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1 Introduction

Mixtures of distributions define one of the most important approaches to
obtain new probability distributions within the fields of applied probability
and operational research. Among all of them, mixture of Poisson distribution
with parameter § > 0 and mixing distribution g(#) defined by

1 o
Pr(X =z) = / exp(—0)0© g(0)do, ==0,1,...,
0

Tl

has played an important role in the statistical literature (see Antzoulakos
and Chadjiconstantinidis (2004), Gupta and Ong (2005), Karlis and Xekalaki
(2005) and Willmot (1993), among others). In this case, the density function
g(0) is intended to capture dependencies on hidden variables or incorporating
individual heterogeneity.

The applicability of Poisson distribution to different scientific scenarios
has been accepted over more than a century. However, modification of the
usual scheme when the parameter involved in the distribution fluctuates rand-
omly as a gamma variate, was first considered by Greenwood and Yule (1920)



in the study of accident proneness with reference to happenings of multi-
ple attacks of a disease or repeated accidents; the distribution obtained in
this chapter was a negative binomial (mixing a Poisson distribution with
the gamma distribution). Alternatively, different models similarly built by
considering other mixing distributions have been proposed in the statistical
literature. For example, the Poisson-inverse Gaussian distribution (giving
the Sichel’s distribution), the Poisson-beta distribution, the Poisson-Pareto
and the Poisson-generalized Pareto among others. Certainly, the main pur-
pose of these models is to search for a more flexible alternative to the Poisson
distribution, especially under over-dispersion (variance larger than the mean)
phenomena.

In order to provide another competitive alternative to the models descri-
bed above, a new mixed Poisson model is considered in this paper. In this
regard, a new mixture of Poisson distribution by mixing its parameter with
the generalized exponential distribution proposed not long ago by Goémez-
Déniz (2012) is considered. In the last decades, a lot of attempts have been
made to define new families of probability distributions (discrete or continu-
ous) that extend the well-known families of distributions. In this sense, the
new distribution proposed here generalizes the geometric distribution and it
is competitive with other two-parameters discrete distributions such as the
negative binomial, generalized Poisson, Poisson-inverse Gaussian, generalized
Poisson-Lindley, etc. Different generalizations of the geometric distribution
have been proposed over the last decades; see, for example Gémez-Déniz
(2010), Jain and Consul (1971), Makéutek (2008), Philippou et al. (1983),
Tripathi et al. (1987).

The new distribution has a closed-form expression for the probability
mass function (pmf) associated with special functions (Tricomi confluent
hypergeometric function) of mathematical physics. These functions, that
show excellent properties, have been recently proposed by many authors.
Two important features of this discrete distribution are unimodality and the
presence of thick tails. Furthermore, since dlog g(#)/df can be expressed as a
ratio of polynomials, i.e. it is a generalization of the Pearson system, recursive
expressions for compound mixed Poisson distribution and the evaluation of
the i-th moments of stop-loss transforms can be achieved. Finally, ordinary
differential equations involving the probability generating function of the new
distribution are given.

In addition to this, the question of parameter estimation is analyzed
via maximum likelihood estimation (MLE) numerically maximizing the log-
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likelihood surface; this can be done either by directly maximizing the log-
likelihood function or by using an expectation-maximization (EM) algorithm.
Besides, from a numerical perspective, the discrete model introduced in this
paper provides a satisfactory performance, being therefore considered compe-
titive with other two-parameters mixed Poisson models such as the negative
binomial, Poisson-inverse Gaussian, discrete Weibull, generalized Poisson and
hyper-Poisson distributions.

It is already known (see for instance, Sankaran (1970)) that when Poisson
distribution with parameter 6 > 0 is mixed with a member of the natural
exponential family of distributions, i.e. with probability density function
(pdf) distribution

9(0) = q(0) exp[—¢ 8 —logv(9)], (1)

being ¢ the natural parameter, ¢(#) a function which depends on 6 but not on
the natural parameter and 1 (¢) = [~ q(0) exp(—¢6) df the normalization
constant, then the resulting distribution is given by

px:¢(¢+1)ux(¢+1)’ c=0.1,... (2)

¥(9) !
where 1, (¢ + 1) represents the raw moment of order = of (1) with ¢ + 1 as
parameter. Additionally, the probability generating function is given by

_Yp—s+1)
Gx(s) = —¢(¢) . (3)

The remainder of the paper proceeds as follows. Section 2 briefly summa-
rizes the mixing distribution proposed not long ago by Gémez-Déniz (2012).
Section 3 describes the theoretical development of the new discrete distribu-
tion. Next, parameter estimation together with the derivation of a simula-
tion algorithm of the discrete model introduced in this paper are provided in
Section 4. Then, numerical applications of the proposed model is examined
in section 5 and finally, conclusions are discussed in the last section.

2 The background

Recently, Gomez-Déniz (2012) has proposed a new generalization of the ex-
ponential distribution whose pdf is given by

g0\, 0) = k(o,\) (

2

140

)Uexp(—)\ 0), 6 €0 >0, (4)
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where

1
['20+1)U((20 + 1,240, )

k(o,\) =
is the normalization constant. Here o > —1/2, A > 0 and

[(z) = /Ooo t*~Lexp(—t) dt,

1 [e.e]
U(a,b,z) = / t N1+ t) " exp(—2t)dt, z>0,a>0 (5)
I'(a) Jo
are the Euler gamma function and the Tricomi confluent hypergeometric
function, respectively.
It is not difficult to prove that (4) is a member of the NEF of distributions

given by (1) being ¢ = A the natural parameter, while g(¢) = <%>0 and
(6) = [k, 0.

It can be observe that for ¢ = 0 the normalization constant reduces to
A and, therefore, (4) is the exponential distribution with parameter A > 0.
This pdf can therefore be considered as an alternative to both, the generali-
zed exponential distribution in Marshall and Olkin (1997) and the generalized
exponential distribution in Gupta and Kundu (1999). Besides, as proven in
Goémez-Déniz (2012), it is also competitive with the classical gamma distri-
bution and the two-parameter Weibull distribution.

As it is shown in the same paper, the generalized exponential distribution
with pdf given in (4) can be obtained as the natural conjugate prior distribu-
tion of the continuous Lindley distribution (Lindley (1958)). Moreover, the
r-th moment around the origin of a random variable following the pdf (4) is

F2c+r+1)U2c+1r+1,0+71+2,]N)

BX") = I'(20 + DUR20 + 1,2+ 0, )

(6)

Furthermore, since Lindley distribution and the generalized exponential
distribution with pdf given in (4) distributions are members of the NEF of dis-
tributions, we have that for the samples (Y1, Ys,...,Y,) and (X1, Xo, ..., X,),
the statistics T(Y) = >, Yiand T(X) = > | X; are sufficient. Therefore,
both statistics are also part of the NEF of distributions.



3 The main results

Basic properties of a Poisson-generalized exponential distribution are intro-
duced in this section. It is easy to see, after simple manipulations, that when
(6) is applied to (2), the resulting pmf is given by

Fz+20+ 1)UL+ 204+ 2,2+ 0+ 2,1+ N) 7)
z! T'(20 + 1) U(1+20,2+0,)N) ’

p: =Pr(X =2x) =

with z = 0,1,2,...; ¢ > —1/2 and A > 0. Furthermore, from (3) the
probability generating function of a random variable following (7) is
U1+ 20,2+ 0,1—5s+]N)

Gx(s) = UL+20,2+0,N) (®)

Besides, the factorial moment of order k is given by

p(X) = EX(X -1)--- (X =k +1)]
Nk +20+ D) UL +E+20,24+k+0,)) 9
B I'(1+20) U(o,—a,\) ©)

with £ =1,2,....
From (8) or alternatively (9), the first two moments of X about the origin
are found to be,

, (20 4+ 1) U204+ 2,0 + 3, )
= 1
= UZo+1,0+2,0) (10)
20+ 1) U2+ 20,0 + 4, \
wy = LU : (1)

U220+ 1,0+ 2,\)

By using the identity p, = E[(X — )] = Yi_o (1) (—p1)" ™", the
central moments, which are not reproduced here can be obtained after some
algebra.

Some important indices of the shape of the distribution, apart of the
mean and variance, are the skewness (v/B1 = ps/(u2)*?), the kurtosis (8 =
s/ (p2)?) and the coefficient of variation (C.V. = o /u). Different values of
these coefficients are shown in Table 1 for selected values of the parameters.

In addition to this, by using the nice property provided by Chao and
Strawderman (1972) which relates the inverse moments of a discrete random



Table 1: Mean, variance, skewness, kurtosis and coefficient of variation for
selected values of parameters

g 1 pe B B C.V.

-0.25 6.66 7720 515 23.04 1.32

0.0 10.00 110.00 5.73 2292 1.05

0.5 1554 166.96 696 2547 0.83

A=0.1 1.0 20.73 22210 8.26 29.10 0.72
2.0 30.87 331.82 11.09 38.24 0.59

3.0 40.91 441.60 14.22 49.37 0.51

4.0 50.94 551.46 17.60 62.31 0.46

5.0 60.95 661.37 21.24 76.99 0.42

-0.25  0.56 1.17 458 2259 191

0.0 1.00 2.00 459 1875 141

0.5 1.72 3.34 525 18.80 1.06

A=1 1.0 2.35 452  6.03 20.55 0.90
2.0 351 6.70 7.67 25.26 0.73

3.0 4.60 8.80 9.38 30.72 0.64

4.0 5.67 1085 11.14 36.73 0.58

5.0 6.71 12.89 1297 43.26 0.53

-0.25  0.27 0.41 452 2342 237

0.0 0.50 0.75 423 17.77 1.73

0.5 0.89 1.31 451 16.30 1.28

A=2 1.0 1.24 1.81 499 16.96 1.08
2.0 1.88 272  6.05 19.62 0.87

3.0 247 3.57 717 2288 0.76

4.0 3.03 4.38 830 26.46 0.68

5.0  3.58 5.18 947 30.30 0.63




variable to the integration of the probability generating function (see also
Cressie et al. (1981) and Kabe (1976)), it is possible to obtain that

1 B iu(a,l—a,)\)—X’Z/{(Qa,l—l—a,l—i—)\)
X+1) 2 U(o,—a, ) '

Now, by using the relation
Ula,b,z) =2"U1 +a—b,2—D,2),

it is possible to rewrite (7) as

I'(z+20+1) AN\ 1 U, —o—z,1+)) (12)
! (20 +1) \A+1 A+1 U(o,—0o, ) '

Pz =

Note that for ¢ = 0 the geometric distribution with pmf p, = 1%\ (H%)I
is obtained. Furthermore, since U(a,b,z) ~ =z~ for large values of z, the
negative binomial distribution with parameters 20+1 and A/(14 ) is derived
for large values of the parameter A. In Figure 1 first (left hand side graph) and
second (right hand side graph) order moments about the origin, written as a
function of A, for different values of o are shown. As it can be observed both
moments decrease with A\. Besides, the larger is the value of o, the greater are
the values of pj and ph. It is also noted that the latter expressions, for each
value of A and positive values of o (0 = 1 dashed line and o = 2 dotdashed
line) are always higher than p} and pf for ¢ = 0 (geometric distribution
with thick solid line). The opposite occurs when o takes negative values
(0 = —0.25 dotted line).

Some examples of the graphs of pmf (7) for different values of the para-
meters, o and A are displayed in Figure 2.

A

It is important to point out that py < 135 when o > 0 and, therefore, (7)

has a lower value at x = 0 than the geometric distribution for A > 0.
Proposition 1 The distribution with pmf given in (7) is unimodal.

Proof: It is not difficult to observe that

2+ x(x+4)
1 0;\,0))' = —0———-- <.
(log(g(6; A, 9)) "2+ 1)
Therefore the mixing distribution is log—concave and also strongly uni-

modal and unimodal. Now the result follows by applying a result in Holgate
(1970). m



First moment of X about

o
=)
T

Figure 1: First and second order moments (as a function of \) about the
origin of (7) for different values of o (top to bottom o = 2 (dotdashed)
, 0 =1 (dashed), o = 0 (solid) and 0 = —0.25 (dotted) ) are shown.
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Figure 2: Graph of the pmf (7) for selected values of parameters o and A



Now, let py be the probability function (7) and Pr(k|m) be the probability
mass function of a simple Poisson distribution with the same mean, say m.
Then, as shown by Feller (1943), po > Pr(0|m) and p; /po < Pr(1|m)/Pr(0|m) =
m. The asymptotic tail behavior of Poisson distributions has been studied by
Willmot (1990) by assuming that a mixed Poisson distribution has a longer
right tail that the Poisson distribution (see, for instance, Gupta and Ong
(2005) and Karlis and Xekalaki (2005)).

As it is described in the next proposition, the pmf (7) can be recursively
computed in terms of o and A.

Proposition 2 By denoting p, a random variable following the pmf (7), it
1s satisfied that

204+ 2)pe1+ (0= A+ x)ap, — A+ 1)(x+ Dap,yr =0, 2=1,2,...(13)
Proof: It is simple to see that

ilogw(@) _ (b(@) _ 22:1 ¢z 0 (14)

do P(0) Yo it
being

p(0) = —X0*+ (0 —\)0+20and

V(O) = 0*+0.

Now, the result follows by using the recursive relation (see Willmot (1993)
and Antzoulakos and Chadjiconstantinidis (2004)

T

D (g =i+ (@ + i+ Dhiga](z +6) Dpass = 0,

i=—1

where a® = T["_,(a+1—i) and p_; = 0. B

In the following, an ordinary differential equation satisfied by the proba-
bility generating function (8) is obtained. For that reason, let us denote as
Gx(s|o, \) the probability generating function in (8).

Theorem 1 The probability generating function satisfies the following diffe-
rential equation

(s = A—=1)G%(s|o, )+ (s + 0 — A+ 1) G (slo, ) + (20 + 1) Gx(s|o, \) = 0.
(15)
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Proof: From (13), it is straightforward that
A+ 1Dz(x—1)p,=QRo+x—1)pro+(c—A+z—1)p,_1.

Consequently, we have that

2(A+1) Zxx—l pe = (20 —1)s*Gx(s +szpr2
r=2

+ (o0— —132233—1 pxl
r=2
+ 8 Zx(a: —1)s" 2p,_1.
r=2

Now, by having into account that

0o d2 00 d2 [e's)
1 _ T _ r—1
I’ €T — px—l,a,)\ - d82 S p:c—l,a,)\ — d82 S S px—l,a,)\
=2 r=2 x=2

= {slGx(slo, ) — pol) = 2 (slo, V)
+ G’)’(( lo, A), (16)
Y (x=1)s"pecion = Glil(slo,N), (17)

and considering that

Zx(m —1)s" ?p, = G%(s),
=2

the result is obtained after simple algebra. W

Similarly, differential equations for moment and cumulant generating
functions may be calculated after appropriate change of variable in equa-
tion (15).

Although the cumulative distribution function of (7) cannot be obtained
in a closed-form, it can be calculated by using the following expression

1 D
Flaha) = 5 [T+ 10900 )0, (18)
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where we have used the fact that the cumulative distribution function of the
Poisson distribution with parameter > 0 is F((z;0) = I'(x + 1,0) /x!, where
['(a, z) is the incomplete gamma function given by I'(a, z) = fzoo tole~tdt.
The survival function is obtained from (18) and it is given by F(x; \, o) =
1 — F(z — 1;)\,0). By using (7) together with F(x;\, o) we obtain the
failure rate given by h(x) = p,/F(z). In Figure 3 different graphs of the
hazard function of the new distribution are shown for selected values of the
parameters. It seems that it is decreasing for o < 0, increasing for ¢ > 0 and
constant (the geometric case) for o = 0. Besides, although difficult to prove,
it might be conjectured that the hazard rate is reverse J-shaped for o < 0.

0 =-025 A=02 O =-025 A=1 o =-025 A=2

0.34 i 0.80
0.32 0.65 - 0.78
0.30 _ i 0.76
< 028 < i %
F 026 Z 060 1 074
0.24 ] 0.72
0.22 055 : 070
0.20
o 1 2 3 4 5 o 1 2 3 4 5 o 1 2 3 4 5
X X X

o =05 A=02 o =05 A=1 o =05 A=2

012 045 062

011 0.60

0.10 0.40 . 0.58

X 009 = X 056

T 008 = < 054

0.07 035 0.52

0.06 0.50

005 030 048

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
X X X
o=2 A=02 g=2 A=1 o=0 A=1
0.035 1.0
0.030 04 08
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8 0.020 8 03 < 0.6

£ 0015 < = 04

0.010 02 02
0.005 .

0.000 01 00

0 1 2 3 4 5 0 5 10 15 20 25 30 0 1 2 3 4 5
X X X

Figure 3: Different graphs of the hazard function for selected values of para-
meters

Finally posterior moments of parameter 6 can be easily derived. On
this subject, let the random variable X follow a Poisson distribution with
parameter § > 0 and prior distribution g(6); then, by using Proposition 10
in Karlis and Xekalaki (2005), the posterior expectation of 6" given X = x
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can be expressed as

(x+7r+ 20)z! U(o,—o —xz—1,1+]N)
1+ N (z+r)(x+20) Ulo,—0c—2,1+)N)

E("|X =z) =

In particular, the posterior mean is provided by

(x+20+1) U(o,—0c —x— 1,1+ ])

BOX =9 =006 +1) Ul —o—n 143

3.1 Left—truncated version of the distribution

As Mahmoudi and Zakerzadeh (2010) pointed out, in some occasions the
practitioner requires a distribution with some kind of truncation. These dis-
tributions are interesting when modelling different situations, for example
the number of offspring per family, the number of occupants per car, etc.
Perhaps, one of the most well-known method of truncation is based on de-
letion of zeros from the distribution, i.e. left—truncation. The probability
mass function of the zero-truncated distribution is given by

1+o T o
Pr(X = 1) — 1 T'(z+20+1) A 1 U(o,—o :E,l—l—)\)7
1—po 2! T(20+1) \A+1 A+1 U(o,—o, )
for x =1,2,..., and where
B A\ U, 0,1+ )
Po= 1 Ulo, —o, \)

Although the left-truncated distribution with support x = r,r +1,...
can be straightforward derived, right—truncation requires more effort since a
closed-form expression for the cumulative distribution function is needed.

Additionally, zero-inflated models can be built starting with the discrete
distribution proposed here in the conventional way.

3.2 Compound model

In actuarial statistics the distribution of the aggregate claims S = Efil Y;,
known as the compound distribution, is usually of interest to practitioners.
Let us assume that X is the number of claims in a portfolio of policies at
a time period; let us also consider that Y;, ¢ = 1,2,... is a sequence of
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independent and identically distributed non-negative random variables with
common pdf f(y), y = 0,1,2,..., denoting the amount of the i-th claim.
Moreover, X and {Y;};>1 are assumed to be stochastically independent.

There exists an extensive literature dealing with compound mixture Pois-
son distributions (Willmot (1986, 1993) and Antzoulakos and Chadjiconstan-
tinidis (2004)). An extensive review of the topic can be found in Sundt and
Vernic (2009).

Furthermore, by having into account (14) together with a result provided
in Willmot (1993) (see also expression (1.7) in Antzoulakos and Chadjicon-
stantinidis (2004)), the following Proposition is not difficult to prove.

Proposition 3 If the claim size is a discrete random variable with pmf f(x)
for x > 0, then the pmf, gs(x), of the compound Poisson-generalized expo-
nential distribution satisfies the following recursion:

T

95(2) = T3 o3 (1+22) s gsto — ), a =1

By following the works of Willmot (1986, 1993) and Antzoulakos and
Chadjiconstantinidis (2004) recursive evaluation of the j-th order cumula-
tive distribution function and the j-th order tail probabilities can also be
calculated.

4 Estimation

The estimation of the two parameters by the method of moments (MM) can
be achieved from (10) and (11) by setting equal their theoretical expressions
to the sample first and second order sample moments respectively. Certainly,
the resulting system of equations must be solved numerically and non-explicit
values for the estimators are obtained. Although they are relatively easy to
obtain, they tend to behave weakly since only limited information is used.
In order to overcome this issue, parameters are estimated via maximum like-
lihood estimation (MLE) numerically maximizing the log-likelihood surface;
firstly by directly maximizing the log-likelihood function, and secondly by
using an expectation-maximization (EM) algorithm. They are described in
the next subsection.
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4.1 Maximum likelihood estimation

Let us assume that x = (z1,...,x,) is a random sample of size n from the
discrete distribution (7). The maximum likelihood estimates of the model
are obtained by maximizing the following log-likelihood function

n

[(x; + 20+ 1)
Zl w1 T(20 +1) Zlogu l+20+x,2+0+x;,1+ )

— nlogZ/l(l +20,2+0,N).

It is already known that %U(a, b,c) = —ald(1+ a,1+b,c), from which
the score equations are obtained after differentiating with respect to each
parameter and setting the results equal to zero. These equations cannot be
explicitly solved. They must be solved either by numerical method or by
directly maximizing the log-likelihood function. Since the global maximum
of the log-likelihood surface is not guaranteed, different initial values of the
parametric space can be considered as a seed point. In this sense, by using the
FindMaximum function of Mathematica software package v.8.0 (the derivative
of the Trinomi confluent hypergeometric function is available in this package).
Besides, by using other different methods such as Newton, Principal Axis and
QuasiNewton the same result is obtained.

The second partial derivatives can be used to obtain an approximation of
the Fisher’s information matrix in the conventional way. This is calculated
by using of an approximation of the Hessian matrix by means of the Cholesky
factors. This package is available on the web upon request.

In addition to this, an expectation-maximization (EM) algorithm can be
used to find maximum likelihood estimates of parameters in situations where
data contains missing values.It is based on an expectation (E) step, which
produces an expression for the expectation of the log-likelihood evaluated
using the current estimates, and a maximization (M) step, which updates
parameter estimates by maximizing the expected log-likelihood computed on
the E—step. This methodology is suitable for distributions arising as mixtures
since the mixing operation produces missing data. The algorithm is based
on the structure behind the mixed Poisson distributions (see Karlis(2005)).
In this case the problem of estimation is reduced to one of estimation of
the mixing distribution. One of the main advantages of the EM algorithm
is its numerical stability, increasing the likelihood of the observed data in
each iteration. However, it presents slow convergence rate in a neighborhood
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of the optimal point. Although, in general, the convergence to the global
maximum is not guaranteed, for this particular model, the log-concavity
implies that the log-likelihood has a unique maximum. It can be usually
reached by starting the parameters at method of moments estimates.

In mixed Poisson distributions the unobserved quantities are the realiza-
tions of #; of the unobserved mixing parameter for each data point z;, i =
1...n. We assume the distribution of X;|6; is the Poisson distribution where
0; follows (4). Then, given the observations X = (z1,...,x,) and the mis-
sing observations © = (04, ..., 6,), to implement the algorithm we define the
hypothetical complete-data distribution,

f(z,0) =g(0; X\, 0) f(z|f), 0 >0and z =0,1,... (19)

where f(z]0) denotes the probability distribution of the Poisson distribution.
Following Karlis (2005), at the E-step of the (j + 1) — th iteration, the
conditional expectations of some function of #;’s are calculated. Later, the
log—likelihood of the complete data model is maximized, this problem is equi-
valent to maximizing g(6; \, o). As we have mixtures from the exponential
family, these conditional expectations coincide with the sufficient statistics
needed for maximum likelihood estimation of the mixing distribution. In this
case #; and log 1%29{
The EM type algorithm for this model can be described as follows. From

the current estimates o) and \&).

e E-step: Calculate the pseudo-values ¢; and s;. As it can be seen in
Karlis (2005), for linear functions of  the conditional posterior expec-
tations can be easily obtained, then

- E(9¢|$i75\(j)76(j))
U2+ 260 + 2,3+ 60) 14+ \0)
U +260) + 2,2+ 600 1+ \0))

= (z:+269 +1)

To determine the pseudo-value s;, as the exact solution is not available,
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numerical integration is required,

0?2 e
= E( J -\ 50G)
s = Bllog =gl AV, )

0o 62 ‘926(j>+xi L)
1 L . — J 1

o0 62&(j>+xi .
/ m exp(—@()\(]) + 1)) do
0

e M-step: Find the new estimates ¢Ut? and AU+Y by maximizing the
complete data log-likelihood.

Then, we have

L) 1 fu(l +200),2 4 g0, )\(j)) .
2 U2+ 200, 3+ o) \0) ’

_ yn ti
being t = —=12;
n
and
1
| U(oD), —a), AO)) R
o ; ; S — ©)
A { k1 (0@, \@) (5 —2T(1+20Y)) ’
ETL_ Si . . a
where 5 = —=12 g (00 \0)) = %U(l + 20,2 4 0, M) (o020 2D

and U(-) is the digamma function given by ¥(a) = I'(a)/T(a).

e The convergence is assumed when the absolute differences between
successive estimates are less than a given error tolerance. Otherwise
move back to the E-step for another iteration.

4.2 Deriving a simulation algorithm

The Acceptance-Rejection method of simulation can be used to generate
random variates from (4). We begin by simulating a value from a gamma

17



distribution with shape parameter o + 1 and rate parameter A. Note that

the pdf of this gamma distribution can be written as

U(o,—o,\)T'(20 + 1)
I'(c+1)

h(0;0 + 1,\) = k(o, \) 07 exp(—A\0)
where o and A are defined as in (4) and 6 > 0.

Then, having chosen an alternative random variable that has a gamma
probability distribution to simulate from, we define a constant ¢ in the follo-
wing way

g(x) Ilo+1)
¢ = max = .
= h(x) T'(2c+1)U(c,—0,)N)

The algorithm for simulating a value from the distribution with probabi-
lity mass function (7) is as follows:

1. Generate a random variate from the gamma distribution

0; ~ Gamma(o + 1, \).

2. Generate a random variate from the standard uniform distribution.
Call this value u;.

0; \°
3. Ifug < (1 +10 ) then set the simulated value from (4) equal to 6.

Otherwise return to step 1.

4. Generate X; where X; ~ Poisson(0;).

5 Applications

This section contains several numerical applications of the discrete distribu-
tion introduced in this paper. The first set of data has been considered to
compare the performance of the different method of estimation given in this
paper. This set of data appears in Rodriguez et al. (2008). It describes the
spread of European corn borer larvae Pyrausta naubilalis in field corn. This
data set is over-dispersed and positively skewed with a long and thick right
tail. In Table 2 the number of corn borer and the corresponding observed
frequency appears in the first two columns. Expected frequencies have been
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computed by directly maximizing the log-likelihood function, they are shown
in the right hand side column. Same values are achieved by using the EM
algorithm described in the previous section. By using this procedure, the so-
lution was found after 16 iterations when the relative change of the estimates
between two successive iterations was smaller than 10~ and taking initial
starting values in the neighborhood of the moment estimates.

Table 2: Fit of number of European corn borer Pyrausta Naubilalis.
Rodriguez et al. (2008)

Count Observed Fitted

0 10 7.72
1 18  21.57
2 39 3494
3 33 43.02
4 42 44.68
) 56  41.30
6 36 35.06
7 26 27.89
8 19  21.08
9 19  15.29
10 7 10.72
11 4 7.31
12 4 4.86
13 4 3.17
14 2 2.03
15 1 1.27
16 2 0.79
17 1 0.48
18 1 0.29
Total 324 324

Summary of results for this first example is given in Table 3. Parameter
estimates together with standard errors (in brackets) obtained by the pro-
cedure explained above are provided. Furthermore, in order to compare the
fit to data obtained when new discrete distribution with other competitor
models two measures of model selection criteria have been included in the
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bottom part of Table 3: maximum of the log-likelihood and Akaike’s Infor-
mation Criterion (AIC). It is important to mention that the latter measure
adjusts for the number of parameters in the distribution and it allows models
with different numbers of parameters to be more fairly compared. Two two-
parameter discrete distributions have been considered for this purpose, the
negative binomial distribution (NB(r,p), r > 0, 0 < p < 1) and the genera-
lized Poisson-Lindley distribution (GPL(«,d), a > 0, § > 0) in Mahmoudi
and Zakerzadeh (2010). The discrete model given by (7) has been denoted
by NGG. As it can be observed in Table 3, the discrete distribution presen-
ted in this manuscript outperforms both NB and GPL distributions since
a marginally larger value of the maximum of the log-likelihood is achieved.
Besides, as the three models considered have equal number of parameters,
similar conclusions can be derived from AIC.

Table 3: Summary of the results

Estimates NGG

o 3.574

(0.29)

A 1.002

(0.07)
Selection Criteria GPL NB NGG
Maximum log-likelihood -807.430 —807.420 -807.407
AIC 1618.860 1618.840 1618.815

In the following, two additional over-dispersed sets of data have been
considered to compare again the fit to data by using the discrete NGG model
with NB and GPL distributions. The estimates based on maximum likelihood
estimation have been calculated for these three discrete distributions and the
results are shown in Tables 4 and 5. Then, by taking the maximum of the log—
likelihood as criterion of comparison NGG model provides a marginal better
fit to data than the other two models. In addition to this, it is also important
to mention that NGG model outperforms the group of distributions provided
by Karlis (2005) for the set of data in Table 5 with the exemption of the
Poisson-inverse Gaussian distribution.

Furthermore, three different QQ-Plots for the latter set of data are given
in Figure 4. The three discrete models described above have been considered.
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As it can be seen, the three distributions provide similar results as it has been
confirmed by the small differences between sample and theoretical quantiles.

Table 4: Fit of automobile claim frequency data in Germany 1960. Koko-
nendji and Khoudar (2004)

Expected frequencies

Count Observed CGPL NB NGG

frequencies

0 20592  20596.50  20596.80  20596.70
1 2651 2631.33 2631.03 2631.15
2 297 318.45 318.36 318.32
3 41 37.70 37.81 37.80
4 7 4.40 4.45 4.45
5 0 0.51 0.52 0.52
6 1 0.06 0.06 0.06
Parameters estimation a=1.10 r=1.11 A=771

5=838 p=08 &=0.06
Maximum log-likelihood -10223.50 -10223.40 -10223.40
Pearson’s Chi-squared 3.72 3.61 3.60
Degrees of freedom 2 2 2
p-value 0.155 0.164 0.165

6 Conclusions and comments

In this paper a new generalization of the geometric distribution has been
introduced. This distribution has been obtained by mixing the Poisson dis-
tribution with a member of the natural exponential family of distributions.
This distribution satisfies interesting properties and its pmf can be recur-
sively calculated. Besides, ordinary differential equations satisfied by the
its probability generating function have been obtained. The issue of para-
meter estimation has been studied by using maximum likelihood estimation
two perspectives; this has been done either by directly maximizing the log-
likelihood function or by using an expectation maximization (EM) algorithm.
Both methods require the use of special functions. From the numerical re-
sults analyzed in the previous section, it can be inferred that the discrete
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Table 5: Number of monthly crimes the period 1982-1993 in Greece. Karlis
(2005)

Expected frequencies

Observed

Count . GPL NB NGG
frequencies

0 21 23.53 23.52 23.45
1 41 35.16 35.19 35.30
2 32 32.16 32.17 32.23
3 16 23.18 23.17 23.14
4 19 14.46 14.44 14.38
) 8 8.17 8.16 8.12
6 4 4.30 4.30 4.28
7 1 2.14 2.14 2.14
8 2 1.02 1.02 1.03
9 1 0.47 0.47 0.48
Parameters estimation a4=439 =449 X\=1.78

§=210 p=0.66 &=223
Maximum log-likelihood —274.509 —-274.506 —274.487
Pearson’s Chi-squared 4.89 4.89 4.86
Degrees of freedom 4 4 4
p-value 0.298 0.298 0.301
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Theoretical quantiles
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Figure 4: Quantitle-quantile plot (QQ-Plot)
dered for the set of data in Karlis (2005)
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under the three models consi-



distribution introduced in this manuscript shows a similar behavior than ot-
her discrete distributions traditionally used for that purpose; but having the
advantage that only two parameters are required.
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