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ABSTRACT

PCR amplification of genomic DNA from 51 species of the family Chironomidae shows that

most contain relatives of retrotransposons originally found in Chironomus thummi (LINE

NLRCth1; SINE CTRT1).  More than 300 cloned PCR products were sequenced.  The amplified

regions of LINEs (ORF2 of the reverse transcriptase gene) are highly similar, suggesting strong

conservation of a functional gene.  Amplified SINEs (399 nucleotides) are less conserved,

consistent with an absence of selection on non-coding DNA, though SINEs were sufficiently

similar to suggest recent transposition.  LINE phylogenies support mitochondrial and nuclear

gene phylogenies, indicating vertical descent of the LINEs.  In contrast, the SINE tree topology

is significantly different, indicating that SINE evolution does not track species evolution.  In

addition, many SINEs are cladistically misplaced on the tree. An analysis of diagnostic residues,

based on species-specific nucleotide differences from a consensus sequence of aligned SINEs,

reveals at least 8 different SINE subfamilies.  Some species contain SINEs belonging to more

than one subfamily, and SINEs of the same subfamily are found in different species.  Many of

the latter may 1) correspond to cladistically misplaced elements and may have been horizontally

transferred (likely between more distantly related species), 2) may be artifacts of convergent

evolution of a small number of informative nucleotides, or 3) may be descendants of ancient

elements retained in some but lost in other species.  Similar 3' sequence motifs of  CTRT1 and

NLRCth1 suggest that they are a co-evolving retrotransposon pair in which CTRT1 mobility

depends on enzymes expressed during the transposition of NLRCth1.  Phylogenetic separation of

a  LINEs and SINEs in the ‘plumosus’ species group further support that the elements of this

clade are a co-evolving LINE/SINE pair distinct from elements in the rest of the species.
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Introduction

Reverse transcription, once thought peculiar to retrovirus replication, can also account for the

loss of introns from split genes, the creation of processed pseudogenes and the transposition of

SINEs and LINEs (Short and Long Interspersed Nuclear Elements, respectively). Ranging from

3000-7000 nucleotide (nt) pairs in length, LINEs (also called non-LTR retrotransposons or

retrotransposons) are one of three kinds of transposable elements that encode reverse

transcriptase as well as activities required for mobility (Xiong and Eickbush 1990).  The others

are the retroviruses themselves and Long Terminal Repeat (LTR) retrotransposons.  At 80-400

nt, SINEs are derived from RNA polymerase III-catalyzed transcripts, including tRNAs in most

organisms and 7SL RNA transcripts in primates and rodents (Alu and B1 elements, respectively). 

Unlike LINEs, SINEs do not encode polypeptides, and once transposed, most SINE copies are

thought to be incapable of further transposition  (Takasaki et al. 1994).  Active SINEs and LINEs

can result in the integration of hundreds or even thousands of retrotransposon copies, profoundly

influencing the genomic landscape in animals and plants beyond the impact of a few viruses

(reviewed in Britten 1997; Kazazian and Moran 1998; Kidwell and Lish 2000; Bennetzen 2000). 

As of this writing, 15 LINE families are known (Malik et al. 1999; Malik and Eickbush 1999;

Volff et al. 2000; Lovesin et al. 2001; Archipova et al. 2001; Burke et al. 2002).  Detailed studies

of L1 elements in mammals (Hardies et al. 1986; Pascale et al. 1993; Casavant et al. 1996; 1998)

and R1 and R2 elements in Drosophila (Lathe et al. 1995; Eickbush and Eickbush 1995;

Eickbush et al. 1995; Lathe and Eickbush 1997) revealed that phylogenies of retrotransposons

are generally consistent with species phylogenies and with the vertical inheritance/evolution of
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LINEs.  There is however, evidence for infrequent horizontal transfer of non-LTR

retrotransposons between species (Kordis and Gubensek 1995, 1997, 1998; Sezutsu et al. 1995). 

Horizontally transferred elements and newly transposed LINEs presumably still encode enzymes

necessary for further transposition and would be potentially mobile.  Degenerate LINEs

(reviewed in Smit 1996; Finnegan 1997) undoubtedly lost their ability to transpose either during

or after integration into the genome. 

Well-studied SINE families include S1 in Brassiceae and Cruciferae (Gilbert et al. 1997; Lenoir

et al. 1997), HpaI and SmaI in salmonids (Takasaki et al. 1994), SmaI-cor in corregonid fishes

(Hamada et al. 1997), and CHRS, CHR1, and CHR2 in Cetaceans and Artiodactyls (Shimamura

et al. 1999).  Phylogenetic analysis of the S1 SINEs suggest that, as for LINEs, SINE evolution

generally correlates with host species evolution.  However, phylogenetic relationships among

species and their transposable elements do not always agree, raising the possibility that elements

are acquired by some species or individuals by horizontal transfer (Hamada et al. 1997).  SINEs

can be classified into subfamilies based on an analysis of diagnostic residues, i.e., bases differing

from a consensus, putative ancestral sequence.  Takasaki et al. (1994) noted the existence of

members of the same HpaI SINE subfamilies “in different salmonid lineages and the

amplification of members of different subfamilies in the same... lineage”.  This is consistent with

the origin of such SINEs from multiple source genes, as opposed to a single “master” gene

(Matera et al. 1990; Leeflang et al. 1992; Takasaki et al. 1994; 1996; 1997), or with horizontal

transfer of the element between  species.   Horizontal transfer of a SmaI-cor SINE from

corregonid fishes to salmonids has been suggested based on comparisons of intraspecific

consensus sequences of the elements (Takasaki et al. 1997; Hamada et al. 1997). 
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The mechanism of SINE mobility has been a matter of some speculation.  Since SINEs lack

genes encoding activities required for transposition, their mobility may depend on that of LINEs. 

During transposition, a LINE-encoded endonuclease nicks chromosomal DNA and an element-

encoded reverse transcriptase directs reverse transcription of the cDNA copy from the cut site

directly onto the target site (Luan et al. 1993; Burke et al. 1999).   Similar target site duplications

flanking primate Alu and rodent ID, B1and B2 SINEs as well as mammalian L1 LINEs (Feng et

al. 1996; Jurka and Klonowski 1996; Boeke 1997; Jurka 1997; Cost and Boeke 1998) suggest

that the LINE enzyme may reverse transcribe and initiate the transposition of SINE sequences.   

In addition, common  sequence motifs at the 3' ends of some SINE and LINE pairs might

produce common 3'-end secondary structures that prime the reverse transcription of both

elements (Jurka and Klonowski 1996; Ohshima et al. 1996).

Chironomid mitochondrial genes, nuclear genes, and the LINE and SINE sequences reported

here are a uniquely large data set allowing for studies of species and retrotransposon evolution

and their impact on genome remodeling.   In this study, overall similar evolutionary pathways

seen in mitochondrial gene and LINE phylogenies support the monophyletic origin of LINEs. 

While a SINE phylogeny separates similar chironomid groups, several statistically robust

phylogenetic anomalies were noted among the these elements.  Based on diagnostic residue

analysis, a few are members of subfamilies shared by distantly related species, suggesting their

acquisition by horizontal transfer.  Finally, sequence similarities near the 3’ ends of the LINEs

and SINEs studied here suggest that CTRT1-like SINEs and NLRCth1-like LINEs are co-

transposing and co-evolving pairs in chironomids.



6

Materials and Methods

DNA Extractions, Polymerase Chain Reactions (PCR) and Cloning.   In addition to laboratory

populations of C. thummi, specimens were obtained from natural populations (Fig. 1 with more

detail in Guryev et al. 2001).  DNA was extracted from pooled fresh or frozen larvae as

described (Blinov et al. 1997) or fixed in ethanol or ethanol/acetic acid (Guryev et al. 2001). 

Primers 5'-AGCAGCTACAGGCCAATAAGTCTAC and  5'-ATACAGTGCTGTATCATCTGCGAA

amplify a 500 nt region encoding 3 highly conserved domains of the reverse transcriptase gene

in ORF (open reading frame) 2 of LINE NLRCth1 (Blinov et al. 1993, 1997).  Primers

5'-CGTTGGCCTTACGTGCCAAA and 5'-CTTCAGCTGGAGGCACTG amplify most of SINE

CTRT-1 (Gruhl et al. 2000).  For PCR product cloning, phosphorylated primers with 5'

pentameric EcoRI linkers were synthesized in the State Research Center of Virology and

Biotechnology “Vector”, Novosibirsk, Russia.  

PCR-amplification was with thermal-stable DNA polymerases including Taq (Perkin-Elmer

Applied Biosystems Division, Foster City, CA) and EnzyPlus polymerase (EnzyPol Ltd.,

Denver, CO) under standard conditions.  SINE amplification was as described previously (Gruhl

et al. 2000).  Conditions for LINE NLRCth1 amplification were the same, except that the

annealing temperature was increased from 420 C to 480 C.  Ethidium bromide 1% agarose gels

were used to determine DNA concentrations.  For cloning, PCR products made with EcoRI

linker primers were gel-purified (Magic PCR Prep DNA Purification System, Promega,

Madison, WI) and treated with T4 polymerase in the presence of dGTP to generate EcoRI-

compatible cohesive ends (Aslanidis and de Jong 1990).  The PCR products were ethanol-
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precipitated and redissolved in TE buffer; 50 ng were ligated into 10 ng of EcoRI-digested

pBlueScript plasmid (Stratagene, La Jolla, CA).  Recombinant plasmids were transformed into 

XL1-Blue cells (Stratagene).  Screening was by blue-white selection.  Plasmid DNA was

extracted using the Wizard Plus Miniprep DNA Purification System (Promega, Madison, WI).

In preliminary studies of  51 geographically (Palearctic, nearctic, Australian, Oceanian and

Southeast Asian) and five phyletically diverse Chironomidae genera (Chironomus, Kiefferulus,

Glyptotendipes, Sergentia, Archaeochlus),  NLRCth1 copies could be amplified in the

Chironomus (except for C. hawaiiensis), Kiefferulus, and Glyptotendipes genera.  In contrast,

CTRT1-like SINEs were amplified from 37 of 47 species of the genus Chironomus and were not

detected in members of other chironomid genera.  For this report, SINEs and LINEs were

analyzed only in Palearctic (C. thummi, C. tentans, C. pallidivitattus, C. luridus, C. dorsalis, C.

agilis, C. plumosus, C. annularius, C. cingulatus, C. balatonicus, C. tuvanicus), Australian (C.

duplex, C. ‘februarius’, C. nepeanensis, C. tepperi, C. australis), one Southeast Asian (C.

circumdatus) and one Oceanian (C. crassiforceps) species (the latter two species are also

Australian, but separated by the continent). 

DNA Sequencing and Analyses.  Manual DNA sequencing (both directions) was done with the

dsDNA Cycle Sequencing kit (Gibco BRL-Life Technologies, Gaithersburg, MD).  Automated

DNA sequencing (both directions) was done using ABI dye-linked terminators with an ABI

373A automated DNA sequencer (Perkin Elmer, Foster City, CA).   DNA sequences were

aligned manually with ESEE (Eyeball Sequence Editor, V.3.05, Eric Cabot, 1995) or FAR (v.

1.6, E. Roshal, 1996-1998).  LINE and SINE sequence alignments are deposited in EMBL
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database under accession numbers ALIGN_000097 and ALIGN_000245, respectively; GenBank

accession numbers for individual sequences in the alignments are linked with these ALIGN

accession numbers.  GenBank accession numbers for sequences of amplified but severely

truncated LINEs not included in ALIGN_000097 are AF352405-AF352409 and AF352513-

AF352531.  GenBank accession numbers for SINEs from five species not included in the

ALIGN_000245 alignment are AF366370-AF366374 (elements from C. borokensis, C.

muratensis, C. piger, C. pseudothummi and C. spilleri, respectively).

Since maximum parsimony and neighbor-joining (NJ) methods in the Mega 2.0 package (Kumar

et al. 2000) generated similar phylogenetic trees for LINEs and for SINEs, only NJ results are

reported here.  Statistical support for the trees was evaluated by bootstrap analysis (1000

replications, Felsenstein 1985).  With a few exceptions, bootstrap values of <51% are not shown

on phylogenetic trees.  LINEs with interrupted ORF2 sequences (i.e., deletions or insertions that

would result in inappropriate coding potential) were not included in the phylogenetic analyses. 

Severely truncated SINEs were also excluded from the phylogenies.  Diagnostic residues were

determined by the methods of several investigators (Deragon et al. 1994; Hamada et al. 1997;

Takasaki et al. 1996; Kido et al. 1994,1995). A single consensus sequence was determined for all

aligned SINEs using the “majority” rule of Kido et al. (1995); positions where no base exceeded

50% were assigned IUPAC standard mixed-base notations.  Residues showing a systematic

pattern of divergence from the consensus sequence are defined as diagnostic.   To help define

subfamilies of the element, an NJ tree was constructed with PAUP (Swofford 1993) using

distances based on the absolute number of differences between the SINE diagnostic residues. 
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Results and Discussion

LINE NLRCth1 and SINE CTRT1, originally discovered in C. thummi, have since been found in

other chironomid species (Blinov et al. 1993; 1996; Gruhl et al. 1997; 2000).  If both elements

predate radiation of the chironomids, then both should be widespread in the genus.  Therefore,

the species studied here were chosen to represent a broad phylogenetic distribution (Fig. 1).  In

the absence of interspecific DNA exchange by introgression or “horizontal” transfer, gene

phylogenies should be consistent with the species relationships that assume vertical descent from

common ancestors.  The promiscuous mobility of some transposable elements can confound the

interpretation of molecular phylogenies because a) multicopy elements that are no longer mobile

are not under selective pressure and should rapidly accumulate mutations, even within a species,

and b) the potential of horizontal transfer can increase multicopy sequences.  It is therefore

necessary to analyze many copies of transposable elements from each species in order to

establish meaningful evolutionary relationships.  This was done for 306 copies of NLRCth1

LINEs and CTRT1 SINEs PCR-amplified and cloned from 18 chironomid species. 

Conservation of LINEs and SINEs.  

NLRCth1-like LINEs are similar to the original NLRCth1 (Blinov et al. 1993): 500 nt long,

strongly conserved, and with no premature stop codons in the ORF2 reverse transcriptase.  Only

a few LINEs (4, 3 and 5 from pallidivitattus, duplex, and circumdatus respectively; see EMBL

Accession # ALIGN_000097) had significant deletions in ORF2.  Based on in situ hybridization

of an NLRCth1 probe to salivary gland cell polytene chromosomes (Blinov et al. 1996), there are
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60-100 hybridization sites for  species with low nucleotide divergence between LINEs,

compared to about 20 sites for species with more highly diverged elements.  This is consistent

with a longer period of inactivity of the latter LINEs and/or with the transposition of fewer

copies of these elements. 

To estimate selective pressure on the ORF2 reverse transcriptase region in the different species,

ratios of synonymous to non-synonymous base substitutions (Ks/Ka) were calculated by aligning

a consensus sequence of C. nepeanensis (the most diverged species; Fig. 1, 2) with individual

full length LINEs (EMBL Accession # ALIGN_000097) or with LINE consensus sequences for

the other species.  Since there was no significant difference in Ks/Ka values comparing

individual or consensus sequences, only the latter are reported here.  Ks/Ka ratios ranged from

6.1 to 10.7.  This is within or even higher than the Ks/Ka range of 1.78 to 8.5 determined for the

chironomid globin 2β gene (alignment not shown).  Apparently, comparable selective pressure is

maintaining active LINEs in the different species.  Like chironomid LINEs, 41 apparently intact

Rte-1 elements in Caenorhabditis elegans had high Ks/Ka ratios indicating selective pressure to

preserve the continued mobility of most of the elements.   On the other hand, lower Ks/Ka ratios

for 9 deleted, more diverged Rte-1 elements (Malik and Eickbush 1998), indicating that the loss

of reverse transcriptase function permanently disables the element.  The loss of mobility is then

followed by more rapid sequence divergence and an increase in the rate of non-synonymous base

substitutions.   When Chironomus LINEs with major deletions were included in Ks/Ka

calculations (data not shown), the ratios were comparable to undeleted LINEs, indicating that the

shortened LINEs must have retroposed recently before being inactivated by deletion.
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As SINEs do not contain ORFs, Ks/Ka values do not apply.  Alignment of SINEs from 146

clones representing 22 species generates 399 residues (EMBL Accession # ALIGN_000245). 

Scattered small indels characteristic of a few elements are most likely insertions; substantially

deleted elements were found in C. tuvanicus (tuv2-tuv7), C. crassiforceps (cra3-cra9) and C.

agilis (agi2-agi8, agi11).  Nevertheless, 303 of the 399 positions in the alignment are $80%

identical.  This relatively high level of sequence conservation of otherwise non-selected SINE

copies is consistent with the recent mobility of a CTRT1-like source SINE(s) within each

species.   

Phylogenetic analyses and the construction of evolutionary trees

A comprehensive study of mitochondrial genes (Fig.1) defines phylogenetic groups containing

the ‘ancient’ Australian species (cluster I), ‘modern’ Australian species (cluster II),

Camptochironomids (cluster III), ‘pseudothummi’ clade (cluster IV) and ‘plumosus’

phylogenetic group (cluster V).  The topology of the NLRCth1 LINE tree follows that of the

mitochondrial tree (Guryev et al. 2001, Fig.2), both showing C. nepeanensis to be the most

diverged (i.e. ancient) species.  This is similar to the congruence R1 and R2 LINE families in

Drosophila with molecular as well as morphological phylogenies (Lathe et al. 1995; Eickbush

and Eickbush 1995; Eickbush et al. 1995; Lathe and Eickbush 1997).  Given the close

phylogenetic relationship between C. plumosus, balatonicus and agilis, fortuitous convergence at

key residues may explain the misplacement of the plu2 and  plu6 LINEs with balatonicus and of

plu8 with agilis elements (boxed in Fig. 2).

Most SINEs separate by species in the SINE phylogeny, and C. nepeanensis SINEs remain the
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longest diverged lineage.  However, in all other respects, the SINE tree topology differs from

that of the mitochondrial and LINE trees, indicating that SINE evolution does not track species

evolution.  In addition, many more SINEs than LINEs are cladistically misplaced (Fig. 3). 

Albeit with slim bootstrap support (41%), the dorsalis SINEs are on a peripheral branch in the

same clade containing the Australian and ‘plumosus’ group species.   Other misplaced elements

with weak support (<51% bootstrap values) include: plu2 and plu9 in clades that contain

balatonicus elements; bal3 lying by itself and basal to all of the other plumosus, agilis and

balatonicus elements; ann1 lying in the cingulatus clade; dup11 lying in a clade that includes 

agi6, both separated from other agilis elements; aus5 lying basal to separate clades containing

duplex and other australis elements; dup14 appearing more ancient than other duplex elements;

pal4 branching with cingulatus.   The luridus SINEs comprise a clade incorrectly separated from

its pseudothummi group (IV) relatives, but with relatively strong (70%) bootstrap support.   And

the clade including luridus and the more distantly related tentans elements is even more strongly

supported (70% bootstrap).   Even though pallidivitattus and dorsalis are not closely related,

pal1 and pal5 branch with dorsalis elements with surprisingly strong (90%) bootstrap support. 

Excluding unlikely errors in species identification, these cladistic misplacements can be

explained by a) random base substitutions resulting in sequence convergence of elements in

different species, b) the maintenance of source elements present at divergence by different

species, or c) the horizontal transfer of either source SINEs or SINE copies between species. 

Since more SINE than LINE misplacements occur, and since some of these involve distantly

related species with robust bootstrap support, alternative methods were sought to resolve the

SINE anomalies. 
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Determination of  SINE subfamilies

Percent similarity data were generated for both LINEs and SINEs (data not shown).  As has been

shown for other elements (e.g., Lathe et al. 1995; McAllister and Werren 1997; Marin et al.

1998; Hamada et al. 1997; Lenoir et al. 1997), the data suggest subfamilies generally consistent

with cladistic groupings in the NJ phylogenies reported here, but did not shed light on the

anomalous placement of many elements in the SINE phylogeny.  Therefore, diagnostic residues

were determined in the hope of clarifying subfamily relationships of the SINEs.  The assumption

of this analysis is that active multiple source SINEs diverge from their common ancestor at

different residues before transposition.  After transposition, source elements are distinguished by

the subfamily similarity of their copies.  Related species should share SINE copies belonging to

the same or a similar SINE subfamily, while more diverged species should not share many

similar diagnostic residues.  A single species may also harbor copy SINEs belonging to more

than one subfamily if it contains one or more divergent source elements. 

As expected, SINE diagnostic residue patterns (Fig. 4) show that phylogenetically related

species share many diagnostic residues, defining more inclusive subfamilies of CTRT1-like

elements.  The latter could arguably be further subdivided.  Several species do in fact contain

more than one SINE subfamily.  These include e.g., tuv1 and tuv2 vs the other tuv elements;

thu10 and thu2 vs each other and the remaining thu elements; agi7 vs other agi elements; bal3,

10 and 12 vs other bal elements.  The grouping of diagnostic residues in Fig. 4 optimizes some

but obscures other relationships (e.g., among Australian species).  An unrooted NJ cladogram of

aligned diagnostic residues more clearly resolves eight major subfamilies (Fig. 5).   That the

consensus sequence reflects a putative ancestral SINE is supported by its basal position in the
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tree.  Compared to the SINE phylogeny, differences in the diagnostic residue cladogram include: 

1) the previously misplaced ann1 now lies with most of other annularius elements in a

polytomous clade, 2) dup14 now groups with australis elements instead of other duplex SINEs;

3) dup11 grouped with crassiforceps SINEs instead of with agilis SINEs; 4) bal3 is newly joined

by five agilis elements.  Clearly, the tree building algorithms ‘see’ actual sequences differently

from the more derivative diagnostic residue alignments.  Nevertheless, the pal4, pal1, pal5, plu2,

plu9 are similarly “misplaced” on the diagnostic residue cladogram and SINE phylogeny, and

lur elements still group apart from their pseudothummi relatives.  Several elements not originally

included in the SINE phylogeny were included in building the consensus sequence for diagnostic

residue analysis.  Among these,  feb6, feb11, thu10, bal10, and  are also misplaced in the

diagnostic residue cladogram.  Among SINEs that are the sole representatives of their species,

pig1 (from C. piger) shares diagnostic residues with SINEs of  thummi, its sibling species and

mur1 and bor1 SINEs group with their plumosus group relatives.  On the other hand, pse1 and

lur1-6, though from related species, are separated from their thummi relatives, and the Australian

spi1 species is misplaced among the plumosus group elements.

Are SINEs from related species that share diagnostic residues and branch incorrectly with those

of the relative (e.g., plu2 and plu9 in the balatonicus clade, ann1 in the cingulatus clade) due to 

horizontal transfer?   Since theses cases are only weakly supported by bootstrapping, could they 

be artifacts of convergent base changes at one or two diagnostic residues that tree building

algorithms treat as informative.  In contrast, a horizontal transfer mechanism might best explain

the robust support for separation of luridus from other pseudothummi group SINEs, and for the

cingulatus-like (pal4) and dorsalis-like (pal1, pal5) SINEs.  If so, how and when did the transfer
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occur between these phylogenetically distant species?  Alternatively, were all SINE subfamilies

present before most speciation and then inherited linearly, with retention or silencing of some

source elements in some species?   These questions remain to be resolved.

Chironomid SINE and LINE co-evolution and origins

LINEs can exist without SINEs, e.g., in C. elegans, D. melanogaster (C. elegans Sequencing

Consortium 1998; Adams et al. 2000), but so far, not vice versa.  Since SINEs do not encode

enzymes needed for mobility, LINEs may provide enzymes for SINE transposition (Jurka and

Klonowski 1996; Ohshima et al. 1996; Jurka 1997; Okada et al. 1997; Malik and Eickbush,

1998).  We note that no C. tuvanicus or C. crassiforceps LINEs were clonable from PCR product

smears eluted from gels, and all tuvanicus and crassiforceps SINEs (except tuv1, cra1 and cra2)

are significantly deleted. Conversely, C. agilis LINEs seem intact while its SINEs are largely

deleted, suggesting that the source SINE has been dormant for a long time, perhaps even during

a recent mobilization of the LINE.

Homologous motifs at the 3’-end sequences of SINEs and LINES may provide a mechanism for

the common priming reverse transcription of  the RNAs of both elements into mobile DNAs

(Ohshima et al. 1996).  Similar 3' motifs are known for >10 pairs of elements from tortoise,

turtle, fish, mammals, and plants (Smit 1996; Kajikawa, Ohshima, and Okada 1997;Okada et al.

1997; Okada and Hamada 1997; Terai et al. 1998; Gilbert and Labuda 1999; Ogiwara et al.

1999).  A similarity between 3' motifs of MIR SINEs and the CR1 LINE even hint that some

ancient SINE/LINE pairs evolved before separation of mammalian and reptilian lineages

(Ohshima et al. 1996; Okada et al. 1997; Gilbert and Labuda, 1999).  In C. thummi, the original
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genomic clones of  LINE NLRCth1 and SINE CTRT1 share >45% similarity over a 64 nucleotide

region near their 3’-ends (Fig. 6), supporting a hypothetical, co-evolving NLRCth1/CTRT1 pair

in which the mobility of the SINE depends on that of the LINE.  

If SINE transposition depends on LINE mobility, then LINEs must have evolved first.  A

modern classification of LINEs includes more than 70 eukaryotic elements divided into twelve

families (Malik et al. 1999; Malik and Eickbush, 1999).  In this classification all LINEs have a

common root in the Cre clade, an ancient LINE distributed only among primitive eukaryotes. 

The chironomid LINEs (here called the LINEChir family) can be traced to a relatively recent

branch of these elements.  Members of the LINEChir family were amplified from the related

Kiefferulus and Glyptotendipes genera (this study), and are even older than the family

Chironomidae (which include all chironomid genera), being structurally related to the juan

family of elements in the jockey clade (Malik et al. 1999) widely distributed in Diptera.  

Because SINE families show little or no sequence similarity across phyla, deep rooted tree

construction is not possible.  SINEs do not have a common origin and probably appeared

independently in different taxa.  Among Chironomidae, only the genus Chironomus contain

CTRT1-like SINEs (the SINEChir family).  Within this genus, SINE amplification failed in C.

hawaiiensis, C. sp3 (Cook Islands, Oceania), C. sp2 (Rio de Janeiro, South America), C. xanthus

(South America), C. cucini, C. tigris, C. entis, C.decorus group sp1 (North America), C.

tenuistylus and Lobochironomus sp. (Palearctic).  This suggests that the SINEChir family of

elements (including CTRT1) originated in an ancestor common to the Australian and Palearctic

species. 
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Summarizing evolutionary data (Makarevich et al, 2000; Guryev et al, 2001, this report), the

common ancestor to the genus Chironomus (already containing an NLRCth1-like LINE) must

have appeared in Pangaea, before drift separated present day continents about 120 million years

ago.  Among the species studied, the most ancient are South American.  Species migrating to

Australia via the Antarctic region would have established the northern and southern Australian

phylogenetic groups, and already would have contained CTRT1-like SINEs.   Moving further

north to Asia and then Europe, the northern Australian group would then have established the

Palearctic lineages, including the phylogenetically recent camptochironomid, pseudothummi and

plumosus groups.  Representatives of the latter groups then migrated across the Bering Straight

to North America to establish the North American nearctic species.  Based on their outlying

positions on the mitochondrial gene phylogeny, their intronless 2$ globin genes (data not

shown) and their lack of a PCR-amplifiable CTRT1-like SINE, other North American species

such as C. cuccini and C. tigris most likely moved north from South America some time before

another South American species began its/their antarctic migration.  Assuming Africa to be a

side trip during migration to Australia, it will be of great interest to collect data from African

chironomids to will place them in their correct evolutionary context and pinpoint more

accurately the time of origin of CTRT1-like SINEs.  

We began this study of LINEChir and SINEChir retrotransposons with two questions.  1) Does 

retroelement evolution correlate with that of the host species?  2) Do the LINEs and SINEs co-

evolve as if SINEChir mobility depends on LINEChir  transposition?  Congruent species and LINE

phylogenies indicate that LINEs have been inherited by linear descent.  The non-congruence of

the SINE tree topology with other phylogenies indicates an expected rapid divergence of copy
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SINEs in the absence of selection, while the tendency of most SINEs from the same species to

group together supports their independent and relatively recent mobilization in different species. 

While convergent base changes may explain many cladistically misplaced SINEs (and a few

LINEs), others in distantly related species may have been shared by horizontal transfer or are

ancient SINE subfamilies retained in some but lost in other species.   Finally, the fact that SINEs

and LINEs retain 3'-motifs of >45% similarity, and that degenerate LINEs accompany

degenerate SINEs in a few species are circumstantial evidence for chironomid LINE and SINE

co-evolution, and the dependence of SINE on LINE mobility.  
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Figure Legends

Fig. 1. Phylogenetic relationshsips of Chironomus species and list of chironomids used in the

analysis.  The majority-rule consensus neighbor-joining (NJ) tree based on sequences of

mitochondrial genes COI and Cytb and division of species into clusters I-VI is essentially

as inferred in Guryev et al. (2001).  Distantly related chironomid genera (Sergentia,

Archaeochlus) and Drosophila are represented; species absent from the mitochondrial

tree but used in the present study are listed below the tree.  Plus and minus signs indicate

positive and negative results of PCR amplification of NLR or SINE elements in a

respective species.  PCR products which have been cloned and sequenced are indicated

by a circled +.  Species for sequencing were chosen so that representatives from

phylogenetic clusters I, II, III, IV and V are represented in the analysis.   Geographical

regions are: A - Australia, Af - Africa, PA - Palearctic, NA - North America, SA - South

America, O - Oceania, SEA - South-East Asia.  Scale is genetic distance as nucleotide

(nt) divergence.

Fig. 2. Neighbor-joining tree of NLRCth1-like elements based on nucleotide sequences. Multiple

cloned PCR-amplified products of a region of the reverse transcriptase open reading

frame (ORF2; see text) were sequenced for each species.  Clone names are derived from

the first three letters of the respective species name followed by a clone number.  Clones

with identical sequences are represented by a single branch on the tree and clone numbers

are separated by commas.  Numbers at the nodes represent bootstrap values as percentage

of 1000 replicates.  Clones with unusual positions on the tree are boxed and discussed in

the text.  Scale is genetic distance (nt divergence). 
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Fig. 3. Neighbor-joining tree of CTRT1-like SINE elements.  Multiple cloned PCR-amplified

products of a region within the SINE were sequenced for each species.  Clone names and

bootstrap values are as described for Fig. 2.  Clones with unusual positions on the tree are

boxed and discussed in the text.  Scale is genetic distance (nucleotide divergence). 

Fig. 4. Diagnostic Residues of CTRT1-like SINEs.  Among the 146 aligned SINEs, 105 out of

399 positions were identified that contained bases differing from the consensus sequence

of all SINEs (upper and lower case bases).  Differences from the consensus due to

transition as well as transversion were scored because the patterns generated by both

represent data that should not be discounted.  Diagnostic residues (uppercase boldface

bases) were determined as described in the text.  The alignment groups the diagnostic

residues to optimize species relationships and putative SINE subfamilies in a maximum

of species.  Residue numbers for each base, and the consensus (Cons) base for each

residue are repeated at the top and bottom of the alignment.  Dots indicate the same base

as the consensus, dashes are indels and ? indicates missing data.  An asterisk (*) indicates

the position of an 11 base insert (seen only the nep7B element) that was removed before

analysis.

Fig. 5. Neighbor-joining unrooted phylogram of diagnostic SINE CTRT1 residues.  The tree

reveals 8eparated SINE subfamilies (numbered at right).  It is possible to make finer

subfamily distinctions based on clade separation, and several SINEs remain or are newly

misplaced on this tree (cf. Fig. 3). 
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Fig. 6. Similarities of aligned 3' ends of  NLRCth1 from C. thummi and SINE CTRT1 from C.

thummi.  A 64 nucleotide region showing similarity between the elements is underlined;

LINE vs SINE nucleotide identities are in boldface.   Sequences are taken from:

NLRCth1 (GeneBank Accession No. S59870) and CTRT1 (GenBank Accession No.

AF001292).
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FIGURE 4, p. 1
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Cons     GGACCTCTAG---------TGAGGC---GTCAA--------TCTATAACCTTATTTGGGAAATA----AC-AGCCgAtGCGGCCATGC-ATAT-GA-GCGGTCTT       
                           
tuv1     ............................t........................a......g..........t.....g....t......gc..............
tuv2     ......--................t...-.-..........–-gg..-g.----......--.-tcca.a.-.-..–c----t.-.--.-c.........-.-.-
tuv3     ATGTGCTCGAACCTAATTTGTTTA-...-----.TTC....-------------...-----.-....--.-----------------.--...--.-.--.---
tuv4     ATGTGCTCGAACCTAATTTGTTTA-...-----.TTC....-------------...-----.-....--.-----------------.--...--.-.--.---
tuv5     ATGTGCTCGAACCTAATTTGTTTA-...-----.TTC....-------------...-----.-....--.-----------------.--...--.-.--.--–
tuv6     ATGTGCTCGAACCTAATTTGTTTA-...-----.TTC....-------------...-----.-....--.-----------------.--...--.-.--.---
tuv7     ATGTGCTCGAACCTAATTTGTTTA-...-----.TTC....-------------...-----.-....--.-----------------.--c..--.-.--.---
 
dor1     ......................AAAGAAAATG.GTCCTAAT...TA.G.A..................T.......GgATA...G................-...
dor2     ......................AAAGAAAATG.GTCCTAAT...TA.G.A..................T..g......ATA...G................-...
dor5     ......................AAAGAAAATG.aTCCTAAT...TA.G.A..................T.......G.ATA...G................-...
dor6     .....c.............ca.AAAGAAAAT..GTCCTAAT...TA.G.A..................T.......G.ATA...G................-...
dor4     ......................AAAGAAAA.GgGTCCTAAT...TA.G.A..................T.......G.ATA...G................-...
dor3     .a..--.............-..AAA...AATG.GTCCTAAT...TA-G.-.........g........Tt......G.ATA...G.........--..-..-.-.
                                                                                                                  
thu3     ................................TGTTCTAATcTGT..Gt.CC.......T..................A.......a...C.............. 
thu6     ................................TGTTCTAAT.TGT..Gt.CC......TT..................A...........C.....c........ 
thu11    ................................TGTTCTAATcTGT..Gt.CC....t..T..................A...........C.............. 
thu8     .....................?..........T????????cTG?..Gt.CC...??..T?...............?.A...........C.?............ 
thu7     a...............................TGTTCaAATcTGg..G..CC..........................A...........C.............. 
thu1     ................................TGTTCTAATaTGT..Gt.C........T..................A.a.....a...C.............. 
thu4     ..................c......a..a...TGTTCTAATaTG...G..CC...............................t......C.......t...... 
thu5     a................................cTTCTAAT.TGt..Gt.CC.......T.t............................C.c............ 
thu2     ................................T........cTG...G..CC........................t.A...........C.............. 
thu10    .t....--.c.........c----....-–--............--..--.------.-------......-------------.---..-.--...-.--.-c- 

lur1     .............................-..TGTCCTAATAT.TAGGtACCTG....TT...g........-.-.....A.....a...........--.....
lur4     ................................TGTCCTAATAT.TAGGtACCTG....TT...g................A........................
lur6     ..g.............................TGTCCTAATATaTAGG.A.CTG....TT...t...............TAa..................t....
lur5     ..g.............................gGTCCTAATATaTAGG.A.CTG....TT...t...............TAa..................c....
lur3     .......................a........TGTCCTAATAT.TAG..AgCTaa....T...t................A.g.c-.....g.............
lur2     ...t.........................g..T........AT.TAGGtACCTG....TT..cg...........c...TA........................
                                                                                                                  
ten1     ...a............................TgTcCTAaT.TATAGGAACC.G.................................A...............a.
ten2     ................................TtTaCTAgT.TATAGGGACC.G.................................A.................
ten4     ......................a.........TtTaCTAgT.TATAGGGACC.G.................................A.................
ten5     ......................a.........TtTaCTAgT.TATAGGGACC.G.................................A.................
ten3     ................................TgTctTAaT.TATAGGGACC.G...................................................
                                                                                                                  
pal1     .......................aagaa...c.GTcCTAaT.TA.A...A.......a..............AT...g.ta..aggc...........t......     
pal2     ??????............??....????....TGTcCTAaT.TAT??gg?CC.g........?.........A..........?..........??..?..?.?.
pal5     .......................aagaa...c.G........TA.A...A.......a..............A....g..a...gc...................
pal3     .a....................a.-.......TaTaCTAgT.TATA.gaACC.g.............................-..a..-...............
pal4     .......................a.........G...........................t.TTCCA.T.T.T...g....-......-........t.a....

cin1     ....................a...................................t....-.TTCCATTTT.T...ga...................a......
cin2     ..................a..........................................-.TTCCATTTT.T...g...................aa......
cin3     .............................................................-.TTCCATTTT.T.....t..t......................
cin6     .......................a.a...................................-.TTCCATTTT.T............................t..
cin8     ................................................t............-.TTCCATTTTAT...g...........................
cin4     ..t.............................t..........................g.-ATTCCATTTTAT........t......................
cin5     ........................-..................c.................-ATTCCATTTTAT.........-.............t....t..
cin7     ........................-.................t...................AgTCCATTTT.T........a-.....................
                                                                                                                  
ann1     ..............................................................ATTCCATT.TAT...............................
ann2     ..............................................................ATTCCATT.TAT..G.....t......................
ann4     ..............................................................ATTCCATT.TAT..G.a..........................
ann7     ...t..........................................................ATTCCATT.TAT..G............................
ann8     ............................c................................-ATTCCATTaTAT..G......................c.....
ann3     ................................................t.............ATTtCATT.TAT..G............................
ann9     ....................................................t.........ATTCCATTgTAT..G............................
ann5     ..............................................................ATTCCATT..ATg.G.a..........................
ann6     a.............................................................ATTtCATT..ATg.G............................
ann10    .............................-.--........-.-....-.a-.....--...A-TgCAc-cT-T-.G-.----..---.--......-.-..-.-

plu1     ..........................................................................T...ATAATT..a..................
plu3     ..........................................................................T...ATAATT.....................
plu4     ....................................................g.....................T...ATAATT............t..a.....
plu5     ................................................t.........................T...ATAATT...............a.....
plu6     ..........................................................................T...ATAATT.....................
plu8     ..........................................................................T...ATAATT.....................
plu10    ......--......................-................-....--......-............-T.-.ATA-TT-...............-....
plu2     ..........................................................................T....TAATT.....................
plu9     ..........................................................................T....TAATT.....................
plu7     ..............................................................................ATAtTT.....................
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bal1     .......................a......-...........................................T....TAAtT.....................
bal5     ..........................................................................T....TAAtT.....................
bal4     ..g......................................c................................T....TAA.T.....................
bal6     ..g......................................c................................T....TAA.T.....................
bal7     .....................................................................t.g..T..g.TAA.T.....................
bal8     ..g..................................................................t....T..g.TAA.T.....................
bal2     ..g......................................c................................T....TAA.T.....................
bal11    .---..????????????..????-...?.?..????????.?.?.......?????...?.-..........?T??.?TAA.-?......??...?....-...
bal9     ??????............??....????.............c...??..?............?.........?.?....TAA.?..........??..??.?.?.
bal3     .......................a.................c...........................t.......g.a...Tg....................
bal10    ........--.............t........-........--.t....g-........-.-......-..-...a.-.---...---...-......t...-.-
bal12    ........--........cc-.--a...-.-.-........--....g.t-.....-..-.-.-....-t.-.....-----.g.---.---.....at.-.-.-
                                                                                                                  
agi6     .........a............c.....-...............-.....c..c....................T..G.T.A.T...t............a....
agi11    ........-...........----.........t.......c............-.--...........-.......G.T.A.T.......-....t.t--....
agi5     .a.......a.............a.....-...t........................t............g.....G.T.A.T......C......-..aa...
agi8     .a.....................a.....-...........................at............g..T..G.T.A.T......C.....t---.a...
agi4     .............................-...t..............-...g....-t..........-..-.-..G..aA ..............-..a...a
agi1     .a....t..........................t........................................T..G..aA..-...............c....
agi3     ..-......-..........a............t........t..-............-..................Ga.aA............a..-.......
agi2     .............................-...t..............-...g.....t....g........-.-..G..a.-..............-.......
agi7     .......c..........t...a......-...........-........c......a-.t...........-.-..-.---....--.t.......---..-.-

dup2     ...........................................................................C.......TGCAATGCTA............      
dup3     ...........................................................................C.......TGCAATGCTA.......r....
dup4     ...-t.........................................................-............C.......TGCAATGCTA............
dup5     ...................c.......................................................C.......TGCAATGCTA............
dup6     ...................c....?..................................................C.......TGCAATGCTA............
dup1     ......--....................-.-...........-....-.....-......-............-.C-.A..-.T-CAATGCTA........c..-
dup8     ??????............??....t......-...........-.??.-?.......t....?........g...C.......?GCAATGCTA.??...a.?.?.
dup12    ????....................????.....????????...?................c?............?.......?GCAATGCT?.....??.?...
dup14    ????...........................-.t???????..-?...-...-.........?-...........?..a.a.-?GCAAT-..?.......-?...
dup11    ??????............??....????.?..............-??.t?......t..t..?....a...g?.?-.g...a.?..AAT....a??.??a.?.?.
                                                                                                                  
aus8     ............................................-......................................TGCAAT................
aus1     .........a..................a...........................................-..........TGCAAT.c..............
aus3     .........a..................a......................................................TGCAAT................
aus2     ..c..........................c..............-......................................TGCAATG...............
aus4     .............................c..............-......................................TGCAATG...............
aus6     .........t..................................-......................................TGCAA...........a.....
aus7     ......a.....................................-..............g..........ac............GCAAT................
aus5     .........................ct.........................................................cCAAT................
                                                                                                              
cir1     ..................TA..........A.tTT........a.ag.tT.c...A......gt...................Tg.A.....GaC-t..ta...c
cir5     ..................TA..........AgtTT........a.ag.tT.c...A......gt...................Tg.A.....GaC-t..ta...c
cir6     ?.................TA....-.....A.tTT........a.ag.tT.cc..A.-...-gt.....-.............Tg.A.....GaC-t.---?..c
cir3     ..................TA....-.....AgtTT........a.ag.tT.cc..A.-...-gt.....-..........a..T..c.....GaC-t.---...c
cir2     ...t..--..........TAa.aa.....-A--TT......-.-.----T--.c.A.a---.a-....-..-.--.--.----g----.--cG.C-.-.ta.-.-
cir4     ...t..--..........TAa.aa.....-A--TT......-.-.----T--.c.A..---.a-....-..-.--.--.----g----.--cG.C-.-.ta.-.-
                                                                                                                 
cra1     aagg.....t............c...aa...ttATtCTcA.at.Ga..tg........a.t.............tac..T.a.tgca.....A....a...cta.     
cra4     ..----.............-....-.....ttgATtCTcA....G--..-........a...-.........-.-.g..T...-.c......A.--.a--..t-.
cra3     .....ctc..........a.....a..g-.-ggATtCTtA.--.Gc.tt...--..aaat.-.......-.-ta-.g.-Tata.caata...A.c..aaacca..
cra5     .a..-----t.........-...––...---tgAggCTtA..-cG--.a-a.--...--.-...........-t-ag.-T..a-gc.....-A.--.---.ct-.
cra6     .a..-----t.........-...––...---tgATgCTtA..-cG--.a-a.--...--.-...........-t-ag.-T..a-gc.....-A.--.---..t-.
cra7     ....----.t.........-.g.––...-----ATttTtA.---G------.--...-----.-....--.----.-.-T..----...–tA.--.---.ct-.
cra8     ....----.t.........-.g.––...-----ATttTtA.---G------.--...-----.-....--.----.-.-T..----...-.tA.--.---.ct-.
cra9     ..------...........-.g–––...–----ATtCccA.---G---------..--------....--.----a------------.--.A.--.----c---
cra2     ..g..a....................aa...ttAacCTt-.....a...a........a...............tag..T...tgc......A....a....ta.
                                                                                                              
nep7A    ......................A...................TATA...G.C.GC..A..T..T....T.....T.....A......................-.
nep6A    ...a..................A........t..........TATA...G.C.GC..A..T..T....T....tT.....A......................-.
nep6B    .....................?t........t.????????.TA?A...G.C.G??.A..T.aT....T.....T?....A...........?..........-.
nep9     ......................A........t..........TATA...G.C.GC..-..T-aT....T-....T.....A..................--..-.
nep10    .........-............A.a......t..........TATA...G.C.GCg.-..T-.T....T-....T.....A.................---..-.
nep5     .....................gA.........t.........TAT....G.C.GC..A..T..T....T...........A.............a........-.
nep7B    ......................Ac.....-.--........-T-TA.--G--.aC..A--T..-....-..----..-.----..---.--....*T-....---
nep3     ...t..---..........-........--a--GTACAAAA-T-T-.--G--.C...A---..-....-..----..------.----.--...t..-....---

feb3     ...................G.....G....A.TTT..........A.GTT.C....AA....aT............................GAC-TATT.....
feb7     ...................G.....G..a.A.TTT........g.A.GTT.C....A.....cT............................GAC-TATT.....
feb4     ...................G.....G....A.TTT........g.A.GTT.C..C.A.....GT............................GAC-TATT.....
feb8     ...................G...a.G....A.TTT........g.A.GTT.C..C.A.....GT.......................t....GAT-TATT.....
feb1     ...................a.....G....A.TTT........g.A.GTT.C..C.A.....GT............................GAC-TATT.....
feb5     ...................a.....G....A.TTT..........A.GTT.C..C.A.....GT............................GAC-TATT.....
feb9     .a.................Ga....G....A--TT........-.A.G-T.C....A.....c-.........t.....g..-..-...--.GAC-TATT.....
feb10    ...................Ga.a..G..a.A.TTT........A.A.GTT.C....A.....GT............................GAC-TAT......
feb2     .a.......-.........Ga.........A--TT........-.A.G-T.C....A.....G-.........t........-..-...--.GAC-TA.......
feb11    ........-...........----.G............................-.-......................taa.t.......-..a.T.TT.....
feb6     ...t------.........--...-...---.-GTACAAAA--AT---.-----...--.-..T...tt-gc---.--.--..--.-...--.c--T---t.--.
                                                                                                                  
bor1     ..........................................................................t....taa.t.....................
mur1     .........a............a.....................g.............................t...ataatt.....................
pig1     ................................tgttctaatntgt..gn.cc.....n....................a.n.....n...c..............
pse1     ????G...................????....tgtcctaatatnt??g.-ccta.....t..?......t.............?..........--.....?.?.
spi1     ......????????????..????C...?.?..??????????.?..?..???????..???......?.??.?.???????.T?.???..???..?...?.?.?
                                                                                                                  
Cons     GGACCTCTAG---------TGAGGC---GTCAA--------TCTATAACCTTATTTGGGAAATA----AC-AGCCKAWGCGGCCATGC-ATAT-GA-GCGGTCTT
               223333333333  3333    2 211333333332213  21 122233311121 111111111 2 32231221 2122211331  21  2 2 2
          11245663344444555552761233389835888888890939333349077776227482477778288838951091232451104539744705821141
         538290024934569012821450856768388345678908193496742356597236450212341537084440153157094561312857277531237



35

FIGURE 5
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FIGURE 6

CTRT1 ACAATAGATTCTGTTCTAATTTGAATCGCAGTGCCTCCAGC
NLRCth1 AATCCGTAAATGAAATCAAAATTAAGAGACAAAAGGCAAAT

CTRT1 TGAAAGGCTGGGCCCTTCACACATTATATATATATATACT
NLRCth1 TGAATGCCTGAAACCTTAAAACAAAAATGCAACAAAATGT 
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