
1 
 

 

Some Models for Stochastic Frontiers with Endogeneity  

 

William E. Griffiths and Gholamreza Hajargasht  

Department of Economics 

University of Melbourne, Australia 

May 9, 2015 

Abstract 

We consider mostly Bayesian estimation of stochastic frontier models where one-sided 

inefficiencies and/or the idiosyncratic error term are correlated with the regressors. We 

begin with a model where a Chamberlain-Mundlak device is used to relate a 

transformation of time-invariant effects to the regressors. This basic model is then 

extended in two directions: First an extra one-sided error term is added to allow for time-

varying efficiencies. Second, a model with an equation for instrumental variables and a 

more general error covariance structure is introduced to accommodate correlations 

between both error terms and the regressors. An application of the first and second 

models to Philippines rice data is provided.  

 

Keywords: Technical efficiency, Instrumental variables, Gibbs sampling, 

JEL Classification: C11, D24, C23, C12 

Corresponding Author   

William Griffiths    

Economics Department,  

University of Melbourne  

Vic 3010, Australia 

Phone: +61 3 8344 3622 

Fax: +61 3 8344 6899 

Email: wegrif@unimelb.edu.au 

Email for Hajargasht: har@unimelb.edu.au 

 

   



2 
 

1. Introduction 

Studies of stochastic frontier models that allow for correlation between inefficiency effects and 

regressors are few and have been mainly done under a fixed effects framework in which a panel data 

model with a two-sided error term is estimated first, and the inefficiency effects are later estimated by 

subtracting the effects from their maximum (see e.g. Sickles 2005 and references cited therein). Given 

that stochastic frontier models are more commonly estimated based on a one-sided random effects 

assumption, it is useful to investigate estimation within a framework where the one-sided random 

effects are correlated with the regressors. Also of interest are methods for accommodating correlation 

between the idiosyncratic error term and the regressors. The purpose of this paper is to propose a 

relatively general approach to modelling of stochastic frontiers with endogeneity, where one-sided 

efficiency effects, and idiosyncratic error terms, can be correlated with the regressors. We show that 

by transforming the inefficiency term into a normally distributed random term and modelling 

endogeneity through the mean or covariance of the normal errors, a range of stochastic frontier models 

with endogeneity can be handled.  

We first consider a panel stochastic frontier model in which correlations between the effects and 

the regressors are based on a generalisation of the correlated random effects model proposed by 

Mundlak (1978), extended by Chamberlain (1984), and described further by Wooldridge (2010). 

Inefficiency effects are assumed to be correlated with the regressors through the mean of a 

transformation of the inefficiency errors. The main focus is on a log transformation implying the 

inefficiency errors have a lognormal distribution whose first argument depends on the regressors. 

Pursuing Bayesian estimation of the model, we derive conditional posterior densities for the 

parameters and the inefficiency errors for use in a Gibbs sampler. We then extend the model in two 

directions. Following Colombi et al. (2012), we add a time-varying inefficiency error leading to a 

model with both time invariant (permanent) and time-varying (transient) inefficiency errors; 

endogeneity is assumed to occur through correlation between the regressors and the time-invariant 

error. Necessary changes to the previously specified conditional posteriors are described. The second 

extension is to a more general model where endogeneity can exist because both the inefficiency errors 
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and the idiosyncratic errors are correlated with the regressors. So that estimation can proceed, a 

“reduced form” type equation with instrumental variables is added to the earlier model. Details of how 

to estimate the model using both maximum simulated likelihood and Bayesian methods are provided.  

The paper is organised as follows. The basic Mundlak-type model where the mean of the 

transformed error is a function of the regressors is considered in Section 2. In Section 3 we extend this 

model to include both permanent and transient inefficiency errors. Specification and estimation of the 

model that makes provision for instrumental variables and accommodates endogeneity more generally 

are considered in Section 4. An application using Philippine rice data and the models from Sections 2 

and 3 is provided in Section 5.  

2. Modelling correlation with a Chamberlain-Mundlak device 

In the first instance we consider the following random effects stochastic production frontier 

model with a time invariant inefficiency term 

1,it it i ity u v  x β .                                                      (2.1) 

In equation (2.1), 1,...,i N  indexes the firms and 1,...,t T  indexes time, 1,itx  is a row vector of 

functions of inputs (e.g., logs of inputs and squared logs of inputs), ity  represents the logarithm of 

output, 1,itx β  is the log of the frontier production function (e.g., translog), iu  is a non-negative random 

error which accounts for time-invariant inefficiency of firm i, and itv  is an idiosyncratic error assumed 

to be  2. . . 0,i i d N  . The model can also represent a stochastic cost frontier, with ity  being the 

logarithm of cost, by changing “ iu ” to “ iu ”.  

 In view of recent developments in the stochastic frontier literature – see, for example, Parmeter 

and Kumbhakar (2014) – having a model with time-invariant inefficiencies can be considered too 

restrictive. However, we include this model in the first instance as a stepping stone to more realistic 

time-varying inefficiency models considered in Sections 3 and 4. 

To model correlation between the inefficiency error iu  and some or all of the inputs we assume 

that there is a transformation of iu , call it  iH u , that is normally distributed with a mean that 

depends on the firm averages of some of the inputs or functions of them. These functions of the inputs 
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are collected in the vector 2,itx  and their firm averages are given by 1
2, 2,1

T
i itt

T 
 x x . The resulting 

endogeneity model for describing how the inefficiency error is correlated with the inputs is given by 

2,( )i i iH u e x γ ,      (2.2) 

with  2~ . . . 0,ie i i d N  . The most convenient transformation in the sense that it leads to recognisable 

conditional posterior distributions for implementing Gibbs sampling is the logarithmic one, 

( ) ln( )i iH u u , implying that iu  has a lognormal distribution. Other transformations [e.g., ( 1)iu  

for some values of  ] are possible.1  

Equation (2.2) is an extension of the model considered by Mundlak (1978) for a conventional 

random effects panel data model with correlated effects. Modelling of endogeneity in this way, and its 

extension by Chamberlain (1984), have been referred to as the Chamberlain-Mundlak device, a device 

which has proved to be very useful in the context of nonlinear panel data models with endogeneity. It 

has been applied to model endogeniety in probit, fractional response, Tobit, sample selection, count 

data, double hurdle, unbalanced panel models, and models with cluster sampling. See Wooldridge 

(2010) for a review and for references to these applications. Also, when ( ) ln( )i iH u u , equation (2.2) 

can be written as   *
2,expi i iu u x γ  where * exp( )i iu e , implying the model can also be viewed as a 

stochastic frontier model with scaling properties. Alvarez et al. (2006) have studied and argued in 

favour of the scaling property in the context of models with environmental variables. 

2.1 Prior specification 

For Bayesian estimation of the model in (2.1)-(2.2), we begin by specifying prior distributions, 

and then present the conditional posterior densities that can be used for Gibbs sampling. For β , we use 

the noninformative prior ( ) 1p β ; for the variance of itv , we use  2 ~ ,G A B
   where ( , )G A B   

denotes a gamma density with shape parameter A  and scale parameter B ; a truncated normal 

                                                            
1 One can in fact assume any distribution for iu  (e.g., exponential), with its cdf denoted by ( )iF u , and use the 

transformation  1
2,( ) ( )i i iH u F u   x γ , but the posterior density must then include extra parameters from 

( )iF u . 
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distribution denoted by  , ; ,TN V Uγ Lγ  is used for γ . The truncated normal parameters γ  and 

V  are what would be the prior mean vector and covariance matrix for γ  if there were no truncation; 

L  and U  are vectors containing the lower and upper truncation points for each of the elements in γ . 

For   two alternative priors were considered: a gamma prior on 2  and a truncated uniform prior on 

 , written as  2 ~ ,G A B
   and  ~ ,U a b  , respectively. 

The choice of priors for β  and 2  is standard. For γ  and  , we experimented with several 

alternative priors, considering in each case their implications for (1) MCMC convergence, and (2) the 

marginal prior distributions of the inefficiency errors and their efficiencies, defined as  expi ir u  . 

Truncating a normal prior for γ  to values that lead to reasonable efficiency values led to more precise 

estimates and improved MCMC convergence. A gamma prior for 2  is in line with most traditional 

priors specified for variance parameters, while use of a uniform prior for standard deviations in 

hierarchical models (which bear some similarity to our model) has been advocated by Gelman (2006). 

We defer discussion on the setting of values for the prior parameters to the application in Section 5.  

2.2 Conditional posterior densities 

 To use Gibbs sampling for estimation we begin by considering the conditional posterior 

densities when ( ) ln( )i iH u u  and the prior  2 ~ ,G A B
   is used. Define  1 2, , , Nu u u u  ; let 

X  be a matrix with NT rows and typical row 1,itx  and 2X  be a matrix with N rows and typical row 

2,ix . The joint posterior kernel for  2 2, , , ,    u    is 

             

       

     

2 2 2 2
2 2

22 1 2 122 2 1
1,

1 1 1

2
2 1

2,
1

| , , , , | , ,

exp 2
2

1
exp ln 2 ex

2.

p
2 2

3
NN TNT A N A

it it i i
i t i

N

i i
i

p p p p p p p

y u B u

u B

 

   
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
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





    

                  

              
    

 



y X X y | X, u u X

x β

x γ V

    
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S
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where  s s sI L U    is an indicator function, ,s sL U  and s  are elements of ,L U  and  , 

respectively, and S is the dimension of  . If we use the uniform prior  ~ ,U a b  , then the joint 
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posterior density can be obtained from (2.3) by setting 1, 0A B   , and including the indicator 

function  I a b    . From equation (2.3), and using  2, ,D y X X  to denote the available data, 

the following conditional posterior densities can be derived:  

      1 12| , ~ ' ( ),TN
 

    β D X X X y u i X X ,     (2.4) 

   2

22
1,

1 1

1
| , ~ 2,

2

N T

it it i
i t

G A NT B y u


 
 

      
 

D x β ,    (2.5) 

          
1 12 1 2 1 2 1

2 2 2 2 2
1

| , ~ ln ,
S

s s s
s

TN I L U
      

   


            
 
γ D X X V X u V γ X X V

(2.6) 

   2

22
2,

1

1
| , ~ , ln

2 2

N

i i
i

N
G A u B


 



     
 

D x γ ,     (2.7) 

         22 2 2 2
2, 1,

1

| , exp 1 ln ln 2 2 2
i

T

i u i i i i i it it
t

p u u u Tu u y  




             
D x γ x β .     (2.8) 

When the prior  ~ ,U a b   is employed, the conditional posterior density for 2  becomes the 

truncated gamma density 

     2

22
2,

1

1
| , ~ 1, ln

2 2

N

i i
i

N
TG u I a b


 



       
 

D x γ .   (2.9) 

All the densities in (2.4)-(2.8) are recognised densities which are straightforward to draw from, with 

the exception of  | ,
ii up u  D . Depending on available software, it might also be less 

straightforward to draw from the truncated gamma density in (2.9). Since these exceptions are 

univariate distributions, a convenient method for drawing from them is the slice sampler of Neal 

(2003). If we do not set ( ) ln( )i iH u u , but instead use the general expression ( )iH u , then ln( )iu  is 

replaced by ( )iH u  in (2.6) and (2.7), and (2.8) becomes 

       22 2 2 2
2, 1,

1

( )
| , exp ( ) ( ) 2 2 2

i

T
i

i u i i i i i it it
ti

dH u
p u H u H u Tu u y

du
  




            
D x γ x β . 

(2.10) 
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3. Extension to a time-varying inefficiency model 

A deficiency of the model considered in the previous section, and one that is likely to be 

particularly critical if the number of time periods is large, is the time invariance of the firm 

inefficiencies. One way to remedy this deficiency is to specify the inefficiency error as itu , allowing it 

to vary freely over both firms and time. In this case we can specify 2,( )it it itH u x e   and derive a 

corresponding set of conditional posterior densities. We do so in Section 4, but for a more general 

model that also accommodates other forms of endogeneity. Another way to allow for time varying 

inefficiency is to add an extra one-sided random term it  in the spirit of the generalised random 

effects model of Colombi et al. (2012), Kumbhakar and Tsionas (2014) and Filippini and Greene 

(2014). That is, 

1,

2,( )

it it i it it

i i i

y u v

H u e

   

 

x β

x γ
.                                                       (3.1) 

Here, iu  represents permanent and it  transient inefficiencies. Ignoring the different components can 

lead to misleading estimates of inefficiency 2 . We assume only the permanent inefficiencies are 

correlated with the regressors, a situation likely to hold if the iu  represent systematic inefficiencies 

attributable to long-term input use and the short-run inefficiencies are less predictable and not within 

the control of the firm. 

 In addition to the assumptions of the previous section, we assume the it  are i.i.d. and follow 

the exponential distribution    | expit itp      , and that it , iu  and itv  are uncorrelated. Using 

the same priors as before, the gamma prior for 2 , a gamma prior ( , )G A B   for  , and the 

transformation ( ) lni iH u u , we can derive the following conditional posterior densities for the 

elements in  2 2, , , , , ,     u η   : 

      1 12| , ~ ( ),TN
 

     β D X X X y u i η X X ,    (3.2) 

                                                            
2  In the application in Section 5, we find that inclusion of it  leads to a much larger estimate of total 

inefficiency. 
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   2

22
1,

1 1

1
| , ~ 2,

2

N T

it it i it
i t

G A NT B y u


 
 

        
 

D x β ,  (3.3) 

     2 2
1,| , ~ , 0

itit it i it itTN u y I       D x β ,    (3.4) 

 
1 1

| , ~ ,
N T

it
i t

G A NT B  
 

     
 

D ,     (3.5) 

          
1 12 1 2 1 2 1

2 2 2 2 2
1

| , ~ ln ,
S

s s s
s

TN I L U
      

   


            
 
γ D X X V X u V γ X X V

(3.6) 

   2

22
2,

1

1
| , ~ , ln

2 2

N

i i
i

N
G A u B


 



     
 

D x γ ,    (3.7) 

         22 2 2 2
2, 1,

1

| , exp 1 ln ln 2 2 2
i

T

i u i i i i i it it it
t

p u u u Tu u y  




              
D x γ x β .(3.8) 

As before, all these densities are of recognisable forms from which observations can be drawn 

directly, except for  | ,
ii up u  D , which will require a Metropolis step or the slice sampler. An 

estimate of the i-th firm’s permanent inefficiency can be found from the mean of the post burn-in 

draws from  | ,
ii up u  D . To convert measurement of inefficiency to a measure of efficiency the 

draws on iu  are transformed to  expi ir u  , and the mean of the ir  is an estimate of the posterior 

mean of permanent efficiency. Similarly, draws for it  can be used to find an estimate of transient 

efficiency for the i-th firm in the t-th time period,  exp it . Posterior standard deviations estimated 

from the draws indicate the reliability of these estimates. 

4. A model with full endogeneity and instrumental variables 

In the previous two sections endogeneity was modelled as correlation between the inefficiency 

errors iu  and the inputs. However, in a number of studies (e.g., Kutlu 2010, Karakaplan and Kutlu 

2013, Tran and Tsionas 2013) allowance is made for correlations between idiosyncratic error terms 

and the inputs. In this section we consider a model that, in its most general form, allows for (i) time 

varying inefficiencies, (ii) correlation between the inputs and both the inefficiency error and the 

idiosyncratic error, (iii) correlation between the two types of errors, and (iv) the introduction of 

instrumental variables. We write the general model as 
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 

1, 1,

2, 2,( )

it it it it

it it it

it it it

y u v

H u v

  

 

   

x β

x γ

x I z π v

,                                                         (4.1) 

where itz  is a (1 m ) vector of instrumental variables, and itx  is (1 k ) vector of log-inputs, differing 

from 1,itx  and 2,itx  in that the latter may contain various transformations of the inputs. The ( 1mk  ) 

vector π  contains the parameters from the “reduced form” equations for itx .The error terms 

 1, 2,, ,it it itv v v  are assumed to be normally distributed with zero mean, uncorrelated over firms and 

time, and with endogeneity modelled through the  ( 2) ( 2)k k    covariance matrix 

 
11 12 1

1, 2, 21 22 2

1 2

cov , ,
v

it it it v

v v vv

v v

  
     
 
 

Σ

v Σ

Σ Σ Σ

 .                                             (4.2) 

Assuming 1v Σ 0  leads to correlation between the inputs and the idiosyncratic error 1,itv . Correlation 

between the inefficiency error itu  and the inputs arises from both the second equation and from 

2v Σ 0 . Simplified versions of the model that still allow for endogeneity with respect to itu  can be 

obtained by dropping the inputs from the second equation, making it 0 2,( )it itH u v   , or by setting 

2v Σ 0 . Finally, having 12 0   means there can be correlation between the inefficiency and 

idiosyncratic errors. To exclude this correlation we can set 12 0  . 

 The model in (4.1) extends the models considered in Kutlu (2010) and Tran and Tsionas (2013) 

in which only correlations between regressors and the conventional error terms are allowed – they 

have only the first and third equations in (4.1). Kutlu uses a two-step maximum likelihood procedure 

while Tran and Tsionas propose a GMM estimation method. Karakaplan and Kutlu (2013) consider a 

model that allows for full endogeneity but it is to some extent different from our model and our 

estimation methods are very different. 
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4.1 Estimation: some preliminaries 

 We consider two methods of estimating the model: maximum simulated likelihood, and 

Bayesian estimation via Gibbs sampling. As a starting point for deriving the likelihood function for 

both methods, we write 

0
( , ) ( | , ) ( | ) ( )it it it it it it it it itp y p y u p u p du


 x x x x .                          (4.3) 

The likelihood for a single observation is obtained by multiplying together the three densities on the 

right-hand side of (4.3) and then integrating out iu . Working in this direction, from the third equation 

in (4.1), we have the following normal distribution for ( )itp x  

  ( ) ,it it vvp N x I z π Σ .          (4.4) 

To find  |it itp u x , we begin by noting that  

   2, 2,| |it it it it itE H u E v    x x γ v       and         2,var | var |it it it itH u v   x v , 

where 

   1
2, 2|it it v vv it itE v      v Σ Σ x I z π       and        1

2| 2, 22 2 2var |v it it v vv vv     v Σ Σ Σ . 

Thus, 

    2, 2, 2|| ( | ),it it it it it vp H u N E v  x x γ v , 

and 

   2, 2, 2|

( )
| ( | ),it

it it it it it v
it

dH u
p u N E v

du
  x x γ v .                                       (4.5) 

To obtain  | ,it it itp y ux , we note that 

   1, 1, 2,| , | ,it it it it it it it itE y u u E v v  x x β v       and         1, 2,var | , var | ,it it it it it ity u v vx v , 

where 

   
 
 

1
2,22 2

1, 2, 12 1
2

| ,
it itv

it it it v
v vv it it

H u
E v v

   
           

x γΣ
v Σ

Σ Σ x I z π
, 

and 

   
1

2122 2
1|2, 1, 2, 11 12 1

2 1

var | , v
v it it it v

v vv v

v v
    

        
   

Σ
v Σ

Σ Σ Σ
, 

leading to 
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    1, 1, 2, 1|2,| , | , ,it it it it it it it it vp y u N u E v v   x x β v .                                             (4.6) 

After combing (4.4), (4.5), and (4.6), the integral with respect to itu  is intractable. To overcome this 

problem we consider in turn maximum simulated likelihood, and then Bayesian estimation. 

4.2 Estimation via maximum simulated likelihood 

 An estimate of the likelihood for a single observation is given by    1 ( )
1

| ,R r
it it it itr

R p y u p
 x x  

where ( )r
itu  is the r-th draw ( 1,2, , )r R   from ( | )it ip u x . This draw can be obtained from  

    ( ) 1 1 ( )
2, 2, 2|1|r r

it it it it itu H E v      x γ v ,                                       (4.7) 

where     is the standard normal cdf, and the ( )r
it  are independent draws from a uniform (0,1)  

distribution. The simulated log-likelihood function can be written as   

 

   
 

   

1 ( )
2,22 2( )

1, 12 1 1|2,
1 1 1 2

1 1

1
ln ,

ln ,

rT N R
it itvr

it it v v
t i r v vv it it

T N

it vv
t i

H u
L N u

R

N



  

 

                      

 

 



x γΣ
x β Σ

Σ Σ x I z π

I z π Σ

.      (4.8) 

Maximizing this likelihood function with respect to the parameters ( , , , )     gives estimates for 

these parameters. Using these estimates, and for each ( 1)NT   vector of draws ( )ru , we can find an 

estimate of the conditional density for y and X defined as    ( ) ( )
1 1

ˆ ˆ, | , |T Nr r
it it itt i

p p y u  y X u x . 

Then, to obtain estimates (predictions) of each of the inefficiency errors itu , we recognize that  

   
 

0

0

, | ( )

| , | ,
( , )

it

it it

u p p d

E u u p d
p





 



y X u u u

y X u y X u
y X

,    

and estimate this mean using  

 

 

( ) ( )

1

( )

1

ˆ , |
ˆ

ˆ , |

R
r r

it
r

it R
r

r

u p
u

p










y X u

y X u
.                                                          (4.9) 
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4.3 Bayesian estimation 

For Bayesian estimation, we derive the conditional posterior densities for each component of 

 1, , , , u       for use in a Gibbs sampler. Extending the definition of D  to include observations 

on itz  as well as those for ity , 1,itx  and 2,itx , we begin with the conditional posterior for 1Σ . 

Assuming the Wishart prior 1 1( , )W d Σ S , we can show that the conditional posterior for 1Σ  is 

also Wishart. That is,    1 1| , ~ ,W d 
ΣΣ D S , with arguments 

   

1, 1,

2, 2,
1 1

( ) ( ) and
it it it it it it

T N

it it it it
t i

it it it it

y u y u

H u H u d d NT
 

      
   

        
          


x β x β

S S x γ x γ

x I z π x I z π

. 

For  , we assume the normal prior  ~ ,N V  . Then, using an argument similar to that which 

resulted in equation (4.6) leads to the normal conditional posterior    | , ~ ,Nββ D β V  where 

  1 1
1, 1|2, 1, 2,

1 1

| ,
T N

it v it it it it it
t i

y E v v u 

 

       
β V V β x v        and      

1
1

1|2, 1, 1,
1 1

T N

v it it
t i




 

    
 

V V x x  . 

Assuming a normal prior for  ~ ,N γ γ V , and a similar trick, leads to the normal conditional 

posterior    | , ~ ,Nγγ D γ V , where 
1

1
2|1, 2, 2,

1 1

T N

v it it
t i




 

    
 

V V x x   and 

  1 1
2, 2|1, 2, 1,

1 1

( ) | ,
T N

it v it it it it
t i

H u E v v 

 

      
γ V V γ x v  , 

with 

   
1

1,11 1
2, 1, 21 2

1

| ,
it itv

it it it v
v vv it it

y
E v v

    
          

x βΣ
v Σ

Σ Σ x I z
,    

and 

 
1

1211 12
2|1, 22 21 2

1 2

v
v v

v vv v

    
       

   

Σ
Σ

Σ Σ Σ
. 
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A similar argument can be used for π . With the normal prior  ~ ,Nπ π V , we obtain the conditional 

posterior    | , ~ ,Nπ D π V   where    
1

1
|1,2

1 1

T N

it v it
t i




 

     
 

V V I z Σ I z  , and  

   1 1
|1,2 1, 2,

1 1

| ,
T N

it v it it it it
t i

E v v 

 

         
π V V π I z Σ x v  , 

with 

   
1

1,11 12
1, 2, 1 2

21 22 2,

| ,
( )
it it

it it it v v
it it

y
E v v

H u

    
         

x β
v Σ Σ

x γ
, 

and 

 
1

111 12
|1,2 1 2

21 22 2

v
v vv v v

v

    
        

Σ
Σ Σ Σ Σ

Σ
. 

Finally, the conditional posterior distribution for itu  can be written as  

       2 2

1, 1, 2, 2, 2,

1|2, 2|

| , |( )
| , exp

2 2it

it it it it it it it it it itit
it u

it v v

y u E v v H u E vdH u
p u

du

                  

x β v x γ v
D

 

With the exception of  | ,
itit up u  D , all conditional distributions are recognizable distributions from 

which we can draw observations; for  | ,
itit up u  D  we can use slice sampling or a Metropolis step. 

As before, observations from  | ,
itit up u  D  form the basis of inferences about inefficiencies for the 

i-th firm in the t-th time period. 

5. An application to Philippines rice data 

 Since at least the 1970s some studies have reported an inverse relationship between farm size 

and productivity (efficiency) in developing countries (see e.g., Bardhan 1973 or Sen 1975), or they 

have argued that such a relationship exists because smaller firms use better-motivated or monitored 

family labor, whereas bigger farms use less-motivated hired labor. Imperfections in the labor or credit 

markets have also been put forward as possible reasons for the relationship. However, other studies 

have either not found such a relationship (e.g., Lamb 2003) or have argued that such observations 

might be due to omitted variable biases, such as smaller farms having better soil quality. Our purpose 
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here is not to resolve this long-standing issue. Rather, we apply the models discussed in Sections 2 and 

3 to a Philippines rice data set and check whether we find any evidence of correlation between the 

permanent part of inefficiency and land size.  

 The widely-used Philippines rice data collected by the International Rice Research Institute 

consist of a panel of 43 Philippine rice farms observed over 8 years from 1990 to 1997 (see Coelli, et 

al. 2005 for further information). We use the last 4 years of the data because of the time-invariance 

assumption in one of the models. Following Section 2, the first model we consider is 

0 1 2 3 4it it it it it i ity land labor fert others u v        ,    (5.1) 

where ity , itland , itlabor , itfert  and itothers  are the logarithms of output, land, hired labour, amount 

of fertilizer and other inputs, respectively. Use of the Cobb-Douglas function for the frontier is in line 

with several other studies that have used this data set. We assume time-invariant inefficiencies and 

allow them to be correlated with land size through 

 2 2
0 1 2 ,i iiu LN land land       .       (5.2) 

The square of land  is included to account for a potential nonlinear relationship. The second model we 

consider is identical except that, following Section 3, an extra inefficiency error, it , is included so 

that the model has both permanent and transient inefficiencies. It is assumed that it  follows an 

exponential distribution with parameter  . So that we can compare estimates obtained with and 

without the endogeneity assumption, we also estimate these models assuming that 1 2 0    . 

5.1 Prior distributions 

The priors that we used are as follows. In all cases, we have 2 ~ (0.01,0.01)G , ( ) 1p β , and 

~ (0.1,2)U . For the models with endogeneity,  ~ , ; ,TN Vγ Lγ U , with 

4 0 0 4 0

0 2 0

2

0 1.5 1.5

0 0 2 1.5 1.50


     
             
   

 
   
 


      

V L Uγ . 

When we set 1 2 0    , the first components in these vectors were used for 0 . For the model with a 

term for time-varying inefficiency, we used ~ (0.1,0.1)G . With the exception of those for   and  , 
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these priors can be regarded as noninformative. Before turning to the results, it is worth digressing to 

discuss the issues involved when choosing prior parameter values for   and  . 

Previous work that assumed iu  is exponential with a constant scale parameter often used a 

relatively noninformative prior for that parameter such that the median of the resulting prior for 

efficiency, exp( )i ir u  , is 0.87. See, for example, Koop and Steel (2001). To see how a similar 

marginal prior for efficiencies can be constructed when iu  follows a lognormal distribution, we first 

consider setting values  0 0 00
, , ,V L U  for the case where  2

0 ,iu LN   . Given a reasonable prior 

median for efficiency, say r , we can set 0  to “centre” the distribution for 0  around a value that 

yields an efficiency distribution that has r  as its median. Now, the median of iu  is 0exp( )  and the 

median of ir  is  0exp exp( )  . Thus, a value 0  that leads to an efficiency distribution centred 

around r  is  0 ln ln( )r   . If we choose 0.87r  , then 0 2    is a suitable value. Values for 0L  

and 0U  can be chosen in a similar way. For example, setting 0 4L    leads to a maximum possible 

value for median efficiency of 0.982, and setting 0 0U   leads to a minimum possible value for 

median efficiency of 0.368. The value for 
0

V  controls the possible spread of values for 0  within the 

truncation points. In the example that follows, we used 
0

4V   implying that 0 0U   and 0 4L    

would each be one standard deviation from 0  if the distribution was not truncated. 

 Adding a prior for   introduces extra prior uncertainty about the distribution of iu  and controls 

its skewness and variance. In Section 2 we suggested two possible priors:  2 ~ ,G A B
   and 

 ~ ,U a b  . In the first case experimentation suggested that 0.25A B    are relatively 

noninformative, but sufficiently informative to facilitate MCMC convergence. In the second case, and 

that used in the application, we set 0.1a   and 2b  . To check whether these values and the 

settings for 0  provide for a sufficiently wide range of possible efficiencies, we can consider the 

efficiencies corresponding to the mean values of iu  at the largest and smallest values for  0 ,  . At 
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the upper truncation points we find  2
0| 0, 4 7.4iE u      , with corresponding efficiency value of 

exp( 7.4) 0.0006r    . The lower truncation points lead to  2
0| 4, 0.01 0.0185iE u       , which 

has a corresponding efficiency value of 0.982. Thus, these prior settings accommodate a wide range of 

efficiency distributions. 

 In Figure 1 we plot the marginal distributions for iu  that correspond to each of the two prior 

specifications, with the graphs cut off at a maximum value of 1 (a minimum efficiency value of 

exp( 1) 0.368  ). Recognising that      1 1 1( ) | ,p u p u p p d d       , we obtained these plots by 

averaging  1| ,p u    over a large number of draws from the priors  1p   and  p  . Both have an 

“exponential like” shape with long tails. The prior parameter settings are such that the uniform prior 

places a relatively heavier weight on small values of iu  (more efficient firms) and the gamma prior 

places a relatively heavier weight on larger values of iu  (less efficient firms). Also, one criticism that 

might be levelled at the assumption of a lognormal distribution for the errors is that, because it does 

not have a nonzero mode, it does not accommodate a situation where most firms are close to 100% 

efficient. However, when one allows for uncertainty about the parameters of the lognormal 

distribution, that situation can be accommodated. 

 In Table 1 the cdf’s and moments of the two marginal distributions for  expi ir u   are 

compared with those of the exponential prior distribution used by Koop and Steel (2001). The uniform 

prior is very similar to the exponential prior, while, as already noted, our choice of hyperparameters 

for the gamma prior allows for a greater prevalence of relatively inefficient firms. 

When we move to the model of interest where  2
2 ,i iu LN x γ , rather than the simple 

version where 2 0i  x γ , the priors for the remaining elements in γ  can be set in a similar way, but 

the magnitudes of the elements in 2,ix  will have a bearing on what values of γ  are likely to produce 

reasonable distributions for efficiency ir . Finally, we note that, in the application whose results are 

reported next, we experimented with less informative priors with no substantial changes in the results.  
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5.2 Results 

 Posterior means and standard deviations for the parameters for each of the 4 estimated models 

are presented in Table 2. They were calculated after performing 600,000 MCMC iterations, discarding 

the first 100,000 and reserving every 50th draw. The elasticity estimates ( 1  to 4 ) all have 

reasonable magnitudes and are not overly sensitive to the assumed model. The largest differences 

occur in the coefficients 1  for land (which is assumed to be the source of any endogeneity), and 2  

for labor (which is highly correlated with land). The estimates for   are considerably larger in the 

models without endogeneity, picking up variation in iu  not attributable to iland  and 
2

iland . Also 

noticeable is the large increase in the estimate for 2  (implying a decrease in the estimate for 2 ) 

when the extra time-varing inefficiency error is introduced. It suggests that much of the residual 

variation in the time-invariant inefficiency model is attributable to time-varying inefficiency.  

The posterior standard deviations for 1  and 2  are relatively large, casting doubt on the 

existence of endogeneity. Nevertheless, to investigate whether there is an inverse relationship between 

efficiency and land size, we plot the posterior mean for 
2

0 1 2i iim land land       against iland  in 

Figures 2 and 3 for the time-invariant and time-varying models, respectively. Also included are 95% 

credible bands. In both cases the lines are downward sloping indicating that mean inefficiency 

decreases with land-size. Thus, we do not find any evidence for the inverse relationship between land-

size and efficiency as some have suggested.  

Finally, although our results in Table 2 have focused on the parameter estimates, it is worth 

reporting that there was little difference between the posterior means for the inefficiencies between the 

models with correlated and uncorrelated effects, but, in line with our observations about 2 , the total 

inefficiencies from the time-varying models  i itu    were substantially bigger than the inefficiencies 

from the time-invariant models.  

6. Conclusions 

By transforming the inefficiency error to a normally distributed random term, we have been able 

to construct a relatively general model for introducing endogeneity into stochastic frontier analysis. 
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Endogeneity can be introduced through either the mean of the transformed inefficiency error, or the 

covariance structure of the various errors, or both. The model can accommodate the introduction of 

instrumental variables, can be used with time-invariant and time-varying inefficiency terms, permits 

endogeneity with respect to both the inefficiency and idiosyncratic errors, and allows for correlation 

between these errors. Although our conditional posterior densities were in terms of a general 

transformation, we focus mainly on a log transformation. Future research can be directed towards 

other transformations relevant for specific distributions for the inefficiency error. Our application 

showed some but not strong evidence of endogeneity, highlighted the importance of allowing for time-

varying inefficiency, and also suggested that frontier parameters are not overly sensitive to these 

assumptions. 
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Table 1  
CDFs, and moments for marginal efficiency distributions 

Prior  Quantile  Mean  Var 

   0%  25%  50%  75%  100% 

G prior  0.0000  0.3700  0.8738  0.9816  1.0000  0.6699  0.1481 

U prior  0.0000  0.6701  0.8741  0.9554  1.0000  0.7715  0.0636 

Koop‐Exp  0.0000  0.6671  0.8732  0.9561  1.0000  0.7610  0.0742 

 

 

 

 

 

 

Table 2  
Posterior means and standard deviations for the parameters of estimated models 

Parameter  Time‐Invar, with corr  Time‐Invar, no corr  Time‐Var, with Corr  Time‐Var, no corr 

Mean  St.Devn.  Mean  St.Devn.  Mean  St.Devn.  Mean  St.Devn. 

0   ‐0.903  0.403  ‐0.882  0.412  ‐0.429  0.407  ‐0.408  0.419 

1   0.353  0.107  0.382  0.104  0.388  0.103  0.414  0.099 

2   0.282  0.102  0.290  0.102  0.229  0.094  0.231  0.093 

3   0.191  0.063  0.194  0.063  0.189  0.058  0.194  0.057 

4   0.059  0.035  0.059  0.036  0.063  0.030  0.066  0.030 

0   ‐2.497  0.722  ‐2.170  0.853  ‐2.188  0.794  ‐1.949  0.863 

1   ‐0.585  0.447        ‐0.436  0.530       

2   ‐0.217  0.438        ‐0.396  0.434       

               4.172  0.719  4.271  0.758 

   0.969  1.074  2.576  5.221  1.544  2.002  3.039  3.418 
2   9.876  1.242  10.090  1.248  28.430  8.802  29.030  9.842 

 

 

  



21 
 

 

 

Fig. 1.   Marginal distributions for inefficiency errors from two different priors. 

 

 

 

 

Fig. 2.   Posterior mean and credible bands for 
2

0 1 2i iim land land        
for time-invariant model. 
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Fig. 3.   Posterior mean and credible bands for 
2

0 1 2i iim land land       
for time-varying model. 
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