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Abstract

The electromagnetic mode density of the vacuum can be dramatically

modified by the presence of an optical resonator. In the strong coupling

regime, spontaneous emission in a cavity becomes a reversible process and

the intracavity photon number undergoes Rabi oscillations. We load up

to 200×103 133Cs atoms into a nearly confocal lossy cavity and reach the

collective strong coupling regime. Normal mode splitting, the hallmark

of this regime, is observed and cooperativities up to Ccoll = (186± 5)

are measured. In a second experiment we investigate for the first time

the multi-mode character of the coupled cavity-atom system. In a con-

focal cavity the higher-order transverse cavity modes are degenerate in

frequency and accessible to the spontaneous emission of the atomic en-

semble. We observe an increase of the coupling constant measured via

modal decomposed transmission analysis, which could be attributed to

the presence of the higher-order modes. Normal mode splitting propor-

tional to the square root of the atom number was visible for all of the

different mode components. Furthermore, we observe a redistribution of

the relative weights in the modal transmission composition, which scales

with the atom number in the cavity mode.

In a second set of experiments, 87Rb atoms were loaded into a dissipative

lin ⊥ lin lattice. By driving the lattice with a biharmonic force, transport

can be observed when the systems symmetries are broken: the so called

ratchet effect. Research in this area is concerned with the appearance

of current reversals. We were able to identify dissipation related sym-

metry breaking as the underlying cause of an observed current reversal,

which occurs as a function of the driving frequency. Furthermore, in a

second experiment, we use the ratchet effect as a probe of the optical

potential depths. We show that an oscillating force with a frequency far

above any other system-inherent timescale, can be used to renormalize

the optical potential. The 87Rb atoms experience an average position-

dependent force, which becomes controllable over the amplitude of the

applied driving.
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Chapter 1

Introduction

1.1 This thesis

This thesis is separated into two main parts. The first part describes

experiments on the interaction of 133Cs atoms and the light of an opti-

cal resonator. These experiments took most of my time and our initial

motivation was to study a new cooling mechanism for particles called

cavity cooling. To use the tailored vacuum mode density, or coloured

vacua, in an optical resonator to extract kinetic energy from particles

is an idea about 25 years old [56, 68]. Research on this cooling mecha-

nism gained momentum in the late 1990s when the theory was developed

[36, 107] and got extended in the early 2000s with several relevant pub-

lications (see [21] for a good review article). The idea is quite appealing:

a polarizable particle acts as a position dependent refractive index in a

standing wave resonator. It therefore changes the resonance condition

depending on its position and, for a given set of parameters, the light

intensity in the resonator. The light field in a resonator needs time to

build up; when a moving atom goes through the potential minimum the

light intensity reaches its maximum temporally delayed. This means that

on average the polarizable particle sees a steeper potential hill when it

goes up and a more shallow potential when it goes down. On average

this leads to a decelaration, and the excess kinetic energy leaves the op-

tical resonator as incoherent decay of the light field through the mirrors.

What is exciting about this new laser cooling scheme is that it relies

only on the dipole force, and therefore on the particle’s polarizability,

10



1. Introduction 11

and not on a favourable atomic energy structure. All particles, atoms

and molecules, and even macroscopic objects became potential cooling

candidates, while the final temperature and the cooling rate were exter-

nalized and accessible via the cavity and laser beam parameters. The

same process could also be described in terms of the photon scattering

rate [100, 101], which can be enhanced and suppressed by the presence

of a cavity [43]. The first experimental results confirming the theoreti-

cal findings were achieved with a single atom in a high finesse cavity in

Gerhard Rempes group in Munich in 2004 [60, 62] and even before then

with a very similar setup to ours in 2003 [5, 14, 15]. Since the latter

experiment implemented a large mode volume cavity with a relatively

low finesse, capable of cooling several million particles at the same time,

we considered it as a good starting point to investigate the collective

cooling effects observed. But even though our experimental parameters

were similar we couldn’t reproduce the observed cooling. At this point

we decided two things: firstly, to gain a deeper understanding of the

dynamics we needed extensive numerical simulations of the system and,

secondly, we needed to take a step back to investigate the collective cav-

ity atom interaction in our experiment. The numerical simulations were

conducted by Michal Hemmerling in the group of Professor Gordon Robb

and are published in [39]. The experiments to quantify the atom-cavity

interaction of our setup are presented in part 1 of this thesis.

Part 1 begins with an introduction to Cavity Quantum Electrodynamics,

presents the apparatus and then the conducted experiments with 133Cs

atoms in a nearly confocal cavity. The part ends with an outlook on

future experiments.

The second part presents experiments with 87Rb atoms in dissipative op-

tical lattices. While the numerical simulations by Michal Hemmerling

lasted, the experimental effort on the 133Cs experiment was reduced to

a minimum; we were waiting for the theory to deliver us the right pa-

rameter regime to start again. This “free” time, an unused apparatus

and our groups expertise in ratchet physics led to two successfully con-

ducted experiments studying 87Rb atoms in dissipative optical lattices

and an upgraded 87Rb machine for future work with ultra-cold atoms.

Part 2 starts with an introduction to the broad area of ratchet physics,

motivates and illustrates the upgrade of the experimental apparatus and
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Figure 1.1: The two ingredients of a magneto-optical trap (MOT). Left:
A velocity dependent force arises due to the different scattering rates of the
Doppler-shifted counterpropagating beams.
Right: An additional magnetic quadrupole field provides a constant mag-
netic field gradient in all three dimensions with a zero in the centre and
gives rise to a spatially dependent force. To address the correct excited state
sublevel the counterpropagating beams have opposite circular polarizations.

describe the two experiments. The rest of this introduction is spent on

a brief overview of the fundamentals of laser cooling and cavities.

1.2 Fundamentals

This section provides an introduction to the field of cold atoms. It will

briefly describe the magneto-optical trap (MOT) as the starting point

of all the experiments described in this thesis, then Sisyphus cooling as

a strong sub-Doppler cooling mechanism at the heart of all the 87Rb

experiments in part 2, and finally the models and definitions for the

treatment of an optical Fabry-Pérot cavity as the main ingredient of

the experiments in part 1. There are plenty of well-written textbooks on

these topics and this chapter relies on two of them [25, 65]. The historical

remarks are based on [75].
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1.2.1 Laser Cooling and Trapping

The Magneto-Optical Trap (MOT) has been the workhorse in modern

atomic physics since 1987 [79] and the starting point for many exper-

iments. Even though light pressure forces were already suggested by

Maxwell [63] and experimentally studied by Lebedew in 1901 [53], their

implementation for the cooling of atoms and its acknowledgment by the

Nobel committee had to wait until 1997. The Nobel Prize was awarded

for the experimental realization of the first cooling technique involving

laser beams dubbed “optical molasses” by Steven Chu et al. in 1985

[16], the first breaking of the so-called Doppler limit by William D.

Phillips [76], and the theoretical identification of the process by Claude

Cohen-Tannoudji [18]. Today there are several hundred experiments us-

ing magneto-optical traps with various atomic species as a starting point

of their research. So what makes them so powerful?

The first and most intuitive cooling mechanism involving laser beams,

suggested by T.W. Hänsch and A.L. Schawlow in 1975, is Doppler cool-

ing [40]. Electro-magnetic radiation coupling atomic energy levels gets

absorbed when it is on resonance with an atomic transition. The photon

momentum is then transferred to the absorbing atom. Compared to an

alkali atom, such as 133Cs, the photon momentum is tiny. One sponta-

neous emission event on the D2 line accelarates one atom by the recoil

velocity vr = 3.5mm/s [87]. In order to decelerate thermal atoms flying

around with velocities of 300m/s, thousands of photon scattering events

are necessary. The photon scattering rate of an atom is given by:

Rscatt =
Γ

2

s

1 + 4∆2 + s
, (1.1)

where Γ is the inverse of the excited state lifetime, ∆ is the detuning of

the laser field with respect to the atomic transition in units of Γ, and s

is the saturation parameter given by the light intensity in units of the

saturation intensity:

s =
I

Isat
=2

(
Ω

Γ

)2

,

where Ω =−
~d · ~E0

~

(1.2)
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is the on-resonant Rabi frequency as a measure of the coupling strength

of the transition with dipole operator ~d between the ground state |g〉
and the excited state |e〉 of a two-level atom and ~E0 the electric field

amplitude.

The force on the atom is the momentum transferred per unit time and

therefore F = ~kRscatt. For the maximum scattering rate of Γ/2 the

corresponding maximum acceleration for a 133Cs atom is:

amax =
vrΓ

2
≈ 58× 103m

s2
≈ 6000g. (1.3)

For the much lighter sodium atom the maximum acceleration reaches

even up to 105 times the gravitational acceleration g. So even though the

photon momentum is small, light forces acting on atoms can be huge due

to the very high scattering rate. But this is also the reason why effective

Doppler cooling is restricted to atoms with a simple level structure like

the hydrogen-like alkali atoms. The small momentum transfer makes it

necessary to cycle the same transition over and over again; if the excited

state can decay into another level that is not coupled via the laser beam,

the cooling ceases. All alkali atoms have two hyperfine split ground states

and need a repumper laser to recycle lost atoms. Figure 1.1 depicts the

working principle of Doppler cooling on the left and the idea behind the

magneto-optical trap on the right. To implement the radiation pressure

force to reduce the atomic velocity on average, Doppler cooling makes

use of the Doppler effect: the frequency of the light depends on the

reference frame; an atom moving towards a laser beam “sees” a higher

frequency and an atom moving away from it a lower frequency than an

atom at rest. A 2-level atom (red) moving with a velocity v towards a

laser beam which is red detuned by ∆ = ωp−ωA to the atomic transition

in the laboratory reference frame experiences the beam Doppler-shifted

by δ = ~k · ~v (first order) to the blue and therefore closer to resonance:

its scattering rate increases. The same beam coming from the other side

will be scattered less since the Doppler shift has an opposite sign and

the transition is further away from resonance. The net force on the atom

equals the difference between the two scattering rates times the photon

momentum ~k. It is velocity dependent but spatially isotropic. It can

cool atoms very quickly to a very low temperature but it doesn’t trap.
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A configuration of three perpendicular pairs of counterpropagating laser

beams red detuned to the atomic transition is called “optical molasses”

since the atoms will experience a velocity-dependent force in all three

dimensions. Atoms in an “optical molasses” will move due to random

kicks of the spontaneously emitted photons with average velocity zero

but with variance 〈v2〉 which can be expressed as a minimum Doppler

cooling temperature kBTD = ~Γ/2 = m 〈v2〉, where kB is the Boltzmann

constant and m is the atomic mass. The Doppler limit for 133Cs and 87Rb

is 125.61µK and 145.57µK respectively [87, 88]. To trap the atoms with

radiation pressure the scattering rate needs to be spatially dependent.

This can be done easily by implementing a quadrupole magnetic field.

In order for the MOT to work the excited state needs to have an overall

angular momentum of at least F = 1. In this case the magnetic field

lifts the degeneracy of the Zeeman sublevels shown in figure 1.1 on the

right, and the detuning depends linearly on the magnetic field which

also varies linearly in space. To address the correct excited sublevel,

counterpropagating circularly polarized laser beams are used depending

on the configuration of the magnetic field. An atom moving away from

the magnetic zero experiences an increasing radiation pressure from one

of the beams and a decreasing radiation pressure from the other beams

resulting in a net force towards the centre of the MOT. This way up to

1010 atoms can be trapped with densities of around 5 × 1010 atoms per

cm3; an ideal starting point for experiments with cold atoms.

1.2.2 Sub-Doppler Cooling

Since the first implementation of an optical molasses researchers were

confronted with sub-Doppler temperatures. Also, the scaling of the final

temperatures as a function of laser beam detuning and power were con-

flicting with the established 2-level Doppler cooling theory. The experi-

mentally observed sensitivity on the background magnetic field suggested

a connection to the magnetic sublevels. The theoretical interpretation by

Jean Dalibard and Claude Cohen-Tannoudji was published in 1989 [18].

One of the mechanisms was termed Sisyphus cooling, since a moving atom

is endlessly climbing potential hills and this is the mechanism relevant

in part 2. It makes use of a second effect of a light field on an atom:
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Figure 1.2: Sisyphus cooling in the lin ⊥ lin configuration as explained in
the text.
Left: The resulting interference pattern can be described by a σ− (red) and
a σ+ (blue) standing wave shifted by λ/4 with periodicity λ/2. The two
ground states of a Jg = 1/2→ Je = 3/2 transition experience different light
shifts accordingly.
Right: On the top of the potential hill, the circular polarization (σ−) re-
sponsible for light shift of ground state |g,−1/2〉 vanishes. Instead σ+ is at
maximum intensity. But this couples |g,−1/2〉 to |e,+1/2〉, a state which is
more likely to decay into |g,+1/2〉 due to a bigger Clebsch-Gordon coefficient.

oscillating electric fields deform the electronic shell of the atom, induc-

ing an oscillating dipole moment. This induced dipole moment interacts

with the driving field, which leads to a conservative force proportional to

the gradient of the electro-magnetic field intensity: the so-called Dipole

force. When the frequency of the field is above resonance, the induced

dipole oscillates maximally out of phase and is pushed towards the in-

tensity minima. Below resonance, the induced dipole oscillates in phase

and is being pulled towards intensity maxima. The light field dresses

the atomic energy states; the new diagonal states of the atom+photon

system are shifted in energy depending on the strength of the radiation

field. The light shift is proportional to the coupling strength, or the

Rabi-frequency Ω, introduced by the light field. A laser beam there-

fore produces a spatially varying optical potential for the atomic energy

states. For a red detuned laser, the optical intensity maximum is the

potential energy well of the dipole force. Sisyphus cooling also needs a

slightly more complex atomic level structure as shown in figure 1.2 on

the right. The simplest transition to observe this sort of cooling is a
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Jg = 1/2 → Je = 3/2 transition, where there are two different ground

states and four excited states, differing by their magnetic quantum num-

ber. The coupling between the levels is given by polarization selection

rules and the strength of the Clebsch-Gordon coefficients. An optical

lattice resulting from the interference of two counterpropagating laser

beams with orthogonal linear polarization can be decomposed into two

superimposed optical standing waves with different circular polarizations

(σ+ and σ−) shifted by λ/2. Since the light shift depends on the coupling

strength, the optical potential for each ground state varies in space like

the respective circular polarization optical lattice. This is sketched in

figure 1.2 on the left. The potential U±(z) at position z for each ground

state |g,±1/2〉 follows:

U±(z) =
U0

2
[−2± cos(2kz)], (1.4)

where the maximum potential depth is given by U0 ≈ ~Ω2/ (4∆) with ∆

the detuning between atomic transition and laser beam and Ω the Rabi

frequency as defined in equation (1.2). An atom moving in such a po-

tential transfers continuously kinetic energy into potential energy when

moving uphill and vice versa when moving down hill. For Sisyphus cool-

ing to occur a second ingredient is needed: optical pumping. The laser

beams have to be so close to resonance that there are still sufficient scat-

tering events taking place. With the slightly more complex level structure

of the Jg = 1/2 → Je = 3/2 transition, if a photon gets absorbed and

transfers the atom into the excited state, the possiblity to decay into

either of the ground states is given by the Clebsch-Gordon coefficients

[87]. If a |g,−1/2〉 atom moves through the potential and reaches the top

of the hill, the only light present is σ+ polarized and the only transition

possible is to the excited state |e,+1/2〉. If the atom gets transferred

to this state it is more likely to relax back into the other ground state

|g,+1/2〉, which is lower in potential energy by U0. The atom gets opti-

cally pumped into the other ground state and the excess potential energy

is taken away by the spontaneously emitted photon. This process con-

tinues until the atom’s kinetic energy is not big enough to reach the top

of a potential. The atom is trapped in the optical lattice. For this sim-

plest level structure where Sisyphus cooling takes place, once the atom is
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localized in the optical potential, the cooling stops and the atoms keeps

oscillating in a single lattice site. Additional optical pumping events let

the atom follow a diffusive random walk through the optical lattice, with

a finite temperature of the order of the initial potential depth U0.

But 87Rb atoms have an even richer substructure; instead of just two

ground states there are 5. The transition for the transport studies in

part 2 is the Fg = 2 → Fe = 3. In this case each ground state has its

own optical potential and cooling continues even within one lattice site.

1.2.3 Fabry-Pérot cavities

A Fabry-Pérot cavity (see figure 1.3) is an optical resonator made of

two mirrors separated by the distance L. Originally the term was used

for the special case with two plane mirrors, but is today used for any

linear cavity configuration. If a laser beam is incident onto a mirror, it

gets partly reflected, partly transmitted and partly absorbed, according

to the amplitude absorption, reflection and transmission coefficients of

that surface. In a Fabry-Pérot cavity a part of the incident beam is

transmitted through the first mirror and oscillates then between the two

reflecting surfaces. After one roundtrip it interferes with itself and, in

the case of constructive interference, a field builds up in the cavity which

can exceed the incident intensity dramatically.

Here I am going to introduce some cavity formulae which I am going to

use later on to characterize the cavities in this thesis.

Derivation of the finesse Figure 1.3 shows a schematic of a Fabry-

Pérot cavity. It is made out of two surfaces separated by the distance

L corresponding to a phase change δ for a roundtrip. For simplicity

both surfaces have the same amplitude reflection and transmission coef-

ficients r, t respectively, and no losses. In a steady-state, the circulating

field in the cavity Ecirc, is given by the interference of the incident light

amplitude transmitted through the left mirror tEin with the already cir-

culating electric field after reflection from the right surface and from the

left surface. Whether the interference is constructive or destructive de-

pends on the acquired phase difference δ due to the optical path-length
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Figure 1.3: Fabry-Pérot schematic.
Left: Two plane parallel surfaces with amplitude reflection and transmission
coefficients r and t experience the build up of constructive multiple beam
interference when the phase δ acquired during one roundtrip of 2L equals
2π.
Right: The transmission spectrum shows characteristic spikes whenever an
incoming laser is on resonance. The frequency difference between adjacent
longitudinal modes is called the Free Spectral Range (FSR) and is related to
the linewidth w = κ/π via the Finesse like F = FSR/w.

of one roundtrip. The field in the cavity is given by:

Ecirc = tEin + r2Ecirce
iδ

⇒ Ecirc =
Eint

1− r2eiδ
.

(1.5)

A commonly measured quantity is the transmitted intensity Itr, which is

then given by the circulating intensity Icirc multiplied by the amplitude

transmission coefficient squared:

Itr = t2E∗circEcirc =
Iin

1 + 4r2

(1−r2)2
sin2 (δ/2)

. (1.6)

When the accumulated phase δ during one roundtrip of length 2L is a

multiple of 2π, the sine term becomes zero and the transmission is at

a maximum. The time it takes for a roundtrip is 2L/c; for the phase

difference to be n · 2π the frequency needs to be a multiple of the inverse

of this time, which is called the Free Spectral Range (FSR):

FSR =
c

2L
. (1.7)
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This is the first important quantity to characterize a Fabry-Pérot cav-

ity. The second is the characteristic width of the resonance peaks. For

small values of the phase δ, the sine term in equation (2.11) can be re-

placed by its argument. The transmission around resonance then follows

a Lorentzian curve, which, when expressed with the phase replaced by a

frequency difference to resonance (ν − νc), can be written like:

Itr/Iin =
1

1 + 4r2

(1−r2)2

(
π ν−νc

FSR

)2 =
1

1 +
(

2(ν−νc)
w1/2

)2 , (1.8)

with the Lorentzian full width half maximum in frequency:

w1/2 = κ/π = FSR

√
1− r2

πr
. (1.9)

The single mirror loss rate κ is more commonly used in cavity quantum

electrodynamic (CQED) experiments. The ratio of free spectral range

and linewidth is called the Finesse:

F =
FSR

w1/2

=
πr√

1− r2
. (1.10)

The finesse is a measure of the quality of the mirrors, since it is propor-

tional to the ratio of amplitude reflection to transmission. High reflectiv-

ity means more interfering beams and therefore a narrower linewidth.

Stability diagram Not every configuration of mirrors is capable of

forming a stable mode. Sometimes unstable resonators are even pre-

ferred. To get an idea how to make a statement of the stability of a

cavity mode one has to recall some basics of geometrical optics which is

very well done in [37] or [89]. In geometrical optics a beam of light is

represented by a 2-dimensional vector. The first dimension is the axis

offset, the distance of the beam with respect to the propagation axis and

the second is the angle with respect to that axis. Optical elements, such

as lenses or mirrors, free propagation, and surfaces can be represented as

a matrix acting on the beam vector and several matrices can be multi-

plied to make more complex optical arrangements treatable.
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The roundtrip of a light beam in a cavity can also be described by a

matrix M :

M =

(
A B

C D

)
.

A beam reflecting back and forth in a cavity is stable over time when all

elements of matrix M ′ stay finite in the limit:

M ′ = lim
n→∞

(
A B

C D

)n

. (1.10)

It can be shown [89] that this is the case when:

∣∣∣∣A+D

2

∣∣∣∣ < 1. (1.11)

For a linear cavity made of two mirrors with curvatures R1 and R2,

separated by the optical path-length L, this means that the product of

the mirror parameters gi = 1− Ri
L

is between 0 and 1 as shown in diagram

1.4:

0 < g1g2 < 1. (1.12)

So technically the confocal cavity is not a stable configuration since its

g-factors equal zero. However, this is just valid for a single length of the

given mirror curvatures and is therefore impossible to achieve. There will

always be a deviation from confocality.

Gaussian Beams In a better approximation than representing a light

beam by a ray with an angle and an axis offset, the wave equation de-

rived from Maxwell’s equations governing the behaviour of light is solved

in the paraxial approximation [89]. The results are so-called Gaussian

beams : they are a mixture of the trivial solution of a spherical wave and

a plane wave. They combine a propagation direction with confinement

in the transverse plane. From Maxwell’s wave equation for the electro-

magnetic field, the Helmholtz equation is derived by just considering a

single frequency ω and separating a spatial envelope from the temporal

dynamics. The envelope function of the electro-magnetic field u (x, y, z)
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Figure 1.4: The stability diagram for a linear cavity. Resonators with g
factors within the blue area on the left are stable. For guidance three limits
of the stability diagram are shown in detail. First the concentric cavity
(1), where the mirror separation equals twice the mirror curvature, then the
confocal cavity (2) used in this thesis and (3) a cavity with two plane mirrors.
For reference the stabilization cavity built and used in the laser setup of the
part 1 experiments is shown as well (4).

solves the differential equation:

∇2u+ k2u = 0. (1.13)

Introducing a propagation direction z via the ansatz u (x, y, z) = ψ (x, y, z)·
e−ikz with k = 2π

λ
and applying the paraxial approximation:∣∣∣∣∂2ψ

∂z2

∣∣∣∣� ∣∣∣∣2k∂ψ∂z
∣∣∣∣ , ∣∣∣∣∂2ψ

∂x2

∣∣∣∣ , ∣∣∣∣∂2Ψ

∂y2

∣∣∣∣ , (1.14)

leaves the paraxial wave equation for the spatial envelope of the EM-field

as:
∂2ψ

∂x2
+
∂2ψ

∂y2
− i2k∂ψ

∂z
= 0, (1.15)

which is solved by the fundamental Gaussian beam mode function:

u (x, y, z) = ψ (x, y, z) e−ikz = e−i
k

2q(z)(x2+y2)e−ip(z), (1.16)
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with the complex beam parameter q and z-dependent phase factor p. The

beam parameter q can be written as:

q (z) = z + izR or
1

q (z)
=

1

R (z)
+

iλ

πw2 (z)
, (1.17)

with in the propagation direction varying beam waist w (z) and beam

front curvature R (z). The Rayleigh range relates the expansion of the

beam along z to the beam waist in the focus (z = 0) of the beam w0 via

zR = πw2
0/λ. A Gaussian beam is spatially completely determined by

zR. The beam waist w (z) and phase front curvature radius R (z) follow:

w (z) = w0

√
1 + z2/z2

R,

R (z) = z
[
1 + z2

R/z
2
]
.

(1.18)

The complex phase factor p (z) can be written like:

e−ip(z) =
1√

1 + z2/z2
R

ei tan−1(z/zR). (1.19)

The prefactor is responsible for a diminishing amplitude of the electric

field for increasing z, to compensate for the expansion of the beam-waist.

The second effect is an additional phase factor called the Gouy-phase.

For the fundamental solution in (1.16) the Gouy-phase varies from −π/2
for z → −∞ to π/2 for z → +∞ with a zero crossing at the beam

waist position. It is essentially the phase difference between a plane

travelling wave and a Gaussian beam, and can be attributed to the curved

wavefronts of the beam.

The complete solution normalized to a maximum of 1, and with r2 =

x2 + y2 reads:

u (x, y, z) =
1√

1 + z2/z2
R︸ ︷︷ ︸

Amplitude

e
− r2

w2(z)︸ ︷︷ ︸
Profile

e−i
kr2

2R(z)︸ ︷︷ ︸
Curvature

e−i(kz−tan−1(z/zR))︸ ︷︷ ︸
Plane wave + Gouy

. (1.20)

It turns out that the matrices used in geometric optics can still be used in

this better approximation to the behaviour of radiation beams. A matrix

M transforms the q-parameter of a Gaussian beam according to:
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(
A B

C D

)
· q ≡ Aq +B

Cq +D
. (1.21)

For a given mirror configuration, the fundamental resonator mode is de-

fined by the two mirror surfaces; the radius of curvature of the mode has

to match the mirror curvatures. This also means that the beam waist w0

of the fundamental Gaussian mode is defined by the selection of mirrors

and there distance. For a confocal resonator of length L, the waist for a

beam with a wavenumber of k = 2π/λ is given by:

w0 =

√
L

k
. (1.22)

Higher order transverse Modes Of course there are more solutions

to the paraxial Helmholtz equation than just the single mode function in

equation (1.20). In fact, for a given basis there are infinite higher order

solutions. Expressed in the rectangular Hermite-Polynomial basis with a

later defined normalization factor c0, the mode function of a higher order

transverse mode TEMnm reads:

unm (x, y, z) =
c0w0

w (z)
Hn

(√
2x

w (z)

)
Hm

( √
2y

w (z)

)

× e−
r2

w2(z) e−i
kr2

2R(z)

× e−i(kz−(n+m+1) tan−1(z/zR)).

(1.23)

The beam profile is modulated according to the Hermite-Gaussian func-

tion of order nm, zero crossings are introduced and the beam width in-

creases. But also the Gouy-phase increases proportional to the mode

indices. Figure 1.5 shows illustrations for two different higher order

modes and the fundamental TEM00 mode. Since the phase of the laser

beam incorporates a factor proportional to the higher order mode index,

the resonance condition for a roundtrip differs for different higher order

modes. The following expression gives the eigen frequency of the higher

order transverse modes (q-th longitudinal, n,m-th transverse mode) in a
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Figure 1.5: Gaussian beam illustration
Left: Cross-section through different transverse electromagnetic (TEM)
modes along the propagation direction.
Middle: Transverse profile of the different TEM modes.
Right: Electric field strength and according intensities along the x-axis.
Since the effective beam waist of the higher order TEM modes increases, the
maximum electric field strength is reduced.

cavity, as a function of the geometrical parameter of the cavity g:

νqmn =
c

2L

[
q +

1 + l +m

π
arccos (g)

]
. (1.24)

For the special cases of the concentric, the plane and the confocal res-

onator the frequency difference per transverse mode index is (1, 0, 0.5)

FSR respectively. The case we are interested in is the confocal one.

When the length of the cavity L equals the curvature of the mirrors R,

the cavity is confocal and the frequency difference for different higher

order modes reduces to:

νqmn =
c

2L

[
q +

1 + l +m

2

]
. (1.25)

As a result, the transmission spectrum of the cavity reduces to two peaks.

The first peak at the frequency νq00 = (q + 1/2) FSR of the TEMq00, and

the second peak 1/2FSR further at νq10 = (q + 1) FSR. Degenerate with

the first peak with longitudinal mode q0 are all modes with the same

value of the mode indices sum (2q + n+m) = 2q0. All modes with

(2q + n+m) = 2q0 + 1 are degenerate with the second peak of the spec-

trum and therefore with the first transverse mode with longitudinal mode
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index q0. For example the (q − 1, 2, 0) mode is at the same frequency as

the (q, 0, 0) mode. The two degenerate peaks are fundamentally different,

while modes degenerate with the fundamental TEMq00 can have a central

intensity component, all modes degenerate with the first transverse mode

have an intensity node in the profile centre.



Part I

Cavity quantum

electrodynamic in a lossy

optical resonator
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Cavity Quantum Electrodynamics (CQED) is an important field in

modern atomic physics [66]. It started with Purcell’s famous observa-

tion in 1946 [1] that the spontaneous emission rate can be dramatically

modified by the presence of a cavity. He recognized the importance of

the electro-magnetic mode density for the emission process and how to

alter it with a resonator. Groundbreaking experimental work on the in-

teraction of atoms and light in confined spaces started in the microwave

regime with experiments on Rydberg-atoms. By removing available vac-

uum modes which could welcome the spontaneously emitted photon with

a microwave cavity, spontaneous emission could be “turned off”[43]. Sev-

eral other experiments observed this phenomenon with higher transition

frequencies: in the infrared [45] and finally in the optical regime [38].

A theoretical model to treat the interaction of light and atoms within

a resonator is the Jaynes-Cummings model [44]. It has been particu-

larly powerful in proving fundamental physical phenomena, such as the

collapse and revival of Rabi-oscillations due to interference of the differ-

ent Rabi-frequencies associated to different photon numbers [11]. It is

a single-atom, single-mode interaction picture (which can be easily ex-

tended to contain N atoms [92]). The mode and the atomic polarization

are coupled via the exchange of a photon. A hallmark of these dynamics,

as of any other coupled system, is the accompanying normal-mode split-

ting of the energy level structure. The inhibition and enhancement of

spontaneous emission happens in the so called “bad cavity” limit, where

the coupling of the particle to the resonator is weak in comparison to

the environmental coupling parameters. If the influence of the resonator

can be made dominant in the dynamics, the splitting of the excited state

level structure becomes observable; an indication of the “good cavity”

regime. The excitation undergoes Rabi-oscillations between atom(s) and

the resonator mode.

Normal-mode splitting in the optical regime was first observed in 1989

[80] for several atoms and then in 1992 [93] for just a single atom. Nowa-

days there are several experiments investigating coupled atom-cavity

systems for a broad range of applications and fundamental research.

High-finesse cavities strongly coupled to single atoms [61, 106] and Bose-

Einstein Condensates [9, 49] have been realized. The optical resonators

in most experiments can effectively be modelled by a single-mode interac-
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tion constant, since the higher order-transverse modes available in most

cavities have different frequencies. In our case, the implemented close to

confocal cavity was used to investigate the collective coupling of atoms to

a multi-mode cavity field, with potential benefits to the coupling strength

[85], as the prerequisite for a cavity cooling experiment [55] and possible

applications in quantum computing.

This part is organized as follows: firstly, the Jaynes-Cummings model is

presented since it is necessary for the understanding of the experiments.

Then the experimental apparatus is described and characterized, and

the science cavity’s linewidth, free spectral range and its deviation from

confocality are determined. With the working machine we conducted

two experiments. First, it is shown that the cavity-atom system is in

the collective strong coupling regime, we show the
√
N dependence of

the later derived coupling constant g, which we measured via the ex-

tent of the observed normal mode splitting. In the following chapter, we

look in detail into the mode decomposition of the transmitted light field.

Since the cavity is close to confocal, the single-mode approach of the

Jaynes-Cummings model has to be extended. Via normal mode splitting

measurements we show that the 133Cs atoms in the apparatus are simul-

taneously strongly coupled to multiple transverse modes of the optical

resonator. This is a situation which could be interesting for quantum

computing and the build up of multi-mode entanglement, since differ-

ent transverse modes interact with each other coherently via the atomic

sample. And different transverse modes can be addressed with spatially

separated laser beams.



Chapter 2

Jaynes-Cummings model

The Jaynes-Cummings Hamiltonian [44, 86] describes the interaction of

a single two-level atom represented by Pauli spin matrices ~σ with the

electro-magnetic field of a single mode resonator with coupling constant

g. The Hamiltonian without zero point energy of the EM-field and after

rotating wave approximation reads:

H = Hatom +Hmode +Hint,

= ~ωAσz + ~ωCa+a+ i~
(
gσ+a+ g∗σ−a+

)
,

(2.1)

with the atomic transition frequency ωA and cavity resonance frequency

ωC . The coupling constant g defined by:

g =
µE1

~
, (2.2)

is proportional to the dipole matrix element of the atomic transition:

µ = 〈g |µ̂| e〉 , (2.3)

and to the electric field per photon:

E1 =

√
~ωC
2ε0V

. (2.4)

The bigger the cavity volume V , defined by the integral

V =

∫ ∞
−∞

∫ ∞
−∞

∫ L/2

−L/2
|u00 (x, y, z)|2 dxdydz, (2.5)

30
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the smaller the effect of a single photon onto the atom. u00 is here

the mode function of the fundamental gaussian TEM00 mode defined in

equation (1.23). Later we use this approach to generalize the coupling

constant to higher order transversal modes. If the frequency of the cavity

resonance equals the atomic transition frequency (that is ∆ = ωC −
ωA = 0), an initially excited atom will undergo Rabi oscillations with

frequency g in the bare state basis |g, 1〉 and |e, 0〉. The Hamiltonian can

be diagonalized and the new dressed states are now superpositions of the

initial states given by:

|+〉 = cosφ |g, 1〉+ sinφ |e, 0〉 ,

|−〉 = − sinφ |g, 1〉+ cosφ |e, 0〉 ,
(2.6)

where the mixing angle φ is defined by tan 2φ = 2g
∆

. The new eigen

energies can be written as:

E± = ~
ωA + ωC

2
± ~

√(
∆

2

)2

+ g2. (2.7)

When the frequency of the cavity mode equals the frequency of the atomic

transition the energies are symmetrically shifted around the bare excited

state by ±g. The frequency difference of the splitting 2g is called the

Vacuum-Rabi splitting because it would even occur for an empty cavity

mode with just a single excited atom. Spontaneous emission or the inco-

herent transition from the excited state to the ground state by emitting

a photon would be completley suppressed and the dynamics became re-

versible. The excitation oscillates between mode and atom coherently.

Since nobody would be able to observe this it would be of little scientific

interest. The dynamics in any real atom-cavity system are accompanied

by decoherence processes. The mirror loss rate κ as an incoherent cavity

mode decay through each of the cavity mirrors and the spontaneous emis-

sion rate γ into residual vacuum modes. The coupled systems density

matrix evolves according to the master equation [21, 86]:

ρ̇ = − i
h

[H, ρ] + Lρ, (2.8)
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with the dissipation manifested in the Liouville term:

Lρ = κ
(
2aρa† − a†aρ− ρa†a

)
+ γ (2σ−ρσ+ − σ+σ−ρ− ρσ+σ−) . (2.9)

With the system coupled like this to the environment, the vacuum Rabi

splitting becomes observable in the case that g > κ, γ. This marks the

so called strong coupling regime. If the Hamiltonian (2.1) gets extended

by a coherent pumping term with amplitude η:

Hp = −i~η
(
a− a†

)
, (2.10)

it can be seen either by fluorescence into non-cavity modes with a camera

for example or with a photodiode in the cavity transmission. If the cavity

resonance ωC is carefully positioned at the atomic transition frequency

ωA so that ωC = ωA ≡ ω0 then the cavity transmission as a function of

the pump frequency ωP in the limit of a weak probe can be written as

[3, 61]:

T (ωP ) = T0

∣∣∣∣ κ [γ + i (ω0 − ωP )]

(ωP − λ+) (ωP − λ−)

∣∣∣∣2 , (2.11)

with T0 the maximum empty cavity transmission and λ± marking the

new normal mode eigenfrequencies of the coupled system.

λ± = (ω0 ± Ω0)− i (γ + κ) /2, (2.12)

with the frequency shift Ω0 proportional to the coupling constant:

Ω0 =

√
g2 −

(
γ − κ

2

)2

. (2.13)

As we will show later, the single-atom single-mode coupling constant for

the experiment in this thesis is tiny. It is much smaller than the cavity

loss rate κ or the polarization decay rate γ which in our case hardly

differs from the free space decay rate, since the cavity is so big that the

modes inhibited by the resonator are negligible.

Collective Coupling In 1954 Dicke [20] considered the radiative prop-

erties of particles close to each other quantum mechanically. His theo-

retical findings were that the emission properties of atoms confined in
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a small space can hardly be seen as independent. On the contrary, if

several atoms are within a wavelength from each other they have to be

treated as a combined quantum system. The extension of the Jaynes-

Cummings model to contain several atoms is called the Tavis-Cummings

model and was published 5 years later to the single atom model in 1968

[92]. The polarization vector of each atom within the cavity adds up and

the new system can be seen as a single atom with collectively enhanced

coupling constant geff = g
√
N where N is the effective number of atoms

coupled to the cavity according to the weighted sum over all the atoms

with position ri:

N =
atoms∑
i=1

|u (xi)|2 . (2.14)

Atoms within the mode count while atoms not in the mode have no effect.

In the case where we know the density function of for example the MOT

ρMOT the effective coupling geff is given by the integral:

geff = g

√∫
|u00 (x)|2 ρMOT (x) dV . (2.15)

The new coupling constant can be orders of magnitude bigger than the

initial single atom g just by adding more and more particles. The trans-

mission of the cavity is still given by equation (2.11), except that the

coupling constant g has to be exchanged with its collective counterpart

geff . The characteristic
√
N behaviour of the mode splitting is a hall-

mark of the collective strong coupling regime.



Chapter 3

Experimental Setup

This chapter will present the experimental setup designed, built and used

for this part of the thesis. It will concentrate on the main components

important for the experiment and skips, or deals very briefly with, more

technical components such as current drivers, laser designs, magnetic coil

switches and stabilization electronics, in an attempt to limit the scope

of this work. It starts with a summary of the experimental control and

briefly explains the MOT laser system. Then the vacuum chamber, as

the main part of the experiment is described as well as its components

and the chosen design criteria. Following this is a description of its in-

terior parts, mainly the magnetic coil construction, its cooling and then

finally the science cavity. After a brief characterization of the cavity’s

parameters and its stabilization system, the chapter ends with a descrip-

tion of the cavity probe laser locking schematic and a small summary.

Where necessary, measurements to characterize the system are explained

and presented.

3.1 Experimental Control

To run an experiment with cold atoms, lasers need to be controlled in

both frequency and intensity. Currents through coils have to be changed

and switched, and images of the atomic sample or the cavity mode must

be acquired with high temporal accuracy and good reproducibility. It

also needs to be easy to switch between different experiments, to change

times and intensities, and to add or delete experimental steps. For this

34
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experiment we use a LabVIEW 8.2 environment to control a Viewpoint

DIO-64 digital in/out card, and two National Instruments PCI-6713 ana-

log in/out cards. Those cards provide precision control of 64 digital, and

16 analog, channels (from -10 V to +10 V output) with a 2µs resolu-

tion, and form the core of each experimental cycle. At the beginning of

an experiment, the required values are written into the card’s memory

with an according time-stamp and executed repeatedly until further no-

tice. For quick data acquisition, as well as for triggering other LabVIEW

subroutines, the computer control was extended by a NI-USB-6009 card

with an additional 8 analog inputs and 2 analog outputs. The computer

also controls the frequencies of a Rohde & Schwartz SMF 100A 1-20 GHz

function generator over a LAN connection, a Rohde & Schwartz SMT 02

5 khz-1.5 GHz via the COM port, and an AVT Guppy F038B camera via

FireWire. The camera is used for fluorescence imaging of the MOT to

measure the temperature, position, size of the cloud and the number of

atoms. The images are acquired, background subtracted and immedi-

ately analyzed in terms of a 2D Gaussian fit in MATLAB. The values

are written into a file, but also immediately displayed to be able to check

the experiment in real-time. For triggered data acquisition, a digital os-

cilloscope1 is connected over another USB port. Driven by LabVIEW

it acquires and stores data when temporal information is required. The

cavity transmission for chapter 5 is recorded with an intensified2 camera

from Hamamatsu3. Since it is originally from a different experiment in

our group [77], it came with its own control computer, which receives a

trigger signal from the main experimental control and uses WASABI as

the camera control and image analysis program.

3.2 Magneto-optical trap laser system

Three lasers are used to generate the light necessary to run the MOT.

The repumper, the master and the slave. The repumper and master are

Extended Cavity Diode Lasers (ECDL), home built for this experiment

according to a design published in Optics Communications 1995 [82].

1Tektronix DPO 2014
2Image Intensifier Unit C9016-24, Hamamatsu
3IEEE1394 Digital CCD Camera C4742-80-12AG, Hamamatsu
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Laser in the Littrow Configuration The laser systems contain com-

mercially available laser diodes4 in the so-called Littrow configuration. In

this configuration a holographic grating is used to control the frequency

of the laser emission by feeding back one of the first-order grating refrac-

tions into the diode. A welcome side-effect is the corresponding linewidth

reduction of the laser since the newly formed extended cavity is much

longer (1.5-2 cm) than the initial laser cavity (150 − 400µm). The fre-

quency of the laser becomes controllable by changing the angle of the

grating. This can be done very quickly with a piezo ceramic5. Chang-

ing the angle not only changes the wavelength of the refracted light but

also, since it is done over a pivot point, the length of the cavity. Both

effects alter the emission frequency, but not necessarily in the same way

and the optimimum scanning range can be achieved when both effects

happen synchronously [19]. The whole ECDL is actively temperature

stabilized and sits in a rigid aluminium body. With commercially avail-

able laser diodes, the output power after the grating is around 30 mW

for 852 nm.

The other type of laser, the slave, is just a laser diode injected by light

from the master laser. Even tiny amounts of light (just a few µW) are

enough to dominate its frequency. The diodes6 used here are more pow-

erful; at a current of 150 mA the laser delivers about 70 mW. Figure 3.1

shows a schematic of the laser system to operate the MOT. The master

laser, providing the cooling light, is locked via a so called Doppler-Free

Dichroic Atomic Vapour Laser Lock (DF-DAVLL) [91].

Dichroic Atomic Vapour Laser Lock This lock combines a Doppler-

free spectroscropy with a small magnetic field to generate an error signal

which is an electronic feature linear in frequency through the atomic tran-

sitions [67]. In the external magnetic field the atomic magnetic sublevels

are slightly shifted in energy due to the Zeeman effect. The optical fre-

quency of the Doppler-free feature depends now on the polarization of the

observed light. A Polarizing Beam Splitter cube (PBS) in combination

4Hitachi HL8342-MG
5PiezoMechanik, PSt 150/4/5
6SDL Inc., SDL-5422-H1
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Figure 3.1: A schematic of the laser system for the magneto-optical trap
as explained in the text.

with a Quarter Wave Plate (QWP) splits the two circular polarizations

and guides them onto different photodiodes. An integrated circuit sub-

tracts one signal from the other, leaving a nice slope around resonance.

This error signal is then fed back to the piezo of the laser, keeping the fre-

quency where it is supposed to be. As a standard on this experiment, the

error signal is also fed back to the modulation input of the current driver.

This improves the stability of the lock in the worst case and provides also

some linewidth narrowing in the best case. We experimented quite sub-

stantially with different DAVLL configurations and abandoned it in most

setups in favour of Frequency Modulation (FM) locks [6]. Their biggest

disadvantage was the susceptibility to temperature fluctuations in the

lab, which affected the lock point. Their biggest advantage, however, is

the lack of modulation side bands, especially for the master laser and its

required detuning range to the cycling transition. If the detuning equals

the modulation frequency, the single resonant side-band would heat the

atomic sample. This is the reason why the master laser is still using the

DF-DAVLL.

The locking point of the master laser is the 62S1/2F = 4⇒ 62P3/2F = 4, 5

cross-over line. Most of the light then goes through an Acousto-Optical



3. Experimental Setup 38

Modulator7 (AOM) in a double-pass configuration, which shifts its fre-

quency up by about 150−210 MHz, so that it is above the atomic cycling

transition. Over the applied radio frequency the light can now be tuned

in frequency by means of the experimental control computer. After the

AOM, the light gets injected into the slave laser. After a mechanical

shutter, the laser beam is passed through another AOM, which shifts the

frequency down by 80 MHz. This AOM is mainly used to switch or alter

the beam intensity by changing the radio frequency amplitude applied

to the AOM. After the AOM the power of the beam is (29.3± 0.1) mW.

Before overlapping it with the repumping light, the beam goes through

a couple of telescopes to become (1.28± 0.01) cm in diameter. The peak

intensity of the MOT beam is (45.7± 0.6) mW/cm2 corresponding to

(16.9± 0.2) ISat.

The repumping laser does not need to be detuned and keeps a fixed fre-

quency during the whole experimental cycle. Side-bands do not matter,

since it is lasing all the time on-resonance. Therefore it can be locked

using a Frequency-Modulation spectroscopy lock.

Frequency Modulation, or Pound-Drever-Hall, Lock In Frequency

Modulation locking systems the light source in question is equipped with

side-bands in frequency. In our case we modulate the diode current with

a 40 MHz sine signal directly. The electronics are self built at UCL and

follow the design in [70]. The modulation produces side-bands in the

laser frequency at ±40 MHz with respect to the carrier frequency. Its

index is small and the power in the side-bands is about 1%. If this laser

source now probes any kind of resonance feature, one side band will be

below resonance and the other will be above resonance, when the carrier

is on resonance. The phase difference will be imprinted on the relative

phase of the 40 MHz signal, which can be read out with a photodiode

and compared to the initial phase of the modulation signal. This phase

difference is used as the error signal in the feedback loop.

The repumper is locked to the Cs 62S1/2F = 3 ⇒ 62P3/2F = 3, 4 cross-

over feature. It then gets shifted up by 125 MHz using the first refracted

order of an AOM onto the 62S1/2F = 3⇒ 62P3/2F = 4 repumping tran-

7Crystal Technology, 3110-140
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sition. A fraction of the light before the AOM gets split off and sent to

the Cavity Pumping laser system as an atomic reference signal.

3.3 Vacuum system

The vacuum chamber is the main part of the experimental hardware. It

is necessary to keep environmental influence to a minimum. Producing

a cloud of 107 Caesium atoms at some tenth of µK above absolute zero

obviously needs good thermal insulation. Collision with hot background

atoms is a significant loss mechanism and heating source. To load the

MOT, the chamber is filled with a low pressure gas of Caesium atoms.

The MOT then cools and traps the cold fraction of the Boltzman dis-

tribution, while hot atoms are mostly unaffected by the cooling process

due to its limited capture range. The Caesium is produced by heating

up dispensers8 in the appendix part of the vacuum chamber. They are

separated from the main body by a UHV valve, in order to be able to

change them when necessary without having to pump and bake the whole

vacuum system again.

The chamber can be separated into three parts: the experimental

part, the pumping section and the 133Cs source. The experimental cham-

ber is an Extended Spherical Octagon9, and it was chosen due to its high

port density, huge optical access and rigid design. Optical access for the

three orthogonal MOT beams, a camera, the cavity probe laser and the

cavity access was needed. Additional mounting capacity was also needed

for the cavity spacer, the magnetic coil construction and its cooling sys-

tem and also for the electrical feed throughs to drive the piezo and the

coils. The two 8” viewports, and all the other viewports for the MOT

beams, were coated for lower reflectivity.

The pumping section (on the right in figure 3.2) is equipped with a 20 l/s

Ion pump10, a viewport to probe or pump the MOT and a valve to provide

access for a turbopump. The pressure in the chamber can be deduced

from the ion-pump current. It is at the lower end of the measuring range

8SAES Getter, Cs AMD Cs/NF/10.8/25/FT 10
9Kimball Physics, MCF800-ExtOct-G2C8A16

10Varian Inc.,Vaclon Plus 20 StarCell
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Figure 3.2: The vacuum setup. It shows a view from the top and a view
from the side of the main experimental components. Apart from the vacuum
chamber, the sketch shows also the imaging system and the orientation of
the three mutually perpendicular MOT laser beams, as well as the mounting
construction of the main chamber. It is clamped between two aluminium
mounts and the breadboard containing the optics for two MOT beams and
the cavity probe beam (not visible). For mechanical isolation, all the sup-
ports are covered with soft rubber.

and therefore below 10−9 mbar. Figure 3.2 shows a schematic of the vac-

uum chamber; first a picture from the top and then a picture from the

side.

Magnetic Field The first coils to produce the gradient for the MOT

were mounted outside of the vacuum chamber. They were about 20 cm

in diameter with 200 windings of 1 mm copper wire each. They needed
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water-cooling and they were slow to switch due to their high electromag-

netic induction and the voltages available. Eddy currents induced in the

cavity spacer caused mechanical vibrations for higher magnetic fields, so

another set of coils was designed, built and put into the chamber. The

Perspective FrontSide
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Coils

MOT 
Coils

Mounting
Holes

Coil 
Holder

Opening
Mode

Opening 
MOT beams

25.4m
m

Figure 3.3: The magnetic coil mount in the vacuum chamber. Two pairs
of coils provide a magnetic quadrupole field for the MOT with a moveable
magnetic zero within the cavity mode.

new coils are much smaller, switch much quicker and the dissipation dur-

ing MOT operation is negligible. Also the field at the position of the

cavity spacer is much smaller so that the induced currents cause much

less mechanical response.

Figure 3.3 shows the spacer of the magnetic coils. It contains the two

anti-Helmholtz (round) coils used for the MOT gradient. To have the

ability to move the magnetic field zero, both coils can be supplied by

differing currents. For movements of the magnetic zero in the direction

perpendicular to the connection of the two AH coils, another pair of coils

is mounted on the spacer. It is used in a Helmholtz-configuration but

could also be used to generate the MOT gradient, for example to get a

more elongated MOT in the cavity. Both pairs of coils do not need any

cooling during normal MOT operation. Since we wanted to have the pos-

sibility to provide higher magnetic field gradients for a quadrupole trap

however, the dimensions and the materials of the mounting construction

were chosen in a way to provide enough cooling, and to avoid melting

the wire’s Kapton insulation. It turned out that cooling the construc-

tion during MOT operation improves the vacuum as well, so that for

most experiments the cooling was on. It also showed that with cooling

the magnetic coil cage, the cavity spacer got cooled as well so that it
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changed its length by some µm. The wire for the coils is fixed to the

spacer with a low vapour pressure resin11. In order to keep the expected

pressure increase due to the higher outgassing in the chamber as small

as possible, the use of the glue was kept to a minimum. An increase in

overall pressure after baking the system again and pumping it down was

not measurable.

The AH coils produce a magnetic gradient of (13.75± 0.08) G
cm A

. The
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Figure 3.4: The magnetic coil cooling apparatus. The magnetic coil cage is
mounted to a base-plate in the vacuum chamber. This base plate is screwed
to four 10 mm diameter copper feed throughs. The electrical contact is in-
terupted by ceramic washers on both sides of the base-plate. The other side
of the feed throughs is cooled with water cooled Peltier elements as explained
in the text.

dissipation is well below 1 W for an axial gradient of 10 G
cm

usual for

MOT operation. This does not increase the temperature of the copper

wire measurably. Pulsed currents of up to 15 A can be used to provide

magnetic trapping, which has been tried but was not necessary for ex-

periments in this thesis. The cooling system is shown in figure 3.4. The

magnetic coil mount is connected over two forks to a base-plate, which

acts as a heat reservoir for the coils. Its heat is extracted over four

10 mm diameter copper feed throughs, which also act as the mechanical

mount for the magnetic coil cage. All other parts are manufactured from

aluminium and are connected via brass screws. To avoid induced cur-

rents all components are slit. The copper rods are electrically insulated

11Torr Seal from Varian
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via ceramic washers. Outside of the vacuum the copper rods are fitted

into aluminium plates. These plates are cooled via Peltier elements12

sandwiched between the plates and a water-cooled aluminium element13.

The temperature of the magnetic coil cage was measured indirectly by

observing the resistance change of the copper wire. According to the

measurement, the temperature dropped by about 40 ◦C to about −20 ◦C

with a cooling power of 120 W applied to all four Peltier elements to-

gether.

3.4 Science cavity

The science cavity is the crucial part of the experiment. The aim was to

design the cavity as long as possible to increase the interaction volume,

so that as many particles as possible could be loaded into the mode.

Hence some theoretical publications [21, 85, 100] suggest that the coop-

erativity scales with the transverse mode density another aim was to be

as confocal as possible. Then the transverse modes overlap in frequency

and the active volume where atom-cavity interaction occurs, as well as

its strength, increase dramatically.

To be able to compare results with previous work the cavity parame-

ters were chosen to be similiar to an experiment conducted in Vladan

Vuletic’s group in 2003 [15]. Temperature fluctuations and vibrations

alter the cavity length and therefore the resonance frequency. Those

changes during an experimental run should be below a cavity linewidth.

To establish this we implement a computer controlled active stabilization

of the resonance frequency. This section consists of three parts: First an

overview of the cavity construction is given, then the length stabilization

is explained, and finally, the procedure and the results of the confocal

alignment are displayed.

3.4.1 Cavity construction

The cavity consists of two mirrors with a curvature of 12 cm and a broad-

band reflectivity of 99.9 % peaked around 852 nm. They are 25.4 mm in

12Farnell, Peltier Cooler MCPE-127-10-13
13Aavid Thermalloy Hi-ContactTMliquid cold plates, 2 pass model
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Figure 3.5: Three views of the science cavity construction. The cavity
spacer is made from two aluminium parts machined in the UCL workshop.
The design priorities were optical access, stability and a maximum cavity
length. Construction details are explained in the text.

diameter and 6.35mm thick.14. Separation is provided by an aluminium

spacer built at the UCL workshop. This spacer was designed for optical

access to the MOT and the cavity mode, and is made as rigid as possible

to reduce the susceptibiliy to vibrations. Aluminium was chosen due to

its small paramagnetism and its mechanical properties.

It consists of two parts screwed together by eight brass M6 screws, wash-

ers and nuts. The lower mirror is glued to the outside of the lower spacer

part, while the upper mirror is glued to an aluminium plate and then

onto the piezo ceramic connected to the inside of the upper spacer part.

The glue used was TorrSeal, which is suitable for high vacuum applica-

tions. The disc was placed between the mirror and the piezo tube to

avoid stress on both components while actuating. The whole spacer is

connected with four stainless steel mounts to the four top CF16 ports

of the extended spherical octagon from Kimball Physics. During the

construction phase, the length of the spacer could still be changed due

14Layertec Laser Mirror
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to the length alignment slits; with loosened screws they allow for rough

adjustments of ±4 mm.
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Figure 3.6: Mode spectrum around
confocality. a) shorter than confocal,
b) exactly confocal and c) longer than
confocal

Aligning for confocality First the

upper part of the cavity spacer was

prepared. First by cleaning all com-

ponents in an ultrasound bath with

dry acetone. Then the mirror was

centred and glued onto the aluminium

plate, the plate glued to the piezo ce-

ramic, which itself was then connected

to the spacer part. This construction

was then mounted vertically in the lab

with an incident 852 nm laser beam on

the middle of the mirror. The beam

was then back-reflected onto itself to

model the position of the mode. The

lower mirror, in a normal 1”-mirror

mount, was then put into a position

roughly 12 cm away from the upper

mirror surface. After a bit of align-

ment a cavity was formed and the recorded transmission showed a rich

resonance spectrum. Moving the lower mirror with a 3D translation

stage and the mirror mount enabled us to couple most of the light into

the 0th-order transverse mode of the cavity, which could be identified

with a CCD camera and a monitor.

With misaligning the incoupling laser beam, light was coupled into dif-

ferent higher order transverse modes, so that the spectrum showed sev-

eral higher order transmission peaks. With their frequency separation,

the deviation from confocality could be estimated and reduced via the

translation stage. Once all of the transverse modes were overlapped in

one single peak, the peak height was maximized and the lower part of

the spacer put into a position nearly touching the lower mirror. Af-

ter tightening all the screws holding the two spacer parts together, the

gap between mirror and spacer was bridged using four spots of TorrSeal.

When the glue was cured, the mirror mount could be removed and the
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Figure 3.7: Left: The transmission through the cavity (black) while scan-
ning a laser over all Cs 62S1/2 ⇒ 62P3/2 (red) features to calibrate the
frequency axis.
Right: The mode number over mode frequency. The linear fit gives the
mode spacing, which for a confocal cavity is half of the free spectral range.

rigid construction mounted into the vacuum chamber.

3.4.2 Cavity parameter

Free Spectral Range The free spectral range of a cavity is inversely

proportional to the cavity’s optical path length, and the optical path-

length is important for the mode volume and the deviation from confo-

cality.

To measure it we scanned a laser over the cavity whilst simultaneously

performing a Doppler free spectroscopy on a Caesium cell. The trans-

mission of the cavity showed a slight non-linearity in the mode-spacing.

This was more an expression of the non-linear change in frequency when

a linear ramp is applied to the ECDL piezo voltage, rather than an actual

length change of the cavity. So before calibrating the frequency axis with

the doppler free Caesium spectroscopy, the non-linearity was mathemat-

ically corrected. The transmission of the cavity, and the spectroscopy

signal over the calibrated frequency axis, are displayed in figure 3.7.

From this graph the frequencies of the longitudinal cavity modes were

selected and displayed as a function of the longitudinal mode index in

figure 3.7. A linear fit of the data revealed the free spectral range to be:

FSR = (1249.5± 0.4) MHz. (3.1)
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Figure 3.8: The cavity transmission as a function of the laser frequency.
The photodiode signal (black) was fitted with a lorentzian (red) revealing a
linewidth (FWHM) of w = (1.603± 0.003) MHz.

From this the actual length of the cavity can be deduced:

L = (119.96± 0.03) mm. (3.2)

Using this method, the error in the cavity length is already about twice

as large as the maximum change in cavity length with the piezo ceramic,

so that the actual piezo voltage could be neglected.

Linewidth and Finesse The cavity linewidth was measured in a sim-

ilar way to the free spectral range. A laser scanning over a Doppler free

Caesium spectroscopy of the Cs 62S1/2F = 4 ⇒ 62P3/2 F=3,4,5 tran-

sition was simultaneously injected into the cavity. The transmission of

the cavity was collected with a photodiode and recorded with an oscillo-

scope. The known frequency difference between two atomic features was

then used to calibrate the frequency axis. The transmission feature was

fitted with a Lorentzian peak function which revealed its linewidth, and

therefore the cavity loss rate κ (Figure 3.8).
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The resulting Lorentzian linewidth FWHM is:

w = κ/π = (1.603± 0.003) MHz. (3.3)

Together with the free spectral range (equation (3.1)) this results in a

finesse F of:

F = (780± 2) . (3.4)

Mode volume and coupling constant With the cavity length the

beam waist of the fundamental Gaussian TEM00 mode can be calcu-

lated with formula (1.22) for the D2 line transition wavelength of λ =

852.347 nm [87]:

w0 =

√
L

k
= (127.57± 0.02) µm. (3.5)

To a very good approximation, just neglecting the curvature of the mirror

surface, this results with equation (2.5) in a mode volume of:

V00 =

∫ V

|u00 (~x)|2 dV = (1.533± 0.001) mm3 (3.6)

and from this we finally arrive at the theoretical single atom single

mode coupling constant g00 of the cavity system for a 133Cs atom in

the stretched magnetic sublevel |F = 4,mF = ±4〉 → |F ′ = 5,m′F = ±5〉
subject to on resonant σ± light and therefore a dipole moment of

µ = 2.6850 (24)× 10−29 C ·m [87]:

g00 =
µE1

~
= 2π × (118.94± 0.02) kHz. (3.7)

This cavity is deep in the bad cavity limit with g � κ < γ. The single-

atom single mode interaction is dominated by environmental decoherence

processes.

Maximum length change of the cavity The maximum length change

of the cavity is important for two reasons. First, drifts in temperature,

and therefore a length change of the cavity, can be compensated when

the system is locked. The maximum length change provides an upper

limit for a temperature change that can be compensated for. But more
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importantly, it enables the possible change in length to get closer (or fur-

ther) to (or from) perfect confocality, to change the degree of degeneraty

of the higher order transverse modes. To measure the length change, a

laser scanning over the Caesium 62S1/2 F = 4→ 62P3/2 F = 5 crossover

transition was coupled into the 00-mode of the science cavity. This was

used as a frequency standard. Changing the applied piezo voltage of

the science cavity showed moving resonance peaks in the transmission

as recorded on a photodiode. Each new longitudinal mode corresponds

to a cavity length change of λ/2. Thus the piezo was scanned from the

minimum to the maximum available voltage and the number of modes

in the transmission passing the crossover feature were counted, and the

corresponding voltages recorded. The length change per mode is given
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Figure 3.9: The maximum length change of the cavity measured via count-
ing the number of observed resonances of an 852 nm laser.

by:

∆L =
λ

2
=

(852.3473± 0.0002) nm

2
= (426.1736± 0.0001) nm (3.8)

The error results from the presumption that over the whole time the

measurement took, the cavity eigen frequency and the laser frequency
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changed less than 100 MHz due to thermal or mechanical drifts, which

was clearly justified. 43 different longitudinal modes could be observed.

And thus total maximum length change is therefore:

∆LMax = 43 ·∆L = (18325.45± 0.01) nm (3.9)

Neither the minimum nor the maximum voltage coincided with a

cavity mode, so that in fact the real maximum length change is more

than 18.325µm and less than 18.751µm (corresponding to 44 longitudinal

modes), which leaves us with a less optimistic error value of:

∆LMax = (18.5± 0.4)µm (3.10)

3.4.3 Deviation from confocality

The mode degeneracy in a cavity is an important figure for estimating

the number of modes the cloud of atoms can interact with. In an ideal

confocal cavity all of the higher order transverse modes with the same

sum of longitudinal and transverse mode indices have exactly the same

frequency. In general, our cavity, as well as everything else, has limited

spatial dimensions, which introduces losses for modes with a bigger radius

than the radius of the mirrors. Also the frequencies for higher order

modes differ and since confocality is an exact point, there will always

be a finite frequency difference. In addition to this, the mirrors are not

parabolic, they are spherical mirrors. We investigated whether there

are dielectric parabolic mirrors with an appropiate surface and coating

quality, but could not find any off the shelf. And we decided against a

custom made solution as a result of a cost-benefit analysis. Therefore

we have to take spherical aberration into account. In this subsection the

means to measure the deviation from confocality, as well as the results,

will be presented.

Taking into account real mirrors and aberration Spherical mir-

rors in Fabry-Pérot Resonators are a source of spherical abberation. This

makes the optical path-length inside the cavity and therefore the reso-

nance condition a function of the radius on the mirror. In [99] the opti-

cal path-length corrected for spherical aberration, astigmatism and beam
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front curvature is given by:

∆ = 4(R + ε)−
[
ρ1

2ρ2
2 · cos 2θ

R3
+ 2ε(

ρ1
2 + ρ2

2

R2
)

]
. (3.11)

Here ε is the length by which the cavity exceeds the confocal spacing

L = R. R is the curvature of the mirrors. ρ1 and ρ2 are the fringe radii

on the corresponding mirrors and θ is the angle between the cavity axis

and the incoming light beam. For a small, central and well collimated

beam cos 2θ ≈ 1, so that equation (3.11) becomes :

∆ = 4(R + ε)−
[
ρ4

R3
+ 4ε

ρ2

R2

]
. (3.12)

The resonance condition for light transmission of the cavity can then

be written like:

n · λ
2

= 4(R + ε)−
[
ρ4

R3
+ 4ε

ρ2

R2

]
. (3.13)

Measuring the deviation from confocality In [15] they had a si-

miliar cavity and therefore a similar problem in measuring the devia-

tion from confocality precisely. They came up with a solution pointed

out to them by [99], which is to observe the interference pattern of the

light in the transmission of the cavity, while slowly changing its length.

The observed fringe pattern then indicates the deviation from confocal-

ity especially when the cavity is shorter. Figure 3.10 shows the optical

path-length as a function of the beam radius on the mirror for different

deviations from confocality on the left. Clearly visible are the additional

maxima for negative deviations from confocality. This manifests itself

as merging fringes while scanning the mirror separation or the incident

laser frequency. From the radius ρ of the merging fringe it is possible to

deduce the seperation of confocality via:

ρ =
√
−2ε · L. (3.14)

In [15] they used this method to determine the deviation from confocality

of their cavity. It works because the cavity is shorter than the curvature
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Figure 3.10: Deviation from confocality simulation.
Left: This graph shows the resonance condition of a cavity as a function of
the radius ρ on the mirror (Equation 3.13). The central mode is displayed
with different deviations from confocality and calculated for R = 0.12m.
From top to bottom: ε = (−20,−10, 0, 10, 20) µm.
Right: The merging radius ρ of the fringe pattern over the deviation from
confocality ε. No solution when the cavity length exceeds the radius of
curvature (ε < 0).

radius of the mirrors. For our science cavity we could not observe a

merging fringe pattern in the transmission while changing the cavity

length, which leads to the conclusion that in our case ε is positive.

Our way to overcome this problem was to measure the radius ρ of the

fringe pattern as a function of the frequency of a probe laser, and then

to fit it with equation 3.13. To do that we changed the piezo voltage

to the minimum value and locked the cavity. Then we used the cavity

probe laser and scanned it slowly over the resonance of the cavity, taking

a webcam picture of the transmission every 10 MHz, and fitted an ellipse

to the fringe pattern.

An example of the acquired images is shown in figure 3.11 on the right.

Clearly visible is the aspect ratio and the orientation of the ellipse, and

also a very faint second fringe which belongs to the next order. The

long axis and the short axis were recorded for each image. Then we

repeated the procedure after relocking the cavity (90± 1) FSR/2 of the

780 nm laser, or (17.5± 0.2) µm, shorter. Each dataset was then fitted

with function (3.13). The resulting graph is shown in figure 3.11. The
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Figure 3.11: Measurement of the deviation from confocality.
Light: The frequency of the incident laser light over the measured radii
of the ellipse in the two distinct directions (long axis: outer sets) for two
different cavity length (red and black).
Right: The transmission of the cavity observed with a webcam for four
different laser frequencies. Those frequencies are measured with respect to
the resonance frequency of the 00-mode

deviation from confocality for the two axes are:

Long axis:
εLA 1 = (21.9± 1.4)µm
εLA 2 = (5.8± 0.7)µm

∆εLA = (16.1± 1.6)µm

Short axis:
εSA 1 = (94± 3)µm
εSA 2 = (76± 4)µm

∆εSA = (18± 5)µm

Both deviations are consistent within their error with the change in the

cavity length ((17.5± 0.2) µm) between the two measurements. The

observed astigmatism is probably due to stress on the mirror during the

alignment procedure. At this stage the mirror was mounted in a normal

1”-mount and secured with a plastic screw, which compressed the mirror

along one axis. This quite obviously reduces the available mode density,

since the transverse mode spacing in the direction with the large deviation

from confocality is too big and the higher order transverse modes far less

degenerate.
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Mode degeneracy A statement about the degree of mode degeneracy

can be made by considering the amount of higher order transverse modes

per linewidth for a given deviation from confocality. With equation (1.24)

this results, for the different values of deviation from confocality, in the

following modes per linewidth:

Long axis:
εLA 1 = (21.9± 1.4)µm ⇒ 11Modes

w

εLA 2 = (5.8± 0.7)µm ⇒ 41Modes
w

Short axis:
εSA 1 = (94± 3)µm ⇒ 2Modes

w

εSA 2 = (76± 4)µm ⇒ 3Modes
w

3.4.4 Cavity Stabilization System

To investigate the atom-cavity interaction in detail, the cavity eigen fre-

quency needs to be stable, with respect to the atomic resonance frequency

and, of course, with respect to the cavity cooling laser system. Figure

3.12 shows a the temperature related drift of the science cavity measured

with the locking error signal from a previous stabilization setup. Even

though the locking electronics have been replaced by a better version

explained in more detail later in the text, what is clearly visible is the

linear cavity drift of 500 kHz/s, which is obviously unacceptable for the

experiment. It is also necessary to be able to tune the cavity length.

Quickly on the timescale of one experimental cycle, computer controlled

at best and, to reach every possible cavity-atom or cavity-laser detun-

ing, at least by one half free spectral range, since this is the maximum

possible detuning. To establish that, we implement two ECDLs lasing at

780 nm and three different locking schemes.

This section is structured as follows: firstly an overview of the complete

locking schematic is given and the locks are briefly explained. Then

each lock is presented with some explanation and, after that, the per-

fomance of the lock is demonstrated. The cavity length stabilization

utilises three different locking schematics. One ECDL is stabilized via

FM spectroscopy to the 87Rb 52S1/2F = 2 → 52P3/2F = 1, 3 cross-over

resonance feature. Another ECDL is stabilized onto a high order trans-
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Figure 3.12: Linear drift of the cavity frequency in an old setup of the
locking scheme. At t = 25 s the locking system was activated.
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Figure 3.13: The cavity length stabilization setup.



3. Experimental Setup 56

verse mode of the science cavity. This is done with a Pound-Drever-Hall

locking scheme [6] (which uses the same electronic components as the FM

spectroscopy). Then parts of both lasers are overlapped on a photodiode

and the homodyne signal is measured. This signal is mixed with the out-

put of a computer-controlled frequency generator and an error signal is

produced according to an offset locking technique developed in the group

of Martin Weitz [83], which is then fed back to the cavity piezo.

Side of filter Offset lock This technique uses the frequency response

characteristic of a 200 MHz low pass filter. The beat signal of the two

ECDLs is measured with a fast photodiode15. The DC components of

the light are filtered out by a Bias-Tee16 and the remaining beat signal is

amplified17 and then mixed18 down with the computer-controlled signal

from a function generator19. After the mixer, the signal oscillating with

the frequency difference of the two inputs is amplified20, while the signal

oscillating with the sum is discarded (or simply not amplified). This is

then fed into the Error signal Generating Circuit (EGC). The frequency

response of this circuit is shown in figure 3.14. The input frequency is

the amplified output of the mixer. The slope of the error signal around

168 MHz frequency offset is (9.48± 0.01) mV/MHz. This signal locks

the cavity length to an atomic reference.

3.5 Cavity Probe Laser System

The cavity probe laser system works in a similar way to the cavity sta-

bilization laser system. We wanted to be able to lock the laser at any

detuning possible to the cavity and to the atomic transition, and the

laser should stay at this frequency over the duration of an experiment.

In general everything written in the introduction of the cavity stabiliza-

tion system is also true for the interrogation laser. The schematic of the

system is shown in figure 3.15. The master laser is initially stabilized

15Hamamatsu G4176-03
16Minicircuits, ZX85-12G+ 0.1-12000 MHz
17Minicircuits, ZKL-2 10-2000 MHz
18Minicircuits, ZFM-2000
19RS SMT 02
20Minicircuits, ZFL-500LN
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Figure 3.14: Characterization of the offset locking electronics. The slope
of the error signal around zero is (9.48± 0.01) mV/MHz.
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Figure 3.15: The cavity probe laser setup as explained in the text.
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onto another cavity via a PDH stabilization. This cavity serves three

purposes: firstly, it adds passive stability to the cavity master laser; sec-

ondly it is suppossed to narrow the linewidth via fast electronic feedback;

and finally it acts as a frequency filter, when used in transmission, and

therefore reduces the modulation side-bands.

Stabilization cavity The stabilization cavity spacer is shown in figure

3.16. It was designed with a square section (4× 4 cm2), so as to be easy

to manufacture and to mount. It has a central hole of 10 mm diameter

for the optical path. The cavity is composed of two mirrors, a piezo and

a Zerodur21 spacer. Both mirrors are low loss mirrors from Layertec and

the transmission of each mirror is specified to be 0.1%. Within the given

boundaries of cavity stability the curvature of the mirrors is unimportant.

One mirror is plane and the other one has a curvature radius of 1.5 m22.

Cavity piezo

hole

0.5" Mirror

Zerodur spacer

1" Mirror5cm

Figure 3.16: The schematic of the sta-
bilization cavity and its spacer.

The cavity length is 5 cm and the

piezo is 3 mm thick. The ring piezo23

to control the cavity’s eigen fre-

quency has an inner diameter of 8 mm

and an outer diameter of 13 mm. It

is glued with Torrseal24concentric to

the bore on one face of the cav-

ity. Its maximum length change

is supposed to be 3µm. The

1/2” mirror is glued on the piezo

and the 1” mirror is glued on the

other face of the cavity. A FSR

of (2822± 4) MHz and linewidth of

(2.26± 0.02) MHz results in a finesse

of F = (1248± 11). For thermal sta-

bility the cavity spacer is enclosed in

a 1 cm thick perspex housing, sitting in a massive aluminium mount

manufactured at the UCL workshop (shown in figure 3.17). For reduced

21Zerodur (Schott) is glass with a coefficient of thermal expansion (CTE) below
0.1 · 10−61/K

22Layertec, Laser Mirror, coating batch: G0405031
23Piezo HPSt 150/15-8/3, Piezomechanik GmbH
24Torrseal, rigid epoxy resin, Varian
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Figure 3.17: The mount of the stabilization cavity.

susceptibility to acoustic noise, the cavity spacer is mounted in the plane

of the cavity mode [71].

Linewidth reduction with PDH To reduce the linewidth of the

laser, the PDH error signal was fed back to the modulation input of

the current driver of the cavity probe master, and directly onto the laser

diode [70]. An estimate for the linewidth of the laser could be derived

from a noise analysis of the error signal during lock and turned out to be

(24± 2) kHz in 6 ms. The frequency noise added by the cavity cannot be

seen this way. For a more rigorous analysis of the laser linewidth another

similar laser [97] or a very long fibre [94] would have been necessary. But

since the laser linewidth is not a crucial figure for the experiment, we

refrained from spending more time on better measurements.

Most of the master laser light is used to generate a big error signal and

to get as much cavity transmission as possible. The transmission is then

used and fed into a slave laser. This has several intuitive advantages:

first, frequency oscillations of the laser beam are converted into ampli-

tude fluctuations in the transmission due to the response function of the

cavity; the nonlinear response of the slave to the injection light inten-

sity flattens those. Second: the “stabilization bumps” in the frequency

profile of the laser, visible in the reflected light, are reduced due to the
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frequency filtering property of the cavity. Third, the amount of light

power is much bigger; the injected slave emitts up to 70 mW laser power

for the experiment.

The light not needed for the slave injection is used to make the frequency

of the cavity master laser controllable. It implements a similar setup as

used for the cavity stabilization system. Light from the repumper laser

is taken as an atomic reference, and is overlapped with light from the

cavity master laser. The schematic is, in general, very similar to the one

used in the cavity setup, but since the ground state hyper-fine splitting

of the Cs 62S1/2 is, with 9192 MHz, a much bigger offset than the max-

imum 1500 MHz of the cavity lock, the components for the side-of-filter

offset lock are therefore slightly different. The photodiode amplifier25,

the mixer26 and the function generator27 need a bigger frequency range.

The Bias-Tee28 limits the maximum offset frequency to 12 GHz.

Intensity control and switching Atomic samples are in general very

susceptible to very small intensities of incoming laser light. First the laser

was switched with an AOM because of its capacity of very short switch

times. But the leaked light in the off-state was already by far too big and

affected the atoms. The second fast method was switching with a Pockel

cell, but again too much light illuminated the sample when it should not.

The solution was a combination of two mechanical shutters with computer-

controlled delay synchronization. The shutter construction is displayed

in figure 3.18. One shutter is responsible for switching on, and the other

one for switching off. For best performance, the shutter block is mounted

on a translation stage and moved into the focus of the laser beam. The

individual delays were measured and implemented into the computer

control program. The rigid design guarantees little fluctuation in the

delay times. In total, four mechanical shutters are used to switch two

laser beams: the cavity probe and a beam to probe the atomic sample

perpendicular to the cavity axis. But since quick intensity control, fast

switching and rapid frequency sweeps were important as well, an AOM

was added again into the beam-path. The switch time with the AOM

25Minicircuits ZVA-183+
26Minicircuits, ZX05-153+
27Rohde & Schwartz SMF 100A
28Minicircuits ZX85-12G-S+
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Figure 3.18: The performance of the double shutter
Left: Mechanical double shutter. Positioned in the focus of the laser beam is
this shutter capable of producing light pulses of below 100µs duration. This
would not have been possible since the delay of each shutter alone would
have been far too big.
Right: The intensity measured while switching. The 4 curves are for 1 ms
(black), 500µs, 300µs and 100µs (all red). The switch on duration from
10%-90% is (28± 4) µs and for the switch off (53± 4) µs. The temporal
reproduction accuracy is ±4µs.

was measured to be below 1µs.

System performance For the documentation of the system perfor-

mance, figure 3.19 shows a slow computer controlled scan over the cavity

resonance with the cavity probe laser system. The whole scan took 50 s

and all the systems were locked. The cavity probe laser was then scanned

in step jumps of 500 kHz every 2.5 s over the cavity resonance, and the

transmission was recorded. Apart from the spikes due to the sudden

change in locking point of the cavity probe laser, what is clearly visible

is that over the whole time the relative frequency drift of the two locking

systems is certainly much smaller than the step size of 500 kHz, there-

fore much smaller than the cavity linewidth of 1.6 MHz. This makes it

suitable for our applications.
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Figure 3.19: A slow scan over the cavity resonance



3. Experimental Setup 63

3.6 Summary

The experimental apparatus built for this part of the thesis was described.

The main component, the nearly confocal cavity, was presented and char-

acterized. The relevant cavity parameter can be found below:

Stabilization Cavity
FSR (2822± 4) MHz
w (2.26± 0.02) MHz
F (1248± 11)

Science Cavity
FSR (1249.5± 0.4) MHz
L (119.96± 0.03) mm
w0 (127.57± 0.02) µm
V00 (1.533± 0.001) mm3

g00/ (2π) (118.94± 0.02) kHz
∆LMax (18.5± 0.4) µm
w = κ/π (1.603± 0.003) MHz
F (780± 2)

Deviation from confocality
εLA 1 (21.9± 1.4) µm
εLA 2 (5.8± 0.7) µm
εSA 1 (94± 3) µm
εSA 2 (76± 4) µm

Corresponding mode density
εLA 1 ⇒ 11 Modes

w

εLA 2 ⇒ 41 Modes
w

εSA 1 ⇒ 2 Modes
w

εSA 2 ⇒ 3 Modes
w

Table 3.1: Summary of the key cavity parameter.



Chapter 4

Observation of normal mode

splitting

The experimental results of this chapter have been published in [104]:

A. Wickenbrock, P. Phoonthong and F. Renzoni. Collective strong cou-

pling in a lossy optical cavity. Journal of Modern Optics, 58(15), 1310-

1316, 2011

In this chapter we report on experiments conducted on the previously

described machine. The interaction of a cold cloud of 133Cs atoms with

the nearly confocal cavity is documented. Normal mode splitting as the

hallmark of the collective strong coupling regime is observed as well as

the corresponding avoided crossing and the dependence of the coupling

constant g on the dipole matrix element of the optical transition. The

collective normal mode splitting has been observed several times in differ-

ent experimental settings over the last 20 years. While first experiments

used an atomic beam of 133Cs in 1989 [80], modern examples implement

either ultra-cold atoms in the form of a Bose Einstein Condensate [9] or

cold atoms from a magneto-optical trap [95]. The difference of our ex-

periments is twofold: firstly the single atom parameters of this machine

are deeply in the bad cavity limit. The relevant frequencies are deter-

mined to be (g, κ, γ) = 2π×(0.12, 0.8, 2.6)×106 1
s
. Only the large number

of atoms loaded into the mode lift the system into the strong coupling

regime. Secondly, this is the first observation of normal-mode splitting

in a nearly confocal multimode cavity, which we will investigate further

64
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in the following chapter. To compare the setup to other experiments, we

define here the collective cooperativity parameter, which is the ratio of

the collective coupling constant Ng2 to the decoherence rates κ and γ:

Ccoll =
Ng2

2κγ
, (4.1)

with γ being the free space polarization decay rate defined as half of

the excited state decay rate Γ. Collective cooperativity parameters big-

ger than unity indicate the strong coupling regime, which is a necessary

condition for cavity cooling of multi-level atoms or molecules [55] but

also interesting for other collective effects such as self-organisation and

superradiance [21]. We show that in our system up to (1.33± 0.08)×105

atoms are effectively coupled to the resonator resulting in a collective

cooperativity of Ccoll = (186± 5).

Before the results are presented, the experimental methodology is ex-

plained.

4.1 Experimental Procedure

To observe the normal-mode splitting as a function of the available sys-

tem parameter we loaded the magneto-optical trap directly into the cen-

ter of the cavity mode. A schematic of the experiment can be seen in fig-

ure 4.1. For the first experimental sequence, to show the
√
N dependence

of the splitting, we varied the atom number by changing the loading time

of the MOT. An experimental sequence can be seen in table 4.1. Since

the vacuum-Rabi splitting is even visible while the MOT is switched on,

the cavities resonance frequency was aligned with the probe scanning

until the two peaks had the same height. Then the cavity stabilization

was activated, keeping the cavity resonance at the same frequency dur-

ing the whole experiment. If the first measurement of the normal mode

splitting showed two asymmetric peaks, the radio frequency offset of the

locking was adjusted accordingly until both normal modes had the same

transmission intensity. Two different ways of measuring the cavity trans-

mission were implemented. The first involved, loading the MOT for an

arbitrary time, then switching all the MOT beams and magnetic fields off.

After a delay of 250µs the shutter for the stabilized cavity probe beam
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Figure 4.1: The experimental
schematic for the normal mode split-
ting experiment. The figure shows the
main ingredients for the observation
of the cavity transmission. First, the
magneto-optical trap (gold) is loaded
into the cavity. The position of two
pairs of MOT beams is indicated, while
the 3rd pair is orthogonal to the image
plane. For better visiblity the magnetic
coil cage is omitted. The number
of atoms in the mode is varied by
changing the loading time of the MOT.
For different detunings, a weak probe
beam, mode matched for optimum
coupling into the TEM00 interrogates
the cavity-atom system and the cavity
transmission is measured with a
photodiode, averaged and recorded
onto hard disc. The data were aquired
via a DAQ-USB card.

was opened for 2ms and the cavity-atom system exposed to a weak σ+

polarized laser beam, mode matched to the TEM00-mode. The transmit-

ted power through the cavity was measured to be below (2.0± 0.2) nW,

which is for all the atom numbers involved much smaller than the critical

photon number to cause bistable behaviour according to [34]. During the

exposure the cloud of cold atoms was beginning to expand ballistically

and fall due to gravity. But for temperatures of around 50µK (well below

the 133Cs Doppler limit) during this time the MOT could be considered

static. The effect of moving atoms onto the normal mode splitting is a

modified coupling constant, averaged over one wavelength of the optical

lattice in the cavity [54]. The transmission data were then aquired by in-

tegrating the photodiode signal over 1 ms in the middle of the complete

exposure time to make sure not to observe any switching effects. Before

the cycle started again, the cavity probe laser lock was changed via the

function generator.

The second method involved positioning the probe laser slightly below

the low energy normal mode peak and then, after releasing the MOT,

to scan over the whole feature in about 2 ms. For this to work, the lock
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needed to be open, an additional ramp signal to be applied and the sys-

tem to be relocked. The ramp start was triggered with the same signal as

the opening shutter of the probe beam in table 4.1. The data aquisition

this way was much faster than with the previous method but it came

with the cost that both peaks were scanned at slightly different times.

Especially for low atom numbers and relatively high beam intensities this

caused an asymmetry in frequency, height and width of the second peak

with respect to the first peak even when the cavity resonance frequency

matched the atomic transition. So this method was used only to docu-

ment the avoided crossing and to compare the normal mode splitting of

different hyperfine transitions, where the atom number was fixed and the

beam power adjusted accordingly to avoid this effect.

Experimental
Sequence

MOT
Load-

ing
Delay

Probe
On

DAQ
Probe

Off
Image Delay

R&S
Trig-
ger

Time [ms]
100-
3000

0.25 0.5 1 0.5 2.2 0.3 250

MOT shutter

MOT switch

B-field MOT

Probe shutter

DAQ trigger

R&S trigger

Camera trigger

Table 4.1: The experimental control sequence for the normal mode splitting
experiment. The columns from left to right represent the timestamp as
they are written into the computer control cards. All displayed channels are
digital, where green indicates the ON state and grey the OFF state.

4.2 Normal mode splitting in a nearly con-

focal cavity

Figure 4.2 shows the results for the first experimental run. Clearly vis-

ible is the splitting of the cavity resonance when atoms are introduced

into the system. For each loading time the probe laser was scanned from

−2π × 50 MHz to 2π × 50 MHz in steps of 2π × 2 MHz with respect to

the empty cavity resonance by changing the radio frequency controlled
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Figure 4.2: Evidence of strong collective coupling.
Left: The transmission data as a function of the probe frequency with re-
spect to cavity resonance for different atom numbers. The data were fitted
according to equation (2.11)
Right: Summary of the collective coupling parameter as a function of the
atom number. The atom number was measured via fluorescence imaging for
each experimental run with a different MOT loading time. The x-axis was
then recalibrated so that the slope corresponds to the single mode coupling
constant g/21/2. The slighty smaller coupling is because the atoms were free
to move while being probed according to [54].

cavity lock after each cycle. Once the data were aquired the atom num-

ber was measured by taking a fluorescence image without changing any

other system parameter. The transmission data were then fitted with the

cavity-atom transmission function from equation (2.11). The free fitting

parameters were κ, ω0 and Ng2 (and amplitude and offset).

The fit results for the collective coupling parameter were then displayed

over the square root of the measured atom number (where we assumed

a shot-to-shot error in atom number of 6%). As expected the collective

coupling proved to be linear with
√
N . The resulting data were then

fitted with a straight line and the atom number recalibrated to ensure a

slope equal to g/21/2. The factor to rescale the atom number to match

the theoretical coupling constant was 1.47 and could be attributed to

the effect, that not all MOT atoms were in the center of the mode where
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the coupling is strongest. The fit result for the cavity loss rate κ was

κfit = 2π × (5.8± 0.2) MHz which is about 7 times more than measured

with the empty cavity. That the transmission peaks appear broader in

figure 4.2 is in agreement with the theory, which predicts a linewidth

averaging effect (experimentally observed several times, first in [80] and

more recently in [95]). It is just the magnitude of the increase which is

unexpected. Initially we attributed this fact to the multi-mode charac-

ter of the near confocal resonator, which we come back to in the next

chapter.

The largest collective coupling constant we observed in the conducted

experiments was
√
Ng = (27.8± 0.4) MHz which corresponds to an ef-

fective number of (1.33± 0.08)× 105 atoms coupled to the TEM00 mode

with effective coupling constant g/21/2. While with this atom number

the maximum collective cooperativity was above Ccoll > 180 the atom

number corresponding to Ccoll = 1 is just 600 indicating the border to

the strong coupling regime.

4.2.1 Avoided crossing

A second set of data involved data aquisition method two. For different

cavity frequencies with respect to atomic transition the normal mode

splitting was recorded with a quick scan of the cavity probe laser over

the normal-mode splitting double feature. If the cavity resonance was

far away from the atomic transition the atoms have little effect on the

cavity resonance. Just when the cavity resonance is close to the transition

frequency the normal mode splitting gets observable. The mixing angle

of the new dressed states depends inversly proportional to the detuning.

For large detunings the dressed state of the cavity-atom system have just

a small atomic component so that the nearly pure cavity resonance can

be observed. The atom number for this experiment was kept constant for

all different cavity-atom detunings and the scan speed after the release

of the MOT was measured to be 2π × 40 MHz ms−1. For each detuning

20 traces were averaged and a selection of the results are displayed in

figure 4.3 on the left and the whole summary on the right.
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Figure 4.3: The avoided crossing of the cavity-atom system.
Left: The transmission data for different cavity-atom detunings ∆A−∆C =
ωC − ωA during a quick scan after MOT release. The x-axis was calibrated
with the empty cavity at different frequencies and the data then fitted with
a double lorenzian.
Right: Summary of the avoided crossing. The center frequencies for both
peaks are displayed over the cavity-atom detuning. The effective atom num-
ber for the whole experiment was kept fixed at Neff = (16.8± 1.0)×103. The
error in cavity resonance alignment was estimated to be below 2π×0.3 MHz.
Without atoms, the bare state of the cavity should follow the dashed line.
The horizontal line indicates the atomic transition frequency. Introducing
atoms to the cavity splits the resonance according to the new dressed state
basis and the avoided crossing gets observable.

4.2.2 Scaling with the relative transition strength

The last set of data shows in a convincing way the scaling of the normal

mode splitting with the relative transition dipole element of the different

hyperfine levels of the 133Cs. For an effective atom number of Neff =

(9.4± 0.5) × 103 the cavity resonance was first moved on resonance to

the 4− 5 transition. Again, 20 traces were averaged with the same scan

speed as mentioned before. Then, the cavity was shifted by 252 Mhz to

the red to be on resonance to the 4− 4 transition. To avoid populating

dark states the polarization of the probe laser beam was made linear and

with the same atom number the normal mode splitting was recorded.
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Figure 4.4: The normal mode splitting for different hyperfine transitions.
Left: For the same effective atom number of Neff = (16.8± 1.0) × 103

the normal mode splitting was recorded with a quick scan over the dou-
ble feature for all the different available hyperfine transitions of the 133Cs
6S2

1/2F = 4→ 6P 2
3/2F = 3, 4, 5 . The data were fitted with the transmission

function of a cavity containing atoms (2.11) with the coupling constant as a
free parameter.
Right: The different measured coupling for each hyperfine transition is dis-
played over the relative dipole matrix element taken from [87]. According to
the definition of the coupling constant the dependence should be linear.

For the last excited hyperfine transition with the weakest relative dipole

matrix element the cavity was shifted on resonance to the 4−3 transition.

All traces are displayed in figure 4.4 on the left. The data were then

fitted with the cavity transmission function (2.11) with the collective

coupling constant as a free parameter. On the right of figure 4.4 the fit

results are displayed over the relative dipole matrix element taken from

[87]. Even though it is just a very simple model, which doesn’t take

into account optical pumping or the different initial magnetic sublevel

populations, the collective coupling constant appears to be linear in the

relative dipole transition strength as indicated by the definition of the

coupling constant g (2.2).
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4.3 Summary

This chapter presented a selection of experiments in the collective strong

coupling regime. Up to (1.33± 0.08) × 105 133Cs atoms were effectively

coupled to the TEM00 mode of a nearly confocal resonator where the co-

herent dynamics of a single atom is dominated by the incoherent loss rates

κ and γ. As predicted the collective coupling scales linearly with
√
N as

well as with the relative dipole matrix element. And our system reaches

the strong coupling regime for atom number as low as 600. Increasing

the number of particles within the mode enables us to reach collective

cooperativities of up to Ccoll = (186± 5). A regime where the coherent

interaction between the collective atomic mode and the multi-mode field

of the resonator is dominant over cavity decay and polarization decay

rate. The system is therefore suitable to study other collective effects

such as collective self-organizations and superradiance [21]. But before

we were going to do that, we were interested in the multi-mode com-

ponent, which we ignored so far. The system seems to be fairly well

described by an effective single mode, the only hint that there is more

to the multi-mode field in the resonator is the slightly too big cavity

loss rate as derived from fitting the transmission data with the cavity

transmission function (2.11) and leaving the cavity loss rate as a free

parameter. The derived κfit is about 7 times larger than the measured

TEM00 κ which was determined by cavity linewidth measurements to be

2π × 0.8 MHz.



Chapter 5

Collective strong coupling in

multi-mode cavity quantum

electrodynamic

Parts of the experimental results of this chapter are submitted for pub-

lication: A. Wickenbrock, M. Hemmerling, G. Robb, C. Emary, and F.

Renzoni. Collective strong coupling in multi-mode cavity QED. 2012

This chapter presents experimental results investigating the collective

strong coupling regime in the previously described apparatus. To gain

understanding of the multi-mode dynamics in the coupled atom-cavity

system we implemented an intensified CCD camera, borrowed from an-

other experiment in our group [77], and repeated the transmission mea-

surements of the previous chapter. The camera enabled us to observe a

rich transverse mode spectrum of the nearly confocal resonator. Imple-

menting a degenerate transverse mode cavity for cavity QED experiments

seems at first sight counter-intuitive, since infinite degenerate vacuum

modes are available in free space already. The result is well known and

can be observed in any 133Cs filled glass cell: spontaneous emission is

an irreversible process. For this reason, most literature on the Jaynes-

or Tavis-Cummings model is interested in single-mode interaction. Some

exceptions are [2, 33, 50, 73, 85, 90, 108]. Most of those are restricted to a

two-mode interaction. In [85] the atomic population inversion in a cavity

with M modes is analyzed analytically. One result reveals that the M

73
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modes can be represented by just one effective coupling constant geff :

geff =

√√√√ M∑
i=1

g2
i . (5.1)

So by increasing the number of available modes, the effective coupling

constant should increase as well. This is used as an argument in favour

of confocal cavities in [21, 101]. In this chapter we will present the first

evidence for an increased effective coupling constant, which could be

attributed to the presence of higher order transverse modes. A second

interesting feature of the interaction with multiple modes concerns quan-

tum computing: photons as qubits have a long and successful tradition,

they have great coherence properties but are hard to store. Cavities can

serve several different purposes in this context (e.g. [74, 96, 98]). Atoms

in multi-mode cavities could be used, for example, as nodes in a quantum

computing network, since the atom would be able to coherently exchange

photons as qubits with spatially different transverse modes, which could

be addressed with different laser beams. In this chapter we show, how

the atoms in our setup redistribute photons from the TEM00 mode to

higher-order modes.

The chapter is organized as follows: first, the use of a multi-mode cavity

is motivated by simulating the master equation for a simple multi-mode

system. These simulations were conducted by Dr. Michal Hemmerling

from the University of Strathclyde, Glasgow. Then the changes to the

experimental setup and the methodology are explained before the exper-

imental results are presented. The chapter ends with a short summary.

5.1 Multi-mode, multi-atom

Jaynes-Cummings model

To get an idea of the behaviour of a small number of atoms in a multi-

mode field, the Jaynes-Cummings-Hamiltonian needs to be extended.

The extension from the single-mode, single-atom Hamiltonian (2.1) is

straight forward: in a frame, rotating with the pump frequency ωP , the
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N -atom, M -mode Hamiltonian can be written as [21]:

H =
N∑
a=1

−~∆Aσ
z
a +

M∑
n=1

−~∆Ca
†
nan − i~ηn

(
an − a†n

)
−i~

N∑
a=1

M∑
n=1

(
gn (x̂a)σ

+
a an + g∗n (x̂a)σ

−
a a
†
n

)
.

(5.2)

Here, ∆C = (ωP − ωC) is the pump-cavity detuning and ∆A = (ωP − ωA)

the pump-atom detuning, and ηn is the pumping rate of mode n. The

first row describes the energy in the modes and the atoms and the second

row represents the interaction term. Adding more atoms and modes also

affects the environmental decoherence properties. The Liouville term is

changed according to:

Lρ =
M∑
n=1

κn
(
2anρa

†
n − a+

n anρ

− ρa†nan + γ
N∑
a=1

(
2σ−a ρσ

+
a − σ+

a σ
−
a ρ− ρσ+

a σ
−
a

)
,

(5.3)

where κn is the cavity loss rate of mode n. The first row can be attributed

to incoherent decay of the cavity modes, while the second row describes

the relaxation of the excited state of the atoms. The kinetic energy and

the position-dependence of the incoherent scattering rate, as well as the

spatial distribution of the emitted photons, have been omitted. In this

simple model we just consider well localized atoms without momentum.

The evolution of a system containing 2 atoms strongly coupled to 3

modes (1, 2, 3) can be seen in figure 5.1.

The parameters are:

(g1, g2, g3) = (2, 1, 0.5)κ,

(κa, κb, κc) = κ,

(η2, η3) = 0,

η1 = 10−3κ,

γ = 0.2κ.

(5.4)

So, technically the coupling to mode 3 is not “strong” since κ3 > g3,

but nevertheless a frequency scan of the coupled system, as seen in the
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Figure 5.1: A simplified model of the multi-mode, multi-atom interaction.
Left: A schematic describing the system. A 2-level atom inside a cavity with
two transverse modes interacts with both of them with rate gr (red mode)
and gy (yellow mode). Decoherence is due to spontaneous emission into the
environment with rate γ, and cavity loss of each mode with rates κr and κy
respectively. The cavity loss allows us to observe the cavity transmission,
which can be a superposition of both modes.
Right: Results of numerical simulations of the master equation for two
atoms interacting with three cavity modes. The top panel a) presents the
evolution of the photon number expectation value of each mode seperately,
while mode 1 is being pumped for ∆C = 0. Photons are redistributed to
other modes via interaction with the atoms. Panel b) shows the steady state
value of the photon number as a function of the pump detuning ∆C for each
mode, while c) shows the coherent superposition of the three mode’s steady-
state photon number. The normal mode splitting is larger according to the
effective coupling constant geff . As a reference, the respective single-mode,
single-atom evolution is given for mode 1.

bottom panel in 5.1 reveals the normal mode splitting in cavity photon

number with effective coupling constant geff .

The panel shows the expectation value of the
(
a+

1 + a+
2 + a+

3

)
(a1 + a2 + a3)

operator. The mode resolved photon number can be seen in the middle

panel, while the top panel shows the evolution of the expectation value

of the 3 modes over time for ∆C = 0. As a reference, the single-atom,

single mode behaviour is given in each panel as well. The parameters

are the same as for mode 1. The increase in the normal mode splitting
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is clearly visible; the two maximum transmission peaks are separated by

exactly 2geff . What can also be seen is that even though only mode 1

is being pumped, the excitation gets distributed into the other modes as

well.

5.2 The effective number of atoms

Getting a good estimate of the atom number in the mode is crucial for un-

derstanding the system’s dynamics and in evaluating its characteristics.

Also, since it is a multi-mode cavity, the different coupling constants gnm

for each TEMnm have to be calculated. As stated in the introduction, the

position-dependent coupling constant g00 in the single-mode case equals:

g00(~x) =

√
µ2ωC

2~ε0V00

u00 (~x) . (5.5)

Where µ is the dipole matrix element of the electronic transition, ωC is

the cavity’s resonance frequency, V00 is the mode volume of the funda-

mental mode and u00 (~x) is the mode function of the electric field.

The mode volume for the TEM00 mode is given by the integral over the

expectation value of the mode:

V00 =

∫
V

u00 (~x)∗ u00 (~x) dV

=
πw2

0

2

L

2

(5.6)

This relationship needs to be generalized for the case of higher order

transverse modes. The higher-order mode function for the electric field

at the beam waist can be written with the aforementioned (1.23) com-

plete set of Hermite-Gaussian polynomials, replacing the Gouy phase

and beamfront curvature by a plane wave term: sin (kz), which is a good

approximation when close to the centre of the beam:

unm (~x) =

√
1

2nn!

1

2mm!
Hn

(√
2
x

w0

)
Hm

(√
2
y

w0

)
exp−x

2 + y2

w2
0

sin (kz) .

(5.7)
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For the mode volume calculation the problem can be reduced to the two

transverse dimensions at the centre of the beam in the z-direction since

due to conservation of energy each z-plane has the same photon proba-

bility. The z-direction enters the mode volume via the factor L/2.

A generalized expression for the mode volume of the higher-order trans-

verse modes is:

Vnm =
1

|unm (~x)|2max

∫
V

|unm (~x)|2 dV =
V00

|unm (~x)|2max
, (5.8)

where the normalization factor ensures that the mode function has maxi-

mum value of 1. With this expression, the position dependent transverse

coupling constant gnm (~x) becomes:

gnm (~x) =

√
µ2ωC

2~ε0Vnm
unm (~x)

|unm|max
, (5.9)

and this can be used to calculate the effective number of atoms in the

TEMnm mode:

Nnm =
1

|unm (~x)|2max

∫
|unm (~x)|2 ρMOT (~x) dV. (5.10)

So apart from knowing the precise shape of the mode function in question,

a good estimate of the MOT’s density function ρMOT (~x) is crucial. For

the experiment, we took fluorescence images with a calibrated camera

and fitted a 2D Gaussian to the background-subtracted data. For small

atom numbers, the atom distribution in a MOT can be well described by

a 3D Gaussian density function. With a single fluorescence image just

two dimensions are accessible. But since the shape of the magnetic field

gradient is radially symmetric, so too should the MOT be. Therefore a

single 2D image reveals all the information necessary to reconstruct the

density function. The MOT fitting function used was:

ρMOT (~x) = ρmaxe
−1
2 ( x

sr
)
2

e
−1
2 ( y

sr
)
2

e
−1
2 ( z

sz
)
2

(5.11)

where sr and sz are the radial and axial width respectively, and ρmax is

the peak density at the centre of the MOT as derived from the 2D image

fit.
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Figure 5.2: Changes made to the experimental setup described in chapter
4. Instead of just a photodiode, the transmission of the cavity is collected
by an intensified CCD camera and a photodiode. A polarizing beam splitter
cube and a quarterwave plate allow for polarization dependent analysis of
the transmitted light.

5.3 Experimental procedure

The experimental procedure didn’t change much compared to the last

chapter. An additional trigger was introduced to drive the mechanical

shutter of the intensified CCD camera. The timing of the camera shut-

ter was not crucial since the exposure time was controlled with the laser

beam. To investigate the normal mode splitting, the MOT was first posi-

tioned in the cavity centre. This was done by changing the magnetic field

of the anti-Helmholtz coils and also an offset magnetic field with three

pairs of compensation coils. During this process, the cavity frequency

was locked at the atomic transition frequency so that a weak frequency

scanning cavity probe laser showed the normal mode splitting in the

transmission on the photodiode. The splitting was then maximized by

moving the MOT in the mode. Three different sets of data were then

taken, and in this thesis I report just on the first, since the data analysis

for the other two is still on-going. The data sets differed in the coupling of

the probe beam to higher-order modes. For the first set, the probe beam

was mode-matched to couple most of the light into the TEM00 mode. To

achieve this, all of the optical surfaces and all of the optical pathlengths

of the incoupling optics were represented by a matrix M . Then the theo-

retically calculated cavity TEM00 mode was propagated out of the cavity

to the incoupling lens, making sure, that the beam after the lens was col-

limated, and the beam waist was calculated. To match the TEM00 mode,

the cavity probe beam coming from a fibre was adjusted in beam-size by
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a telescope to match the calculated outgoing beam. Once that was done,

the incoupling of the probe beam into the mode was maximized by cou-

pling most of the light into the TEM00 subset of modes, or better, the

difference between the two subsets was maximized. This is possible since

the mode subset degenerate with the TEM01 mode has no on-axis compo-

nent so, for a well aligned Gaussian beam, the mode overlap is reduced.

To couple light efficiently into a specific mode of a confocal cavity is in

fact harder than it sounds. Normally, mode matching is fairly straight-

forward: observing the transmission of a scanning laser reveals several

transverse resonance peaks. Then, identifying the 00-mode with a cam-

era and maximizing the transmission of the corresponding transmission

peak, usually results in a good mode-matched laser beam. In a close to

confocal cavity, nearly all incoupling alignments result in transmission

peaks with the same frequency, so to couple light effectively into a single

mode relies on thorough calculations of the accessible beam parameters

and observation of the beam shape with the camera. Anything else other

than a single Gaussian indicates higher-order mode components. For the

first set of data, the relative weight of the TEM00 mode in the empty cav-

ity transmission was (98± 1) %. The other two sets were a misaligned

version of the mode-matched TEM00 beam and, in one experiment, with

a collimated beam without mode-matching optics at all.

Like in the last chapter, for each set, a MOT was loaded into the cav-

ity for a specific time, then the MOT light and the magnetic field were

switched off and the compensation coils were switched from positioning

the MOT to compensating for background magnetic fields. After a short

delay time (for the fields to decay) the cloud of atoms was probed for

1.5ms with a weak linearly polarized probe beam, with frequency de-

tuning ∆C , and the transmission was recorded with the camera. For

better signal-to-noise ratios, three images were averaged. This was re-

peated for several detunings over a range of |∆C/ (2π)| = 100 MHz with

step sizes of ∆C/ (2π) = 2 MHz for the cavity containing atoms and a

stepsize of 0.25 MHz for the empty cavity. All the measurements were

repeated twice, with alternating circular polarizations incident onto the

camera. This was done to check for eventual polarization effects due to

residual magnetic fields, which could not be observed. For the following

analysis, both polarization data sets are combined. For each MOT load-
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ing time, fluorescence images of the MOT were taken at the exact same

time, whereas in the transmission experiment the MOT would have been

probed. This way the MOT’s density function, which was used in the

analysis to calculate the effective atom number, was recorded as well. For

each loading time, ten images were fitted with a 2D Gaussian revealing

a spread of the MOT’s maximum density of around 6%.

Transmission analysis The modal decomposition of several overlapped

transverse cavity modes in the transmitted light with a single intensity

image is impossible. For a true reconstruction of the different modal com-

ponents more intensity data is needed [105]. But in our case the situation

was simpler. Firstly, we were not interested in the phase information of

the modes, instead we wanted to know the absolute higher-order compo-

nents and secondly we were not working with an infinite set of modes,

but rather a dramatically reduced set.

To get a good estimate of the modal components of the transmitted light,

we fitted each image with the following intensity function:

I (x, y) =

∣∣∣∣∣
N,M∑
n,m=0

αnmunm (x, y)

∣∣∣∣∣
2

, (5.12)

where αnm is a complex fit parameter representing the weight of mode

unm in the mixture. The data of a given image was first fitted with

N = M = 0 and then the maximum mode indices were successively

increased in the order of their coupling strength gnm, taking into account

the corresponding confocal subset of modes:

I1 (x, y) = |α00u00 (x, y)|2 ,

I2 (x, y) = |α00u00 (x, y) + α11u11 (x, y)|2 ,

I3 (x, y) = |α00u00 (x, y) + α11u11 (x, y) + α02u02 (x, y) + α20u20 (x, y)|2 ,

I4 (x, y) = · · · .
(5.13)

For each fitting, the R2 value (coefficient of determination) was noted as

a measure of the fit quality, and the series was omitted if adding more

modes to the function did not improve the R2 value measurably. The
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resulting set of transverse modes used to fit each image was:

(00, 11, 20, 02, 40, 04, 31, 13, 22, 60, 06).

5.4 Experimental results

An example of the data is shown in figure 5.4. On the left it shows the

transmission as derived from adding up all the pixel values as a function

of the probe laser detuning, for a MOT loading time of 1250 ms. This

loading time corresponds to an effective atom number in the correspond-

ing mode, as derived from equation (5.10), of:

nm Neff

00 (84± 5)× 103

11 (126± 8)× 103

20 (127± 8)× 103

02 (149± 9)× 103

This table, as most of the following analysis, is restricted to the four

strongest modes in the cavity transmission. The mode volume of the

TEM20 mode is twice as big as the mode volume of the TEM00, therefore

it contains more atoms, though not twice as much because the density of

the MOT also follows a Gaussian distribution. The difference between

the atom number in the TEM20 and the TEM02 modes even though

their volume is the same, is due to the fact that the first mode index

increases the mode size along the short-axis of the MOT. Along the

radial direction (long axis), the magnetic field gradient is only half the

gradient along the axis connecting both anti-Helmholtz coils (short axis),

and the width of the Gaussian density profile is therefore bigger. The

other MOT parameters for 1250 ms are: (sz, sr) = (161± 1, 255± 6) µm

and a peak density ρmax = (1.2± 0.1)×1010 atoms/cm3. On the left, the

cavity transmission of the probe laser without atoms is shown in a similar

way. Key images of the transmission are presented to emphasize the

visibly different transmission features with and without atoms. An image

reconstructed with the fit results is also shown next to each presented

transmission picture.
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Figure 5.3: Mode-resolved normal mode splitting data example.
Left: The graph on the left shows the overall emitted power of each image as a function of the probe
detuning for a cavity loading time of 1250 ms. The frequency difference per image is ∆C/ (2π) = 2 MHz.
Some key images are shown together with their fitted result counterparts.
Right: The graph shows the integrated transmission of the empty cavity. The stepsize is ∆C/ (2π) =
0.25 MHz. Even though for different frequencies the shape deviates slightly from the Gaussian TEM00

profile, |α00|2 dominates the distribution with a relative weight of more than 98%. The saturation
visible in some of the images is artificial, since I wanted to show them all on the same colour scale.
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5.4.1 Increased multi-mode coupling constant

All the mode components of the transmitted light displayed the normal

mode splitting. To measure the coupling constant of the system, the

corresponding mode-resolved image data was fitted with the transmis-

sion function of the coupled cavity-atom system (2.11). Fit parameters

were the maximum cavity transmission T0, cavity decay rate κ and the

collective coupling constant g. For each loading time and each mode

the effective atom number in the respective mode was calculated, and

then the measured collective coupling constant was displayed against the

square root of the effective atom number in the mode. The result for

the strongest four modes can be seen in figure 5.4. From top to bottom

the data including the transmission fit can be seen for: no atoms, 50 ms,

175 ms, 350 ms and 1500 ms loading time. The last row shows the derived

collective coupling versus the square root of the atom number. The first

8 data points were then fitted with a straight line and the gradient of

this line represents the single-mode single-atom coupling constant. The

fitted gradient is displayed for each mode in figure 5.5. Together with

the fit result, the theoretical calculations for different coupling constants

are presented as well. We note here that the initial mF -state distribution

of the atomic sample is not spin-polarized. We therefore have a distribu-

tion of different mF states, each one with a different dipole matrix ele-

ment according to the Clebsch-Gordon coefficient of the transition. The

previously derived coupling constant of g00/ (2π) = (118.94± 0.02) kHz

assumes the atom to be in the highest mF = 4 state with a σ+ polarized

laser beam coupling it to the excited mF = 5 state. Instead, in this

experiment, the laser polarization was linear and the atoms were dis-

tributed over different mF states. Optical pumping with linear polarized

light results in a complex equilibrium population of each sublevel, with

an accumulation of population close to mF = 0 [87]. The average dipole

moment is much smaller than it is for circular polarized light. The third

theoretical value uses the average dipole matrix element for unpolarized

light and a flat mF state distribution. The results are also displayed in

table 5.1. The theoretical values for the coupling constant dismiss any

effect of the other modes and are, in all the cases, smaller than the mea-

sured single-atom, single-mode coupling constant. The most reasonable
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Figure 5.4: Mode-resolved normal mode splitting data.
From top to bottom the loading time increases: (0, 50, 175, 350, 1500) ms loading time respectively.
The data, derived from fitting the transmitted intensity with a 2D mode function as described in the
text, is fitted with the transmission function eq. (2.11) and, without atoms, with a Lorentzian. The
bottom row summarizes the data. The collective coupling for each mode is displayed versus

√
N of

the respective mode as derived from fluorescence images.
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Figure 5.5: The coupling constants derived for each mode from fitting the
mode decomposed transmission |αnm|2 data versus

√
Nnm, in comparison

with three theoretical values for gnm neglecting any coupling between the
modes.

value for the theoretical coupling constant is the linear polarized value,

in which case the measured coupling constant is on average more than

50% bigger than the predicted one. This effect could be attributed to

the presence of the nearly degenerate higher-order modes. To explain

the observed increase of 80% in the coupling constant of the TEM11 at

least the first six strongest coupled transverse modes need to contribute

to the effective multi-mode coupling constant.

5.4.2 Atom mediated photon redistribution

A second observed effect concerns the mode composition of the light

with and without atoms. During data acquisition, we observed that the

shape of the transmitted light changed with and without atoms, and also

differed for each peak of the normal mode splitting (as can be seen in

figure 5.4). The modal decomposition of the transmission was helpful to

gain insight into the photon redistribution effect due to the atoms. For

this, the maximum value of the fitted transmission data was normalized
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Mode nm 00 11 20 02

Mode volume Vnm 1.52 2.81 3.04 3.04 mm3

Measured: gmeas/ (2π) (131± 1) (115± 1) (83± 1) (95± 1) kHz
Lin. pol.: glin/ (2π) 87 64 61 61 kHz
µ = 1.95 × 10−29C/m

Increase: gmeas/glin − 1 (52± 1) (80± 2) (35± 2) (55± 1) %
σ+ pol.: gσ+/ (2π) 119 88 84 84 kHz
µ = 2.69 × 10−29C/m

Iso. pol.: giso/ (2π) 76 56 54 54 kHz
µ = 1.76 × 10−29C/m

Table 5.1: Measured coupling constant versus theoretical predictions. Con-
stants from [87]. The increased coupling with respect to the theoretical single
mode values could be explained by the presence of degenerate higher order
TEM modes. For comparison the other theoretical possible single mode val-
ues for different light polarizations and mF -state distributions are given as
well.
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Figure 5.6: The effect of the atoms on the modal composition of the trans-
mission.
Left: Normalized mode maximum |αnm|2 as a function of

√
Nnm for the four

main modes. The zeroth order component decreases while the higher order
components increase. The data was fitted with a straight line (red) and the
weighted mean for all the datasets with atoms was computed (blue).
Right: The results of the straight line fit shows the decrease of the 00-mode
and the increase of the other mode components. For 106 (

√
N00 = 1000)

atoms in the mode, the linear fit reveals a decrease of more than 20%.

so that:
Set∑

n,m=0,0

|αnm|2max = 1. (5.14)

Then this data was displayed versus
√
Nnm, as derived from the images,

and the result fitted with a straight line. The result is quite clear at

least for the TEM00 mode: increasing the number of atoms in the mode
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Figure 5.7: The averaged effect of atoms on the modal composition of the
cavity transmission.
Left: For most higher order modes the average of the normalized maximum
transmission value with atoms (red) and without atoms (black). Most modes
show on average an increase in the higher order components of their mode
composition.
Right:. For the most dominant four modes, the difference between both
values is displayed. The data confirms the redistribution effect of the atoms,
away from the central mode into higher order components. The decrease of
about 5% of the TEM00 goes to nearly equal amounts to the (11) and (20)
modes.

reduces the relative weight of the TEM00 component linearly from more

than 98% initially with no loaded atoms to below 93% for the maximum

loaded atom number. Unfortunately the straight line fit is worse for the

other modes, but the fit nevertheless indicates a trend, which is, in all

higher-order cases, positive.

A second analysis was conducted, since the straight line fits of the

higher-order components were not so convincing. The weighted mean

of the maximum mode component with atoms was compared with the

empty cavity values. The results are displayed in figure 5.7 on the right.

The graph looks very similar to the results of the straight line fits and in

fact confirms its result: loading atoms into the cavity changes the com-

position of the transmitted light; the TEM00 component decreases, while

all the other increase. Additionally, the left part of figure 5.7 presents

the mode decomposition results for most of the higher-order modes used

to fit the image data for the empty cavity, and the weighted mean of

all the loaded cavity images. This graph also justifies the restriction to

the (00,11,20,02) mode subset, since all other components were several

orders of magnitude smaller.
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Figure 5.8: Cavity loss rate κ00 of the TEM00-mode versus
√
N00. All

of the observed cavity loss rates are bigger with atoms in the cavity than
without. The data was fitted with two straight lines. The first including the
empty cavity loss rate and the second without. The interception point of the
straight line fit excluding the empty cavity suggests a much higher κ than
actually observed.

5.4.3 Influence of different mF -states

The width of the observed normal mode splitting peaks in the transmis-

sion is again larger than the expected value. In the previous chapter,

we speculated that the cavity loss rate is affected by the presence of

higher-order transverse modes. The data in this chapter suggests this

is not the case or not the main process. The cavity loss rate κ was a

free fit parameter of the decomposed transmission fit and, for all the

modes, a significantly increased κ was observable. The results for the

TEM00 mode are displayed in figure 5.8. The straight line fit to the

data reveals that increasing the atom number increases the linewidth of

the transmission peaks. This suggests a mixture of differently coupled

subgroups of atoms, due to their mF state for example. Since we are

already starting with a mixture of different mF ground-state atoms and

each subset is coupled with a different coupling constant, proportional

to the dipole matrix element of the transition, it is likely that this is the

true reason for the observed discrepancy to the one species model. The

different mF state populations are not accessible in the current setup and

neither is it certain or likely that they remain stable during the probe

with linear polarized light. But if there are different subgroups of atoms,
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this also means that the mode content is effectively less than previously

calculated, which increases the observed coupling even further.

5.5 Summary

This chapter presented a selection of experiments in the strong coupling

regime. Several thousand 133Cs atoms were effectively coupled to a nearly

confocal cavity. The transverse mode degeneracy, as a characteristic of

the confocal cavity and its effect on the coupling strength, was inves-

tigated. The transmission data was recorded with an intensified CCD

camera and the image data was fitted with a composition of several

higher-order transverse modes. The analysis of the separate mode com-

ponents revealed the normal mode splitting for most of the higher-order

transverse components. Therefore the atoms are simultaneously coupled

to more than just one mode. To get an estimate of the single-atom cou-

pling constant, the normal mode splitting data was displayed against the

square root of the effective atom number in the respective mode. The

atom number was measured from fluorescence images for each loading

time, and the effective atom number was computed as the integral over

the product of the MOT density and the mode’s photon probability func-

tion. The observed single-atom, single-mode coupling strength was up

to 80% bigger than the expected g11/ (2π) = 64 kHz, which could be at-

tributed to the presence of the degenerate higher-order transverse modes

according to a model presented in [85]. In fact, the first six strongest cou-

pled modes need to contribute to explain the observed increase. A second

effect the mode decomposition revealed was that the composition of the

transmitted light was affected by the presence of atoms in the cavity. The

relative weight of the TEM00 mode in the empty-cavity transmission was

more than 98%, with adding more atoms and therefore increasing
√
N00

this component decreased linearly. The atoms transferred the light into

different available higher-order modes, which could find interesting ap-

plication in quantum computing. Atom-filled multi-mode cavities could

act as nodes in a quantum computing network, enabling the creation of

multi-particle entanglement, or be used to store photonic qubits from dif-

ferent optical fibres in the atomic polarization. The multi-mode character

of the cavity light field also enables straight forward implementation of
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logic gates. Depending on the relative phase of for example two different

TEM modes, they either interact with the cloud of atoms or they don’t.

And the relative phase of the two fields is controllable over their optical

pathlength difference.



Chapter 6

Summary of the 133Cs

experiments

This part of the thesis presents work with cold 133Cs atoms in a nearly

confocal cavity. We were initially motivated to conduct research regard-

ing a new cooling scheme implementing optical cavities. But since initial

temperature measurements remained inconclusive and did not show signs

of a cavity related temperature reduction, we started to investigate the

basis of the cavity-atom interaction in our setup: the strong collective

coupling of the cavity-atom system. The experimental apparatus built

for this purpose was described and the science cavity characterized. The

system is relying on two different locking schemes to guarantee frequency

stability. Both are presented in detail and their overall performance ex-

emplified. The science cavity’s key feature is its large mode volume and

its nearly confocal geometry. The deviation from confocality, as an im-

portant measure for the degeneracy of the higher-order transverse modes,

was measured and showed a slight astigmatism, which was probably in-

troduced during the construction phase, but was in general so small, that

at least some higher-order transverse modes could be considered degener-

ate. The first conducted experiment proves the strong coupled character

of the atom-cavity system by measuring the normal mode splitting, in the

transmission signal of a probe beam, as a function of the loaded atom

number. Furthermore, the dependence on the detuning of the cavity

resonance to the atomic transition is investigated, and shows the char-

acteristic avoided crossing of a coupled system. The measurements were

92
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extended in the second experiment. Several more normal mode splitting

spectra were recorded and, in contrast to the first experiment, analyzed

with respect to their modal composition. We found an increased cou-

pling constant, which might be attributed to the presence of degenerate

higher-order transverse modes. The last experiment paves the way for

a more thorough analysis of the observed coupling constant increase. In

particular, knowledge of the initial mF -state populations, as well as ini-

tial mF state preparation would improve the findings. Furthermore, the

initial width of the atomic sample should preferably be smaller than the

fundamental cavity beam-waist to make a spatially resolved measure-

ment possible. The spatial shape of the higher-order transverse mode

interference pattern was ignored so far, but might be a key feature for

the understanding of the mechanism. Analysis of the two other data sets,

which were collected in the second experiment, might already shed light

onto the behaviour under different pumping mode geometries.

The following part of this thesis deals with an entirely different setup

from an atomic physicist’s perspective, but fairly similar from an exter-

nal point of view: vacuum chambers, laser beams and alkali metals are

still involved. For this part, however the focus of interest lies on transport

phenomena of cold 87Rb atoms in modulated dissipative optical lattices.

Concluding remarks and an outlook on the 133Cs experiment will be given

in the last chapter.



Part II

87Rb atoms in dissipative

optical lattices

94
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Ratchet experiments with cold atoms have a long tradition in our

group [28–30, 46]. Stochastic transport phenomena in dissipative optical

lattices have been studied in great detail by several PhD students and

post docs, both experimentally [22, 27, 52] and theoretically [10], since

2003. Most experimental aspects have changed but the topic has re-

mained the same. The first apparatus, which was partly recycled for the

first part of this thesis, built by Dr. Philip Jones studied the ratchet ef-

fect with 133Cs atoms. Later Dr. Ralf Gommers and Dr. Peter Douglas

started a second experiment with 87Rb atoms in a glass cell, which was

taken over by Dr. Vyacheslav Lebedev and then by me and others. All

the atoms used in those experiments were trapped in MOTs loaded from

the background gas; initially a great idea since the requirements for the

vacuum and laser system are lower. But to take ratchet experiments fur-

ther into the quantum regime [84], or to investigate chaotic transport in a

Hamiltonian ratchet, the lifetime of the traps was not long enough. The

limiting factor was the vacuum chamber background pressure. Thermal

atoms with several 100 m/s velocity are a convincing argument to leave

a Magneto-Optical Trap.

This part of the thesis describes my part of the work conducted on the
87Rb ratchet machine. It will start with an introduction to the interesting

field of Brownian motors and their realisation in optical lattices. Then

the experimental changes to the vacuum chamber and the laser system

are discussed and summarised. The following chapter deals with the first

ratchet experiment [102] conducted by Nihal Abdul Wahab and myself.

It generalises the results published in [17] from the amplitude domain

to the frequency domain. The next chapter describes an experiment in

which we used the ratchet effect merely as a tool. It investigates an effect

called “vibrational resonance”. A fast oscillating force, much faster than

any other time scale of the system, can be used to renormalise the depth

of a potential [103]. If the results prove to be more general, several ap-

plications in atomic physics and beyond, could be imagined. In the last

chapter, the main results of this part are summarised and an outlook on

the 87Rb experiment is given.



Chapter 7

Brownian Motors -

Extracting work from thermal

fluctuations

The quest to trick nature into providing infinite amounts of energy from

nothing is probably as old as society itself. The idea behind Brownian

motors or, for electric circuits, Brillouin’s rectifiers is to use mechanical

or electrical rectification mechanisms to extract useful work from thermal

fluctuations. For an electrical circuit it is easier to construct because it

would simply be a diode and a resistor in series. The diode would rec-

tify the resistor’s thermal white Johnson noise and the current could be

used to drive an engine: energy from nothing. Brownian motors follow

the same mechanism in mechanics. One might think of it as a windmill

working without wind; just random collisions of gas atoms with the wings

of the windmill cause rotation and the mill to do work. Normally those

collisions average to zero, but with a suitable way to hinder momentum

transfer in one direction, the mill rotates in the other direction: a weight

gets lifted while the environment spontaneously cools. The device to

rectify the fluctuation is called a ratchet and a model of the mechanism

can be seen in figure 7.1. If the apparatus were at thermal equilibrium,

the extraction of work would violate the second law of thermodynamics.

If the temperatures of the reservoir on the left and the reservoir on the

right are different the apparatus is just a normal heat engine, as shown

by Feynman in his famous lectures [23]. But our motivation to study the

96
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Weight

Ratchet

Pawl

Axle

Fins

Hot atoms

T1 T2

Figure 7.1: Example of a Feynman Ratchet. Gaseous atoms in the con-
tainer on the left collide with the large but very lightweight fins of the apper-
atus. The axle connects the fins to a wheel with asymmetric teeth. A pawl
stops the wheel rotating in one direction but doesn’t hinder rotation in the
other. If an atom collides with the fins in container 1 in the right direction it
will rotate the axle and lift the weight. If the direction is wrong the rotation
is stopped by the pawl and the weight stays where it is. If the temperature
T1 is higher than T2 this apparatus could actually work.

ratchet effect has a related but slightly different origin: the generation of

deterministic transport in a noisy environment with an unbiased driving

force. It is a recurring theme in modern science with wide ranging impli-

cations for a variety of research areas, reaching from the understanding of

intercelluar transport in biochemistry, to stochastic resonances in models

to explain the periodic occurence of the ice ages. A great introduction

and review of the field is given by Peter Reimann in [81] and, more re-

cently, by Peter Hänggi and Fabio Marchesoni [35]. The design criteria

given for a Brownian motor from [35] are the following:

1. “Spatial and temporal periodicity critically affect rectification.”

2. “All acting forces and gradients must vanish after averaging over

space, time and statistical ensemble.”

3. “Random forces of thermal, non-thermal or even deterministic ori-

gin assume a prominent role.”

4. “Detailed balance symmetry” ... “must be broken by operating the
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device away from thermal equilibrium.”

5. “A symmetry breaking mechanism applies.”

Our implementation of a Brownian motor in the so called rocking ratchet

configuration is an ensemble of cold 87Rb atoms in a closely red detuned

dissipative optical lin. ⊥ lin. lattice. It is a spatio-periodic potential

driven by a biharmonic force with time average zero. Random forces

are implemented by photon scattering of the atoms. The driving force

brings the system far away from thermal equilibrium and the question

to answer is: which symmetry-breaking mechanism is responsible for

the observed transport? The direction and the strength of the resulting

current is a non-trivial function of the system parameters such as the

driving frequency, amplitude and phase, the scattering rate, the potential

depth and so on. Current reversals are an important feature of a ratchet

system. In applications such as the separation of different atomic species,

it would be perfect to be able to choose external parameters resulting in a

particle current in one direction for one species and a current in the other

direction for the other species. In general, tuning system parameter over

a broad range with a single handle is quite a desirable situation. The

theoretical interpretation of the occurrence of current reversals is a much

discussed, controversial topic and “...has given rise to research activity

on its own” [59].

Atoms

Trap depth

Position x [λ/2]

T
im

e 
[1
/f D

]

Transport
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Figure 7.2: Illustration
of the rocking ratchet
mechanism. In the accel-
erated frame of the lattice
the atom experiences an
oscillating force. The re-
sponse of the atoms de-
pends on all the system
parameters, like potential
depth and vibrational fre-
quency, but also on the
amount of damping due
to Sysiphus cooling and
the nonlinearity of the po-
tential.

A rocking ratchet in our case is implemented by modulating the fre-

quency of one of the lattice beams. This produces a periodically moving
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interference pattern in the laboratory frame and a periodically tilting po-

tential in the accelerated frame of the lattice. In the illustration of figure

7.2 the periodic potential of the lattice is shown for different instances in

time during one biharmonic modulation cycle. The processes for current

generation range from harmonic mixing [24] to gating effects [32].



Chapter 8

Experimental Upgrade -

Double chamber 87Rb

machine

This chapter describes the changes made to the 87Rb experiment after

taking it over from the previous PhD student. It progressed from being

a single MOT chamber, loaded from the background gas with a high

pressure and a small lifetime, to a double MOT system with a differential

pumping stage and two magneto-optical traps. The first MOT providing

precooled atoms in a concentrated beam to load the second MOT in an

ultra high vacuum environment. Even though those changes were not

necessary for the following experiments, they were important upgrades

for future experiments and made the conducted experimental data-taking

process much more convenient; if just for the bigger number of atoms

and the resulting contrast enhancement. This chapter presents the new

vacuum chamber, the laser system, and the calibration of the EOM setup

used in chapter 10.

8.1 The new vacuum design

The old vacuum system for 87Rb experiment is described in [52] and

was built by Ralf Gommers and Peter Douglas. The pumping tract of

the chamber was similar to the one in the previously mentioned 133Cs

experiment. But instead of Kimballs Extended Octagon the MOT was

100
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Lattice beam

Quadrupole Coils
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Figure 8.1: Overview of the new 87Rb vacuum setup.

trapped in the centre of a glass cell. It was loaded from background gas

containing 87Rb emitted from alkali dispensers1 in the same part of the

chamber. The achieved vacuum pressure was higher than 4× 10−9 mbar

measured via the ion pump current limiting the lifetime of the trap to

below 3 s and would therefore not be suitable for the creation of a Bose-

Einstein Condensate for example (or just a very small one). The new

vacuum design is displayed in figure 8.1 in an overview and in figure 8.2

in detail showing the orientation of the cold atomic beam and the LVIS

(Low-Velocity Intense Source of atoms).

The chamber contains two magneto-optical traps, one in the LVIS

chamber and another one in the glass cell. Both chamber parts are con-

1SAES Getter, Rb AMD Rb/NF/5.4/12.5/FT 10



8. Experimental Upgrade - Double chamber 87Rb machine 102

Rb beamScience MOT

LVIS
Mirror

Close CouplerTM

QWPSpherical SquareTM

Rb dispenser

Blind Flange 1.5mm hole

LVIS beams

Glass cellMOT beams

MOT-LVIS distance: 330mm

Differential pumping (20 x 1.5)mm2

Figure 8.2: Section through the 87Rb vacuum setup along the atom beam.
The distance between the two MOTs is indicated as well as the differential
pumping stage.

nected via a (1.5× 20) mm2 hole acting as a differential pumping stage.

The pressure in the small chamber is much higher since also contains

the source of 87Rb atoms in form of three 87Rb dispensers. The pressure

in the LVIS chamber is maintained by a 20 l/s ion pump2, and in the

glass cell by a 55 l/s ion pump3 and a SAES getter pump4. An addi-

tional ion gauge offers the possibility to read out the vacuum pressure.

Both chambers are accesible via a valve for the initial pump down. After

construction the whole chamber was baked at about 130 ◦C for several

days to increase outgassing and therefore reduce the final background

pressure. The maximum temperature was limited by the glue5 used to

fix the LVIS mirror and the quarter wave plate in the 6-way cube. But

nevertheless a pressure well below 2 × 10−10 mbar was reached. Due to

technical problems with the driver of the ion gauge we were restricted

to use the ion pump controller6 to read out the pressure, and since it

reached its minimum we need to measure the trap life-time to deduce

the vacuum pressure. The design of the vacuum chamber was supposed

2Varian Inc.,Vaclon Plus 20 StarCell
3Varian Inc.,Vaclon Plus 55 StarCell
4SAES Getter, SORB-ACGP100 MK5 St 707
5TorrSeal
6Varian Inc., Dual Controller
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to be compact. The distance between the LVIS and the science MOT

was kept to a minimum to decrease the amount of atoms lost due to

gravitational sag and divergence of the cold atom beam. Another design

criteria for the UHV side was to have the biggest possible connection to

the powerful pumps so as not to reduce their pumping speed by geomet-

rical limitations. Both pumps are made for a 4 1/2" flange. To connect

them in the most sensible way to the 2 3/4" flange of the glass cell and

the cube, we used another Kimball component7: a so called spherical

square with two 4 1/2" ports and four 2 3/4" ports. The small ports are

occupied by the glass cell, two viewports (for atomic flux measurements,

or an optical plug beam for example) and, in line with the glass cell, a

flange adaptor from Kimball Physics8. This adaptor connects the spher-

ical octagon with the blind flange of the LVIS cube in under 18 mm. The

overall distance from the LVIS to the science MOT is 330 mm. Figure

8.2 presents a section of the setup. The LVIS in the standard 2 3/4"

6-way cube is principally just a normal MOT, but the 6th MOT beam

in the direction of the science chamber is back reflected from a mirror

and a quarter wave plate glued to a blind flange. The mirror, quarter

wave plate and blind flange contain concentric 1.5 mm diameter holes.

For atoms in front of the hole, radiation pressure is unbalanced and the

LVIS beam from the right pushes cold atoms into the science cell. There

the beam of cold atoms gets trapped again by a second set of 6 MOT

beams and a magnetic quadrupole field. A helpful comparison in terms

of atomic flux of different two-chamber-systems can be found in [72].

Figure 8.3 shows one of the first loading curves of the science MOT in

the glass cell on the left, and a characteristic decay curve after switching

the LVIS off on the right. Even though there is plenty of room for im-

provement in terms of the loading rate (18×106 atoms
s

) and the final atom

number, after 416 s (roughly 7 min) there are still 3% of the atoms left.

This alone would correspond to an exponential decay time of 132 s (in

good agreement with the longer lifetime in the double exponential fit)

and a vacuum pressure of 6.5×10−11 mbar. This is of course just a rough

estimate according to calculations in [4] presuming that just background
87Rb atoms collide with the trapped ensemble, leading to trap loss in

7Kimball Physics, MCF450-SphSq-E2C4
8Kimball Physics, MCF275-FlgAdptr-C2
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Figure 8.3: 87Rb science MOT loading and decay.
Left: The loading of the 87Rb science MOT. The fitted line from the origin
has a slope of 18× 106atoms/s.
Right: After switching the atomic source off, the science MOT decays. The
curve was fitted with a double exponential decay. The longer exponential de-
cay time is 131.4 s. The quicker initial decay with τ = 9.9 s is most probably
density related.

70% of all collisions. But it nevertheless shows the suitability for BEC

creation in a magnetic trap.

8.2 Rb Laser System

The laser system of the double MOT system is displayed in figure 8.4.

For remarks about the locking schemes and the abbreviations relate to

chapter 3. The setup consists of two ECDLs locked via DF-DAVLL to

different 87Rb transitions. The first ECDL, the master laser, is stabilised

to the prominent 52S1/2 F = 2→ 52P3/2 F = 1, 3 crossover feature, then

upshifted by about 200 MHz with a double pass AOM. The frequency of

this AOM can be changed via the computer control the detuning to the

cycling transition can be adjusted between −6Γ ≤ ∆A ≤ +2Γ. The close

to resonant light then injects the slave for the LVIS and another slave for

the lattice. The rest of the light is shifted further up with another AOM

by 80 MHz and then injected into a third slave for the science MOT. This

is done in order to have an AOM in the beam path of the third slave so

that the intensity of the science MOT cooling light can be controlled

by varying the applied radiofrequency amplitude. This is necessary to

switch the light off rapidly (of course with an additional mechanical shut-

ter to shut off any leaked light left) but mostly to control the intensity of
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Figure 8.4: 87Rb laser system for the double MOT system. Two ECDL
lasing at 780 nm produce the cooling and repumping light for two MOTs and
one optical lattice beam. For details see text.

the light e.g. to optimise an optical molasses phase. All laser diodes used

are wavelength selected9. The repumper ECDL is also locked via another

DF-DAVLL to the 52S1/2F = 1→ 52P3/2F = 1, 2 crossover and upshifted

by an AOM to be on resonance with the 52S1/2 F = 1 → 52P3/2 F = 2

transition. After the AOM the beam is split for the two MOTs and over-

lapped with the cooling beams. The lattice laser setup will be presented

in the following chapter since it varies slightly between the two experi-

ments.

8.3 Double pass electro-optic modulator

For the fast modulation of the optical lattice we implemented an Electro-

optic modulator (EOM). EOMs are powerful devices to produce high

frequency phase-modulation of a laser beam. They rely on the linear

electro-optic effect, which describes a change in refractive index propor-

tional to an applied voltage in crystals without inversion symmetry. The

9Sanyo DL-7140-201W
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change in refractive index alters the optical path length and therefore

the phase of a laser beam passing through it. EOMs come in two kinds:

single frequency and broadband. Since the required voltages are quite

high, single frequency EOMs include microwave cavities to guarantee

large modulation indices β for low drive voltages. But the frequency

response exhibits a narrow band-pass characteristic which makes them

mostly interesting for sideband production at high frequencies. For the

experiment discussed in chapter 10 we used a broadband EOM10, which

doesn’t possess a microwave cavity (which would also be quite big for the

frequency involved) and therefore needs high driving voltages. The max-

imum input voltage is 210 V corresponding to a maximum phase change

of φ = 3.15 rad with a modulation index of β = 15mrad/V at 1064 nm.

The driver for the EOM was home built according to the design in [69]. It

is a differential amplifier configuration with complementary emitter fol-

lowers providing peak-to-peak voltages of up to 550 V with just a 300 V

power supply. It achieves that by swapping polarity of the output signal

each halfwave. The gain is supposed to be factor 100 and the large sig-

nal bandwidth up to 1300 kHz; just about enough for our purposes. To

increase the maximum modulation index, we double passed the EOM,

which effectively doubles the modulation index for a given voltage (and

the modulation frequencies involved).

EOM calibration The electric field of a laser beam with a sinusoidal

phase modulation can be written as:

Emod (x, t) =
E (x)√

2

(
e−iωte−iβ sin(ωHFt) + c.c.

)
. (8.1)

Here ω is the frequency of the light field, ωHF the frequency of the modula-

tion and β the modulation index. For small β, expanding the modulating

exponential into a Taylor series and expressing sinωHFt by exponentials

leaves:

Emod (t) =
E (x)√

2

[
e−iωt

(
1− β

2

(
eiωHFt − e−iωHFt

))
+ c.c.

]
, (8.2)

10EOM New Focus 4002-M
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which is the laser light oscillating with now three frequencies: ω, ω−ωHF

and ω + ωHF, the carrier and the first pair of side bands:

Emod (x, t) =
E (x)√

2

[
e−iωt ± β

2
ei(ω∓ωHF)t + c.c.

]
. (8.3)

This is a common derivation to make the appearance of side bands plausi-

ble but more generally the amplitude of the n-th sideband is given by the

n-th Bessel function Jn (β), with the modulation index as the argument.

Bessel functions are oscillating functions of their argument, so for spe-

cific modulation indices the corresponding sideband dissappears. Figure

8.5 shows the optical setup used to calibrate the EOM. The lattice laser

A
O

M

E
O

M

Spectrum 
Analyzer

HWP PBS NPBS MirrorLens

Hamamatsu PD

∆

Angle α

+73MHz

Figure 8.5: The
optical setup for
the calibration
of the EOM. For
details regarding
the calibration
process refer to
the text.

beam is split by a polarising beam splitter cube. One component passes

through the double pass EOM while the other component passes through

an AOM to get shifted in frequency by +73 MHz. The light passes the

EOM in a small angle α and gets backreflected after a small distance ∆.

The small angle is introduced to separate incoming and outgoing beams

to be able to use all the power and not to rely on a beamsplitter. ∆ adds

a phase difference between the two passes through the EOM, but for the

frequencies involved in our experiment it can be ignored. After rotating

the polarization into the same plane, both beams are overlapped again on

a non-polarizing beamsplitter and the homodyne signal is recorded with

a fast photodiode11. The analysis on a spectrum analyzer12 looks like

figure 8.6 for different applied modulation voltages. The signal is centred

around the frequency difference of the two beams of +73 MHz. The last

panel in 8.6 shows the simulated frequency spectrum of the laser beam for

the maximum available modulation index β. The first 14 sidebands have

non-negligible amplitudes corresponding to a spectral width of 28ωHF.

11Hamamatsu, GaAs MSM Photodetector G4176-03
12Anritsu MS2718B Spectrum analyzer 9 kHz-13 GHz
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Figure 8.6: The plots show the frequency components of a sinusoidal phase
modulated light field with modulation index β and modulation frequency
ωHF for different modulation indices. β = 0.1 corresponds to the case used
for the Pound-Drever-Hall stabilisation in chapter 3, for β = 2.41 the carrier
amplitude becomes zero and for β = 3.83 the first sideband disappears. The
last panel shows the maximum modulation index used in the experiment
discussed in chapter 10.

With ωHF/ (2π) = 1 MHz the light would be much broader than the

bandwidth of an AOM (used for the production of the biharmonic force

for example). Besides, the refraction angle for the frequency component

at ±14ωHF would be quite different, spatially separating the orders. This

is why, in contrast to the slow frequency modulation of the lattice beam

for the ratchet effect done with an AOM, the high frequency modulation

needed the EOM. In order to find out about the effective modulation

index, the applied voltage corresponding to Bessel function zeros of the

first two sidebands and the carrier are recorded and displayed for three

example frequencies in figure 8.7 on the left, and in a summary on the

right. The bandwidth of the EOM driver and EOM together appears to

be larger than the one predicted for the EOM driver alone (large signal

bandwidth −3 dB = 1.3 MHz). All the β/V are within the -3 dB limit

and the whole system is therefore suitable to investigate the effect of a

high frequency modulation on an optical lattice potential in chapter 10.

8.4 Summary

In this chapter the changes made to the 87Rb vacuum system were mo-

tivated and discussed. The new chamber contains two MOTs in a so
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Figure 8.7: The results of the EOM calibration. The voltages corresponding
to oberserved zeros of the Bessel function are used to calibrate the modu-
lation index β per volt. The graph on the right shows the summary of the
measurements in the first graph. All the shown frequencies are within the
-3 dB range commonly used to identify the bandwidth of a circuit.

called LVIS configuration. The vacuum pressure in the science part of

the chamber improved dramatically and a MOT lifetime of up to 132 s

was observed, corresponding to a vacuum pressure of 6.5 × 10−11 mbar.

The laser system used for the following experiments is briefly described

and the EOM construction discussed. The modulation bandwidth was

determined to be above 1.5 MHz and the maximum modulation index to

be 10.5 rad, for low driving frequencies.



Chapter 9

Current reversals in a rocking

ratchet: The frequency

domain

The experimental results of this chapter have been published in [102]: A.

Wickenbrock, D. Cubero, N. A. Abdul Wahab, P. Phoonthong, and F.

Renzoni. Current reversals in a rocking ratchet: The frequency domain.

Physical Review E 84, 021127 (2011).

9.1 Previous work

This work relates to an experiment done in 2010 by our group [17] in

collaboration with David Cubero from the university of Seville, Spain.

It studied the mechanism of a current reversal in a rocking ratchet when

varying the amplitude of the drive, both experimentally and theoreti-

cally. The mechanism behind the current reversal was identified as sym-

metry breaking due to dissipation-induced phase lag. It was shown that

this kind of current reversal is only observable in a ratchet system with

moderate dissipation. Numerical simulations confirmed that in the over-

damped case, as well as in the Hamiltonian limit, this kind of current

reversal could not be observed. Previous attempts to theoretically anal-

yse the origin of current reversals [59] considered a correspondence to a

bifurcation between a chaotic and an ordered regime, identifying it as a

110
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dynamic effect. To extend the argument in favour of dissipation-induced

symmetry breaking as the dominant mechanism, the work in this chap-

ter generalises the results in [17] to a second observed current reversal

occuring when varying the drive frequency of the ratchet. Numerical

simulations, conducted by David Cubero, confirm the dependence of the

reversal on the amount of dissipation.

9.2 Experimental Setup and symmetry anal-

ysis

We consider a ratchet setup consisting of Brownian particles in a spatially

symmetric periodic potential driven by a biharmonic oscillating force.

The Langevin equation, including a linear friction term, governing the

dynamics is:

mẍ = −αẋ− ∂U (x)

∂x
+ F (t) + ξ (t) . (9.1)

Here U (x) = U0 cos (2kx) /2 is the periodic potential created by the

1D optical lattice, α the friction coefficient due to the presence of sub-

Doppler cooling mechanisms, ξ (t) a Gaussian white noise term due to

photon scattering, uncorrelated and with average zero (〈ξ (t)〉 = 0 and

〈ξ (t) ξ (t′)〉 = 2Dδ (t− t′)), and F (t) the biharmonic force from the lat-

tice beam modulation described by:

F (t) = F0 [A1 cos (ωDt) + A2 cos (2ωDt+ φ)] . (9.2)

Symmetries Symmetry analysis is a powerful tool to investigate whether,

for a given ratchet setup, a directed current can occur or not. In general,

if the equation of motion is invariant under a transformation, which can

transfer one atomic trajectory into another one with opposite velocity,

the average observed particle current is zero. In order to get directed cur-

rent in a spatio-periodic potential, the following symmetries need to be

broken [24]: the shift symmetry; particle trajectories are invariant under

the transformation:

(x, p, t)⇒ (−x,−p, t+ T/2) , (9.3)
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with T the period of the drive. The shift symmetry is broken for any value

of the phase φ in a biharmonic drive given by equation 10.14. The second

symmetry to be broken is the time reversal symmetry, corresponding to

invariance under the transformation:

(x, p, t)⇒ (x,−p,−t) . (9.4)

Since this symmetry depends on the damping of the particle in the lattice,

three different scenarios need to be distinguished. First, the Hamiltonian

case: no dissipation leaves the time reversal symmetry intact for values

of the phase φ = nπ with n integer. Therefore no particle current can

occur. It can be shown [24] that the resulting average velocity for a lattice

without dissipation is, in leading order:

〈v〉 = vmax sinφ. (9.5)

The opposite extreme, the overdamped regime, realised numerically by

neglecting the inertia term in equation 9.1, involves a third symmetry:

the so called super-symmetry [81]; particle trajectories remain invariant

under the transformation:

(x, p, t)⇒ (x+ λ/2,−p,−t) , (9.6)

with λ/2 the spatial period of the optical potential. For values of the

phase φ = π/2 + nπ with n integer, the system is symmetric under this

transformation and the generation of a directed current is prohibited. In

our case, a system with moderate amounts of dissipation, time symmetry

is broken for values of the phase φ = nπ allowing the generation of cur-

rent. If the dissipation is weak a dissipation-induced symmetry breaking

phase lag φ0 has to be taken into account. The current then follows [78]:

〈v〉 = vmax sin (φ+ φ0) , (9.7)

where the phase lag φ0 vanishes in the Hamiltonian limit and becomes

−π/2 in the overdamped regime. Note that the sign of the phase lag dif-

fers from the literature [78] to be consistent with the experimental data.

The experimental realisation is shown in 9.1. The MOT master laser
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Figure 9.1: Schematic of the lattice laser for the current reversal analysis.

(compare figure 8.4) injects the lattice slave with light having a detuning

of −6Γ ≤ ∆ ≤ +1Γ. The light then gets split by a polarising beam split-

ter and each arm is fed through an AOM. The AOM shifts the resulting

lattice frequency to a detuning of ∆ = (−9± 0.5) Γ. The frequency of

one AOM gets modulated according to the biharmonic force. The signal

of two computer controlled phase locked function generators1 is electron-

ically added and multiplied with a constant third signal. The multipli-

cation ensures that the modulation can be switched on adiabatically by

applying a ramp voltage from the computer control2. The resulting sig-

nal is fed into the frequency modulation input of the AOM driver3. The

amplitude of the modulation Aν is measured in Hertz frequency shift

per applied voltage . The resulting force amplitude on an atom in the

accelerated frame of a sinusoidal input signal can be written as:

F0 = −m
k

(2π)2AνfDUFG, (9.8)

with m the atomic mass, k the wavevector of the lattice, Aν the mod-

ulation amplitude, fD the modulation frequency in Hertz, and UFG the

applied voltage from the function generator. So in order to keep the

modulation force amplitude constant for different frequencies the ampli-

tude of the frequency modulation must be adjusted. The different force

amplitudes will be abbreviated with:

F0 ∝ AνfDUFG = g0, (9.9)

1Agilent: 3220A, 20 MHz Function / Arbitrary Waveform Generator.
2The computer control on 87Rb experiment possesses essentially the same com-

ponents as the one described in chapter 3. Even though the user interface is quite
different the hardware components are the same.

3Rohde & Schwarz: Signal Generator 9 kHz- 1.040 GHz.
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since all the other system parameters remained the same.

A typical experimental procedure can be seen in table 9.1. The sequence

Experimental
Sequence

MOT
Load-

ing

LVIS
off

Load
Lat-
tice

Modul-
ation
Ramp

Full
Drive

Delay Image Delay
Back-
ground

Time [ms] 3000 50 2 1 8 2.2 2 100 2

MOT shutter

MOT switch

LVIS switch

B-field MOT

Lattice switch

Mod. Trigger

Mod. Index ramp full

Camera trigger

Table 9.1: The experimental control sequence for the current reversal ex-
periment. The columns from left to right represent the timestamp as they
are written into the computer control cards. Most channels are digital, where
green indicates the ON state and grey the OFF state. With a lattice beam
detuning of (−9± 0.5) Γ and a beam intensity of 43.5 mW/cm2, the corre-
sponding vibrational frequency was ωvib/ (2π) = (175± 5) kHz.

starts with loading the science MOT from the LVIS for 3 seconds. This

way, up to 108 atoms were loaded before the LVIS beams were switched

off. After 50 ms delay the MOT magnetic field and laser beams were

switched off as well and the lattice beams turned on. In 2 ms the atoms

were cooled via Sysiphus cooling until they were localised in the lattice.

Then the modulation was linearly ramped up; one millisecond appeared

to be sufficient to avoid any switching effects. For each frequency the

modulation was kept at full amplitude for another 8 ms. After an ap-

propriate delay time for the mechanical shutter of the MOT beams to

open, the cloud was imaged via fluorescence imaging onto a CCD. Since

the CCD camera used in the 133Cs experiment had a higher quantum

efficiency than the one used initially in the ratchet setup4, it was used

for this experiment as well. The background image was taken 50 ms after

the first image and immediately subtracted. The resulting image was

fitted with a 2D gaussian via a MATLAB script and the key parameter

displayed and saved.

4AVT Marlin F-033B/C
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Figure 9.2: The observed ratchet current for a biharmonic phase of φ = π/2
as a function of the applied drive frequency ωD/ (2π) for four different driving
amplitudes g0. For all force amplitudes a current reversal, marked by the
vertical lines, is clearly visible.

9.3 Experimental Results

The first experiment conducted implemented a driving force (equation

10.14) with a phase fixed at φ = π/2 between the two harmonics. In

the Hamiltonian regime this is where the maximum current should be

observable. The ratio between the two force amplitudes was chosen to

be A1/A2 = 2. The aim of the experiment was to investigate how the ob-

served current behaves with a variation of the drive frequency ωD. After

driving, the MOT is imaged via fluorescence imaging to deduce the ve-

locity of its centre of mass. A typical experimental sequence is shown in

table 9.1. For each driving frequency several images were taken and aver-

aged. The experiment was repeated for different maximum force ampli-

tudes A1 and A2. While varying the frequency, the product of frequency

and driving amplitude was kept constant according to equation 9.8. The

resulting current, in units of the recoil velocity, is shown in figure 9.2.

The appearance of a current reversal as a function of the drive frequency

ωD, as predicted [57] and observed before in [31], is clearly visible for all
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Figure 9.3: Experimental results for a force amplitude of g0 = 19.2 ×
103 kHz2. The average cloud velocity is presented for different phases of
the biharmonic drive. Each panel shows experimental data for a different
frequency normalized to the maximum velocity for comparison. The data is
fitted according to equation (9.7). Cleary visible is a major variation in the
dissipative phase lag φ0 with the drive frequency ωD/2π.

driving amplitudes. To establish a relationship of the current reversal

with dissipative effects, the current has to be studied as a function of the

phase between the two harmonics of the driving. The resulting sine curve

should behave according to equation (9.7). For each driving force am-

plitude g0 and driving frequency ωD the phase of the two harmonics was

varied from 0 to 2π in steps of π/6. As an example the resulting plots for

the force amplitude g0 = 19.2×103 kHz2 and six different frequencies are

shown in figure 9.3. The full analysis can be seen in figure 9.4. For each

set of the four force amplitudes investigated, the resulting sine amplitude

vmax and the resulting phase lag φ0 derived from fitting the data with

function (9.7) is displayed for the different drive frequencies. While the

amplitudes stay always finite for each curve, the phase lag shows a large

variation from −π to 0 around the current reversal frequency observed

in figure 9.2. Note that the phase of the biharmonic drive was fixed at

φ = π/2 so that a phase lag value of φ0 = −π/2 results in a vanishing

current. In conclusion, the observed current reversal is determined by

the large variation of the dissipation-induced phase lag φB similiar to the

observations in the amplitude regime [17]. Therefore generalising the link

between dissipation-induced symmetry breaking and current reversals, to

the frequency domain.

To solidify the established link between symmetry breaking due to

dissipation and the observed current reversal, the Hamiltonian limit and

the overdamped regime were numerically investigated. For several exper-
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Figure 9.4: Ratchet Experiment results: amplitude and phase lag
Left: The amplitude fit parameter as derived from fitting data sets like the
ones displayed in figure 9.2 with function (9.7) displayed over the driving
frequency for 4 sets of different force amplitudes. The maximum current
amplitude stays finite for all of the investigated parameters.
Right: The corresponding phase lag φ0. The horizontal lines indicate a
phase lag of φ0 = −π/2. At this value the initial current for the fixed
biharmonic driving phase φ vanished and changed its sign.

imental reasons these regimes were not accessible with our apparatus. As

with the numerical simulations in the amplitude regime [17], the results

displayed in figure 9.5 were produced by David Cubero. In the Hamil-

tonian regime and in the overdamped regime the dissipation induced

phase lag should be fixed by the symmetries of the system (Hamilto-

nian: φ0 = 0, overdamped: φ0 = −π/2), so that a variation in driving

frequency should not produce a current reversal. Those two cases corre-

spond to the left and right panels in figure 9.5 respectively. The middle

panel is a simulation for parameters similar to the experiment. For mod-

erate dissipation, a variation in the drive frequency produces a variation

in the dissipation induced phase lag φ0, resulting in a current reversal

for a fixed driving phase of φ = π/2. This cannot be observed in the

Hamiltonian nor the overdamped regime. A variation in driving fre-

quency results in a change in amplitude but not in a change in phase lag.

The numerical simulations therefore confirm the validity of the link be-

tween current reversals in the frequency domain and dissipation-induced

symmetry breaking.
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Figure 9.5: Average atomic velocity for different driving frequencies ob-
tained by numerical simulation with ωv = k

(
2U0/m)1/2 and A1 = A2 = 1

Left: The Hamiltonian regime; no friction and therefore no noise (α = D =
0). Driving force amplitude F0 = 0.2U0k, where U0 is the depth of the con-
fining potential.
Middle:The weakly damped regime. This regime corresponds to the ex-
perimental realisation and shows a current reversal for most driving phases
φ with variation of the driving frequency. The simulation parameters
are: driving force amplitude F0 = 0.2U0k, friction coefficient α = 0.15α0

and noise strength D = 1.994D0, with α0 = mkv0, D0 = α0
2v0/k and

v0 = (U0/m)
1/2

/10.
Right: The overdamped regime. Simulation parameters are: 0 = U0k,
α = 100α0 and D = 1.944× 103D0. The appearance of the super-symmetry
fixes the phase lag to φ0 = −π/2, and no current reversal appears when
varying the frequency of the biharmonic force.

9.4 Summary

The mechanism underlying the appearance of a current reversal with

varying frequency of the biharmonic drive in a spatio-periodic ratchet

system with 87Rb atoms was investigated. The origin of the current rever-

sal appears to be dissipation-induced symmetry breaking and is therefore

not observed in the numerically simulated Hamiltonian and overdamped

regime. This experimental study extends and generalises this link from

previous work done in our group, which identified the same symmetry

breaking mechanism as the origin of a different class of current reversals

appearing when scanning the amplitude of the biharmonic force [17].



Chapter 10

Potential renormalization in

an optical lattice

The experimental results of this chapter have been published in [103]:

A. Wickenbrock, P. C. Holz, N. A. Abdul Wahab, P. Phoonthong, D.

Cubero, and F. Renzoni. Vibrational Mechanics in an Optical Lattice:

Controlling Transport via Potential Renormalization. Physical Review

Letters 108, 020603 (2012).

10.1 Introduction

This chapter describes the second experiment conducted on the 87Rb ma-

chine. For this experiment we worked with Philip Christoph Holz from

the University of Augsburg, who also published the main results in his

diploma thesis [42]. 87Rb atoms were loaded into a 1D lin ⊥ lin lattice,

and an atomic current due to the ratchet effect was suppressed and re-

vived as a function of the amplitude of an applied very high frequency

phase modulation of one of the laser beams. Furthermore, the diffusion

properties in an optical lattice driven by the high frequency modulation

were investigated. For specific values of the applied modulation, the op-

tical potential vanishes and leads to superdiffusion in the lattice. The
87Rb atoms are not confined anymore along the lattice direction, while

photon scattering still takes places. The effect of a high frequency oscil-

119
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lating force on the response of a bistable system was recently investigated

in [51]. It was shown that for an appropriate choice of the force amplitude

the response of the system could be optimised. Similarly to stochastic

resonance (see for example [26]), where a weak signal can be amplified

by appropriate noise levels, this effect was termed vibrational resonance.

It triggered several further publications (e.g. [7, 13]) and was also inves-

tigated theoretically in the context of transport phenomena in periodic

potentials [8]. Since it is a very general effect, several interesting appli-

cations can be envisaged. Not just for the control of potentials where

it was not possible before, for example in solid state physics, but also

in the context of new measurement devices, where the response of a low

frequency system can be used to measure the amplitude of an unknown

high frequency signal [7].

To gain some intuition of this effect a brief introduction to the appearance

of the potential normalization due to a high frequency signal is given be-

fore the theoretical treatment is presented. Then the experimental setup

and the sequence will be discussed briefly before the experimental results

are displayed. As in the previous chapter, numerical simulations by Dr.

David Cubero, Seville, supported our results. The chapter ends with a

brief summary.

10.1.1 Time-averaged high frequency phase modu-

lation

The dipole force on a particle in a 1D optical potential can be written

as:

F (z, t) = F0 cos [2kz − α (t)] , (10.1)

where F0 = −2kU0 with U0 the potential’s depth, k the wavevector of the

light, and α (t) an additional time-dependent phase factor for example

by changing the optical pathlength of one of the beams. A phase change

of α = 2π would result in a translation of the optical potential or the

zero crossings of the dipole force by ∆z = λ/2, or one lattice site. This

can happen on several different time scales. If it happens slowly, an atom

in the ground state of the trap follows the translation of the lattice. If

the phase changes faster, the atom would exhibit a dynamical response
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with excitations in higher energy states; it would start to oscillate. If the

phase changes much faster than the atom can follow due to its inertia,

then the force can be averaged.

If we presume a dynamically changing phase like:

α (t) = β sinωHFt, (10.2)

with β the modulation index in radians and insert this into equation 10.1

the spatially dependent force becomes:

F (z, t) = F0 cos [2kz − β sinωHFt] . (10.3)

For a frequency ωHF much bigger than any other frequency in the system,

in the limit of ωHF → ∞, the particle will not react to the lattice shift

at all due to its inertia but it will still experience an average of the

oscillating force. The force on the atom averaged over one cycle of the

fast oscillation can be written as:

F (z) =
F0ωHF

2π

∫ 2π/ωHF

0

dt cos [2kz − β sinωHFt]

= F0J0 (β) cos 2kz

= Fave cos 2kz.

(10.4)

So the time averaged force has the same spatial periodicity as the force

with no phase modulation, but the amplitude is renormalized by the 0th

order Bessel function1. The Bessel function as seen in figure 10.1 is an

oscillating function with a decreasing amplitude. For the averaged or

renormalized force this means that for certain modulation depths the

amplitude becomes zero and then negative. The depths of the potential

follows the Bessel function as well; if the force averages to zero, the

potential disappears. Figure 10.1 displays the relations of the relevant

quantities in a modulated optical lattice.

1Here we used the integral representation of the

0th order Bessel function: J0 (x) = 1
2π

∫ 2π

0
cos [−x sin (τ)] dτ .
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Figure 10.1: Detailed schematic describing the force averaging mechanism.
The top shows the averaged force following the 0th order Bessel function over
the modulation depths. A very fast phase modulation causes the potential
to spatially move and the atom to experience different forces corresponding
to the position of the atom for different times. The second row shows this
translation of the lattice potential for the three amplitudes following a sinu-
soid with frequency ωHF. The bottom shows the force experienced by the
atom during one cycle of the phase modulation (the different modulation
amplitudes are indicated by the line thickness). The integral over this curve
results in the average force. Above the force the resulting potential can be
seen. Three atoms are in the lattice, one at the maximum force to the right,
one in the potential centre, and another at the position corresponding to
the maximum force to the left. For small modulation (1) the potential does
not change by much. The second modulation depths (2) makes the average
force, and therefore the potential vanish since the amplitude corresponds to
the first zero crossing of the Bessel function. The stronger 3rd modulation
(3) reproduces the potential with roughly 40% of the intital potential depths.
Interestingly the force is reversed and therefore the potential wells are shifted
in space by λ/4.
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10.2 Potential renormalization - Model and

definitions

The treatment in the previous section should provide some insight into

why the potential renormalization appears. An atom exploring a pe-

riodic potential on a very fast timescale effectively averages all spatial

dependences. Whether the potential moves with respect to the atom

or a force moves the atom with respect to the potential is therefore

irrelevant; the relative oscillation is of importance. For the following

treatment, in agreement with the ratchet effect literature, the system is

transformed into the accelarated frame of the phase modulation. The

phase modulation then appears as an oscillating force. A more rigor-

ous description of the dynamics in a lin ⊥ lin optical lattice loaded with

atoms exhibiting a magnetic substructure (Jg = 1/2 → Je = 3/2) is

given by the semiclassical Fokker-Planck equation [47]. The probability

density P±(z, p, t) for each atom with mass m in the ground state sublevel

|±〉 = |Jg = 1/2,Mg = ±1/2〉 at position z and momentum p follows:[
∂

∂t
+
p

m

∂

∂z
− U ′±(z)

∂

∂p
+ F (t)

∂

∂p

]
P± =− γ±(z)P± + γ∓(z)P∓

+
∂2

∂p2
[D±(z)P± + L±(z)P∓] ,

(10.5)

with U ′±(z) = dU±(z)/dz and

U±(z) =
U0

2
[−2± cos(2kz)] (10.6)

is the optical potential for the respective groundstate |±1/2〉 in the

lin ⊥ lin lattice generated by laser beams with wave vector k. F (t)

is a time-dependent driving force in the accelerated frame originating



10. Potential renormalization in an optical lattice 124

from the phase modulation of the lattice beams.

γ±(z) =
Γ′

9
[1± cos(2kz)],

D±(z) =
7~2k2Γ′

90
[5± cos(2kz)],

L±(z) =
~2k2Γ′

90
[6∓ cos(2kz)].

(10.7)

γ±(z) is the spatially dependent transition rate between the ground state

sublevels, with Γ′ the photon scattering rate; D±(z) is a noise strength

coefficient describing random momentum jumps as a result of photon in-

teraction without ground state sublevel transitions; and L±(z) is related

to random momentum jumps that appear in fluorescence cycles when the

atom undergoes a transition between the atomic sublevels. The normal-

ization condition for the probability density is given by:∫
dz

∫
dp [P−(z, p, t) + P+(z, p, t)] = 1. (10.8)

The resulting force from the phase modulation can be written as:

FHF(t) = AHF sin(ωHFt+ φ0). (10.9)

To study the effect of a very large, very fast driving force on the atoms,

formally the limit ωHF → ∞ is considered. For the force to have any

effect the amplitude AHF → ∞. Without other forces the atom would

oscillate with frequency ωHF following z(t) = −r sin(ωHFt+ φ0), where:

r =
AHF

mω2
HF

, (10.10)

is the amplitude of the oscillation and indicates the potential forces the

atom is experiencing during one cycle of the HF force. The relation to

the phase modulation index β is given by:

r =
β

2k
. (10.11)

Integrating, and therefore averaging, over one cycle of the HF force re-

moves the high frequency components from the Fokker-Planck equation,
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describing the dynamics in a renormalized Fokker-Planck equation with

the following renormalized quantities:

Ū±(ẑ) =
U0

2
[−2± J0(2kr) cos(2kẑ)],

γ̄±(ẑ) =
Γ′

9
[1± J0(2kr) cos(2kẑ)],

D̄±(ẑ) =
7~2k2Γ′

90
[5± J0(2kr) cos(2kẑ)],

L̄±(ẑ) =
~2k2Γ′

90
[6∓ J0(2kr) cos(2kẑ)].

(10.12)

Where:

J0(2kr) =
1

2π

∫ 2π

0

dφ0 cos(2kr sinφ0) (10.13)

is the Bessel function of the first kind (compare figure 10.1). The renor-

malization by the HF field is formally correct in the limit ωHF →∞ but

it can also be seen as the lowest order of a multiple time-scale formalism

using the expansion parameter ε = ω/ωHF [12].

10.3 Experimental Setup

To analyse the effect of the high frequency modulation on the dynamics

of the atoms in the lattice, two experiments were conducted.

Firstly, we investigated how transport due to an applied biharmonic force

is affected by the renomalisation of the potential.

Secondly, the diffusive motion of the atoms in the optical lattice was ex-

amined. The experimental setup for the lattice laser can be seen in 10.2.

The lattice laser is injected by the master ECDL displayed in figure 8.4.

The light from the slave laser is then split by a PBS cube and one arm

is fed through the double pass EOM to enable the high frequency phase

modulation. This light is diffracted through an AOM, which is not only

used to shift the light to the right frequency (∆ = −13.5Γ), but also to

apply the biharmonic force via frequency modulating the AOM input.

The other arm of the lattice is also shifted down by the same frequency

with another AOM. First, the ratchet effect, clearly relying on a spatially

periodic potential, was used to probe the lattice. Therefore an additional

biharmonic force of the form:
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Figure 10.2: The lattice laser setup similar to figure 9.1 but with included
double pass EOM. The EOM was modulated with a function generator2 and
the signal amplified in a home built high frequency, high gain amplifier (see
8.3). The modulation depth was controlled over the function generator’s am-
plitude modulation input. The ramp was provided by the analogue computer
control card and a MATLAB routine. The biharmonic force was produced
by frequency modulating the AOM’s input frequency in a similar way to
chapter 9.

F (t) = F0 [A1 cos (ωDt) + A2 cos (2ωDt+ φ)] , (10.14)

was applied via frequency modulation of one of the AOMs. Renormal-

izing the lattice potential by applying the HF field should enable us to

control the transport through the lattice. The experimental sequence for

the experiment is shown in table 10.1.

Diffusion study:
HF drive: 1−16ms︷ ︸︸ ︷

Experimental
Sequence

MOT
Load-

ing

LVIS
off/

Comp.

Molas-
ses

Load
Lat-
tice

HF
ramp

BH
ramp

BH
drive

Image Delay
Back-
ground

Time [ms] 2000 50 8 1 1 4 5 4 50 4

MOT beams

LVIS switch

B-field MOT 20 G
cm

40 G
cm

Lattice switch

Mod. Trig. HF

Mod. Index HF ramp full full

Mod. Trig. BH OFF during DIFFUSION STUDY

Mod. Index BH OFF during DIFFUSION STUDY ramp full

Camera trigger

Table 10.1: The experimental control sequence for the study of transport
suppression and diffusion in a high frequency modulated lattice. For the
diffussion study no biharmonic drive was applied. Instead the drive time of
the high frequency modulation was varied between 1− 16ms.
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10.4 Transport control via high frequency

modulation

For the directed transport study, 87Rb atoms were loaded from the LVIS

into the science MOT, then compressed for 50 ms and further cooled in

an 8 ms optical molasses phase. After switching all the MOT beams off,

the lattice beam is turned on. In this configuration it took about 1 ms to

localise the atoms in the optical lattice. Then the high frequency phase

modulation was ramped up in 1 ms, from no phase modulation to the

final value AHF which was then changed for different experiments. For

each value of the final amplitude AHF of the HF-modulation a whole sine

curve following:

〈v〉 (φ) = vmax sin (φ− φ0) , (10.15)

was taken according to chapter 9. For the driving parameters in this

experiment the dissipation induced phaselag φ0 was very small. The bi-

harmonic force was ramped up linearly in 4 ms and kept at full drive for

another 5ms. Then, to measure the ensemble average position, a first

fluorescence image was taken and after 50 ms a second without atoms,

which was then subtracted from the first as the background. The result-

ing images were fitted with a 2D gaussian. To derive the velocity for a

given phase the full drive time of the biharmonic force was varied and

the results fitted with a linear function, the slope of which corresponds

to the velocity v of the atomic current for the biharmonic phase φ. After

spending some time optimising the procedure with respect to switching

effects of both the HF-field as well as the biharmonic drive, we started

varying the strength of the applied fast oscillation.

A standard data set showing the characteristic sin (φ− φ0) behaviour

for different applied HF-modulations can be seen in figure 10.4 (with the

experimental parameters in its caption). For no applied high frequency

modulation, transport of the atomic cloud appears due to the ratchet

effect as a function of the phase of the biharmonic drive. But for increas-

ing values of the HF-drive, the current amplitude decreases, vanishes

completely and then reappears.

The full picture can be seen in figure 10.4, which displays the max-

imum atomic current from fitting each data set with a sine according
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Figure 10.3: Transport data as a function of the phase φ of the bihar-
monic drive for different amplitudes of the applied HF-frequency. For no
HF-modulation the data follows clearly the expected sine like behaviour
(compare equation (10.15)) with a negligible phase lag φ0. Increasing the
amplitude of the modulation the current first disappears and then reappears
as expected by the behaviour of the Bessel function. Also, visible in the sec-
ond panel is an initial increase in sine amplitude. This could be attributed to
a superimposed resonance, when the renormalized lattice frequency matches
the applied biharmonic drive. The experimental parameters are the same as
in figure 10.4 for the highest HF drive of ωHF = 8.8× 106 rad/s.

to (10.15). Each point represents vmax for a different driving amplitude

expressed over the modulation depth β/2 in units of kr. The modulation

depth with the EOM was varied from minimum zero to a maximum of

β/2 = 6.04rad, which was limited by the maximum voltage applicable

to the EOM and EOM driver. The experiment was repeated for three

sets of data with different applied high frequencies. Due to the band-

width limitations we had to restrict the investigation to a maximum

ratio ωHF/ωv ≈ 10. For all used HF frequencies the same behaviour

could be observed. For zeros of the Bessel function the current due to

the ratchet effect dissappears. For local maxima of the absolute of the

Bessel function the current was revived. The findings were supported

by numerical simulations by David Cubero. They are visible in figure

10.4 on the left in comparison with the experimental data on the right.

Cubero’s simulations fill the void left due to the bandwidth limitations

of the EOM and allow us to observe the results for ωHF → ∞ and for

the finite ratio ωHF/ωv = 20. The qualitative behaviour of the potential

renormalization due to the high frequency phase modulation is well pre-

served also for finite frequency ratios. In addition we observed, in theory
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Figure 10.4: Theoretical and experimental results for the average atomic
current 〈v〉max through the optical lattice generated by a biharmonic drive.
Both results follow the normalized potential indicated by the zeroth order
Bessel function |J0 (2kr)| .
Left: The numerical results as obtained from Monte Carlo simulations by
David Cubero, Seville. The average particle current vmax in units of the re-
coil velocity vr as a function of the high frequency modulation amplitude β/2
in rad. The parameters of the biharmonic drive (equation (10.14)) are ratio
A1 = A2 = 1, force amplitude F0 = 140~kωv and driving frequency ω = ωr.
The simulations were repeated in two different scenarios. First, in the limit
ωHF → ∞ (blue) and then with a finite driving frequency of ωHF = 20ωv.
The scattering rate in both cases was Γ′ = 10ωr.
Right: The experimental results. The maximum current as derived from
fits of data (compare figure 10.4) displayed as a function of the applied mod-
ulation. The experiment was repeated for three different HF-frequencies
ωHF = (6.0, 7.6, 8.8)× 106 rad/s corresponding to ωHF/ωv = (6.7± 0.7) with
ωv = (0.9± 0.1) × 105 rad/s. The other biharmonic force parameters are
A1 = 1, A2 = 2, driving frequency ωD = 0.9 × 104 rad/s and driving force
amplitude F0 = 112~kωr.
Both plots contain an amplitude adjusted Bessel function as a guide for the
eye.

as well as in the experimental data, an atomic current maximum (around

β/2 ≈ 0.75rad) before the first zero of the Bessel function. We attribute

this to a superimposed resonance corresponding to frequency matching

of the biharmonic drive frequency and the renormalized vibrational fre-

quency of the lattice for this driving strength.

10.5 Periodic superdiffusion due to high fre-

quency modulation

To analyze the effect of the high frequency modulation further, we in-

vestigated the diffusion properties in the optical lattice. The relevant
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quantity would be the diffussion exponent α defined by:

〈
z2 (t)

〉
− 〈z (t)〉2 ∝ tα (10.16)

in the limit of t → ∞. According to this definition α = 1 corresponds

to normal diffusion, in a deep optical lattice for example, while α 6= 1

characterises anomalous diffusion. We are especially interested in su-

perdiffusion encountered when α > 1. The appearance of superdiffusion

in optical lattices below a critical potential depth U0,crit ∼ 100Er is well

established [41, 48, 58], with α depending on the potential depth ex-

plicitly. So when renormalizing the potential depth, we should expect

superdiffusion for shallow potentials.

The experimental sequence is basically the same as that shown in ta-

ble 10.1 except that the biharmonic drive is not applied (as indicated

in the table). 87Rb atoms were loaded into the lattice, then the high

frequency modulation was ramped up and driven at full amplitude for

a various amount of time within an interval of 1 to 16 ms. Then the

width of the cloud was determined by taking a fluorescence image, sub-

tracting the background picture and fitting a 2D Gaussian to the result.

The temporal range of the experiment is limited due to atom loss from

the optical lattice, most dramatically for those HF-modulations where

the potential disappears. But the atom losses were also due to the lack

of confinement perpendicular to the lattice beam propagation axis in-

dependent of the modulation depths, since these directions include the

gravity axis. So for longer times atoms were simply falling out of the

lattice. Such a short temporal range is not suitable to measure the ex-

ponent of the diffusion directly. In our investigation we determined the

width of the cloud for different modulation times and fitted a straight

line to it. An effective diffusion coefficient D was derived from fitting

the data according to 〈z2 (t)〉 − 〈z (t)〉2 = 2Dt. Superdiffusion clearly

leads to an increase of the effective diffusion coefficient. Latest when

the renormalized potential depths goes below the critical value U0,crit for

the onset of superdiffusion the width of the cloud should increase much

faster than without the modulation. Further modifications arise from

the fact that the renormalized lattice differs from a conventional lattice

in the sense that, normally, a reduction in potential depths for the same
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Figure 10.5: Theoretical and experimental results for the diffusion expo-
nent and the effective diffusion coefficient. Both graphs show cleary the same
periodicity as the Bessel function, with maxima in the respective diffusion
measure corresponding to J0 (2kr) = 0.
Left: The numerical results. The diffusion exponent α as a function
of the applied HF-driving for an optical lattice with an initial depth of
U0,crit = 200Er as obtained by stochastic simulations. The results were
repeated for two different scattering rates Γ′ = 5, 10ωr (with ωr the recoil
frequency) in the limit ωHF → ∞ and for one scattering rate Γ′ = 10ωr
for a finite ratio ωHF/ωv = 20. The black line is a function with the same
periodicity as the Bessel function as orientation.
Right: The experimental results. The effective diffusion coefficient is dis-
played as function of the different driving strength in a log plot for three
different values of the HF-driving frequency ωHF. The data are rescaled by
the effective diffusion coefficient of the undriven lattice which was between
1.5λ2/µs and 7.5λ2/µs. The vibrational frequency was derived from beam-
size and power measurements to ωv = (9± 1)× 105rad/s, the ratio ωHF/ωv
is therefore (6.7± 0.7) , (8.4± 0.9) and (9.8± 1.1) respectively. The function
plotted in black is again an inverted Bessel function as orientation (not in
log scale).

detuning ∆ always comes with a reduction in the photon scattering rate

and therefore also in the quantities γ±(ẑ), D±(ẑ) and L±(ẑ). This is

in contrast to a renormalized potential. When it vanishes, the photon

scattering rate just becomes spatially flat and stays constant with the

same average. The potential disappears while scattering still takes place.

The experimental results can be seen in figure 10.5 on the right. For the

same HF-frequencies as in the directed transport study, the effective dif-

fussion coefficient is displayed as a function of the applied HF-amplitude

on the right. On the left are the numerical results produced by David

Cubero. In contrast to our experiment he was not limited to an effective

diffusion coefficient D and could investigate the diffussion exponent α

directly. For values of the HF-drive where the Bessel function is zero,
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the diffussion exponent is clearly above 1 indicating superdiffusion, but

it is also clearly above the exponent for ballistic expansion α = 2. The

expansion of the cloud is accelerating due to the mentioned ongoing pho-

ton scattering. Both measures in theory and experiment reproduce the

characteristic periodicity of the Bessel function in the respective diffu-

sion constant, indicating the renormalization of the potential due to the

application of the HF-modulation.

10.6 Summary

The work in this chapter demonstrated experimentally the phenomenon

of vibrational resonance in a dissipative optical lattice with 87Rb atoms.

Numerical simulations supported and generalised our results. Apply-

ing a strong oscillating force, generated by phase modulating one of

the laser beams with a frequency much larger than any other in the

system (esp. the vibrational frequency ωv), renormalizes the potential

and all other spatially depending variables in the relevant Fokker-Planck

equation. The process can be understood as an averaging effect of the

atom, which explores different regions of the potential during an HF-

cycle. Since by definition all the other frequencies are much smaller, the

atom has no time to react and “sees” a renormalized potential. The dis-

appearance and reappearance of the potential was shown in two different

ways. Firstly using the ratchet effect as probe: current generation in a

biharmonically driven lattice relies on a potential, so when the potential

disappears the current ceases. Secondly by investigating an effective dif-

fusion coefficient. Without confinement along the axis of the lattice but

with a spatially “flat” scattering rate, the atom’s expansion is superdif-

fusive, whenever the renormalized potential becomes shallow enough.



Chapter 11

Summary of the 87Rb

experiment

While this thesis is being written, the laser system of the 87Rb experi-

ment is being changed to provide more power. More power enables us

to increase the beam size. And a bigger beam size means more atoms.

The number of atoms in the science MOT was one of the main limiting

factor so far not to reach the ulta cold regime at UCL. The new vacuum

chamber constructed and build within this thesis provides an UHV sys-

tem with a pressure enabling trapping times above 100s. This will enable

future experiments with large atom numbers and dense atomic samples.

But even before reaching the quantum regime, there are several interest-

ing experiments to consider. But let us start with a brief summary of the

experimental work. Two experiments were conducted on this machine.

Both were, in good tradition of this group, related to transport phenom-

ena in optical lattices. The ratchet effect describes directed transport

in a system out of equilibrium without an obvious bias. This involves

symmetry breaking. The probability for transport to the left needs to

be larger than to the right or vice versa. Since the potential follows a

sinusoid and is therefore symmetric, the symmetry breaking originates

from either the temporal driving force or from spontaneous symmetry

breaking mechanisms. Current reversals of the atomic transport with

varying one of the parameters is at the heart of the understanding of the

underlying processes. The first experiment investigated a current rever-

sal which appears as a function of the biharmonic drive frequency in a

133
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dissipative optical lattice. Supported by numerical simulations we could

relate the appearance of the current reversal to a dissipation induced

phase shift. This was done before for a similar but not identical current

reversal, which appears when increasing the amplitude of the biharmonic

force. Thus the class of current reversals due to dissipation induced sym-

metry breaking was extended.

The second experiment also investigated transport phenomena in optical

lattices. But instead of the ratchet effect being at the center of interest,

it was merely used as a probe. This work researched an effect termed

vibrational resonance. The response of a nonlinear system can be opti-

mized or controlled by applying a very high frequency force. This means

for an optical potential, that the potential depth becomes a function of

the applied HF-drive amplitude. With 87Rb atoms loaded into an dissi-

pative optical lattice and driven by a biharmonic force we first produced

directed current and investigated then its behaviour as a function of the

applied HF-amplitude. As predicted by the theory, the current follows

the Bessel function of the drive amplitude. When the renormalized po-

tential vanishes no directed current can be produced. Increasing the drive

amplitude further revived the current and therefore the potential. As a

second part of this experiment we investigated the atomic diffusion in the

lattice with HF-drive. When the confinment along the beam axis diss-

appears, superdiffusion should become apparent. We observed this while

studying the width of the atomic cloud as a function of the HF-drive

time. For zeros of the Bessel function, the size of the cloud “exploded”.

Those results were again supported and extended by numerical calcula-

tions.



Chapter 12

Outlook

The next steps for the 87Rb experiment certainly involve reaching the

ultra-cold regime and producing the first BEC at UCL. The future of the
133Cs experiment is less clear, though several interesting paths are open

for exploration. The coupling increase due to the degenerate higher-order

transverse modes might enable new cavity geometries, with coupling con-

stants not realized so far with cold atoms. The super-strong coupling

regime [64] is reached when the coupling constant becomes comparable

to the FSR of the resonator. In this case the light of the cavity and the

ensemble of atoms are already strongly coupled within one round trip

of the cavity. This is a qualitatively new regime and to achieve it in

a comparably large cavity by adding more and more transverse modes

would be a new approach to get there. As mentioned in the introduc-

tion, the initial motivation for the 133Cs machine was to research cavity

cooling. In collaboration with Michal Hemmerling and Gordon Robb

from the University of Strathclyde, Glasgow, we are currently simulat-

ing the dynamics of a cloud of cold atoms within the cavity as they are

illuminated perpendicular to the cavity axis with a laser beam. This

is the initial configuration where cavity-related cooling effects were ob-

served [14]. Even though no temperature reduction was measured, we

were able to observe super-radiant emission into the cavity at pump-

atom detunings of ∆/ (2π) < −1000 MHz. The light scattered into the

cavity by the ensemble increased non-linearly with the atom number in

the cavity suggesting collective self-organization processes, which in itself

would already be interesting to investigate. One aim would be to achieve

135
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quantitative agreement between the numerical simulations and the ob-

served scattering into the cavity, in terms of threshold behaviour and

scaling with the atom number. For this, the measurement of the collec-

tive coupling constant, via normal mode splitting spectroscopy, provides

a convenient way to calibrate the effective coupled atom number.
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