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Abstract

Background: Hepatitis C virus (HCV) infects approximately 3% of the world population and is the leading cause of liver
disease, impacting hepatocyte metabolism, depending on virus genotype. Hepatic metabolic functions show rhythmic
fluctuations with 24-h periodicity (circadian), driven by molecular clockworks ticking through translational-transcriptional
feedback loops, operated by a set of genes, called clock genes, encoding circadian proteins. Disruption of biologic clocks is
implicated in a variety of disorders including fatty liver disease, obesity and diabetes. The relation between HCV replication
and the circadian clock is unknown.

Methods: We investigated the relationship between HCV core infection and viral replication and the expression of clock
genes (Rev-Erba, Rora, ARNTL, ARNTL2, CLOCK, PER1, PER2, PER3, CRY1 and CRY2) in two cellular models, the Huh-7 cells
transiently expressing the HCV core protein genotypes 1b or 3a, and the OR6 cells stably harboring the full-length hepatitis
C genotype 1b replicon, and in human liver biopsies, using qRT-PCR, immunoblotting, luciferase assays and
immunohistochemistry.

Results: In Huh-7 cells expressing the HCV core protein genotype 1b, but not 3a, and in OR6 cells, transcript and protein
levels of PER2 and CRY2 were downregulated. Overexpression of PER2 led to a consistent decrease in HCV RNA replicating
levels and restoration of altered expression pattern of a subset of interferon stimulated genes (ISGs) in OR6 cells.
Furthermore, in liver biopsies from HCV genotype 1b infected patients, PER2 was markedly localized to the nucleus,
consistent with an auto-inhibitory transcriptional feedback loop.

Conclusions: HCV can modulate hepatic clock gene machinery, and the circadian protein PER2 counteracts viral replication.
Further understanding of circadian regulation of HCV replication and rhythmic patterns of host-hosted relationship may
improve the effectiveness of HCV antiviral therapy. This would extend to hepatic viral infections the current spectrum of
chronotherapies, implemented to treat metabolic, immune related and neoplastic disease.
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Introduction

Basic cell functions such as proliferation, growth, differentiation,

autophagy and glucose and lipid metabolism show time related

fluctuations, and when the oscillations are rhythmic with

a periodicity of approximately 24 h the rhythmicity is defined

circadian [1]. Cellular circadian rhythmicity is driven by

molecular clockworks comprised of translational-transcriptional

feedback loops put in place by a set of genes, called core clock

genes, coding for proteins that in turn suppress gene expression in

a cycle that completes itself in one day. Clock genes are

transcriptionally activated by the basic helix–loop–helix-PAS
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transcription factors CLOCK and ARNTL (or its paralog

ARNTL2), which heterodimerize and bind to E-box enhancer

elements in the promoters of the Period (PER 1, 2 and 3) and

Cryptochrome (CRY1 and 2) genes. The PER and CRY mRNAs

translate into PER and CRY proteins to form a repression

complex which translocates back into the nucleus, interact directly

with CLOCK and ARNTL heterodimer and inhibits its

transactivation [2,3]. Notably, a growing body of evidence suggests

that the feeding behavior and nutrient metabolic pathways can

entrain and modulate the circadian clocks and in turn the clock

gene machinery regulates multiple metabolic pathways and

metabolite availability, driving the expression of clock controlled

genes and transcription factors (DBP, TEF, HLF, E4BP4, DEC1-

2) [4,5,6].

Viruses may utilize the cellular machinery to replicate, as they

need host-cell replication proteins to support their own replication.

Circadian variation of expression of genes that regulate the cell

cycle may influence viral replication, determining daily peaks in

synchrony with the cell cycle. E4BP4, a transcription factor that

regulates mammalian circadian oscillatory mechanism, coordi-

nates expression of viral genes with the cellular molecular clock

and represses viral promoter sequences [7,8]. Viral immediate-

early genes appear to synchronize to 24 h rhythmicity and large

DNA viruses may exhibit circadian periodicity with respect to

persistent viral replication and reactivation from latency [7,8].

Viruses are able to exploit the circadian system for optimal timing

of infection and large DNA viruses show amplified DNA

replication in response to terminal differentiation, suggesting

a regulation mediated by circadian pathways [9].

Chronic hepatitis C virus infection (HCV) is a viral pandemic

and the leading cause of liver fibrosis and cirrhosis, often

progressing to liver cancer (hepatocellular carcinoma, HCC)

[10]. Hepatitis C virus has evolved over a period of several

thousand years and the most commonly used classification

distinguishes six major genotypes. These genotypes are further

divided into subtypes that differ from each other by 20–25% in

nucleotide sequence, resulting in sequence diversity over the

complete genome up to 35% [11]. The ability of the HCV core

protein to interfere with glucose and lipid metabolic pathways and

to modulate gene transcription, as well as cell proliferation and

death, has been well characterized [12,13,14] and depends on the

viral genotype: genotype 1b is the most aggressive and associated

to HCC, while genotype 3a is more associated to lipid

accumulation in the liver [11].

To date the interplay between HCV infection and/or replica-

tion and the clock gene machinery is unknown. To address this

issue we used two in vitro models of HCV infection, Huh-7 cells

expressing the HCV core protein of two different genotypes (1b

and 3a) and OR6 cells replicating the full-length HCV genotype

1b genome, and we evaluated liver biopsies of patients with HCV

infection.

Materials and Methods

Ethics Statement
Human biopsies: all the procedures followed were in accor-

dance with the ethical standards of the responsible committees

(institutional and national) on human experimentation and with

the Helsinki Declaration of 1975 (as revised in 2008). Written

informed consents were obtained from patients at the time of

biopsy and the study was approved by Ethics Committee of the

Civic Hospital, Palermo, Italy.

Human Sample Collection
Formalin-fixed paraffin embedded liver biopsies were retro-

spectively collected from files of the Unit of Pathology of the Civic

Hospital, Palermo, Italy. 5 cases were selected of HCV genotype

1b in absence of liver cirrhosis, 5 cases were also selected of HCV

genotype 1b in presence of liver cirrhosis. Finally, we selected in

our files 5 age-matched cases of normal liver biopsies obtained

during autoptic examination of subjects without hepatic diseases.

The clinical characteristics of the patients studied are summarized

in Table 1, in terms of clinical history.

Immunohistochemistry
Immunohistochemistry was performed by iVIEW DAB De-

tection Kit for Ventana BenchMark XT automated slide stainer

on sections with 4–5 mm of thickness from human liver biopsies

[15]. For immunostaining it has been used the primary antibody

for PER2 (dilution 1:100, Cat. No. sc-101105, Santa Cruz

Biotechnology CA USA). Positive and negative controls were

run concurrently. Results were semiquantitated in blind by three

expert pathologists (FR, FC and NS) and percentage of positive

nuclei was calculated in 10 random high power fields (at

magnification of 400X).

Cell Culture, Transfection and Serum-Shock Induced
Synchronization Procedure
Human hepatoma Huh-7 cells were cultured at 37uC in 5%

CO2 atmosphere in DMEM medium supplemented with 10%

fetal bovine serum (FBS), 100 U/ml penicillin and 100 ng/ml

streptomycin (Invitrogen Life Technologies, Milan, Italy). OR6

cells were kindly donated by Dr. Ikeda [16]. pIRES2-EGFP

plasmids containing the HCV 1b core-encoding region or the 3a

or GFP alone [17] and Flag-tagged pCMV Sport2 PER2 plasmid

[18], were transfected into Huh-7 cells and in OR6 cells with

Lipofectamine 2000 (Invitrogen Life Technologies, Milan Italy)

and with AmaxaTM NucleofectorTM Kit V (Lonza, Cologne

Table 1. Clinical and pathological characteristics of the patients studied.

Disease
Number of
cases

Gender
(M/F)

Age range
(mean)

HCV infection
(genotype 1b) HBV infection Alcoholism

Hepatitis 5 3/2 37–73
(55)

5/5 0/5 0/5

Cirrhosis 5 2/3 65–75
(71)

5/5 0/5 0/5

Normal liver 5 2/3 41–70
(64)

0/5 0/5 0/5

doi:10.1371/journal.pone.0060527.t001
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Germany), respectively, following manufacturer’s instructions. The

serum shock induced synchronization was performed as follows:

approximately 46105 cells/6 wells were plated the day before the

experiments. At the day of the experiments, culture medium was

exchanged with serum-rich medium (DMEM containing 50%

FBS) and after 2 hours this medium was replaced with serum free

DMEM. The cells were harvested at different time points: 1 h,

4 h, 10 h, 16 h, 22 h and 28 h after serum shock.

Luciferase Assays
Luciferase assays to monitor HCV replication in OR6 cells were

performed as previously described [16], using a luciferase reporter

assay (Promega, Madison, WI, USA).

Figure 1. qRT-PCR analysis of clock gene mRNA expression in OR6 control cells (cured, not expressing the HCV 1b full replicon) and
in HCV replicating OR6 cells (HCV). Control (cured) OR6 cells and OR6 cells replicating HCV genotype 1b were serum shocked and RNA was
extracted every 1 h, 4 h, 10 h, 16 h, 22 h and 28 h after serum shock. mRNA levels of Rev-Erba, Rora, ARNTL, ARNTL2, CLOCK, PER1, PER2, PER3, CRY1
and CRY2 genes were assessed by qRT-PCR (A and B). Values were normalized against TBP as housekeeping control gene. Results are expressed as
means 6 SE of three independent experiments. * = p,0.05 in HCV replicating cells versus control cured OR6 cells.
doi:10.1371/journal.pone.0060527.g001

Figure 2. Mutual antagonism between HCV genotype 1b replication and PER2 expression in OR6 cells. (A) Representative immunoblots
of PER2 and CRY2 protein expression in HCV replicating OR6 cells versus control (cured) cells. 1 out of 3 blots is showed. b-actin was used as a loading
control. (B) PER2 overexpression in HCV replicating OR6 cells using a Flag-tagged construct. HCV replicating OR6 cells or control OR6 cells were
electroporated with Flag-PER2, 24 hours after electroporation protein lysates were processed for immunoblotting and Flag levels were detected with
a specific antibody. b-actin was used as a loading control. (C) HCV replication was detected by a luciferase reporter assay in HCV replicating OR6 cells
24 hours post electroporation with a control (GFP) or Flag-PER2 construct. (D) qRT-PCR to detect HCV RNA levels upon control (GFP) or Flag-PER2
plasmid electroporation in HCV replicating OR6 cells HCV RNA values were normalized against TBP as housekeeping control gene (C and D). Results
are expressed as means 6 SE of three independent experiments. * = p,0.05, ** = p,0.01 in HCV replicating OR6 cells overexpressing Flag-PER2
versus HCV replicating OR6 cells overexpressing GFP.
doi:10.1371/journal.pone.0060527.g002
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Quantitative Real Time PCR
Total RNA was extracted from HCV-core transfected Huh-7

cells and from OR6 cells replicating the full length HCV genome

using the RNeasyH Mini Kit (Qiagen S.p.a. Milan, Italy) and

subsequently digested by DNase I. cDNA was synthesized from

100 ng total RNA with Quantifast RT-PCR kit (Qiagen). For real-

time PCR, we used the following SYBR Green QuantiTect

Primers purchased from Qiagen: RevErba (QT00000413), RoRa
(QT00072380), ARNTL (QT00068250), ARNTL2

(QT00011844), CLOCK (QT00054481), PER1 (QT00069265),

PER2 (QT00011207), PER3 (QT00097713), CRY1

(QT00025067) and CRY2 (QT00094920). For HCV quantifica-

tion the following primers were used: Forward 104 (59-AGA GCC

ATA GTG GTC TGC GG-39) and Reverse 197R (59-CTT TCG

CGA CCC AAC ACT AC-39) described in [33]. Reactions were

set up in 96-well plates using a 7700 Real-Time PCR System

(Applied Biosystems, Foster City, CA, USA) and all samples were

assayed in triplicate. Expression levels of target gene were

normalized using the housekeeping control gene TATA binding

protein (TBP, QT00000721).

Western Blotting
Huh-7 control cells and cells transfected with either genotype

HCV core protein 1b, HCV core 3a or with the empty vector

were lysed and processed for immunoblotting analysis with specific

antibodies as previously described [19]. Quantitative measure-

ments of bands were performed using the NIH-Image analysis

program Scion IMAGE (Scion Corp., Frederick, MD, USA).

Antibodies
Rabbit and mouse polyclonal antibody directed against

ARNTL2, ClOCK, PER1, PER2, CRY1, CRY2 and b-actin
were from Santa Cruz Biotechnology, Santa Cruz, CA, USA.

ARNTL and Rev-Erba antibodies were purchased from Millipore

S.p.a., Milan, Italy. The monoclonal anti-core (C7–50) antibody

was obtained from Vinci-Biochem (Florence, Italy).

Statistical Analysis
Results are expressed as means 6 SE of at least three different

experiments. Comparisons were made using Student’s t-test as

appropriate. Differences were considered as significant at P,0.05.

Results

Altered Clock Genes Expression in OR6 Replicating the
Full Length HCV RNA
As viruses are highly dependent on cellular machinery for

replication, it was proposed that the viral replication may be

Figure 3. qRT-PCR analysis of interferon stimulated genes (ISGs: OAS1, Mx1, IRF9, PKR) mRNAs expression levels in control (cured)
OR6 cells and HCV replicating OR6 cells electroporated with GFP (cured GFP, HCV GFP) or with Flag-PER2 (cured PER2, HCV PER2)
A, B, C and D. mRNA was extracted 24 hours after electroporation with the respective constructs and ISGs levels were normalized to TBP as
housekeeping gene. Results are expressed as means 6 SE of three independent experiments. * = p,0.05, ** = p,0.01 in HCV replicating OR6 cells
overexpressing GFP versus OR6 control cells overexpressing GFP or Flag-PER2. #=p,0.05 in HCV replicating OR6 cells overexpressing Flag-PER2
versus HCV replicating OR6 cells overexpressing GFP.
doi:10.1371/journal.pone.0060527.g003
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synchronized to the molecular clockwork and that in turn the

circadian clock may influence viral replication [7].

With this premise in mind, we sought to analyze by qRT-PCR

the time-qualified expression of a panel of clock genes (Rev-Erba,
Rora, ARNTL, ARNTL2, CLOCK, PER1, PER2, PER3, CRY1

and CRY2) in OR6 cells, which express full length HCV replicon

of genotype 1b [16]. The latter was able to perturb clock gene

expression as shown in Figure 1A and B. A significant down-

regulation of CRY2 mRNA levels was observed over all the six

time points, while PER2 mRNA was significantly decreased at 1 h,

10 h, 16 h, 22 h and 28 h after serum shock. Rev-Erba, Rora,
ARNTL mRNA levels did not show statistically significant

changes between OR6 cells lacking a functional HCV 1b full

replicon (hereafter referred to as ‘‘cured’’) and HCV-infected OR6

cells (Fig. 1A). CLOCK mRNA resulted significantly down-

regulated at 1 h after serum shock in OR6 induced to express

HCV full length RNA when compared to cured OR6 cells

(Fig. 1A). ARNTL2 mRNA levels showed a trend, though not

reaching statistical significance, towards a decrease over all the

time points considered in HCV-infected compared to cured OR6.

Moreover, time related patterns of expression of PER1 and PER3

were asynchronous in induced OR6 as compared to control cells.

We then sought to confirm if PER2 and CRY2 mRNA

dowregulation was similarly observed at the protein level. PER2

and CRY2 proteins were found decreased in OR6 HCV

replicating cells as compared to control cells (Figure 2A).

PER2 Overexpression Hampers HCV RNA Replication
In order to elucidate the interplay between the clock gene

machinery and HCV replication, we decided to focus our

attention on the role of PER2, as its role in regulating the daily

rhythm of IFN-c and its tumor suppressor activity have been

already demonstrated [20,21]. For this purpose, we overexpressed

Flag-tagged Per2 protein [18] in OR6 cells replicating the HCV

genotype 1b full length RNA (Figure 2B). The efficiency of

transfection was about 50–60% in OR6 cells (data not shown). As

previously described, OR6 cells contain a very efficient luciferase

reporter system for monitoring HCV RNA levels [16]. Upon

PER2 overexpression, we observed approximately 35% reduction

in luciferase activity in HCV-expressing OR6 cells compared to

untransfected cells (Fig. 2C). Consistently, HCV RNA levels were

significantly reduced by 27% in PER2-overexpressing OR6 cells,

as assessed by qRT-PCR (Fig. 2D). Altogether, these data

demonstrate for the first time that circadian protein PER2 can

hinder the replication of HCV genotype 1b.

Figure 4. qRT-PCR analysis of clock gene mRNAs expression levels in Huh-7 cells overexpressing the HCV core proteins genotype
1b and 3a. Huh-7 cells were transiently transfected with HCV core proteins 1b and 3a as previously described [17], or with GFP. 48 hours after
transfection mRNA levels of Rev-Erba, Rora, ARNTL, ARNTL2, CLOCK, PER1, PER2, PER3, CRY1 and CRY2 genes were assessed by qRT-PCR. Values were
normalized against TBP as housekeeping control gene. Light gray: GFP transfected cells; dark gray: HCV core protein genotype 3a transfected cells;
black: HCV core protein genotype 1b transfected cells. Results are expressed as means 6 SE of three independent experiments. * = p,0.05 in HCV
core proteins transfected versus GFP transfected control cells.
doi:10.1371/journal.pone.0060527.g004
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Interferon Stimulated Genes in OR6 Cells Overexpressing
PER2 Protein
Biomolecules mediating innate immune defenses, such as the

Interferon Stimulated Genes (ISGs) products, can prevent the

translation of HCV and cellular mRNAs to limit viral replication

and can also initiate apoptosis if the cell is overwhelmed. In order

to replicate, HCV machinery can interact directly with ISGs and

neutralize their expression and function. To understand the role of

PER2 in diminishing HCV RNA replication we evaluated by

qRT-PCR the mRNA expression levels of a subset of ISGs (OAS1,

Mx1, IRF9, PKR) in PER2 overexpressing OR6 HCV RNA

replicating and cured cells as compared to GFP-transfected OR6

HCV replicating and cured cells.

OR6 cells expressed OAS1, Mx1, IRF9 and PKR at the mRNA

level, both in cured and infected cells (Figure 3, A-D). PER2

overexpression had no effect in cured cells, compared to the

condition of GFP overexpression. OAS1 mRNA levels were

significantly decreased, and Mx1 and IRF9 were significantly

increased exclusively in GFP-transfected OR6 HCV replicating

cells (Figure 3, A–D). In turn, PER2 overexpression was able to

efficiently restore OAS1, whilst Mx1 and IRF9 mRNA levels

returned to the basal level in OR6 HCV replicating cells. PKR

expression did not display significant changes in any of the

conditions tested (Figure 3, A–D).

Clock Gene Expression in Huh-7 Cells Expressing the HCV
Core Protein of Genotype 1b or 3a
To investigate a possible role of HCV core proteins in the

impairment of the clock gene machinery, we evaluated by qRT-

PCR the mRNA expression levels of a panel of clock genes (Rev-

Erba, Rora, ARNTL, ARNTL2, CLOCK, PER1, PER2, PER3,

CRY1 and CRY2) in an additional relevant cell line, human

hepatoma Huh-7 cells transiently expressing the HCV core

protein of genotype 1b or 3a [17]. As shown in Figure 4, ARNTL,

CLOCK and PER3 mRNA levels resulted significantly increased

by the HCV core protein 1b, while PER2, CRY1 and CRY2 were

found significantly decreased. These results were consistent with

those obtained in the OR6 cell line (Fig. 1, A and B). No

alterations were observed in Huh-7 cells transfected with HCV

core protein of genotype 3a (Fig. 4). Rev-Erba, Rora, and

ARNTL2 mRNA levels were not changed in either of the

genotypes. In regard to PER1 expression, HCV core protein

genotype 1b tended to induce decrease in its mRNA expression

level, without reaching statistical significance.

Figure 5. Immunoblot detection of circadian proteins in Huh-7 cells expressing the HCV core protein genotype 1b or 3a and GFP-
expressing control cells. (A) 48 hours after transfection cells were lysed and equal amounts of proteins were loaded on a 10% polyacrylamide gel,
separated by electrophoresis and immunoblotted with specific Rev-Erba, Rora, CLOCK, ARNTL, ARNTL2, PER1, PER2, CRY1 and CRY2 primary
antibodies. b-actin expression served as loading control. (B) Densitometric quantification of CRY2, PER2 and CLOCK proteins normalized to b-actin
expression of three different experiments.
doi:10.1371/journal.pone.0060527.g005
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Immunoblot Detection of Circadian Proteins in Huh-7
Cells Expressing the HCV Core Protein of Genotype 1b or
3a
To corroborate the mRNAs expression profile data and with the

intent to assess whether the dysregulation of clock gene expression

levels resulted in a differential expression pattern at protein level,

we analyzed Rev-Erba, Rora, ARNTL, ARNTL2, CLOCK,

PER1, PER2, CRY1 and CRY2 by immunoblotting 48 hours

after HCV core transfection in Huh-7 cells. As shown in Figure 5,

HCV core protein of genotype 1b was able to decrease CLOCK,

PER2, CRY1 and CRY2 protein levels. Rev-Erba, Rora,
ARNTL, ARNTL2 and PER1 protein levels were unmodified.

In regard to the HCV core genotype 3a, only CLOCK protein

expression resulted increased at the same time point and no other

changes were observed (Figure 5, A and B). The differences

between CLOCK mRNA and protein levels in both conditions of

HCV core protein 1b and 3a overexpression are suggestive of

a post-transcriptional mechanism of regulation of CLOCK protein

in Huh-7 cells. Post-transcriptional regulations are crucial for the

rhythmic activity of the circadian molecular clockworks, and in

particular have been shown to play a part in the generation of time

related variations of CLOCK protein levels in the Drosophila

Melanogaster [22].

PER2 in the Liver of Patients Infected with HCV Genotype
1b
We next sought to confirm if the downregulation of PER2

protein observed in the two in vitro HCV genotype 1b cell models

(Huh-7 and OR6) was found in the patho-physiological context of

liver of patients infected with HCV genotype 1b (whose clinical

characteristics are reported in Table 1). Immunostaining for PER2

showed significant differences (p,0.005) in the percentage of

positive nuclei between hepatitis and, either, cirrhosis or normal

Figure 6. Representative panel of immunostainings performed for PER2 in samples of normal liver, hepatitis related to HCV
(genotype 1b positive) and cirrhosis arisen on HCV infection (genotype 1b positive) (A). Positivity of nuclei of hepatocytes in hepatitis
was significantly higher compared with those in cirrhosis. The latter was comparable to that of hepatocytes in normal liver. In cirrhosis, PER2
Immunopositivity is also observed in the cytoplasm of hepatocytes. Positive control of esophagus showed immunopositivity in the nuclei of all cells
(C). Pictures showed the same area observed with a lower (above) and higher (below) magnification. (B) Histogram shows statistical results for the
evaluation of immunopositivity for PER2. Significant differences (** = p,0.005) in the percentage of positive nuclei were found between biopsies of
hepatitis and either cirrhosis and normal liver.
doi:10.1371/journal.pone.0060527.g006
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liver. In particular, 37% of nuclei of hepatocytes in hepatitis

showed immunopositivity for PER2, while only 7% of nuclei of

hepatocytes in cirrhosis and 3% of nuclei of hepatocytes in normal

liver were immunopositive. In cirrhosis, PER2 Immunopositivity

was also observed in the cytoplasm of hepatocytes (Fig. 6).

Discussion

Both HCV infection and disruption of the cellular circadian

clock have been shown to heavily impact on hepatic lipid and

glucose metabolism inducing enhanced lipid accumulation,

condition that can predispose to serious liver disorders such as

steatohepatitis, cirrhosis and hepatocellular carcinoma (HCC)

[6,10]. Clock genes regulate the timing of DNA repair, apoptosis,

and cell proliferation, processes that when altered are hallmarks of

carcinogenesis. About 5% to 15% of genome-wide mRNA

expression exhibits a circadian rhythm of oscillation driven by

the clock genes [23,24], including some established tumor

suppressor genes and oncogenes [23,24]. Mutation or dysregula-

tion of clock genes have been associated with increased

susceptibility to HCC and other cancer types in several animal

models as well as in humans [25,26,27].

To our knowledge, the interactions between the cellular

circadian clock and HCV life cycle in hepatocytes have not been

studied up until now. We show here for the first time that HCV

genotype 1b, but not 3a, induced profound alterations in the

mRNA and protein expression of the clock gene machinery in two

cellular models, the OR6 cells harboring the full replicon of HCV

genotype 1b and in Huh-7 cells expressing HCV core protein.

Consistent findings indicated downregulation of PER2 and CRY2

proteins by HCV genotype 1b in both cellular models. In-

terestingly, downregulation of PER2 and CRY2 occurs also in

fibrotic livers and HCC [27,28]. In addition, high expression of

PER2 gene was associated with significantly better outcomes in

liver metastasis of colorectal carcinoma [29], and high PER2

protein levels are protective from carbon tetrachloride-induced

hepatotoxicity [30].

In this study, we focused on the role of PER2 on HCV

replication, as this circadian protein regulates the rhythms of IFN-

c signaling, critical for innate and adaptive immunity against HCV

infection [20,21], while CRY2 is involved in NF-kB activation and

pro-inflammatory processes [31]. A recent elegant study showed

that PER2, rather than CRY proteins, is the critical nodal point

for circadian oscillations in cells and in the intact organism [32].

Our analysis of human liver biopsies revealed that HCV genotype

1b induces a massive increase in nuclear PER2 nuclear

localization in hepatocytes in hepatitis in absence of cirrhosis

compared to control livers, while PER2 immunopositivity is also

observed in the cytoplasm of HCV genotype 1b infected

hepatocytes. Interestingly, in chronically infected HCV patients,

as well as in cirrhosis, hepatocytes at late stage of infection

dominate the cell population, resulting in the production of high

density, poorly infectious HCV particles, while in acutely infected

non cirrhotic patients there is a production of low density highly

infectious HCV particles [33]. We speculate that this may have an

effect on PER2 subcellular localization: an increase in nuclear

localization together with a decrease in the mRNA and total

protein levels in cell models is consistent with the fact that nuclear

PER2 forms a repression complex that interacts directly with the

core clock machinery blocking its own production [2,3] (Figure 7).

Nevertheless, further in depth in vivo and in vitro studies are

required to understand the mechanisms of PER2 intracellular

trafficking and degradation dependent on HCV infection.

One of the most remarkable findings was that exogenous

overexpression of PER2 protein in OR6 cells hampered HCV

RNA replication, which was found to be decreased by ,30%.

Consistently, PER2 overexpression influenced the HCV-depen-

dent altered expression of ISG products, OAS1, Mx1, IRF9,

which prevent the translation of HCV and cellular mRNAs to

limit viral replication [34]. One of the major antiviral mechanisms

of interferon is the activation of OAS1, which leads to the

production of short oligonucleotides that in the presence of viral

infections activate ribonucleases that destroy viral mRNA within

infected cells inhibiting viral replication [35]. Noteworthy, in our

study Per2 overexpression potentiated the activation of OAS1,

suggesting a possible mechanism involved into the observed

reduction of HCV RNA levels. Although exogenous PER2

overexpression reduced the apparently coherent elevated levels

of Mx1 and IRF9 in OR6 replicating the HCV RNA, we assume

Figure 7. Scheme illustrating the antagonism between HCV genotype 1b replication and PER2 in hepatocytes. HCV core protein
genotype 1b, via a yet undefined mechanism, induces a downregulation of PER2 mRNA. PER2 protein produced in the cytoplasm accumulates in the
nucleus, as observed in human liver biopsies infected with HCV genotype 1b, where could further inhibit the production of its own RNA [2,3].
Alteration of this equilibrium by exogenous overexpression of PER2 protein hampers HCV genotype 1b replication.
doi:10.1371/journal.pone.0060527.g007
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that some viral components act to modulate viral load by means of

the activation or inhibition of host defense proteins in order to

maintain low steady levels of virus in the infected cells, enabling

HCV to escape from the host immune surveillance, and facilitating

persistent viral infection.

In conclusion, we found that HCV core protein genotype 1b is

able to impair the clock gene machinery suggesting that HCV may

adopt this strategy to better exploit the host-cell replication

machinery. On the other hand, overexpression of the circadian

protein PER2 hampers HCV RNA replication. Circadian

regulation of viral replication has potential applications in the

development of therapeutic strategies. Circadian rhythm-based

treatments (i.e. chronotherapies), have been employed against

metabolic, immune-related and neoplastic diseases [36,37].

Standard therapy for HCV patients involves administration of

interferon-a and ribavirin (a nucleoside analogue) [11,34]. Re-

cently, an interferon/ribavirin-free therapy based on newly

identified and efficacious protease inhibitors (telaprevir, bocepre-

vir) promisingly entered into the clinic to treat HCV patients [38].

In light of our findings, the new strategies to inhibit viral

replication could address the circadian relationship between host

cell and hosted viruses, with the aim to improve the efficacy of

treatment modalities through optimized timing of therapeutic

regimens, minimizing the toxicity of pharmacological agents and

targeting in a better way virus replication.
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