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Abstract

This thesis examined separable information constraints upon visual short-term memory
through application of signal detection theory and diffusion modelling (R. Ratcliff, 1978)
applied to a series of related tasks. Following D. K. Sewell, S. D. Lilburn, and P. L. Smith
(2014), I employed simple psychophysical paradigms using the near-threshold presenta-
tion of stimulus information and controlling the complexity of decision-making through
a post-stimulus probe to obtain both accuracy and response time data.

The first part of this thesis examines the relationship between two common visual
short-term memory procedures—orientation discrimination and change detection—to
characterise the effect of the task type on responding. Modelling of observer sensitivity
for Experiment 1 showed that a good account of the data can be obtained with the use
of the sample-size relation between performance and memory load, with the addition
of an item in change detection trials to account for the effect of probe array on perfor-
mance. This was supported in Experiment 2 by the higher stimulus contrasts for change
detection trials required to offset the decrement in accuracy. Response time modelling
using the diffusion model further supported this account, with the addition of a constant
time for encoding and comparing the probe array in change detection decisions and the
inclusion of an intrusion process to model the entry of non-target information into the
decision.

The second part of this thesis expanded the modelling of the first part to examine the
constraints upon orientation information in two fine orientation discrimination exper-
iments. These experiments required observers to judge the direction of small angular
offsets from a known referent. The change in observer sensitivity across different target
angular offset conditions was well captured by a Gaussian-shaped tuning function, cen-
tred on the orientation of the referent, and weighting squared sensitivity directly. This
information constraint was found to be independent of the sample-size relation, lead-
ing to the conclusion that the division of memory resources may be separate from the
quality of stimulus information. Stimulus exposure duration was modelled as a linear
increase in observer sensitivity, also independent of the sample-size or tuning function
constraints. Diffusion modelling with these three constraints placed on the drift rate pro-
vided a parsimonious description of both the response proportions and response time
distributions of a large memory experiment with a small number of parameters.

In all, the progression of both sensitivity and response time modelling through this
thesis aims to demonstrate three separable constraints on the fundamental capacity of
visual short-term memory—the sample-size relation, the tuning channel constraint on
orientation information, and the linear constraint on information growth—and the im-
portance of considering the role of decision processes explicitly.
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Chapter 1

Overview of the present thesis

Visual short-term memory, or visual working memory, is the phenomenon of perceptual
information persisting both beyond the cessation of sensory input, and beyond the tran-
sient and labile retention of activation in early visual systems (Phillips, 1974). This mem-
ory system appears to be fundamental within visual perceptual processing more gener-
ally: the characteristics of how information is stored in visual short-term memory are
evident even in very basic visual tasks, such as cued detection (Ratcliff & Rouder, 2000;
Smith, Ratcliff, & Wolfgang, 2004). As such, the study of representations within the vi-
sual short-term memory system—their formation, their maintenance, the constraints
and structure upon their storage, and the decision-making processes that make some
demand on these representations to—has been a central line of inquiry in the study of
visual perception over the last fifty years.

This thesis will examine the properties of these memory representations through a
series of psychophysical experiments with a consistent methodological design. In par-
ticular, the experiments presented in this thesis will use small-N designs with stimuli
presented near the sensory threshold, unlike much of the work conducted in the visual
memory and cognition literature, but strongly related to the work conducted in low-level
visual psychophysics (e.g., Carrasco, Penpeci-Talgar, & Eckstein, 2000; Downing, 1988;
Duncan, 1980; Lee, Koch, & Braun, 1997; Palmer, 1990; Smith, 1995; Smith & Ratcliff,
2004; Thomas & Gille, 1979). These designs allow for an extensive consideration of the
decision processes that relate representation to response—a topic somewhat neglected
in the broader visual short-term memory literature—and to examine the distributions of
response times under various experimental manipulations. This specificity of the infer-
ences provided by these designs can, I hope, allow for a powerful set of constraints on
quantitative models of visual short-term memory.

Four experiments comprise the main body of the thesis. These investigations are di-
vided into two larger themes: the structure and temporal dynamics of the memory repre-
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Chapter 1 Overview of the present thesis

sentations; and the structure and temporal dynamics of two means of assaying memory
representations. The two themes are, of course, fundamentally inseparable and do not
represent some fine taxonomic distinction, but are used here as an expository conve-
nience. Each part will contain one chapter on modelling observer sensitivity and one
chapter on modelling response time distributions.

The first theme, the structure and temporal dynamics of the experimental paradigms
used to investigate memory representations, will be covered in Chapters 3 and 4. These
chapters will cover the two experiments examining the sensitivity and response time
characteristics of change detection and (orthogonal) orientation discrimination paradigms.
The first of the two chapters in this part will consider the changes in observer sensi-
tivity with changes in the size and exposure duration of the memory array and dura-
tion; the second of these chapters will consider changes in response time—in addition
to accuracy—using the diffusion model of Ratcliff (1978).

The second theme, the structure and temporal dynamics of the memory representa-
tions, will be covered in Chapters 5 and 6. These chapters will cover the two exper-
iments examining the sensitivity and response time characteristics of fine orientation
discrimination from memory representations. Like the preceding part, the first of the
two chapters will consider sensitivity and the second of the two chapters will focus on
the response time data.

The next chapter will provide a general review of the literature concerning visual
short-term memory and, in particular, the themes of storage capacity and the tempo-
ral properties of representation formation.
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Chapter 2

General literature review

The visual world for healthy adults is furnished with perceptual objects that maintain
consistent form over time and are perceived complete without conscious effort. The
experience of visual perception—the richness and fluidity present—provides very little
indication of the nature of the initial sensory input: the raw sensory material projected
from the retina is characterised by sudden disruptions from saccades (Irwin & Andrews,
1996) and corruption from neural noise (Pelli, 1991).

This conscious experience of visual information is the product of incoming sensory
information integrated across time to form coherent perceptual objects. The memory
processes that serve to integrate information provide a consistent basis from which de-
cisions about the world can be made and meaning can be extracted: processes which
may far exceed (by an order of magnitude) the duration for which the visual stimulus
is available (Ratcliff & Rouder, 2000). The role of such memory processes is central
in visual processing, seated at the nexus between sensory representation and broader
decision-making and interceding in even simple visual tasks such as detection (Smith &
Ratcliff, 2004) and correcting gaze trajectories (Hollingworth & Luck, 2009).

In general, integrative processes in vision fall into two categories1: the low-level persis-
tence of sensory signals after their offset unable to survive subsequent input and which
may be used for decision-making, labelled iconic memory, after Neisser (1967); and, the
higher-level, adaptive maintenance of information across time that is more selective,
able to survive changes to the visual input, and more behaviourally bound. The second
these phenomena is termed visual short-term memory, or visual working memory. It is
this latter memory phenomenon that shall be the focus of this thesis.

This chapter will provide a general overview of some of the core themes of empirical

1Hollingworth (2004) also distinguishes between labile forms of “informational” and “visible” persistence,
following Coltheart (1980), from low-level (“iconic”) persistence. We will consider these forms of per-
sistence to be identical to the more generally recognised phenomenon of the “iconic” sensory buffer.
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Chapter 2 General literature review

research pertaining to visual short-term memory. The discussion will proceed as fol-
lows. I will first examine the early historical work investigating memory processes in
the visual perceptual system. I will then examine the more recent empirical work and
debate surrounding the structure of the visual short-term memory store and its storage
capacity. The temporal dynamics of the memory system will then be reviewed, leading
to a discussion of work that myself and colleagues have conducted that examines both
storage capacity limitations and the temporal dynamics of visual short-term memory
(the direct precursor to the current thesis).

2.1 Visual and informational persistence

Modern work examining short-term memory phenomena in visual perception originates
with the partial report paradigm of G. Sperling (1960). Over a series of experiments, Sper-
ling examined the ability of observers to report from memory a specified subset of a
larger array of letters presented for a very brief interval. Observers were first shown an
array of letters, split into rows. After the offset of the letter array, and a specified in-
terval had elapsed, observers were then cued to report a single row of the letter array
with a tone (the pitch of the tone indicating the row to report). The principal finding was
that observers could accurately report any specified subset of the memory array when
cued with a brief period after the offset of the stimulus; in one instance, an average of
seven letters from an array of nine could be accurately recalled if the observer was cued
within 150 ms. The longer the period—known as the probe delay—between the offset of
the memory array and the presentation of the report tone, the fewer letters could be ac-
curately identified. At probe delays of approximately 500 ms in conditions presenting
nine and twelve letters, performance plateaued at a level of accuracy which indicated
that only about four or five elements in total were available.

The inference drawn by Sperling (G. Sperling, 1960, 1963) from these data was that
all visual information was available for decision-making for a period shortly after the
stimulus offset, indicating the presence of some detailed but short-lived memory repre-
sentation (or memory trace). Although there had been previous indications that visual
information could persist in some representation for a brief period after presentation
(Cattell, 1885; Erdmann & Dodge, 1898), and the phenomenological persistence of vision
is self-evident, the partial report was a precise solution to the problem of quantifying the
extent of and change in a quickly decaying memory trace. The partial report task also
resembles the post-stimulus probe paradigm (Downing, 1988), popular in attentional re-
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2.1 Visual and informational persistence

search and a precursor to the research presented in this thesis.

G. Sperling (1963), using the data from an earlier study reported by Baxt (1871), further
demonstrated the sensitivity of this short-lived visual information to interference from
subsequent visual stimulation. Letter recognition subsequent to an immediate flash of
light after presentation was essentially nil; recognition after some period of delay be-
fore the presentation of the interfering flash increased linearly, indicating a recovery of
approximately one letter for every 10 ms that the interfering light was delayed.

The memory phenomenon identified by Sperling was later called iconic memory by
Neisser (1967), and became the prototype of a sensory buffer in the information process-
ing modal memory model of Atkinson and Shiffrin (1968). The memory model divided
memory phenomena into three modes: an initial sensory buffer, like the iconic mem-
ory store or the analogous “echoic” memory store in the auditory domain, which could
hold modality-specific information in a high fidelity representation, but could not be re-
hearsed and decayed quickly; a modality-independent “short-term memory” store, hold-
ing information for active mental processing and constrained by a limited capacity (at
the time presumed to be around seven items, following Miller, 1956), and which requires
active rehearsal; and a “long-term memory” store, with a virtually limitless storage ca-
pacity and an indefinite lifespan for representations stored, but which requires intensive
and slow elaborative processing (Craik & Lockhart, 1972; Craik & Watkins, 1973) for trace
formation to occur.

Critically, the short-term memory store capable of sustaining a memory representa-
tion was argued to be auditorially or lexically mediated, with only the iconic memory
store operating directly upon visual representations. The decline in performance seen in
partial report tasks was imputed to be the rate of decay of the memory store, a fixed prop-
erty not under behavioural control. The limited baseline performance seen in partial re-
port tasks at longer probe delays was argued to be the result of a recoding (or “scanning”)
of the modality-bound visual information into a more general, rehearsable, short-term
memory representation (Atkinson & Shiffrin, 1968; G. Sperling, 1963)2. The distinction
between the two apparent rates of memory retention—limitless immediate recall and
a truncated amount of information that persisted beyond some delay in instructions—
anticipated the later work of Phillips (1974) on visual short-term memory. As the stim-
uli used by Sperling and, later, by Averbach and Sperling (1961) were alphanumeric, the

2G. Sperling (1963) calls the short-term memory store, the “Auditory Information Store” system, in con-
tradistinction to his nomenclature for the iconic memory store, the “Visual Information Storage” sys-
tem, but there is no reason to think that this system is functionally distinct from the short-termmemory
system of Atkinson and Shiffrin (1968). The identification between the two is only possible when ver-
balisable stimuli are used.
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durable representations required could easily be argued to be the product of verbal re-
coding, rather than being intrinsically visual. Subsequent studies were required to indi-
cate the presence of more durable representations that were intrinsically visual in con-
stitution.

2.2 Functionally distinct visual memory stores

The modal model of memory, and the sketch of a memory hierarchy given by G. Sper-
ling (1963), only defined a single form of memory specific to the visual domain. The
short-term memory store, capable of active maintenance of a small number of repre-
sentations, was originally described in terms that would be general across cognitive and
perceptual domains, largely reflecting research—like that of L. Peterson and Peterson
(1959) and Miller (1956)—that dealt with digit span and alphabetic trigrams task: discrete
and declarative units of information. The concept of memory provided by this model is
one that naturally lends itself to discussion of rehearsal and “control processes” that in-
volve well-defined symbolic operations on stored information rather than purely visual
information.

Shortly after the proposal of the Atkinson–Shiffrin modal model, however, investiga-
tions by Posner and colleagues (Posner, 1967; Posner, Boies, Eichelman, & Taylor, 1969;
Posner & Keele, 1967) demonstrated some retention of visual information beyond the
short timespan of iconic memory traces seen in partial report paradigms. In a study
conducted by Posner and Keele, observers were asked to indicate whether the identity
of two pairs of letters, successively presented in the same location, matched. In one set
of trials, identity was maintained by the case of the letters was switched (that is, an “a”
would be matched with an “A” or vice versa). In another set of trials, the identity and
case were maintained between the two pairs, meaning that the visual information was
identical. Posner and Keele reported an advantage in mean response time when the vi-
sual aspect of the stimulus was maintained across consecutive arrays when compared to
simply maintaining the identity of the letters. This advantage persisted even when the
interval between the two letter sets (the inter-stimulus interval) was 1,500 ms, indicat-
ing a purely visual benefit for comparison, a benefit that could not be accounted for by
verbal recoding, beyond the accepted range of iconic memory. Kroll, Parks, Parkinson,
Bieber, and Johnson (1970) further demonstrated that alphabetic stimuli were less prone
to retroactive interference by verbal shadowing (i.e., reciting a list of aurally presented
letters) when compared to stimuli that were presented aurally (prior to the shadowing
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task). The different rates of correct retrieval between aurally presented and visually pre-
sented stimuli over a range of retention intervals—up to 25 seconds—was taken as evi-
dence for the existence of a separate visual short-term memory store.

Additional evidence for the existence of a short-term memory store specific to the vi-
sual domain was found in the ability to compare stimuli unlikely to be verbally encoded
across retention intervals longer than the persistence of iconic memory. Cermak (1971)
showed that complex radial figures, created by the addition of Fourier components3,
were able to be retained and compared across timescales far exceeding the rate of de-
cay for iconic memory traces. The nature of the stimuli allowed a strong a priori argu-
ment to be made that iconic representations were not being verbally recoded. Likewise,
Phillips and Baddeley (1971) asked observers to compare two non-declarative random
block patterns—matrices of 5×5 black and white squares in random arrangements—
separated by a retention interval and an interceding separate random interrupting mask.
Phillips and Baddeley showed that, while change detection performance was well above
chance after a retention interval of three seconds, performance decreases substantially
after this.

The design employed by Phillips and Baddeley was also employed and extended upon
by Phillips (1974). These studies form the basis for all modern visual short-term memory
investigations employing change detection: a series of stimuli, forming the memory array,
are presented to the observer for a fixed duration; the observer must retain these stimuli
within memory over the presentation of a backwards interruption mask (Di Lollo, Lowe,
& Scott, 1974; Kahneman, 1968) and a retention interval (sometimes called the stimulus
onset asynchrony, or SOA); finally, the observer must indicate whether a second series of
stimuli, the probe array, matches the first array or not.

Phillips (1974), in using manipulations to the random block pattern change detection
task and expanding the earlier change detection work conducted with Baddeley, pro-
vided the first comprehensive account of the visual short-term memory store. In partic-
ular, Phillips described four properties of visual short-term memory that form the sine
qua non of any definition for the store. First, the store appeared highly limited in its abil-
ity to maintain complex information: increases in the complexity of the random block
patterns led to decreases in observer accuracy, with change detection performance un-
der ceiling but high for 4×4 matrices (around 75% accuracy at a retention interval of
nine seconds) to scarcely above chance for 8×8 matrices at a retention interval of three
seconds. Second, the information that was maintained in visual short-term memory ap-

3These stimuli are now known as “radial frequency” stimuli (Habak, Wilkinson, Zakher, & Wilson, 2004;
Shepard & Cermak, 1973; Smith, Lee, Wolfgang, & Ratcliff, 2009; Wilkinson, Wilson, & Habak, 1998).
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peared to be stable for much longer periods of time than would be attributable to iconic
memory. Performance without masks was very high for comparisons of any complexity
across very small (less than a second) retention intervals, with a sharp decrease in accu-
racy proportional to the complexity of the display at a one second retention interval, and
a gradual decline in performance thereafter. Third, performance in change detection did
not seem to be affected by presentation of a checkerboard mask immediately after the
presentation of the memory array. Last, performance at longer retention intervals was
not affected by movement in the location of the probe array relative to the memory ar-
ray, indicating that the operations on the visual information stored within the short-term
memory store were not contingent on maintaining retinotopic spatial arrangements.

These findings provided evidence for the capacity of the visual perceptual system to
retain a reduced amount of information (what Phillips called a “schematic” representa-
tion of the visual scene) with some independence of spatial positioning from the original
stimulus. Representations within this memory system were found to be robust to sub-
sequently presented visual stimulation, and could be retained on the order of seconds
after the cessation of the stimulus. Pashler (1988) demonstrated that these same proper-
ties were obtained, unchanged, in the case of familiar letters rather than non-declarative
stimuli: after the involvement of iconic memory was precluded by using longer retention
intervals, the properties of memory were consistent across masking conditions, different
stimulus exposure durations, or whether the letterforms were reflected horizontally or
not.

As these studies were being carried out, the characterisation of short-term memory
of Atkinson and Shiffrin elaborated upon by Baddeley and Hitch (1974), who argued for
a new view of short-term memory that was composed of multiple interacting systems
operating on different modalities and controlled by a central “executive control” system,
known as working memory4. Their idea of a working memory system—including a pro-
posed system specifically for visual storage—has largely replaced the more general con-
cept of short-term memory, especially in clinical fields, and informs many of the current
debates regarding visual short-term memory, particularly that of storage capacity.

4For a more thorough review and discussion of the concepts, see recent reviews by Baddeley and col-
leagues (Baddeley, 1992, 2012; Baddeley & Sala, 1996).
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2.3 The storage capacity limits of visual short-term

memory

A central line of inquiry in the subsequent examination of visual short-term memory has
been the capacity limitations of the system to maintain multiple representations simul-
taneously. The question of storage capacity has taken a primary position in the visual
short-term memory literature as a route to examine the fundamental architecture of the
memory system.

A great deal of attention on the question of visual memory storage capacity derives
from a series of influential empirical studies reported by Luck and Vogel (1997). Luck and
Vogel adapted the change detection paradigm of Phillips (1974) to examine how the com-
position of items in the memory array affect change detection performance, as measured
in terms of proportion of trials correctly identified. Rather than manipulating the config-
uration of patterns within a random block matrix, Luck and Vogel used suprathreshold
and spatially separated objects designed to be highly distinct. The principal finding of
the experiments reported was that change detection performance was affected by the
number of objects in the memory array, rather than any of the visual characteristics that
comprised those objects—the features of the objects5. This finding was obtained regard-
less of whether the constitutive features of the object were relevant to the decision at
hand, relevant to change detection performance, or not. In more concrete terms, ob-
server performance did not significantly differ in cases where detection of an item in
the memory array was contingent upon a single feature value (for instance, the shape of
the item, orientation, colour, size, etc.), against trials where monitoring multiple feature
values was crucial for accurate performance. Changes in observer accuracy were only
seen with manipulations in the total number of distinct items in the memory array, the
total number of items to be remembered. In particular, a decrement in the proportion
of correct responses was only seen, on average, in the case where more than four items
were required to be maintained simultaneously to make a change detection judgement.
This basic result was extended, in one of their experiments, to a case where one or more
of four different visual characteristics (colour, orientation, size, etc.) could change in
memory arrays of two, four, or six distinct items, with no apparent difference between
observer change detection sensitivity seen. This result also extended to items composed

5The term feature in the realm of visual perception refers broadly to the constitutive perceptual compo-
nents of a visual entity, usually defined by reference to either the distributed representation of visual
items by neural assemblies that operate as selective filters, following Hubel andWiesel (1959, 1963), or
by reference to the components used for forming stimulus judgements, following Garner and Felfoldy
(1970).
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of two values of the same feature—specifically, a coloured square inset within a differ-
ently coloured square—where observer accuracy was not significantly different between
conditions where either or both of the colours could change. Subsequent studies con-
ducted by Wheeler and Treisman (2002) and Olson and Jiang (2002) have demonstrated,
however, a significant decrement in observer performance when using squares com-
posed of two colours, contrary to the findings of Luck and Vogel6.

In all experiments, any in the majority of change detection research that followed, the
use of high-contrast, highly discriminable stimuli provided a strong a priori case to ar-
gue that any performance decrements observed were the product of memory capacity
limitations along, rather than limitations in attending to or encoding stimuli into mem-
ory. This assumption was further supported by absence of significant change in observer
performance with changes to the stimulus exposure duration (from 100 ms to 500 ms);
this point will be discussed in further detail in a following section (see §2.4.2).

The selection of visual information into memory and its subsequent retention at the
level of objects, rather than some other unit of visual information, has a precedent in
the visual perception literature. Vogel, Woodman, and Luck (2001) noted a strong affin-
ity between the result that distinct visual objects are the apparent quantum of visual
short-term memory capacity and the earlier work of Duncan (1984) which demonstrated
that observer performance for reporting multiple visual features in a display is improved
when the visual features belonged a single distinct visual entity7. The selection bene-
fits for visual features when grouped into objects lends support to the broader claim that
visual representations are organised, at least partially, at the level of the object. This con-
struction of visual short-term memory was also presaged by Kahneman and Treisman
(1984) and expanded later by Kahneman, Treisman, and Gibbs (1992) in their argument
for object files: “episodic” groupings of feature information, bound together in memory
as objects to maintain identity and continuity over time.

The invocation of object files as a product of separate visual features bound together
is analogous, as discussed by Wheeler and Treisman (2002), to the process of “chunk-
ing” (Miller, 1956) from domain-general working memory. More generally, the concep-
tualisation of visual short-term memory objects as unitary but discrete representations
further strengthens the link between the change detection tasks presented above and

6Some consensus has been formed following subsequent experimental investigation that there may be
smaller feature-level effects on performance in addition to the established large object-level memory
array size effects on participant performance (Fougnie, Asplund, & Marois, 2010; Woodman & Vecera,
2011).

7A similar result was reported by Treisman, Kahneman, and Burkell (1983) who showed that object group-
ings lessen the cost of response time incurred by distractor information.
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domain-general short-term memory tasks where, such as the digit span (J. Jacobs, 1887)
or n-back task (Kirchner, 1958), where the elements to be remembered are discrete ar-
ticulatory symbols. In a notable review on capacity limitations in various modalities
of working memory, Cowan (2001) argued for a unified conception of working memory,
based on a discrete object-based limit of around four item “slots”, basing the argument on
the striking consistency in estimates of memory capacity between modalities. This view
of working memory as possessing consistent storage capacity constraints was formed
not only on the change detection work of Phillips (1974), Pashler (1988), and of Luck and
Vogel (1997), but also on the object-tracking work of Pylyshyn and Storm (1988) showing
an object-based limit to the number of objects that could be tracked concurrently and
the subsequent visual object enumeration work of Trick and Pylyshyn (1994) which sug-
gested a qualitative change in object enumeration beyond four items. Adapting the work
of Pashler (1988), Cowan proposed a relationship between the observed proportions of
hits and false alarms in change detection experiments to estimate the underlying item
capacity of visual short-term memory, making the assumption that performance is de-
termined in the first instance by whether an item has been stored in the memory system
and, then, by guessing if the item is absent from memory.

Although this view of memory unifies the visual short-term memory literature with
the domain-general working memory literature, it was contested in subsequent empir-
ical work. Wheeler and Treisman (2002), as mentioned above, did not replicate a key
result found by both Luck and Vogel (1997) and Vogel and colleagues (2001), that displays
of perceptual objects that are composed from two values of the same feature—in this
case, two coloured squares, one inset another, called colour–colour conjunctions—show
equivalent retention capacity limitations to displays of single-feature objects. Wheeler
and Treisman found, instead, that observer accuracy on displays for many configurations
of colour—colour conjunctions was at the level seen for displays twice as large, imply-
ing that each colour is treated in the memory system as a different item. Wheeler and
Treisman further demonstrated that, although observers might be sensitive to changes
between individual feature values, observer accuracy substantially diminishes when fea-
ture values are swapped between items in the memory array. This finding indicates that,
while all of the features of an object might be stored within the memory system simul-
taneously, this does not imply that there exists a single representation that binds these
features together into a unitary object.

The utility of a discrete item-based account of memory capacity decreases substan-
tially without an operational definition for itemhood, if it does not encompass the bind-
ing of constituent components into a representational whole (as argued by Wheeler &
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Treisman, 2002) or cannot be intuited from the figure itself (as argued by Sakai & Inui,
2002). Alternative accounts of visual short-term memory capacity limitation have em-
phasised the role of information in visual stimuli at a level below whole objects, arguing
for the sensitivity of the system to feature content. Alvarez and Cavanagh (2004) at-
tempted to examine the relationship between the complexity of visual objects and stor-
age capacity, the rate at which observer accuracy declined as the memory array size in-
creases. Multiple classes of stimuli were used in a change detection paradigm—including
coloured squares and letters (following earlier change detection work), shaded cubes,
randomly generated closed polygons, Chinese characters, greyscale isometric cubes,
and line drawings of common household objects. The estimated storage capacity varied
substantially between different stimulus types, with estimates of a memory capacity of
over four items for coloured squares and around one and a half items for the greyscale
shaded isometric cubes. These storage capacity estimates from the change detection
tasks, using the Pashler–Cowan formula, were then compared to the corresponding ob-
server performance in a visual search task. Specifically, visual search performance was
examined as a function of the observer response time against the number of distractors
in the search display; a measure known as the search slope. A search slope is a measure of
the efficiency of visual search, the ability to quickly identify the target among distractors
of the same stimulus class, and is often used to make inferences about the nature of stim-
ulus representation8 (Treisman & Gelade, 1980). Alvarez and Cavanagh found a striking
correspondence between the estimated storage capacity from the change detection task
and the search slope from the visual search task, which they imputed as relationship
based on the visual complexity of each of the stimulus types.

The conclusions drawn from this relationship have been controversial, however. Eng,
Chen, and Jiang (2005), in a replication of the study, found that changing the stimu-
lus exposure duration minimised the correspondence between memory capacity and
visual search slopes, suggesting that the encoding of stimulus information and forma-
tion of a memory representation might be the limiting factor. Eng and colleagues also
showed that this relationship further declined with subsequent practice sessions, again
implicating an attentional or encoding stage rather than the memory maintenance stage
itself. A similar conclusion was reached by Awh, Barton, and Vogel (2007), and later
Barton, Ester, and Awh (2009), who reported that, when the inter-item (class) similarity
was controlled, complexity had no effect on visual short-term memory capacity. Awh

8Somewhat against better advice (Townsend, 1972, 1990), researchers have used an invariance of re-
sponse time over search display size to make inferences about the structure of the visual search pro-
cedure.
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and colleagues conducted change detection experiments using simple stimuli (coloured
squares) and two classes of complex stimuli (shaded cubes and Chinese characters). Fol-
lowing Alvarez and Cavanagh (2004), they found considerable decrements in observer
accuracy in detecting changes between memory—probe array pairs using complex stim-
uli when compared to those using simple stimuli. Awh and colleagues extended this
result, however, to examine change detection using complex stimuli in cases where the
class of stimuli may differ between the memory array and probe array; that is, where a
stimulus location may have a change in the class of the stimulus as well as the identity.
In these trials where the stimulus class changed between the memory and probe arrays
(cross-class trials), observer accuracy was comparable to the detection of changes in sim-
ple stimuli. Indeed, in examining observer performance, a strong correlation (r = 0.88)
was observed between cross-class capacity estimates, using the Pashler–Cowan formula,
and simple colour memory capacity estimates. Awh and colleagues argued that if mem-
ory storage was the locus of degraded performance with higher item counts, then dif-
fering levels of inter-item similarity would only be a limiting factor if an item was stored
in memory. They concluded that the substantial decrements in observer performance
seen in change detection tasks employing complex stimuli were due to the similarity of
items within the stimulus category—that is, due to limitations in the ability to compare
two stimuli in the perceptual task—rather than due to any fundamental storage limit of
the memory system itself.

The disagreement in the locus of observer performance constraints in a change detec-
tion task highlight a limiting factor with drawing conclusions about the characteristics
of memory maintenance from the paradigm: behavioural data may reflect constraints in
many different mental processes beyond simply the storage capacity9 limitation of the
memory system in maintaining multiple representations simultaneously. In particular,
observer performance in change detection tasks is reliant on the encoding and mainte-
nance of the initial presentation, the comparison of the active memory representations
to the probe array, and the decision process to map the output of a comparison to a
response. Questions relating to the encoding stage are often examined through manip-
ulations to the stimulus exposure duration (as done by, for instance, Vogel, Woodman, &
Luck, 2006). The nature of the comparison procedure, however, is often not subjected to
isolated theoretical analysis10. Likewise, any decision stage after the comparison is also

9It is more correct to specify the capacity constraints under discussion here are asymptotic limits on stor-
age capacity. The constraints on storage capacity also show dynamic variation over the course of the
retention interval, as will be discussed in §2.4.1 and §2.5.

10There are exceptions to this, such as the study conducted by Hyun, Woodman, Vogel, Hollingworth, and
Luck (2009) and work in transsaccadic memory, which will be reviewed in the next chapter.
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rarely considered in isolation.
In total, work in change detection has not reached a consensus on the essential struc-

ture of the memory system. Partially, this lack of resolution may come from a lack of
consideration regarding the psychological processes that map the internal representa-
tions to patterns of responding. Wilken and Ma (2004) investigated this relationship in
the context of change detection. In doing so, they provided two important contributions
to the literature: first, they considered the predictions of the Pashler–Cowan formulation
of object-based memory limitations on observable ROC curves; second, they introduced
another experimental paradigm into the visual short-term memory literature, continuous
report. These two themes will be examined in more depth in the next two subsections.

2.3.1 ROC based analyses

Wilken and Ma (2004) noted that the discrete object models of visual short-term mem-
ory capacity (those argued for by, e.g., Awh et al., 2007; Barton et al., 2009; Cowan, 2001;
Luck & Vogel, 1997; Vogel et al., 2001), are analogous to high threshold models (e.g., Luce,
1963), once popular in psychophysics to describe observer sensitivity in simple detection
tasks, but have been shown to be difficult to reconcile with observer data, as discussed
below. The Pashler–Cowan formulation of item capacity implies an “all-or-none” stor-
age of items: either stimulus material is encoded into the memory system, if spare ca-
pacity is available, leading to a correct response; otherwise, the observer must guess.
This conjecture predicts that observed hit rate should be proportional to the false alarm
rate over the entire range of response biases for each given memory array size. When
the hit rate is plotted as a function of the false alarm rate, a graphical display known as
the receiver operating characteristic (or ROC) curve, storage systems of these types would
predict a characteristic linear function.

High threshold models in sensory detection, with the same “all-or-none” representa-
tion of the encoding process, also predict these linear functions. These predictions are
not observed in sensory detection tasks, however (e.g., Swets, 1961; Swets, Tanner, & Bird-
sall, 1961; Tanner & Swets, 1954b, 1953, 1954a)11. Instead, ROC data in detection tasks are
curved, consistent with a theory of representation and decision that posits—in the case
of simple detection—responses are made on the basis of an internal criterion value pro-
viding a response threshold over perceptual signals suffused with Gaussian distributed
noise. These assumptions form the basis of signal detection theory (Green & Swets, 1966;
W. W. Peterson, Birdsall, & Fox, 1954), and will be discussed in greater detail in §3.1.

11See also the excellent review by Luce and Green (1974).
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Consistent with the curved ROC functions found in simple detection, as well as other
psychophysical procedures, Wilken and Ma found that observer data in a visual short-
term memory change detection task did not conform to the linear pattern expected by
the Pashler–Cowan discrete object model. They instead found that ROC data was curved
when participant confidence was used as a means of examining the trade off between
hits and false alarms. They showed that this pattern of results conformed to predic-
tions of two species of “differencing” model taken from the signal detection theory liter-
ature (Noreen, 1981; Sorkin, 1962; to be introduced and discussed in §3.1.2); in particular,
Wilken and Ma found support in a majority of cases for a maximum absolute difference
(MAD) model. From these model fits, they concluded that the curved ROC data obtained
from the change detection paradigm supported a continuous resource account of visual
memory storage, in agreement with the conclusions of Alvarez and Cavanagh (2004)
and Eng et al. (2005).

The finding that ROC functions were curved over responses conditioned on levels of
confidence for a single set size has been subsequently challenged. Rouder et al. (2008)
and, later, Rouder, Morey, Morey, and Cowan (2011) demonstrated striking empirical
support for a discrete item limit, with the ROC curves showing a linear tradeoff between
the hit rate and the false alarm rate with different levels of change probability, rather than
confidence ratings, in conditions where the memory array was composed of two, five,
and eight items. A model comparison between the discrete item Pashler–Cowan model
against a signal detection theory model unanimously supported the fixed-capacity stor-
age model. Although these results could be the result of systematic guessing behaviour,
they mean that an “all-or-none” account cannot be dismissed on the basis of ROC data.

The lack of theoretical resolution from work employing the change detection paradigm—
either when examining accuracy data or ROC functions—has meant that other experi-
mental procedures have been employed to further constrain the debate; principal among
these additional paradigms is the continuous report task, also following from Wilken and
Ma and reviewed in the next section.

2.3.2 Empirical studies of storage capacity using continuous report

The support of a continuous resource model of memory storage based on change detec-
tion ROC data was the central theoretical contribution of the work by Wilken and Ma
(2004). This conclusion, as shown in the last section, has been challenged. A method-
ological contribution of their work, however, has been adopted in subsequent visual
memory experiments: in addition to using a standard change detection paradigm, Wilken
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and Ma also employed a continuous report task (Prinzmetal, Amiri, Allen, & Edwards,
1998; Prinzmetal, Nwachuku, Bodanski, Blumenfeld, & Shimizu, 1997). Continuous re-
port tasks bear a strong resemblance to experimental paradigms previously used in vi-
sual and auditory psychophysics, methods of adjustment, where an observer must repli-
cate one characteristic of a presented stimulus standard by manipulating a second stim-
ulus using a continuous means of input.

Wilken and Ma (2004) conducted three experiments using a continuous report paradigm:
one requiring the reproduction of the colour value of a presented square; one requiring
the reproduction of the orientation of a presented Gabor patch; and one requiring the
reproduction of the spatial frequency of a presented Gabor patch. In each, the observer
was first shown a memory array of stimuli, with the number of stimuli differing between
two and eight items on each trial. After a retention interval of 1,500 ms, the observer
was then shown a report cue over the location of the stimulus to reproduce. A series of
candidate values of the focal stimulus attribute (colour, orientation, spatial frequency)
were presented, and the observed instructed to select the value closest to their memory
of the target stimulus.

The data produced from these experiments were examined in the form of distribu-
tions of the selected stimulus values, computed as the difference from the actual stimulus
value. The data obtained by Wilken and Ma showed that the dispersion of these repro-
duction error distributions, measured in terms of the standard deviation of the observed
responses, increased smoothly in all three conditions. They argued that this supported
their primary conclusion regarding the nature of decision-making in change detection
tasks, that storage could best be conceptualised as a continuous model of perceptual
encoding suffused with noise.

Later studies have followed the methodological example of Wilken and Ma, usually
utilising colour as the stimulus attribute to reproduce and requiring responses on a circu-
lar domain (a colour wheel of pure hue values). Two key advantages are claimed with the
use of a continuous report paradigm over existing change detection tasks: first, the con-
tinuous nature of the response entry and the continuous nature of the stimulus presents
a putative link between the nature of the underlying representation and the nature of the
observed response; and, second, there is an increase in the resolution of the response
data, allowing a more detailed specification of theoretical predictions. Although Wilken
and Ma argued that their continuous report data supported a continuous resource model
of memory storage, and that it was a more direct measure than the change detection ROC
data they did examine against specific model predictions, they did not attempt any quan-
titative model fitting on their reproduction error data. Subsequent studies have employed
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direct model fitting to examine model predictions against the observed data.

Bays and Husain (2008) extended the work of Wilken and Ma to examine colour, ori-
entation, and location (displacement) reproduction errors using Gaussian distributions
fitted to response distributions, although using a two-alternative task. From the vari-
ance of a Gaussian distribution fitted to observer data over different memory array sizes
conditions, Bays and Husain concluded that memory representations shared a common
resource both at the level of objects and at the level of features12. On the basis of an eye
movement manipulation, they further concluded that the allocation of this resource to
different items and features within the display was mediated through the allocation of
spatial attention.

The conclusions of Wilken and Ma and of Bays and Husain that the monotonically in-
creasing dispersion of reproduction errors with increases in memory array size has been
contested with subsequent model fits. The additional resolution of data from the contin-
uous response task has meant that model specifications of greater sophistication can be
more readily distinguished between than might otherwise be the case in change detec-
tion tasks. Zhang and Luck (2008) examined data from a colour reproduction continu-
ous report task over differing memory array size conditions against model predictions
from a simple mixture model. Their mixture model included a “guess” component, mod-
elled as a uniform distribution across the entire stimulus domain, as well as a “memory”
component distributed as a von Mises distribution centred on the actual stimulus value13.
Examining the maximum likelihood estimates of the mixture models, Zhang and Luck
showed a discontinuity in the dispersion of the von Mises component with an increase
in the memory array size: where there was an increase in the dispersion in the response
distribution between one and three items, there was no increase between a memory ar-
ray of three items and one of six items14. The uniform, “guess”, component of the mixture
model, however, increased linearly.

Zhang and Luck concluded that their data supported a “slots + averaging” account: a
hybrid model combining a discrete item limit with a flexibly allocated resource. In this
model, visual short-term memory is characterised as able to simultaneously maintain a

12Bays and Husain indicated that the bilinear function of accuracy used to posit the existence of a discrete
itemsmemory limit, following Luck and Vogel (1997), may be a function of the suprathreshold nature of
the change detection decision to be made. This conclusion is consistent with the findings of Sewell et
al. (2014), discussed in §2.5.

13The von Mises distribution is similar, but not identical, to a Gaussian distribution on the circle. It is de-
scribed by two parameters: one location parameter and one concentration parameter, operating in an
analogous way to the mean and standard deviation of a Gaussian distribution, respectively.

14Some caution about these results are warranted, given that only one memory array size condition was
tested that exceeded the putative item limit given by previous papers.
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fixed number of visual objects. When the number of items to be maintained exceeds this
fundamental limit, the number of “slots”, then performance is contingent on whether the
item to be accessed was stored, as per the slot account of Luck and Vogel: performance is
based on memory if the particular item required was stored, otherwise a guess is made.
When the number of items to be maintained falls below this upper limit, however, it is
predicted that a single item can be held within multiple unoccupied slots, effectively in-
creasing the fidelity with which an item can be reproduced. Zhang and Luck argued that
this account predicts small changes in the fidelity with which items can be reproduced
below some (small) item limit but predicts no change in reproduction error beyond a
certain rate, only an increase in the rate of “guess” based errors. These were consistent
with the mixture model parameters obtained through maximum likelihood estimation.

This account was also supported by Cowan and Rouder (2009), who directly disputed
the conclusions of Bays and Husain (2008). Cowan and Rouder noted that the discrete
object-based model proposed by Bays and Husain was not exactly the “slot + averaging”
model proposed by Zhang and Luck: specifically, it lacked the “averaging” mechanism
seen in memory array sizes under the upper item limit, which allowed a flexibility in the
precision when dealing with small displays. With this modification, the model accounts
for the data obtained by Bays and Husain, as well as the data obtained by Rouder et al.
(2008), as discussed above. In response, Bays and Husain (2009) extended their study to
use a larger range of stimulus (displacement) values to demonstrate that a “slot + averag-
ing” model could not account for data from larger memory array sizes15 They also noted
that while flexibly allocated resources had some claim to a plausible neural realisation,
through population coding (Pouget, Dayan, & Zemel, 2000), the same was not evident
in the case of the “slots + averaging” model. A subsequent model analysis by Bays, Cata-
lao, and Husain (2009) demonstrated that, when non-target information is also taken
into account in modelling continuous report data, the uniform “guess” component of
Zhang and Luck appears to be substantially diminished and the von Mises “memory”
component again smoothly increases in dispersion—following a power law function—as
the memory array size increases.

The continuing debate over the best characterisation of visual short-term memory or-
ganisation, and the lack of a simple resolution, has led to consideration of more complex
models. Van den Berg, Shin, Chou, George, and Ma (2012) expanded the class of models
previously applied by Zhang and Luck in examining behaviour in the continuous report

15The treatment of displacement as a stimulus value comparable to colour and orientation is somewhat
interesting, given that spatial context is critical in defining the limits of objecthood and that visual short-
termmemory appears to be fundamentallymediated by some sort of spatial encoding (see, for instance,
Jiang, Olson, & Chun, 2000).
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paradigm. Van den Berg and colleagues discarded the constraint that memory could be
described as a fixed, scalar quantity describing either the item limit—where, at most, a
small number of items possess the same fidelity in memory—or fixed resource pool—
where there is a inverse relationship between the number of items in memory and the
fidelity at which any item is stored. Instead, they proposed a doubly-stochastic model:
the response observed is drawn from a von Mises distribution with a dispersion parame-
ter drawn from another distribution (selected to be a gamma distribution for flexibility).
In Bayesian model fitting and comparison using root-mean-square error16, the doubly-
stochastic model was able to capture the maximum likelihood estimates of a Zhang and
Luck-style mixture model (viz. the circular standard deviation and the mixture com-
ponent). These conclusions were also supported by studies conducted by Keshvari and
colleagues in examining change detection (Keshvari, van den Berg, & Ma, 2012, 2013).
In a more recent paper, van den Berg, Awh, and Ma (2014a) expanded consideration of
a variable precision doubly-stochastic model by way of a large-scale factorial compar-
sion of Bayesian models of continuous report over ten continuous report datasets (e.g.,
Bays et al., 2009; van den Berg et al., 2012; Wilken & Ma, 2004; Zhang & Luck, 2008)17.
Combinations of both the form of item limits (e.g., a set number of items remembered,
a flexible number following a Poisson distribution, etc.) and the form of the precision of
the item representations (e.g., a set precision shared amongst items, a “slots + averaging”
mechanism of precision, variable precision, etc.) were tested, as well as models with and
without non-target responding (i.e., Bays et al., 2009). Using improvements in AIC as the
model selection criterion, they concluded that a model where a variable number of items
(following a Poisson distribution) are encoded, each with a (gamma distributed) variable
precision and which might lead to non-target responding on some trials, best fit the data.

The recent work from van den Berg and colleagues, although computationally inten-
sive, is open to some amount of criticism. First, although ameliorating one problem of
the earlier model comparison reported by van den Berg et al. (2012) by using an objective
function that had some sensitivity to the complexity of the model under consideration,
both AIC and BIC may be inappropriate for use as a model selection criterion when com-
paring models with wholly different functional forms18. Work by Myung, Pitt, and col-

16A goodness-of-fit measure without any correction for model complexity.
17Three datasets from the University of Oregon under Anderson, Awh, and colleagues (Anderson & Awh,

2012; Anderson, Vogel, & Awh, 2011) have been subsequently retracted due to inappropriate data han-
dling procedures. The main conclusions, and limitations, regarding the work of van den Berg and col-
leagues are unlikely to be compromised on this basis.

18The work of the current thesis also engages in model comparisons using the BIC, although changes in
parameters in the current work usually correspond to allowing flexibility inmodel fitting across different
experimental manipulations rather than the addition of a hyperprior across the entire experiment.
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leagues (Myung & Pitt, 1997; Navarro, Pitt, & Myung, 2004; Pitt, Kim, & Myung, 2003; Pitt
& Myung, 2002; Pitt, Myung, & Zhang, 2002) highlights the complexity of conducting
competitive model fitting exercises using Bayesian models with different levels of func-
tional flexibility. It may be unsurprising that the most flexible model was ranked above
others, and with the more flexible models ranked generally more highly than those with
less flexibility. Second, the models are defined on the measurement level: a variable pre-
cision, variable object-number model is not given in terms of a proposed mechanism, but
simply as an output. Although some justification for the variable precision nature was
given in terms of populations of Poisson spiking neurons under divisive renormalisation
(see Ma, 2010), the correspondence between model parameters and any proposed inter-
pretation is somewhat loose without subsequent direct testing. Outside of experiments
conducted with the express purpose of direct manipulation and characterisation of each
of the parameters, it is difficult to know whether flexibility in the parameters is required
due to otherwise unaccounted for, but theoretically unrelated, variability in the observed
responses or is related to the proposed mechanisms.

2.4 The temporal dynamics of visual short-term memory

The work reviewed in the last section provided a short overview of the most intensive line
of inquiry among the various topics examined in the broader visual memory literature,
the capacity of the visual short-term memory system to hold multiple representations
active simultaneously. All accounts of these storage capacity limitations—slot-based ac-
counts, resource-based accounts, or some hybrid of the two—cast these limitations as
being stable properties of the system: the maximum capacity of the system to hold in-
formation beyond any initial encoding constraints. This follows the original visual short-
term memory results of Phillips (1974), where memory representations can be kept active
and available for decisions made after an extended interval, on the scale of seconds after
the presentation of the stimulus. Such an account is held in contrast to the rapid decay of
information seen in iconic memory tasks and, like the item-based accounts of the mem-
ory system reviewed in the last section, is seen as analogous to the rehearsal of verbal
information (like lists of digits) in general cognitive tasks.

Yet, even as investigations regarding the storage capacity inform theoretical accounts
of the structure of visual short-term memory, examination of the how observable perfor-
mance characteristics of the memory system might change over time has been under-
emphasised. Of the research examining the time course of visual short-term memory
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representations, two themes have emerged: the stability of representations over differ-
ent retention intervals; and, the initial entrance of sensory information into the memory
system and its encoding into a robust representation. We shall examine these in the
following sections.

2.4.1 Maintenance over the retention interval

The invariance of observer performance in change detection tasks over different reten-
tion intervals indicates that some representation of visual information, accurate enough
to be used in detecting changes, persists seconds after the removal of the original sen-
sory input. Indications that some visual information persisted beyond the decay of iconic
memory was first demonstrated by Posner and colleagues (Posner, 1967; Posner et al.,
1969), as well as by Kroll et al. (1970), Cermak (1971), and Phillips and Baddeley (1971).
Phillips (1974) provided the first comprehensive demonstration of the extent of this mem-
ory system: indicating that a small number of items could be retained without apparent
loss of overall accuracy for retention intervals exceeding five seconds. This extends to
discrimination of the constituent features of simple visual objects over long retention
intervals, such as the spatial frequency of luminance gratings (Magnussen, Greenlee, As-
plund, & Dyrnes, 1990; Regan, 1985) or the velocity of drifting luminance gratings (Mag-
nussen & Greenlee, 1992).

The ability for the memory system to maintain a visual memory representation may
not be without some dependency on the content of the visual memory representation
itself. Using an identical change detection task to Phillips (1974), Paivio and Bleasdale
(1974) showed that some information could be retained for longer timescales—performance
in a condition with large-scale changes was undiminished with a thirty second retention
interval—but showed that greater similarity between the memory and probe arrays led
to a faster decrease in accuracy as the retention interval increased.

Paivio and Bleasdale also found that mean response times continued to increase with
increasing retention intervals, even after a plateau in the error rate; they interpreted this
result as indicating a loss of accessibility of the memory representation, rather than the
complete cessation of maintenance.

Like Paivio and Bleasdale (1974), Cornelissen and Greenlee (2000) also found a rela-
tion between change detection performance using displays of 10×10 random block pat-
terns (both colour and luminance), and the complexity of the stimuli being stored. In an
experiment using near-threshold stimuli, a linear relationship between observer change
detection sensitivity and memory–probe stimulus similarity was found: performance
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increased as similarity between the memory stimulus and probe stimulus decreased.
Cornelissen and Greenlee showed a shift in observer change detection sensitivity, for
all levels of complexity, when comparing between retention intervals of one and three
seconds. This uniform downward shift in sensitivity was used to conclude that a slow
decay process was occurring.

The conclusion that steadily decreasing accuracy with increases in the retention in-
terval represented a slow decay of representations from visual short-term memory rep-
resentation was challenged by Zhang and Luck (2009). Using both a colour and radial
frequency continuous task, Zhang and Luck attempted to fit the mixture model of mem-
ory introduced in their earlier paper discussing a “slots + resource” account of memory
(described in §2.3.2). Rather than showing a slow decrease in either the ability to ac-
cess memory traces as argued by Paivio and Bleasdale, or a slow increase in the disper-
sion of responses indicating a loss of memory fidelity, the maximum likelihood param-
eters showed almost no increase in the variance of the von Mises distributed “memory”
component of the model, but an increase in the rate of guessing (a uniform distribution
across the entire response domain) from a retention interval of four seconds to one of
ten seconds. Zhang and Luck interpreted this as the “sudden death” of memory traces,
arguing that models of memory represented as dynamical systems could display this
“all-or-none” behaviour if the system state was displaced from a stable attractor state of
maintenance—a prediction of many recurrent neural network models of active memory
(Barak & Tsodyks, 2014; Camperi & Wang, 1998; Wang, 2001; Wei, Wang, & Wang, 2012;
Zipser, Kehoe, Littlewort, & Fuster, 1993).

One potential confound of such a finding, acknowledged by Zhang and Luck and
foreshadowed by Paivio and Bleasdale, was that the apparent increase in guessing may
have been due to a decrement in the accessibility of the memory representations—for
instance, a loss of the location–item binding—rather than a destruction of the mem-
ory information itself. Donkin, Nosofsky, Gold, and Shiffrin (2014) attempted to address
this ambiguity by conducting a colour-based continuous report study using only single-
item memory arrays, which obviate the need to use location–item mappings. Donkin
and colleagues also anticipated that employing single item displays might confound any
conclusions drawn regarding the memory system if observers verbally recode the stim-
ulus, a process that might be expected to occur less readily with larger memory array
sizes. In order to account for any effect of verbal labelling, pairs of “labelling” trials were
conducted, where observers were asked to label each memory item and then, some tri-
als later, replicate the colour patch—using the colour wheel reporting method of the
memory trials. Extending the Zhang and Luck two-part mixture model, Donkin and col-
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leagues added a third Gaussian component representing the contribution of verbal la-
belling to the obtained responses and fixed to data from the verbal labelling conditions.
They concluded that, on the basis of model fits with complexity taken into account (via
AIC), a model with stable precision estimates leading to changes in the guess rate—the
“sudden death” model following Zhang and Luck—better accounted for the data than a
model with gradual changes to the variance of the memory component, but only when
verbal labelling was taken into account.

These studies indicate that memory representations appear to be maintained with
considerable stability until either a response is made or the memory representation fails.
The process of maintenance is not entirely without cognitive control, however. Griffin
and Nobre (2003) demonstrated that presenting a symbolic cue with 80% validity dur-
ing the retention interval of a change detection task led to a significant and substantial
increase in accuracy for valid trials and decrease for invalid trials compared to trials
where no cue was presented. The valid “retrocue” condition also produced substantially
faster mean response times when compared to trials without a cuing condition. Both
the accuracy and response time shifts were comparable to the effect of an analogous cue
presented prior to the memory array to shift spatial attention. An analysis of ERP wave-
forms suggested large similarities in the neural signature of both pre-cuing and retrocu-
ing, consistent with the overall pattern of orienting spatial attention. Differences in the
ERP waveform between pre-cuing and retrocuing were found early in retention interval
in prefrontal cortex, with the retrocuing condition having enhanced positive activation,
and later in the retention interval in the posterior parietal and occipital cortices. Griffin
and Nobre suggested these represented an increase in the control processes of the mem-
ory store and in the maintenance of the visual information itself, respectively. These con-
clusions largely agree with functional neuroimaging results (Curtis & D’Esposito, 2003;
Pessoa, Gutierrez, Bandettini, & Ungerleider, 2002; Todd & Marois, 2004; Xu & Chun,
2006) and later studies (Nobre et al., 2004).

The retrocuing effects reported by Griffin and Nobre have prompted additional inves-
tigations into the benefits of such cues. Matsukura, Luck, and Vecera (2007) found that,
while change detection performance decreases as the duration of the retention interval
increases in trials without any retrocue presented, trials in which a perfectly informative
retrocue is displayed to the observer did not lead to any difference in performance be-
tween a short retention interval (500 ms) and a longer retention interval (2000 ms). They
concluded that retrocuing did not prioritise retrieval of information from the memory
store, but rather protected the representation from decay. This conclusion is consistent
with the finding reported by Makovski and Pertzov (2015) that retrocues not only protect
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memory representations from deletion, in the style of Zhang and Luck, but also prevent
location–object binding errors, of the type reported by Bays and Husain (2008)19.

2.4.2 Encoding

The other stream of visual short-term memory research examining the temporal dynam-
ics of memory representations has focused on their initial formation from sensory data.
Evidence from the partial report tasks conducted by Sperling and colleagues (Averbach
& Sperling, 1961; G. Sperling, 1960, 1963) indicates that durable visual short-term mem-
ory representations are not formed instantaneously upon the exposure of a stimulus, but
take some time to form. This is indicated by the change in observer performance when
adjusting the length of the stimulus exposure duration prior to presenting an interruption
backwards mask. Observer performance when a mask is displayed within milliseconds
of the stimulus onset is at chance levels. Performance increases substantially, but subject
to the visual short-term memory storage capacity constraint, when masks are presented
hundreds of milliseconds or more after the presentation of the stimulus. The mask itself
precludes the involvement of iconic memory representations, indicating that informa-
tion has been transferred from the sensory and iconic representations into durable visual
short-term memory representations.

Gegenfurtner and Sperling (1993) provided a first examination of the rate of transfer
from iconic memory representations to visual short-term memory. Using a letter-based
partial report task, Gegenfurtner and Sperling manipulated both the delay times before
the report cue was displayed to the observer—the audio signal to the observer about
which subset of letters would require recall—and, in one experiment, the time after stim-
ulus offset prior to the presentation of a backwards mask. In trials where the report cue
was presented immediately after stimulus offset, maximum performance could be ob-
tained by transferring only elements from the cued subset into visual short-term memory
as quickly as possible. In cases where the cue was only shown after a longer retention
interval, the accuracy functions were consistent with observers attempting to encode,
non-selectively, any available information in the display. This was a consistent strategy
displayed by observers given sufficient practice on the task: to encode any information
available until the report cue was presented, and then focusing only on cued information.
The strategy employed by observers was not only due to the limited overall storage ca-
pacity of the memory system, but also the limited rate at which this information could be
encoded. Gegenfurtner and Sperling demonstrated that the data obtained were well fit by

19See §2.3.2 for further discussion.
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a model of attention, following the spatial–temporal model described by G. Sperling and
Weichselgartner (1995) which predicted that the rate of encoding was well described as
the product of both spatial proximity to cued location and the stimulus discriminability.

Further evidence for the limited capacity for the process of visual short-term mem-
ory encoding has also been indicated by work in rapid serial visual presentation (RSVP)
tasks. In the RSVP paradigm, a series of items—usually alphanumeric characters—are
displayed in a single location in rapid succession, usually at a rate of around ten items per
second, with each new element replacing the last. In some cases, the observer is asked
to report the identity of the target stimulus—denoted by a display of a cue or change in
colour (e.g., Weichselgartner & Sperling, 1987) or by the display of a concurrent stimu-
lus (e.g., Reeves & Sperling, 1986). A consistent finding of RSVP experiments in which
participants were asked to report only a single target item from the stream of stimuli
is the asymmetrical pattern of errors: observers often report the identity of the stimulus
presented shortly after the display of the target item but rarely report items presented be-
fore the presentation of the target (Broadbent & Broadbent, 1987; N. G. Kanwisher, 1987;
Reeves & Sperling, 1986; Weichselgartner & Sperling, 1987). The prevalence of these post-
target intrusion errors was attributed to the temporal dynamics of an attentional gating
process: the speed of presentation was faster than the ability of an attentional process
to filter out subsequent irrelevant information, allowing it to reach the visual short-term
memory store (Chun & Potter, 1995; Reeves & Sperling, 1986; G. Sperling & Weichselgar-
tner, 1995).

Subsequent work using the RSVP paradigm required observers to report multiple stim-
uli presented in the stimulus stream. A consistent finding from a number of studies (Chun
& Potter, 1995; Raymond, Shapiro, & Arnell, 1992; Shapiro, Raymond, & Arnell, 1994; We-
ichselgartner & Sperling, 1987) is that, in trials where the observer can and must report
the identity of the target stimulus, there is a large deficit in the detection of a probe item
presented afterward in the stimulus stream—a phenomenon known as the attentional
blink. This deficit follows a regular pattern in which the item presented immediately
subsequent to the target is detected at the rate that the probe would be detected at with-
out the presence of the target, but probes in positions subsequent to that suffer a large
decrement in detection performance until roughly 500–600 ms later. Chun and Pot-
ter (1995) proposed a two-stage model to account for these data where, subsequent to a
stage of rapid detection where distractors may be filtered out on the basis of surface fea-
tures, a process of consolidation is undertaken to convert sensory representations into
durable visual short-term memory representations and the process of identification and
responding begins. Chun and Potter argued that it is this second stage that is limited in
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capacity, causing the attentional blink phenomenon as items subsequent to the target
that are able to pass the initial filtering cannot be consolidated and identified until the
end of processing for the target item.

The constraint in the processing resources available to consolidate memory represen-
tations were also identified in a dual-task paradigm by Jolicœur and Dell’Acqua (1998).
In their task, a visual array of either one or three characters—either consonants or com-
mon punctuation—was presented to the observer, to be retained for the duration of the
trial. After the presentation of the characters, and the presentation of a backwards mask,
a tone was presented which required an immediate speeded response. Subsequent to
the response for the tone, the observer then recalled the letters retained, and typed their
response on a computer keyboard. Jollicœur and Dell’Acqua found that, although ac-
curacy for the tone identification and letter report were very high, the response times
for the speeded tone response were much slower when the interval between the presen-
tation of the letters and the presentation of the tone was short (around 300 ms), with
responses slowly speeding to an asymptote over a second afterwards. These delays were
also heightened when displays of three items were to be retained compared to displays
of a single item. Jollicœur and Dell’Acqua interpreted this initial delay in responding to
the presentation of the tone as the product of amodal capacity limitations caused by the
consolidation of the visual representations. These capacity limitations show an overall
constraint—impeding the processing of other information—that is, critically, sensitive to
the amount of information being consolidated.

The dual-task and RSVP studies presented above demonstrate some limitation in the
processing of visual information for identification. The exact contribution of consoli-
dation, however, is unclear as both mix the processes of consolidation with “decision”
processes that map this durable representation to a response: the identification of the
stimulus and the selection of a response on the basis of this identification. In an at-
tempt to isolate the contribution of consolidation alone, Vogel et al. (2006) used a change
detection task—like that used by Luck and Vogel (1997) and Vogel et al. (2001)—where
the decision components of the task are separated from the memory consolidation and
maintenance components: although consolidation can happen upon the presentation of
the memory array, the decision of which response to enter can only begin upon the pre-
sentation of the probe array. Vogel and colleagues adjusted both the size of the memory
array, between one and four coloured squares, as well as the duration of the stimulus
onset asynchrony (SOA) period between the presentation of the memory array (shown
for 100 ms) and the mask array (200 ms). Detection of changes to displays of a sin-
gle item were detected with almost perfect accuracy even at the shortest SOA period,

26



2.5 An information limit on short-term memory

117 ms; changes in displays of two items were detected with below ceiling performance,
roughly 90% accuracy, at this short SOA period, but reached ceiling performance with
the longer SOA period of 234m s. Changes to the larger displays of three and four items
were detected with performance far below these smaller displays at shorter SOA periods,
with performance gradually increasing as the SOA period was extended. When examin-
ing just change detection performance in displays with four items, Vogel and colleagues
used a series of very short SOA periods (between 17 and 83 ms), as well as longer delays
(167 ms and 217 ms), to demonstrate not only a monotonic increase in the performance
as the period in which stimulus information was available increased, but to characterise
the rate of this increase. Using the Pashler–Cowan capacity formula, they characterised
the rate of performance increases as constituting a linear increase in capacity, of around
50 ms per an item.

A tenfold decrease in the previous estimate of consolidation time, Vogel and colleagues
provided a clearer estimate of the capacity limitations aside from processes of identifi-
cation and response selection. Their interpretation of this limitation, estimated at 50
ms/item, was framed in terms of the “all-or-none” object account of their previous work
on overall storage capacity limitations. More recent work by Bays, Gorgoraptis, Wee,
Marshall, and Husain (2011) used a continuous report paradigm—following Bays and Hu-
sain (2009)—to jointly estimate both the storage capacity limitation and the initial rate of
encoding through analysing the variance of a von Mises distribution fit to responses and
centred on target stimulus values (reviewed in §2.3.2). Looking at memory array sizes of
six items, exceeding the putative “slot” account limits of four items, Bays and colleagues
found no hard limit to overall capacity constraints. Instead, they found an interaction
between the rate of encoding and the overall memory load, with the precision at which
observers could estimate the colour of a target stimulus increasing with the memory ar-
ray exposure duration and decreasing with an increase in the number of items to retain,
both well described by a power law relationship: that is, P ∼ x−λ, where P is the preci-
sion of the response, x is either the exposure duration of the stimulus array or the size of
the stimulus array, and λ is an estimated scaling parameter.

2.5 An information limit on short-term memory

The previous two sections characterised two major themes in visual short-term memory
research: capacity limitations in the ability to maintain representations simultaneously;
and, the temporal dynamics of visual short-term memory representations with particu-
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lar attention on the constraints seen in the rate of forming representations from sensory
data. As evinced by the conclusions drawn by Vogel et al. (2006) or Bays, Gorgoraptis, et
al. (2011), these two strands of the literature have been largely seen as reflecting indepen-
dent properties of the memory system: visual information is first subject to a constraint
on the rate of memory formation and then, within memory, subject to overall structural
constraints—either at level of visual items or visual information—of the overall holding
capacity of the memory system.

Recent work, reported by Sewell et al. (2014), has suggested that the initial constraint
on the formation and consolidation of memory representations may also indicate an
overall constraint on the information that can be concurrently sustained within the sys-
tem. Extending the work of Vogel et al. (2006), Sewell and colleagues manipulated both
the exposure duration of a memory array and the number of items within that array.
Rather than using a change detection paradigm, following a large portion of the visual
short-term memory literature, they used a two-choice orthogonal orientation task: ob-
servers were presented with a memory array composed of between one and four hori-
zontally or vertically oriented Gabor patches for a duration of between 50 ms and 200
ms. After the presentation of a high-contrast checkerboard mask, the observer was cued
to a location on the display corresponding to one of the stimuli in the memory array and
required to report on the orientation of that stimulus.

Several design choices distinguished this study from previous work conducted in the
visual short-term memory literature. The use of a two-choice orthogonal orientation
task and Gabor patches as stimuli, rather than coloured squares, followed a precedent
set in the attentional literature (e.g., Carrasco et al., 2000; Lee et al., 1997; Smith & Rat-
cliff, 2004) due to the low-level properties of Gabor patches20. This allows for a precise
characterisation of observer sensitivity without introducing the systematic bias seen in
“yes–no” detection tasks. The information in the display available for the formation of
a memory representation was also controlled. The contrast of the memory array was
presented near the detection threshold, interleaved with dynamic Gaussian noise, and
adjusted such that discrimination performance for the smallest memory array size—one
item in the display—was near chance for the shortest memory array exposure duration
(50 ms) and near ceiling for the longest memory array exposure duration (200 ms). The
usage of a post-stimulus probe to indicate the location of the stimulus to be retrieved
and identified, rather than allowing a decision to be made about all locations in the dis-

20Thomas and Gille (1979) showed that observer performance on orientation discrimination between Ga-
bor patches with greater in angular displacement of about 20◦ angular difference was comparable in
sensitivity to detection of Gabor patches.
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play as done in some change detection tasks, further meant that observer performance
would reflect constraints within the memory system without the contribution of addi-
tional variability as the uncertainty regarding the location of the stimulus with changed
with manipulations of the size of the memory array (Downing, 1988; Shaw, 1982). The
precise control of stimulus contrast, the duration for which the stimulus display was
available, and the control on decision-level uncertainty using the post-stimulus probe
allowed overall inferences about changes in observer performance to be attributed to
differences in the amount of stimulus information relevant to decision-making specifi-
cally 21.

The main finding of Sewell and colleagues was that observer performance as the mem-
ory array size increased could be characterised in terms of a simple relationship:

d′
m = d′

1/
√
m,

where d′ represents the signal detection theory measure of sensitivity (the subscript de-
noting the display size of the sensitivity measure) and m representing the size of the
memory array. That is, the observer sensitivity in discrimination for a display where a
number of items must be maintained is related to the sensitivity when retaining a single
item22. This finding, known as a sample-size relationship (Bonnel & Hafter, 1998; Bonnel
& Miller, 1994; Lindsay, Taylor, & Forbes, 1968; Palmer, 1990; Shaw, 1980; Taylor, Lind-
say, & Forbes, 1967), was unaffected by whether the stimuli in the memory array were
presented simultaneously—as in a standard memory task—or sequentially, where each
item was shown for a time equivalent to the entire array display time in the simultaneous
presentation condition.

The interpretation offered by Sewell and colleagues was that, rather than being a con-
straint on memory formation, as it had been previously interpreted, this performance
constraint was one on the overall rate of information that can be sustained by the visual
short-term memory system. An encoding limitation would predict a decline in perfor-
mance in simultaneous condition, but not in the sequential condition where each item
was available for at least 50 ms (and for as long as 200 ms). This interpretation was fur-

21Smith (1995) andRatcliff andRouder (2000) providedempirical demonstrations from response timemod-
elling that the effective information available for decision-making in simple visual tasks—detection and
discrimination between two letters, respectively—can be described as the integration of stimulus con-
trast with respect to noise over the stimulus presentation time. This finding follows from Bloch’s law,
in which the observer sensitivity for the detection of a stimulus is the product of the intensity of the
stimulus and the duration of stimulus availability (H. G. Sperling & Jolliffe, 1965).

22An equivalent way of expressing this relationship,
∑

i∈1...m

(
d′
i

)2
= c, where c is a constant and the

index i runs across items to the memory display sizem, shows that the sum of squared sensitivities for
a display equals a constant.
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ther demonstrated with a quantitative comparison between a flexible interpretation of
an “all-or-none” account of item formation, where the formation of a memory represen-
tation occurs instantly as a Poisson event (Bundesen, 1987, 1990; Bundesen, Pedersen,
& Larsen, 1984; Townsend, 1972). In almost all cases, quantitative models implementing
the sample size relationship were able to account for the data when compared in terms
of the BIC (Schwarz, 1978). (A sample-size model without any estimated parameters was
also fit and was competitive to a remarkable degree, closely approximating the data.)

This sample-size relationship offers a process interpretation: it is the relationship that
is obtained when normally-distributed information is sampled at a fixed rate, leading
to a square-root improvement in the signal-to-noise ratio. The relationship is, however,
highly restrictive in the behaviour it can predict, and greatly constrains quantitative mod-
els of visual short-term memory dynamics. Smith and Sewell (2013) provided a compre-
hensive model of observer decision-making characteristics, extending the work of Smith
and Ratcliff (2009), in a range of visual tasks such as simple detection, visual search, and
the two-choice orthogonal orientation task of Sewell and colleagues. The model was
based on competitive interactions between representations, modelled using interacting
systems of shunting equations (Ellias & Grossberg, 1975; Grossberg, 1982, 1987, 1988), to
allow a full expression of memory dynamics through time. Recently, Smith, Sewell, and
Lilburn (2015) has demonstrated that these relationships can be obtained from plausi-
ble neural mechanisms, the integration and normalisation of the difference of pairs of
Poisson shot-noise processes, extending a previous result (Smith, 2010). Taken together,
these models provide both an account of response time behaviour in visual short-term
memory tasks, with neurally realisable basis.

The sample-size constraint on information capacity within visual short-term mem-
ory, as well as the findings and methodology of Sewell and colleagues, form the basis
of this thesis. The increased precision in the control of the rate of information avail-
able for the formation of memory representations allowed by a simple two-choice near-
threshold orthogonal orientation discrimination task with post-stimulus probing affords
greater specification between the relationship between observer behaviour the proper-
ties of both the memory system and decisions made on the basis of information taken
from the memory system when compared to high-contrast change detection, where the
quantity of information available is not as tightly controlled. The main subject of the first
part of this thesis will be a more complete characterisation of the differences seen be-
tween change detection tasks and two-choice orthogonal orientation task used by Sewell
and colleagues. The results of this first part will then be used to examine an extension
to the two-choice near-threshold methodology where the observer must discriminate
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between small differences in orientation, allowing characterisation of the precision at
which this information is stored.
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Chapter 3

Change detection and orientation
discrimination: sensitivity

This chapter will examine the relationship between a two-alternative orientation dis-
crimination paradigm and a change detection paradigm. Although these tasks are in-
trinsically related in terms of stimulus presentation and memory retention, they differ
in the decision required. Further defining the requirements of the tasks allows a greater
understanding of how the observed responses relate to the underlying memory repre-
sentations.

The primary focus of the visual short-term memory literature has been on properties
of the memory system, rather than the nature of the tasks used. As outlined in the pre-
ceding review, a large proportion of the literature has focused on the effects of storage
capacity limitations in maintaining multiple representations simultaneously. The prin-
cipal question arising within this research has been on the question of the architecture of
visual short-term memory; specifically, whether visual short-term memory is best char-
acterised as storing visual information at the level of the discrete object, at the informa-
tion below the level of the object (for instance, at the level of individual features), or some
hybrid or hierarchical account (e.g., Brady & Alvarez, 2011; Zhang & Luck, 2008). This
question, despite a large amount of empirical investigation, remains unresolved. Part of
the resolution of this theoretical point will be found in the quantitative specification of
the link between observed data and proposed models of storage.

A common distinction in the division of mental processes is the division between pro-
cesses encoding, maintaining, and operating upon mental representations and those
processes which map internal representations to response categories based on the task
demands. The latter category are known collectively as decision processes, those pro-
0Portions of this chapter have been previously presented at the 2013 Experimental Psychology Confer-
ence held in Adelaide.
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cesses that identify psychological (in our case, perceptual) representations—usually con-
sidered to be a procedure of statistical inference working on representations that fol-
low a known distribution (Luce, 1977). The distinction was foreshadowed in the mental
chronometry work of Donders (1868/1969), and was more fully detailed by Thurstone
(1927) in considering experimental tasks where a simple comparison on some specified
perceptual dimension was required.

Although many theorists consider the processes that might govern the storage and
maintenance of visual short-term memory representations, usually in terms of metaphors
relating to the storage architecture such as the discrete object-based “slot” and the flex-
ibly allocated “resource”, a detailed evaluation of the decisions these tasks require is
often overlooked. (A notable counterexample, however, is given by Wilken & Ma, 2004.)
These considerations may not compromise the overall finding that memory is capac-
ity limited, but might affect the exact degree to which the apparent changes in observer
performance are due to manipulations in display size are attributed to constraints on the
memory system. Work in visual attention supplies a clear example: although orienting
spatial attention improves performance in target detection across many possible loca-
tions (Posner, Snyder, & Davidson, 1980), the full extent to which any enhancement in the
perceptual representation is due to attention can only be examined when the decisional
effects of changing the number of relevant locations—and, thus, the number of potential
independent decisions—is taken into account, either experimentally or through explicit
quantitative modelling (Baldassi & Burr, 2004; Gould, Wolfgang, & Smith, 2007; Palmer,
Verghese, & Pavel, 2000; Shaw, 1982, 1984). In the case of visual short-term memory, the
Pashler–Cowan formulation and the mixture model of continuous report performance
due to Zhang and Luck (2008), for instance, assume a direct equivalence between re-
sponse and representation. Yet, any bias in estimate might be particularly pronounced
given the small number of experimental procedures used in visual short-term memory
work: the change detection paradigm (following Phillips, 1974) and the continuous re-
port paradigm (following Wilken & Ma, 2004) constituting the vast majority of major
work in the field.

A large share of the very recent debate regarding storage capacity has focused on
data obtained using a continuous report procedure. The continuous report task has
grown substantially in popularity, particularly since the work of Zhang and Luck (2008)
and Bays and Husain (2008), due to the conceptual similarity between the stimulus at-
tributes being examined—usually the orientation or colour of an item—and the means
of responding. Descriptions of the connection between the memory representation and
responding have, like change detection, not featured prominently in theoretical discus-
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sion. Two descriptions for the possible relationship between observed patterns of re-
sponding in a continuous report task to an underlying neurally plausible representation
have been provided by Ma (2010) and Bays (2014). These accounts represent perceptual
information stored within visual short-term memory using a common model of neural
action: populations of orientation-specific neurons modelled as point processes emitting
Poisson-distributed spike trains, where the entire rate of population action is controlled
by divisive normalisation (Pouget et al., 2000)1 and, although they have a theoretical
parsimony in identifying neural codings directly with probabilistic memory represen-
tations, the relationship between observable data and the parameters controlling these
representations have not been specified. By way of example, a result by Smith (2016)
showed that, whilst continuous report tasks can be modelled within the context of se-
quential sampling models by using a natural extension of the popular diffusion model
(Ratcliff, 1978) to the circular domain, the exact effect of an experimental procedure on
observed data cannot be fully identified without response time data2.

Although this observation does not preclude a more detailed consideration of the de-
cision properties of the continuous response task, I shall focus largely on the change de-
tection task in this chapter. The benefit of this focus is that, whilst the behavioural char-
acteristics of the continuous report task are still a point of theoretical exploration, there
are several clear decision models for the change detection task (which will be reviewed
in the next section). The analysis of observer behaviour in this task is also aided by
the close correspondence of (near-threshold) change detection task to the experimental
paradigm employed by Sewell et al. (2014), two-choice orthogonal orientation discrimi-
nation. Thus, the aim of the current chapter—and the main focus of this first section of
the thesis—shall be to characterise the decisional properties of change detection with re-
lation to those of orientation discrimination. To this end, the experiments presented are
designed to differ only in the decision asked of the observer, either to report the identity
of a previously presented stimulus or to report the presence of a change between the
memory and probe arrays; the presentation of the memory array and the timing of the
retention interval prior to this decision stage are identical.

The distinguishing feature between orientation discrimination and change detection
is the need to detect a difference between a stored memory representation and current
sensory input. From an intuitive position, it might be expected that observer sensitiv-
ity would be decreased for comparing memory representations to current sensory input

1These models are broadly consistent, albeit differently framed, with work relating to the sample-size
information limit outlined by Smith (2015).

2Specifically, Smith (2016) demonstrated that the effect of response bias has an identical effect on func-
tions of response variability as the effect changing the quality of the memory representation.
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when compared to simply reporting a feature of an array item from memory—as addi-
tional sensory input may compete for representation in the highly limited memory store
and any additional external sensory input would provide an additional source of noise
in the decision-making process. There is reason to believe, however, that perceptual
comparison may occupy a privileged position in the functioning of visual short-term
memory. Hyun et al. (2009) showed an asymmetrical sensitivity for detecting changes:
differences between two sequentially presented arrays were identified with a low error
rate regardless of the number of items to be compared, both when all items changed
or a single item changed, yet the error rate increased substantially over different ar-
ray sizes when observers were required to identify if the arrays were the same when
no item changed. On the basis of electrophysiological correlates of change detection
performance, Hyun and colleagues further argued that covert attention may be auto-
matically drawn to locations where a discrepancy between a memory representation
and the current sensory input is detected. Specifically, they showed that memory load
manipulations in the change detection experiment did not lead to changes in the on-
set of the N2pc component3 in an averaged ERP waveform, previously associated with
shifts in visual attention (Luck, Girelli, McDermott, & Ford, 1997; Luck & Hillyard, 1994a,
1994b). Changes in the onset of the N2pc component have been closely associated with
changes in the timing of attentional orienting (Woodman & Luck, 1999, 2003); the lack
of a change indicating that orienting occurs automatically when changes are present re-
gardless of the size of the display. A change in the latency of the P3 component4, usually
associated with stimulus identification, across different array size conditions was also
found, argued by Hyun and colleagues to be a signature of a subsequent limited-capacity
verification process. In total, they argued that the detection of changes between memory
representations and sensory input is supported an automatic orienting process, unlim-
ited in processing capacity, followed by a limited-capacity identification and verification
process.

This advantage for detecting changes derive from the close connection between visual
short-term memory characteristics and the preservation of perceptual continuity during
saccadic eye movements. Evidence has suggested that visual short-term memory is in-
volved with maintaining information over saccadic eye movements: Irwin and Andrews
(1996) found that individuals could retain three to four items—including colour, iden-
tity, and position—during saccades. Subsequent authors (Currie, McConkie, Carlson-

3A negative deflection in the waveform found around 200 ms after probe array presentation in posterior
cortical regions (over the medial and lateral occipital cortex, and the posterior temporal cortex) con-
tralateral to the presentation of the change.

4A positive deflection in the waveform found around 300 ms after the probe array presentation.
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Radvansky, & Irwin, 2000; McConkie & Currie, 1996) have argued that visual short-term
memory provides the continuity of visual experience over saccades, by retaining infor-
mation about the saccadic target during the eye movements. Henderson and Holling-
worth (2003) demonstrated that whilst change detection performance during saccadic
eye movements was found to be quite poor when the exact identity of a stimulus was
manipulated, the rates of detection when a change deleted the target of a saccade were
very high. Further, Hollingworth, Hyun, and Zhang (2005) showed that deletions be-
tween two subsequently presented arrays of points presented in a grid could be detected
and localised with a high level of reliability, particularly when simple local configura-
tions could be utilised. Hollingworth, Richard, and Luck (2008) also demonstrated that
these memory representations, beyond ensuring phenomenological continuity, may also
mediate the guidance to eye movements to specific targets by correcting any errors in
trajectory by comparing visual information after transit of the eyes.

A favoured sensitivity for detecting discrepancies between stored representation and
the current sensory input has also been shown experimentally. Makovski, Sussman, and
Jiang (2008), in a rare example of a direct comparison between experimental proce-
dures in the visual short-term memory literature, and a close analogue of the current
study, examined observer performance in a colour-based change detection task and a
two-alternative forced-choice (2AFC) task. The structure of the 2AFC task was designed
to closely match the structure of the change detection task: a memory array of three
colour patches—identical to that used in the change detection condition—was displayed
for 500 ms, after which a 1000 ms blank retention interval was shown. In both condi-
tions, a single location was selected as the target: in the 2AFC condition, the observer
was presented with two patches, one corresponding to the colour of the target patch
and a foil alternative; in the change detection condition, all elements other than the tar-
get were removed, and the observer was asked to indicate whether the remaining patch
was identical to that displayed in the memory array5. Using d′ values computed from
the table provided by Hacker and Ratcliff (1979), Makovski and colleagues showed that
observer sensitivity was consistently lower in the 2AFC condition compared with the
change detection condition, regardless of the similarity of the alternatives the presence
of retro-cuing (see §2.4.1), or the probe positioning.

This result was, as noted by Makovski and colleagues, unexpected. The conversion
table provided by Hacker and Ratcliff equates performance from mAFC tasks to perfor-

5Displaying only a single target patch in the probe array during a change detection has been shown to
decrease performance when compared to displaying the entire array (Jiang et al., 2000), although this
does not compromise any of the findings of Makovski et al. (2008).
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Figure 3.1: A comparison between the observed proportion correct obtained for a given sen-
sitivity parameter (d′

a) assuming three different detection models: A) 2AFC dis-
crimination; B) independent observations same–different model; C) χ2 differencing
model. The discrimination and differencingmodels show accuracy predictionswith
different levels of bias (set with the likelihood ratio, denoted β). The independent
observations model shows model predictions under different assumptions of sen-
sitivity during the second covert discrimination (d′

b); the solid line represents dis-
crimination when the sensitivity of the first and second covert discriminations are
equal.
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mance on same–different tasks (a distinction introduced in the next section) in terms of
the bias-free sensitivity and correcting for the difference in the underlying experimental
procedure; as such, it would be expected that, given each decision is operating on the
same memory representation, the sensitivity between decision types would be equal.
Observer performance in terms of the raw proportion of correct trials was reported in an
appendix of the paper to be higher in the 2AFC task in some instances than in the change
detection task, but the direction was not consistent. Such a result is also not compatible
with standard signal detection theory predictions: according to differencing models (the
optimal model of responding in this task; see Dai, Versfeld, & Green, 1996), the propor-
tion of correct trials would be higher in a 2AFC task than a same–different task when
equating for similarity (see Figure 3.1).

One potential resolution for this result may be found with distinguishing between
2AFC in the general psychophysical literature and the task employed by Makovski and
colleagues which shares structural similarities with these tasks. The classical 2AFC task
in the psychophysical literature, following the work regarding comparative judgement
conducted by Thurstone (1927), requires a known stimulus or known stimulus property
(such as colour or pitch) to be identified or compared amongst two (or m in the case
of mAFC) alternatives. (Stimuli might also be presented sequentially, particularly in the
case of aurally presented stimuli, in which case the task would be designated as a two-
interval forced-choice procedure or 2IFC.) In these cases, the stimuli elicit some internal
representation that is then compared against an internal standard, or compared against
each other on a known stimulus dimension.

In the task conducted by Makovski and colleagues, the comparison does not involve an
internal stimulus standard, or comparison on a stimulus dimension, but the comparison
between an internal memory representation against two externally presented stimulus
standards. This task is thus structurally similar to both a 2AFC task in the classical sense
and a change detection (or same–different) task: two alternatives are compared against
an internal representation, but there is no fixed standard or singular dimension that these
external elements are compared to. The decrement in observer sensitivity in the 2AFC
task conducted by Makovski and colleagues may, therefore, be an increase in the noise
of the decision process—much like the role of location uncertainty in detection tasks. As
the number of comparisons to be made increases, the overall error rate also increases as
each independent comparison has some rate of error.

Rather than isolating the process by which discrepancies between the external sensory
input and an internal memory representation are detected, the task used by Makovski
and colleagues doubled the number of change comparisons to be made on each trial,
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making a direct contrast between the tasks difficult. The current study follows from this
previous research, but requires participants to—in the two-choice orientation discrim-
ination task—judge the identity of the memory representation to an internal stimulus
standard, following Sewell, Lilburn, and Smith (2014). The aim of the experiments pre-
sented is to, in the first instance, examine the difference in observer performance charac-
teristics between a near-threshold change detection task and near-threshold orthogonal
orientation discrimination task, where the trials of the two decision types have been de-
signed to share the same timing and display prior to the presentation of the probe array.
These tasks will be examined, in this chapter, with respect to observer sensitivity and
accuracy. This analysis will continue in the next chapter with a consideration of the
response time data.

As detailed in the preceding review, the experiment conducted by Sewell, Lilburn, and
Smith (2014) was theoretically significant as it showed the existence of a limit on the
quantity of information; this limit presenting as a “sample-size” relationship between
the observer sensitivity and the memory array size. The ability to identify this relation-
ship was due, in part to the sensitivity of the experimental design: the use of a task with
a simple, well-specified decision model, the use of simple visual stimuli, and the use
of near-threshold stimuli embedded in dynamic noise to control the rate of available
stimulus information. Although near-threshold change detection using Gabor patches
has been previously conducted (for a review, see Magnussen & Greenlee, 1999), it is un-
clear whether the sample-size relationship would also appear when a change detection
decision rather than an orientation judgement is required. If the change detection is
privileged then the amount of information required to reliably detect changes may be
much less than that required to identify stimuli in orientation discrimination, in which
case the sample-size relationship may not be obtained, indicating that the information
limit on orientation discrimination may not be intrinsic to the memory system—as was
proposed by Sewell and colleagues—but a consequence of the task structure.

The first experiment examines the effect of the memory array size on performance
between differing decision types. The next section will discuss the basic signal detection
theory framework that will be used to analyse the results of the first experiment, after
which the first experiment will be presented.
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3.1 Signal detection theory

3.1 Signal detection theory

Signal detection theory (Green & Swets, 1966; W. W. Peterson et al., 1954) is one of the
most successful theoretical frameworks for examining decision processes in psychology
and builds upon the distinction, given earlier, of distinguishing mental processes that
encode and maintain the representation of a perceptual (or, more generally, psycholog-
ical) signal from those that define the the decision procedure made utilising that signal.
The two decision models deriving from signal detection theory that are relevant to the
examination of the current experiments are those for 2AFC discrimination judgements
and those for same–different judgements. The next section reviews these two models
prior to the presentation of experimental results.

3.1.1 Discrimination judgements

An analysis of the orientation discrimination task in terms of signal detection theory
relies on a conceptualisation of the visual system as a set of parallel detectors (or chan-
nels): selective filters which transduce sensory information into information regarding
the presence of specific feature values (such as a specific orientation) within a region
of the visual field known as the receptive field of the detector (Graham, 1989; Marr,
1982/2010). The use of the Gabor patch as the principal stimulus type in this thesis, and in
the broader visual psychophysical literature, is due to the close correspondence between
the luminance profile of the stimulus and the receptive field profile of orientation-specific
filters located in visual cortex (Daugman, 1980, 1984). This close correspondence is ex-
hibited in the unusual sensitivity of larger (over 20°) discrimination judgements made,
comparable to that of simple detection of the gratings (Thomas & Gille, 1979).

In the orientation discrimination task, it is assumed that each of the stimulus locations
in the memory array is within the receptive fields of a set of orientation-specific detec-
tors. These detectors are generally modelled as recoding orientation-specific informa-
tion in the display by computing the inner products between a set of oriented windowing
functions and luminance information from the retina (Graham, 1989). The role of the de-
cision stage is to map the output of these detectors (or, encoded stimulus intensity) to a
response category (Thomas, 1985).

The model of the decision stage follows from the theory of recognition given by Tan-
ner (1956). Each decision-relevant orientation is represented as a single detector. The
response of two detectors to a presented orientation in an orientation discrimination
judgement might be entirely independent; that is, the difference between the preferred
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Figure 3.2: The geometric relationship between detection and discrimination according to the
theory of recognition due to Tanner (1956). Normal distributions are represented by
concentric circles, representing lines of isoprobability. The distribution centred at
µN represents background noise on two detectors: one for the stimulus attributeA
and one for the attribute B. The distance between µN and µA, d′

A, represents the
ability to detect A in noise (likewise for B). The distance between A and B, d′

A,B,
represents the ability to discriminate betweenA and B.

orientation of each detector is sufficiently large that presentation of one elicits no change
in response in the other detector. In some cases, when using smaller orientation differ-
ences, the responses of detectors may be correlated such that the presentation of a single
orientation changes the response of multiple detectors to varying degrees. Discussion of
these models will be kept for §5.1.2, where data from an experiment employing stimuli
with small angular differences.

For Experiments 1 and 2, the stimuli are horizontally and vertically oriented Gabor
patches. These stimuli are assumed to fall within the receptive field of two independent
detectors that respond with equal sensitivity to their respective Gabor patches. This spe-
cial case provides a simple relationship between observer sensitivity in discriminating
the presence of a stimulus from background noise (detection sensitivity) and the sensi-
tivity in discriminating between the two orientations:

d′
A,B =

√
2d′

A,

where d′
A is the distance between the mean intensity of noise and the mean intensity

of the stimulus signal (this is denoted d′
A, but is equal to d′

B); d′
A,B is the distance be-
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tween the mean response for each of the two detectors.
√
2 advantage of two-alternative

discrimination over simple detection of a stimulus is a consequence of a geometric inter-
pretation of detector responses: if two detectors are of equal sensitivity and statistically
independent of one another, then they can be represented as orthogonal vectors in Eu-
clidean space, scaled in terms of units of standard deviation of the background neural
noise; by Pythagoras’ theorem, the distance between the end of the vectors is then equal
to

√
2 multiplied by the distance of either of the vectors. Figure 3.2 demonstrates this

relationship. The overall sensitivity parameter d′ for two-alternative discrimination is
computed from the observed data using the formula

d′ = 2z [P (C)] ,

where z [·] is the standard normal quantile function (a z-score) and P(C) is the overall
proportion of correct responses.

The use of stimuli presented near the detection threshold means that the intensity of
detector responses to stimuli is not completely separable from the intensity of detec-
tor responses to background noise. As such, there will always be a trade-off between
response categories must be made. These trade-offs are modelled in signal detection
theory more generally as response biases. Although there is no reason, a priori, for ob-
servers to favour one response option over the other in a two-alternative forced choice
procedure, with bias not conventionally modelled in two-alternative forced-choice tasks,
this does not preclude observers from preferring one response option over another. Any
response bias on an individual observer level, however, will likely not be seen when
examining averaged data. Bias is conventionally modelled as the observer setting a cri-
terion value based on the likelihood ratio of detector activation given a stimulus presen-
tation. Optimal responding occurs when the observer selects a likelihood ratio of one;
that is,

ϕA (c)

ϕB (c)
= 1,

where c is a given criterion value (in terms of detector activation), ϕ is the Gaussian
pdf for the detector corresponding to either stimulus category A or B, identified by the
subscript.

3.1.2 Same–different judgements

Unlike two-choice orientation discrimination, there is no single accepted model for change
detection tasks in the signal detection theory literature. Change detection can be mod-

43



Chapter 3 Change detection and orientation discrimination: sensitivity

elled as a “same–different” judgement, where two classes of model are applicable to the
analysis of observer responses: the first is a differencing model, due to Sorkin (1962) fol-
lowing Lamphiear and Birdsall (1960); the second is an independent observations model,
due to Noreen (1981).

Differencing models, when applied to a change detection task, assume that the inten-
sity of the target stimulus in the memory array and the intensity of target stimulus in the
probe array can be combined, and the difference of the two outputs can be compared to
a criterion level to determine a response. The original published model of Sorkin (1962)
presented the differencing model stated in terms of multiple normal distributions repre-
senting the response of a psychophysical detector for stimuli above and below a target
stimulus standard on a given dimension (Sorkin was originally concerned with the au-
ditory psychophysics of frequency discrimination). Two criteria are set below and above
the stimulus standard to represent the differences from the stimulus standard on speci-
fied feature dimension (see Figure 3.3). When these criteria are equal (or when the deci-
sion does not take into account the sign of the difference), the model given by Sorkin—as
he noted and as earlier noted by Lamphiear and Birdsall (1960)—resolves to a discrim-
ination in terms of stimulus energy (squared stimulus intensity) using a non-central χ2

distribution. The historical difficulty of numerically approximating the distribution func-
tion of the non-central χ2 distribution with arbitrary degrees of freedom has meant that
the form using normal distributions has been the more commonplace6.

The logic of the χ2 version of model follows simply from the version with normal dis-
tributions. A χ2 distribution with k degrees of freedom is the sum of k normally dis-
tributed random variables squared. In the case of the conventional central χ2 distribu-
tion, these normal random variables have mean of zero and a standard deviation of one
(i.e., standard normal random variables); in the case of the non-central χ2 distribution,
the mean of the random variables is equal to the non-centrality parameter. The noise
distribution is represented as a central χ2 distribution with a single degree of freedom:
the distribution of the squared difference of a single draw from a standard normal distri-
bution (equivalent to a squared draw from a standard normal distribution), representing
background noise. The signal (change) distribution is represented as a non-central χ2

distribution with a single degree of freedom and a non-centrality parameter equal to the
squared sensitivity, (d′)

2: the distribution of the squared difference of a normally dis-
tributed random variable from a fixed signal of magnitude d′ (equivalent to the sum of

6It is worth noting due to the popularity of the form of the differencing model given by Macmillan and
Creelman (2004), using three normal distributions to determine the predicted hit rate and false alarm
rate, that an apparent error in the formulameans that probability mass is lost in the computation, where
the tails of the probability distributions representing stimuli other than the standard cross both criteria.
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µC − δS µC µC + δS

c− c+

Figure 3.3: The differencing model of Sorkin (1962). Three normal distributions represent in-
tensities elicited for stimuli shown to the observer: a stimulus standard with amean
of µC and two stimuli with an offset of δS on a feature dimension. The two solid lines
either side of the standard are criteria, c− and c+, which represent the difference in
feature dimension from µC before the observer responds that a stimulus is “differ-
ent”. Thehatchedareabetween the criteria represents theprobability of responding
“same”. As the criteria are equally distant from the mean value of the standard, this
decision can be modelled using χ2 distributions.

the signal plus the random variable). The hit rate HR of this version of the differencing
model is, for a given criterion value c and sensitivity value d′,

HR = 1− F
(
c; 1, (d′)

2
)
,

where the two parameters of the non-central χ2 distribution are the degrees of freedom
and non-centrality parameter, respectively. The false alarm rate FA of this version of the
differencing model is

FA = 1− F (c; 1) ,

with only one parameter for the central χ2 distribution, the degrees of freedom. Different
from standard signal detection theory models, c is scaled in terms of energy (squared
stimulus intensity) rather than simply stimulus intensity. This formulation simplifies the
differencing model in the case where signed differences do not matter.

The other class of model of same–different judgement—known as the independent ob-
servations models—does not combine the intensity of the stimuli themselves, but simply
combines the results of two separate decisions made about the stimuli. In effect, the in-
dependent observations model is the product of two covert discrimination judgements
to form a single decision: one discrimination judgement made on the probed represen-
tation encoded from the memory array and one discrimination judgement made on the
probe array; if the result of both decisions is equal, then a response of “same” is elicited,
otherwise a response of “different” is elicited.

Dai, Versfeld, and Green (1996) showed that each of the two classes of model could
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Chapter 3 Change detection and orientation discrimination: sensitivity

be considered as optimal for different regimes of stimulus selection. When stimuli are
sampled uniformly from a fixed set of potential values that can be known exactly by the
observer, there is no correlation between the value of the memory stimulus and the probe
stimulus, and an independent observations model is optimal. In the case where stimuli
are sampled along some dimension and the foil stimuli are defined by some offset of a
stimulus standard, there is a correlation between the value of the memory stimulus and
the probe stimulus, and a differencing model is optimal. Although the former instance
applies to the tasks presented in this thesis, there are reasons why the differencing model
may provide a better account of performance in the specific change detection tasks pre-
sented here over the independent observations model. First, although the set of possible
stimuli is fixed across the entire experiment, any covert decision regarding the identity
of the first set of stimuli in the memory array would have to either be made for each item
in the probe array—implicating some verbal recoding process (contra Pashler, 1988)—or
be delayed until the display of the post-stimulus probe. As there is no evidence of ver-
bal recoding in visual short-term memory experiments with similar duration of stimu-
lus exposure and even longer retention intervals, verbal recoding is somewhat unlikely.
Second, the probe array was presented for an indefinite time period at high contrast,
meaning that—if the observer uses all information available to them—the representation
of the probe should be essentially noiseless. In this case, an independent observations
account would predict exactly the same performance in terms of the raw proportion of
trials correct in the change detection case as the orientation discrimination case: no
additional noise is being added to the decision. Any increment or decrement in perfor-
mance seen in change detection when compared to orientation discrimination means
that some additional source of noise is being added.

In the first experiment presented, the presentation of the memory array is consistent
with respect to timing and stimulus contrast across trials where different types of deci-
sions are required. This allows some basis of comparison between different classes of
signal detection theory model for trials where a change detection decision is required.
As there may be differences in the proportion of correct trials obtained for change de-
tection and orientation discrimination trials, against a strong interpretation of the inde-
pendent observations model, both classes of models will be fit to the change detection
data—along with the standard discrimination model fit to the orientation discrimination
data.
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3.2 Experiment 1

Experiment 1 examined observer performance in change detection when compared to
orientation discrimination across different memory array sizes, and equating the con-
trast at which the memory array is presented.

3.2.1 Method

Participants

Five observers participated in this study: myself (SL), a member of the Vision and Atten-
tion Laboratory (SS), and three paid naïve observers (KT, BF, and DB) from the University
of Melbourne. Each observer, with the exception of myself, was briefed about the general
nature of the study (with the specific predictions regarding the outcome omitted from
this briefing, however) and signed a consent form prior to participation. Each observer
from outside of the laboratory was remunerated AUD $12 for each session completed.

Each observer completed a variable number of practice and calibration sessions, fol-
lowed by five experimental sessions. Practice sessions were undertaken to familiarise
the observers with the task and responding in a timely manner; calibration sessions were
undertaken to control for individual differences in performance over stimulus contrast
settings. All sessions lasted approximately thirty-five minutes each, with regular periods
in between blocks of trials for breaks.

Stimuli

The stimuli used in the memory and probe arrays were oriented Gabor patches: Gaussian
vignetted 3.5 cpd sinusoidal luminance gratings subtending 0.97° of visual angle at half-
height. The form of the Gabor patches was as given by Graham (1989, p. 53). The patches
were oriented either horizontally or vertically and placed on a mean luminance field of
30 cd/m2. Patches could be presented at four locations, diagonally located at a distance
of 2.3° from a central fixation cross subtending 0.29° of visual angle.

Previous research has indicated that, under normal viewing conditions, observers can
encode near-threshold Gabor patches in around 50–60 ms (Liu, Wolfgang, & Smith,
2009; Smith, 2000b, 2010; Smith & Ratcliff, 2004) and that coarse orientation discrimi-
nation sensitivity of Gabor patches is equivalent to that of detection sensitivity (Thomas
& Gille, 1979). To maximise the effect of stimulus duration on memory formation, the pe-
riod required to encode the stimuli was elongated by embedding the stimuli in dynamic
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noise (Ratcliff & Smith, 2010; Sewell et al., 2014; Smith, Ratcliff, & Sewell, 2014). The
noise patches were composed of 4×4 pixel blocks of luminance sampled from a trun-
cated Gaussian distribution with a mean of the background luminance and a variance
scaled to fit within 20% of the entire luminance range of the display. Noise patches were
displayed on alternating frames to the stimulus display during the stimulus display pe-
riod, meaning that each 10 ms of stimulus display was immediately followed by 10 ms
of noise. This approach has been previously reported in the visual short-term memory
literature by Sewell et al. (2014). The backwards (interrupting) masks used to truncate
and disrupt any iconic memory trace were high-contrast checkerboards sized to ensure
that the location of the original stimulus was completely occluded.

In this experiment, the contrast of stimuli was fixed to be equal across different deci-
sion types, and adjusted for each observer during the practice sessions to span as much
of the range of accuracy as possible between both decision types.

Apparatus

Stimuli were generated on a Cambridge Research System ViSaGe framestore and pre-
sented on a gamma-corrected 21” Sony Trinitron Multiscan G520 monitor, running at a
resolution of 1024×768 pixels and driven at 100 Hz (giving a frame duration of 10 ms).
Custom C++ software was used to generate the stimuli, to control trial presentation, and
to receive and record responses. Observers performed the task in a dimly lit observation
booth at a viewing distance of 100 cm. Viewing position was stabilised with a chinrest.

Procedure

A 3×2 within-subjects design was used, composed of three memory set sizes (1, 2, and
4 items) and two decision types (orthogonal orientation discrimination and change de-
tection). Each session of the experiment consisted of 384 trials, yielding a total of 1,920
trials per observer. Trial presentation order of differing memory set size conditions was
randomised within alternating blocks of a single decision type. The decision type of the
first block was also randomly selected prior to each session.

Each trial began with a 1,000 ms uniform field, followed by the presentation of the cen-
tral fixation cross for 1,500 ms. A stimulus array of between one and four orthogonally
oriented Gabor patches was then presented for 150 ms, followed by the presentation of a
high-contrast checkerboard mask in all stimulus locations for 200 ms. A post-mask gap
showing only the fixation cross was then presented for a total of 200 ms.

48



3.2 Experiment 1

Fixation cross (1,500 ms)

Memory array (1–4 items; 150 ms)

Backwards mask (200 ms)

Report cue (OD trials) Probe array (CD trials)

Figure 3.4: A schematic overview of the presentation order in Experiment 1. In both change
detection (CD) and orientation discrimination (OD) trials, a fixation cross, memory
array of between one and four items, and backwards mask are presented. Follow-
ing the presentation of the backwards mask, a report cue is presented, overlaid on
the checkerboard, for orientation discrimination trials; in the change detection tri-
als, a probe array, with a probed stimulus, is displayed. Note: this diagram is not to
scale; Gabor patches and checkerboard masks have been replaced with symbols
for clarity.
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In the orientation discrimination decision condition, the post-mask gap was followed
by the presentation of a report cue, indicating the location in the memory array corre-
sponding to the item the observer was to report the orientation. Responses were entered
via button press and response times were recorded. Observers were instructed to enter
their response as quickly as possible without compromising their accuracy. The report
cue remained on screen until a response was entered, and auditory feedback was pre-
sented to the observer after the response was entered.

In the change detection decision condition, the presentation of the memory array was
identical to the orientation discrimination condition. Following the post-mask gap, the
probe array was presented instead of a report cue. The probe array consisted of oriented
Gabor patches, corresponding to each item in the stimulus array, with one item marked
by a report cue. Each of the items in the probe array not marked by the report cue shared
the orientation with their respective items in the stimulus array; the item marked by the
report cue was either unchanged from the stimulus array, or the orientation changed
(from horizontal to vertical or vice versa). Observers in change detection trials were to
indicate whether any change was detected at the probed location. Like the report cue in
the orientation discrimination condition, the probe array remained on screen until the
observer entered a response. Auditory feedback followed the entry of a response.

3.2.2 Results

For the analysis of sensitivity and accuracy, no data were filtered from the overall dataset.
(Measures of response time obtained in this experiment will be examined in the next
chapter.)

Figure 3.5 shows observer averaged accuracy (the proportion of correct responses) as a
function of the memory array size and the decision type; Figure 3.6 shows these data for
each observer. In all cases, the proportion of correct responses decreases as the memory
size increases, and trials requiring an orientation discrimination decision have a higher
proportion of correct responses than trials requiring a change detection decision.

A mixed-effects logistic regression was used to provide a preliminary analysis of the
data, prior to conducting the signal theory analysis. The logistic regression was con-
ducted on the proportion of correct trials, with the memory array size and decision type
as fixed effects regressors and the observer was treated as a random effect on the in-
tercept. A significant main effect of memory array size on observer accuracy was seen,
β = −0.164, SE = 0.028, p < 0.001, with accuracy decreasing as the memory array size
increased. A significant effect of the decision type on observer accuracy was also ob-
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Figure 3.5: Groupaverageaccuracydata fromExperiment 1acrossdifferentmemory array sizes
and conditioned on the decision type. Error bars represent one standard error of the
mean. CD = change detection; OD = orientation discrimination.
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served, β = 0.270, SE = 0.112, p = 0.016, with the orientation discrimination decision
type being higher in accuracy than change detection. The interaction between mem-
ory array size and decision type on observer accuracy was not significant, β = −0.033,
SE = 0.040, p = 0.408.

The significant difference in the proportion of correct responses between decision
types means that a strong version of the independent observations model is not sup-
ported: as the presentation of the memory array and the timing of the retention interval
were held constant between decision types, the requirement to encode the probe array
in order to make a decision is detrimental to overall performance, despite the fact that
the probe array is available to the observer until a decision is made.

To examine the data in terms of signal detection theory introduced in the previous
section, a set of signal detection theory models was created and fit both to each observer
individually and to group average data created using the mean response proportions
of each individual observer. Each model was fit to both the orientation discrimination
trials and change detection trials jointly, using the two-alternative discrimination model
for the former and either a differencing model or an independent observations model
for the latter. The models fit the response proportions (e.g., the proportion of “Change”
response given a “No Change” trial; the proportion of a “Horizontal” response given a
“Horizontal” target; etc.), rather than the overall proportion correct to provide a more
precise account of the data. A list of each of the different model configuration factors is
listed in Table 3.1.

A set of 72 candidate model configurations using a differencing rule were constructed
for each observer. In models where the sample-size constraint was enforced, a single d′

was estimated for all memory array sizes; where the sample-size constraint was not en-
forced, each memory array size had an estimated d′ term. Response bias could either be
estimated for the orientation discrimination trials (i.e., bias towards responding one ori-
entation over another), change detection trials (i.e., bias either toward responding that a
change was detected or that no change was detected), both types of trial, or neither type
of trial. In the cases where a bias parameter was not estimated, the observer was either
assumed to behave optimally, selecting a criterion level that maximised the proportion
of correct trials for a given decision type (the optimal response strategy); or, the observer
was assumed to set the probability of responding “change” or “no change” to be equal
(the equal response strategy). Last, an optional parameter allowed an increment to the
denominator of the sample-size relation for change detection trials only: either fixed
at zero, one, or freely estimated. This parameter represents an additional load in the
sample-size relationship, due to comparison with an external sensory referent. When
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Table 3.1: Different model configuration factors in the construction of the signal detection the-
ory models for Experiment 1.

Model factor Description Factor levels

CD rule The type of decision rule employed
in change detection trials.

Differencing (the decision of the ob-
server is based on the difference be-
tween the sensory intensity of the
first array and the sensory intensity
of the second array); Independent
observations (the decision of the ob-
server is based on two covert dis-
crimination decisions).

SS constraint Whether the sample-size relation-
ship is enforced, leading to a con-
straint on sensitivity between dif-
ferent memory array sizes.

Yes (sensitivity is constrained to the
sample size relation,

∑
m(d′

m)2 =
const.); No (the effect of memory ar-
ray size on sensitivity is freely esti-
mated).

Denominator Whether an additional item or
items are added to the denomina-
tor of the sample size relationship.

0 (the sample-size relationship is
the same for orientation discrim-
ination and change detection tri-
als); 1 (an additional item is added
to the sample-size relationship in
change detection trials, d′

m =
d′
1/
√
m + 1); Estimated (an addi-

tional estimated constant is added
to the sample-size relationship in
change detection trials, d′

m =
d′
1/
√
m + c).

Bias Whether the response bias of the
observer is freely estimated (either
for both conditions, or for a single
condition) or is set to maximise ac-
curacy.

Both (response bias is freely esti-
mated for both conditions); Orien-
tation (response bias is freely esti-
mated for the orientation discrim-
ination trials); Change (response
bias is freely estimated for the
change detection trials); Equal (the
response bias means that the prob-
ability of responding “change” or
“no change” is equal); Optimal (no
response bias estimated; observer
maximises accuracy).

d′ weight Freely estimated weighting param-
eter added to all sensitivity terms in
change detection (in the case of the
sample-size constraint, this affects
the d′

1 value; without the sample-
size constraint, it weights all esti-
mated terms).

Yes (weight estimated and multi-
plied with change detection sensi-
tivity value); No (no weight esti-
mated).
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fixed at one, this comparison load indicates that the item marked by the post-stimulus
probe is also subject to the competitive interactions governing items within memory
(Sewell et al., 2014; Smith, 2015; Smith et al., 2015); a fixed value of zero indicates no ad-
ditional load; and estimated values greater than one indicate that processing the probe
array places a greater load on memory. All included, the most flexible model with a dif-
ferencing rule tested had eight estimated parameters: four d′ parameters, one for each
memory array size; one d′ weighting for change detection trials; two bias parameters,
one for orientation discrimination trials and one for change detection trials; and an es-
timated additional load parameter. This model was not saturated, given that thirty-two
data points were fit (one for each response alternative, giving a total of 16 degrees of free-
dom). The most constrained model had only a single parameter: a single d′ parameter.

For each memory array size, ad′ value was shared between the orientation discrimina-
tion and change detection trials. In some model configurations, however, an additional
weighting constant was estimated for change detection trials. In these configurations, a
single value a was estimated for all memory array conditions, and multiplied with the
sensitivity of the orientation discrimination trials to allow conversion from the sensitivity
in the discrimination model to the differencing model. When the sample-size relation-
ship was enforced, this weighting affected the numerator of the sample-size relationship,

d′
m,CD =

a · d′
1,OD√
m

,

where the subscript provides the memory array size and the decision type. When the
sample-size relationship was not enforced, the same constant was applied to the esti-
mated sensitivity value for each memory array size,

d′
m,CD = a · d′

m,OD.

Although both change detection and orientation discrimination judgements are based on
the same memory representations, their demand on those representations may differ: it
is possible that a same–different performance requires less overall effective information
from memory representations when compared to orientation discrimination, where an
identification is made. In these cases, the sensitivity of change detection would be higher
than otherwise expected.

A more restricted set of 16 candidate models using an independent observations rule
was created for each observer. In these models, the sensitivity of the first covert decision
was shared with the estimated sensitivity of the orientation discrimination trials. The
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second covert decision was also fixed to be at the same level of sensitivity—despite the
high contrast presentation and indefinite presentation time—but could be changed by an
optional d′ weighting parameter, like in models using the differencing rule. In the inde-
pendent observations rule, this weighting parameter only changes the sensitivity of the
second covert decision, as it is assumed that the first covert decision is identical to the
decision made in the orientation discrimination condition. Like the models using the
differencing rule, the sensitivity of both covert decisions and the orientation discrimi-
nation condition could be forced to conform to the sample-size relation (in which case,
only a single d′ parameter was estimated) or not (meaning all four array sizes had an
estimated d′ value). Response bias was also implemented in the same way as model
configurations using the differencing rules: response bias could either be estimated for
the orientation discrimination trials (which also estimates bias in the first covert deci-
sion in change detection trials); bias could be estimated for the second covert decision
in change detection trials; bias could be estimated for orientation discrimination and
change detection completely; or not estimated at all (in which case, like in the differenc-
ing model, the optimal response strategy is modelled). All included, the most flexible
model with an independent observations model tested had seven estimated parameters:
four d′ parameters, a d′ weighting parameter for change detection trials, and two bias
parameters.

For each candidate model, the best fitting set of parameters were those that minimised
a chi-squared objective function,

χ2 =
∑
i∈C

Ni

∑
j∈R

(pij − πij)
2

πij

,

where the index pair i and j run over the set R of each response type (e.g., responding
“change” given no change) and the set C of each experimental condition (memory array
and decision type pair), Ni is the number of observations in a given experimental condi-
tion, pij is the proportion of observed responses in this cell, πij is the predicted propor-
tion of responses in this cell. The chi-squared objective function was minimised using
the modification provided by Byrd, Lu, Nocedal, and Zhu (1995) of the limited-memory
quasi-Newton method of described by Broyden, Fletcher, Goldfarb, and Shanno inde-
pendently in 1970 (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970), known
as the L-BFGS-B algorithm.

All candidate models were ranked in terms of the Bayesian Information Criterion (BIC;
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Table 3.2: The five best fitting signal detection theory models, in terms of BIC, for the group average data
from Experiment 1. The denominator represents the extra element in the denominator of the
sample-size relation (for differencing models only).

# Model type SS constraint Denominator Bias d′ weight N. pars χ2 BIC

1 Diff. Yes 0 Equal No 1 12.991 20.542

2 Diff. Yes 1 Equal Yes 2 5.516 20.618

3 Ind.Obs. Yes — Optimal Yes 2 7.806 22.917

4 Diff. Yes 0 Equal Yes 2 9.128 24.238

5 Diff. Yes 0 Orientation No 2 10.692 25.826

Notes: SS constraint = Sample size constraint; IO = Independent observations rules; Diff. = Differencing rule;
BIC = Bayesian Information Criterion; N. pars = Number of free parameters.

Schwarz, 1978),
BIC = G2 + k · ln (N) ,

where G2 is the maximum likelihood test, G2 = 2
∑

i∈C Ni

∑
j∈R pij · ln (pij/πij); k is

the number of free parameters; Ni is the number of observations in condition i; and N

is the total number of observations. (The χ2 function was minimised in this case, rather
than G2, as it provided more stable minimisation.) The five best fitting models, in terms
of the lowest BIC values, for the group average data are presented in Table 3.2 and shown
in Tables 3.4–3.8 at the end of the chapter for clarity.

The parameters for each of the best fitting models employing a differencing rule and
the best fitting models employing an independent observations rule are shown for each
observer, in Table 3.9. Note that the best fitting model configuration for the group aver-
age does not have an item increment in the denominator of the sample-size relationship
for change detection trials. This model configuration is marginally better in BIC terms
than a model configuration with the denominator in the sample-size relation, which also
requires the estimation of a d′ weight, but a relatively poorer fit in terms of the goodness-
of-fit statistic. Given the large qualitative difference in the fit, visible in Figures 3.7 and
3.8, and the small difference in the BIC values, the exact rank ordering of the model con-
figurations is spurious. Each model provided predictions for each response outcome,
rather than the overall proportion correct, meaning each observer had 32 data points
rather than 8, giving a total of 16 degrees of freedom. The group average data, aver-
aging over individual observer data, is underdispersed as indicated by the fact that χ2

goodness-of-fit values are smaller than the residual degrees of freedom (the data de-
grees of freedom minus the model degrees of freedom) leading to an overly conservative
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Figure 3.7: Predictions for the second best fitting model, in terms of BIC, to the group average
data. This model uses a differencing rule, adhering to the sample-size constraint,
with the addition of a single item to the denominator of the sample-size relation in
change detection. The dashed lines represent observed data from the experiment,
the solid lines represent the predicted data from the model.

penalisation of free parameters in the computation of the BIC7.

Figure 3.7 shows the predictions of the differencing model where a single item is added
to the denominator of the sample-size relationship in the change detection trials; Figure
3.8 displays the predictions for the model with no denominator in the sample-size rela-
tion. Finally, Figure 3.9 displays the predictions of the best fitting model with an inde-
pendent observations rule against the group average. The parameters for the best fitting
model configurations for each observer are presented at the end of the chapter in Table
3.9.

7Overdispersed data, the more common occurrence, requires a correction to the information criterion
value to appropriately scale the penalty incurred by additional parameters, leading to the QAIC (see
Burnham & Anderson, 2003).
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Figure 3.8: Predictions for the best fitting model, in terms of BIC, to the group average data.
This model uses a differencing rule, adhering to the sample-size constraint, with
nomodification to the denominator of the sample-size relation in change detection.
The dashed lines represent observed data from the experiment, the solid lines rep-
resent the predicted data from the model.
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Figure 3.9: Predictions for the third best fitting model, in terms of BIC, to the group average
data. This model uses an independent observations rule, adhering to the sample-
size constraint. The dashed lines represent observed data from the experiment, the
solid lines represent the predicted data from the model.
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3.2.3 Discussion

The aim of the first experiment was to examine whether observer performance was com-
parable across two different decision types used in the visual short-term memory litera-
ture: two-choice orientation discrimination and change detection. The result obtained—
most clearly seen in the group average data—was that trials requiring a change detection
decision had lower performance in terms of the proportion of correct responses than the
trials requiring an orientation discrimination decision. The similarity in form of the ac-
curacy functions was apparent, although sometimes obscured by noise in the data.

The signal detection theory models using either change detection rule fit well on a
qualitative level, but only when a weighting parameter could be introduced to convert
the sensitivity predicted for the orientation discrimination trials into a sensitivity appro-
priate for the change detection data. Almost all of the best fitting models were those
that employed a differencing rule. Of those models, models of the change detection task
where a single additional item was added to the denominator of the sample-size relation
tended to fare better than those where no additional item was added to the sample-size
relationship. There were two exceptions to this finding: the group average data and ob-
server BF. In the case of the group average data, the model where no additional item was
added to the denominator was only slightly better in terms of BIC than a model where an
additional item was added to the denominator (and the goodness-of-fit statistic without
any penalisation for complexity was better in the latter case). The difference in BIC, how-
ever, was insubstantial: compare a BIC value of 20.542 for the model with no additional
load in the sample size denominator to a BIC value of 20.618 with an additional ele-
ment in the denominator (see Table 3.2). In the case of observer BF, differencing models
with no change to the sample-size relationship accounted for four of the five best fitting
models in terms of BIC.

Each of the best fitting models—regardless of the rule used in the change detection
trials—was constrained by the sample-size relationship, consistent with the result of
Sewell et al. (2014). The success of the sample-size relationship in describing the change
in sensitivity with changes in the memory array size across both types of decision in-
dicates that the information limit described by Sewell and colleagues is not due simply
to a specific task strategy or a byproduct of the decision stage in orientation discrimi-
nation, but fundamental to the memory system itself. This result gives strong support
to the argument that both orientation discrimination and change detect operate on the
same memory representations, but that change detection tasks lead to a higher rate of
errors due to additional complexity in decision procedure.
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Figure 3.10: A comparison between the proportion correct values obtained by the differencing
model (PD(C)) when compared to other models (Px(C)) given the same d′ value.
The solid line represents a comparison of the (χ2) differencing model against an
independent observations model, where the d′ for the first covert discrimination
is equal to the d′ of the second covert discrimination. The dashed line represents
a comparison in proportion correct between the differencing model and a 2AFC
discrimination model. The dotted line on the diagonal shows the identity relation
betweenproportion correct values. Allmodelswere assumedhaveoptimal criteria
values for a given sensitivity value.
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This finding is in contradiction to the assertion of Hyun et al. (2009) that the com-
parison of sensory input to memory representations is unlimited in capacity. There is
some evidence, however, to suggest that the process of detecting discrepancies between
the active memory representation and the sensory input is somewhat privileged when
compared to orientation discrimination, almost all of the better fitting models requiring
the estimated sensitivity for the orientation discrimination condition to be weighted in
the change detection condition such that change detection performance was better than
would otherwise be expected. The size of this weight was more stable between partic-
ipants in models employing the differencing rule, indicating that the change detection
sensitivity is around one and a half times the sensitivity estimate of the orientation dis-
crimination task. The locus of such an advantage is unclear. Although the weighting
on d′ improves change detection performance more than would otherwise be expected
given the level of change detection performance, this was better fit to a multiplicative
weight in the numerator of the sample size relationship (to the d′) rather than an additive
constant to the denominator (to the division ofd′, via an estimated increment to the sam-
ple size relation). This may be due to the fact that less effective information is required
from a visual short-term memory representation to make a same–different judgement,
when compared to a discrimination (or identification) judgement—even though both are
subject to the same overall information limits. Partly, this difference in d′ may also be
contingent on the difference in the mapping of d′ to observed proportion correct be-
tween the three models. Figure 3.10 shows the relationship between proportion correct
estimated by a differencing model against proportion correct estimated from an inde-
pendent observations model and a 2AFC discrimination model given the same d′ value.
(Recall that, in this model fitting procedure, the proportion correct was a byproduct of
the d′, and that conditional response proportions were estimated directly.)

Further exploration of the relationship between these two different tasks, for different
periods of stimulus availability, will be explored in the next section.

3.3 Experiment 2

The similarity in the functional form of observer accuracy data over different memory
array sizes between decision types in the first experiment was evident both at the group
average level and from the lack of a statistically significant interaction between mem-
ory array size and the type of decision required. At the level of individual participants,
however, the relationship between the two tasks was not as evident.

63



Chapter 3 Change detection and orientation discrimination: sensitivity

One key result of the previous experiment was that each type of decision—orientation
discrimination or change detection—appeared to be well described overall by the sample-
size information limit reported by Sewell, Lilburn, and Smith (2014), but that this relation-
ship also required the sensitivity of the change detection task to be higher than would
otherwise be expected on the basis of the sensitivity of the orientation discrimination
task. Further, in many instances the sample-size relationship required the addition of
an extra item to the denominator of the sample-size relationship to account for change
detection results.

The implications of this result in orientation discrimination over different stimulus
exposure conditions for change detection were previously unexplored but, on the basis
of the results of the previous experiment, it was expected that the pattern of results in
change detection would be consistent with those in orientation discrimination. Exper-
iment 2 attempted to characterise the relationship between the two tasks over different
levels of stimulus exposure duration under a larger visual short-term memory load of
four items, where competition would be maximal. Furthermore, as competition between
memory representations appears to be proportional to strength of memory traces, uni-
formly increasing the available information for a change detection decision by increas-
ing the stimulus (memory array) contrast should offset the decrease in overall correct
responses due to the difference in decision procedure. The calibration of stimulus con-
trast in Experiment 2 was, therefore, conducted separately for differing decision types in
attempting to—as far as is possible—equate observer performance.

Sewell, Lilburn, and Smith (2014) argued that the sample-size constraint on informa-
tion was also obtained for different lengths of stimulus exposure. They showed a linear
growth in squared sensitivity with increasing exposure durations, even with sequentially
presented stimuli, and demonstrated that this finding was consistent with the effect of
representations in memory competing for processing or maintenance resources propor-
tional to the strength of the representation even when, at shorter stimulus exposure du-
rations, relatively little information about the stimulus had been encoded (Smith et al.,
2015).

Data from this experiment will also be used for response time analysis, to be reported
in the next chapter.
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3.3 Experiment 2

3.3.1 Method

Participants

The observers in Experiment 2 were the same as those in Experiment 1. Each observer
completed a variable number of practice and calibration sessions, generally more than
those completed for Experiment 1, followed by 15 experimental sessions.

Stimuli and apparatus

The stimuli and apparatus were the same as used in Experiment 1, with the key difference
that the stimulus contrast of the memory array used in the orientation discrimination
trials and the contrast of the memory array used in the change detection trials were
not constrained to be equal. The stimulus contrast was designed to maximise the total
range of observer performance in terms of accuracy as much as possible given the larger
memory array size and the greater range memory array exposure durations.

The stimulus (memory array) contrast was adjusted on an observer-by-observer basis
to attempt to equate performance between the two types of decision required.

Procedure

A 3×2 within-subjects design was used, composed of three memory array exposure du-
rations (100, 150, and 200 ms) and two decision types (orthogonal orientation discrim-
ination and change detection). Each session of the experiment consisted of 432 trials,
yielding a total of 6,480 trials per observer.

The stimulus presentation regime was identical to that of the first experiment, with
the exception that the memory array was always four items (presented diagonally from
the fixation cross) presented for one of the three exposure durations. Additionally, there
were some slight differences in the overall presentation timing when compared to the
first experiment: the fixation cross was presented for 500 ms and the high-contrast back-
wards checkerboard mask was presented for 100 ms. The rest of the timing parameters
were identical to the first experiment.

3.3.2 Results and discussion

As in Experiment 1, no data was filtered from the overall dataset for the analysis of ob-
server accuracy in Experiment 2. Figure 3.11 shows the observer averaged accuracy in
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Chapter 3 Change detection and orientation discrimination: sensitivity

Table 3.3: The mean stimulus (memory array) contrasts for the orientation discrimination (OD)
and change detection (CD) conditions for each observer as a proportion of the total
luminance range (between 0.0 and 1.0).

Observer OD contrast CD contrast

BF 0.274 0.439

DB 0.295 0.304

KT 0.266 0.452

SL 0.197 0.249

SS 0.274 0.397

terms of the proportion of correct responses; Figure 3.12 shows these data for each ob-
server.

Each observer was calibrated on the different decision types independently to equate
the overall proportion of correct responses in the two different types of decision required.
Table 3.3 shows the mean display contrast of the memory array for each observer over
the course of the majority of experimental sessions (small adjustments were made to
observer contrast to offset learning effects during the course of the experiment). In each
case, the contrast of the change detection trials was higher than those of the orientation
discrimination trials to offset the difference in accuracy due to the decision type. This
difference in contrast supports the modelling results of Experiment 1 in showing a lower
sensitivity for change detection decisions when compared to orientation discrimination
decisions. Further, this difference in sensitivity appears to be uniform across different
exposure durations.

To examine whether the change in the proportion of correct responses over stimu-
lus (memory array) exposure durations, a a mixed-effects logistic regression was used.
Like the regression of Experiment 1, the logistic regression here was conducted on the
proportion of correct responses with the stimulus exposure duration and decision type
treated as fixed effects and the individual differences of the observer on the intercept
treated as a random effect. The stimulus exposure duration was scaled to be in units
of seconds, rather than milliseconds, to stabilise estimation of the model parameters.
A significant main effect of stimulus exposure duration on observer accuracy was ob-
served, β = 6.181, SE = 0.370, p < 0.001, with accuracy increasing with increases to
duration that the memory array was visible to the observer. No significant effects were
seen for the effect of decision type on observer accuracy, β = −0.088, SE = 0.081,
p = 0.248, or in the interaction between stimulus exposure duration and the decision
required, β = 0.399, SE = 0.529, p = 0.450.
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Figure 3.11: Group average accuracy data from Experiment 2 across different stimulus (mem-
ory array) exposure durations and conditioned on the decision type. The contrast
of the memory array was adjusted within each decision type condition for each
observer to equate performance. Error bars represent one standard error of the
mean. CD = change detection; OD = orientation discrimination.
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3.4 General discussion

These results are consistent with what would be expected given a single underlying
memory constraint in both orientation discrimination and change detection decisions:
with the addition of greater stimulus information in the change detection task offsetting
the decrease in the overall correct response rate due to the additional noise caused by
the decision procedure, the profile of change in the proportion of correct responses is
identical between tasks.

3.4 General discussion

The aim of the current experiments was to examine the relationship between change de-
tection and two-alternative orthogonal orientation discrimination in terms of observer
accuracy and sensitivity. In both experiments, a clear relationship was found between
the two types of task: the proportion of correct responses for change detection decisions
was lower than that of orientation discrimination decisions when the amount of stimulus
information was equated (i.e., the contrast of the memory array was equal across deci-
sion type conditions), and the overall profile of accuracy was identical across stimulus
exposure durations when the memory array contrast was used to offset the decrement
in accuracy due to the the decision process in change detection.

Modelling of the data obtained in Experiment 1 using different decision rules taken
from signal detection theory indicated that the relationship between memory array size
and observer accuracy was accounted for by the sample size relationship, following the
work of Sewell, Lilburn, and Smith (2014). The best fitting models employed a differenc-
ing rule, rather than the optimal independent observations rule, for change detection
tasks and often included a small increment to the denominator to the sample-size rela-
tion in the change detection indicating that the probe element may have been encoded
to the memory system, competing with representations from the memory array.

Overall, these results contradict the conclusions of Makovski and Jiang (2009) that
observer sensitivity in a two-alternative forced choice task is less than that of a change
detection task. As indicated in the introduction, their result may have been due to the
design of their task, where the two response options were presented after the retention
interval. Each trial, therefore, required two comparisons of the memory array. On the
basis of the current findings, it would be expected that the decrement in sensitivity seen
in the two-alternative forced choice task may have occured due to this additional com-
parison. This, along with the change to the sample-size denominator, also indicates that
the probe array may compete for representational resources in the memory system dur-
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Chapter 3 Change detection and orientation discrimination: sensitivity

ing a change detection decision.

These results have clear implications for work in visual short-term memory attempt-
ing to estimate the storage capacity of the memory system from observer accuracy data
obtained in a change detection experiment. The Pashler–Cowan formula relating ob-
served proportions of hits and false alarms directly to the probability that an item has
been stored in memory does not take into account these interactions between the mem-
ory system and the probe stimulus, nor does it account for the noise of the comparison
process itself, an argument also echoed by Wilken and Ma (2004). As such, capacity
estimates in the change detection literature—based on the Pashler–Cowan formula—
systematically underestimate the capacity of the visual short-term memory system to
represent items simultaneously. Further, the decrement due to the encoding of the probe
array may be contingent on the complexity of the item. Awh, Barton, and Vogel (2007)
argued that an earlier study conducted by Alvarez and Cavanagh (2004), where the com-
plexity of classes of visual items was associated with the number of items of that class
that could be stored in memory, was the result of comparison errors between the mem-
ory representation and probe item. The current results support this argument, indicating
that items in the probe array are subject to the same memory constraints as represen-
tations formed from the memory array. In addition to this support, the current results
suggest a direct means for testing claims regarding errors due to a comparison process
would be to compare mAFC discrimination performance to an equated post-stimulus
probe change detection task, and examining the magnitude of the difference in sensitiv-
ity found between the two tasks.

The current results also potentially implicate contemporary visual short-term mem-
ory work employing a continuous report paradigm. Previous studies have reported that
filled displays during the retention interval can affect observer performance in a change
detection experiment (Makovski & Pertzov, 2015; Makovski, Shim, & Jiang, 2006), in-
dicating that visual short-term memory representations—whilst robust to interruption
masking—may not be impervious to all subsequently presented information. The decre-
ment in performance noted by Makovski and colleagues (2009) for their 2AFC task fur-
ther reinforces this relationship. The more complex responding required by continuous
report tasks, where a stimulus standard is manipulated to recreate a stored perceptual
representation, is difficult to appraise in terms of its effect on the perceptual represen-
tation itself. Further research where joint fitting of continuous report data and data ob-
tained in tasks which require comparison to an internal stimulus standard or a fixed
comparator may be beneficial in further specifying the directionality of the relationship
between representation and response.
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3.4 General discussion

The accuracy data obtained in these experiments represents an important, but incom-
plete, account of responding in these tasks. The response time data obtained in the two
experiments presented in this chapter will be examined in the following chapter, allow-
ing further specification of the decision processes that distinguish orientation discrimi-
nation from change detection from the memory processes that unite these tasks.
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Supplementary tables and figures

Best fitting signal detection theory model fits for individual
observers in Experiment 1.

Tables 3.4–3.8

Best fitting parameters for the top signal detection theory
models for each individual

Table 3.9
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Table 3.4: The five best fitting signal detection theory models, in terms of BIC, for the observer BF in Ex-
periment 1.

# Model type SS constraint Denominator Bias d′ weight N. pars χ2 BIC

1 Diff. Yes 0 Equal No 1 26.124 33.484

2 Diff. Yes 0 Orientation No 2 21.388 36.552

3 Diff. Yes 0 Change No 2 23.081 38.106

4 Diff. Yes 0 Equal Yes 2 24.522 39.086

5 Ind.Obs. Yes — Optimal Yes 2 24.621 39.212

Notes: Following the format of Table 3.2.

Table 3.5: The five best fitting signal detection theory models, in terms of BIC, for the observer DB in Ex-
periment 1.

# Model type SS constraint Denominator Bias d′ weight N. pars χ2 BIC

1 Diff. Yes 1 Both Yes 4 16.572 46.103

2 Diff. Yes 1 Orientation Yes 3 30.671 52.635

3 Diff. Yes Estimated Both Yes 5 15.692 52.816

4 Diff. Yes 0 Both No 3 30.552 53.452

5 Diff. Yes 0 Both Yes 4 24.089 53.873

Notes: Following the format of Table 3.2.

Table 3.6: The five best fitting signal detection theory models, in terms of BIC, for the observer KT in Ex-
periment 1.

# Model type SS constraint Denominator Bias d′ weight N. pars χ2 BIC

1 Diff. Yes 1 Orientation Yes 3 35.705 58.956

2 Diff. Yes 0 Orientation No 2 44.133 59.833

3 Diff. Yes Estimated Orientation Yes 4 34.162 64.988

4 Diff. Yes 0 Orientation Yes 3 42.914 66.131

5 Diff. Yes 1 Orientation No 2 49.94 66.621

Notes: Following the format of Table 3.2.

Table 3.7: The five best fitting signal detection theory models, in terms of BIC, for the observer SL in Ex-
periment 1.

# Model type SS constraint Denominator Bias d′ weight N. pars χ2 BIC

1 Diff. Yes 1 Equal Yes 2 28.173 43.397

2 Ind.Obs. Yes — Optimal Yes 2 30.28 45.021

3 Diff. Yes 0 Equal No 1 38.66 47.6

4 Diff. Yes 0 Equal Yes 2 33.142 48.468

5 Diff. Yes 1 Orientation Yes 3 25.804 49.346

Notes: Following the format of Table 3.2.

74



3.4 General discussion

Table 3.8: The five best fitting signal detection theory models, in terms of BIC, for the observer SS
in Experiment 1.

# Model type SS constraint Denominator Bias d′ weight N. pars χ2 BIC

1 Diff. Yes 1 Both Yes 4 11.028 41.271

2 Diff. Yes Estimated Both Yes 5 9.736 47.506

3 Diff. Yes 0 Both No 3 26.423 48.678

4 Diff. Yes 0 Both Yes 4 19.019 49.255

5 Diff. Yes Estimated Both No 4 26.423 56.237

Notes: Following the format of Table 3.2.
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Table 3.9: Theminimum χ2 parameter estimates for the differencingmodel and independent observations
models that best fit each individual observer.

Differencing rule

Observer d′ d′ weight Orientation β Change β Denominator χ2 BIC

Avg 1.79 1 1 — 0 12.991 20.542

BF 1.728 1 1 — 0 26.124 33.484

SS 1.47 1.667 1.208 1.484 1 11.028 41.271

SL 1.754 1.569 1 — 1 28.173 43.397

DB 1.875 1.555 0.79 1.505 1 16.572 46.103

KT 1.69 1.425 0.794 — 1 35.705 58.956

Independent observations rule

Observer d′ d′ weight Orientation β Change β χ2 BIC

Avg 1.544 2.799 1 1 — 7.806 22.917

BF 1.621 1.79 1 1 — 24.621 39.212

SS 1.519 2.531 1.29 0.091 — 31.535 60.138

SL 1.666 3.537 1 1 — 30.28 45.021

DB 1.774 4.44 0.798 1 — 33.028 54.727

KT 1.694 2.1 0.733 0.135 — 65.235 90.213

Notes: These models are both constrained by the sample-size relation. “Denominator” refers to the addi-
tion to the denominator of the sample-size relation in change detection trials using a differencing rule when
compared to orientation discrimination trials.
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Chapter 4

Change detection and orientation
discrimination: response time

Theoretical treatments of response time have largely been missing in the visual short-
term memory literature. The majority of empirical work examining visual short-term
memory has employed accuracy as the principal dependent variable, usually either in the
dichotomous sense of correct and incorrect responses in a change detection paradigm
or in the continuous sense with reproduction error in continuous report tasks. As out-
lined in the previous chapter, and in the preceding literature review, the main models of
the architecture of memory storage have been inferred, for the most part, from patterns
of observer performance over experimental manipulations of memory load. Any utility
of considering response proportions and response time jointly is often, therefore, over-
looked as accuracy-only models relate changes in observer performance to constraints
on the memory representations directly, without considering the contribution of any in-
tervening decision process.

In the last chapter, I reported the results of two experiments examining the role of the
task structure of observer performance, demonstrating a systematic decrease in observer
accuracy in change detection tasks when compared to a two-alternative orthogonal ori-
entation discrimination task. An analysis of these data in terms of models drawn from
signal detection theory indicated that the decrement in performance in the change de-
tection task was consistent with the cost of an additional item—presumably the probe
item—being stored in memory. The explanation given for these data provided by the
models affirm the idea that decision processes must be considered explicitly in order to
interpret behavioural data. The consideration of response time further specifies this link

0Portions of this chapter have been previously presented at the 2015 AustralasianMathematical Psychol-
ogy Conference held in Shoal Bay.
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between representation and response. This chapter extends the analysis of the experi-
ments presented in the last chapter to investigate the distributions of response time.

The use of response time analysis in examining short-term memory characteristics has
pedigree in experimental psychology: Sternberg (1969) generalised the method of Don-
ders (1868/1969) in describing the retrieval of representations from short-term memory
through the use of mean response times. By observing changes in mean response time
with manipulations in the experimental procedure—for instance, by changing the dis-
criminability of the stimuli or the nature of the response—Sternberg was able to outline
a detailed mechanistic model of short-term memory “scanning”: the cost of memory ac-
cess times. The subsequent investigation of the memory scanning paradigm by Ratcliff
(1978), beyond the level of the mean response time to consider the entire distribution
of response times, allowed even greater detail in providing a theoretical treatment of
memory retrieval and decision-making.

Sequential sampling theories, and the diffusion model in particular, are the basis for
the theoretical treatment of response time distributions in the visual short-term memory
literature and more generally. These models are analogous to a dynamic version of the
models from signal detection theory outlined in the previous chapter (§3.1): the models
assume intrinsic variability (usually attributed to neural noise) in underlying perceptual
representations, and cast the determination of a response from these representations as
a process of statistical inference. In the case of signal detection theory, the perceptual
representations within a single trial are random variables drawn from stationary dis-
tributions, with the distance between the noise distribution and signal distributions (as
well as a criterion value) determining the response probabilities. In the case of sequen-
tial sampling models, the response is determined through a sampling procedure—either
modelled in discrete time or continuous time—where a threshold is met through the in-
tegration of many samples drawn from a distribution. Depending on the assumptions
placed upon the dynamic time course of decision-making in these models, this distribu-
tion can either be stationary (representing a fixed distribution of stimulus information
given a particular experimental condition) or can vary as a function of time (in the case
of models where stimulus information changes dynamically) or as a function of the state
of the decision process (as in the case of modelling a decision as an Ornstein–Uhlenbeck
process; see Smith 2000a). In the current work, I shall be focusing solely on the sim-
plest case, where the distribution of stimulus information is stationary across the course
of the decision process, differing only between experimental manipulations.

The assumption of sampling stimulus information over time in a sequential sampling
decision procedure supplies both the response probabilities—as signal detection theory
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does—and also a distribution over response times. The number of samples taken to reach
a response threshold in the discrete case, or the time taken to reach a threshold if sam-
pling at a continuous rate, is added to a non-decision time component to obtain an over-
all response time.

The joint estimation of response proportions and response times imposes more strin-
gent constraints on the specification of the decision process and on the representations
supporting the decision process, at a level of precision that might otherwise be underde-
termined or non-identifiable at the level of response proportions or mean response times
considered separately. Ratcliff and Rouder (2000) used this additional specificity to dif-
ferentiate between competing accounts of visual short-term dynamics in an examination
of backwards masked two-alternative letter identification. The experimental paradigm
examined was similar to the single item, orientation discrimination conditions of the
first experiment presented in the previous chapter. As only a single item was required
for a response, rather than the post-stimulus probe paradigm I employed in the preced-
ing chapter, any decision about the identity of the stimulus could proceed from the first
moment where stimulus information was physically available. Ratcliff and Rouder con-
sidered two claims about the stability of the perceptual representation underlying the
decision process: the first claim was that the stimulus could be integrated during the ex-
posure duration of the stimulus, but would be lost upon presentation of the backwards
mask (consistent with the findings of early iconic memory and masking research; see,
§2.1); the second claim was that information from the entire stimulus presentation pe-
riod could be integrated, and the amount of integrated information could be retained
after the presentation of the backwards mask. Their application of a modified diffusion
model supported the second account, indicating that the identification was based on
drawing perceptual evidence from a stable representation and implying a role for visual
short-term memory even in a very simple identification task.

Smith et al. (2004) refined this account with a more elaborated form of the diffusion
model. Examining observer sensitivity in cued near-threshold detection, Smith and col-
leagues extended the diffusion model to include both the integrated neural response
from stimulus presentation—as Ratcliff and Rouder had—but also a dynamic attentional
gate on the rate at which information could be extracted from different locations on the
stimulus display. Their finding that observer sensitivity was heightened for cued stim-
uli only when stimuli were backwards masked—known as mask-dependent cuing, was
consistent with predictions of the elaborated diffusion model. Like Ratcliff and Rouder,
Smith and colleagues found evidence for a stable, short-term memory representation
consisting of sensory information—modulated by attentional dynamics—used as evi-
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dence in perceptual decision making.

Both of the studies reported by Ratcliff and Rouder (2000) and Smith, Ratcliff, and
Wolfgang (2004) provide a compelling demonstration with response time modelling
that visual short-term memory representations intercede in quite simple visual tasks,
but do not attempt to specify the storage or architecture characteristics of that memory
store. Subsequent work by Donkin, Nosofsky, Gold, and Shiffrin (2013) used a response
time model related to the diffusion model, known as the linear ballistic accumulator
(LBA; Brown & Heathcote, 2008), to examine performance in a change detection task
replicating that of Rouder et al. (2008). Using two families of response time models,
Donkin and colleagues attempted to distinguish between the predictions of a discrete
item or slot model and the predictions of a resource model. The two families of lin-
ear ballistic accumulator model differed in the manner in which guessing was handled:
in one case, all responses were made on the basis of the accumulation of information
from a stored representation, with the quality of the information stored dependent on
the number of items simultaneously represented within the memory system; in the other
case, responses were either based on a precise memory-based accumulation procedure—
indicating the proper storage of an item—or, if the stimulus probed was not stored in
memory, based on an information-free “guessing” process. The former model was pro-
posed to be analogous to the flexibly divisible resource model of memory, extended to
predict response time distributions; the latter model was fixed such that only a small
number of items could be stored, making the model analogous to a discrete-item slot-
based model. Donkin and colleagues found strong support for the mixture memory–
guess model over a model with continuous degradation of the memory quality, indicat-
ing support for a slot-based model, with some evidence that there may be small changes
in memory quality when comparing displays smaller than the discrete item limit.

The studies examined demonstrate some precedent for looking at response time as a
dependent variable in visual tasks involving memory. In particular, the work of Donkin
and colleagues indicates that a sequential sampling response time model can be applied
to a change detection task—a proposition that is not trivial. Response time models in
the visual domain often deal with speeded responses in perceptual tasks that require
very little in the way of higher order elaboration which might break the nexus between
observed response times and experimental manipulations; examples include response
time modelling of visual detection (Smith, 1995; Smith et al., 2009), brightness discrim-
ination (Ratcliff, 2002; Ratcliff & McKoon, 2007; Ratcliff & Rouder, 1998; Ratcliff, Tha-
par, & McKoon, 2001; Ratcliff, Thapar, & Mckoon, 2003), letter identification (Ratcliff
& Rouder, 2000; Ratcliff & Smith, 2010), and motion discrimination (Mazurek, Roit-
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man, Ditterich, & Shadlen, 2003; Palmer, Huk, & Shadlen, 2005; Ratcliff & McKoon,
2008). Although change detection is a straightforward task, it relies on the construction,
maintenance, and retrieval of a memory representation which may necessitate further
considerations about the application of a response time model. The demonstration by
Donkin and colleagues is that sequential sampling techniques can be applied to change
detection tasks to obtain meaningful conclusions about the structure of the memory rep-
resentation, even at a broad level.

This chapter continues the response time analysis of visual short-term memory tasks
with the consideration of two-choice orientation discrimination and its relationship to
change detection. These response time data are taken from the experiments presented
in the preceding chapter. As was argued in the last chapter, a comparison between the
different types of memory tasks may be illuminating in defining the decision process,
more clearly specifying the way memory representations are involved in the decision
process, and characterising the role of the task demands in the variation observed in the
data. Each experiment will be discussed and analysed in turn in the next two sections.

4.1 Experiment 1

The method and accuracy results for the first experiment are discussed in §3.2.1 and
§3.2.2, respectively. Recall that the intent of the first experiment was to examine the re-
lationship between two different visual memory tasks—orientation discrimination and
change detection—and where the memory array size was manipulated across trials and
the stimulus contrast was fixed to be equal across the two tasks.

4.1.1 Results

For the descriptive statistics shown in this section, no response time data was filtered
from overall dataset. Figure 4.1 shows the mean response time for each decision type
and memory array size condition, averaged across observers; Figure 4.2 shows these
data for each observer separately.

A mixed-effects linear model was conducted to provide a preliminary analysis of the
response time data at the mean level, prior to further analysis at the level of the entire
distribution. The regression was conducted on mean response time as the dependent
variable and, like the analysis reported in §3.2.2, the regression treated the memory array
size and the decision type as fixed effects (change detection treated as a baseline for
the decision type dichotomous variable), with the individual differences of the observer
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Figure 4.1: Group average data fromExperiment 1 across differentmemory array sizes and con-
ditioned on the decision type. Error bars represent one standard error of the mean.
CD = change detection; OD = orientation discrimination.
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Chapter 4 Change detection and orientation discrimination: response time

treated as a random effect on the intercept. A significant main effect of memory array size
on response time (reported in this section in milliseconds) was significant, β = 88.607,
SE = 3.1869, p < 0.001. A significant main effect of the decision type was also seen,
β = −165.727, SE = 14.986, p < 0.001, with the change detection condition slower
than the orientation discrimination condition. No significant interaction was found in
the effect of memory array size and the effect of decision type (with change detection as
a baseline) on response time, β = 9.694, SE = 5.472, p = 0.076.

As is evident from both from Figures 4.1 and 4.2, and from the mixed-effects modelling,
there is a systematic and consistent effect of memory array size and decision type on
mean response time. Most strikingly, change detection decisions seem to add a constant
cost in response time at the mean level. This effect can be seen clearly in the plots for
the kernel density estimate of the probability density function (pdf) for response times,
shown in Figure 4.3. In order to examine this effect more closely, prior to examining
the predictions of a full response time model (the diffusion model), the next section will
examine convolution as a method for providing some relationship between the response
time distributions obtained in either task.

4.1.2 Convolution analysis

A qualitative similarity between the mean response times in the orientation discrimina-
tion task and change detection task over all levels of memory array size can be clearly
seen in the data for all observers. In each case, the mean response time for the change
detection task appears to be a constant time slower—estimated to be approximately 165
ms slower—than the mean response time in the orientation discrimination. A parsimo-
nious explanation for this delay is that an additional stage of processing involving the
encoding and comparison of the probe item in the target location is required prior to
the decision stage when performing in a change detection task, but not in an orienta-
tion discrimination task. This explanation is consistent with the difference in the overall
observer sensitivity between the two tasks, where change detection performance seems
to be incur the storage cost of an additional item—presumably the probe item—when
compared to performance in the orientation discrimination conditions.

A constant additive relationship is apparent quantitatively through the use of the mixed-
effects linear modelling reported in the last section. A relationship is qualitatively appar-
ent in Figure 4.3 for the entire response time distribution. A straightforward quantitative
means of demonstrating this relationship at the level of the distribution, under the as-
sumption that the encoding and comparison of the probe array is an independent pro-
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Figure 4.3: Kernel density estimates for twoobserver response timedistributions inExperiment
1, across different memory array sizes and conditioned on the decision type. The
small lines at the bottom of the chart show the mean response time for each con-
dition. The thicker lines show the orientation discrimination distribution and mean,
the thinner lines show the change detection distribution and mean.
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Chapter 4 Change detection and orientation discrimination: response time

cess, is through the use of convolution.
By convention, response times are thought of in terms of random processes, and as

the final completion time of multiple mental subprocesses, each of which can itself be
represented as a random process (Luce, 1986; Townsend & Ashby, 1983). When these
subprocesses are mutually exhaustive and independent, the overall response time can be
decomposed as the summation of a number of random variates, each representing the
duration of each subprocess. The assumption of independence simplifies this decompo-
sition. In particular, the pdf of the sum of independent random variables is equal to the
convolution of each pdf for the constitutive processes; that is, assuming A and B are ran-
dom variables—representing the finishing time of two psychological subprocesses—and
pA and pB are their respective density functions, the pdf for the overall response time
(pR) will be equal to

pR = pA ∗ pB,

where ∗ denotes the convolution operation. The process of deconvolution allows the ex-
traction of one component density function using the density functions of the summed
process and the remaining consitutive processes1. For simplicity, we shall call the dis-
tribution that is assumed to be the product of the entire set of psychological processes
under examination the composite distribution and we shall call the distribution assumed
to contain a subset of the psychological processes under examination the component
distribution.

The convolution and deconvolution of two signals—probability distributions or otherwise—
are computed numerically using the discrete Fourier transform. The convolution the-
orem states that given two functions over time2 t, f(t) and g(t), and their respective
Fourier transforms, F (f) and F (g), the convolution of the two functions can be found
by the pointwise product of their Fourier transforms,

(f ∗ g) ∝ F−1 [F (f) · F (g)] ,

denoting the inverse Fourier transform as F−1 (Kreyszig, 2011, pp. 574–575). The con-
stant of proportionality depends on the normalisation constant of the Fourier transform
and, in the case of probability distributions, simply requires the convolved distribution,
f ∗ g, to be renormalised to unity.

1Amoremodern technique, oftenused in imageandaudio signal analysis, knownas “blinddeconvolution”
does not require any of the original constitutive components, but employs the maximum likelihood or
Bayesian estimation of theoretically plausible selected kernel functions specified a priori to recover the
original signal, somewhat similar to the technique given below.

2The argument t is omitted subsequently for clarity.
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In practice, the deconvolution from empirical response time data is hampered by noise
in both the composite and component density functions used, and by the truncation
caused by floating point representations (Smith, 1990). These problems can be amelio-
rated by use of a lowpass filter, using a standard window function, or by convolving a
theoretically plausible response time distribution specified a priori to the empirical com-
ponent distribution to obtain a prediction of the composite distribution. The remainder
of this chapter will focus on the latter approach. I refer to the plausible distribution
as the model distribution. By adjusting parameters such as the location (mean) of the
model distribution, convolving the model distribution with the component distribution,
and comparing the resulting convolved distribution against the composite distribution,
a close approximation of deconvolution can be achieved without the problems of arti-
facts due to noise and a loss of precision in the measurements. This does not obviate the
problem of model mimicry, raised by Sheu and Ratcliff (1995), but does provide prelim-
inary evidence of a simple relationship between the experimental conditions prior to a
more comprehensive analysis.

The method of deconvolution is as follows. First, after incorrect responses were filtered
from the dataset, a kernel density estimate of the component distribution is obtained. A
Gaussian kernel was used in the current analysis, as the derivative of the kernel was
smoother approaching zero than other common kernel selections such as a rectangu-
lar function or the Epanechnikov kernel. The bandwidth of the kernel was scaled such
that the standard deviation of the Gaussian function was fifty milliseconds, providing a
good trade-off between finer detail and a smooth overall distribution. The kernel density
estimate of the component distribution was then convolved with a model distribution.
Different functional forms of the model distribution were used: a delta function, a Gaus-
sian distribution, an exponential distribution, and a uniform distribution. Apart from
the delta function, these distributions had two parameters: a location parameter (trans-
lation across the time axis) and a scale parameter (a dispersion or variance parameter);
the delta function only possesses a non-negative location parameter.

These particular functional forms were selected both due to their use in the response
time modelling literature (for an extensive review, see Luce, 1986) and due to their dis-
tinct functional forms. The Gaussian distribution is obtained as the distribution for a
sum of independent and (nearly) identically distributed random processes; the exponen-
tial distribution represents a psychological process in which the chance of a still-active
process finishing in the next moment is always a constant (that is, an exponential distri-
bution has a constant hazard function); the uniform distribution indicates equal prob-
abilities of a psychological process finishing between two times; and a delta function
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Chapter 4 Change detection and orientation discrimination: response time

Figure 4.4: The different forms of the model distributions used in the convolutional analysis: a)
a Gaussian distribution; b) an exponential distribution; c) a uniformdistribution; and,
d) a delta function.

indicates that the process linking the two distributions is invariant across all trials (that
is, the process completes in constant time).

After the component distribution was convolved with the model distribution, the re-
sulting distribution was compared with the empirical composite distribution by first con-
structing bins from twenty-five quantiles equally spaced between probabilities of 0.01
and 0.99. The number of observed response times within these bins was compared with
the number of predicted response times according to the convolved distribution using
bins with the same bin edges (that is, the same response times). A goodness-of-fit statis-
tic, G2 was computed between the number of predicted observations within each bin
against the number of empirical observations within each bin:

G2 = 2
∑
i

∑
j

Nij

∑
k

pijk · ln
pijk

πijk

,

where i indexes the decision type condition, j indexes the memory array size condition,
k indexes the bin, Nij is the total number of observations in the specified condition, pijk

is the proportion of observed change detection observations in a given bin, πijk is the
proportion of predicted change detection observations within a given bin. The location
and scale parameters of the model distribution were then iteratively adjusted by mini-
mizing the objective function using the Nelder–Mead simplex method (Nelder & Mead,
1965) to obtain an estimate of the maximum likelihood parameter set. The information
criterion BIC was then computed for the best fitting parameter set BIC = G2 + k ln (N),
where k is number of parameters to construct the model distribution (one in the case of
the delta function, two in the other cases) and N is the number of total observations for
the observer.

Table 4.1 shows the goodness-of-fit statistics in terms of G2 and BIC for each distri-
bution type and each observer. In examining the G2 and BIC results across different
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Table 4.1: Goodness-of-fit and information criteria statistics for the convolution analysis of Ex-
periment 1, conditioned on observer and on distribution type.

Gaussian Delta Uniform Exponential

Observer G2 BIC G2 BIC G2 BIC G2 BIC

BF 229.773 244.098 230.087 237.249 229.71 244.035 230.005 244.33

DB 194.745 209.19 204.08 211.303 193.271 207.717 148.091 162.536

KT 145.058 159.428 198.284 205.469 150.887 165.258 141.682 156.053

SL 203.552 218.335 209.853 217.245 203.774 218.557 201.166 215.949

SS 190.149 204.47 190.07 197.23 190.15 204.47 190.15 204.47

distributions within the results of each observer, the difference between the goodness-
of-fit statistics is rarely large. For observers DB, KT, and SL, an exponential distribution
convolved with the orientation discrimination distribution to estimate the change detec-
tion response time distribution produces the lowest overall BIC. For observers BF and SS,
the delta function produces the lowest overall BIC; that is, the best fitting solution when
corrected for complexity is simply shifting the orientation discrimination function to be
slower in time. As convolution with the delta function and convolution with any of the
other distributions only differs by a single parameter in terms of the model complexity,
the penalty imposed by the BIC is not severe. Given that the two winning convolving
functions were the exponential distribution, where shorter times for the completion of
the comparison process are more probable than longer completion times, and the delta
function, where all comparison processes take the same length of time, it is reasonable
to conclude that the speed of encoding and comparing the probe array with the mem-
ory array is relatively invariant and other factors, including the decision time from that
compared representation, form the majority of the variance seen in the response time
distribution.

Figures 4.5–4.9 show the density estimates of both the observed orientation discrim-
ination and change detection response time distributions and the result of the convolu-
tion with the delta function and with the best-fitting exponential distribution. Table 4.2
shows the maximum likelihood parameters for the both the delta function and exponen-
tial distribution models by observer. Note that, in the case of BF and SS, the dispersion
parameter of the exponential distribution is small, meaning that the best fitting expo-
nential distribution approximates the delta function (the delta function is obtained as
the limit of the exponential distribution as the dispersion parameter approaches zero).
This is consistent with the BIC rankings and the minor contribution of the comparison
process to the overall variance in the response time distributions. I will elaborate upon
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Chapter 4 Change detection and orientation discrimination: response time

Table 4.2: Themaximum likelihood parameters for the convolution analysis of Experiment 1 for
the exponential and delta convolving functions, displayed by observer. The exponen-
tial function has both a dispersion parameter (also called a variance or scale param-
eter) and an offset parameter (also called a mean or location parameter). The delta
function only has an offset parameter.

Delta Exponential

Observer Offset Dispersion Offset

BF 161.868 13.63 147.157

DB 186.094 97.676 107.159

KT 122.16 109.332 39.412

SL 188.146 44.531 148.759

SS 129.032 0.014 128.394

these using diffusion modelling in the next section.
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Figure 4.5: The results of convolving a delta function (left panels) and an exponential distribu-
tion (right panels) with kernel density estimate of the correct trials in orientation dis-
crimination conditions—shown by the thin unbroken line—in order to obtain a fit to
the density estimate of the correct trials in the change detection condition—shown
by the dashed line. The result of the convolution is shown with the thick unbroken
line. The data shown above are for observer BF in Experiment 1. 91
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Figure 4.6: The results of the convolution analysis using a delta function (left panels) and an
exponential distribution (right panels). The data shown above are for observer DB
in Experiment 1, following the format of Figure 4.5.
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Figure 4.7: The results of the convolution analysis using a delta function (left panels) and an
exponential distribution (right panels). The data shown above are for observer KT in
Experiment 1, following the format of Figure 4.5.
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Figure 4.8: The results of the convolution analysis using a delta function (left panels) and an
exponential distribution (right panels). The data shown above are for observer SL in
Experiment 1, following the format of Figure 4.5.
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Figure 4.9: The results of the convolution analysis using a delta function (left panels) and an
exponential distribution (right panels). The data shown above are for observer SS in
Experiment 1, following the format of Figure 4.5.
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4.1.3 Diffusion model

The deconvolution results presented above provide a preliminary analysis of the en-
tire response time distributions obtained in Experiment 1. Although these results show
clear evidence that the distributions obtained in the change detection conditions can be
thought of as being the product of all of the processes present in the orientation discrim-
ination condition plus an additional comparison or probe array processing component,
the analysis itself does not provide any insight into the nature of the processes present
in the orientation discrimination distribution or the additional processes present in the
change detection condition, other than their existence. In order to provide a more ex-
tensive theoretical treatment, additional assumptions are required.

One of the most successful and widely applied approaches to the joint analysis of re-
sponse time distributions with response probabilities is the diffusion model due to Rat-
cliff (1978). The diffusion model is a member of a larger class of sequential-sampling
decision models. These models assume that a decision process draws samples over time
from perceptual (or other mental) representations, using each sample drawn to incre-
mentally move towards a final decision, each sample taken building upon the accumu-
lated evidence to that point. Evidence is sampled until there is sufficient evidence to ex-
ecute a response with the determination of what constitutes sufficient evidence differing
between classes of models: in some (accumulator) models, such as the LBA mentioned in
the introduction, evidence is accumulated independently for different response options
until the absolute level of evidence for one option reaches a threshold; in other models,
such as the diffusion model, a response is executed when the balance of evidence favours
one alternative over the others 3. The threshold which defines the amount of informa-
tion, either in absolute terms or relative terms, required to complete the decision and
execute the response is known as the decision or absorbing boundary.

In the case of a judgement between two alternatives, as in the standard diffusion
model, the decision can be thought of as point progressing leftward on the half-plane
at a constant rate, buffeted up and down by random perturbations, until reaching a de-
cision boundary running parallel to the direction of time4 (see Figure 4.10). The distance
between the point at which the decision starts and a decision boundary represents the
amount of evidence for a response alternative required before a response is initiated,

3There are somemodels that attempt a balance of the two approaches, as in the case of the leaky compet-
ing accumulator model of Usher and McClelland (2001), where negative interaction between the two
accumulators means that, although independently modelled, the balance of information also affects
the time taken to reach a decision.

4Some versions of the diffusion model allow non-parallel decision boundaries, allowing time-dependent
changes in the amount of information required to make a decision.
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Figure 4.10: A schematic of the parameters controlling the diffusion model. Evidence for an al-
ternative (in this case, the correct response option) is accumulated through time,
with an average level of accumulation defined by a drift rate drawn for each trial
from a normal distribution with mean ν and standard deviation η. This accumula-
tion is subject to moment-by-moment variability which is normally distributed, as
seen by the perturbations in the sample path. This parameter is not independently
identifiable and is usually assigned an arbitrary value which is treated as the fun-
damental scaling parameter for the model. In this thesis, I have set it to unity. The
decision process is terminated when the amount of evidence reaches one of the
two absorbing barriers, separated by a distance denoted a. The component of the
response timedue to processes outside of themain decision process is accounted
for by a uniform distribution with mean time T and range sT , which is added to the
time of the completion of the decision process.

97
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allowing a sequential sampling model to account for the speed–accuracy trade-off: the
larger the distance, the more information required to initiate a response, but the slower
the decision will take on average. The position of the starting point of the evidence accu-
mulation process relative to the boundaries defines the response bias: if the start point
is closer to one boundary, this response alternative will be favoured over the other than
would otherwise be the case, representating a bias in the initial balance of evidnece; if
the start point is equally distant from both boundaries, no response alternative will be
preferred, the initial balance of evidence favours no response alternative. In some ver-
sions of sequential sampling models, random variation in the exact starting point of the
decision is also modelled, allowing for “fast errors”, although this modification will be
omitted in this thesis.

Different sequential sampling models of decision-making also vary on the presence
and characteristics of variability in the sampling process. In the case of the diffusion
model, this incremental sampling of evidence occurs continuously through time, rather
than in discrete steps, and the information sampled from the perceptual representation
is assumed to be perturbed by Gaussian distributed noise. In this way, it is analogous
to a continuous time version of the signal detection theory models discussed in the last
chapter, and the application of the diffusion model in this chapter building upon the sig-
nal detection theory models of the last chapter will further demonstrate that connection.
The magnitude of evidence against the magnitude of the background noise is analogous
to the sensitivity parameter, d′, in representing overall stimulus discriminability. Unlike
the signal detection theory model, however, the magnitude of the evidence can differ on
a trial-by-trial basis, drawn from a Gaussian distribution itself.

For this thesis, I consider a two-alternative version of the diffusion model which does
not model response bias. In this model, the decision process begins between two bound-
aries of equal distance away from the start point. This decision process is modelled us-
ing five parameters. The first parameter, the drift rate denoted ν, is the mean level of
evidence (scaled in terms of standard deviations of the within-trial noise) favouring the
correct response alternative: a drift rate of zero indicates no useful stimulus information
and will result in equal response probabilities for correct responses and errors; larger
values indicate a higher level of stimulus information, leading to greater accuracy pre-
dicted. The second parameter, drift variability denoted η, is the standard deviation of the
distribution from which the individual drift rates for each trial are drawn from, with a
drift variability of zero indicating the same drift rate is used in each trial. Note that this is
different from the diffusion coefficient, denoted σ, which is the within-trial variability in
the accumulation of evidence. For identifiability, this coefficient is fixed to one. The third
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Figure 4.11: The construction of a quantile–probability plot (QPP). Given two responses, la-
belledA and B, the response time density functions (shown on the left hand side)
are divided into prespecified quantiles (in this thesis, following convention, these
quantiles are the 10th, 30th, 50th, 70th, and 90th percentiles). These quantiles
are then plotted on the y-axis of a scatterplot, shown on the right hand side of the
above figure, using the overall proportion of the response as the value on the x-
axis. This shows both accuracy and response time distributional data clearly and
compactly: both themoments of a response time distribution, the relative position
of that distribution to other distributions in time, and the corresponding response
proportion can easily be read from the diagram.

parameter indicates the distance between the decision boundaries, denoted a, defining
the amount of information required to complete the decision and initiate a response.
The fourth and fifth parameters are the mean nondecision time and the nondecision
time range, denoted T (often Ter in the literature) and sT respectively. These parameters
control the additional time added to the completion time of the decision process to ac-
count for nondecision time in the final response time, such as the time taken to encode
the stimulus and the time taken to execute a response.

By constraining different sets of these parameters to vary with the experimental ma-
nipulations, different interpretations can be given to the relationship between the experi-
ment and the modelled decision process. For instance, if the drift rate, ν, is constrained to
be equal between the two decision type conditions in estimating the current experiment,
this indicates that—whilst the response proportions or response times might be different
between the decision type conditions—the amount of effective information available to
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Chapter 4 Change detection and orientation discrimination: response time

the decision process was assumed to be equal. In this chapter, a series of models will be
fit to the experimental data—by observer, with the inclusion of group average data—and
their goodness-of-fit will be compared using the BIC to account for differences in model
complexity. To fit the diffusion model, I will employ the chi-squared method (e.g., Rat-
cliff & Smith, 2004) of comparing model predictions of binned data to actual quantile
data (at the 10th, 30th, 50th, 70th, and 90th quantiles, following convention), similar to
the method used to fit the convolution results in the section above. Rather than minimis-
ing the chi-squared objective function, the G2 function was used—like that used in the
convolution analysis. Additionally, also like the preceding analysis, the Nelder–Mead
simplex procedure was used to iteratively minimize the objective function. Unlike the
mixed-effects model and convolution analysis, however, response time outliers were re-
moved: trials with responses entered under 100 ms or over 2,750 ms were filtered out,
less than 0.3% of the total dataset.

In fitting the current experiment, several modifications to the standard diffusion model
had to be made. One notable aspect of each experiment presented in this thesis—as well
as the experiment previously reported by Sewell, Lilburn, and Smith (2014)—is that in-
correct responses appear to be substantially slower than correct responses even at the
smallest quantiles, seen as a “bowing” of the 0.1 quantile (the 10th percentile) known as
“leading edge” of the quantile–probability plot (or QPP; see Figure 4.11). Although bow-
ing in the response time quantiles for incorrect responses is often seen in later quan-
tiles, the leading edge of a QPP is often flat, indicating a consistency in the speed of
the fastest responses regardless of many different types of experimental manipulation,
such as stimulus contrast or stimulus exposure duration (see, however, Smith et al.,
2014). Across visual short-term memory conditions, however, a difference in the leading
edge can be seen between correct and incorrect responses. Although Ratcliff and Smith
(2010) reported a bowing in the leading edge across experimental conditions when sim-
ple stimuli (letters) were presented in dynamic noise—like the stimuli used in the current
experiments—the bowing occurred between discriminability conditions, rather than be-
tween the response outcomes (i.e., correct and incorrect responses). It is unlikely that
such a difference in early responding could be caused by a difference in response bias
between correct and incorrect responses, as this would indicate at least some insight by
an observer into the accuracy of a decision prior to response entry.

One alternative explanation is that, in addition to the relatively fast and accurate mem-
ory retrieval process modelled by the main diffusion process, a secondary intrusion pro-
cess models the possibility of sampling from an uncued item (i.e., stimulus information
that does not correspond to the location of the probe). This is modelled as a separate dif-
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fusion process with a non-positive (zero or negative) drift rate, denoted να; an additional
time component, denoted Tα, added to the main nondecision time component; and is
combined with the main diffusion process using a intrusion parameter, α. This intrusion
parameter α differs from the actual mixture probability in that the probability of sam-
pling from an uncued location changes with the size of the memory array. Assuming that
the chance of an unprobed item intruding into the decision process is uniform and that
only items which differ from the target identity are sampled from, then the probability
of sampling an uncued item u in an m item display is

P(um) =
∑
i<m

α ·
(

i

m

)
·
(
m− 1

i

)
pi(1− p)m−i−1,

where p is the probability of a stimulus with a different identity than that of the target (for
instance, the probability of a horizontal item when the target is vertical or vice versa). In
the current experiment, each orientation is equally probable, so p is set to 1

2
. This means

that the intrusion process represents the delaying sampling of stimuli with conflicting
identities to the target. A similar mixture process was used by Sewell, Lilburn, and Smith
(in press) to allow for “delayed guessing”: in that instance, the intrusion rate was identical
to the mixture proportion of the guess process and the drift rate of the guess process was
fixed at zero. In the current experiment, when the intrusion drift rate is estimated to be
zero, the model predicts a proportion of delayed guessing like that used by Sewell and
colleagues, except the mixture probability changes as a function of the memory array
size.

The introduction of an intrusion diffusion process allows the prediction of asymmet-
rical response time distributions across response outcomes: where incorrect responses
are slower than correct responses even at the earliest quantiles, consistent with the cur-
rent data (see Figure 4.12).

In addition to the modification of the diffusion process to include the possibility of
unprobed stimulus information intruding into a decision, additional modifications of
the diffusion process can be made on the basis of the signal detection theory modelling
presented in the previous chapter. The change in performance across different memory
array size conditions in both the orientation discrimination and the change detection
trials adhered closely to the predictions of the sample size relationship, where observer
sensitivity given a display of m items decreased by the square root of the number of
items d′

m =
d′

1√
m

. This relationship—as a limit on the effective information available to
the decision process—corresponds directly to a constraint on the drift rate ν for an m
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Figure 4.12: Differences in the leading edge of the response time distributions between stan-
dard diffusion model predictions (in the left hand panel denoted “A”) and the dif-
fusion model with a negative intrusion process (in the right hand panel denoted
“B”). Note the exaggerated asymmetry in the leading edge between correct and
incorrect responses (the left hand and right hand side of the quantile closest to
the bottom of the figure) for the diffusion model with the intrusion process.
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Table 4.3: A list of the parameters controlling the extended form of the diffusion model, with an
additional intrusion process, presented in this chapter.

Symbol Name Description

ν Drift rate The average quality of stimulus information used to drive
the decision process, where larger positive values indicate
stronger evidence accumulated toward a correct response
outcome and negative values indicate evidence accumu-
lated towards an incorrect response outcome.

η Drift variability The standard deviation in the distribution describing trial-
by-trial variability in the drift rate.

a Boundary separation The distance between the two response boundaries, repre-
senting the amount of evidence required to initiate a re-
sponse.

T Nondecision time The minimum time added to the decision process to account
for the contribution of nondecision processes (encoding and
responding) in the overall response time.

sT Nondecision time range The range of times for the completion of nondecision pro-
cesses.

α Intrusion rate A weight to determine the probability of information being
sampled from non-probed stimulus information.

Tα Intrusion time The additional nondecision time incurred by the accessing
of non-probed stimulus information.

να Intrusion drift The quality of evidence derived from non-probed stimuli.
This parameter is constrained to be non-positive, meaning
that information must be either contributing towards incor-
rect decisions or represent (zero drift) noise.

item display,
νm =

ν1√
m

.

The signal detection theory model comparison in the last chapter also indicated that
the decrement in observer sensitivity in change detection trials when compared to ori-
entation discrimination trials is well captured by an increment in the denominator of
the sample size relationship to reflect the additional load of the probe item. This last
assumption will be one factor in the many configurations tested.

In all, fifty-two different model configurations were examined for each of the five ob-
servers and for the group average (denoted “Avg” in tables and charts). These configu-
rations differed in the number and types of constraints placed upon parameters, and in
whether an increment was added to the denominator of the sample size relationship in
change detection trials. The large number of the diffusion model configurations tested
necessitates a naming system to distinguish between different parameterisations of the

103



Chapter 4 Change detection and orientation discrimination: response time

model. In each model, each of the main parameters (see Table 4.3) is estimated for all
experimental conditions (that is, for every trial regardless of the memory array size or
the decision type) unless otherwise specified. Parameters which are estimated for each
condition are not listed in the model name. Parameters which are listed in the model
name are adjusted independently depending on the condition. Parameters with a su-
perscript s are estimated separately for each memory array size condition, parameters
with a superscript t are estimated for each decision type condition. By way of example,
a model with ηt in the name indicates that the value for the trial-to-trial drift variability
in the orientation discrimination condition is separate to the drift variability value for
change detection trials, but within a decision type all of the drift variability values are
the same. Parameters with the superscript ∗ are estimated for each experimental con-
dition (for each level of the memory array size and each decision type), giving a total of
eight parameters. The exception to this is the drift rate which may be estimated across
trial types, but cannot be separately estimated across memory array conditions, given
the sample size constraint.

In addition to the parameter constraints in the model name, the presence of the string
“–CD+–” in the name indicates that an extra item has been added to the denominator
of the sample size relation in change detection trials, following the findings of the last
chapter. For clarity, the name of each model configuration is prefixed with the string
“MOD–” to indicate that it is a model name.

Of the fifty-two model configurations tested, the top five for each observer, as ranked
by BIC, are presented in Table 4.4 for the group average data and in Tables 4.8–4.12 for
each individual observer. The tables for individual observers are presented at the end of
the chapter for clarity. For three of the five observers, and for the group average data, the
best fitting model in terms of BIC has the configuration MOD–CD+–T∗: where drift, drift
variability, boundary separation, nondecision time variability, the intrusion rate, the in-
trusion time, and the intrusion drift are all kept equal across experimental conditions,
and a nondecision time value is estimated for each experimental condition. This model
configuration also includes an additional item within the denominator of the sample
size relationship for change detection trials, consistent with the findings of the previous
chapter. The number of nondecision time values estimated (eight values in total with one
for each experimental condition), although high as a proportion of the total number of
estimated values, is also justifiable: the convolutional analysis presented above provides
clear evidence that the response time distributions of the change detection and orien-
tation discrimination trials are related by a constant, consistent with an additional non-
decision time component. Sewell, Lilburn, and Smith (in press) also reported that, when
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Table 4.4: The top five best fitting diffusion model configurations, in terms of BIC, for the group
average data in Experiment 1.

# Model Free parameters G2 BIC

1 MOD–CD+–T∗ 15 77.797 191.752

2 MOD–CD+–νt–T∗ 16 81.074 202.626

3 MOD–T∗ 15 91.274 205.229

4 MOD–CD+–at–T∗ 16 86.405 207.957

5 MOD–CD+–at–T∗–αt 17 79.746 208.895

fitting the diffusion model to a near-threshold orientation discrimination task identical
to the orientation discrimination trials examined here, that the nondecision time values
estimated varied principally as a function of the memory array size, rather than expo-
sure duration of the memory array, which they took as evidence for a limited capacity
memory retrieval process. It is also worth noting that the best fitting model includes
only a single estimated drift rate: the memory array effects on response time and ac-
curacy are well accounted for by the sample size constraint. A single drift rate is also
consistent with the fact that the memory array presentation was identical, including the
stimulus contrast, in trials for both the decision types. Figure 4.13 show the fit of the
MOD–CD+–T∗ configuration to the group average data. One of the observers, KT, not
best fit by the model configuration MOD–CD+–T∗ required additional flexibility in the
drift rate between trials of different decision types and additional flexibility in the esti-
mation of the rate of the intrusion process. All of the best fitting models for the observer
did, however, still require the decrement in the sample-size denominator for change de-
tection trials. The other observer for whom the MOD–CD+–T∗ configuration was not
the preferred model—observer SS—had substantially higher goodness-of-fit values for
all diffusion configurations examined, indicating a poorer overall fit.

The parameter estimates for the MOD–CD+–T∗ model configuration, as well as for
MOD–T∗, the second best fitting model for many observers, are presented at the end of
this chapter in Tables 4.13 and 4.14.
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Figure 4.13: QPP for the diffusion model configuration that best fits the group average data in
Experiment 1 in terms of BIC: the MOD–CD+–T∗ model. In this model, a single
parameter was estimated for each of the drift rate, drift variability, boundary sepa-
ration, nondecision time variability, intrusion rate, the drift of the intrusion process,
and the additional time of the intrusion process across all trial types. Nondecision
time was estimated separately for each trial type, totalling eight free T parameters
(one value for each of the four array size levels within each of the two decision type
levels). The observed data, the group average response, is displayed as empty cir-
cles joinedwithdashed lines; themodel predictionsarepresentedasfilled squares
connected by solid lines.
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4.1.4 Discussion

Both the convolution analysis and the diffusion model fits to data obtained in Experiment
1 were consistent with the findings from the previous chapter that observer sensitivity
is decreased when a change detection decision is required, as compared to an orienta-
tion discrimination decision, and that this decrement is well accounted for by adding
an additional item to the denominator of the sample-size relation. In addition, the re-
sponse time data show a clear relationship between the orientation discrimination and
change detection response time distributions, which were related either by the addition
of a constant or a random variable with small variance. A natural interpretation for this
additional process is that it represents the encoding and storage of the probed stimulus,
prior to the commencement of a decision. This is also supportive of the proposition that
the accuracy decrement seen from orientation discrimination performance to change
detection performance is due to the additional load of the probe item within memory
over the course of the entire decision.

In addition to the change in nondecision time observed between the two tasks, the
best fitting diffusion model also required the nondecision parameters to increase with
the size of the memory array, like the model fits reported by Sewell, Lilburn, and Smith
(in press). The interpretation of these values by Sewell and colleagues was that, as men-
tioned earlier, the time taken to find and retrieve an active representation within the
memory system increased as a function of the number of concurrently maintained items.
The increasing nondecision times estimated for increasing memory array sizes support
this conclusion. As mentioned above, Sewell and colleagues concluded that this pattern
of nondecision time values reflected a limited capacity to hold elements within visual
short-term memory in a highly activated state, ready for retrieval upon cueing. This con-
clusion is consistent with the concentric activation framework proposed by Oberhauer
and colleagues Oberauer (2002, 2006); Oberauer and Bialkova (2009); Oberauer and
Hein (2012), where activation and retrieval of items stored within working memory—
more broadly defined than visual short-term memory—relies on a serial process that
cannot be divided when multiple items are required.

In addition to the observable effects ascribed to the retrieval of probed stimulus in-
formation from memory, a potential signature of unprobed information entering into
the decision process was found. The asymmetry in the earliest quantiles between dis-
tributions taken from the correct and incorrect responses does not generally appear in
simple detection data (e.g., Ratcliff & Rouder, 2000; Smith, 1995; Smith et al., 2014), but
appears in visual short-term memory tasks such as the ones reported in this thesis and
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the experiment reported by Sewell and colleagues (2016). To account for this asymme-
try, a separate intrusion process was assumed, allowing for incorrect information to be
accumulated on occasion with an additional time component. This additional process
allows the model additional flexibility in accounting for response time biases at the ear-
liest quantiles.

Each of these results highlight, along with the results of the last chapter, the non-
triviality of the retrieval of a representation from memory. The role of representation
access and retrieval is an integral component of theories of working memory generally,
but is overlooked within current visual short-term memory theories. This is despite, as
shown here, these processes might contribute substantially and systematically to both
the accuracy and response time profiles.

More generally, the success of the modified diffusion model—with an intrusion pro-
cess and modified sample size constraints—to capture the effect of memory load on ac-
curacy and response time across qualitatively different types of decisions provides a
unification of previous response time analyses in the literature, which had previously
treated change detection (Donkin et al., 2013) and orientation discrimination (Sewell et
al., in press) separately. The next section applies both the convolution analysis and the
diffusion modelling to the second experiment, where accuracy was equated.

4.2 Experiment 2

Recall that the intent of the second experiment introduced in the last chapter (§3.3) was to
examine the relationship between orientation discrimination and change detection over
different stimulus exposure durations, where the stimulus contrast for each task was
manipulated to equate performance in terms of accuracy. An increase in the contrast
of memory array, allowing observer performance to be equated between the two tasks
in terms of accuracy, also provides a means to dissociating the performance decrement
seen in change detection from the additional nondecision time in change detection trials.
The previous chapter contains details of the the method and accuracy results for this
experiment, discussed in §3.3.1 and §3.3.2 respectively. Following the presentation of the
last section, this section will first examine the response time data at the mean-level, using
mixed-effects linear modelling, prior to a convolution analysis and, finally, a analysis of
diffusion model fits.
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Figure 4.14: Group average data from Experiment 2 across different stimulus exposure dura-
tions and conditioned on the decision type. Error bars represent one standard er-
ror of the mean. CD = change detection; OD = orientation discrimination.

4.2.1 Results

Like the preceding experiment, no response time data was filtered from the overall dataset
for the descriptive and inferential statistics presented in this section. Figure 4.14 shows
the mean response time for each decision type and stimulus exposure duration, averaged
across observers; Figure 4.15 shows these data for each observer separately.

A mixed-effects linear model was conducted, with response time as the dependent
variable, the decision type (treating change detection as a baseline) and stimulus expo-
sure duration treated as fixed effects, and the individual differences in response times
treated as a random effect on the intercept. The stimulus exposure duration was scaled
to be in seconds, rather than milliseconds, to increase the stability of the model fitting
routine. A significant main effect of exposure duration was found on response time,
β = −621.359, SE = 59.666, p < 0.001, with an increasing stimulus exposure duration
leading to a decreasing estimated response time. A significant main effect of decision
type was also found, β = −128.014, SE = 13.117, p < 0.001, with the predicted response
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Table 4.5: Goodness-of-fit and information criteria statistics for the deconvolution analysis of
Experiment 2, conditioned on observer and on distribution type.

Gaussian Delta Uniform Exponential

Observer G2 BIC G2 BIC G2 BIC G2 BIC

BF 372.44 389.147 372.435 380.788 372.457 389.164 372.457 389.164

DB 219.213 236.031 219.988 228.397 219.16 235.977 219.08 235.898

KT 137.924 154.383 254.278 262.507 202.977 219.436 127.685 144.144

SL 700.327 717.107 789.321 797.71 752.847 769.626 598.972 615.751

SS 154.738 171.436 154.738 163.087 154.765 171.463 154.747 171.445

times for the change detection task slower than those for the orientation discrimination
task. Last, a significant two-way interaction between stimulus exposure duration and
decision type was found, β = 293.397, SE = 84.380, p < 0.001. This two-way inter-
action can be seen in the flatter curve between exposure duration conditions in change
detection trial types when compared to orientation discrimination trial types.

In comparison to the mean response time results of Experiment 1, this reduced effect
of exposure duration on mean response times for change detection trials compared to
orientation discrimination trials may reflect the increased amount of stimulus informa-
tion presented in the change detection trials: recall that, in order to equate performance
between change detection and orientation discrimination whilst keeping the same trial
timing, the change detection memory array was presented at a higher contrast, meaning
that the effect of limiting visual information through truncating stimulus presentation
may have been lessened.

4.2.2 Convolution analysis

A convolution analysis was also conducted for Experiment 2. The analysis followed the
same procedure as that reported for Experiment 1 above (§4.1.2): first, trials with incorrect
responses were filtered from the dataset; second, a kernel density estimate using a Gaus-
sian kernel function was generated from the orientation discrimination trials to form the
component distribution; third, the convolving distribution—either an exponential, Gaus-
sian, or uniform distribution, or a delta function—was generated and convolved with the
component distribution; last, the resulting composite distribution was segmented into
twenty-six bins from twenty-five quantiles and compared to the empirical change detec-
tion response time distribution. Table 4.5 display the goodness-of-fit statistics in terms
of G2 and BIC for each distribution type and each observer.
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Table 4.6: The maximum likelihood parameters for the convolutional analysis of Experiment 2
for the exponential and delta convolving functions, displayed by observer. The ex-
ponential function has both a dispersion parameter (also called a variance or scale
parameter) and an offset parameter (also called a mean or location parameter). The
delta function only has an offset parameter.

Delta Exponential

Observer Offset Dispersion Offset

BF 198.848 0.002 199.1

DB 181.642 26.432 156.754

KT 101.308 152.705 0.0

SL 220.936 55.657 165.924

SS 156.079 1.445 154.914

As the overall fit statistics in Table 4.5 show, convolution with the delta function was
the best fitting relationship between the orientation discrimination and change detection
response time distributions for three of the five observers: observers BF, DB, and SS.
For observers KT and SL, convolution with an exponential distribution provided the best
overall fit. The set of best fitting parameters for convolution with the delta function and
convolution with an exponential distribution can be found in Table 4.6.

The advantage of the delta function in this experiment over the exponential function
in BIC terms may reflect the difference in the the stimulus contrast—and, therefore, the
amount of stimulus information—between the orientation discrimination and change
detection conditions. In particular, when examining the density functions of observer
BF or observer SL—who both have poor overall fits—it is clear that the composite dis-
tribution formed by convolution do not fit the empirical change detection distribution
well, with the empirical distribution showing a greater peakedness for faster response
times. Convolving additional distributions with the component distribution can only add
dispersion to the resulting composite distribution (or, in the case of the delta function,
maintain the same level of dispersion), meaning that the higher level of skewness of the
change detection distribution cannot be fit by assuming additional processing stages.

Although it appears that there is an additional component of encoding and comparing
the probe array to the memory array, like that seen in Experiment 1 and captured by the
delta function (or the offset parameter of the exponential distribution), it is difficult with
the convolutional analysis alone to separate the effects of the decision stage from the
additional processing. In the parameter estimates for the exponential distribution for
the data of observer KT, for instance, the offset parameter is estimated at zero, indicating
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that increased dispersion in the exponential distribution is partially accounting for the
offset in response time. Unlike the first experiment, where the stimulus contrast meant
that it was plausible a major source of variance in the decision was identical between
task types, the difference in the decision dynamics in the present experiment indicates
that, whilst a convolutional approach is useful, a diffusion model approach may provide
additional clarity.

4.2.3 Diffusion model

The approach in fitting the diffusion model to Experiment 2 was largely the same as the
approach described for Experiment 1. One notable difference, however, is the fact that
the more restrictive constraints placed upon drift rates in the previous experiment relied
on the fact that the memory load was directly manipulated and that the memory array
was invariant between the two decision types: the drift rates were determined by the
imposition of both the sample size constraint and the change to the denominator of the
sample size constraint between decision types. In the current experiment, the exposure
duration of the memory array, rather than the size of the memory array, was manipulated
within different decision types. The change in the contrast of the memory array between
the two decision types provided additional discriminable stimulus information in the
change detection task, to offset the decrement induced by the encoding of the probe
array. This means that the modification to the sample size denominator may not be able
to be used to predict both types of decision in the task from a single drift rate, but could
also lead to differences beyond a change to the drift rate alone.

Building upon the diffusion modelling for Experiment 1, one hundred different model
configurations were constructed from different constraints placed upon the relationships
between model parameters and the experimental manipulations (in this case, the stim-
ulus exposure duration of the memory array and the type of decision the observer was
instructed to make). The large number of additional model configurations, when com-
pared to Experiment 1, were due to the fact that the drift rate was allowed to vary across
stimulus exposure duration and decision type in this experiment, where the drift rate
in the first experiment was constrained by the sample size relationship. These model
configurations follow the same naming conventions as those given for Experiment 1 (a
description of the parameters is given in Table 4.3). Following the modelling for the pre-
vious experiment, each of the model configurations was fit to the data of each observer
independently using an iterative minimisation of a G2 statistic by the Nelder–Mead sim-
plex procedure. The results of the top five model fits by BIC are given for the group
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Figure 4.16: The results of convolving a delta function (left panels) and an exponential distribu-
tion (right panels) with kernel density estimate of the correct trials in orientation
discrimination conditions—shown by the thin unbroken line—in order to obtain a
fit to the density estimate of the correct trials in the change detection condition—
shown by the dashed line. The result of the convolution is shown with the thick
unbroken line. The data shown above are for observer BF in Experiment 2.114
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Figure 4.17: The results of the convolution analysis using a delta function (left panels) and an
exponential distribution (right panels). The data shown above are for observer DB
in Experiment 2, following the format of Figure 4.16.
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Figure 4.18: The results of the convolution analysis using a delta function (left panels) and an
exponential distribution (right panels). The data shown above are for observer KT
in Experiment 2, following the format of Figure 4.16.
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Figure 4.19: The results of the convolution analysis using a delta function (left panels) and an
exponential distribution (right panels). The data shown above are for observer SL
in Experiment 2, following the format of Figure 4.16.
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Figure 4.20: The results of the convolution analysis using a delta function (left panels) and an
exponential distribution (right panels). The data shown above are for observer SS
in Experiment 2, following the format of Figure 4.16.
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average in Table 4.7, and for each observer in Tables 4.15–4.19 at the end of the chapter.
The parameters for each observer for model configurations MOD–νd–at–Tt (a model
configuration that fit well for observer KT and the group average data), MOD–νd–Tt–αt

(a model configuration that fit well for observers BF and SS), and MOD–νd–at–Tt–αt

(a model that fit well for observers BF, KT, SS, and the group average) are presented in
Tables 4.20, 4.21, and 4.22, at the end of the chapter.

When compared to the model fits obtained from Experiment 1, the rankings of mod-
els for Experiment 2 are somewhat more inconsistent, with no clearly preferred models
shared across observers. Each of the winning configurations requires additional flexi-
bility in relating the drift rate parameter, ν, to data across conditions. This additional
flexibility is both due to the fact that the exposure duration of the memory array directly
affects the quality of stimulus information in the decision process (the effect of increas-
ing stimulus exposure duration should be a linear increase in the squared drift rate; see,
§5.2.3), and the fact that, unlike in Experiment 1, the display contrast of the memory array
was adjusted for each observer to equate performance—in terms of accuracy—between
the different decision type conditions. Note also that, unlike Experiment 1, there is no
clear preference for models with the increment of an item within the sample size con-
straint in accounting for change detection performance, likely due to the fact that any
performance decrement that would be observed due to the encoding and comparison of
elements within the probe array was offset by the increased stimulus contrast. In cases
where the drift rate was not constrained to be equal across orientation discrimination
and change detection trials—that is, in model configurations with either νt or ν∗ in their
designations—the effect of an increment in the denominator of the sample size relation-
ship for change detection trials would be completely offset by the estimated drift rate
parameter in the numerator, rendering the CD+ and non-CD+ model types identical in
their estimates. (In practice, these models can differ slightly in the values of their ob-
jective functions due to inefficiencies in the optimization procedure in finding the max-
imum likelihood parameter set.)

Like the best fitting model configurations from Experiment 1, each of the best fitting
models in Experiment 2 across observers requires some relaxation in the constraints on
the nondecision time parameter, T . In observers other than DB and SL, and for fitting
the group average data, the best fitting models favoured constraining the nondecision
time parameter within decision type conditions. This finding lends additional support
to the argument made by Sewell, Lilburn, and Smith (in press) that systematic changes in
nondecision time during an orientation discrimination task reflected the cost of access-
ing stored items in memory, changing across but not within trials of different memory

119



Chapter 4 Change detection and orientation discrimination: response time

Table 4.7: The top five best fitting diffusion model configurations, in terms of BIC, for the group
average data in Experiment 2.

# Model Free parameters G2 BIC

1 MOD–νd–at–T t 12 102.274 207.58

2 MOD–νd–at–T t–αt 13 95.391 209.472

3 MOD–CD+–νd–at–T t–αt 13 96.543 210.624

4 MOD–CD+–νd–T t 11 115.513 212.043

5 MOD–CD+–νd–at–T t 12 107.417 212.723

array sizes—as was also found in Experiment 1. The difference in nondecision time be-
tween decision types, where change detection response times are slower than orienta-
tion discrimination response when comparing equivalent experimental conditions, also
supports the finding of both the previous experiment and the convolutional analysis that
an extra cost of response time is induced by the encoding and comparison of the probe
array.

Beyond the consistency in each of the top ranking models requiring some flexibility
in fitting the drift rate and in the nondecision time parameters, the best fitting models
also required additional flexibility. This flexibility was obtained by allowing either the
boundary separation parameter, a, to be estimated separately within each decision type
condition, or by allowing the intrusion rate parameter, α, to be estimated separately
across trials of different decision types. Observer KT and the group average data were
best fit by the model configuration MOD–νd–at–Tt, a model configuration with 12 free
parameters where the drift rate varied as a function of stimulus duration, and the bound-
ary separation and nondecision time varied as a function of the decision type. The need
to use an additional boundary separation parameter in this way is not unexpected: as the
different decision types were grouped into blocks, and the tasks themselves require dif-
ferent decisions to be made, the possibility of a response bias between tasks may reflect
a strategy on the part of the observer.

Alternatively, observer BF was best fit by the model configuration MOD–νd–Tt–αt,
a model configuration with 12 free parameters where drift rate varied as a function of
stimulus duration, and the nondecision time and intrusion rate parameter varied as a
function of the decision type. Given the estimated value of να is zero (see Table 4.20),
these results indicate a substantially higher rate of delayed guessing on the part of these
observers in the change detection trials. Observer DB required full drift and nondecision
time flexibility in fitting. Observer SS required only drift rate changes across duration and
an increment in the nondecision time for change detection. Allowing the combination
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of both nondecision time and the intrusion rate parameters to be flexible over different
decision type conditions also fit the individual and group average data well. The model
configuration MOD–νd–at–Tt–αt, a model configuration with 13 free parameters, fit
best for observer SL, ranked highly in fitting the data for observers BF, KT, and SS, as well
as in fitting the group average. Although not as highly ranked as models with either the
nondecision time or the intrusion rate freely estimated across trials of different decision
types (and the other constrained to be equal across decision types), these results indicate
that, overall, there appears to be significant effects of the type of response strategy and
guessing required to fully characterise the results in the current experiment.

Part of the inconsistency in the rank order of model configurations and the require-
ment to consider response strategies and guessing rates directly may be a result of the
difficulty of the experiment, with the group average accuracy ranging from just below
60% of trials correct in the 100 ms condition to just above 70% of trials correct in the
200 ms (see Figure 3.11). The requirement to equate performance in each condition also
necessitated an extended calibration procedure, preceding the experimental sessions for
each observer. The conjunction of both a difficult experiment, using four-item memory
arrays, and an extended calibration procedure, may have led to observers engaging in a
response strategy to offset the overall difficulty of the task.

A display of model predictions against group average data is provided in Figures 4.21,
4.22, and 4.23 for the model configurations MOD–νd–at–Tt, MOD–νd–Tt–αt, and
MOD–νd–at–Tt–αt, respectively.
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Figure 4.21: A QPP of the group average data against the predictions of the model, MOD–νd–
at–T t: a model in which—in addition to the drift rate being estimated for each ex-
posure duration condition and the nondecision time estimated for each decision
type (change detection or orientation discrimination)—the boundary separation
parameter was also separately estimated for each decision type condition. The
model predictions are represented by filled squared connected by solid lines; the
observed data is shown by unfilled circles connected by broken lines.
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Figure 4.22: A QPP of the group average data against the predictions of the model, MOD–νd–
T t–αt: a model in which—in addition to the drift rate being estimated for each
exposure duration condition and the nondecision time estimated for each deci-
sion type (change detection or orientation discrimination)—the intrusion rate pa-
rameter, α, was also separately estimated for each decision type condition. The
model predictions are represented by filled squared connected by solid lines; the
observed data is shown by unfilled circles connected by broken lines.
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Figure 4.23: A QPP of the group average data against the predictions of the model, MOD–νd–
at–T t–αt: a model in which—in addition to the drift rate being estimated for each
exposure duration condition and the nondecision time estimated for each decision
type (change detection or orientation discrimination)—both the boundary separa-
tion parameter and the intrusion rate parameter were also separately estimated
for each decision type condition. The model predictions are represented by filled
squared connected by solid lines; the observed data is shown by unfilled circles
connected by broken lines.
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4.2 Experiment 2

4.2.4 Discussion

The aim of Experiment 2 was to examine whether the same relationship between re-
sponse times for orientation discrimination and change detection trials in Experiment
1 would hold when exposure duration was varied. The performance of observers was
equated by adjusting the memory array display contrast between different decision types
for each observer individually. A striking pattern of response time differences was ob-
tained, where the mean response times of observers was uniformly slower in the change
detection condition when compared to the orientation discrimination condition, despite
the near-equal level of accuracy between the two types of tasks. This difference in re-
sponse times at the mean level was supported by the application of a convolution anal-
ysis where, in addition to extra dispersion in the change detection condition, there was
a consistent and large translation of the entire response time distribution in the change
detection condition later in time when compared to the distribution of response times
in the orientation discrimination condition.

In examining this distribution-level shift in response time between decision type con-
ditions with a diffusion model, the best fitting model configurations consistently required
the nondecision time parameter of the diffusion model to be estimated separately for
each decision type. The effect of the stimulus exposure duration was reflected in the
drift rate estimates with the best fitting model configurations for observers BF, KT, and
SS, and the group average data requiring separate estimates of drift rate for each expo-
sure duration condition. The other observers, DB and SL, also had free drift parameters
across different exposure duration conditions, but required further flexibility in freely
estimating the drift rate parameters across different decision type conditions as well. 5

The diffusion model results for Experiment 2 were, however, somewhat less consistent
than those seen in Experiment 1. All observers, in addition to the nondecision time esti-
mated as being longer for change detection trials and the drift rate parameters estimated
as being larger with longer memory array exposure durations, required some flexibil-
ity in either the boundary separation or intrusion rate parameters6. As discussed in the
preceding section, these may represent some strategy on the part of observers to amelio-
rate some of the difficulty of the task: either to attempt to shift in response caution—the

5Some of the top ranking models for observers BF, DB, KT, and the group average data, also included
models where the drift rate of the intrusion process was also freely estimated across different exposure
duration conditions, indicating that the intrusion process might be similarly affected by the overall level
of stimulus information available to the memory system. This evidence is, however, relatively weak and
would require further elaboration in future studies.

6As mentioned, given the να rate estimated in these model configurations is zero, this difference in the
intrusion rate α can be seen as differences in delayed guessing.
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behavioural analogue of the diffusion model’s boundary separation parameter—or de-
layed guessing behaviour, perhaps as a result of some failed memory accessing process
(see Sewell et al., in press). There is increasing recent evidence that strategic concerns
play an integral role in observer behaviour during difficult short-term memory tasks.
Bengson and Luck (2015) found that capacity estimates for a suprathreshold change de-
tection task changed with differing instruction sets, emphasising either the need to re-
member all items within a display or stressing the need to maximise performance. More
recently, Donkin, Kary, Tahir, and Taylor (2016) demonstrated that observer performance
in change detection tasks is well captured by models that assume a mixture of discrete
slot style memory representations and flexible resource style allocation. One system-
atic difference in observer responding noted by Donkin and colleagues was between the
blocked design of an experiment and strategy use. In an experiment where memory ar-
ray size conditions were blocked together, a much higher proportion of resource-like
encoding was noted; when the memory array size changed on a trial-to-trial basis, a
pure slot-like strategy was engaged by observers. The ability for observers to predict the
number of elements on the next trial was shown to have a large effect on the encoding
strategy used by observers. Given the limitations upon visual short-term memory and
the difficulty of the current experiment, it is possible that observers attempted to max-
imise performance between different decision types—particularly as trials of different
decision types were within a predictable block structure.

Both changes in boundary separation and intrusion rate between decision types rep-
resent a significant, if not substantial, contribution of the task dynamics to the overall
behavioural profile but which may not be captured in simple models that do not expli-
cate both how the characteristics of the memory representation influence the observed
behaviour and how the nature of the decision, deriving from the circumstances of the
task, can be seen in responding. This topic shall be elaborated upon in the next section.

4.3 General discussion

In this chapter, the response time data obtained in the two experiments described in the
preceding chapter was examined. For each experiment, a linear mixed-effects analysis
was conducted on the mean response times, followed by a convolutional analysis op-
erating on the entire response time distribution for each experimental condition, and
concluding with the application of a version of the diffusion model extended using the
signal detection theory models of the last chapter as the basis. In both experiments, a
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clear response time advantage for orientation discrimination trials were found over the
corresponding change detection trials, regardless of the size of the memory array, the
exposure duration of the memory array, or whether the contrast of the memory array
was adjusted to equate performance. Following from the results of the last chapter, this
increase in the time to make change detection responses is likely to be the product of en-
coding the probe array, and then comparing the probe array to the stored representations
within memory.

The diffusion analysis provided additional elaboration on this process. In Experiment
1, it was found that simple extensions of the diffusion model, following the results of the
signal detection theory analysis presented in the last chapter, provided a very good over-
all fit to observer data. In the best fitting model configuration overall, the drift rates were
constrained to fit the sample size relation previously discussed by Sewell, Lilburn, and
Smith (2014), and change detection performance and orientation discrimination perfor-
mance was predicted from a single drift rate by incremented the denominator of the
sample size relationship in the change detection case by one to reflect the increased
memory load due to the processing of the probe array. In addition to the fixed relation-
ship between the drift rate and performance across all experimental conditions, the best
fitting model configurations also required a separate nondecision value to be estimated
for each experimental condition: the increase in nondecision time as the memory array
size increased was also found by Sewell, Lilburn, and Smith (in press), who argued that it
represented a limited-capacity retrieval process; the increase in nondecision time across
the type of decision following the results of both the linear mixed-effects analysis and the
convolutional analysis. Last, like Sewell, Lilburn, and Smith (in press), an additional mix-
ture process was included to account for the asymmetry observed between the correct
and incorrect responses at the earliest quantiles (known as the leading edge). This pro-
cess was given a more general form, where the drift rate of the process could be freely
estimated by the model, to indicate the presence of unprobed “intruding” information
into the decision process, but was estimated to be zero in all cases.

In Experiment 2, the results of the diffusion analysis were less consistent, partially ow-
ing to the nature of the experimental design in which the memory array was presented
at different contrasts in the orientation discrimination and change detection conditions.
Additional drift rate flexibility was required in all observers, either to allow for the in-
crease of stimulus information into the decision process as the exposure duration of the
memory array increased, or to account for both the effect of stimulus exposure dura-
tion and the effect of the increased stimulus contrast in the change detection condition.
The top model configurations also required additional flexibility either by allowing sep-
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arate boundary separation or delayed guessing rates (i.e., the intrusion rate parameter)
estimates across the different two decision types, perhaps reflecting a difference in the
response strategy employed by different observers.

Simply put, for both experiments, the best fitting model configuration showed that a
single diffusion model, with modifications, can predict observer responses between two
different types of decision-making using a single set of parameters. For the best fitting
model configurations obtained in Experiment 1, orientation discrimination performance
could be characterised using a single free drift rate parameter (estimating performance
in the single-item memory array condition). The reduction in performance in conditions
with larger memory array sizes was predicted by assuming that the drift rates scale fol-
lowing the sample-size relation. Change detection performance could be characterised
by use of the same drift rate as orientation discrimination performance, with the addition
of an item in the denominator of the sample-size relation. This additional item may be
interpreted as the probe array competing for limited memory resources with the mem-
ory array representations. In both Experiments 1 and 2, the encoding and comparison
of the probe array in the change detection decisions also appeared to add a constant (or
near-constant) time to the response times of the corresponding orientation discrimina-
tion conditions. Last, in both experiments, the detailed patterns of response time and
accuracy are better captured by a model that assumes there is a failure to retrieve the
relevant item from memory on a proportion of trials (like Sewell et al., in press) or that
the decision is influenced by the contents of memory outside the probed location. (The
parameterisation of this intrusion process will be examined in further detail in Chapter
6.)

The role of the retrieval of information from memory and the decision process has
figured prominently in the interpretation of the results—particularly in examining the
diffusion model results. The process of retrieving information from visual short-term
memory is often not explicitly modelled7, unlike work in working memory more gener-
ally (as reviewed in Sewell et al., in press), with behavioural results interpreted almost
exclusively in terms of differences in the memory representation across different ex-
perimental manipulations. The results from this study show that the assumption is too
simplistic. The evidence presented in this chapter, and the last, suggests that experi-
mental procedures which require the comparison of stored memory representations to
subsequentally presented standards—either required to detect a change or, in the case of
continuous report, to replicate the stored memory representation—are placing an extra

7Although Bays et al. (2009) did include the presence of retrieval errors in their model of a continuous
report task.

128



4.3 General discussion

cost on the limited resources of memory. Further, as shown both here and in the work
reported by Sewell, Lilburn, and Smith (in press), there appears to a consistent cost in
the time taken to access representations within memory that grows as a function of the
number of items stored in memory.

Both the cost of the probe array in change detection and the increasing item access
times as the number of concurrent elements within memory grows reflect the behavioural
signature of task and decision constraints. The asymmetry in the leading edge of the re-
sponse time distributions—present in the data presented in this chapter, as well as in
Chapter 6, and in the work conducted by Sewell and colleagues—also requires some
further consideration of the role of memory retrieval. One distinction that might be in-
structive in examining the role of retrieval from memory is the distinction between the
overall visual information stored and representations required for indexing that aggre-
gate information. This distinction distinguishes between the processes maintain visual
information within memory and the processes that associate the contents of memory
with locations in the visual field, allowing information to be retrieved when probing
particular locations.

The delineation between memory content and memory indexing has a basis in the
functional neuroimaging literature. Xu and Chun (2006) conducted a change detection
study measuring observer performance using simple and complex stimuli while exam-
ining patterns of BOLD activation via fMRI. They found three sites of cortical activity
related to change detection performance: activation of the inferior intraparietal sulcus
(IPS) correlated with the number of items presented in the memory array, but was in-
variant between stimulus classes of different complexity, and reached a ceiling level of
activation with the presentation of four items (consistent with the four item limit con-
jectured in slot model accounts of memory); activation in the lateral occipital cortex
(LOC) and the superior IPS, however, was correlated with both the number of items to
be simultaneously maintained and the complexity of those items, indicating that these
regions are sensitive to the total informational load of representations maintained in
memory. Xu and Chun argued that the role of the inferior IPS, previously found to be as-
sociated with the control of spatial attention (Corbetta & Shulman, 2002; N. Kanwisher
& Wojciulik, 2000), allows the maintenance of multiple attentional loci in the visual
field, corresponding to the location of items stored in memory, and further supported
by differences in activation in the inferior IPS observed when the target location was
manipulated. The role of the superior IPS and the LOC, then, could be more naturally
associated with constraints modelled using the sample size information limit: areas lim-
ited by the total amount of visual material to keep active simultaneously.
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The inclusion of an indexing process as distinct from processes that store visual in-
formation, and the consideration of the process of retrieving items from memory, does
not sit easily with simple resource models or, more generally, models that do not clearly
specify how the correspondence between stored information and spatial location may be
maintained during memory retention intervals and resolved when retrieval is required.
As previously argued by Sewell et al. (2014), the “slots + averaging” model of Zhang and
Luck (2009) does not readily admit the existence of an indexing process. This model im-
plies a level of intricate bookkeeping as the association between visual items and mem-
ory representations is not isomorphic, in that one (physical) stimulus can be represented
by multiple representations, which may be redistributed upon presentation of additional
task-relevant information. Sewell and colleagues noted that such model predictions re-
lating to multiple copies of the same visual element to increase response precision is in-
compatible with the finding of Vogel and Machizawa (2004), where contralateral delay
activation (CDA), a electrophysiological correlates of visual short-term memory storage,
correlates the number of total stimuli stored, without any indication of multiple repre-
sentations for the same item. More recent ERP evidence from Gao et al. (2011) indicates
that the magnitude of CDA may track the number of distinct stimulus identities in mem-
ory, rather than the total number of locations in memory, however there is no indication
that subcapacity representations are duplicated: the magnitude of CDA for retention of
a single item (in a single location) appears to be the same as the magnitude of CDA for
multiple items of the same identity.

The most parsimonious account of an index would be one that operates completely
spatially, where stored representations are retrieved on the basis of their location in the
visual field. Such an index would consistent with the role of the inferior IPS argued for by
Xu and Chun, and would reflect the spatiotopic structure of visual cortex. The existence
of a spatially mediated retrocuing effect (Griffin & Nobre, 2003) suggests that, at least
in part, memory representations within the visual short-term memory system are inti-
mately tied to some representation of the original location of the memory element. The
study by Jiang et al. (2000), where change detection performance was preserved under a
limited number of transformations to the spatial relationship between the memory array
and the probe array further indicates the intrinsic spatial characteristics of visual short-
term memory representations. This account of a spatially mediated index would be con-
sistent with an interpretation of the “intrusion” process as reflecting an inefficiency in
the post-stimulus probe to confine memory retrieval purely to the specified location, al-
lowing information indexed by other locations in the visual display to contribute to some
responses.
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A completely spatially mediated index cannot, however, account for above chance per-
formance in the case of stimuli presented sequentially in the same location. The activa-
tion of the superior IPS and LOC areas was differentiated by Xu and Chun when exam-
ining trials where multiple stimuli were presented in the same location sequentially: the
superior IPS decreased in activity and the LOC increased in activity in trials where infor-
mation was presented sequentially in the same location when compared to trials where
information was presented simultaneously in distinct locations. An extension of the cur-
rent study could examine the characteristics of intruding information in instances where
the distractor information might either closely surround the probed target—testing the
probe efficiency in selecting the correct information—or, via sequential presentation, is
presented in the same location as the probed target. In such an experimental design, the
current modelling results—where both nondecision time and the intrusion process cap-
ture retrieval and decision variability—would provide a means of examining the effect of
stimulus configuration directly, allowing greater leverage upon questions of fundamen-
tal memory architecture.

As such, the utility of the current findings, beyond the results regarding the relation-
ship between near-threshold change detection and orientation discrimination observer
performance, extends to future studies where the models and analyses may be adapted
to further define the boundary between the observable effects of constraints on mem-
ory representations, and the observable characteristics of the decisions based on those
representations. The next part of this thesis, starting with the next chapter, will examine
the nature of the representations within the memory system by using a variant of the
near-threshold two-alternative orientation discrimination paradigm used in this chap-
ter, using the models developed in this section as the basis of the analysis.
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Supplementary tables and figures

Best fitting diffusion model fits for individual observers in
Experiment 1.

Tables 4.8–4.12

Best fitting parameters for the model configuration MOD–
CD+–T∗ in Experiment 1.

Table 4.13

Best fitting parameters for the model configuration MOD–
T∗ in Experiment 1.

Table 4.14

Best fitting diffusion model fits for individual observers in
Experiment 2.

Tables 4.15–4.19

Best fitting parameters for the model configuration MOD–
νd–Tt–αt in Experiment 2.

Table 4.20

Best fitting parameters for the model configuration MOD–
νd–at–Tt in Experiment 2.

Table 4.21

Best fitting parameters for the model configuration MOD–
νd–at–Tt–αtin Experiment 2.

Table 4.22
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Table 4.8: The top five best fitting diffusion model configurations, in terms of BIC, for the data
of observer BF in Experiment 1.

# Model Free parameters G2 BIC

1 MOD–CD+–T∗ 15 129.47 242.871

2 MOD–νt–T∗ 16 126.592 247.554

3 MOD–T∗ 15 134.479 247.88

4 MOD–CD+–T∗–αt 16 128.703 249.665

5 MOD–CD+–at–T∗ 16 129.895 250.857

Table 4.9: The top five best fitting diffusion model configurations, in terms of BIC, for the data
of observer DB in Experiment 1.

# Model Free parameters G2 BIC

1 MOD–CD+–T∗ 15 103.853 217.239

2 MOD–CD+–at–T∗ 16 99.949 220.894

3 MOD–CD+–T∗–αt 16 102.407 223.351

4 MOD–CD+–νt–T∗ 16 102.828 223.773

5 MOD–CD+–νt–at–T∗ 17 95.76 224.264

Table 4.10: The top five best fitting diffusion model configurations, in terms of BIC, for the data
of observer KT in Experiment 1.

# Model Free parameters G2 BIC

1 MOD–CD+–νt–T∗–αt 17 186.025 314.547

2 MOD–CD+–νt–at–T∗ 17 190.458 318.98

3 MOD–CD+–νt–T∗–αt–T t
α 18 183.453 319.535

4 MOD–CD+–νt–at–T∗–αt–T t
α 19 176.046 319.687

5 MOD–CD+–νt–at–T∗–αt 18 187.845 323.927
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Table 4.11: The top five best fitting diffusion model configurations, in terms of BIC, for the data
of observer SL in Experiment 1.

# Model Free parameters G2 BIC

1 MOD–CD+–T∗ 15 175.274 291.299

2 MOD–CD+–νt–T∗ 16 173.983 297.743

3 MOD–CD+–T∗–αt 16 175.22 298.98

4 MOD–CD+–at–T∗ 16 175.5 299.26

5 MOD–T∗ 15 185.554 301.579

Table 4.12: The top five best fitting diffusion model configurations, in terms of BIC, for the data
of observer SS in Experiment 1.

# Model Free parameters G2 BIC

1 MOD–at–T∗ 16 258.756 379.684

2 MOD–at–T∗–αt 17 258.376 386.862

3 MOD–CD+–νt–at–T∗ 17 262.05 390.535

4 MOD–at–T∗–αt–T t
α 18 258.362 394.406

5 MOD–CD+–νt–at–T∗–αt 18 261.983 398.027
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Chapter 4 Change detection and orientation discrimination: response time

Table 4.15: The top five best fitting diffusion model configurations, in terms of BIC, for the data
of observer BF in Experiment 2.

# Model Free parameters G2 BIC

1 MOD–νd–T t–αt 12 143.743 249.053

2 MOD–CD+–νd–T t–αt 12 151.501 256.811

3 MOD–νd–T t–αt–νd
α 14 143.897 266.76

4 MOD–ν∗–T∗–αt–T t
α 20 92.753 268.271

5 MOD–CD+–νd–T t–αt–νd
α 14 150.509 273.371

Table 4.16: The top five best fitting diffusion model configurations, in terms of BIC, for the data
of observer DB in Experiment 2.

# Model Free parameters G2 BIC

1 MOD–ν∗–T∗ 18 261.867 419.829

2 MOD–CD+–ν∗–T∗ 18 264.105 422.068

3 MOD–νd–T t–αt–T t
α–νd

α 15 290.544 422.18

4 MOD–CD+–νd–T t–αt–T t
α–νd

α 15 294.263 425.899

5 MOD–νd–T t 11 332.194 428.727

Table 4.17: The top five best fitting diffusion model configurations, in terms of BIC, for the data
of observer KT in Experiment 2.

# Model Free parameters G2 BIC

1 MOD–νd–at–T t 12 111.938 217.25

2 MOD–CD+–νd–at–T t 12 113.581 218.893

3 MOD–νd–at–T t–αt 13 109.048 223.136

4 MOD–CD+–νd–at–T t–αt 13 109.584 223.672

5 MOD–νd–at–T t–αt–νd
α 15 108.755 240.396
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4.3 General discussion

Table 4.18: The top five best fitting diffusion model configurations, in terms of BIC, for the data
of observer SL in Experiment 2.

# Model Free parameters G2 BIC

1 MOD–ν∗–at–T∗–αt–T t
α 21 190.519 374.76

2 MOD–CD+–ν∗–at–T∗–αt 20 206.52 381.988

3 MOD–ν∗–at–T∗–αt–T t
α–νt

α 22 189.336 382.351

4 MOD–CD+–ν∗–at–T∗–αt–T t
α 21 200.354 384.595

5 MOD–CD+–ν∗–at–T∗–αt–T t
α–νt

α 22 200.367 393.381

Table 4.19: The top five best fitting diffusion model configurations, in terms of BIC, for the data
of observer SS in Experiment 2.

# Model Free parameters G2 BIC

1 MOD–νd–T t 11 320.368 416.909

2 MOD–CD+–νd–T t–αt 12 312.372 417.69

3 MOD–νd–T t–αt 12 313.264 418.582

4 MOD–ν∗–T∗ 18 262.698 420.674

5 MOD–CD+–νd–T t 11 325.998 422.539
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Chapter 5

Fine orientation discrimination:
sensitivity

The first part of this thesis investigated the role of the experimental procedure on the
pattern of observer performance seen. It was found that the sample-size relationship,
plus an increment in the denominator of this relationship for change detection trials,
provided a parsimonious account of both observer accuracy and response time across
different memory paradigms. The second part of the thesis will extend this result to ex-
amine the relationship between constraints on feature information and the sample-size
relationship. In this part, I will use a fine orientation discrimination paradigm, general-
ising the orthogonal orientation discrimination paradigm employed in the last section,
to demonstrate that a simple weighting of the sensitivity function can account for the
effect of stimulus discriminability on performance. In particular, the overall sample-size
information limit on memory appears to have a separate effect on observer performance
from the effect of stimulus discriminability due to feature confusability.

One of the key findings of the experiments reported in the first part of this thesis was
that observer accuracy decreased uniformly in trials requiring a change detection deci-
sion compared to those requiring an orientation discrimination decision. In the analysis
of the data obtained in Experiment 1, a set of differencing models provided the best over-
all account of the pattern of observer performance, with some of the better fitting models
indicating that performance was affected by encoding of the probe item competing for
memory resources during the change detection decision.

This decrease in performance indicates that a comparison against an internal stimulus
standard, rather than an external sensory reference, increases the overall sensitivity of
the testing procedure: higher observer performance is obtained with less stimulus infor-
0Portions of this chapter were presented at the 2015 Australasian Experimental Psychology Conference
in Sydney.
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Chapter 5 Fine orientation discrimination: sensitivity

mation (either a shorter stimulus exposure duration or, as in the case of Experiment 2, a
lower stimulus display contrast). These findings do not invalidate previous claims based
on change detection (or continuous report) data about the presence or severity of the
capacity limitations in visual short-term memory, but may mean that estimates of the
storage capacity limit may be biased due to the need to account for the storage require-
ments of the probe array. The effect of the probe array may be even more pronounced in
the case of experiments employing near-threshold stimuli, where an additional level of
control can be placed on observer performance. Although not often used in visual short-
term memory experiments, near-threshold stimuli allow a finer control over the rate of
available stimulus information to be encoded into memory. Sewell, Lilburn, and Smith
(2014) used this additional control in an orientation discrimination experiment to de-
scribe a fixed limit on the rate at which information can be maintained and consolidated
in memory.

Sewell and colleagues argued that the sample-size relationship existed at a level below
that of the more regularly observed discrete item limit, described by Luck and Vogel
(1997). The quantitative visual short-term memory model of Smith and Sewell (2013), for
instance, implements both a fixed overall memory limit on discrete items and a shared
information limit between those items, based on the divisive normalisation of neural
populations that code features (Smith, 2015; Smith et al., 2015). The idea of multiple levels
of constraints on visual memory has been canvassed before in the literature, with some
evidence indicating that feature information is shared between object representations in
hierarchical feature “bundles” (Brady & Alvarez, 2011; Brady, Konkle, & Alvarez, 2009,
2011) or clusters (R. Jacobs & Orhan, 2013; Orhan & Jacobs, 2013) which allow observers
to more efficiently store information between separate items in a memory array. This
decoupling between discrete items and their constitutive features once again raises the
importance of considering not only the overall form of memory arrays, in terms of the
number of items to be remembered, but also the content of those items.

In contemporary visual short-term memory research, the role of features within mem-
ory representations has been predominantly explored through the use of the continuous
report paradigm (see, §2.3.2). As indicated in previous chapters, these tasks are designed
to provide a clear relationship between the continuous (and, usually, circular) structure
of the feature being probed—usually the hue of a coloured patch or the orientation of
an item on a wheel—and the continuous (and, usually, circular) means of observer re-
sponse. As such, the dispersion of responses in these tasks is often interpreted as directly
reflecting the structure of a representation held in memory. As shown from the first part
of this thesis, this relationship might be, at best, somewhat compromised by the need to
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compare an internal memory representation to an externally presented stimulus referent
and, at worst, neglect entirely the decision procedure for mapping an internal represen-
tation to a response option. The alternative is to use a task which requires comparison
to an internal stimulus standard—like the orientation discrimination task used by Sewell
and colleagues—where any variation in the responses may reflect more accurately con-
straints on the internal representation, yet these tasks have rarely been employed to ex-
amine the constraints on feature information.

Sewell and colleagues used only two stimulus alternatives—horizontally and vertically
oriented Gabor patches—in examining memory performance for near-threshold stimuli.
These orientations were selected due to the result by Thomas and Gille (1979) which indi-
cates that the performance characteristics of Gabor patch orientation discrimination for
differences in response alternatives greater than 20° are identical to performance char-
acteristics in simple visual detection. For differences in orientation between response
options that are under approximately 20°, Thomas and Gille argued, both stimulus al-
ternatives fall within the orientation selectivity bandwidth of a single psychophysical
detector leading to decreased performance in orientation discrimination as the activity
elicited by a single orientation can no longer be attributed to a single response alter-
native. This observed behavioural difference between orthogonal orientation discrimi-
nation and fine orientation may arise even in the early cortical representation of orien-
tation information. Discriminability between smaller angular differences may rely on
the output of many orientation-selective detectors with different preferred orientations
(Ben-Yishai, Bar-Or, & Sompolinsky, 1995), rather than a single psychophysical chan-
nel. The temporal properties of sensitivity to the higher spatial frequencies required to
differentiate between small angular differences also differ from the the sensitivity over
time to low spatial frequency information: the psychophysical channels that are active
for transient visual stimulation demonstrate a select passband for larger spatial differ-
ences when compared to the enhanced sensitivity for higher spatial frequencies shown
by psychophysical channels which respond to sustained stimulation (Enroth-Cugell &
Robson, 1966; Kulikowski & Tolhurst, 1973; Smith, 1995). In the context of constructing a
visual short-term memory representation, this means that the information available for
fine orientation discrimination may not be available as rapidly as seen in experiments
using large stimulus differences, and may not show the linear growth in squared sensi-
tivity with stimulus exposure duration seen in previous experiments (Sewell, Lilburn, &
Smith, 2014).

Beyond the time course of information required to make a fine orientation discrimi-
nation decision, the previous use of only orthogonal orientation values also means that
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Chapter 5 Fine orientation discrimination: sensitivity

the relationship in terms of storage constraints between the sample-size relation and
feature information—in this case, orientation information—is somewhat unclear. Con-
tinuous report work would indicate that an increase in the number of items to be stored
would lead to a decrease in the overall fidelity of feature information, making discrim-
ination more difficult (Bays et al., 2009; Zhang & Luck, 2008). Bays, Gorgoraptis, Wee,
Marshall, and Husain (2011) further argued that increasing the amount of stimulus infor-
mation, through longer stimulus exposure durations, would also increase the precision
of the memory representation. Critically, they showed an interaction between these two
factors: both decreases in the memory array size and increases in the exposure duration
of the memory array led to less response variability in reproducing the colour of a cued
memory item. They argued that, as more information is available to store, the precision
of the memory representation itself increases—with the asymptotic limit on precision
being given by the number of memory representations maintained simultaneously, re-
flecting an overall resource limit. The effect of stimulus exposure duration on the preci-
sion of memory reproduction would suggest, in line with the sample-size limit, that the
rate at which information is encoded into the memory system is limited (or fixed), and
that the precision of the feature information should be correlated with the sample size
limit. Further specification of the relationship between these data and the properties of
the memory system is difficult without an explicit model for a decision stage, and with-
out experimental constraints imposed on the amount of stimulus information available
through the use of near-threshold stimuli.

As indicated, the current chapter will explore the interaction between the sample-size
information limit and stored information of a visual feature by using a two-choice fine
orientation discrimination paradigm. This paradigm aims to generalise the orthogonal
orientation discrimination task introduced in the previous section by requiring observers
to report on the difference in orientation of a presented and probed stimulus with ref-
erence to a known stimulus standard: in Experiment 3, observers reported whether the
probed Gabor patch is offset clockwise or counterclockwise from the diagonal position;
in Experiment 4, observers reported whether the probed Gabor patch is offset clockwise
or counterclockwise from a vertical orientation. This chapter will consider the accuracy
data and the sensitivity parameters derived from those data using a model from signal
detection theory; the following chapter will continue this analysis using response time
modelling. After a description of the method and overall results for the first experiments,
a general description of the modelling framework based on signal detection theory will
be given.
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5.1 Experiment 3

5.1 Experiment 3

The first experiment presented in this chapter, Experiment 3, is a two-choice fine orienta-
tion discrimination experiment. In this experiment, observers were to encode a memory
array and report whether a subsequently probed item was rotated either in a clockwise or
counterclockwise direction from a diagonal position. The diagonal referent was chosen
to avoid observers using the rectangular outline of the monitor to facilitate their discimi-
nation judgement. The discriminability of the target item was determined by the amount
of rotation from the diagonal position, or the angular offset. The exact range of angular
offset was consistent across observers and selected to give a range of performance from
near-chance discrimination accuracy at the smallest angular offset, and near-ceiling dis-
crimination accuracy at the largest angular offset (for a memory array of a single item).
In this experiment, the size of the memory array was also manipulated—along with the
angular offset of the target item—to examine the interaction between the sample-size
constraint and orientation feature values.

5.1.1 Method

Participants

Five observers participated in this study: myself (SL) and four paid observers naïve to the
aims of the study (AB, CVH, SIS, and XL) drawn from the University of Melbourne. Each
observer, with the exception of myself, was briefed about the general nature of the study
(with the specific predictions regarding the outcome omitted from this briefing, however)
and signed a consent form prior to participation. Each observer other than myself was
remunerated AUD $12 for each session completed.

Each observer completed a variable number of practice and calibration sessions. Prac-
tice sessions were undertaken to familiarise the observers with the task and responding
in a timely manner; calibration sessions were undertaken to control for individual differ-
ences in performance over stimulus contrast settings. All sessions lasted approximately
thirty-five minutes each, with regular periods in between blocks of trials for breaks.

Stimuli and apparatus

Following the experiments presented in the first part, the memory array was composed
of oriented Gabor patch stimuli. Unlike the experiments presented in the previous sec-
tion, however, these Gabor patches were presented at angles around the diagonal (π/4
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Fixation cross (1,500 ms)

Memory array (1–4 items; 200 ms)

Backwards mask (200 ms)

Report cue

Figure 5.1: A schematic overview of the timing and structure of each trial in Experiment 3.

rad or 3π/4 rad) axis. Eight different levels of angular offset of the target and distractor
stimuli, the difference in rotation from the diagonal stimulus, were used. The minimum
angular offset of 0.04 radians from the diagonal position and a maximum angular offset
of 0.39 radians from the diagonal position—a position of “zero discriminability”, indi-
cating that discrimination for stimuli presented with that orientation would necessarily
be at the level of chance. The range of angular offset positions was selected after a pilot
study to ensure almost chance levels of performance at the smallest offset from the zero
discriminability point and near-ceiling performance for the largest offset when present-
ing a single item in the memory array. An equal number of each of the angular offset
levels were used in each experiment; the angular offset for each of the distractor items
was selected with uniform probability from the eight levels.

Stimulus contrast was also manipulated between observers to approximate a consis-
tent level of performance at the maximum levels of angular offset between observers.

Procedure

A 4×8 within-subjects design was used, composed of four memory array sizes (1, 2, 3, and
4 items) and eight levels of target angular offset from a diagonal position. Each session of
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5.1 Experiment 3

the experiment consisted of 384 trials, yielding a total of 3,840 trials per observer after
the full ten experimental sessions. Trial presentation order of differing memory array
sizes and differing target angular offsets was randomised.

Each trial began with a 1,000 ms uniform field, followed by the presentation of a cen-
tral fixation cross for 1,500 ms. A stimulus array of between one and four Gabor patches
at the four diagonal positions around the central fixation cross, oriented with offsets
from either a northwest–southeast (3π/4 rad) or northeast–southwest (π/4 rad) diag-
onal position, was presented for 200 ms. The presentation of the memory array was
followed by the presentation of a high-contrast radial (bullseye) mask for 200 ms. The
backwards mask was then followed by the presentation of the report cue at one location
corresponding to an item in the memory array.

Observers were asked to judge whether the probed memory item was rotated clock-
wise or counterclockwise from a diagonal position. Responses were entered via button
press and response time were recorded. Observers were instructed to enter their re-
sponse as quickly as possible without compromising accuracy.

5.1.2 Results

For the analysis of sensitivity and accuracy, no data was filtered from the overall dataset.
Stimulus orientation will be described in terms of “angular offset”: the difference be-
tween the orientation of the stimulus and a stimulus of zero discriminability (i.e., a diag-
onal stimulus with orientation π/4 rad or 3π/4 rad).

Figure 5.2 shows the average observer accuracy for different memory array sizes as
a function of the target angular offset; Figure 5.3 shows these data on an observer-by-
observer basis.

A mixed-effects logistic regression was used to provide a preliminary analysis of the
data. The logistic regression was conducted on the proportion of correct responses, with
the memory array size and angular offset treated as fixed effects and the individual dif-
ferences of the observer on the intercept treated as a random effect. No significant main
effect of memory array size was found, β = −0.165, SE = 0.038, p = 0.305. A significant
main effect of angular offset was, however, found, β = 6.524, SE = 0.464, p < 0.001,
with larger angular offsets from the zero-discriminability (diagonal) position leading to
higher levels of accuracy. A significant interaction between memory array size and angu-
lar offset was also found, β = −0.882, SE = 0.164, p < 0.001. This interaction indicates
that the decrement in accuracy seen as the memory array size increased was seen more
prominently in higher angular offsets.
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Figure 5.2: Groupaverageaccuracydata fromExperiment 3acrossdifferentmemory array sizes
as a function of different angular offset levels. Error bars represent one standard
error of the mean. SS = Memory array (set) size.
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Chapter 5 Fine orientation discrimination: sensitivity

Signal detection theory modelling for fine orientation discrimination

In modelling observer accuracy for the first experiment, the signal detection theory frame-
work previously presented in §3.1 was expanded to deal with tasks requiring the ob-
server to discriminate between small angular differences. The simplest assumption is
that sensitivity will decrease monotonically with smaller angular differences from the
zero-discriminability orientation and that this effect will be independent of the sample-
size relation. Two related model types were tested, one with a weighting function—called
a “tuning function” for reasons given below—multipled with squared sensitivity and one
where the weighting function was multiplied directly with sensitivity. In the former case,
the relationship between sensitivity in a specific angular offset and memory array size
condition was defined as

(d′
i,m)

2
=

(1− f (b (θi − a))) · (d′
1)

2

m
,

where i and m are the angular offset index and memory array size, respectively; d′
1 is

the (estimated) sensitivity for an orthogonal discrimination from a single item memory
array; f (·) is the tuning function, either a modified Gaussian, triangle, or cosine function
(detailed below); and a and b are the estimated offset and bandwidth parameters. In
the case where the tuning function was applied directly to d′, rather than (d′)

2, this
relationship was

d′
i,m =

(1− f (b · (θi − a))) · d′
1√

m
.

These models generalise the orthogonal discrimination models presented in the first
part of this thesis. The model for orthogonal orientation discrimination assumed that the
orientation values of the stimuli presented corresponded to a single psychophysical de-
tector. As outlined in that section, these detectors are assumed to operate as orientation-
based selective filters: maximally responding when an oriented stimulus with their “pre-
ferred orientation” value is displayed (Graham, 1989; Hubel & Wiesel, 1963; Thomas &
Gille, 1979). In the case of orthogonal orientations, it was assumed that the detectors
would not respond to presentation of their non-preferred stimulus, meaning that the
response of all detectors would be uncorrelated, and all false alarms would be due to
background neural noise.

In modelling discriminations between small orientation differences, the relationship
between stimulus orientation and the response of the detectors needs to be expanded.
Rather than treating each orientation value as being associated with a separate detector,
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,
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,

Stimulus Inner product Activation level

Figure 5.4: A schematic diagram of the connection between an oriented external stimulus and
the underlying psychophysical channels. A Gabor patch stimulus, represented us-
ing the symbol, is presented to the observer. The inner product, denoted using
the ⟨·, ·⟩ operators, is taken between the presented stimuli and the receptive fields,
represented using the to denote a centre–surround receptive field, to obtain dif-
ferent levels of activation based on the level of correspondence between the orien-
tation of the stimulus and that of the filter.

it is assumed that a range of orientations elicit a response from a given detector. The level
of this response is assumed to be determined by the distance of the presented orientation
from the preferred orientation of the receptor (see Figure 5.4). The function which relates
the angular difference of the stimulus to the response of the detector is known as the
detector’s sensitivity (or tuning) function.

In the current models, the effect of the orientation-selectivity of the zero-discrimination
detectors or detectors corresponding to the incorrect response category may either be
on sensitivity directly (corresponding to a change in the sensitivity measure d′) or on
squared sensitivity, or (d′)

2. The possible relationship between the orientation-selective
tuning (or sensitivity) function and (d′)

2 directly arises from predictions of observer be-
haviour based on neural models of memory. Smith (2015) has previously shown, extend-
ing work previously given by Smith (2010), that populations of Poisson neuron models
predict a sample-size information constraint arising from the divisive inhibition of the
firing rates.

An equal distribution in the rate of recruiting and maintaining neural resources be-
tween represented items, giving rise to the general sample size case, can be manipu-
lated in tasks where the representation or attentional weighting of stimuli is not equal
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θP θP θP

Figure 5.5: The three different forms of tuning function examined: a Gaussian function, a co-
sine function, and a triangular function. Each function has a maximum at the pre-
ferred orientation of the detector (θP) and monotonically decreasing response for
other orientations. The arrow marker shows the angular offset of zero detector
response. (Note: this is not true in the case of the Gaussian function, where the
detector response approaches zero asymptotically with increasing angular offset.)

(Smith, Lilburn, Corbett, Sewell, & Kyllingsbæk, under review). The proposed mecha-
nism of attentional allocation biases the pool of neurons representing information held
within memory to preferentially code the attentionally selected item over all other items.
A similar idea, in terms of the broader dynamics of the system, is described by Smith et al.
(2009) and Smith and Sewell (2013). The effect of this attentional selection is a weighting
directly on squared sensitivity, (d′)

2.

A similar argument can be given for stimuli based on the orientation selectivity of the
neural populations: although the population remains of a fixed size, and information
from a presented display is sampled with a fixed rate, the rate of neural firing may be
changed due to the alignment of the orientation profile of a decision-relevant receptor—
represented as a pool of Poisson neurons—and the orientation of the presented stim-
ulus. If λM represents the maximum firing rate of those neurons, then the mean and
variance of the Poisson process will be equal to λM and stimulus discriminability, the
signal-to-noise ratio, will be equal to λM/

√
λM =

√
λM (Smith, 2015). Given a tuning

function, f (θ), which maps the stimulus orientation to a weight, f : (−π, π) → [0, 1],
then d′ =

√
f (θ) λM. The tuning functions are modified in two ways to limit the range

of firing rates: first, the output of the function is fixed to unity if the angle θ is negative;
second, the output of the function is fixed so that the output remains non-negative (i.e.,
max (0, f (θ))). A bandwidth and offset parameter scales and translates the stimulus ori-
entation, respectively, within the tuning function. The bandwidth parameter modifies
the range of orientations which result in a non-zero firing rate. The offset parameter
changes the distance between the orientation of the detector at the angle of the inter-
nal standard and the orientation of the presented stimulus: that is, although the tuning
function is assumed to be centred on the orientation of the referent, in practice the psy-
chological representation of the referent may not be veridical, necessitating an offset
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θ0Non-target category Target category

Figure 5.6: Assuming that orientation information is coded using a densely packed array
of orientation selective detectors, any orientation close to the point of zero-
discriminability (θ0) will elicit a response from both target and non-target detectors.
The proportion of the response accounted for by target detectors (the white area)
determines the effective stimulus information available for encoding to thememory
system. The response of non-target detectors (the grey area) contributes to incor-
rect decisions near the zero-discriminability orientation.

parameter. In practice, the exact form of the tuning function rarely matters greatly, so
long as it is a function which predicts a monotonic decrease in the output of a detector
with increasing angular difference. The functional forms examined presently, used in
the wider literature (see, e.g., Seung & Sompolinsky, 1993; Thomas & Gille, 1979), are a
Gaussian function with non-negative domain, a cosine function with a domain between
zero and π/2, and a triangular function which linearly interpolates maximum respond-
ing with zero angular difference to zero detector response at a larger angular difference
(see Figure 5.5).

In the current models, I assume that orientation-specific detectors are densely packed
across the entire stimulus domain. Two sets of detectors are relevant in the discrimina-
tion decision: one set of detectors with preferred orientations clockwise to the standard
and one set of detectors with preferred orientations that are counter-clockwise to the
standard. When decisions are made regarding targets that have a large angular differ-
ence to the point of zero discriminability, observer performance will be largely depen-
dent on the sensitivity of the correct set of orientation detectors to respond to a near-
threshold stimulus; that is, incorrect responses will be principally due to noise and ac-
curacy will approach the asymptotic level of performance seen when making orthogonal
orientation discriminations given the stimulus contrast. When target stimuli are close
in orientation to the standard orientation, the perceptual representation underlying the
decision is assumed to involve both the set of detectors that correspond to the correct ro-
tation away from the standard, and some responding by the incorrect set. Thus, the tun-
ing functions of the detectors corresponding to the incorrect response category must be

155



Chapter 5 Fine orientation discrimination: sensitivity

taken into account (see Figure 5.6). For simplicity, in the models presented, false alarms
due to activation of the set of detectors corresponding to the incorrect response category
will be modelled with a single tuning function, centred on the zero discriminability ori-
entation. This is entered into the model through a weighting of the sensitivity, (1− f (·)),
where f is the tuning function, indicating that as the output of the tuning function in-
creases, overall sensitivity decreases. Importantly, the effect of the tuning function on
predicted sensitivity is wholly independent from the effect of the sample-size relation,
indicating separable constraints.

Different model configurations varying in the number of estimated parameters, the
functional form of the tuning function, the type of sensitivity weighted, and the con-
straints between parameters were individually generated and fit to data, giving a total of
72 model configurations for each observer; see Table 5.1 for the factors and their levels.
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Table 5.1: Differing model configuration factors in the construction of the extended signal de-
tection theory models for Experiment 3.

Model factor Description Factor levels

SS constraint Whether the sample-size relation-
ship is enforced, leading to a con-
straint on sensitivity between dif-
ferent memory array sizes.

Yes (sensitivity is constrained to the
sample size relation,

∑
m(d′

m)2 =
const.); No (the effect of memory ar-
ray size on sensitivity is freely esti-
mated).

Curve The functional form of the relation-
ship between sensitivity and the
target angular offset as defined by
the tuning function.

Gaussian (half-Gaussian function);
Cosine (quarter-cycle cosine); Tri-
angle (decreasing linear function
from one to zero over the band-
width).

Bandwidth Whether the width of the tuning
function (that is the selectivity of
the detector over different orienta-
tions) is estimated for each mem-
ory array size condition, or is con-
strained to be equal across all con-
ditions.

Free (the bandwidth parameters are
estimated for each memory array
size condition); Equal (the band-
width parameters are constrained
to be equal across conditions).

Squared Whether the tuning function is
weighting squared sensitivity or
sensitivity directly.

Yes (tuning function is applied
to squared-sensitivity); No (tuning
function is applied to sensitivity).

Offset The centre of the tuning function—
either fixed at zero (i.e., centred on
the point of zero discriminability)
or estimated.

Free (the offset is estimated for
each memory array size condi-
tion); Equal (the offset is estimated
but constrained to be equal across
all memory array size conditions);
Zero (the offset is fixed to zero).
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Chapter 5 Fine orientation discrimination: sensitivity

Table 5.2: Five signal detection theory models extended to account for fine orien-
tation discrimination that best fit, in termsof BIC, the groupaveragedata
in Experiment 3.

Curve SS constraint Bandwidth Offset Squared G2 BIC

Gaussian Yes Equal Zero Yes 9.292 25.799

Cosine Yes Equal Zero Yes 11.035 27.541

Triangular Yes Equal Zero No 11.975 28.482

Gaussian Yes Equal Zero No 15.017 31.524

Gaussian Yes Equal Equal Yes 9.292 34.052

Refer Table 5.1 for nomenclature.

For each specific model tested, the best fitting parameter was found by minimising the
objective function,

G2 = 2
∑
i∈A

∑
j∈B

Ni,j

∑
k∈R

pi,j,k · ln
pi,j,k

πi,j,k

,

where the index i runs over the set of the eight angular offset conditions, A; the index j

runs over the set of memory array conditions (from a single item presented to four items
presented), B; the index k runs over the set of response types (clockwise or counter-
clockwise), R; Ni,j is the number of trials in each experimental condition of a specified
angular offset and memory array level; and, pi,j,k and πi,j,k are the observed and pre-
dicted number of response proportions of the type indicated by the triple < i, j, k >. The
five best-fitting models for the group average data is presented in Table 5.2, selected on
the basis of BIC values. The five best-fitting models for each observer, in BIC terms, are
presented in tables at the end of this chapter for clarity (in Tables 5.5–5.9).

In general, the extended signal detection theory model with the inclusion of an orientation-
specific tuning function, appears to capture the main qualitative variance observed in the
data: the systematic effect of angular offset on performance can most clearly be seen in
the change of accuracy across offset conditions in single-item displays. Like the model
results reported in Chapter 3, the presence of a sample-size constraint between observer
accuracy and the size of the memory array was supported by the data, with all of the top
five models in terms of BIC for each observer (other than observer XL) employing this
constraint. The lack of support for the sample-size constraint from the performance of
observer XL appears to be due to the overall reduction in the magnitude of any effect of
memory array size.

The best fitting model configuration in all cases—except for the observer XL—conformed
to the sample-size relation and used a Gaussian-shaped tuning function, operating on
the squared-sensitivity, where the preferred orientation of the tuning function was cen-
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tred on the point of zero-discriminability. No predicted interaction between the band-
width of the tuning function and the size of memory array was found: only a single
bandwidth was used to predict the change in accuracy for each memory array size. Fig-
ure 5.7 displays the predictions of this model configuration presented against the group
average observer data.

5.1.3 Discussion

The aim of Experiment 3 was to examine the relationship between observer performance
over different levels of stimulus discriminability, and to investigate a generalisation of
the sample-size relationship previously reported by Sewell et al. (2014). The data ob-
tained showed a systematic effect of both stimulus discriminability and memory array
size on observer accuracy, clearly seen in the group average data, and well accounted
for by a simple model which used a Gaussian-shaped tuning function centred on the
zero-discriminability orientation to modify observer sensitivity.

The finding that the best fitting model predicted a relationship between the angular
offset of the target stimulus and squared-sensitivity, rather than simple sensitivity, inti-
mates that the effect of the angular offset condition affected the variability of information
entering the visual short-term memory system, rather than simply affecting stimulus
confusability at the decision stage. Although this is consistent with the interpretation
of response variability in continuous response tasks as reflecting a change in memory
“precision” (Bays et al., 2009; Zhang & Luck, 2008), that interpretation is inconsistent
with the lack of any interaction between the memory array size and the estimated band-
width parameter. If it was assumed that an underlying resource constraint in the mem-
ory system affected the precision at which observers could discriminate between fine
orientation, then one might expect to see an increasing bandwidth as the memory array
size increased. The current data suggest, however, no structural change to the overall
precision at which orientation can be represented in memory system, but a change in
the signal-to-noise ratio.

This conclusion is somewhat difficult to appraise immediately given the variability in
the data, particularly when examining individual observer data. This variability in the
individual observer data—despite the large number of observations per cell—indicates
that comparisons to an oblique internal standard may be difficult. (As will be shown in
the next chapter, however, the response time data for this experiment is also consistent
in showing the effects of memory array size.)

Further exploration of the relationship between the stimulus discriminability and mem-
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Figure 5.7: Predictions of the extended signal detection theory model against the group aver-
age data. Thismodel possessed aGaussian-shaped tuning function, with the band-
widths of those functions constrained to be equal between both exposure durations
and memory array sizes and the centre of the function at the zero-discriminability
orientation. The effect of memory array size on observer sensitivity is constrained
to follow the sample size relation. This model was the best fittingmodel (in terms of
BIC) for the group average data. In the figure, dashed lines represent the observed
data (cf. Figure 5.2) and the solid lines represent the prediction of the model.
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ory array size, with the addition of an experimental manipulation of the stimulus expo-
sure duration, will be examined in the next experiment.

5.2 Experiment 4

The previous experiment used a two-alternative fine-orientation discrimination to demon-
strate a systematic relationship between increasing stimulus discriminability and in-
creasing observer performance, independently of the information constraint on observer
performance described by the sample-size relation. The second experiment expanded
this methodology to examine the relationship between stimulus discriminability, mem-
ory array size, and observer performance with different levels of stimulus exposure du-
ration. Rather than using an oblique stimulus as the standard to compare against, and
potentially increasing the variability in the observed data due to uncertainty regarding
the standard, this experiment used a vertical stimulus as the standard.

The conclusions drawn from previous studies examining visual short-term memory
(Gegenfurtner & Sperling, 1993; Ratcliff & Rouder, 2000; Sewell et al., 2014; Smith et al.,
2004; Vogel et al., 2006), as well as the first part of this thesis, is that increasing the
stimulus exposure duration increases the effective amount of information for percep-
tual decision-making held within the memory system. This conclusion is compatible, as
stated in the introduction of this chapter, with the findings of Bays, Gorgoraptis, Wee,
Marshall, and Husain (2011). Bays and colleagues found that increases in the stimulus
exposure duration were related to decreases in the variability of responding in a contin-
uous report task. Their conclusion was that the effect of increasing stimulus exposure
duration, like decreasing the number of items to be maintained simultaneously, could
increase the precision at which memory representations are stored. However, the appar-
ent increase in precision may be due to additional information available to the decision
process, rather than a change in the structure of the representation itself. As shown from
the equal bandwidth estimated between memory array size conditions in the first ex-
periment, the effect of the increasing the amount of available information for the probed
item may not lead to a higher quality of information—changing the profile of stimulus
discriminability—but simply increasing the discriminability across all orientations uni-
formly as the amount of total information in the memory system increases.

These arguments will be explored in the following experiment.
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5.2.1 Method

Participants

Five observers participated in this study, all paid observers who were naïve to the aims
of the study selected from the University of Melbourne (HA, LA, ME, SN, and TS). Each
observer was briefed about the general nature of the study and signed a consent form
prior to participation. Each observer other than myself was remunerated AUD $12 for
each session completed.

As with the first experiment, each observer completed a variable number of practice
and calibration sessions. All sessions lasted approximately thirty-five minutes each, with
regular breaks between blocks of trials for observers to rest.

Stimuli and apparatus

The experiment largely followed the design presented for the previous experiment, using
arrays of one to four Gabor patches presented around a central fixation cross. Unlike the
first experiment, however, the Gabor patches were oriented clockwise or counterclock-
wise from a vertical—rather than diagonal—position (the point of zero discriminability).
Four different levels of angular offset were used: 0.1, 0.3, 0.5, or 0.7 radians away from
the point of zero discriminability which was consistent between observers.

Stimulus contrast was also manipulated between observers in attempting to provide
the maximum range between the most difficult condition (four items presented for 100
ms, with the target very close to a vertical orientation) above chance, and the least dif-
ficult condition (a single item presented for 200 ms, with the target item oriented 0.7
radians away from a vertical position) below ceiling performance.

Procedure

A 4×3×4 within-subjects design was used: four memory array sizes (1, 2, 3, or 4 items
displayed); three stimulus exposure durations (100, 150, or 200 ms); and four levels of
target angular offset from a vertical position. Each session of the experiment consisted
of 384 trials, yielding a total of 5,760 trials per observer after the full fifteen experimental
sessions. The timing for presentation (see Figure 5.8) was exactly the same as the first
experiment, except that the stimulus exposure duration was variable, changing on a trial-
to-trial basis.
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Fixation cross (1,500 ms)

Memory array (1–4 items; 100–200 ms)

Backwards mask (200 ms)

Report cue

Figure 5.8: A schematic overview of the timing and structure of each trial in Experiment 4.

5.2.2 Results

Figure 5.9 shows the average accuracy across observers for each memory array size and
stimulus exposure duration as a function of the angular offset of the target; Figures 5.11–
5.15 show the accuracy for each individual observer, and are presented at the end of the
chapter.

As with the first experiment, prior to the discussion of the sensitivity model based
signal detection theory, a mixed-effects logistic regression model was used to provide
a preliminary analysis of the data. The logistic regression was conducted on the pro-
portion of correct responses, with memory array size, stimulus exposure duration, and
target angular offset treated as fixed effects. Individual differences of each observer on
the intercept were treated as a random effect. Stimulus exposure duration was scaled to
seconds to increase the stability of the model estimation routines. A significant main ef-
fect of the memory array size on observer accuracy was found, β = −0.177, SE = 0.083,
p = 0.032, with accuracy predicted to decrease as memory array size increased. The
main effect of stimulus exposure duration on accuracy was not significant, β = −2.435,
SE = 1.381, p = 0.077; the main effect of target offset magnitude on accuracy was
also not significant, β = −0.487, SE = 0.355, p = 0.170. The two-way interaction be-
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Figure 5.9: Group average accuracy data from Experiment 4, showing the proportion of cor-
rect responses as a function of the target angular offset (in radians), conditioned by
memory array size (different lines on the plot) and by the memory array exposure
duration (different panels in the plot).

tween memory array size and stimulus exposure duration was significant, β = 1.212,
SE = 0.515, p = 0.019, with the difference between accuracy levels between memory
array size conditions predicted to increase as the exposure duration increased. The two-
way interaction between memory array size and angular offset of the target was also
significant, β = 0.321, SE = 0.132, p = 0.015, with the increase in accuracy with larger
target offset magnitudes predicted to rise more slowly in larger memory array size con-
ditions. The final two-way interaction between stimulus exposure duration and the an-
gular offset of the target was also significant, β = 10.061, SE = 2.253, p < 0.001, with the
increase in accuracy with larger target offset magnitudes predicted to rise more quickly
with larger exposure durations. Last, the three-way interaction between the memory
array size, the stimulus exposure duration, and the angular offset of the target was sig-
nificant, β = −3.979, SE = 2.253, p < 0.001, with the increase in accuracy levels with
larger target offset magnitudes predicted to increase more quickly for smaller memory
array sizes as exposure duration increased than for larger memory array sizes.
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5.2.3 Sensitivity modelling

The models earlier presented in §5.1.2 expanded the two-alternative orientation discrim-
ination model presented earlier in §3.1 to account for data where the possible target ori-
entations were not orthogonal. The prediction of that model was that the angular offset of
the target item would directly affect sensitivity—or squared sensitivity—by an appropri-
ately chosen tuning function, independent of the effect of memory array size described
by the sample size relation. In the current experiment, the exposure time of the stimu-
lus was also manipulated between trials, in addition to the discriminability of the target
stimulus.

In order to account for the effect of exposure duration, different relationships between
sensitivity and stimulus exposure duration, in terms of the milliseconds of memory ar-
ray presentation, were examined. A strong interpretation of a sample size account would
predict that the rate of information processing in the visual short-term memory system
is fixed, giving a linear growth in the squared sensitivity function with the stimulus ex-
posure duration (Sewell et al., 2014, in press). This account, although naturally arising
from the constant rate sampling properties of the sample size model, assumes that ob-
served sensitivity is identical with the rate of information formation, and that the infor-
mation being sampled from remains consistent over the sampling period. The use of
high spatial frequency information in fine orientation discrimination decisions suggests
that perceptual representations may take longer to form and consolidate than perceptual
representations required to make orthogonal orientation discrimination judgements, as
reviewed earlier, and that non-linearities may arise due to this formation process. In fit-
ting the current experiment, preliminary model fitting indicated that substantially better
fits between the model and observed data were obtained by a linear relationship between
the stimulus exposure duration and observed sensitivity—rather than squared sensitivity.
The relationship between sensitivity and exposure duration used for the models where
the tuning function directly weights squared sensitivity was, therefore,

d′
i,m =

√
f (b · (θi − a)) · d′

1√
m

ατ,

where the indices i and m run over the different target angular offset and memory ar-
ray size conditions, respectively; α is an estimated rate of sensitivity growth; and, τ is
the stimulus exposure duration in milliseconds. In the model configurations where the

165



Chapter 5 Fine orientation discrimination: sensitivity

tuning functions weighted sensitivity, the models were of the form

d′
i,m =

f (b · (θi − a)) · d′
1√

m
ατ.

In all, 720 model configurations were tested for each observer and for the composite
(averaged) observer. In addition to the factors manipulated in the model fitting for the
previous experiment, additional factors and factor levels were added to characterise the
effect of exposure duration on sensitivity (see, Table 5.3). The five best fitting models, in
terms of BIC, for the group average data are shown in Table 5.4. Tables 5.10–5.14 display
the best fitting models for each observer and are presented at the end of this chapter for
clarity.

In examining the best fitting models for each of the observers, the effect of exposure
duration on sensitivity was seen as a linear multiplicative factor on sensitivity, rather
than squared sensitivity, in all observers except ME. The sample-size constraint relating
sensitivity to memory array size was also supported in each of the observers, consis-
tent with the model results presented in Chapter 3 and the earlier results of Experiment
3. Although there is support overall for the dominant model configuration seen in Ex-
periment 5—with a Gaussian-shaped tuning curve centred on the orientation of zero-
discriminability, and with equal bandwidths between conditions—this model configura-
tion is not the top model according to BIC for every observer. For the data of observer HA,
a cosine curve fits the accuracy data slightly better (the configuration with the Gaussian-
shaped tuning function is the second best fitting). For the data of observer LA, there are
differences predicted in the bandwidth of the tuning function between exposure duration
conditions, but the model with equal bandwidths across all conditions is ranked fourth.
For the data of observer ME, the dominant model does not rank within the top five (it
ranked 93rd of 720 model configurations) and the top configurations do not seem to be
consistent with the model configurations seen for other observers. Last, for the data of
observer SN, a triangular tuning function is preferred slightly over the Gaussian-shaped
tuning function, which is ranked second.

Largely, however, the dominant model shown in Experiment 3 seems to be consis-
tent with the data of Experiment 4, with the bandwidths largely remaining equal across
experimental conditions and the growth in sensitivity apparently linear with increasing
exposure duration. The deviations in rankings of model configurations appears to be
due to the variability in the individual data, not seen in the composite observer data.
The fit between this model configuration and the observed group average data can be
seen in Figure 5.10.
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Table 5.3: Differing model configuration factors for manipulated in constructing the extended
signal detection theory models for Experiment 4.

Model factor Description Factor levels

SS constraint Whether the sample size relation-
ship is enforced, leading to a con-
straint on sensitivity between dif-
ferent memory array sizes.

Yes (sensitivity is constrained to the
sample size relation,

∑
m(d′

m)2 =
const.); No (the effect of memory
array size on sensitivity is freely es-
timated).

Curve The functional form of the relation-
ship between sensitivity and the
target angular offset as defined by
the tuning function.

Gaussian (half-Gaussian function);
Cosine (quarter-cycle cosine); Tri-
angle (decreasing linear function
from one to zero over the band-
width).

Bandwidth Whether the width of the tuning
function (that is the selectivity of
the detector over different orienta-
tions) is estimated for each mem-
ory array size condition, is esti-
mated for each exposure duration
condition, is estimated freely in
each condition, or is constrained to
be equal across all conditions.

Free (the bandwidth parameters are
estimated freely for each memory
array size and exposure duration
condition); Free–ExpDur (the band-
width parameters are estimated for
each exposure duration condition);
Free–Size (the bandwidth parame-
ters are estimated for each mem-
ory array size condition); Equal (the
bandwidth parameters are con-
strained to be equal across condi-
tions).

Squared Whether the tuning function is
weighting squared sensitivity or
sensitivity directly.

Yes (tuning function is applied
to squared-sensitivity); No (tuning
function is applied to sensitivity).

Offset The centre of the tuning function—
either fixed at zero (i.e., centred on
the point of zero discriminability)
or estimated.

Free (the offset is estimated for each
exposure duration and memory ar-
ray size condition); Free–ExpDur
(the offset is estimated for each ex-
posure duration level); Free–Size
(the offset is estimated for each
memory array size); Equal (the off-
set is estimated but constrained to
be equal across all memory array
size and exposure duration condi-
tion); Zero (the offset is fixed to
zero).

Times The effect of exposure duration on
sensitivity.

Free (each exposure duration has
a freely estimated marginal effect
on sensitivity); Linear (sensitivity is
linearly related to exposure dura-
tion); None (sensitivity is unrelated
to exposure duration).
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Table 5.4: Five signal detection theory models extended to account for fine orientation dis-
crimination that best fit, in terms of BIC, the group average data in Experiment
4.

Curve SS constraint Bandwidth Offset Times Squared G2 BIC

Gaussian Yes Equal Zero Linear Yes 19.854 45.83

Cosine Yes Equal Zero Linear Yes 24.551 50.527

Triangular Yes Equal Equal Linear Yes 19.461 54.096

Triangular Yes Equal Zero Linear No 28.122 54.098

Gaussian Yes Equal Equal Linear Yes 19.707 54.341

Refer Table 5.3 for nomenclature.
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Figure 5.10: Predictions of the extended signal detection theory model against the data of the
composite observer. This model possessed a Gaussian-shaped tuning function,
with the bandwidths of those functions constrained to be equal between both ex-
posure durations andmemory array sizes and the centre of the function at the zero-
discriminability orientation. The effect ofmemory array size on observer sensitivity
is constrained to follow the sample size relation and the effect of exposure dura-
tion is linear (on sensitivity, not squared sensitivity). Thismodel was the best fitting
model (in terms of BIC) for the composite observer. In the figure, dashed lines rep-
resent theobserveddata (cf. Figure5.9) and the solid lines represent theprediction
of the model.
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5.2.4 Discussion

The aim of Experiment 4 was to further investigate the relationship between the con-
tent of stimuli stored in visual short-term memory, in this case the orientation value for
each element in the memory store, and overall performance in a simple two-alternative
discrimination task. Building upon Experiment 3, Experiment 4 also included the ex-
perimental manipulation of the stimulus (memory array) exposure duration—from 100
ms to 200 ms. The results of the extended signal detection theory model fitting exercise
was consistent with the findings of the previous experiments reported in the thesis: the
effect of stimulus discriminability on performance was well captured by a tuning func-
tion directly weighting the squared-sensitivity parameter; moreover, the compatibility
of the observed performance with the sample-size relationship was supported by the
consistently better results obtained by models with the sample-size restriction between
sensitivity and memory array size imposed over models where the relationship between
sensitivity and memory array size is freely estimated.

The effect of stimulus exposure duration on performance was captured by a linear re-
lationship, but this relationship was multiplied with the sensitivity parameter directly,
rather than the sensitivity parameter squared as with the reciprocal of the memory ar-
ray size and the tuning function. The relationship between sensitivity and the stimulus
exposure duration is contrary to a strong, mechanistic interpretation of the sample-size
model which predicts a constant rate of information accumulation across time, leading
to a linear change in squared sensitivity. When examined in a preliminary model fitting,
however, the models with a squared time coefficient fit substantially better than those
with a linear time coefficient.

The lack of linear growth in the squared sensitivity does not threaten the overall va-
lidity of the sample size model as a description of resource division as, although con-
stant rate of accumulation is a consequence of a strict interpretation of the sample-size
model—the invariance of the sum of squaredd′ arises from samples being drawn steadily
from an underlying perceptual representation—the division of resources and the rate of
resource accumulation are not mutually inclusive. Instead, it may be the case that the
discriminative information required for the decision in this task, provided by high spatial
frequency detectors which have a slower response to stimulation (Watt, 1987), may mean
that the underlying perceptual representation is not fully stabilised or stationary over the
period of sampling, leading to an acceleration in the rate of squared sensitivity increas-
ing. This faster-than-linear increase in squared sensitivity appears to be fit by a quadratic
function in this case. By contrast, the rate of squared sensitivity growth using lower spa-
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tial frequency detectors in the orthogonal discrimination case reported by Sewell, Lil-
burn, and Smith (2014) appears to stable over the entire decision period, consistent with
the faster response of detectors tuned to lower spatial frequencies. Attentional factors
have also been previously noted as changing the apparent rate of sensitivity increases
with increasing stimulus information (Smith et al., under review), captured by weighted
sample-size models (Bonnel & Hafter, 1998; Bonnel & Miller, 1994).

5.3 General discussion

The experiments presented in this chapter aimed to extend the previous literature show-
ing a sample-size capacity constraint in visual short-term memory by using stimuli where
similarity was directly manipulated. By using a two-alternative fine orientation discrim-
ination task, it was argued that these data provided an insight into the structure and
capacity of the visual memory system without increasing the complexity of the decision
process required of the observer. In turn, this allowed the application and extension of
simple signal detection theory models introduced earlier in this thesis.

The results obtained from these experiments show a clear and systematic effect of the
difference in orientation between the target and an orientation of zero discriminability
on observer performance. This systematic effect was well captured by an extension to the
signal detection theory presented in Chapter 3 to account for the decrement in perfor-
mance caused by detectors with preferred orientations that correspond to an incorrect
response option (that is, coding for orientations counterclockwise to the zero discrim-
inability orientation when the presented stimulus is, in fact, clockwise). By accounting
for the false alarms caused by these detectors, weighting squared sensitivity directly us-
ing a tuning function over orientation values, the change in observed performance seen
over orientation levels was predicted by the model.

Like the models presented in Chapter 3, the sample size relation between observer
sensitivity and the memory array size was almost uniformly supported in both experi-
ments presented in this chapter, with the exception of observer XL in Experiment 3. This
suggests that the information capacity placed upon representations maintained actively
within visual short-term memory does not appear to interact with the content of those
items.

Furthermore, model configurations with the constraint that the equal bandwidths of
the tuning functions between experimental conditions tended to outperform models
where those bandwidths were freely estimated for different experimental conditions.
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This result is inconsistent with the general finding of continuous report paradigms that
memory array size or exposure duration change the precision at which a representation
is maintained (Bays et al., 2009; Bays, Gorgoraptis, et al., 2011; Bays & Husain, 2008;
Zhang & Luck, 2008), with higher stimulus exposure durations and lower memory array
sizes leading to more “precise” representations, inferred from less response dispersion.
The discrepancy between no apparent change in the resolution of orientation discrim-
ination, as indicated by the invariance of the bandwidth between experimental condi-
tions, and changes is response dispersion in continuous report tasks can be explained
by a consideration of the way that the decision process differs between the two, following
the comments made in the introduction to this chapter. The examination of continuous
report data in terms of the variability of responses alone can not differentiate between
systematic changes in the quality of stimulus information held within the visual mem-
ory system and systematic changes at the decision level, such as changes in response
bias (Smith, 2016). As such, noise in the decision stage is indistinguishable with noise in
the representation itself when using a continuous report paradigm without some con-
sideration of the response time. By contrast, the extended signal detection theory model
proposed in this chapter indicates that changes in the apparent response variability are
due to the signal-to-noise ratio of the psychophysical detectors to background noise;
the structure of the memory system does not change with additional information, nor
does the representation become more precise in the sense that the tuning functions of
detectors change. Indeed, according to this model, an increase in the amount of stim-
ulus information with a longer stimulus exposure duration or fewer items to maintain
simultaneously leads to both an increase in the hit rate due to activation of detectors
corresponding to the correct response category, but also an increase in false alarms due
to increasing activation of detectors corresponding to the incorrect response category.
Further specification of the relationship between the angular offset of the target and the
information available to the decision process will be given in the next chapter, where
response time modelling using the diffusion model will be undertaken.

The second part of this chapter also examined the relationship between stimulus ex-
posure duration and sensitivity, with evidence to suggest that sensitivity—rather than
squared sensitivity—is linearly related to exposure time. As indicated in the preceding
discussion of Experiment 4, this is not the natural prediction of a mechanistic interpre-
tation of the sample size model or the results reported by Sewell, Lilburn, and Smith
(2014), however. The faster-than-linear growth in squared sensitivity—fit with a linear
relation between exposure duration and sensitivity—appeared to predict the data bet-
ter than a linear relationship between exposure duration and squared sensitivity. This
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may be due to the slower response to stimulation exhibited by the high spatial frequency
psychophysical detectors required to make a fine orientation discrimination decision,
compared with the faster response of low spatial frequency detectors required for or-
thogonal orientation discrimination. Further research comparing directly both the fine
orientation discrimination procedure of the kind reported here and orthogonal orienta-
tion discrimination procedure of the kind reported by Sewell, Lilburn, and Smith (2014) is
required to verify if the different temporal profiles of sensitivity increasing with exposure
duration change with stimulus discriminability.

The next chapter extends the analysis of this chapter by considering the response time
data of Experiments 3 and 4, and attempting to fit response time distributions using
an analogous version of the signal detection theory models expressed in terms of the
diffusion model.
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Supplementary tables and figures

Best fitting signal detection theory model fits for individual
observers in Experiment 3.

Tables 5.5–5.9

Accuracy data for individual observers in Experiment 4. Figures 5.11–5.15

Best fitting signal detection theory model fits for individual
observers in Experiment 4.

Tables 5.10–5.14
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Table 5.5: Five signal detection theory models extended to account for fine orien-
tation discrimination that best fit, in terms of BIC, observer AB in Exper-
iment 3.

Curve SS constraint Bandwidth Offset Squared G2 BIC

Gaussian Yes Equal Zero Yes 51.781 68.288

Cosine Yes Equal Zero Yes 55.184 71.69

Gaussian Yes Equal Zero No 56.624 73.131

Triangular Yes Equal Equal Yes 49.987 74.747

Triangular Yes Equal Zero No 58.948 75.455

Refer Table 5.1 for nomenclature.

Table 5.6: Five signal detection theory models extended to account for fine ori-
entation discrimination that best fit, in terms of BIC, observer CVH in
Experiment 3.

Curve SS constraint Bandwidth Offset Squared G2 BIC

Gaussian Yes Equal Zero Yes 42.061 58.567

Cosine Yes Equal Zero Yes 42.873 59.38

Triangular Yes Equal Zero Yes 45.579 62.086

Triangular Yes Equal Zero No 46.453 62.959

Gaussian Yes Free Zero Yes 24.485 65.751

Refer Table 5.1 for nomenclature.

Table 5.7: Five signal detection theory models extended to account for fine ori-
entation discrimination that best fit, in terms of BIC, observer SIS in
Experiment 3.

Curve SS constraint Bandwidth Offset Squared G2 BIC

Cosine Yes Equal Zero Yes 34.574 51.08

Gaussian Yes Equal Zero Yes 34.863 51.369

Gaussian Yes Equal Zero No 37.855 54.362

Gaussian Yes Equal Equal No 34.107 58.867

Cosine Yes Equal Equal Yes 34.221 58.98

Refer Table 5.1 for nomenclature.
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Table 5.8: Five signal detection theory models extended to account for fine orien-
tation discrimination that best fit, in terms of BIC, observer SL in Exper-
iment 3.

Curve SS constraint Bandwidth Offset Squared G2 BIC

Gaussian Yes Equal Zero Yes 38.142 54.649

Cosine Yes Equal Zero Yes 40.008 56.514

Triangular Yes Equal Zero No 40.814 57.321

Gaussian Yes Equal Zero No 41.085 57.591

Gaussian Yes Equal Equal No 37.736 62.496

Refer Table 5.1 for nomenclature.

Table 5.9: Five signal detection theory models extended to account for fine orien-
tation discrimination that best fit, in terms of BIC, observer XL in Exper-
iment 3.

Curve SS constraint Bandwidth Offset Squared G2 BIC

Triangular No Equal Equal No 21.308 70.828

Gaussian No Equal Equal No 22.184 71.704

Gaussian No Equal Equal Yes 22.381 71.901

Cosine No Equal Equal No 22.479 71.999

Triangular No Equal Equal Yes 23.115 72.635

Refer Table 5.1 for nomenclature.
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Figure 5.11: Accuracy data from Experiment 4 for observer HA, showing the proportion of cor-
rect responses as a function of the target angular offset (in radians), conditioned
bymemory array size (different lines on the plot) and by thememory array exposure
duration (different panels in the plot).
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Figure 5.12: Accuracy data from Experiment 4 for observer LA, showing the proportion of cor-
rect responses as a function of the target angular offset (in radians), conditioned
bymemory array size (different lines on the plot) and by thememory array exposure
duration (different panels in the plot).
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Figure 5.13: Accuracy data from Experiment 4 for observer ME, showing the proportion of cor-
rect responses as a function of the target angular offset (in radians), conditioned
bymemory array size (different lines on the plot) and by thememory array exposure
duration (different panels in the plot).
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Figure 5.14: Accuracy data from Experiment 4 for observer SN, showing the proportion of cor-
rect responses as a function of the target angular offset (in radians), conditioned
bymemory array size (different lines on the plot) and by thememory array exposure
duration (different panels in the plot).
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Figure 5.15: Accuracy data from Experiment 4 for observer TS, showing the proportion of cor-
rect responses as a function of the target angular offset (in radians), conditioned
bymemory array size (different lines on the plot) and by thememory array exposure
duration (different panels in the plot).
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Table 5.10: Five signal detection theory models extended to account for fine orientation
discrimination that best fit, in terms of BIC, observer HA in Experiment 4.

Curve SS constraint Bandwidth Offset Times Squared G2 BIC

Cosine Yes Equal Zero Linear Yes 75.361 101.337

Gaussian Yes Equal Zero Linear No 75.599 101.575

Cosine Yes Equal Zero Linear No 76.311 102.287

Gaussian Yes Equal Zero Linear Yes 76.868 102.845

Gaussian Yes Equal Equal Linear Yes 75.246 109.881

Refer Table 5.3 for nomenclature.

Table 5.11: Five signal detection theory models extended to account for fine orientation dis-
crimination that best fit, in terms of BIC, observer LA in Experiment 4.

Curve SS constraint Bandwidth Offset Times Squared G2 BIC

Gaussian Yes Free–ExpDur Zero None Yes 55.231 89.866

Cosine Yes Free–ExpDur Zero None Yes 58.227 92.862

Triangular Yes Free–ExpDur Zero None No 59.227 93.862

Gaussian Yes Equal Zero Linear Yes 68.9 94.876

Gaussian Yes Free–ExpDur Zero None No 61.234 95.869

Refer Table 5.3 for nomenclature.

Table 5.12: Five signal detection theory models extended to account for fine orientation dis-
crimination that best fit, in terms of BIC, observer ME in Experiment 4.

Curve SS constraint Bandwidth Offset Times Squared G2 BIC

Gaussian Yes Free–Size Zero Linear No 105.407 157.359

Gaussian Yes Equal Free–Size Linear No 101.062 161.673

Gaussian Yes Free–Size Equal Linear No 102.229 162.84

Cosine Yes Equal Free–Size Linear Yes 102.635 163.246

Gaussian Yes Equal Free–Size Linear Yes 102.689 163.299

Refer Table 5.3 for nomenclature.
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Table 5.13: Five signal detection theorymodels extended to account for fine orientation dis-
crimination that best fit, in terms of BIC, observer SN in Experiment 4.

Curve SS constraint Bandwidth Offset Times Squared G2 BIC

Triangular Yes Equal Zero Linear Yes 77.221 103.197

Gaussian Yes Equal Zero Linear Yes 82.053 108.03

Gaussian Yes Equal Equal Linear Yes 77.246 111.881

Gaussian Yes Equal Equal Linear No 77.519 112.154

Gaussian Yes Equal Zero Linear No 86.52 112.497

Refer Table 5.3 for nomenclature.

Table 5.14: Five signal detection theorymodels extended to account for fine orientation dis-
crimination that best fit, in terms of BIC, observer TS in Experiment 4.

Curve SS constraint Bandwidth Offset Times Squared G2 BIC

Gaussian Yes Equal Zero Linear Yes 94.726 120.702

Cosine Yes Equal Zero Linear Yes 98.794 124.77

Triangular Yes Equal Zero Linear No 99.992 125.968

Triangular Yes Equal Zero Linear Yes 100.938 126.914

Gaussian Yes Equal Equal Linear No 93.074 127.709

Refer Table 5.3 for nomenclature.
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Chapter 6

Fine orientation discrimination:
response time

In the previous chapters of this thesis, I attempted to provide a model of the multiple con-
straints on the visual short-term memory system by placing an emphasis on the structure
of the task used to examine memory performance and the decision process that arises
from that task structure. The previous chapter attempted to model the effect of memory
array size, the exposure duration of the memory array, and stimulus discriminability si-
multaneously through the use of a modified version of the two-alternative orientation
discrimination paradigm introduced in Chapter 3, and the application of an extended
signal detection theory model also outlined in that chapter. Chapter 4 continued the
analysis of the experiments in Chapter 3 by examining response time distributions, and
where the response time models introduced in Chapter 4 had constraints placed upon
them following the models presented in Chapter 3. Similarly, in this chapter I examine
the response time data for the experiments presented in the last chapter and extend the
modelling presented into the response time domain.

In the introduction of Chapter 4, some of the existing work using response time dis-
tributions within the visual short-term memory literature was reviewed. Two critical
studies, the first conducted by Ratcliff and Rouder (2000) and the second conducted
by Donkin et al. (2013), demonstrated the utility of considering both accuracy and re-
sponse time jointly by providing analyses of competing accounts of the memory system.
It would not be possible to differentiate between these these competing accounts if only
accuracy was considered alone, and these studies required the extra constraints provided
by response time data. Both studies used simple, well described experimental paradigms
as the basis for analysis: two-alternative forced choice responses and change detection.

Although response time methods allow a precision in model specification that cannot
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be obtained by examining accuracy alone, the requirements for large datasets, clearly
defined decision processes in designing experimental procedures, and an emphasis on
speeded responses may help explain the paucity of response time modelling in the visual
short-term memory literature to date. In particular, there has been a lack of response
time modelling employing data obtained using the popular continuous report paradigm.
Continuous report has been used to study the structure and fidelity of representations
held within visual short-term memory, but the manner in which responses are made—
the difficulty in providing speeded responses and the lack of consensus regarding the
underlying decision process—makes response time modelling difficult.

The difficulty of obtaining response time data in continuous report tasks has meant
that theoretical questions about the representation of feature information in visual short-
term memory have not been examined in depth using response time data. Although, as
previously discussed, the value of the continuous report paradigm is the direct analogy
between the response procedure with the assumed form of the internal representation,
and the precision of the response data, it is possible to examine information at the fea-
ture level whilst also using a experimental paradigm that controls the complexity of the
decision required to make a response.

One study to have attempted response time distribution modelling from a procedure
with a focus of visual information at the feature level was reported by Pearson, Raške-
vičius, Bays, Pertzov, and Husain (2014). Pearson and colleagues used a change detection
procedure where the the probed item was displaced either in terms of angle or lateral
position from the corresponding item in the memory array. Observers were asked to
report whether the probed item was displaced towards or away from the fixation point.
Response times were, in the first two experiments, then conditioned by the magnitude
of the displacement and the size of the memory array. Model fitting, using a very sim-
ple response time model known as LATER (Carpenter, 1981; Carpenter & Williams, 1995;
Reddi & Carpenter, 2000), across this data was conducted to examine whether the ef-
fect of the size of the offset and the number of items in the memory array changed the
overall quality of stimulus information used in the decision process or the response bias.
Pearson and colleagues found that the effect of both memory array size and the magni-
tude of the offset systematically changed the quality of information, with the recovered
parameter estimates increasing linearly with the slope of the psychometric function for
accuracy across displacement conditions.

Although the relationship described by Pearson and colleagues is suggestive, their
analysis lacked many key details common to response time modelling in perceptual and
memory research (e.g., Donkin et al., 2014; Ratcliff & Rouder, 2000; Sewell & Smith, 2012;
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Smith et al., 2009): the fit between the model predictions and the observed response time
distributions was difficult to ascertain; only a simple test between the effect of the qual-
ity of stimulus information and response bias was examined; and the model used was
unnecessarily restricted, unable to model response proportions and response times si-
multaneously, and with little flexibility for discriminating between effects of nondecision
time, variability in the stimulus information, guessing processes. As a result of this lack
of detail and further elaboration, the conclusions of the study reported by Pearson and
colleagues were somewhat broad: namely, that the retrieval of memory representations
required a decision process operating on information both subject to item-level and a
feature-level capacity constraints.

The decision and response time models discussed in the preceding chapters provides
a much more elaborated set of assumptions and constraints with which to examine the
current data. In addition, the two experiments introduced in the previous chapter, and
further examined in this chapter, used a simpler two-alternative fine orientation discrim-
ination paradigm, where the rate of the information available for memory encoding is
controlled through the use of a near-threshold stimulus contrast and the complexities of
the change detection paradigm were avoided. As discussed in Chapters 3 and 4, the use
of a two-alternative orientation discrimination task, rather than a change detection task,
also increases the sensitivity with which capacity constraints on the memory represen-
tations within visual short-term memory can be measured by removing the additional
variability added by encoding and comparison of the probe array.

The structure of this chapter is as follows. I will examine each experiment in turn. For
each experiment, I first provide a general characterisation of the mean response times
across experimental conditions and apply a simple mixed-effects linear model of mean
response time. Then I present a diffusion model analysis for experiment. I then pro-
vide an analysis of the implications of the result. The chapter will close with a general
discussion, providing a summary of the findings from this chapter and the entire thesis.

6.1 Experiment 3

The aim of Experiment 3 was to examine the relationship in observer performance be-
tween constraints upon information at the individual feature level and constraints upon
whole items stored within visual short-term memory. Although related to work that has
previously been conducted using a continuous report paradigm (e.g., Bays, Gorgoraptis,
et al., 2011), the response requirements of the task make precise response time modelling
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difficult. In contrast, the near-threshold two-alternative fine orientation discrimination
paradigm of Experiment 3 is amenable to response time modelling, and the results from
Chapters 3 and 4 provide a clear basis for analysis.

Recall that in this experiment, between one and four oriented Gabor patches were pre-
sented to the observer. The observer was to indicate whether a single probed item held
within memory was rotated either counterclockwise or clockwise from a diagonal po-
sition, the magnitude of this rotation is the “target angular offset”. Eight angular offset
values were selected to range from near-chance performance for angles close to a diag-
onal orientation to near-ceiling performance. The full method and accuracy results for
Experiment 3 are discussed in §5.1.1 and §5.1.2, respectively.

6.1.1 Results

For the descriptive statistics shown in this section, no response time data was filtered
from overall dataset. Figure 6.1 shows the mean response time for each decision type
and memory array size condition, averaged across observers; Figure 6.2 shows these
data for each observer separately.

In both the group average data and across the individual observers, a large difference
can be seen between the mean response times of single item memory arrays and the
mean response times of larger array sizes. This may indicate that decisions may begin
prior to the presentation of the post-stimulus probe when the probe is irrelevant in dis-
tinguishing the target from the distractors.

A mixed-effects linear model was conducted as a preliminary analysis of the response
time data at the mean level. This regression on mean response time treated the memory
array size and the offset magnitude (in radians) as fixed effects, with the individual dif-
ferences of the observer treated as a random effect on the intercept. A significant main
effect of memory array size on response time (in milliseconds) was found, β = 53.809,
SE = 4.781, p < 0.001, indicating an increase in mean response time as memory array
size increased. A significant main effect of offset magnitude on response time was also
found, β = −506.685, SE = 62.842, p < 0.001, with response times predicted to de-
crease as offset magnitude increased. Last, a significant two-way interaction was found
between memory array size and offset magnitude, β = 82.074, SE = 22.946, p < 0.001,
with the differences in mean response time for different memory array sizes lessened
with smaller offset magnitudes.
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Figure 6.1: Group average mean response time data as a function of offset magnitude from Ex-
periment 3, displayed for eachmemory array size. Error bars represent one standard
error of the mean.
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6.1 Experiment 3

6.1.2 Diffusion model results

In the previous chapter, I provided a model for observer performance over different lev-
els of angular offset and argued that observer performance is well characterised by a
“tuned channel” model, where a Gaussian-shaped tuning function centred on the point
of zero discriminability weights the sensitivity measure d′ directly. The constraints on
sensitivity imposed by angular offset values in these tuned channel models can also be
applied to the drift rate in the diffusion model, allowing the predictions of the signal de-
tection theory models to be extended into the response time domain—like the extension
of the models in Chapter 3 to the diffusion models of Chapter 4.

In contrast to the many model variants examined for both experiments in Chapter
4, in this chapter the scope of model fitting is a restricted subset of the total number of
potential model configurations relating the experimental manipulations to different con-
straints placed upon the diffusion model. Instead, the focus of these models will be—in
the first instance—to examine whether a large number of experimental conditions can
be fit simultaneously using a (relatively) small number of assumptions and parameters
and, beyond this, to compare different parameterisations of nondecision time, drift vari-
ability, and the intrusion process (introduced in Chapter 4).

In large part, the effect of angular offset and memory array size is confined to functions
on the drift rate of the diffusion model, the average rate of evidence accumulation. Re-
call that the best fitting models of the last chapter indicated that the squared sensitivity
parameter (d′

i,m)2 for a fine orientation discrimination trial with a memory array size of
m elements and a target angular offset indexed by i was independently constrained by
both a sample size relationship and, as mentioned, a Gaussian-shaped tuning function
centred on the point of zero discriminability producing the simplified expression,

(d′
i,m)2 =

(1− ϕ (bθi)) · (d′
1)

2

m
,

where θi is the angular offset of the target in radians for the ith offset condition, ϕ is the
modified Gaussian pdf (normalised and with constrained values for negative angular
offsets), b is the bandwidth of the tuning function, and d′

1 is the (estimated) sensitivity
for an orthogonal orientation discrimination trial with a single item. In the diffusion
model, sensitivity is proportional to the drift rate parameter ν and, thus, the drift rate for
the same experimental condition can be expressed in the same manner,

νi,m =

√
(1− ϕ (bθi)) · ν1√

m
.
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Chapter 6 Fine orientation discrimination: response time

This weighting function on the drift rate in the diffusion model provides a restricted
way by which experimental manipulations of target angular offset and memory array
size can have a specific influence over both response proportions and response time.
The response time models of Chapter 4 demonstrated that close fits could be achieved
for an orthogonal orientation discrimination task (as well as for change detection task)
by also allowing nondecision time to vary as a function of memory array size. This result
was consistent with the findings of Sewell, Lilburn, and Smith (in press), who posited that
the increases seen in nondecision time across different sizes of the memory array repre-
sented changes in the cost of accessing items within memory. The strongest restriction
to place on this pattern of increasing nondecision time values for increasing memory ar-
ray sizes is to assume nondecision time increases as a linear function of memory array
size, reducing the number of parameters that need to be estimated in the model from the
number of memory array size conditions (four in the current experiment) to two param-
eters, an intercept and slope parameter. Models configurations with this restriction will
contain the label T l in their name, with the superscript l representing a linear increase
over memory array size. Models configurations with the substring T∗ will have no con-
straints on the relationship between nondecision time and memory array size, with a
separate value estimated for each array size condition, using the convention introduced
in Chapter 4.

Different drift rates for the intrusion process were also examined. In model fits re-
ported by Sewell, Lilburn, and Smith (in press), substantially better model fits were found
when allowing for a “delayed guessing” process—a diffusion process with a drift rate of
zero—mixed with some freely estimated probability into the main evidence-based pro-
cess, as reviewed in Chapter 4. In the model configurations reported in Chapter 4, this
mixture process was generalised, with the drift rate for this mixture process—termed
an intrusion process—estimated freely to allow for any non-positive drift rate. This was
interpreted as allowing for the possibility of distractor stimulus information, with the
opposite response category to the target, being accessed mistakenly and being used in
some proportion of trials. For the model configurations presented in this chapter, both
the zero-drift “guess” process and the freely estimated “intrusion” process were tested.
In addition, a third class of model configurations was examined, where the intrusion
process was constrained to have a fixed negative drift rate, with the value of that drift
rate corresponding to sampling a distractor item of the average angular offset (that is, of
average discriminability) from the opposite response category, which I will call a “dis-
tractor average” intrusion process. The intrusion process drift rate in this model is not,
therefore, directly estimated but is dependent on both the drift rate and bandwidth pa-
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6.1 Experiment 3

rameters. (Note that, in all three cases, the mixture probability of the intrusion process
increases as a function of the distractor information of the opposite response category to
the target, consistent with the model provided in Chapter 4.) The sampling of distractor
information modelled using a negative drift rate in the intrusion process is similar to the
use of the “location error” parameter used by Bays et al. (2009) in describing trials where
observers would replicate a distractor item, rather than the target item, in a continuous
report task.

Last, flexibility in the trial-to-trial variability of the drift rate in the main decision pro-
cess, denoted η, was also free to vary between memory array size conditions in some of
the model configurations tested. Trial-to-trial drift variability reflects variability in the
quality of the stimulus information available to the decision process from trial to trial.
Allowing variability in the amount of trial-to-trial variability of the drift rate across mem-
ory array size conditions allows additional flexibility in the prediction of both the fastest
response time quantiles, and in the tails. Trial-to-trial variability is often fixed across the
entire experiment, reflecting a consistent set of factors influencing the quality of a rep-
resentation used for the decision-making across the entire experiment. In the current
experiment, however, the use of an intrusion process which changes across memory ar-
ray size conditions may change the effect of trial-to-trial variability across memory array
size conditions. As larger values of η can mean that there is a non-negligible negative
drift component in the main decision process, it is expected that these parameters are
not fully decorrelated: part of the effect of the intrusion process in modelling the en-
trance of distractor information into the main decision process may be handled by the
main process.

In total, twelve different model configurations were examined; Table 6.1 provides a
summary of each of the model configuration factors manipulated. Each of the model
configurations was fit to the response time and response proportion data of each ob-
server and the group average by iterative minimisation of the G2 goodness-of-fit statis-
tic using the Nelder–Mead algorithm as described in Chapter 4. Following the format of
Chapter 4, Table 6.2 displays the five model configurations that best fit the group aver-
age data. The top five model configurations in fitting the data for each of the individual
observers are displayed in Tables 6.5–6.9, presented at the end of this chapter for clarity.

Model configurations with the “distractor average” intrusion drift rate provided the
best fit for two of the five individual observers, and for the group average data. The three
remaining observers (CVH, SIS, and SL) were best fit by model configurations involving
delayed guessing zero-drift intrusion drift process. Model configurations where the esti-
mation of trial-by-trial variability was free to vary between memory array size conditions
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Table 6.1: Differing model configuration factors manipulated in examining Experiment 3.

Model factor Description Factor levels

Nondecision time (T ) Constraints imposed
on estimating the
nondecision time
value across different
memory array size
conditions.

Linear (T l; nondecision time in-
creases as a linear function of array
size); Free (Ts; nondecision time is
freely estimated for each array size
condition).

Drift variability (η) Constraints imposed
on estimating the value
of the drift variability
parameter over differ-
ent memory array size
conditions.

Free (ηs; drift variability is freely es-
timated for each array size condi-
tion); Fixed (only a single drift vari-
ability value is used for all experi-
mental conditions).

Intrusion drift rate (αν) Constraints imposed
on estimating the value
of the drift rate of the
intrusion process over
different memory array
size conditions.

Free (αs
ν; an intrusion drift rate

is estimated freely for each mem-
ory array size condition); Zero-drift
(α◦

ν; the intrusion drift rate is fixed
at zero, leading to delayed guess-
ing); Distractor average (α−

ν ; the in-
trusion drift rate is fixed to the drift
rate associated with the mean dis-
tractor stimulus angular offset).
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Table 6.2: The top five best fitting diffusion model configurations, in terms of BIC, for the group
average data in Experiment 3.

# Model Free parameters G2 BIC

1 MOD–ηs–Ts–ν−
α 14 182.267 297.734

2 MOD–ηs–Ts–ν◦
α 14 202.965 318.432

3 MOD–Ts–ν◦
α 11 229.184 319.908

4 MOD–Ts–ν−
α 11 229.262 319.986

5 MOD–ηs–T l–ν−
α 12 222.063 321.035

provided the best fit for three out of the five observers and for the group average. Last,
the constraint for linearly increasing nondecision time estimates with increasing mem-
ory array sizes was only obtained for a single observer, observer CVH. The other best
fitting models required nondecision time to be freely estimated across memory array
size conditions.

Predictions for the model configuration that best fit the group average data, MOD–
ηs–Ts–ν−

α , are displayed against the observed data in Figure 6.3. This model configu-
ration requires a total of 14 free parameters: four drift variability parameters, four non-
decision time parameters, a single drift rate (as the tuning function and the sample-size
relation provide a value for the drift rate for each of the experimental conditions), a sin-
gle boundary separation parameter, a single bandwidth parameter, a single nondecision
time range parameter, a single intrusion rate, and a single intrusion process time param-
eter. The model captures the qualitative profile of accuracy and response time across dif-
ferent memory array size and target angular offset conditions, with the most pronounced
difference between the model prediction and observed data seen in the smaller angular
offsets in memory arrays consisting of three items. The accuracy in trials with larger
angular offsets and arrays of four items is slightly underestimated. Overall, however, the
model captures both response times at both the leading edge of the distributions (the 0.1
quantile) and the tails of the distributions (the 0.9 quantile), including the asymmetry be-
tween correct and incorrect responses. Parameters for this model can be found in Table
6.10, presented at the end of this chapter.

6.1.3 Discussion

The close fit between the model predictions and the data obtained in Experiment 3 show
that the diffusion model with both sample size and “tuned channel” constraints on the
drift rate alone can provide a compelling account of the two-choice fine orientation dis-
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Figure 6.3: A QPP displaying the predictions of the diffusion model configurationMOD–ηs–Ts–
ν−
α against the group average data of Experiment 3, styled with solid lines and filled
squares, against the observered group average data, rendered in open circles and
dashed lines. The configuration MOD–ηs–Ts–ν−

α includes different drift variability
and nondecision time values for each memory array size condition, with the intru-
sion drift rate set to the average distractor value. SS = Memory array size.
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MOD–ηs–Ts–ν−

α .

crimination paradigm. Some measure of the predictive power of the model is shown by
the relatively parsimonious treatment of the dataset: with the best fitting model config-
uration providing a good overall account of response time distributions for both correct
and incorrect responses for thirty-two experimental conditions using only 14 parameters
(the second best model requiring only 11 parameters for a fit of comparable accuracy).

No single consistent model configuration was recovered across both the group aver-
age data and the individual observers, although there were commonalities. The clearest
commonality between the best fitting model configurations was the rejection of a linear
constraint on nondecision times across memory array size conditions, with the model
fits to all but a single observer preferencing greater flexibility in the estimation of non-
decision time at the expense of a greater number of parameters and, therefore, a greater
penalisation in BIC terms. From Figure 6.4, it can be seen that the nondecision time for
single item memory arrays is, in some cases, an order of magnitude less than the non-
decision time for arrays of a greater number of stimuli. This result reflects a confound in
the post-stimulus probe task which would be difficult to account for without modelling
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Figure 6.5: A QPP displaying the predictions of the diffusion model configuration MOD–Ts–ν−
α

against the group average data of Experiment 3, styled with solid lines and filled
squares, against the observered group average data, rendered in open circles and
dashed lines. This model configuration is identical to that of Figure 6.3, except only
a single drift variability value is used in the predictions of all memory array size con-
ditions. SS = Memory array size.

the full response time distribution and indicates that, in the case of discrimination de-
cisions made for memory arrays consisting of a single item, the effective decision time
begins prior to the presentation of the post-stimulus probe. In such trials, the probe is
unnecessary as a signal to commence the decision process and the observer need not
wait for its presentation. This difference in the nondecision time of single item mem-
ory arrays against memory arrays with multiple items was not found by Sewell et al. (in
press), potentially reflecting the difficulty of this task1.

Last, a slight majority of the individual observers, the group average, had model fits
1The observer CVH appears not to follow this pattern, having low nondecision time estimates for all mem-
ory array size conditions; this appears to be the result of the smaller drift rate and larger boundary sep-
aration estimates.
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that preferenced additional flexibility in the estimation of trial-by-trial drift variability.
Figure 6.5 shows the predictions of the model configuration MOD–Ts–ν−

α , the second-
best fitting model configuration to the group average data—identical to the best fitting
model configuration, MOD–ηs–Ts–ν−

α (predictions against group average data shown
in Figure 6.3), with the exception that only a single drift variability parameter was esti-
mated. As is evident from Figure 6.5, the additional flexibility in drift variability allowed
the diffusion model to capture bowing in the tails of the response time distributions, as
well as moderating the extent of the sample size relationship on accuracy at the larger
angular offset conditions in conditions where one or four items were presented in the
memory array. The requirement for this level of flexibility could be due to the variability
in the observed data, however, rather than a reflection of theoretically meaningful pro-
cesses and constraints. Despite the large number of trials within each of the datasets,
and although a systematic profile of change in response time and accuracy are clear
over memory array size and angular offset conditions, variability in the data may be due
in part to the difficulty of the task. Unlike change detection or orthogonal orientation
discrimination, fine orientation discrimination requires observers to reach a decision
outcome by comparison with an internal standard of comparison, which may be asso-
ciated with some level of uncertainty. The problem of an uncertain internal standard
for comparison may have been especially acute given that an oblique angle was selected
as the stimulus standard to compare against. Consistent psychophysical evidence has
indicated that the discrimination and detection for obliquely oriented stimuli is consis-
tently poorer than that of horizontal or vertical oriented stimuli, known as the “oblique
effect” (Appelle, 1972; Furmanski & Engel, 2000; Heeley, Buchanan-Smith, Cromwell, &
Wright, 1997; Regan & Beverley, 1985). The difficulty associated with an oblique internal
standard may have, therefore, contributed to the difficulty of the task and motivated the
shift to a vertical standard for comparison in the next experiment.

6.2 Experiment 4

The aim of Experiment 4 was to extend the fine orientation procedure of Experiment 3
in characterising the effect of both the size of the memory array as well as the stimulus
exposure duration on observer performance over different levels of stimulus discrim-
inability. Rather than using angular offsets from an oblique stimulus as the standard of
comparison, as in Experiment 3, observers were required to indicate whether the probed
stimulus was rotated clockwise or counterclockwise from a vertical position. This was
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Figure 6.6: Group average mean response time data as a function of offset magnitude from Ex-
periment 4, displayed for each memory array size and stimulus exposure duration.
Error bars represent one standard error of the mean.

intended to mitigate some of the difficulty of the previous experiment and reduce ob-
server variability. Furthermore, although fewer angular offset conditions were used, the
range of angular offsets examined was larger, to increase the stability of observer per-
formance across conditions.

The full method and accuracy results for Experiment 4 can be found in §5.2.1 and §5.2.2,
respectively.

6.2.1 Results

Figure 6.6 shows the mean response time for each decision type and memory array size
condition, averaged across observers. The mean response times for each of the individ-
ual observers are shown at the end of this chapter, in Figures 6.8–6.12.

A mixed-effects linear model was conducted to provide a preliminary analysis of the
response times (in milliseconds) at the mean level. The regression treated the memory
array size, stimulus exposure duration (in milliseconds), and the offset magnitude of the
target (in radians) as fixed effects, with the individual differences of the observer treated
as a random effect on the intercept. The only effect to be found significant was the change
in mean response times over different memory array size conditions, β = 55.930, SE =

22.728, p = 0.014, with increases in the number of items in the memory array leading to
an increase in the mean response time.
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6.2.2 Diffusion model results

The diffusion model applied to the data in Experiment 3 shown above added a Gaussian-
shaped tuning function to relate target angular offset to drift rate, following the signal
detection theory models presented in the last chapter. The weighting of (squared) drift
rate by a tuning function was combined with the sample-size relation, also used in Chap-
ter 4. In Experiment 4, the introduction of stimulus exposure duration provides another
experimental manipulation of the amount of overall stimulus information available to
the observer. The signal detection theory models for Experiment 4 presented in the last
chapter demonstrated that a good fit to data was obtained by model configurations that
related stimulus exposure duration to observer sensitivity directly, via a linear relation,
rather than weighting squared sensitivity. The reason given was that, over the exposure
durations examined, the use of orientation information with a high spatial frequency
may lead to a slower rate of information accumulation or non-linearities when compared
to representations based on orthogonal orientations. In the diffusion models applied to
data obtained in Experiment 4, the drift rate was constrained using the relation

νi,m =

√
(1− ϕ (bθi)) · ν1√

m
γτ

where the indices i and m run across different target angular offset conditions and mem-
ory array sizes, respectively; γ is the (estimated) growth of drift rate as stimulus exposure
duration increases; ϕ is the tuning function, a modified Gaussian pdf described in Chap-
ter 5; and, τ is the stimulus exposure duration in milliseconds.

An increase in the drift rate of the diffusion process with exposure duration indicates
that, as the exposure duration of the memory array increases, the amount of stimulus
information available to the decision process increases. The inclusion of an intrusion
process, however, means that changes in the exposure duration of the memory array
may also cause a change in the drift rate of the intrusion process. The model configu-
rations for Experiment 3 included intrusion drift rates that were estimated freely across
memory array size conditions, as well as fixed to zero (indicating delayed guessing) and
set to the drift rate associated with the average angular offset of the distractors. In this
experiment, the number of intrusion drift rate constraints that could be used in model
configurations was expanded. Configurations using a “distractor average” parameteri-
sation (denoted ν−

α ) predict that the drift rate of the intrusion process should increase
with stimulus exposure duration. This interpretation follows the logic that, as a greater
quality of stimulus information is obtained for the target with a longer memory array
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duration, so too does the quality of the distractor information increase. In that scenario,
the efficiency of the post-stimulus probe in selecting only the relevant information is
unchanged by the presentation characteristics of the memory array, and distractor in-
formation intruding into the decision process is fixed. This strong account is plausible,
but unlikely: one may expect that, as the quality of the memory representation increases
with a greater quantity of stimulus information obtained over a longer interval, so too
does the ability to distinguish target and distractor information improve—or, at least, re-
main unchanged. A number of alternative parameterisations were tested, each listed in
Table 6.3, including a number of alternatives that did not require the addition of a free
parameter—such as the zero-drift intrusion process (i.e., delayed guessing) introduced in
the diffusion model fit to the previous experiment, as well as parameterisations where
the intrusion drift rate is constant for each of stimulus exposure duration conditions. The
inclusion of different constant intrusion drift rate configurations do not imply that the
intrusion process is tied to a specific level of information growth at a certain stimulus
exposure duration, but represent different magnitudes of a constant negative drift rate
for the intrusion process.

Given the small difference in goodness-of-fit for different intrusion drift rates param-
eterisations, it is unlikely that—without a directed experiment—that the data are suf-
ficient to adequately discriminate between closely related parameterisations, although
the ranking of the model fits should be informative with respect to the general magnitude
of the intrusion drift rate and the functional form of the intrusion drift rate over stimu-
lus exposure duration conditions (linearly increasing, linearly decreasing, constant, or
freely estimated).

Finally, some model configurations allowed flexibility in the estimation of trial-to-trial
variability. In fitting the diffusion model to Experiment 3, trial-to-trial drift variability
was also free to vary between memory array size conditions. This was found to be a
necessary component in fitting the last experiment, capturing additional variability in
the leading edge and tails of the response time distribution. Part of this variability may
have been due to variability in the observer’s internal standard of comparison or affected
by relative judgement, where the observer used the orientation of the distractor or dis-
tractors to determine the response category of the target. In the last experiment, this
problem may have been heightened, given the use of oblique orientations as the stimu-
lus standard, although the difficulty may not be entirely ameliorated by the use of a ver-
tical orientation as the standard for comparison. As such, model configurations where
trial-to-trial variability are freely estimated for each memory array size condition will be
included.
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Table 6.3: Different types of intrusion drift rate constraints that could be used in model config-
urations for Experiment 4.

Constraint name Symbol Description

Zero-drift ν◦
α Predicts a (memory array size dependent) pro-

portion of trials will be delayed guessing.
Distractor average ν−

α Intrusion drift rate is set by the mean angle of
distractors, with the absolute value of the in-
trusion drift rate increasing with stimulus ex-
posure duration.

Minimum distractor drift νmin
α Intrusion drift rate is set by the mean angle

of distractors at the shortest exposure duration
(100 ms), and held constant across stimulus ex-
posure duration conditions.

Average distractor drift ν
avg
α Intrusion drift rate is set by the mean angle

of distractors at the average exposure duration
(150 ms), and held constant across stimulus ex-
posure duration conditions.

Maximum distractor drift νmax
α Intrusion drift rate is set by the mean angle

of distractors at the longest exposure duration
(200 ms), and held constant across stimulus ex-
posure duration conditions.

Linear drift νl
α Intrusion drift rate varies over stimulus expo-

sure duration conditions as a linear function.
Free estimation νt

α The intrusion drift rate in each stimulus expo-
sure duration condition is freely estimated.

Free constant να A single value is estimated for the intrusion drift
rate and used as a constant across each stimu-
lus exposure duration condition.

Table 6.4: The top five best fitting diffusion model configurations, in terms of BIC, for the group
average data in Experiment 4.

# Model Free parameters G2 BIC

1 MOD–ηs–Ts–νmin
α 15 237.932 367.74

2 MOD–ηs–Ts–ν◦
α 15 240.409 370.217

3 MOD–ηs–Ts–νmax
α 15 241.806 371.614

4 MOD–ηs–Ts–νt
α 18 232.016 387.785

5 MOD–ηs–T l–ν◦
α 13 284.571 397.071
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In total, 48 alternative models were fit to each observer, as well as to the group average
data. The top ranking models for the group average data in terms of BIC are displayed
in 6.4; the top ranking models for each of the individual observers are shown in Tables
6.11–6.15, displayed at the end of the chapter for clarity. For two out of the five individual
observers, as well as for the group average, the best-fitting model used a constant non-
zero intrusion drift rate determined using the linear increase of stimulus information
with exposure duration: one observer was best fit by the drift rate of the mean angle of the
distractors given 150 ms of stimulus exposure (the average stimulus exposure duration),
with one observer and the group average data best fit by a model configuration that
had the intrusion drift rate set by the mean angle of the distractor elements given 100
ms stimulus exposure (the minimum stimulus exposure duration). In three of the five
observers, a model configuration with an intrusion drift rate of zero (delayed guessing)
provided the best account of the data.

The best-fitting model for four out of the five individual observers, and for the group
average data, required flexibility in the estimation of the nondecision time parameter,
with a separate value estimated for each memory array size condition. Like the best-
fitting models from the last experiment, the speed of observer responding in the trials
where only one item was presented for retention was far quicker than would be predicted
for a linear increase in nondecision time.

Last, the best fitting model configuration for a majority of the individual observers, as
well as for the group average data, also required additional flexibility in the estimation of
trial-to-trial variability. Again, the additional flexibility in the model allowed the correct
estimation of quantiles in response time distributions both at the leading edge and in the
tails across different memory array size conditions.

Figure 6.7 displays the prediction of the model MOD–νs–Ts–νmin
α , the best-fitting

model in BIC terms for the group average data, with the observed group average data.
This model configuration requires 15 free parameters: four boundary separation param-
eters, four drift variability parameters, a single drift rate, a single bandwidth parameter,
a single parameter for the linear growth of the drift rate with stimulus exposure duration
(denoted γ), a single nondecision time range parameter, a single intrusion rate, and a
single intrusion process time parameter (the intrusion drift rate is not estimated). Table
6.16, at the end of the chapter, shows the best-fitting parameters for this model configu-
ration across observers.
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6.2.3 Discussion

Like the close fits between the model predictions and the observed data for the last ex-
periment, the overall pattern of observed data in Experiment 4 is very well accounted
for by the modified diffusion model, particularly given the large number of data points
(both correct and incorrect response times and response proportions in 48 different con-
ditions) given the small number of parameters (the best fitting model had 15 parameters).
The parsimony of this model suggests that influence of the modifications to the diffusion
model map on to the experimental manipulations well.

In addition to examining the ability of sample-size constraint, the tuned channel model,
and a linear increase in sensitivity to predict performance in a large fine orientation
discrimination task, the diffusion model fits to Experiment 4 also examined the overall
changes in the intrusion process across stimulus exposure duration conditions. Rather
than finding an increasing linear relationship between intrusion drift rate and stimu-
lus exposure duration, as was found for the drift rate of the main decision process, the
best-fitting models for all observers and for the group average kept the intrusion drift
rate fixed at a specified value for each stimulus exposure duration: either at zero or a
small negative value. In examining this functional form, a flat intrusion drift rate across
time is somewhat problematic. If it is assumed that the intrusion process represents
inefficiency in the post-stimulus probe to localise retrieval from stored memory repre-
sentations (that is, to filter out distractor information), then it would be natural to expect
either an increasing or decreasing intrusion drift rate with an increasing stimulus du-
ration. If the efficiency of the retrieval process to extract target information increased
over time, it would be expected that this would lead to better localisation of the decision
process to target, better filtering of non-target information, and a decrease in the drift
rate of the intrusion process over time. If the efficiency of the probe was constant, and
did not change with stimulus exposure duration, then it would be expected that qual-
ity of distractor representations would increase with time, leading to greater negative
drift rates for the intrusion process as distractor representations accumulated a greater
quality of information.

Given the small changes in the goodness-of-fit statistic for different intrusion drift rate
values and parameterisations, it is perhaps unwise to draw strong conclusions from the
current model fits without recourse to a directed experiment to test any claims made. A
future experiment, where the efficiency of retrieval could be examined directly through
further control of the distracting information, would be an informative complement to
the current study and provide a natural avenue for the application of the extended diffu-
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sion model.

One additional complicating factor for the stable estimation of intrusion process prop-
erties, and inferences relating to the functional form of these properties, is the inclusion
of trial-to-trial variability. This will be discussed, along with the general findings of this
chapter, in the next section.

6.3 General discussion

The aim of Experiments 3 and 4 was to examine the effect of different levels of stimulus
discriminability upon observer performance, and to investigate the relationship between
stimulus discriminability and other information constraints upon memory due to mem-
ory array size manipulations and memory array exposure duration manipulations.

The analyses shown in this chapter extended the signal detection theory models pre-
sented in the previous chapter into the response time domain. Both the sample-size re-
lation and the tuned channel bandwidth model appear to model the change in observer
performance over manipulations in memory array size and stimulus discriminability
well via a specific influence on the rate of information available to the decision pro-
cess, the drift rate. This also applies to the effect of stimulus exposure duration which,
in the best-fitting model configurations, was well captured by a linear change in drift
rate. The success of the model in fitting joint response time and response proportion
data, as seen with the group average data in Figure 6.3 for Experiment 3 and Figure 6.7
for Experiment 4, further strengthens the claims of the previous chapter that the tuned
channel model represents a fundamental constraint on the memory system itself, chang-
ing the quality of information available to a decision process, rather than confusability in
the decision stage. This point is particularly salient when comparing the current results
to the Bays, Gorgoraptis, Wee, Marshall, and Husain (2011), where changing variability
in the response distribution of a continuous report task was argued to reflect a change
of the “precision” of a memory representation, which might be interpreted as a change
to the structure of the representation itself. This change in precision, however, appears
from the current data to be simply the increase in the stimulus signal against background
noise. In fitting the sensitivity data in previous chapter and the joint response time and
response proportion data in the current, the parameterisation of the bandwidth func-
tion of the tuned channel constraint remained the same over both memory array size
and exposure duration manipulations, suggesting that the structure of the memory rep-
resentation is stable but the amount of effective stimulus information available to the
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decision process increases.

Further, there are no indications that these different information constraints on the
representation held within visual short-term memory interact: their influence on ob-
server performance is independent of one another. The neural interpretation of the
sample-size limit, provided by Smith (2015), is that the stimulus discriminability when
coded by a population of fixed size comprising Poisson neurons under normalisation
will asymptotically approach d′

1/
√
m: the discriminability of a single stimulus, d′

1 di-
vided by the square root of the number of items in the display, m. That is, as discussed
in Chapter 2, the sample-size relation represents the equal division of fixed quantity of re-
sources between maintained representations—a fundamental constraint based upon the
size of memory. The tuned channel constraint represents the output of a population of
orientation-selective detectors with fixed response characteristics for given stimulus ori-
entations. The signal-to-noise ratio of this population of orientation-selective detectors
appears to remain constant for a given stimulus orientation regardless of other experi-
mental factors, such as the memory array size or the exposure duration of the memory
array. The locus of this tuned channel constraint is not clear from these data, however:
the constraint may exist prior to the entrance of information into the memory system,
perhaps due to the fixed resolution for orientation information imposed by the architec-
ture of orientation-selective neurons in the primary visual cortex, or due to the memory
system itself. The Neural Theory of Visual Attention (NTVA) of Bundesen, Habekost, and
Kyllingsbæk (2005, 2011) suggests one plausible neural instantation of visual short-term
memory is the positive feedback of activation in the primary visual cortex from projec-
tions originating at a memory control system in the thalamic reticular nucleus. That is,
the substrate of visual short-term memory representation is the same as the substrate of
visual coding more generally (what NTVA terms “unselective” visual processing). This
account would be compatible with the current findings in suggesting that the orientation
discrimination limits seen in the current experiments arise from the limits on receptor
discrimination at the level of primary visual cortex. Further specification of the feature
representation within visual short-term memory may be achieved through studies ex-
amining other feature types (such as colour), and their interaction.

As mentioned in the previous section, open questions remain about the nature of the
intrusion process used in the current response time modelling. One complicating factor
in considering questions about the changes in intrusion drift rate with memory array
exposure duration is the inclusion of trial-to-trial variability for the drift rate of the main
decision process in the best-fitting model configurations. As larger values of η can mean
that the main process also includes the non-zero probability of a negative drift rate, part
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of the function of an intrusion process may be served by the main process. As intrusion
drift rate and trial-to-trial variability may be correlated, easy interpretation of the func-
tional form or magnitude of the drift rate of the intrusion process might be very difficult,
particularly without a directed experiment. An ideal approach would be estimate both
the intrusion process and the trial-to-trial variability in the main process from a model
where all stimulus locations are represented within the model. In the current models,
the interaction between the target information and distractor information maintained
within memory are not explicitly handled (beyond the interpretation placed on the in-
trusion process), but models like that of Smith and Sewell (2013) allow some purchase
on this question by modelling the dynamics of all extant representations maintained in
memory and can be used. With additional assumptions about the connection between
the strength of the individual representations, and the relationship between multiple rep-
resentations and the final decision process, a model like that presented by Smith and
Sewell would be able to impose constraints upon both trial-to-trial variability as well as
the intrusion process simultaneously.

The next chapter—the final chapter of this thesis—will cover some of these future mod-
elling directions, as well as providing a brief overview of the findings in this and previous
chapters, and some of the proposed implications of these findings.
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Supplementary tables and figures

Best fitting diffusion model fits for individual observers in
Experiment 3.

Tables 6.5–6.9

Best fitting parameters for the model configuration MOD–
ηs–Ts–ν−

α in Experiment 3.
Table 6.10

Mean response times for individual observers in Experi-
ment 4.

Figures 6.8–6.12

Best fitting diffusion model fits for individual observers in
Experiment 4.

Tables 6.11–6.15

Best fitting parameters for the model configuration MOD–
νs–Ts–νmin

α in Experiment 4.
Table 6.16
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Table 6.5: The top five best fitting diffusion model configurations, in terms of BIC, for observer
AB in Experiment 3.

# Model Free parameters G2 BIC

1 MOD–Ts–ν−
α 11 514.463 605.197

2 MOD–Ts–ν◦
α 11 516.691 607.424

3 MOD–Ts–να 12 515.545 614.527

4 MOD–ηs–Ts–ν−
α 14 509.367 624.846

5 MOD–ηs–Ts–ν◦
α 14 510.967 626.447

Table 6.6: The top five best fitting diffusion model configurations, in terms of BIC, for observer
CVH in Experiment 4.

# Model Free parameters G2 BIC

1 MOD–T l–ν◦
α 9 507.444 581.657

2 MOD–T l–να 10 507.251 589.71

3 MOD–Ts–ν◦
α 11 502.61 593.315

4 MOD–Ts–να 12 500.321 599.272

5 MOD–ηs–T l–ν◦
α 12 501.088 600.039

Table 6.7: The top five best fitting diffusion model configurations, in terms of BIC, for observer
SIS in Experiment 4.

# Model Free parameters G2 BIC

1 MOD–ηs–Ts–ν◦
α 14 490.062 605.578

2 MOD–Ts–ν◦
α 11 515.473 606.236

3 MOD–Ts–ν−
α 11 519.396 610.158

4 MOD–Ts–να 12 525.429 624.443

5 MOD–ηs–Ts–να 15 502.077 625.844

208



6.3 General discussion

Table 6.8: The top five best fitting diffusion model configurations, in terms of BIC, for observer
SL in Experiment 4.

# Model Free parameters G2 BIC

1 MOD–ηs–Ts–ν◦
α 14 454.457 569.896

2 MOD–ηs–Ts–να 15 447.63 571.314

3 MOD–ηs–Ts–ν−
α 14 465.51 580.949

4 MOD–ηs–T l–ν◦
α 12 599.069 698.017

5 MOD–ηs–T l–ν−
α 12 602.675 701.623

Table 6.9: The top five best fitting diffusion model configurations, in terms of BIC, for observer
XL in Experiment 4.

# Model Free parameters G2 BIC

1 MOD–ηs–Ts–ν−
α 14 434.628 550.085

2 MOD–ηs–T l–ν−
α 12 473.841 572.805

3 MOD–ηs–Ts–ν◦
α 14 464.239 579.696

4 MOD–ηs–Ts–να 15 465.222 588.926

5 MOD–ηs–T l–ν◦
α 12 495.454 594.417
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Figure 6.8: Themean response time data of observer HA as a function of offsetmagnitude from
Experiment 4, across different memory array sizes and stimulus exposure duration.
Error bars represent one standard error of the mean.
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Figure 6.9: Themean response time data of observer LA as a function of offsetmagnitude from
Experiment 4, across different memory array sizes and stimulus exposure duration.
Error bars represent one standard error of the mean.
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Figure 6.10: The mean response time data of observer ME as a function of offset magnitude
fromExperiment 4, across differentmemory array sizes and stimulus exposure du-
ration. Error bars represent one standard error of the mean.
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Figure 6.11: The mean response time data of observer SN as a function of offset magnitude
fromExperiment 4, across differentmemory array sizes and stimulus exposure du-
ration. Error bars represent one standard error of the mean.
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Figure 6.12: Themean response timedataof observer TSasa functionof offsetmagnitude from
Experiment 4, across differentmemory array sizes and stimulus exposure duration.
Error bars represent one standard error of the mean.
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Table 6.11: The top five best fitting diffusionmodel configurations, in terms of BIC, for observer
HA in Experiment 4.

# Model Free parameters G2 BIC

1 MOD–ηs–Ts–νmin
α 15 669.454 799.157

2 MOD–ηs–Ts–ν◦
α 15 675.132 804.834

3 MOD–ηs–Ts–νmax
α 15 679.436 809.138

4 MOD–ηs–Ts–να 16 673.301 811.65

5 MOD–ηs–Ts–νavg
α 15 713.482 843.184

Table 6.12: The top five best fitting diffusionmodel configurations, in terms of BIC, for observer
LA in Experiment 4.

# Model Free parameters G2 BIC

1 MOD–ηs–Ts–ν◦
α 15 745.406 875.011

2 MOD–ηs–T l–ν◦
α 13 764.436 876.76

3 MOD–ηs–Ts–νl
α 16 747.637 885.882

4 MOD–ηs–Ts–να 16 748.761 887.005

5 MOD–ηs–T l–να 14 768.834 889.798

Table 6.13: The top five best fitting diffusionmodel configurations, in terms of BIC, for observer
ME in Experiment 4.

# Model Free parameters G2 BIC

1 MOD–ηs–Ts–ν◦
α 15 1079.826 1209.568

2 MOD–ηs–Ts–νt
α 18 1054.22 1209.91

3 MOD–ηs–Ts–νmin
α 15 1090.758 1220.5

4 MOD–ηs–Ts–νavg
α 15 1095.44 1225.182

5 MOD–ηs–Ts–νmax
α 15 1114.317 1244.058
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Table 6.14: The top five best fitting diffusionmodel configurations, in terms of BIC, for observer
SN in Experiment 4.

# Model Free parameters G2 BIC

1 MOD–ηs–Ts–ν◦
α 15 722.469 851.868

2 MOD–ηs–T l–ν◦
α 13 741.735 853.88

3 MOD–ηs–T l–νmin
α 13 747.645 859.79

4 MOD–ηs–Ts–να 16 723.158 861.183

5 MOD–ηs–T l–να 14 740.93 861.702

Table 6.15: The top five best fitting diffusionmodel configurations, in terms of BIC, for observer
TS in Experiment 4.

# Model Free parameters G2 BIC

1 MOD–ηs–Ts–νavg
α 15 771.13 901.695

2 MOD–ηs–Ts–ν−
α 15 781.81 912.375

3 MOD–ηs–Ts–νmax
α 15 814.658 945.223

4 MOD–Ts–νmin
α 12 900.336 1004.788

5 MOD–Ts–νavg
α 12 901.567 1006.019
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Chapter 7

A summary and discussion of the
current work

The aim of this thesis was to examine observer performance in a set of visual short-term
memory tasks, designed to be consistent in their methodology and controlled in terms
of the complexity of decision process required. The consistency and control in the de-
sign of the experiments allowed a level of continuity in the development of a theory for
describing observer performance. Instead of following the focus of the broader visual
short-term memory field on questions of storage capacity specifically, I have attempted
to build a quantitative model of observer performance under different visual short-term
memory incrementally for different visual short-term memory manipulations, by first
considering the relationship between an observed response in a memory task and the
underlying representation; that is, I attempted to proceed in the development of a model
by considering the decision process directly. In this way, the work of this thesis dis-
tinguished itself from investigations in the broader visual short-term memory literature
both in methodological approach (using small-N, near-threshold designs taken from vi-
sual psychophysics) and in theoretical approach (using response times as a central com-
ponent in testing predictions).

The thesis was divided into two main parts, each comprising two experiments: the first
section examined the relationship between two established psychophysical paradigms
to examine the role of decision-making in visual short-term memory tasks; the second
section developed upon the models provided in the first section to examine observer
performance over different levels of stimulus discriminability. Here I summarise and
review the major conclusions and themes from each of these two sections in turn.
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7.1 The effect of decision type on observer performance

The aim of the first section was to distinguish the role of the task-specific decision pro-
cess from central constraints on memory by comparing observer performance across
different experimental paradigms equated to be identical in stimulus presentation and
retention. In the two experiments contained within this section, two psychophysical
paradigms used in the visual short-term memory literature were compared: (orthogo-
nal) orientation discrimination and change detection. Each differed only in the presen-
tation of the probe and the type of decision required: in the orientation discrimination
condition, a post-stimulus report cue was presented at a location corresponding to an
item presented in the memory array and observers were to indicate the orientation of
the probed item; in the change detection condition, observers were presented with a re-
port cue and a probe array with stimuli corresponding to those presented in the memory
array—with the target item either identical or changed in orientation, and the non-target
items all identical in orientation—and observers were to indicate whether they detected
a change in the probed location.

Both experiments, as well as the experiments presented in the second section of the
thesis, used oriented near-threshold Gabor patches as stimuli. Although these stimuli,
and the use of stimuli near the detection threshold generally, are somewhat uncommon
in the visual short-term memory literature, these stimuli are common in low-level psy-
chophysical tasks, owing to their close correspondence to the profile of receptive fields
in early visual cortex (Daugman, 1984; Graham, 1989) and overall control over constraints
on performance afforded by careful manipulation of timing and display contrast. The use
of near-threshold stimuli, as well as the interleaved dynamic noise, was used to control
the rate of information that was available for the memory system to accumulate stimulus
information and form a durable representation. In adddition to this control on the rate
of representation formation, the complexity of the decision in all tasks was controlled
through the use of a post-stimulus probe (Downing, 1988). By probing only a single stim-
ulus location, even in the change detection tasks, any variability in observer performance
due to the increasing number of independent decisions to be made over manipulations
of the array size was controlled for. These controls on stimulus generation and presen-
tation followed those used by Sewell et al. (2014) to identify the sample-size relationship
between observer performance and memory array size. This relationship seems to be
a fundamental information limit upon memory that had largely escaped comment in
the visual short-term memory literature. The careful control of presentation and deci-
sion complexity allowed, in this thesis, a detailed consideration of both the constraints
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upon memory retention and processing, as well as the characteristics of the tasks used
to assess memory.

A cursory examination of the accuracy data across different memory array sizes in
Experiment 1 showed that, in addition to a systematic decrease in accuracy as the size
of the memory array increased, there was a consistent decrement in performance when
observers were required to make a change detection decision when compared to orien-
tation discrimination trials. This result was also supported by the outcome of the cali-
bration procedure in Experiment 2, where observer accuracy was equated through the
manipulation of stimulus contrast between the different decision types. In Experiment 2,
there was a consistent increase in accuracy with an increasing exposure duration of the
memory array and the display contrast of the memory array in change detection trials
was much higher than that of the memory array in orientation discrimination trials in
order to equate performance. This indicates that the amount of information in change
detection tasks must be substantially increased to equal performance in the correspond-
ing orientation discrimination trials or, equivalently, there is a decrease in the amount of
effective information available to a decision process in change detection when compared
to orientation discrimination under the same presentation conditions.

One strong conclusion to draw from this finding is that all visual information used
in subsequent decision-making must be encoded to visual short-term memory prior to
further processing, even if that information is still visible. The probe array in both of the
experiments presented in the first part of the thesis was displayed at high contrast and
present until a response was entered. As it is unlikely that any degradation in perfor-
mance could be due to sensory coding factors in the encoding of the probe array—and,
in the first experiment, the presentation of the memory array was identical—it follows
that the observed decrement in performance is due to either to a constraint upon the de-
cision process or the effect of the probe array on memory. To characterise this accuracy
relationship systematically, these accuracy data were subsequently examined using a set
of models taken from signal detection theory.

A large set of models based on signal detection theory were constructed, differing in
the constraints placed upon their parameterisation and the type of decision rule applied,
and fit to the observed data. The model configurations that ranked highest in terms of
BIC were largely consistent across observers, with strong support for the sample-size
relationship across observers and across tasks. Critically, the relationship between the
different decision tasks was well captured by models that included an additional item in
the denominator of the sample-size relationship in the change detection task to account
for the additional load of the probe array. (The best fitting model in terms of BIC was,
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as mentioned in the chapter, a model which placed no increment in the denominator
of the sample-size relationship for change detection tasks, but this was likely due to
the fact that the penalty applied to the goodness-of-fit statistic was too great given the
underdispersion of the group data; as such, I placed greater emphasis on the second-best
fit, which was substantially better fitting in unpenalised goodness-of-fit terms.)

The process of encoding the probe array and the comparison of the probe array to
the memory array was also reflected in the response time data, with the mean response
time pattern across both exposure duration and memory array size conditions appar-
ently identical in between orientation discrimination and change detection trials, with
the exception that mean response times in the change detection condition were longer
(on the order of about 150–200 ms). This qualitative relationship was further examined
using both a form of deconvolution with theoretically plausible response time compo-
nent distributions, and with the application of the diffusion model of Ratcliff (1978). The
best fitting deconvolution model configurations in the first experiment indicated that the
relationship between the orientation discrimination and change detection conditions
was best accounted for by the convolution of the orientation discrimination response
time distribution within each memory array size condition with an exponential distri-
bution with a delay of roughly 100–150 ms and decay rates (dispersion parameters) of
between approximately 50–100 ms, for observers who were well fit by the exponential
distribution (the remaining two observers were well fit by a model with just a delay pa-
rameter, with no variability in the convolving distribution). Likewise, the application of a
convolutional analysis to the second experiment in the first part provided similar results:
the data of three of the observers were best fit (in BIC terms) by simply shifting the orien-
tation discrimination response time distribution backwards in time to match the delay
of the change detection distribution; the data of the remaining two observers were best
fit by an exponential distribution with a decay rate in the range of 50–150 ms. (In one
observer, convolution with an exponential distribution fit best, and the offset parameter
was estimated at a little above zero, with all of the delay in the change detection response
time distribution handled by additional dispersion in the convolving distribution.)

Taken together with the accuracy data, the results from these analyses suggested that
decision-making in the change detection task can be thought of as largely the same as
the decision-making process within the orientation discrimination task, with the addi-
tion of a process for encoding the probe array and comparing the probe array element to
maintained representations within memory. The time taken to complete this encoding
and comparison process would account for the additional time taken by responses in
the change detection trials compared to the orientation discrimination trials and if, as
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mentioned, the memory store itself is the substrate for probe array representation during
the comparison process, then the sample-size information constraint upon the memory
system would provide an explanation for the uniform decrement in accuracy observed
in change detection conditions when compared to their corresponding orientation dis-
crimination conditions.

These dual signatures were further characterised for each experiment with the joint
analysis of both response time distributions and accuracy data using a modified version
of the diffusion model (Ratcliff, 1978). The critical modification made to the diffusion
model was to include an “intrusion” process, a separate diffusion process with an addi-
tional non-decision time component and an additional drift rate parameter, which pro-
vided a way to capture the the asymmetry in the leading edge (visible in the QPP figures
as the 10th percentile of the response time distribution) between correct and incorrect
responses. This asymmetry in the leading edge was previously reported by Sewell et al.
(in press), who demonstrated that a substantially improved fit could be obtained by the
inclusion of a “delayed guessing” process: a zero-drift diffusion process with an addi-
tional delay mixed with the main diffusion process at a constant mixture probability 1.
Like the fitting process for the signal detection theory and convolution models, a set of
alternative models were generated by imposing different constraints between the exper-
imental conditions and the estimated parameters, these model configurations were then
ranked by BIC. In fitting the first experiment, a single model configuration consistently
ranked as the best fitting model by BIC: a diffusion model with the drift rate constrained
across memory array size conditions by the sample-size relationship, with additional
item added to the denominator of the sample-size relationship to relate performance in
the orientation discrimination trials to performance in the change detection trials, and
the mean non-decision time varying between memory array size conditions and between
decision types.

Both the qualitative pattern of accuracy and of the response time distribution was cap-
tured in this model across both memory array size conditions and decision types with a
single set of fifteen parameters for each observer. The sample-size constraint upon the
drift rates supports previous findings—both in modelling sensitivity (Sewell et al., 2014)
and in diffusion modelling through a constraint on drift rate (Sewell et al., in press)—as
well as the signal detection theory models reported in the first part of this thesis. The con-
sistent requirement of the best fitting model configurations to estimate the non-decision

1The current modelling work was completed prior to the inclusion of a “delayed guess” process in the
paper by Sewell et al. (in press), although it followedwork by Donkin et al. (2013) whomodelledmemory
retrieval failures using a zero evidence accumulation process.
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time values freely across memory array sizes as well as across trials of different decision
types was also expected given both the previous findings in the literature and the current
convolution analysis: Sewell, Lilburn, and Smith (in press) reported that non-decision
time increased as a function of memory array size, potentially as a result of an increase
in the time taken to access memory representations with a growing memory load; the
results of the convolution analysis are consistent with the additional time required to
store and compare the probe array to an existing memory representation.

In fitting the second experiment with the diffusion model, the difference between deci-
sion type conditions in the presentation of the memory array—coupled with an extended
training period for observers—meant that no single model configuration was shared by
all observers. Similar to the best fitting model configuration obtained for the first experi-
ment, all of the highest ranking model configurations for the second experiment required
some flexibility in the estimation of drift rates—either allowing drift rate to increase as
a function of the exposure duration of the memory array or allowing the drift rate to be
estimated for each exposure duration condition as well as both of the decision types.
Additionally, in fitting data for the majority of the observers, as well as the group aver-
age data, the best fitting model only required mean non-decision time to differ between
trials of different decision types, reflecting the additional time required for change de-
tection. (In the remaining two observers, mean non-decision time was estimated across
both exposure duration conditions and decision type conditions.)

Beyond relaxing the constraints upon drift rate and mean non-decision time to fit the
second experiment, the best fitting models also required additional flexibility in either
allowing the boundary separation or intrusion rate to vary across decision type condi-
tions. In both cases, as discussed in Chapter 4, this may reflect the difficulty of the task,
leading to strategic behaviour by observers learned over the long training period. A dif-
ference in boundary separation would indicate that individual observers require differ-
ent amounts of stimulus information to initiate a response in orientation discrimination
trials compared to change detection trials. A difference in the intrusion rate is more dif-
ficult to interpret without a clear model of the mapping between the intrusion process
and memory retrieval, potentially indicating a difference in the efficiency of the post-
stimulus report cue in localising the retrieval of information from memory (discussed
below, see §7.4.2).

The analysis of accuracy data and response time data from both experiments, by means
of signal detection theory models and convolution analyses in the first instance, and
through the application of the diffusion model to analyse response proportions and re-
sponse times jointly, provide a clear relationship between the two different types of vi-
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sual short-term memory tasks examined. Changes in observer performance across the
first experiment, in which memory array size was manipulated between trials, were well
accounted for by the sample-size relation. In both experiments, the addition of an intru-
sion process into the main diffusion process was able to capture the asymmetry between
correct and incorrect responses in the leading edge of the response time distribution.
Beyond these findings, models of sensitivity based on signal detection theory and the
diffusion model configurations provided the basis for analysis in the second section of
the thesis.

7.2 The effect of stimulus discriminability on observer

performance

The aim of the second section of the thesis was to develop the orientation discrimination
experimental procedure presented in the first section of the thesis, as well as the signal
detection theory and response time models in the previous chapters, to examine the re-
lationship between the storage of feature information within memory (specifically, ori-
entation information) and observer performance. The two experiments presented in the
latter half of this thesis required discrimination of a post-stimulus probed near-threshold
stimulus within a larger memory array, based upon a known standard (either an oblique
stimulus in Experiment 3 or a vertical stimulus in Experiment 4). The angular offsets of
the target stimulus were selected to provide a range of different observer performance
levels, from near chance to a level of performance approximating orthogonal orientation
discrimination, in addition to the performance constraint imposed by the display con-
trast of the stimulus. In Experiment 3, the memory array size was manipulated with a
large range of target angular offset manipulations were used; in Experiment 4, a small
range of target angular offset conditions were examined, but the exposure duration of
the memory array was manipulated in addition to the memory array size.

A clear systematic and non-linear relationship between target angular offset and ob-
server accuracy was evident upon examination of the accuracy data from Experiment
3, as well as a relationship between memory array size and accuracy. In order to ac-
count for the relationship of target angular offset to observer accuracy, a modification
was made to the 2AFC signal detection theory model presented in the first section of
the thesis to relate observer sensitivity to target angular offset through the assump-
tion that discrimination performance changes around the zero-discriminability orien-
tation (diagonal orientations in Experiment 3) as a function of the response character-
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istics of a orientation-selective detector centred on that orientation, with monotoni-
cally increasing performance for the discrimination of orientations further away from
the zero-discriminability orientation. A large number of model configurations, differ-
ing in the functional form of the tuning function and the constraints upon parameter
estimation, were fit to the data of each individual observer, as well as the group aver-
age data, and compared in terms of BIC. One model configuration provided the best
fit for each observer (apart from a single observer, XL) as well as for the group aver-
age data: a model where observer sensitivity was determined both by the sample-size
relation and by a Gaussian-shaped tuning function weighting squared sensitivity inde-
pendently. The bandwidth of the tuning function—the selectivity of the detector centred
on the zero-discriminability orientation—was unchanged across the different memory
array size conditions, indicating that the response characteristics of the tuned channel
appear to be unrelated to memory load.

Similar non-linear relationships between target angular offset, memory array size, and
observer accuracy were seen in Experiment 4, with the addition of increasing observer
accuracy seen for an increasing exposure duration of the memory array across all condi-
tions. Like the extended signal detection models applied to Experiment 3, a large num-
ber of model configurations were individually fit to each observer’s data as well as to the
group average data. There was slightly more inconsistency in the best fitting model for
each observer, however the results largely agreed with the model results from Experi-
ment 3, with the Gaussian-shaped weighting on squared sensitivity combined with the
sample-size constraint imposed between memory array size conditions performing best
for the group average data, and within the top overall models for all but one observer. The
effect of stimulus exposure duration on observer sensitivity was best captured by a lin-
ear growth in observer sensitivity with increasing exposure duration. This finding was
somewhat contrary to a strong mechanistic interpretation of the sample-size relation,
which would predict a constant rate of increase in squared sensitivity rather than sen-
sitivity directly. This finding may reflect the difference between the temporal response
of the high spatial frequency detectors required in fine orientation discrimination, com-
pared to the apparent linear increase in squared sensitivity for reported by Sewell, Lil-
burn, and Smith (2014) using an orthogonal orientation discrimination paradigm.

A large and systematic effect of increasing mean response times with increasing mem-
ory array sizes was apparent in Experiment 3, with a smaller (but significant) effect of in-
creasing mean response times with smaller target differences from the zero-discriminability
orientation. Only the effect of memory array size was apparent on the mean response
times in Experiment 4, with no significant effect of target angular offset or stimulus du-
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ration found using a linear mixed-effects model.

The less prominent effects of the experimental manipulations in Experiments 3 and
4 on mean response times further warranted investigation of the entire response time
distribution, as well as the response proportions, using the diffusion model. The diffu-
sion modelling for both experiments followed the modelling in the first part of the thesis,
with the inclusion of an intrusion process. The constraints between experiment manip-
ulations imposed upon sensitivity in the signal detection theory models were applied
to the drift rate of the diffusion models. Rather than fitting each of the different tuned
channel configurations using the more computationally intensive diffusion model, the
Gaussian-shaped tuning function centred on the zero-discriminability orientation and
weighting the squared drift rate was applied to all model configurations. In both Ex-
periments 3 and 4, the sample-size relation and the tuned channel models were applied
directly to the squared drift rate, independently of one another; in Experiment 4, drift
rate was constrained to be a linear function of exposure duration.

An examination of the fits of the diffusion model for both the experiments in the sec-
ond part of the thesis demonstrated a close overall fit to a large number of experimental
conditions with a relatively small number of parameters. The accuracy and response
time quantiles were well accounted for by the sample-size constraint and the tuning
function constraint across memory array size and target angular offset manipulations in
both Experiments 3 and 4, and the stimulus exposure duration manipulation was well
accounted for by the linear constraint on drift in Experiment 4. In addition to the con-
straints placed upon the drift rate, different parameterisations of the drift rate for the
intrusion process as well as the trial-to-trial variability in the drift rate of the main pro-
cess were also examined. The best fitting model configuration for a slight majority of
observers in Experiment 3, as well as for the group average data, fixed the drift rate of
the intrusion process to be the drift rate associated with the average orientation of the
distractor items. For Experiment 4, a constant drift rate for the intrusion process pro-
vided the best overall fit across stimulus exposure duration conditions, contrary to easy
interpretation. In both experiments, the fit of the model configurations was also suffi-
ciently improved by additional flexibility in the estimation of trial-to-trial variability to
offset the penalty imposed by BIC for the additional parameters.

The diffusion models, as well as the signal detection theory models, provided a precise
account of the information constraints upon memory representations in both of exper-
iments of the second half of the thesis. In every experiment in the thesis, the perfor-
mance decrement seen as the size of the memory array increased was well accounted
for by the sample-size model, demonstrated by Sewell et al. (2014). The changes in per-
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formance seen in the fine orientation discrimination tasks followed the predictions of a
tuned channel model. Notably, the bandwidth and shape of the tuning function used to
relate measures of stimulus information, either squared sensitivity or squared drift rate,
to the angular offset of the target from the zero-discriminability orientation was not af-
fected by either the memory array size or exposure duration manipulations, indicating
that this constraint is not due to the fixed information limit reflected in the sample-size
relationship, but may be an architectural constraint on the fidelity with which orienta-
tion may be represented. These two constraints were also independent of the effect of
stimulus exposure duration.

Simply, taken together, these results suggest that stimulus exposure duration affects
the amount of overall stimulus information available to be encoded in to memory, the
tuned channel relation represents a fundamental constraint in the resolution of orienta-
tion information that can be encoded in information, and the sample-size relation repre-
sents the division of limited resources between the information that can be maintained
in memory simultaneously. These results, as well as the results from the first part of the
thesis, have implications for the broader memory literature, both in terms of method-
ological considerations in the design of memory experiments and in current theories of
memory structure. Some of the methodological implications will be examined in the
next section, followed by some of the larger theoretical implications.

7.3 Methodological implications

One important theme that I hope to have highlighted in the motivation for and dis-
cussion of the experiments within this thesis is the intimate relationship between the
design of visual short-term memory experiments and the specificity and the structure
of the quantitative models that can be applied to observed data. The principal exper-
imental paradigms used to examine visual short-term memory, and visual short-term
memory storage capacity in particular, have been the change detection and continu-
ous report paradigms, almost exclusively using suprathreshold stimuli. Although the
results from both paradigms allow some constraints to be placed on models of visual
short-term memory and, therefore, upon the inferences drawn from visual short-term
memory work, more detailed modelling is enabled when the correspondence between
the properties of the stimulus, the task demands, and the observed responses is well
understood—by, for instance, controlling the number of stimulus alternatives or through
control of display contrast and presentation length of the memory array.
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7.3.1 Change detection

As reviewed in Chapter 2, change detection procedures have provided some of the most
important results in the visual short-term memory literature, such as the results reported
given by Phillips (1974), and the work of Luck, Vogel, and colleagues (Luck & Vogel, 1997;
Vogel & Machizawa, 2004; Vogel et al., 2001). These findings have been used to argue
for an account of visual short-term memory where the storage capacity of the system is
limited to a small, fixed number of objects, usually estimated around four or five items.
Although each experiment in this thesis employed memory arrays below this limit, mem-
ory capacity constraints were still observed, both in the form of the sample-size limit and
as a decrement in accuracy observed in change detection over orientation discrimina-
tion.

In comparing the results of an orientation discrimination task and a change detec-
tion task with the stimulus presentation properties fixed in Experiment 1 using a signal
detection theory model (a two-alternative discrimination model for the orientation dis-
crimination task and a differencing model for the change detection task), the pattern of
accuracy and response time results was remarkably similar in form. Both Experiments
1 and 2 demonstrated that the sample-size relation was obtained in a near-threshold
change detection procedure, in addition to obtaining the sample-size relation over ori-
entation discrimination data, as reported by Sewell et al. (2014). These constraints on the
memory system were found below any putative item limit, and their relationship to that
item limit is unclear. Recent results by Donkin et al. (2016) indicated that the appearance
of a slot or discrete item limit may reflect a shift in the encoding strategy for observers,
and that resource-like responding can be seen in cases where observers have clear ex-
pectations about the number of elements that will be presented on a trial-to-trial basis.
Donkin and colleagues noted that the common constraint between resource-like and
slot-like responding was of the form of the sample-size relation examined here. Prior
to this, the sample-size representation was only seen in experiments where the display
contrast was limited, restricting the amount of available stimulus information, and where
the memory array sizes were small, such as in the work of Sewell and colleagues. These
findings reinforce the point that detailed modelling and controlled experimentation, of
the kind presented here and of the kind engaged in by Donkin and colleagues, where the
encoding and maintenance of stimuli is explicitly considered as well as the decision pro-
cess relating a memory representation to an observed response is required to resolve—in
some part—the relationship between slot-based accounts and resource-based accounts.

In addition to demonstrating the sample-size relation in a near-threshold change de-
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tection paradigm, one of the clearest findings from the current thesis is that the four
to five item storage capacity estimate may be systematically biased due to the obliga-
tory encoding and maintenance of the probe array elements in memory. The magnitude
of the difference in accuracy between the orientation discrimination and change detec-
tion tasks was predicted as the addition of an item into the sample-size relation in the
change detection task, indicating the additional load on memory imposed by the probe
array. This obligatory encoding of probe array material, regardless of the fact that the in-
formation is still visible to the observer, suggests that storage capacity estimates drawn
from change detection performance alone may require an explicit correction for the ad-
ditional memory load incurred in encoding the probe array. In addition, given that the
current studies used a post-stimulus probe paradigm to control decision complexity, the
only decision-relevant item in the probe item was known to the observer. Many stud-
ies, however, do not specify the target location, requiring observers to make a separate
change detection decision for each item presented, potentially increasing both the errors
due to noise in the decision stage and potentially increasing the load of the probe array
on memory. A further study in which different requirements for making a comparison to
the probe array are compared directly to orientation discrimination performance would
be beneficial, particularly if conducted using a near-threshold paradigm.

The role of the probe array and response complexity will also be examined in the next
section.

7.3.2 Continuous report

Many recent visual short-term memory studies have employed a continuous report paradigm,
attempting to examine how memory constraints interact with the reproduction of a stim-
ulus representation. This thesis did not investigate a continuous report task as there is
no decision model for response time and accuracy comparable to those for orientation
discrimination and change detection (Smith, 2016, has recently proposed such a model,
but its empirical properties are yet to be investigated).

The lack of a detailed model of the decision process in continuous report means that
“precision” accounts of memory (Bays et al., 2009; Zhang & Luck, 2008) identify re-
sponse variability directly with memory variability. This direct identification may be
misleading, as the results of Experiments 3 and 4 showed. Performance in these exper-
iments was well described by a model in which the effects of memory load reduced the
signal-to-noise ratio of memory representations without changing the channel tuning.
Neurally, this is consistent with a system in which memory load affects the number of
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neurons that are recruited to code a stimulus but not their tuning. This conclusion is
strengthened by the demonstration by Smith (2016) that changes in response variability
due to increased stimulus information cannot be distinguished in a continuous report
task from changes in the response criterion without using response time data.

The method of stimulus reproduction may also have an effect on the observer perfor-
mance in the continuous report paradigm. Given that the probe array places an apparent
additional load on the memory system, it is possible that the process of reproducing the
target stimulus from memory may also impose a cost in terms of storage capacity. The
mixture modelling of Zhang and Luck (2009) indicates that this cost would be fixed over
the retention interval, but it is yet to be determined whether precision remains stable
over the interval of response selection and execution, when comparisons are required.
Any cost of comparison may be heightened by the total number of object-level decisions,
as was found by Woodman and Vecera (2011). Further experimentation, and modelling
constrained by the sample-size relationship, would help understand the decremented
imposed by memory retrieval comparison in terms of the overall storage capacity limi-
tations of visual short-term memory.

7.4 Theoretical implications

Each of the major findings of this thesis place strong restrictions on theories of visual
short-term memory: the existence and independence of the information constraints
identified in the second part of the thesis, the existence of an intrusion process in the
diffusion modelling, and the obligatory encoding of the probe array in change detection.
Several of these restrictions exist at the level of the encoding and maintenance of repre-
sentations: the tuned channel relationship between orientation and stimulus informa-
tion may exist at the level of encoding or memory architecture; the sample-size relation
is a restriction on the total information that can be simultaneously maintained, further
affected by the performance decrement in change detection; and the linear increase in
stimulus information is a restriction on encoding.

The intrusion process appears to be a phenomenon arising at the retrieval and decision
stage as retrieval fails to access target information and non-target information enters into
the decision process, like the non-target responding identified by Bays, Wu, and Husain
(2011). At the very least, this suggests that the decision process is a non-trivial aspect of
task performance and should be a consideration in models of visual short-term memory.

These restrictions on modelling will examined in the next two sections looking at the
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“slots + resources” model of Zhang and Luck (2008) and the multielement integrated
system model of Smith and Sewell (2013).

7.4.1 Slots + resources

The hybrid “slots + resources” model of Zhang and Luck (2008) sought to unify conflict-
ing results from change detection and continuous report experiments which demon-
strated both a fixed upper limit on the number of items that could be maintained simul-
taneously in memory as well as changes in response variability for memory array size
smaller than the item limit. The coexistence of a discrete item limit with some flexibility
in the allocation of resources appears, prima facie, to be consistent with the findings of
Donkin et al. (2016), albeit in the inverse direction: where Zhang and Luck contended
that the fundamental limit was the discrete item limit, and resource flexibility was per-
mitted when the number of memory array items was smaller than the item limit, Donkin
and colleagues demonstrated that strategic slot-like behaviour could exist, constrained
in size by a fundamental resource relationship.

The results from the current thesis demonstrate that this relationship may be little
more complex. As discussed in the general discussion of Chapter 6 (§6.3), the sample-
size relation is consistent with the overall resource limit also identified by Donkin and
colleagues. The sample-size relation, however, appears to be independent of the funda-
mental precision of the memory system to represent orientation. The dynamic redistri-
bution of resources under the item limit, argued by Zhang and Luck, where one memory
item may be represented multiple times to increase the precision of the representation it-
self is not evident from the current data. The changes in response variability observed by
Zhang and Luck would be explained in terms of the current results by the higher signal-
to-noise ratio for target detectors over distractor detectors and background noise.

Last, the relationship between the memory representation and the observed data is
further specified by the current results. Zhang and Luck used a mixture model com-
prising a von Mises memory distribution and a uniform guessing distribution, where
the variability of the von Mises distribution and the mixture probability were freely esti-
mated. The current data places hard constraints on both the response distributions and
the response time distributions that are expected with different experimental manipula-
tions, in both the change in the memory distribution and in non-memory variability. The
sample-size relation provides a strong constraint on the change in response variability
across memory array size manipulations. This is consistent with the findings of Bays and
Husain (2008), who demonstrated that response variability changes as a power function
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of the number of items in the memory array. The change in stimulus exposure duration
also predicts a decrease in response variability as additional information is available for
encoding and storage in the memory system. The work by Bays, Gorgoraptis, et al. (2011)
showed an interaction between the size of the memory array and exposure duration of
the memory array on response variability, but the current data would suggest that this
interaction is a product of both manipulations increasing the overall quality of stimulus
information in memory. In the current modelling, the two factors enter into the sensi-
tivity model and the diffusion model independent of one another.

The intrusion process predicts that, on some proportion of trials related to the propor-
tion of items contrasting with the target identity shown in the memory array, non-target
information may intrude into the memory process and guide observed behaviour. Non-
target reproduction has been noted by Bays, Wu, and Husain (2011), who showed that
there was structure in the reproduction responses that were distant from the mean of
the target distribution, and appeared to be clustered around distractor feature values.
Further research is required to examine if the asymmetrical quantiles between correct
and incorrect responses observed in the response time data obtained in this thesis is
related to non-target reproduction directly.

Specific quantitative predictions are difficult to make for the mixture model formula-
tion provided by Zhang and Luck without a more complete model relating the target-
related stimulus information retrieved from memory to response variability directly. As
discussed, the recent work of Smith (2016) provides a productive avenue to unify the
model constraints raised in this thesis with the data obtained in a continuous report
task.

7.4.2 Integrated systemmodel

The integrated system model (Smith et al., 2009) and its multielement generalisation
(Smith & Sewell, 2013) present a theoretically parsimonious and comprehensive model
of observer performance in simple visual tasks. Unlike measurement models—such as
those employed by Zhang and Luck, by Bays, Gorgoraptis, et al. (2011), or by van den
Berg, Awh, and Ma (2014b)—the integrated system model and the multielement inte-
grated system model allow a dynamic process representation of the encoding and main-
tenance of information in visual short-term memory, and both the response proportions
and response time distributions that are obtained in decisions made from those repre-
sentations. Although the predictions that result from these models offer a greater level
of specificity than mixture models, the complexity in integrating additional constraints
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is potentially also much greater.
The relationship between memory array size and observer performance is predicted

as a consequence of the central dynamics of the model. The sample-size relation is an in-
tegral component of the multielement integrated system model. Competitive inhibition
between maintained memory representations leads to a steady division of resources,
with the strength of stimulus information resulting predicted by the sample-size rela-
tion. Each experiment presented in the current thesis have providing support for this
prediction.

The integration of the tuned channel constraint into the multielement integrated sys-
tem model is an open question. Although the multielement integrated system model
represents interstimulus similarity, this parameter acts upon the selection of stimuli into
memory, in order to predict the distractor homogeneity effect (Duncan & Humphreys,
1989; Mazyar, Berg, & Ma, 2012) where visual search performance is facilitated by the
similarity of distractors to one another. A more natural position for the tuned chan-
nel constraint is within the interface between the representation of maintained memory
traces and the decision process. During the retention interval, and prior to the decision,
the delay of the post-stimulus probe means that a decision process is not likely to begin,
unless in the case of single item memory arrays where the non-decision time estimates
indicate the onset of the decision either coincides with the probe or slightly precedes it.
Once the probe has been presented, and the target has been localised, retrieval of the
representation can begin (entailing some response time cost itself), and the decision can
commence. The angular difference between the retrieved memory representation and
the internal standard (such as an oblique or vertical stimulus) may then modulate the
drift rate in the decision process.

The interface in the multielement integrated system model between visual short-term
memory and the final decision process is a minimal relationship: the drift rate of the dif-
fusion process should be proportional to the strength of the visual short-term memory
trace. Extending this relation to include the relationship between memory representa-
tion and the standard to compare against is one way of increasing the predictive power of
the model to account for the current results. Another extension arising from the current
work is the inclusion of probe array encoding and comparison. An additional constant
to the non-decision time of the decision process, as well as a decrement to the trace
strength of the maintained representations as the probe array elements are stored in
memory would allow the prediction of change detection results using the multielement
integrated system model.

This interface could also be modified to allow for the full prediction of intruding infor-
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mation, by allowing some proportion of samples to be drawn from non-target memory
traces. Unlike the diffusion modelling presented in preceding chapters, the multielement
integrated system model provides a dynamic representation of the state of each item in
memory, meaning that the non-target information is explicitly confined by the model
rather than an estimated intrusion drift rate parameter. The specification of the proba-
bility for non-target sample draws could then be investigated in directed experiments.
One potential route for further investigation is that, in reflecting the inefficiency of the
post-stimulus probe to localise retrieval to the target location, the probability of non-
target information could be related to the distance of stimuli locations from the probe.
A spatially mediated retrieval process is compatible with both the sensitivity of change
detection tasks to some, but not all, transformations of the correspondence between the
memory and probe arrays (Jiang et al., 2000) and to retrocuing work, where the strength
of memory traces is manipulated through an orienting cue (Griffin & Nobre, 2003). Ad-
ditional proposals for future experimentation is presented in the next section.

7.5 Future research

Although the experimental procedures and modelling presented in the current thesis
provide some open questions for future research they also, in part, supply methods for
resolving those questions. By providing clear models for describing patterns of observed
data, and providing experiments that closely correspond to elements in those models,
some purchase can be gained on these issues.

One of the most prominent open questions in the visual short-term memory literature
is in the adjudication between discrete slot and flexible resource accounts of memory
storage. Donkin et al. (2016) distinguished between a fundamental resource limit and
response strategies that produced slot-like responding. The current thesis supported the
idea of a fundamental resource limit in the sample-size model, below any putative object
limit. In Experiments 1, 3, and 4 the memory array size was varied on a trial-by-trial basis,
which Donkin and colleagues suggested may induce slot-like responding. Although no
discrete item limit was observed in these experiments, this was likely due to the fact that
the maximum memory array size in each of these experiments—four items—is below
that of many change detection experiments.

In Experiment 2, potential changes in strategic responding were observed, but not be-
tween different memory array size manipulations (only a single array size of four items
was used for each trial). Instead, the differences in strategy—manifesting as differences in
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the boundary separation and intrusion probability recovered in the diffusion analysis—
were seen between different decision type conditions, but not seen in Experiment 1,
which employed the same design but had a shorter training period and an identical dis-
play characteristics between the decision type trials for the presentation of the mem-
ory array. The decision type manipulation, between trials of orientation discrimination
and change detection, varied between prespecified blocks rather than randomly between
each trial. As the overall difficulty of the task—shown by the lower levels of accuracy—
and the predictability of the decision requirements of each trial would suggest that ob-
servers could place an incentive on observers to maximise performance through subtle
changes in deciding, a future experiment could further examine this strategic difference
by examining a design where the decision type of each trial varies on a trial-by-trial basis.

Future experiments with memory arrays consisting of more than four items could also
be examined in experimental procedures using response time information and near-
threshold stimulus presentation to further define the strategic changes obtained when
observers must accurately respond given larger memory array sizes. The diffusion model
decision parameters controlling the intrusion process and the boundary separation pa-
rameters could be used to characterise changes under observer control. This could also
be supplemented by an explicit examination of the order or speed of stimulus encoding,
as was conducted using the attention-weighted sample-size model reported by Smith
et al. (under review), where memory resources were divided unequally, showing a bias
in the encoding of stimulus locations. These analyses are contingent on careful exam-
ination of the response time distributions obtained in these tasks, and require careful
experimental design.

Further specification of the intrusion process also presents an opportunity for future
research. In the current thesis, and in the analyses reported by Sewell et al. (in press),
the addition of a delayed diffusion process mixed with the main diffusion process greatly
improved diffusion model fits to tasks reliant on retrieval from visual short-term mem-
ory. These additional processes were able to account for an asymmetry in the leading
edge of the response time distribution between correct and incorrect responses, indicat-
ing some delay in responding in even the earliest incorrect responses. Although Sewell
and colleagues constrained the mixture process to have a drift rate of zero, indicating
zero stimulus information and delayed guessing, the best fitting parameters and model
configurations for each of the diffusion analyses used negative drift rates, implying that
distractor information that contrasted with the target identity was contributing the de-
cision process.

The inefficiency of the post-stimulus probe to localise the retrieval of stimulus infor-
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mation in memory to the target information alone or to fail entirely, leading to guess-
ing, provides an important avenue for further theoretical development. Examining how
stimulus and probe arrangements may affect the properties of the intrusion process ex-
perimentally would be a logical further step, by changing the probability of distractors
to contain contrasting identity information and changing the spatial arrangement of the
probe to the distractor locations to test for a spatially mediated retrieval process. As indi-
cated in the last section, the integration of a retrieval failure account into the integrated
system model, where a dynamic representation of each stimulus location is explicitly
accounted for within the model, would provide further leverage on this question.

Last, Experiments 3 and 4 provided an examination of the relationship between the
sample-size constraint on representations within memory and the underlying feature
information within those representations. The tuned channel constraint provides a de-
scription of the change in observer performance with a change in the angular difference
between an item held within memory and the standard for comparison. A productive
avenue for future investigation would be to examine whether the same constraint exists
in simple discrimination tasks for other features, such as colour, and whether indepen-
dence in seen in constraints upon representations which comprise multiple features. Al-
though colour and orientation have been examined extensively in the visual short-term
memory literature, I hope to have demonstrated in the current thesis that additional trac-
tion can be gained through simple relationships derived from behaviour in simple, well
understood tasks.

Visual short-term memory sits at the intersection between low-level vision and higher-
order cognitive processes, between the representation of visual information in the brain
and the control of decision-making and memory. The characterisation of the constraints
that exist upon visual memory, and the nature of decisions made from information held
within visual short-term memory, provide further detail about how simple sensory in-
formation becomes the basis for complex behaviour. The centrality of visual short-term
memory means that its properties are primal in the perception of the visual world—they
are, in some modest way, the prism through which we see the world.
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