH : 5 – full nonlinear 3-D model; 6 –Superposition of 

2-D linear modes; 7 – Raley distribution. 

 

One-dimensional treatment of c tH  (when 

square matrix turns into 1-D vector directed 

along the wave propagation) gives the 

probability smaller by more than one decimal 

order as compared to the previous algorithm. Remarkably, the probability obtained over the 

similar ensemble of the linear fields, actually coincides with the nonlinear results (curves 5 and 

6). The curve 7 represents the Raley distribution calculated by the following relation: 

 

 

2

2

( )
exp

2

t c t c

t c

H H
R

σ

 −
= −  

 
,                 (5) 

where 1.31t cH =
 
and 0.22t cσ =

 
are the mean value and variance of 

t cH
 
obtained by averaging 

over the data used for calculation of the probabilities 1,2,3 and 4, as described above. 
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Fig.7. Integral probability of trough-to-crest height t cH

for different angular spreadings: 1 - 4P = ; 2 - 8P = ; 

3 - 16P = ; 4 - 64P = ; 5 - 256P = ; 6 - 1-D full 

nonlinear model; 7 - superposition of 1-D linear modes   

 

The effect of narrowing of the window in y-

direction is quite similar to the narrowing of 

the wave spectrum (i.e. increasingn ). Such 

effect is demonstrated in Fig. 7 where the 

curves calculated for different values of n  are 

represented. Curve 1 is the same as the curve 1 

in Fig. 6. As seen, with narrowing of spectrum 

the probability converges to that obtained with 

the 1-D model and the corresponding ensemble of 1-D linear surfaces. 

 

Conclusion. 

A definition of freak wave is based on the concept of the trough-to crest wave height, 

which is reasonable from the practical point of view. A natural wave field usually looks quite 

chaotic as a superposition of many dispersing modes which, in addition, are not conservative due 

to the fast reversible interactions. In our opinion, the only reasonable way to detect the 

instantaneous value of the trough-to crest height is detection of a maximum difference of 

elevations in the prescribed window. Since freak waves should be most likely associated with 

spectral peak, it is reasonable to choose the window with the size of the order of peak wave 

length and even somewhat bigger than that - for elimination of uncertainty of real wave length. 

Our experience shows that a size of domain should be of the order of1.5 pL . In this case we do 

not take into account all possible extremes (because the maximum and minimum can sometimes 

be at a distance exceeding1.5 pL ), but the same structures can be taken twice. Such rare events 

happen sometimes; however, their influence on the statistics is quite insignificant. 

In a one-dimensional wave field such a trough-to crest height definition gives quite 

definite results. However, in a two-dimensional wave field some uncertainty arises because the 

positions of maxima and minima can be shifted with respect to the direction of wave 

propagation. The simplest way to avoid uncertainty is to give a definition of the trough-to-crest 

height as a difference between the maximum and minimum along the direction coinciding with 

that of peak wave propagation. Such treatment of freak wave does not seem to be quite adequate, 

as the wave power depends on a full range of elevation.  

The main result of the current investigation is comparison of the extreme wave statistics 

generated by the full nonlinear models and the statistics obtained over the ensemble of surfaces 

generated as a superposition of linear modes. In both cases the integral energy is the same, and 

the spectra of the surfaces are similar. The results obtained in this study are as follows: 

1. Freak wave is a transient phenomenon; it develops and disappears approximately over 

the peak wave period. 
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2. The wave fields generated as a superposition of linear modes with random phases 

show the properties very similar to those of the wave fields generated by 1-D and 3-D 

nonlinear models: 

a. Both methods of generation demonstrate high probability of freak waves. 

b. Integral probability of large waves for nonlinear and linear waves is roughly the 

same. 

c. 2-D treatment of freak waves results in a significantly higher probability of freak 

waves than 1-D treatment or 1-D nonlinear simulations. 

d. Probability of freak waves decreases with narrowing of the spectrum and 

approaches the probability obtained with 1-D models and 1-D superposition of 

linear modes. 

 

Appendix.  

Numerical solution of three-dimensional fully nonlinear potential periodic waves 

Let us introduce the non-stationary surface-following non-orthogonal coordinate system  

 

  , , ( , , ),x y z tξ ϑ ζ η ξ ϑ τ τ= = = − =                                                                       (A1)  

 

where ( ), ,x y z  are the Cartesian coordinates system, t is time, ),,(),,( τϑξηη =tyx  is a moving 

periodic wave surface given by the 2-D Fourier series. 

The 3-D equations of potential waves in the system of coordinates (6) at 0<ζ  take the 

following form: 

 

( )2 21τ ξ ξ ϑ ϑ ξ ϑ ςη η ϕ η ϕ η η= − − + + + Φ ,                      (A2) 

( )( )2 2 2 2 21
1

2
pτ ξ ϑ ξ ϑ ζϕ ϕ ϕ η η η= − + − + + Φ − − ,          (A3) 

( )ξξ ϑϑ ζζΦ +Φ +Φ = ϒ Φ ,               (A4) 

 

where Φ  is a three-dimensional velocity potential; p is the external pressure; ϕ  is a value of Φ

at surface 0ζ =  while ( )ϒ is the operator:  

 

 ( ) ( )2 2( ) 2 ( ) 2 ( ) ( ) ( )ξ ξζ ϑ ϑζ ξξ ϑϑ ζ ξ ϑ ζζη η η η η ηϒ = + + + − +                    (A5) 

 

Equations (A2) and (A3) are written at the free surface whose position in the surface-

following coordinate system is fixed at ζ = 0 . These equations (formally look as 2-dimensional; 

however, they include the vertical derivative of the potential ζΦ which should be derived from 

the elliptical equation (A4) with the following boundary conditions: 

 

 ( ) ( )0 , 0ζ ϕ ζ
ζ
∂Φ

Φ = = → −∞ =
∂

.                                                                             (A6)   
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The second condition (A6) in the numerical scheme is replaced by the condition at the finite 

depth ( ) 0Hζ
ζ
∂Φ

= =
∂  

where depth H should be large enough to be considered as infinitely 

large.  

The potential is represented as a sum of two components, i.e. the analytic (‘linear’) one

( )( ), , ,0ϕ ξ ϑΦ =Φ  and an arbitrary non-linear component %Φ, %ϕ = %Φ ξ ,ϑ ,0( )( )1
: 

 

ϕ =ϕ + %ϕ, Φ =Φ+ %Φ.              (A7)  

 

The analytic component Φ  satisfies the Laplace equation: 

 

 0ξξ ϑϑ ζζΦ +Φ +Φ = ,                      (A8) 

 

with the known solution:   

 

( ), ,

,

( , , ) expk l k l

k l

kξ ϑ ζ ϕ ζΦ = Θ∑ ,                                                                   (A9)  

( ,k lϕ  are the Fourier coefficients of the surface analytical potential ϕ  at z=0). The solution 

satisfies the boundary conditions: 

 

0 :

: 0ζ

ς ϕ

ς

= Φ =

→ −∞ Φ →%
             (A10) 

  

The nonlinear component satisfies the equation: 

 

 ( ) ( )ξξ ϑϑ ζζΦ +Φ +Φ = ϒ Φ +ϒ Φ% % % % .            (A11)  

 

Eq. (20) is solved with the boundary conditions: 

  

0 : 0

: 0ζ

ς

ς

= Φ =

→−∞ Φ →

%

%
             (A12) 

 

 Derivatives of the linear component Φ  are calculated directly with the use of (A9). The 

scheme combines the 2-D Fourier transform method in the ‘horizontal surfaces’ and the second-

order finite-difference approximation on stretched staggered grid defined by the relation 

1j jζ χ ζ+∆ = ∆  ( ζ∆  is vertical step, and 1j =  at the surface). The stretched grid provides 

increase of accuracy of approximation for the exponentially decaying modes. Values of the 

                                                             
1 Note that the term ‘linear’ is conventional, since this component is also influenced by the non-linearity due to 

curvature of the surface. 
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stretching coefficient χ  lie within the interval 1.10-1.20. Finite-difference second-order 

approximation of Eq. (A11) on a non-uniform vertical grid is straightforward. The details of 

numerical scheme as well as results of simulation are given by Chalikov et al, (2014) 
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Figures captions 

Fig.1. Example of a short-term evolution of elevation. The same fragment of the surface is given 

for a different moments, separated by the interval 0.32 pt . The largest normalized trough-to-crest 

wave height in the fragment is indicated. 
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Fig.2. History of extreme wave appearance in coordinates  ( ),t y  for the period 600 640t< <  

and the strip 0 2y< < . Blue dots correspond to the values1.7 2t cH< < , and red dots correspond 

to the values 2t cH > .  

Fig.3. Examples of the instantaneous field of rms steepness calculated in a moving window (see 

description of window in the text). The upper panel refers to the data generated by 3-D nonlinear 

model; the bottom panel represents the data generated as a random superposition of linear waves. 

The size of spots characterizes the height of freak waves (see legend). 

Fig.4.The rms steepness of elevation calculated over the moving windows (see description of 

window in the text) vs. 
t cH found in that window. 

Fig. 5. Lagrangian evolution of trough-to-crest height
t cH . The horizontal line indicates value 

2t cH =  

Fig. 6. Integral probability of trough-to-crest height
t cH .  1, 2 – resolution 256 128× , 3,4  – 

resolution 512 128× ; 1,3 – full 3-D nonlinear model; 2,4 – 2-D superposition of linear modes; 

5,6 -  1-D treatment of  
t cH : 5 - full nonlinear 3-D model; 6 –Superposition of 2-D linear modes; 

7 – Raley distribution. 

Fig.7. Integral probability of trough-to-crest height t cH for different angular spreadings: 1 - 

4P = ; 2 - 8P = ; 3 - 16P = ; 4 - 64P = ; 5 - 256P = ; 6 - 1-D full nonlinear model; 7 - 

superposition of 1-D linear modes   
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Comparison of linear and nonlinear extreme wave statistics 1 

 2 

Summary 3 

 4 

 An extremely large (‘freak’) wave is a typical though rare phenomenon observed in the 5 

sea. Special theories (for example, the modulation instability theory) were developed to explain 6 

mechanics and appearance of freak waves as a result of nonlinear wave-wave interactions. In this 7 

paper it is demonstrated that the freak wave appearance can be also explained by superposition 8 

of linear modes with the realistic spectrum. The integral probability of trough-to-crest waves is 9 

calculated by two methods: the first one is based on the results of the numerical simulation of a 10 

wave field evolution performed with one-dimensional and two-dimensional nonlinear models. 11 

The second method is based on calculation of the same probability over the ensembles of wave 12 

fields constructed as a superposition of linear waves with random phases and the spectrum 13 

similar to that used in the nonlinear simulations. It is shown that the integral probabilities for 14 

nonlinear and linear cases are of the same order of values.  15 

 16 

Introduction 17 

 18 

 Freak waves have always been a part of the marine folklore, but over the past 15-20 years 19 

have firmly found a place in the mainstream oceanography1. The meaning of the term ‘freak’ (or 20 

‘rogue’) waves in science and life is quite different. According to the marine folklore, freak 21 

waves are described as ‘monster’ waves appearing like ‘walls of water’ (high crests) or ‘holes in 22 

the sea’ (deep troughs), or both. Another folklore variety of freak waves is ‘three sisters’ which 23 

can be interpreted as either a sequence of rogue waves or, more likely, an anomalous wave group.  24 

In science ‘freak’ wave is defined as a wave whose trough-to-crest height exceeds twice 25 

the significant wave height sH  ( sH is a characteristic mean wave height usually defined as a 26 

mean value of 1/3rd of the highest waves). What seems remarkable is that the sea folklore 27 

provides a better description of the freak wave properties focusing on their shape rather than the 28 

height, while assuming, of course, that such waves are very big. The term ‘vertical walls’ 29 

definitely indicates a wave surge in front of the observer, i.e., the wave undergoes an active 30 

phase of breaking. However, the current scientific definition of the term ‘freak wave’ has a solid 31 

theoretical background since it is based on the fundamental properties of the adiabatic motion 32 

described by the Euler equations, i.e., these equations are self-similar, because, being 33 

transformed into a nondimensional form they do not contain a nondimensional parameter. Hence, 34 

the nondimensional equations describe the whole class of motions. Thus, for obtaining specific 35 

dimensional results, it is enough to multiply the solution by an appropriate length scale L . It can 36 

still be concluded that for the nondimensional equations the scientific definition of freak waves is 37 

justified. 38 

 For a long time scientists were not paying attention to the stories describing the events of 39 

‘monster’ waves, reasonably presuming that big waves during strong storms do not suggest 40 

anything unusual. However, later it became clear that such waves do exist and look perhaps too 41 

big to be explained from the point of view of statistics. It was a starting point for developing 42 

many theoretical schemes (see an excellent review1). Some researchers explained generation of 43 

freak waves by external factors, such as an effect of wave energy focusing on the ocean currents 44 

of specific configurations. Obviously, such events deserve being investigated; however, the 45 
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problem of freak waves appears to be much broader, since such waves have been detected in 46 

many areas of World Ocean with no special oceanic structures such as a surface current. 47 

 The most popular theory recently employed to explain the freak wave phenomenon is the 48 

so-called ‘modulational instability theory’ originally known as ‘Benjamin-Feir (B.-F.) instability 49 

theory’2. The concept of this theory is quite transparent, i.e., the one-dimensional nonlinear wave 50 

in the presence of certain disturbances can produce additional modes arising in the vicinity of the 51 

main mode. Roughly speaking, the B.-F. theory explains redistribution of wave energy in a 52 

frequency (wavenumber) space up to the final homogenization of the initially discrete spectrum3. 53 

Most scientists believe that this mechanism can explain an abnormal growth of one wave mode. 54 

In case of the broad spectrum, typical for the wind-generated waves, such explanation is difficult 55 

to accept. First of all, it is unclear why one mode enjoys such preference and why this mode 56 

preserves its individuality in the course of its long development in a wave field with random 57 

phases. The original B.-F. results, as well as the and numerical investigations of B.-F. (Chalikov, 58 

2007) showed that the period of new mode growth for the typical sea wave steepness exceeds 59 

hundreds or thousands of the carrying wave period. Thus, the freak wave should undergo a long 60 

course of development. Why do not interactions with other waves stop this growth, as if other 61 

waves do not exist?  62 

The modulation instability theory of freak waves operates with such a poorly defined 63 

measure as the so-called BFI (Benjamin Feir Index) parameter calculated as a ratio of wave 64 

steepness 
pAK ( A  is a wave amplitude at spectral peak and pK

 
is its wavenumber, both being 65 

dimensional), to the spectral bandwidth / pK K ; K  being a measure of width of the spectrum 66 

estimated as a half-width at the half-maximum of spectrum4 . Actually, the amplitude A  at 67 

spectral peak essentially depends on spectral resolution. The value of ’width’ of spectrum is also 68 

uncertain since wave spectrum normally embraces a wide range of frequencies, so the value of 69 

BFI finally depends on somewhat arbitrary definitions.  70 

 Spectral analysis seems to be effective when it describes more or less uniform process 71 

like quadruplet interactions or energy input to waves, while it is rather pointless when applied to 72 

the analysis of extremely rare events represented by the single or multi-peak disturbances of a 73 

vast wave field. Such disturbances are evidently created locally in a physical space while they 74 

cannot manifest themselves in the wave spectrum which characterizes a large area.  75 

 No detailed data on time/space development of large waves are available, however, the 76 

results of the 2-D and 3-D mathematical modeling based on full equations show that the process 77 

of ‘freaking’ is very fast while the period of life of extreme waves is short. Such data do not 78 

prove an importance of the modulational instability theory for explanation of a freak wave 79 

phenomenon. The aim of this paper is to demonstrate new views on a freak wave problem. 80 

 81 

 2. Numerical simulations 82 

 83 

 The results presented below are obtained with the two-dimensional (2-D) and three-84 

dimensional (3-D) wave models. Both models are based on full nonlinear Euler equations in 85 

potential approximation. The 2-D model exploits conformal transformation of the coordinates, 86 

while the 3-D model uses the surface-following coordinate system and a direct solution of the 87 

three-dimensional equation for the velocity potential (see Appendix). The description of the 88 

models and demonstration of their accuracy are given in5,6,7. It is assumed here that the models 89 
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are able to describe a real process with the sufficient accuracy. Both models were used in a 90 

quasi-adiabatic mode. It means that a small output of energy due to the flux of energy to subgrid 91 

domain is compensated by the input energy which is proportional to the wave spectrum. Below 92 

the non-dimensional variables with the following scales are used: length L suggesting that 2 L is 93 

a horizontal dimensional period; time 1/2 1/2L g ; and velocity potential 3/2 1/2L g ( g is the 94 

acceleration of gravity). The characteristics of the models are given in Table 1 (
pt is the time of 95 

integration expressed in a peak wave period). 96 

 97 

Table 1. Characteristics of numerical models used for generation of the ensembles of surfaces.  98 

 99 

 Spectral 

resolution 

Grid 

resolution 

Peak 

wavenumber 

Time step Number of 

time steps 

Integration 

time  pt  

3-D model 

1st run 

256 128  1024 512  16 0.005 200,000 636 

3-D model 

2nd run 

512 128  2048 512  64 0.0025 100,000 318 

2-D model 1000 4000 16 0.001 2,000,000 1273 

 100 

 101 

The initial conditions in the models were assigned as a superposition of linear modes with 102 

random phases and amplitudes corresponding to the Pierson-Moskowitz spectrum8. In the 3-D 103 

model, a symmetric directional distribution was assigned for the energy-containing part of the 104 

spectrum proportional to  coshn  where 4n   was taken. The fields of surface elevation with  105 

time interval of 1t   were recorded. 106 

 Analysis of the results was done in terms of the non-dimensional trough-to-crest wave 107 

height tcH .
 

The value 
t cH was defined as a difference between the maximum maxH  and 108 

minimum minH values of elevation normalized by the significant wave height: 109 

  110 

  1

max mint c sH H H H          (1)  111 

 112 

in the window with the size of 1.5 1.5p pL L where 2 /p pL k is the nondimensional peak 113 

wavelength. In 1-D case the window turns into a linear segment. The window was moved 114 

discreetly in both directions by 0.5 pL step. Such window parameters were chosen in order to take 115 

into account all the range of possible values of 0 tcH . Actually,  99% of 
t cH exceeds 1. The 116 

shift being equal to 0.5 pL , but few values of 
t cH were sometimes taken more than once; anyway,  117 

it does not influence the statistics. 118 

 Such type of processing needs some explanation. Actually, we do not see any other ways 119 

to construct the true ensemble of 
t cH values; however, there is a big difference between the 1-D 120 

and 2-D cases. In 1-D case  the maximum and minimum of the elevation fall on the same 121 

direction. In 2-D case these values can fall on different y-positions. That can be the main reason 122 

why the probability of large waves in 1-D case is normally lower than that in 2-D case. Naturally, 123 
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with narrowing of the spectrum (i.e., at increase of power n) the 2-D distribution should 124 

approach the 1-D distribution. The probability of 
t cH

 
wave height in 2-D case can also be 125 

calculated with a unidirected algorithm, when each vector of elevations along x is processed as a 126 

result of the unidirected modeling. In this case the maximum and the nearest minimum of 127 

elevation coincide with a general direction of wave propagation.  Note, however, that the 2-D 128 

algorithm (based on the square window) appears to be more practical.  129 

A typical example of freak wave appearance is given in Fig. 1 where five consequent 130 

surfaces in a small fragment of the simulated domain are shown. The surfaces are reproduced 131 

through interval of 0.32 pt ( 1.57pt   132 

is the period of peak wave). As seen, 133 

the trough-to-crest height for a short 134 

period of the order of one peak wave 135 

period varies in the range of 136 

1.90 2.66tcH   137 

 138 

 139 

Fig.1. Example of a short-term evolution of 140 
elevation. The same fragment of the surface 141 
is given for different moments separated by 142 

the interval of 0.32 pt . The largest 143 

normalized trough-to-crest wave height in the 144 
fragment is indicated. 145 

(value 2.66tcH 
 
is the top value 146 

obtained in these simulations). In 147 

general, a shape of surface changes 148 

for such a short period significantly. 149 

Evolution of surface in Fig. 1 looks 150 

rather like an effect of dispersing 151 

superposition of different modes than 152 

the appearance of modulation 153 

instability. 154 

A ‘history’ of extreme waves 155 

in domain 0 2y   for the period156 

600 640t   is shown in Fig. 2 157 

where locations of large trough-to-158 

crest waves (independent of their x-159 

locations) are indicated: blue dots 160 

correspond to the values of 1.7t cH 
 

161 

while red dots correspond to the 162 

values of 2t cH  . As seen, the dots 163 

are concentrated in groups, which proves their belonging to the same physical object. Many of 164 

the groups start from the blue dots and end also with the blue dots, while in the middle of the 165 

groups the red dots indicate freak waves. What is remarkable is that all these groups are short. It 166 
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seems that freak waves arise suddenly with no prehistory, which also looks like as effect of 167 

superposition.  168 

Let us consider local characteristics of wave fields, i.e. the average over ‘jumping’ with 169 

the step 0.5 pL squared domain size of 1.5 1.5p pL L
 

170 

 
171 

 
172 

 
173 

Fig.2. History of the extreme wave appearance in the coordinates   ,t y  for the period 600 640t   and  the 174 

strip 0 2y  . Blue dots correspond to the values 1.7 2t cH  , while red dots correspond to the values175 

2t cH  .  176 

 
1/2

2
21.5 p x

x y

L 
 

  
 

                (2) 
177 

 
178 

Examples of the instantaneous field of rms steepness calculated in this moving window are
 179 

given in Fig. 3. The upper panel refers to the data generated by the 3-D nonlinear model, while 180 

the bottom panel represents the data generated as a random superposition of linear waves.  181 

 182 

  , ,cos ,k l k l

k l

a kx ly                  (3) 183 

 184 

where k and l  are wavenumbers along the axes x  and y , 
,0 k l    is a random phase; 185 

amplitudes 
,k la are calculated as follows:  186 

 187 

  
1/2

, ,2k l k ja S k l                  (4)  188 

 189 

( 1k l    ), 
,k lS

 
is the energy density spectrum.  190 

Different sizes of dots in Fig. 3 characterize height of a freak wave. The field shown in 191 

the bottom panel of Fig. 3 looks as a typical member of the entire ensemble. Note that generating 192 

the fields with the nonlinear models took about two months of calculations, while the same size 193 

of ensemble of the fields calculated as a superposition of linear waves was generated for just 30 194 

minutes.  It can be expected that the wave fields obtained in so different a manner should be 195 

different as well. In particular, we expected that the averaged over windows wave steepness of a 196 

random superposition of linear modes should be more or less uniform. To our surprise, the 197 

pictures and animations generated for both cases demonstrated very similar features, i.e., the 198 

more or less uniform fields always contained small areas with a highly increased steepness. The 199 
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locations of freak waves (marked as black dots in Fig. 3) always fell into these areas. It is 200 

difficult to understand what primary cause of such collocations is: either freak waves themselves 201 

increase local steepness or the increased local steepness is followed by appearance of freak 202 

waves (the ‘chicken-and-egg’ dilemma). Anyway, it is quite evident that the local steepness and 203 

height of an extreme wave in the window are connected with each other. This connection is 204 

demonstrated in Fig. 4 where an extreme trough-to-crest wave height is plotted as a function of 205 

the local steepness 206 

 207 

 208 
 209 

Fig.3. Examples of the instantaneous field of rms steepness calculated in the moving window (see description in the 210 
text). The upper panel refers to the data generated by the 3-D nonlinear model; the bottom panel represents the data 211 
generated as a random superposition of linear waves. The size of spots characterizes the height of freak waves (see 212 
legend on a top of picture). 213 

Note that the high order moments such as skewness and kurtosis should demonstrate a 214 

much closer connection with extreme wave height than steepness. Of course, neither of all these 215 

characteristics can serve as predictors of freak waves (see Janssen, 2003), nor the freak waves 216 

can be predictors for the high order moments. The connection between the high order moments 217 
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and height of waves is essentially local, which restricts applicability of the spectral analysis for a 218 

freak wave phenomenon. 219 

 220 

 221 

Fig.4.The rms steepness of elevation calculated over moving windows 222 

(see the text) vs. 
t cH found in each window. 223 

Note that connection between the high order 224 

moments and height of extreme waves is well pronounced 225 

only for small domains. With extension of domain size this 226 

connection disappears (see Fig. 20 in Chalikov, 2007). 227 

 228 

 229 
 230 

Fig. 5. Lagrangian evolution of trough-to-crest height
t cH . The horizontal line indicates value 2t cH   231 

 232 

A transient nature of freak waves demonstrated in Fig. 2 is well seen in the animations 233 

constructed from the pictures of Fig. 3. Both series demonstrate a very similar behavior. A 234 

transitory character of the extreme wave life can be also proved by Lagrangian tracing of the 235 

wave height represented in Fig. 5. More or less random choice of freak wave events 236 

demonstrates that a freak wave develops rapidly and exists over a very short time, i.e., 237 
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approximately one peak wave period. Such behavior cannot be explained by the modulation 238 

instability theory; it looks rather like manifestation of a linear superposition of modes with 239 

different wave numbers and amplitudes. 240 

The most convincing demonstration of a linear nature of extreme waves is given in Figs. 6 and 7 241 

showing integral probability of the trough-to-crest height tcH of the waves. In Fig. 6 curves 1 and 242 

3 are calculated using the results of a numerical simulation with the 3-D model (runs 1 and 3 243 

refer to different resolutions); curves 2 and 4 are calculated over the same size ensembles of the 244 

fields represented as a superposition of linear waves. Surprisingly, the linear calculations give 245 

the same high values of large trough-to crest heights. Despite the fact that the data on the 246 

extremely high waves  2.5t cH 
 
are not stable, they do not allow us to state that probability of 247 

rare events is clearly different in all the cases considered. Note that the probability of 
c tH

 
shown 248 

in Fig. 6 is considerably larger than that obtained with 1-D models (see, for example, Fig. 17 in 249 

Chalikov, 2009). It can be explained by a more general definition of freak waves in 2-D case (see 250 

Eq. 1).  251 

 252 

 253 

 254 

Fig. 6. Integral probability of trough-to-crest height
t cH .  255 

1, 2 – resolution 256 128 , 3,4  – resolution 256 

512 128 ; 1,3 – full 3-D nonlinear model; 2,4 – 2-D 257 

superposition of linear modes; 5,6 -  1-D treatment of  258 

t cH : 5 – full nonlinear 3-D model; 6 –Superposition of 259 

2-D linear modes; 7 – Raley distribution. 260 

 261 

One-dimensional treatment of 
c tH  (when 262 

square matrix turns into 1-D vector directed 263 

along the wave propagation) gives the 264 

probability smaller by more than one decimal 265 

order as compared to the previous algorithm. Remarkably, the probability obtained over the 266 

similar ensemble of the linear fields, actually coincides with the nonlinear results (curves 5 and 267 

6). The curve 7 represents the Raley distribution calculated by the following relation: 268 

 269 

 

2

2

( )
exp

2

t c t c

t c

H H
R



 
  

 
 

,                 (5) 270 

where 1.31t cH 
 
and 0.22t c 

 
are the mean value and variance of 

t cH
 
obtained by averaging 271 

over the data used for calculation of the probabilities 1,2,3 and 4, as described above. 272 

 273 
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 274 

Fig.7. Integral probability of trough-to-crest height 
t cH275 

for different angular spreadings: 1 - 4P  ; 2 - 8P  ; 276 

3 - 16P  ; 4 - 64P  ; 5 - 256P  ; 6 - 1-D full 277 
nonlinear model; 7 - superposition of 1-D linear modes   278 

 279 

The effect of narrowing of the window in y-280 

direction is quite similar to the narrowing of 281 

the wave spectrum (i.e. increasing n ). Such 282 

effect is demonstrated in Fig. 7 where the 283 

curves calculated for different values of n  are 284 

represented. Curve 1 is the same as the curve 1 285 

in Fig. 6. As seen, with narrowing of spectrum 286 

the probability converges to that obtained with 287 

the 1-D model and the corresponding ensemble of 1-D linear surfaces. 288 

 289 

Conclusion. 290 

A definition of freak wave is based on the concept of the trough-to crest wave height, 291 

which is reasonable from the practical point of view. A natural wave field usually looks quite 292 

chaotic as a superposition of many dispersing modes which, in addition, are not conservative due 293 

to the fast reversible interactions. In our opinion, the only reasonable way to detect the 294 

instantaneous value of the trough-to crest height is detection of a maximum difference of 295 

elevations in the prescribed window. Since freak waves should be most likely associated with 296 

spectral peak, it is reasonable to choose the window with the size of the order of peak wave 297 

length and even somewhat bigger than that - for elimination of uncertainty of real wave length. 298 

Our experience shows that a size of domain should be of the order of1.5 pL . In this case we do 299 

not take into account all possible extremes (because the maximum and minimum can sometimes 300 

be at a distance exceeding1.5 pL ), but the same structures can be taken twice. Such rare events 301 

happen sometimes; however, their influence on the statistics is quite insignificant. 302 

In a one-dimensional wave field such a trough-to crest height definition gives quite 303 

definite results. However, in a two-dimensional wave field some uncertainty arises because the 304 

positions of maxima and minima can be shifted with respect to the direction of wave propagation. 305 

The simplest way to avoid uncertainty is to give a definition of the trough-to-crest height as a 306 

difference between the maximum and minimum along the direction coinciding with that of peak 307 

wave propagation. Such treatment of freak wave does not seem to be quite adequate, as the wave 308 

power depends on a full range of elevation.  309 

The main result of the current investigation is comparison of the extreme wave statistics 310 

generated by the full nonlinear models and the statistics obtained over the ensemble of surfaces 311 

generated as a superposition of linear modes. In both cases the integral energy is the same, and 312 

the spectra of the surfaces are similar. The results obtained in this study are as follows: 313 

1. Freak wave is a transient phenomenon; it develops and disappears approximately over 314 

the peak wave period. 315 

Page 22 of 26

http://www.hyxb.org.cn/aosen

Acta Oceanologica Sinica

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

10 
 

2. The wave fields generated as a superposition of linear modes with random phases 316 

show the properties very similar to those of the wave fields generated by 1-D and 3-D 317 

nonlinear models: 318 

a. Both methods of generation demonstrate high probability of freak waves. 319 

b. Integral probability of large waves for nonlinear and linear waves is roughly the 320 

same. 321 

c. 2-D treatment of freak waves results in a significantly higher probability of freak 322 

waves than 1-D treatment or 1-D nonlinear simulations. 323 

d. Probability of freak waves decreases with narrowing of the spectrum and 324 

approaches the probability obtained with 1-D models and 1-D superposition of 325 

linear modes. 326 

 327 

Appendix.  328 

Numerical solution of three-dimensional fully nonlinear potential periodic waves 329 

Let us introduce the non-stationary surface-following non-orthogonal coordinate system  330 

 331 

  , , ( , , ),x y z t                                                                                  (A1)  332 

 333 

where  , ,x y z  are the Cartesian coordinates system, t is time, ),,(),,(  tyx  is a moving 334 

periodic wave surface given by the 2-D Fourier series. 335 

The 3-D equations of potential waves in the system of coordinates (6) at 0  take the 336 

following form: 337 

 338 

 2 21                    ,                      (A2) 339 

  2 2 2 2 21
1

2
p                   ,          (A3) 340 

         ,               (A4) 341 

 342 

where   is a three-dimensional velocity potential; p is the external pressure;   is a value of 343 

at surface 0   while ( ) is the operator:  344 

 345 

    2 2() 2 () 2 () () ()                                        (A5) 346 

 347 

Equations (A2) and (A3) are written at the free surface whose position in the surface-348 

following coordinate system is fixed at z = 0 . These equations (formally look as 2-dimensional; 349 

however, they include the vertical derivative of the potential  which should be derived from 350 

the elliptical equation (A4) with the following boundary conditions: 351 

 352 

    0 , 0  



    


.                                                                             (A6)   353 
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 354 

The second condition (A6) in the numerical scheme is replaced by the condition at the finite 355 

depth   0H



 

  

where depth H should be large enough to be considered as infinitely large.  356 

The potential is represented as a sum of two components, i.e. the analytic (‘linear’) one357 

  , , ,0     and an arbitrary non-linear component F, j = F x ,J ,0( )( )1: 358 

 359 

j =j +j, F = F+F.              (A7)  360 

 361 

The analytic component   satisfies the Laplace equation: 362 

 363 

 0      ,                      (A8) 364 

 365 

with the known solution:   366 

 367 

 , ,

,

( , , ) expk l k l

k l

k       ,                                                                   (A9)  368 

( ,k l  are the Fourier coefficients of the surface analytical potential   at z=0). The solution 369 

satisfies the boundary conditions: 370 

 371 

0 :

: 0

 



  

  
             (A10) 372 

  373 

The nonlinear component satisfies the equation: 374 

 375 

              .            (A11)  376 

 377 

Eq. (20) is solved with the boundary conditions: 378 

  379 

0 : 0

: 0





  

  
             (A12) 380 

 381 

 Derivatives of the linear component   are calculated directly with the use of (A9). The 382 

scheme combines the 2-D Fourier transform method in the ‘horizontal surfaces’ and the second-383 

order finite-difference approximation on stretched staggered grid defined by the relation 384 

1j j      (   is vertical step, and 1j   at the surface). The stretched grid provides 385 

increase of accuracy of approximation for the exponentially decaying modes. Values of the 386 

stretching coefficient   lie within the interval 1.10-1.20. Finite-difference second-order 387 

                                                           
1 Note that the term ‘linear’ is conventional, since this component is also influenced by the non-linearity due to 

curvature of the surface. 
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approximation of Eq. (A11) on a non-uniform vertical grid is straightforward. The details of 388 

numerical scheme as well as results of simulation are given by Chalikov et al, (2014) 389 

 390 

 391 
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 422 

 423 

Figures captions 424 

Fig.1. Example of a short-term evolution of elevation. The same fragment of the surface is given 425 

for a different moments, separated by the interval 0.32 pt . The largest normalized trough-to-crest 426 

wave height in the fragment is indicated. 427 
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Fig.2. History of extreme wave appearance in coordinates   ,t y  for the period 600 640t   428 

and the strip 0 2y  . Blue dots correspond to the values1.7 2t cH  , and red dots correspond 429 

to the values 2t cH  .  430 

Fig.3. Examples of the instantaneous field of rms steepness calculated in a moving window (see 431 

description of window in the text). The upper panel refers to the data generated by 3-D nonlinear 432 

model; the bottom panel represents the data generated as a random superposition of linear waves. 433 

The size of spots characterizes the height of freak waves (see legend). 434 

Fig.4.The rms steepness of elevation calculated over the moving windows (see description of 435 

window in the text) vs. 
t cH found in that window. 436 

Fig. 5. Lagrangian evolution of trough-to-crest height
t cH . The horizontal line indicates value 437 

2t cH   438 

Fig. 6. Integral probability of trough-to-crest height
t cH .  1, 2 – resolution 256 128 , 3,4  – 439 

resolution 512 128 ; 1,3 – full 3-D nonlinear model; 2,4 – 2-D superposition of linear modes; 440 

5,6 -  1-D treatment of  
t cH : 5 - full nonlinear 3-D model; 6 –Superposition of 2-D linear modes; 441 

7 – Raley distribution. 442 

Fig.7. Integral probability of trough-to-crest height 
t cH for different angular spreadings: 1 - 443 

4P  ; 2 - 8P  ; 3 - 16P  ; 4 - 64P  ; 5 - 256P  ; 6 - 1-D full nonlinear model; 7 - 444 

superposition of 1-D linear modes   445 
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