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Abstract 

Echinococcus granulosus sensu stricto is the major cause of cystic echinococcosis in most 

human and animal cases in the world and the most widespread species within the E. 

granulosus sensu lato complex. E. granulosus s.s. remains endemic in South America 

together with other species of the Echinococcus genus, especially in some areas in 

Argentina, Brazil, Chile and Peru. Except for a single human case caused by E. canadensis 

(G6) described in the literature, only E. granulosus s.s. has been found in the Chilean 

territory. In the current study 1,609bp of the cox1 gene from 69 Chilean isolates of E. 

granulosus s.s. from humans and animals were analysed. In total, 26 cox1 haplotypes were 

found, including the widespread haplotype EG01 (22 isolates) and also EGp1 (5), EgRUS7 (1), 

EgAus02 (1) and EgAus03 (2). Twenty-one different haplotype not previously described were 

identified from 38 Chilean isolates designated EgCL1-EgCL21. Previous work had described 

low variability of E. granulosus s.s. in South America, based on isolates from Peru. Results 

obtained in this work challenge the previously described idea of the low diversity of the 

parasite in South America, and warrant future investigation on the origin and spread of the 

parasite in the continent after the Spanish arrival. 
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Cystic echinococcosis (CE) is endemic in Chile as well as in several other South American 

countries including Argentina, Peru, Uruguay and Brazil [1]. The parasite is able to survive 

the variety of weather conditions present in the Chilean territory ranging from the arid 

climate in the north to subpolar oceanic in the extreme south. Within the sixteen 

administrative regions into which the country is divided (numbered from I to XV plus the 

capital Santiago), CE is highly endemic in Coquimbo (IV), La Araucania (IX), Aysen (XI) and 

Magallanes (XII) [2, 3].  CE is the second most important cause of condemnation of viscera in 

livestock (following infection with Fasciola hepatica) [4]. Including the cost of animal losses, 

estimates of the economic burden of CE in Chile are up to USD 14.35 million/year [3]. Only 

two studies have investigated the molecular variability of E. granulosus in Chile. Manterola 

et al [5], studied 20 human samples, confirming the presence of E. granulosus s.s. in 19 

isolates and E. canadensis (G6 genotype) in a single case following the sequencing of a 

366bp section of the cox1 gene and a 471bp section of the nad1 gene. Subsequently, using a 

similar methodology, Espinoza et al [6] analysed 15 hydatid cysts from cattle and humans, 

finding that they were all E. granulosus s.s. 

There is growing evidence that using longer sequences of cox1 or other genes allows the 

description of intraspecific variability of Echinococcus spp. at a higher resolution than using 

the one established with the G-definition [7-9]. In fact, Yanagida et al [8] have suggested 

that due to the lack of clarity in how some samples have been defined as G1, G2 and G3 in 

databases, the validity of these genotypes of E. granulosus s.s. is now needed to be verified 

by analysing longer sequences of mtDNA and/or nuclear genes from the sources that these 

genotypes were originally described. Moreover, Romig et al [10] reviewed the available data 

in GenBank and found that using the original G-definition of cox1 (366bp sequences), a large 

proportion of the 137 haplotypes, based on the 1,609bp of the cox1 gene, are not 
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homologous with either G1, G2 or G3. In South America, a single study has undertaken an 

analysis of haplotypes of E. granulosus s.s. using 1,609bp of the cox1 gene. This research 

described only three haplotypes of E. granulosus s.s. in 30 samples isolated from livestock in 

Peru suggesting low variability of this parasite in South America [8]. In the present study, we 

challenge this idea, as an initial step of the analysis of the microdiversity of E. granulosus s.s. 

in South America, we sought to analyse isolates of E. granulosus s.s. from different regions 

in Chile using a sequence of 1,609bp of the cox1 gene. 

Protoscoleces or germinal membranes were extracted from individual hydatid cysts 

obtained from livestock animals at abattoirs located in different parts of Chile. Additionally, 

thirteen human CE samples from Chilean patients from the Hospital Hernan Henriquez 

Aravena in Temuco, Araucanía (IX) were used in this study. Partial cox1 gene sequences 

(366bp) for the human samples had been published by Manterola et al [5]. Seven faecal 

samples from naturally infected dogs were obtained from an endemic area in the Coquimbo 

region. Supplementary Table 1 shows detailed information on the number, origin and hosts 

from which the 69 isolates used in the current study were collected. An isolate was defined 

as material derived from a single cyst (protoscoleces or germinal membrane) and an 

individual faecal sample in the case of isolates from dogs. DNA was extracted using 

phenol:chloroform:isoamylic alcohol as previously described [11]. For the faecal samples 

from dog, DNA was isolated using the ISOLATE Faecal DNA Kit (Bioline) following 

manufacturer instructions. Amplification of the cox1 gene and Sanger sequencing was 

performed in two steps; also the analysis of electropherograms, identification of haplotypes, 

networks analyses, diversity and neutrality indices were computed as previously described 

[7]. 
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The sequence of the cox1 gene (1,609bp) was obtained from all the 69 isolates which were 

all identified as E. granulosus s.s. revealing a high degree of genetic variability. Twenty two 

isolates were identified as the EG01 haplotype (accession number: JQ250806). Five isolates 

were assigned to the known haplotypes EGp1 (AB522646), two as EgAus03 (KT968704), one 

as EgAus02 (KT968703) and one as EgRUS7 (AB777904). Thirty-eight other samples were 

assigned to twenty-one haplotypes not previously described, and designated EgCL1-EgCL21 

(accession numbers KX227116-KX227136 respectively) (Figure 1 A). Supplementary Table 2 

shows the position in which each haplotype differs in comparison with the reference 

haplotype EG01, in 15 positions nucleotide changes lead to non-synonymous amino acid 

substitutions. Human isolates used in this study were infected by 8 different haplotypes: 

three samples were identified as the common haplotype EG01, one as EGp1, 4 isolates 

shared the same sequence and were designated as haplotype EgCL01; a different haplotype 

was identified in each of the other five human samples (EgCL02, EgCL03, EgCL12, EgCL13 

and EgCL14). Figure 1 A also shows the distribution of the haplotypes found in this study; 

most widespread were the haplotypes EG01 (which was represented in all the regions 

except for Maule) and the haplotype EgCL01, which was represented in all the regions 

examined except from isolates from Chiloe Island in Los Lagos region. Out of the 7 samples 

from dogs analysed from the Coquimbo region, 3 were identified as EG01 while the other 4 

were assigned to four different haplotypes (EgCL07, EgCL08, EgCL09 and EgCL10). The 

further analysis of human samples from this region is necessary to determine the 

transmission cycle of these haplotypes in this particular region. The haplotype network 

contains the EG01 haplotype at its centre and reveals a star-like shape (Figure 1B). The 

haplotype EG01 has been previously suggested to be an ancestral haplotype that has spread 

worldwide after the domestication of animals and migration of human from the Middle East 
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[8]. Diversity index for haplotypes is 0.875 ±0.032 and for nucleotide diversity a value of 

0.000153±0.00017 was obtained, and neutrality indices (D and Fs values) were negative 

suggesting either some forms of negative selection or population expansion (Table 1). More 

data from other South American countries is necessary to assess the dispersal and diversity 

of E. granulosus s.s. in the future.  

The alignment of the 366bp sections of the sequences from this study with the reference 

sequence for G1, G2 and G3 identified forty six samples corresponding to G1, 1 to G2 and 7 

to G3, while fifteen isolates did not match any of the reference sequences for G1, G2 or G3. 

Additionally, had the analysis been based on the 827 section of the cox1 gene used by 

Boufana and colleagues [12-15] based on previous research [16, 17], many of the new 

haplotypes that were identified here would have been overlooked. As previously 

mentioned, there is a clear difference in the outcomes of an investigation of genetic 

diversity of E. granulosus s.s. according to the length of the gene analysed [8, 10]. For 

example, Casulli et al [18] described only 24 haplotypes from 223 samples from Eastern 

European and 7 haplotypes from 89 samples from Italy, while Andresiuk et al [19] reported 

only 7 cox1 haplotypes from 69 isolates in Argentina using a short sequence of the cox1 

gene. In the case of the thirteen human samples analysed in this study the method used 

clearly allowed a deeper understanding of the variability of the parasite found in this host. 

They were previously described as G1, but now we know that they belong to eight different 

haplotypes of E. granulosus s.s. Autochthonous transmission is likely because the majority of 

haplotypes (5 of 8) were found both in humans and animals in Chile. Therefore, our study 

demonstrates the value of using longer sequences, which allow improved resolution of the 

genetic structure of the parasite population. Data concerning the diversity of CE from South 

America is abundant especially relating to samples obtained in Argentina. However, it is 
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mostly based on short sequences of the cox1 gene [20-24] precluding a comprehensive 

comparison of the situation in Chile with its neighbour country. On the other hand, previous 

investigations of E. granulosus s.s. haplotypes based on 1,609bp of the cox1 gene identified 

only a low diversity in 30 Peruvian samples randomly selected from 57 samples previously 

examined from different areas in Peru by Moro et al [25], describing the presence of only 

three haplotypes, namely the common haplotype EG01 (16 samples), EG44 (13) and EG43 

(1) [8].  

Our results challenge the idea that low diversity is a widespread feature of E. granulosus s.s. 

in South America, as the high variability found in this study is unlikely to be limited to Chile. 

Surprisingly, little is known about the introduction and origin E. granulosus s.l. in the 

Americas. It is assumed that the parasite was introduced into South America from European 

countries since the arrival of Columbus who brought horses, cattle, sheep, goats and pigs for 

the first time to the continent. Later settlers continued bringing animals to the newly 

discovered territories, including dogs which are believed to have played an important role in 

the colonization [26]. Some of the first animals that arrived at the Americas had originated 

from Spain while some others were taken aboard on the Canary Islands, which was a 

common stopover during the transatlantic journey [27]. Interestingly, the Canary Islands 

were colonized from the fifth century BC by people from North Africa [28] who also brought 

domestic animals to the island, including goats, sheep, pigs and dogs [27]. If this was the 

case and some of the animals taken to the new continent were infected with CE, then the 

origin of some of the parasites that arrived in the Americas could have been not only Spain 

but also North Africa. The first livestock animals arriving in Chile around 1540 with the 

Spanish conqueror Pedro de Valdivia included horses and cattle, which were brought from 

Peru and are thought to have been originated from stocks in Central America [29]. Sheep 
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arrived later to the Chilean territory, also from Peru, and by 1614 more than six hundred 

thousand sheep along with 323,956 goats, 39,000 cattle, and 4,278 horses were reported to 

be kept in the district of Santiago [29]. Considering that most of the founding livestock in 

Chile were originated in Peru, a deep exploration of E. granulosus from this neighbour 

country is necessary to understand the origin of the parasite and how it spread in Chile. 

Similar studies should be undertaken in Argentina, with which Chile traditionally has had an 

exchange of livestock animals.  

The implications of the microdiversity of E. granulosus s.s. in the epidemiology and control 

of the parasite are unclear, and further studies are required to understand if different 

haplotypes actually differ in biological features. The study of the genetic diversity of E. 

granulosus s.s. contributes to the understanding of historical perspectives on the dispersal 

of the parasite. In the case of this study, our results provide knowledge concerning the 

parasite’s spread in the southern part of the Americas after the arrival of the Spanish 

colonists, highlighting and confirming the presence of the worldwide spread haplotype EG01 

as the main haplotype present in Chile. The high diversity described suggests that the 

parasite was introduced multiple times from different sources to this country. Further 

investigations in the microdiversity of E. granulosus s.s. in Spain, North Africa and other 

South American countries would be required to elucidate the likely origin of the parasite in 

this part of the world. The availability of next-generation sequencing technologies can 

facilitate the sequencing of the full length of the mitochondrial genome of isolates of E. 

granulosus from different hosts and geographic areas which will give a deeper 

understanding of the variability of this parasite. 
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Table 1. Nucleotide Diversity and Neutrality indices for the 26 haplotypes described in this 
study from 69 samples analyzed. 
 

Haplotypes  Diversity  Neutrality 

Samples Hn  Hd±SD π±SD  D Fs 

69 26  0.875±0.032 0.00153±0.00017  -201,645 -19,444 
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