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Abstract 

Controversy exists about whether one-dimensional (1D) wave theory can explain the ‘self-

cancelling’ waves that accompany the diastolic pressure decay and discharge of the arterial 

reservoir. Although it has been proposed that reservoir and wave effects be treated as separate 

phenomena, thus avoiding the issue of self-cancelling waves, we have argued that reservoir 

effects are a phenomenological and mathematical subset of wave effects. However, a complete 

wave-based explanation of self-cancelling diastolic expansion (pressure-decreasing) waves has 

not yet been advanced. These waves are present in the forward and backward components of 

arterial pressure and flow ( P±  and Q± ), which are calculated by integrating incremental 

pressure/flow changes (dP±  and dQ± ). While the integration constants for this calculation have 

previously been considered arbitrary, we show that physiologically meaningful constants can be 

obtained by identifying ‘undisturbed pressure’ as mean circulatory pressure. Using a series of 

numerical experiments, absolute P±  and Q±  values are shown to represent ‘wave potential’, 

gradients of which produce propagating wavefronts. With the aid of a ‘1D windkessel’, we show 

how wave theory predicts discharge of the arterial reservoir. Simulated data, along with 

hemodynamic recordings in seven sheep, suggest that self-cancelling diastolic waves arise from 

repeated and diffuse reflection of the late systolic forward expansion wave throughout the 

arterial system and at the closed aortic valve, along with progressive leakage of wave potential 

from the conduit arteries. The combination of wave and wave potential concepts leads to a 

comprehensive one-dimensional (i.e. wave-based) explanation of arterial hemodynamics, 

including the diastolic pressure decay. 
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Introduction 

Separation of arterial pressure and flow signals into forward ( P+  and Q+ ) and backward (P−  and 

Q− ) wave components provides important information about interactions between the ventricle 

and vascular network (17, 18, 35, 51). Although the gold-standard for assessing wave dynamics 

over the past 40 years, wave separation has been the subject of recent controversy. At issue is 

that, during diastole when there is no aortic inflow, wave separation predicts that P+  and P−  are 

near-equal, while Q+  and Q−  are equal in magnitude but opposite in sign, the latter giving rise to 

the term ‘self-cancelling’ waves (5, 48, 49).    

 On one side of the debate, self-cancelling waves have been deemed an “implausible artefact” 

of the wave separation technique, given an expectation that forward wave components should be 

zero when the aortic valve is closed (5). Moreover, wave separation applied to a beat with a long 

diastole results in a cross-over and progressive increase in the magnitude of flow components as 

diastole progresses (Fig. 1), a puzzling feature that is difficult to explain physiologically. To 

resolve these problems, Wang et al (49) proposed the reservoir-wave paradigm, in which a zero-

dimensional (0D) ‘reservoir pressure’ is first subtracted from measured pressure. When 

subjected to wave separation, the remaining one-dimensional (1D) ‘excess pressure’ does not 

exhibit self-cancelling waves. On the basis of this finding, proponents of this paradigm have 

concluded that phenomena related to arterial reservoir filling and discharge, such as the diastolic 

pressure decay, lie outside the explanatory scope of 1D wave theory (5). 

 The reservoir-wave paradigm has, however, also attracted criticism (24, 30-32, 43, 44, 52) 

because, while it appears to resolve problems with diastolic wave separation, the accompanying 

pattern of systolic wave reflection is fundamentally different to widely-held concepts derived 

from a large body of experimental and clinical evidence (31, 32). Indeed, in numerical 

experiments of vascular networks containing reflection sites with known impedance mismatches, 

and thus reflection coefficients, wave separation using excess pressure underestimated or entirely 
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missed positive wave reflection, overestimated negative wave reflection or produced spurious 

waves not associated with any impedance mismatches. These problems were not encountered 

with traditional wave separation, which accurately predicted the character and magnitude of 

reflected waves (24, 31). 

If traditional wave separation is to remain a gold-standard approach for evaluating wave 

interactions, however, a wave-based explanation is required for self-cancelling diastolic waves 

and the diastolic pressure decay. The precursors to such an explanation have been provided by 

three observations. First, the realization that the 0D windkessel model, which is often used to 

explain reservoir phenomena, is a mathematical reduction of the 1D wave equations (21, 31, 43) 

implies that reservoir effects are a subset of wave effects and hence that self-cancelling waves 

are not an artefact. Second, the existence of equal pressure and opposing flow wave components 

is to be expected if a backward-running wave encounters a closed aortic valve with a reflection 

coefficient close to unity (30, 52). Third, the recognition that arterial wave reflection occurs in a 

distributed nature and involves many reflections and re-reflections, as well as wave trapping (1, 

2, 4), together with the finding that the systolic rise in reservoir pressure arises from peripherally 

reflected systolic waves (1), is suggestive of a relationship between wave reflection and reservoir 

phenomena.  

Accordingly, the aim of the current study was to develop a wave-based paradigm of diastolic 

arterial hemodynamics that explains self-cancelling waves and reservoir phenomena such as the 

diastolic pressure decay. The study consisted of two complementary components. A theoretical 

framework for the paradigm was first developed, with numerical experiments used to illustrate 

the key concepts. The paradigm was then evaluated with in vivo experiments in which 

hemodynamics were altered with vasoactive drugs and aortic constriction. Our approach 

involves a subtle but important refinement of traditional wave separation, namely the definition 

of non-arbitrary integration constants when calculating P±  and Q± . By reconsidering the concept 

of undisturbed pressure (19), this step adds a new dimension to the standard interpretation of 
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wave separation in that the integration constants, and hence the absolute values of P±  and Q± , 

are bestowed with physical meaning via a concept termed ‘wave potential’.  

Theoretical development 

Computational modelling methods 

The basic computational methods for the numerical experiments have been described in detail 

previously. Briefly, the non-linear one-dimensional form of the Navier-Stokes equations were 

solved as in (29) along with a physiologically realistic non-linear pressure-area relation (27). 

Reflection coefficient boundary conditions and, where applicable, an elastance ventricle inlet 

boundary condition were implemented using methods described in (25, 28, 29). 

Wave separation with arbitrary integration constants 

In linear wave separation (17, 35, 51), incremental changes in the forward (+) and backward (–) 

components of pressure (P) and flow (Q) are additive (Fig. 1), i.e. 

 dP dP dP+ −= +  (1) 

 dQ dQ dQ+ −= +  (2) 

Defining characteristic impedance as /cZ c A= ρ , where ρ  is blood density, c  is wave speed 

and A  is vessel cross-sectional area, the water hammer equation states that 

 cdP Z dQ± ±= ±  (3) 

Combining Equations 1 and 2 with Equation 3, it can be shown that 

 ( )1
2 cdP dP Z dQ± = ±  (4) 

 1 1
2 c

dQ dQ dP
Z±

⎛ ⎞
= ±⎜ ⎟

⎝ ⎠
 (5) 

Integration of these equations leads to the forward and backward wave components of P and Q, 

 ( ) ( )0 0 01
2 cP P P Z Q Q P± ±⎡ ⎤= − ± − +⎣ ⎦  (6) 
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 ( ) ( )0 0 01 1
2 c

Q Q Q P P Q
Z± ±

⎡ ⎤
= − ± − +⎢ ⎥

⎣ ⎦
 (7) 

Here 0P  and 0Q  are initial values of P  and Q , while 0P±  and 0Q±  (the integration constants) are 

initial values of P±  and Q± . Since wave components have previously been considered pertinent 

only to the pulsatile aspects of pressure/flow waveforms, 0P±  and 0Q±  have been chosen 

arbitrarily. For graphing convenience (as in Fig. 1), 0P+  and 0P−  are often set to end-diastolic 

pressure ( edP ) (11, 14, 18). Alternatively, some have chosen 0
ed0.5P P± =  (36) or have assigned 

P+ = edP  and 0P− =  (15, 20, 37); in both cases, P P P+ −= + . Others have set mean P+  and P−  to 

zero (3) as an expression of the arbitrariness of the mean value, while still others have avoided 

specifying absolute values of P±  altogether (16, 22, 51). 

In most papers, 0Q+  and 0Q−  have been set to zero or end-diastolic flow, as in Fig 1. This 

approach seems reasonable for steady-state beats since Q+  and Q− , although equal and opposite 

during diastole, approach zero at the start of the next beat. However, two potential problems are 

apparent with this approach. First, if Q+  and Q−  approach zero at the start of the next beat, this 

implies that the time it takes for all waves in the arterial system (generated by the heart and by 

reflection in the vasculature) to fully dissipate is coincidentally and precisely one heart period. 

A second problem is that if regularity of the cardiac cycle is perturbed, then it is evident that 

arterial waves are not fully dissipated in one heart period. This may be seen with two examples. 

First, in an ectopic beat containing a long diastole, Q+  and Q−  cross over and progressively 

increase in magnitude after P falls below edP  (Fig. 1). In addition, Fig. 2A shows ascending 

aortic P  and Q  in an experimental study where wave separation was performed on multiple 

beats before and during euthanasia. Interestingly, although Q falls to zero and P asymptotes to a 

constant value after ∼10 sec, the wave components (P±  and Q± ) do not asymptote towards zero, 

as would be expected. Particularly difficult to explain physiologically are the large positive and 
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negative asymptotic values of Q−  and Q+  respectively. This observation suggests that the choice 

0 0Q± =  is not physiological and also implies that 0Q±  should not be considered arbitrary, since 

intuitively Q±  should asymptote to zero after a long period of asystole; similar arguments apply 

to 0P± .  

These observations lead to two important questions. First, can non-arbitrary values of the 

integration constants be defined that result in physiologically meaningful results during an 

extended asystole? Second, if non-arbitrary constants are used, what are the implications for 

interpreting diastolic wave components and reservoir discharge? Before addressing these 

questions, we must first reconsider the role of undisturbed pressure in wave separation. 

Undisturbed pressure (Pud) 

In his foundational book “Waves in Fluids”, Lighthill defined waves as being driven by an 

‘excess pressure’ above an ‘undisturbed pressure’ ( udP ), the latter being an equilibrium pressure 

distribution that does not contain pressure gradients (apart from hydrostatic gradients) or produce 

fluid accelerations (19). Under the assumption that the arterial circulation is a system in steady-

state oscillation, pressure and flow are often treated as the sum of a mean value and a series of 

sinusoidal (Fourier) harmonics. On this view, mean pressure is unrelated to waves, “the steady 

flow term and average pressure term are disregarded” (51) when performing wave analysis, and 

therefore mean pressure is identified as udP . Similarly, in time-domain wave separation, edP  is 

usually designated as the undisturbed reference point, a choice that also treats the arterial system 

as being in steady-state oscillation.  

The concept of arterial steady-state oscillation has been questioned by Parker (34) and Hughes 

et al (12), however, who pointed out that although the arterial system is normally subject to 

periodic forces (ventricular ejection), pressure rapidly decays if even a single heart beat is 

missed. Conversely, when cardiac contraction recommences after a long period of asystole, mean 

pressure rises as pressure/flow pulses are forced into the system until, after some time, an 
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equilibrium is reached (2, 33). If heart rate increases/decreases, then (all else being equal) mean 

pressure rises/falls. Mean pressure therefore does not exist physiologically and is only a 

manifestation of the size and frequency of the input forcing waves, along with wave reflections 

and the rate at which the arterial reservoir drains during diastole. As expressed by Hughes et al, 

“where, if not from waves generated by the heart does mean pressure ultimately derive?” (12).  

Thus, although arterial pressure and flow can be treated mathematically as periodic, from a 

mechanistic point of view, mean P and edP  arise from waves. If neither mean P nor edP   should 

be identified as udP , how then should udP  be defined? 

Wave separation with non-arbitrary integration constants 

The chief insight from Fig. 2A is that to achieve physiologically intuitive P±  and Q±  during a 

period of asystole, we require that 0P∞
± =  and 0Q∞

± =  (∞  here means ‘after a long period of 

asystole’). This restriction implies that udP  should be identified as mean circulatory pressure 

(Pmc), i.e. the pressure that prevails when no pressure gradients exist in the system (8). Consider 

an undisturbed hemodynamic state in which there is no potential energy for blood flow anywhere 

in the circulation. In such a state, 0Q =  everywhere and, ignoring hydrostatic gradients, pressure 

is everywhere equal to udP . Assuming that 0P± =  and 0Q± =  when udP P= , and assuming cZ  

is constant, from Equations 6 and 7 it can be shown that 

 0 0 0
ud

1
2 cP P P Z Q± ⎡ ⎤= − ±⎣ ⎦  (8) 

 ( )0 0 0
ud

1 1
2 c

Q Q P P
Z±

⎡ ⎤
= ± −⎢ ⎥

⎣ ⎦
 (9) 

The separated P  and Q  components, incorporating these non-arbitrary integration constants, are 

then 

 [ ]ud
1
2 cP P P Z Q± = − ±   (10) 
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 ( )ud
1 1
2 c

Q Q P P
Z±

⎡ ⎤
= ± −⎢ ⎥

⎣ ⎦
 (11) 

Measured P  and Q  can then be considered to consist of the following components, 

 udP P P P+ −= + +  (12) 

where P P+ −+  is excess pressure (19), and 

 Q Q Q+ −= +  (13) 

Importantly, noting that Pud ≪mean(P) , Equation 12 expresses the view that waves 

predominantly determine mean pressure. Fig. 2B shows that if we set ud mcP P=  in Equations 10 

and 11, P±  and Q±  now asymptote to zero after a long period of asystole.  

Wave potential 

Having addressed the problem of non-zero P∞
±  and Q∞

±  through a physiologically justifiable 

definition of ‘undisturbed state’, Fig. 3 reveals a new issue requiring consideration, namely, that 

during steady state beats the mean value of Q+  (in this example, 13.7 L/min) is far greater than 

mean Q  (2.8 L/min), while mean Q−  is substantial and negative ( 11.0−  L/min). On first glance, 

these steady-state values of Q±  may appear non-physiological. To explain why these values do 

have physiological meaning, consider what would happen if, during a normal hemodynamic 

steady-state, the aorta was suddenly occluded in two locations. Assuming no side branches lay 

between the two occlusion sites, there would be no flow in or out of the occluded segment and 

pressure would be constant ( constantP ), with a similar value to that prevailing before the occlusions 

were applied (i.e. constant udP P> ). Shortly after the occlusions commence, no propagating waves or 

inflow/outflow will exist, hence 0dP± = , 0dQ± = , 0Q =  and constantP P= . However, Equations 

10 and 11 suggest that the wave components of pressure and flow are non-zero as follows, 

 [ ]constant ud
1
2

P P P± = −  (14) 
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 ( )constant ud
1 1
2 c

Q P P
Z±

⎡ ⎤
= ± −⎢ ⎥

⎣ ⎦
 (15) 

For example, if ud 0P = , constant 100P =  mmHg and 0.05cZ =  mmHg.s/mL (typical values for a 

human ascending aorta), then 50P± =  mmHg and 60Q± = ±  L/min. The physical relevance of 

these values, while difficult to appreciate while the occlusions continue, immediately becomes 

apparent when the occlusions are released.  

To illustrate, Fig. 4 shows a numerical experiment in which two tubes are connected at 0x = , 

with a barrier between the two tubes removed at 10t =  ms. Before the barrier is released (Fig. 4, 

0t = ), pressure in tube 1 (x < 0) is constant 10P =  mmHg, while in tube 2 (x > 0) pressure is 

ud 0P = . After removal of the barrier, two pressure-flow waves propagate in opposite directions 

(Fig. 4, 15t =  ms and 30t =  ms). As would be expected, these waves decrease pressure in tube 

1 and increase pressure in tube 2 (thereby equalizing pressure at the junction), while both waves 

cause flow to increase in the positive x direction. 

Where do these waves come from and could their pressure/flow effects have been predicted? 

Noting that 0.064cZ =  mmHg.s/mL in both tubes, according to Equations 14 and 15 ,1 5P± =  

mmHg and ,1 78.6Q± = ±  mL/s at 0t =  in tube 1 and ,2 ,2 0P Q± ±= =  in tube 2. The pressure/flow 

wave component differences at x = 0 are therefore 

 ,1 ,2

,2 ,1

5  mmHg
5  mmHg

P P P
P P P
+ + +

− − −

Δ = − =
Δ = − = −

 (16) 

 ,1 ,2

,2 ,1

78.6  mL/s
78.6  mL/s

Q Q Q
Q Q Q

+ + +

− − −

Δ = − =
Δ = − =

 (17) 

Hence, Equations 14 and 15 exactly predict the magnitude of the pressure/flow wavefronts in 

Fig. 4. Mean or absolute values of P±  and Q±  may therefore be interpreted as pressure/flow 

wave potential, with any spatial gradient in this potential giving rise to propagating pressure/flow 

wavefronts.  
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Waves and arterial reservoir/windkessel function 

Now consider what occurs as time progresses in the numerical experiment depicted in Fig. 4, in 

which tube 1 has a closed end at 15x = −  cm (analogous to a closed aortic valve) whereas tube 2 

is infinitely long. The backward-travelling wave (seen at 15,  30t =  ms) in tube 1 decreases 

pressure from 0P  (10 mmHg) to 00.5P  but increases forward flow. When this wave reaches the 

closed end, it undergoes complete reflection and propagates forwards, decreasing pressure 

further from 00.5P  to udP  (zero) and decreasing forward flow to zero ( 50t =  ms). Hence the 

effect of this wave is to empty the fluid reservoir that is tube 1. Assuming a constant compliance 

C (i.e. linear pressure-area relation) over the pressure range udP  to 0P , the volume (V ) emptied 

is 

 ( )0
udV P P C= − −  (18) 

where the negative sign indicates a volume decrease. Furthermore, the time it takes the wave to 

traverse the length (L) of tube 1 is L/c, where c is the wave speed. The pressure-decreasing 

backward-running expansion wave (BEW) initiates reservoir emptying and the reflected 

forward-running expansion wave (FEW) terminates the emptying. Emptying therefore occurs at 

the rate 0Q−  over the time period 2L/c. The emptying volume can also be calculated via the time 

integral of flow as 

 02LV Q
c −=  (19) 

Hence, higher absolute values of Q±  signify both greater wave potential and greater fluid volume 

discharge potential, consistent with Equation 11 which shows that Q±  is inversely proportional 

to cZ . For a given pressure above udP , a stiffer or smaller vessel (with higher cZ  or c) will store 

less volume and have lower values of Q± . Conversely, for a given cZ  or c, a higher pressure 
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implies greater volume storage and is revealed as larger absolute Q±  values. These principles are 

demonstrated using numerical simulations in Fig. 5. 

Self-cancelling waves 

A wave-based explanation of the diastolic pressure decay and the ‘self-cancelling’ expansion 

waves is now within reach. Consider a second numerical experiment, depicted in the lower panel 

of Fig. 6. The first tube (length 60 cm, area 5.0 cm2, wave speed 4.0 m/s, Zc = 0.064 

mmHg.s/mL, closed inlet) represents the low impedance large arteries during diastole and the 

second tube (area 1.59 cm2, wave speed 20.0 m/s, 1.0cZ =  mmHg.s/mL, well-matched outlet to 

simulate an infinitely long tube) represents the high impedance small arteries. Initially, flow is 

zero everywhere and pressure is 0
1 80P =  mmHg in the large tube and 0

2 0P =  mmHg in the small 

tube. Fig. 6 shows the evolution of pressure and flow at three locations in the large tube. Due to 

the initial pressure difference (and hence wave potential) between the two tubes, a BEW arises in 

the large tube and causes a step increase in flow ( ,1 81.2Q−Δ =  mL/s) and a step decrease in 

pressure ( ,1 5.2P−Δ = −  mmHg). Generalising Equations 16 and 17 to the situation where a barrier 

is removed between two tubes with differing characteristic impedance ( 1Z  and 2Z ) and initial 

pressure ( 0
1P  and 0

2P ), it can be shown, using Equations 3, 10 and 11 and by assuming 

continuity of pressure and flow at the junction of the two tubes, that the resultant wavefronts are 

 
( ) ( )

( ) ( )

0 0 1
,2 ,2 ,1 12 1 2

1 2

0 0 2
,1 ,1 ,2 21 2 1

1 2

P

P

YP P P T P P
Y Y
YP P P T P P

Y Y

+ + +

− − −

Δ = − = −
+

Δ = − = −
+

 (20) 

 
( ) ( )

( ) ( )

0 0 1 2
,2 ,1 +,2 12 1 2

1 2

0 0 1 2
,1 ,2 ,1 21 1 2

1 2

Q

Q

YYQ Q Q T P P
Y Y
YYQ Q Q T P P
Y Y

+ +

− − −

Δ = − = −
+

Δ = − = −
+

 (21) 
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where ( )2 /P
ij i i jT Y Y Y= +  and ( )2 /Q

ij j i jT Y Y Y= +  are the respective pressure and flow 

transmission coefficients from tube i  to tube j  (25), expressed in terms of characteristic 

admittances ( 1 11/Y Z=  and 2 21/Y Z= ). 

As shown in Fig. 6, the initial pressure-decreasing BEW propagates backwards and is 

completely reflected at the closed aortic valve, giving rise to a FEW that further decreases 

pressure. When this FEW reaches the junction of the two tubes, it is partially reflected according 

to the reflection coefficient 

 1 2 1 2( ) / ( )Y Y Y YΓ = − +  (22) 

In this example, 0.88Γ =  and therefore most of the wave energy is reflected, giving rise to a 

second BEW slightly smaller than the first. This wave is again reflected completely at the aortic 

valve, partially reflected again at the tube junction and so on (Fig. 6). After the wave has 

propagated back and forth n times, pressure at the outlet of the large tube is 

 0 1( ) 2
1

n

P n P P − Γ= − Δ
− Γ

 (23) 

which is a discrete exponential equation. An equivalent continuous equation is 

 0( ) e btP t P −=  (24) 

where ln( ) / Tb t= − Γ  and Tt  is the transit time of the large tube (0.15 s). Hence, we see that an 

exponential pressure decay arises from progressive ‘leakage’ of wave potential from a low 

impedance to a high impedance vascular domain through repeated reflection and re-reflection of 

expansion waves.  

The windkessel description of the pressure decay can be derived from this wave description as 

follows. Noting that ln 1Γ ≈ Γ −  (from the Taylor series expansion), we have 

 1

T

b
t

Γ −≈ −  (25) 

Since Y1≫Y2 , Equation 22 can also be approximated as 1 2 1( ) /Y Y YΓ ≈ − . It follows that 
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 2

1 T

Yb
Y t

≈  (26) 

If 2Y  is identified as the reciprocal of peripheral resistance (i.e. 2 1 / pY R= ), transit time as 

/Tt L c=  (where L  and c  are vessel length and wave speed), and 1 / ( )Y A c= ρ , then 

 
2 1 1

p p

cb
ALR R C

≈ = =ρ
τ

 (27) 

where 2/ ( )C AL c= ρ  is large vessel compliance and pR C=τ  is the familiar time constant of 

the exponential pressure decay in the 2-element windkessel. The two-tube model shown in Fig. 6 

may therefore be described as a ‘one-dimensional windkessel’. 

Origin of diastolic expansion waves 

The physiological system differs from the conceptual model in the previous section in that 1) 

there is no well-defined interface between large and small arteries, and 2) there is no barrier 

between large and small arteries that is suddenly removed to generate the initial BEW. From 

where then do the diastolic expansion waves originate? During diastole, the aortic valve is closed 

and therefore the FEW component must arise from complete reflection of the BEW component. 

However, what gives rise to the BEW component? There are two possible explanations. First, 

this wave component could arise from negative reflection of the early systolic forward 

compression wave (FCW). However, this is unlikely since the systemic arteries tend to produce 

positive wave reflection (32); moreover, the self-cancelling waves are still predicted with 

numerical models (such as that in Fig. 5) in which no negative reflection sites exist.  

Alternatively, the initial diastolic BEW could arise from positive reflection of the late systolic 

FEW. This hypothesis is supported by Fig 7A, which shows data from the two-tube model when 

initial pressure is uniform throughout the model, but the inlet is connected to a ventricle/valve 

model to simulate systolic ventricular ejection. As has been observed experimentally, a late-

systolic FEW (‘a’ in Fig. 7A) decreases pressure and leads to valve closure, which produces a 

brief FCW (‘b’) associated with the dicrotic notch. This wave complex is partially reflected at 
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the junction and returns to the inlet as a BEW (‘c’) followed by a brief backward compression 

wave (BCW, ‘d’). These waves are then completely reflected at the now-closed valve, producing 

forward waves ‘e’ and ‘f’, which are then repeatedly reflected and re-reflected as in Fig. 6, 

producing a series of decaying pressure decreases and dicrotic notches. Of course, in the arterial 

circulation there are many reflection sites. So, if instead of the two-tube model we consider a 

three-tube model containing two reflection sites (Fig. 7B), a similar phenomenon occurs but the 

diastolic waves are more numerous, have less intensity and lead to a smoother diastolic pressure 

decay. In the limit where wave reflection is continuously distributed in space via a tapering tube 

model (Fig. 7C), the diastolic waves are very small, individual reflections are no longer 

discernible (i.e. waves are merged) and there is a smooth pressure decay.    

In vivo experiments 

Experimental preparation 

Experiments were approved by the institutional animal ethics committee and conformed to 

guidelines of the National Health and Medical Research Council of Australia. Seven juvenile 

sheep (weight 21.6 ± 3.2 kg) were studied using similar methods to those described previously 

(31). Animals were anesthetized with intramuscular ketamine (5 mg/kg) and xylazine (0.1 

mg/kg), followed by 4% isoflurane delivered by mask. Anesthesia was maintained with 

isoflurane (2-3%), nitrous oxide (~30%) and oxygen-enriched air (FiO2 ~70%) delivered via a 

mechanical ventilator, supplemented by an intravenous infusion of ketamine (1-1.5 mg/kg/hr) 

and midazolam (0.1-0.15 mg/kg/hr). Ventilation was adjusted to maintain arterial O2 tension at 

100-120 mmHg and arterial CO2 at 35-40 mmHg. High fidelity central pressure was measured 

with a 3.5-Fr micromanometer-tipped catheter (SPR-524, Millar Instruments, Houston, TX), 

inserted via a vascular sheath in the left common carotid artery, and passed into the ascending 

aorta. Fluid-filled catheters were inserted into the main pulmonary artery and left atrium through 

a left thoracotomy and, together with the aortic sheath, connected to external pressure sensors, 
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with aortic cannula pressure used to calibrate the offset of the corresponding micromanometer 

pressure. A transit-time flow probe (18-20 mm diameter, Transonics Systems, Ithaca, NY) was 

placed around the ascending aorta to measure high-fidelity flow.  

Experimental protocol 

 Baseline variables were recorded after completion of surgery, including a long diastole 

associated with a ventricular ectopic beat produced by a brisk, light tap with forceps to the right 

ventricular infundibulum. Hemodynamics were then altered by four sequential interventions in 

all animals, namely 1) an intravenous infusion of adenosine (150 µg/kg/min) to lower mean 

aortic blood pressure by ∼20 mmHg, 2) an intravenous infusion of sodium nitroprusside (SNP, 1-

3 µg/kg/min) to reduce mean aortic pressure by ∼20 mmHg, 3) partial occlusion of the 

descending thoracic aorta with an adjustable snare to raise mean aortic pressure by ∼25 mmHg, 

and 4) an intravenous infusion of phenylephrine (PE, 1.3-3 µg/kg/min) to increase mean aortic 

pressure by ∼25 mmHg. Data recording was repeated once hemodynamics had stabilized during 

each intervention. Subsequently, the drug infusion was stopped or aortic constriction released, 

and hemodynamics allowed to return to baseline. Baseline data (including a ventricular ectopic 

with a long diastole) was then recorded again before proceeding with the next intervention. At 

the end of the study, animals were euthanased with an overdose of sodium pentobarbitone (100 

mg/kg) delivered via the left atrial catheter. Blood pressures were recorded continuously during 

euthanasia, with the final aortic pressure plateau taken as an estimate of mean circulatory 

pressure (Pmc).  

Results 

 Hemodynamic data at baseline and during drug infusions are presented in Table 1. Compared 

with the immediately preceding baseline, mean aortic pressure decreased by 24% and 29% after 

infusion of adenosine and SNP respectively, and increased by 33% with PE (all P < 0.001); SVR 

followed a similar pattern. On the other hand, cardiac output increased with adenosine (P < 
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0.02), decreased with SNP (P < 0.002) and did not change with PE (P = 0.7). Arterial 

compliance, calculated via the pulse pressure method (46), was unchanged with adenosine and 

SNP but decreased by 26% with PE (P < 0.002). On the other hand, ascending aortic Zc 

increased with adenosine and SNP, but did not change with PE. 

 Pressure and flow integration constants for wave separation, which signify end-diastolic wave 

potential, decreased by 37% and 45% respectively with both adenosine and SNP, but increased 

by 40% and 44% with PE (Table 1). These constants were obtained by setting Pud to Pmc (12.4 ± 

1.1 mmHg) measured after euthansia (as in Fig. 2). The equilibrium aortic pressure was reached 

an average of 15 ± 2 seconds after pressure began to drop, and was not different to the 

corresponding pulmonary arterial and left atrial pressures (mean difference of 0.7 ± 1.5 mmHg). 

To investigate whether Pmc could be estimated without euthanasia, the parameter P∞  described 

by Wang et al (49) was calculated as the pressure asymptote of an exponential curve fitted to the 

diastolic pressure decay of an ectopic beat. Taking the average of four baseline recordings in 

each animal, P∞  was 50.9 ± 10 mmHg, or 38.0 ± 10.7 mmHg higher than Pud (P < 0.001). 

 Evidence for a link between the late-systolic FEW and the diastolic pressure decay is shown 

in Fig. 8, which demonstrates a highly linear relationship (R2 = 0.67, P < 0.001) between FEW 

area (i.e. integrated wave intensity, or ‘cumulative intensity’) and the diastolic pressure decay 

rate. Here, all baseline and drug infusion data points have been pooled, and the decay rate was 

calculated as the slope of the line connecting pressures at the start and end of diastole. By 

contrast, the correlation between early-systolic FCW area and the diastolic pressure decay rate 

was very weak (R2 = 0.08, P = 0.07). 

Partial occlusion of the descending thoracic aorta to produce a discrete reflection site provided 

additional data supporting a link between repeated FEW reflection and the diastolic pressure 

decay. Using ensemble averaged data, in all animals the late systolic FEW (FEW0) was followed 

by a succession of decaying BEWs and FEWs (designated BEW1, FEW1, BEW2, FEW2) that 

caused pressure to oscillate around an exponential curve (Fig. 9). Neither the magnitudes of 
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BEW1 and FEW1, nor of BEW2 and FEW2, differed significantly, consistent with the proposition 

that the forward waves were complete reflections of the respective backward waves (Fig. 10). 

Discussion 

This paper has proposed a wave-based (i.e. one-dimensional) paradigm for interpreting arterial 

diastolic hemodynamics, enabling a complete wave-based explanation of arterial pressure/flow 

waveforms throughout the cardiac cycle. A key aspect of this paradigm is that the integration 

constants for calculating the forward and backward (wave) components of pressure and flow are 

not considered arbitrary. Although this refinement of wave separation theory does not affect the 

calculation of reflection coefficients or wave intensity (as both are calculated from differences in 

the wave components), four specific insights follow from it. First, the absolute offsets of the 

pressure/flow wave components represent pressure/flow wave potential and therefore have a 

physical meaning. Second, wave potential is intimately linked with reservoir function, with 

greater wave potential implying greater volume storage in the reservoir. Third, based on analysis 

of a ‘1D windkessel’, a complete wave-based explanation of self-cancelling diastolic waves has 

been provided for the first time, with strong support from experimental data. Finally, the 1D 

windkessel reduces to the classical 0D 2-element windkessel; hence reservoir phenomena are a 

subset of, and are not distinct from, wave phenomena. 

Wave potential and undisturbed pressure 

Blood pressure is a form of potential energy that is converted to kinetic energy where pressure 

gradients exist. Similarly, a difference in wave potential produces pressure/flow waves (or 

‘wavefronts’) that propagate in compliant arteries. Use of non-arbitrary integration constants for 

wave separation analysis therefore broadens its explanatory scope to encompass not only 

information about the passage of waves, but also the potential for waves to be generated. From 

Equations 8 and 9, the amount of wave potential at any point in space and time depends on four 

factors, 1) blood pressure, 2) blood flow, 3) characteristic impedance (vessel size and stiffness) 
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and 4) undisturbed pressure. Hence, wave potential can be manipulated through the 

cardiovascular properties (e.g. cardiac function, arterial resistance and compliance) that govern 

these factors, as demonstrated by simulations (Fig. 5) and with pharmacological agents in vivo 

(Table 1).    

Undisturbed pressure ( udP ) is essential to the idea of wave potential (19). Although udP  has 

implicitly been assigned to mean or end-diastolic pressure in the past, these choices lack a 

physical basis. Here, we have proposed that the most physiologically justifiable value for udP  is 

mean circulatory pressure ( mcP ), the equilibrium pressure that would exist if the heart stopped 

and blood volume were redistributed to eliminate all pressure differences (40). mcP  is readily 

measurable in intact animal studies, although reflex vasoconstriction and the Starling resistor 

mechanism are potential confounders (40). In our study, reflex vasoconstriction was unlikely to 

have occurred due to our use of sodium pentobarbitone as the euthanazing agent (7). Similarly, 

although the Starling resistor mechanism may lead to higher plateau pressures in arteries than 

veins, left atrial and pulmonary arterial pressures fell to the same plateau as systemic arterial 

pressure, suggesting that circulatory equilibrium was achieved. Importantly, the mcP  value found 

in this study (12.4 mmHg) was within the range of mean systemic filling pressure (10.2 ± 3.5 

mmHg) measured after induction of ventricular fibrillation in humans undergoing implantation 

of a cardioverter-defibrillator device (13).  

A possible alternative to mcP  would be P∞ , the pressure constant in the reservoir-wave 

approach that is calculated in steady-state or ectopic beats (49). However, our analysis showed 

that P∞  (50.9 mmHg) was ∼3-fold greater than mcP  (12.4 mmHg) and its theoretical limit of 16-

18 mmHg (8); P∞  and mcP  are therefore not interchangeable. In situations where mcP  cannot be 

practicably measured, we therefore suggest assuming a value of 11 mmHg, noting that reported 
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values in humans, i.e. 10.2 ± 3.5 mmHg (13) and 12.0 ± 5.4 mmHg (42), have a relatively small 

variability. 

The one-dimensional windkessel 

The windkessel model described by Otto Frank (41) consists of a lumped reservoir compliance 

and outlet resistance. Since wave effects are neglected, this model does not satisfactorily explain 

the shape of the systolic pressure/flow waveforms. This problem has been addressed in the past 

by approximating wave effects via the addition of more lumped elements to the windkessel 

model, e.g. the 3-element or 4-element windkessel (47, 50), or by separating pressure into 0D 

reservoir and 1D wave-related components (49). The former approach does not account for wave 

delays or the spatial evolution of the pressure/flow pulses, while the second approach suffers 

from conceptual inconsistencies, with the use of hybrid dimensionality leading to errors and 

physically implausible phenomena when wave analysis is performed (24, 31).  

In the current study, a ‘1D windkessel’ has been described that contains no lumped 0D 

elements. The model in Fig. 6 consisted of two equivalent vessels, one large vessel representing 

the conduit arteries, and one small vessel representing the peripheral resistance vessels. While 

this model is useful for investigating basic physical concepts related to wave separation, we do 

not suggest that this two-segment model is a good model of the arterial system per se. As is now 

widely recognized, the uniform tube model (which is essentially equivalent to the model in Fig. 

6) does not account for the distributed nature of wave reflection in the arterial system (43). 

Indeed, as was highlighted in Fig. 7, spatially distributed wave reflection produced by a tapering 

tube model leads to more realistic systolic and diastolic pressure/flow waveforms than models 

containing one or two discrete reflection sites. However, the term ‘1D windkessel’ can be 

applied to any 1D model (and indeed, the actual arterial network), which serves as a reminder 

that these models exhibit and can explain reservoir filling and discharge phenomena.  
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Self-cancelling diastolic waves 

Self-cancelling diastolic waves have been a subject of much controversy in recent years. Some 

have considered these waves to be an artefact of conventional wave separation (5), and 

eradicating this feature from the wave components was a primary driver of the reservoir-wave 

paradigm (49). Indeed, interpreting the physiological meaning of Q±  after a long period of 

diastole (using the conventional approach with arbitrary integration constants, e.g. Fig. 2A) is 

problematic. On the other hand, we have previously argued that the 0D windkessel model is a 

mathematical subset of the 1D model, and therefore whatever can be explained by the 0D model 

must also be explicable in terms of the 1D model (30, 31). Although this principle has been 

elegantly demonstrated in the past (21, 39), a comprehensive wave-based explanation of self-

cancelling diastolic expansion waves has not previously been advanced. 

Our numerical experiments suggested that self-cancelling diastolic waves arise from diffuse 

and repeated reflection of the late systolic FEW. Although it is well-established that the initial 

systolic FCW undergoes partial reflection in the vasculature, the literature is surprisingly silent 

regarding reflection of the late systolic FEW. Nevertheless, an early-diastolic BEW, most likely 

arising from reflection of the late systolic FEW, is clearly present in many published figures (4, 

6, 10, 15, 37, 45). Our in vivo data supported this hypothesis, with a close relationship between 

diastolic pressure decay rate and FEW area (Fig. 8), and repeated FEW reflection being clearly 

evident in the setting of aortic constriction (Fig. 9). A difficulty in discerning repeated reflection 

of the FEW under normal circumstances probably arises from three main factors. First, arterial 

wave reflection is diffuse rather than discrete, which causes smoothing and merging of reflected 

waves (Fig. 7). Second, viscous damping attenuates expansion wave energy (23). Third, non-

linear effects arising from a pressure-dependent wave speed spread out (i.e. attenuate the 

intensity of) propagating expansion waves (23). Finally, we note that diastolic flow waves are 

strictly ‘self-cancelling’ only when flow is equal to zero (i.e. near the aortic valve).  Equation 11 
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shows that in progressively more peripheral sites, where diastolic run-off occurs, the magnitude 

of Q+ will be greater than the magnitude of Q−. 

The long and short of ‘waves’ 

In 1938, Hamilton and Dow (9) showed that pressure differences in the aorta are “scarcely 

appreciable” at end-diastole, because “the various waves have died down”, a view restated by 

Wang et al (49). However, Alastruey (1) found that wave reflection from the periphery is 

primarily responsible for the reservoir pressure. Reservoir phenomena arise because, due to the 

tree-like arterial structure and associated wave trapping and dispersion, the vascular network acts 

mainly as a low frequency reflector but high frequency absorber, a principle quantified in the 

reflection coefficient spectrum (51). Following Lighthill (19), our definition of waves therefore 

incorporates both ‘short’ waves, whose propagation in space can be clearly discerned (as can 

surface waves on water), and ‘long’ waves whose propagation cannot be discerned because their 

wavelength is large compared with the dimensions of the system (as with tidal waves). Hence, 

0D models such as the windkessel capture the effects of long waves, whereas 1D models capture 

the effects of both short and long waves.  

A wave-only paradigm of arterial hemodynamics 

With incorporation of a wave-based explanation of diastolic phenomena, a wave-only 

description of arterial hemodynamics throughout the cardiac cycle may now be described. When 

the ventricle begins to contract, its pressure rises above aortic pressure and opens the aortic 

valve. The higher ventricular than aortic wave potential induces a FCW that propagates into the 

aorta, increasing its pressure, flow and wave potential. If no wave reflection occurs, then 

0 c 0( ) /P P Z Q Q− = −  (i.e. pressure and flow waveforms have the same shape). However, if 

reflected compression waves do arise, then 0 0( ) / cP P Z Q Q− > − , causing a further build-up of 

wave potential in the arterial network.  
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Towards the end of systole, ventricular relaxation reduces pressure and flow, generating a 

FEW (36), and induces closure of the aortic valve. The FEW propagates into the arterial tree and 

is partially reflected, giving rise to a pressure-decreasing BEW. This wave (or more precisely, 

the aggregate of diffuse reflection) is reflected and re-reflected (as well as dispersed and 

attenuated) throughout the arterial tree, with any portion of the BEW arriving back at the aortic 

valve being completely reflected at the now-closed aortic valve. The resulting FEW component 

therefore has the same magnitude as the BEW component (see Figs. 9 and 10); both decrease 

pressure but their flow effects cancel (self-cancelling waves). Due to the diffuse nature of the 

reflections, the initial ‘short’ waves are rapidly transformed into ‘long’ waves that cause pressure 

to decay almost uniformly throughout the system (49). Wave reflection in the forward direction 

is incomplete, however, so wave potential progressively leaks from large to small vessels, 

thereby giving rise to the quasi-exponential pressure decay and discharge of the arterial 

reservoir.  

Non-linearities in the arterial system 

The analysis presented in this paper has assumed a constant cZ  and linear addition of forward 

and backward components. In reality however, c  and A  (and therefore cZ ) are pressure-

dependent and wave components do not add linearly. Using the method of characteristics, these 

non-linearities can be accounted for in wave separation analysis if the pressure-area relation 

( )P A  is known (26, 38), with characteristic variables (W+  and W− ) separately governing the 

forward and backward waves. To perform non-linear wave separation, expressions of the form 

( )dP f dW± ±=  are integrated. As with P±  and Q± , the integration constants, and therefore 

absolute values, of W±  have previously been considered arbitrary. However, the principles 

advanced in this paper suggest that udP  should be used for the integration constants in this 

analysis also, with  ( )ud 0W P± = . 
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Conclusion 

Physiologically meaningful values of the integration constants in wave separation analysis can 

be obtained by identifying undisturbed pressure as mean circulatory pressure. The resulting 

absolute values of the wave components represent ‘wave potential’, gradients of which produce 

propagating pressure/flow wavefronts. Repeated and diffuse reflection of the late systolic FEW 

along with leakage of wave potential in a ‘1D windkessel’ during diastole produce self-

cancelling expansion waves, a quasi-exponential pressure decay and discharge of the arterial 

reservoir. These wave-based concepts of diastolic hemodynamics permit a comprehensive wave-

based paradigm of arterial hemodynamics throughout the cardiac cycle. 
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Figure Captions 

 

Fig. 1.  Pressure and flow wave separation in a normal beat, followed by a beat with an extended 

diastole in the sheep ascending aorta. Arrows point to ‘self-cancelling’ flow waves during 

diastole. 

 

Fig. 2.  Net (black), forward (red) and backward (blue) pressure and flow in sheep ascending 

aorta associated with euthanasia and subsequent asystole. Integration constants were (A) chosen 

on the basis of graphing convenience for steady state beats (i.e. arbitrarily), or (B) using values 

calculated with undisturbed pressure (Pud) equal to measured mean circulatory pressure (Pmc). 

 

Fig. 3.  Wave separation for same beats as in Fig. 1 but using non-arbitrary integration constants 

derived from measured undisturbed pressure (Pud = 13.8 mmHg). The absolute values of the 

pressure and flow wave components signify wave potential, while the pulsatile components arise 

from pressure/flow waves. 

 

Fig. 4.  Numerical experiment in which a barrier between two tubes is suddenly removed (at 

10t =  ms). Pressure in tube 1 (x < 0) is higher than in tube 2 (x > 0) before the barrier is 

removed and pressure-equalizing waves propagate in both directions afterwards. There is a 

closed end at 15x = −  cm, leading to complete reflection of the backward wave, whereas tube 2 

is well-matched (i.e. infinitely long). 

 

Fig. 5.  Simulations from the closed-loop circulation model described in (28) with (A) normal 

baseline parameters, (B) systemic arterial wave speed doubled, (C) peripheral arterial resistance 

doubled, or (D) peripheral arterial resistance halved. 

 

Fig. 6.  Demonstration of a one-dimensional windkessel. At 0t =  pressure is 80 mmHg in the 

large tube and 0 mmHg in the small tube. Pressures and flows are plotted at the inlet (black 

lines), middle (green lines) and outlet (red lines) of the large tube. A succession of forward and 

backward expansion wavefronts (illustrated in the lower panel and seen as step decreases in 

pressure) produce a quasi-exponential decay of pressure in the large tube. 

 

Fig. 7. Numerical experiment demonstrating how repeated reflection of the late-systolic forward 

expansion wave gives rise to the exponential pressure decay. (A) Two-tube model with one 
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reflection site, (B) three-tube model with two reflection sites, (C) tapering tube model giving rise 

to spatially distributed wave reflection. See text for a description of the wave labels a-f. 

 

Fig. 8.  Relation between diastolic pressure decay rate and forward expansion wave area in the 

ascending aorta of sheep (n = 7) at baseline and during infusions of adenosine, sodium 

nitroprusside and phenylephrine.  

 

Fig. 9.  (A) Pressure and (B) wave intensity in sheep ascending aorta during mechanical 

constriction of the descending thoracic aorta to create a discrete reflection site. (C) Zoomed-in 

plot showing early diastolic pressure, which oscillates around an exponential curve (dicrotic 

notch is indicated by a grey line), with (D) the corresponding wave intensity profile revealing an 

underlying series of decaying forward and backward expansion waves (BEW1, FEW1, BEW2, 

FEW2) following the late systolic forward expansion wave (FEW0). Compression waves are 

shaded and expansion waves are unshaded. 

 

Fig. 10.  Peak wave intensity magnitude of the early diastolic waves in sheep undergoing aortic 

constriction (n = 7). Wave labels are defined in Fig. 9. Data presented as mean ± SD, NS = no 

significant difference. 
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Table 1. Hemodynamics and integration constants for wave separation in experimental studies. 

 Baseline Adenosine SNP PE 
Heart Rate (beats/min) 127 ± 13 129 ± 17 125 ± 14 126 ± 15* 
Mean AoT P (mmHg) 86.7 ± 5.9 65.9 ± 6.7† 64.2 ± 5.7† 112.2 ± 10.3† 
SVR (mmHg.s/mL) 1.98 ± 0.56  1.33 ± 0.31† 1.64 ± 0.53† 2.41 ± 0.74† 
Cart (mL/mmHg) 0.81 ± 0.17  0.74 ± 0.09 0.79 ± 0.12 0.59 ± 0.15‡ 
CO (L/min) 2.63 ± 0.55 2.84 ± 0.48* 2.31 ± 0.57† 2.83 ± 0.66 
AoT Zc (mmHg.s/mL) 0.14 ± 0.04 0.17 ± 0.06† 0.18 ± 0.06* 0.15 ± 0.04 
     
Integration Constants     
AoT 0P+  (L/min) 31.5 ± 4.2 19.8 ± 4.7† 21.0 ± 4.6† 41.8 ± 6.1† 
AoT 0P−  (L/min) 30.9 ± 4.3 20.6 ± 4.5† 21.5 ± 3.9† 40.8 ± 6.0† 
AoT 0Q+  (L/min) 14.5 ± 4.8 7.8 ± 3.9† 8.2 ± 4.2† 18.3 ± 5.7‡ 

AoT 0Q−  (L/min) –14.3 ± 4.9 –8.1 ± 4.9† –8.3 ± 4.1† –17.9 ± 5.7‡ 
Data are expressed as means ± SD; n = 7. Abbreviations: AoT, aortic trunk; Cart, total arterial 

compliance from the pulse pressure method; CO, cardiac output; P, pressure; Zc, characteristic 

impedance. *P < 0.05, ‡P < 0.002, †P ≤ 0.001 compared with immediately preceding baseline 

(averaged baseline data presented) 
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Fig. 1.  Pressure and flow wave separation in a normal beat, followed by a beat with an extended 

diastole in the sheep ascending aorta. Arrows point to ‘self-cancelling’ flow waves during 

diastole. 
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Fig. 2.  Net (black), forward (red) and backward (blue) pressure and flow in sheep ascending 

aorta associated with euthanasia and subsequent asystole. Integration constants were (A) chosen 

on the basis of graphing convenience for steady state beats (i.e. arbitrarily), or (B) using values 

calculated with undisturbed pressure (Pud) equal to measured mean circulatory pressure (Pmc).  
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Fig. 3.  Wave separation for same beats as in Fig. 1 but using non-arbitrary integration constants 

derived from measured undisturbed pressure (Pud = 13.8 mmHg). The absolute values of the 

pressure and flow wave components signify wave potential, while the pulsatile components arise 

from pressure/flow waves. 
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Fig. 4.  Numerical experiment in which a barrier between two tubes is suddenly removed (at 

10t =  ms). Pressure in tube 1 (x < 0) is higher than in tube 2 (x > 0) before the barrier is 

removed and pressure-equalizing waves propagate in both directions afterwards. There is a 

closed end at 15x = −  cm, leading to complete reflection of the backward wave, whereas tube 2 

is well-matched (i.e. infinitely long). 
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Fig. 5.  Simulations from the closed-loop circulation model described in (28) with (A) normal 

baseline parameters, (B) systemic arterial wave speed doubled, (C) peripheral arterial resistance 

doubled, or (D) peripheral arterial resistance halved. 
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Fig. 6.  Demonstration of a one-dimensional windkessel. At 0t =  pressure is 80 mmHg in the 

large tube and 0 mmHg in the small tube. Pressures and flows are plotted at the inlet (black 

lines), middle (green lines) and outlet (red lines) of the large tube. A succession of forward and 

backward expansion wavefronts (illustrated in the lower panel and seen as step decreases in 

pressure) produce a quasi-exponential decay of pressure in the large tube.  
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Fig. 7. Numerical experiment demonstrating how repeated reflection of the late-systolic forward 

expansion wave gives rise to the exponential pressure decay. (A) Two-tube model with one 

reflection site, (B) three-tube model with two reflection sites, (C) tapering tube model giving rise 

to spatially distributed wave reflection. See text for a description of the wave labels a-f. 

Compression and expansion waves are shaded and unshaded respectively; forward and backward 

waves are red and blue respectively. 
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Fig. 8.  Relation between diastolic pressure decay rate and forward expansion wave area in the 

ascending aorta of sheep (n = 7) at baseline and during infusions of adenosine, sodium 

nitroprusside and phenylephrine.  
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Fig. 9.  (A) Pressure and (B) wave intensity in sheep ascending aorta during mechanical 

constriction of the descending thoracic aorta to create a discrete reflection site. (C) Zoomed-in 

plot showing early diastolic pressure, which oscillates around an exponential curve (dicrotic 

notch is indicated by a grey line), with (D) the corresponding wave intensity profile revealing an 

underlying series of decaying forward and backward expansion waves (BEW1, FEW1, BEW2, 

FEW2) following the late systolic forward expansion wave (FEW0). Compression waves are 

shaded and expansion waves are unshaded; forward and backward waves are red and blue lines 

respectively. 
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Fig. 10.  Peak wave intensity magnitude of the early diastolic waves in sheep undergoing aortic 

constriction (n = 7). Wave labels are defined in Fig. 9. Data presented as mean ± SD, NS = no 

significant difference. 
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