
Markov chain Monte Carlo
for

continuous-time
discrete-state systems

Vinayak A. P. Rao

Gatsby Computational Neuroscience Unit

University College London

17 Queen Square

London WC1N 3AR, United Kingdom

THESIS

Submitted for the degree of

Doctor of Philosophy, University College London

2012

2

I, Vinayak A. P. Rao, confirm that the work presented in this thesis is my own. Where

information has been derived from other sources, I confirm that this has been indicated

in the thesis.

3

Abstract

A variety of phenomena are best described using dynamical models which operate on

a discrete state space and in continuous time. Examples include Markov (and semi-

Markov) jump processes, continuous-time Bayesian networks, renewal processes and

other point processes. These continuous-time, discrete-state models are ideal building

blocks for Bayesian models in fields such as systems biology, genetics, chemistry, com-

puting networks, human-computer interactions etc. However, a challenge towards their

more widespread use is the computational burden of posterior inference; this typically

involves approximations like time discretization and can be computationally intensive.

In this thesis, we describe a new class of Markov chain Monte Carlo methods that al-

low efficient computation while still being exact. The core idea is an auxiliary variable

Gibbs sampler that alternately resamples a random discretization of time given the

state-trajectory of the system, and then samples a new trajectory given this discretiza-

tion. We introduce this idea by relating it to a classical idea called uniformization, and

use it to develop algorithms that outperform the state-of-the-art for models based on

the Markov jump process. We then extend the scope of these samplers to a wider class

of models such as nonstationary renewal processes, and semi-Markov jump processes.

By developing a more general framework beyond uniformization, we remedy various

limitations of the original algorithms, allowing us to develop MCMC samplers for sys-

tems with infinite state spaces, unbounded rates, as well as systems indexed by more

general continuous spaces than time.

4

Acknowledgments

I have been fortunate to spend more than four years working with Yee Whye Teh, and

would like to thank him for his help and patience. Yee Whye is an inspiration, both

in how much he knows and how much he still wants to learn, and I have benefitted

immensely from his ideas and his feedback, and from the general confidence that I was

in very good hands.

I will greatly miss the camaraderie and the intellectual stimulation of the Gatsby Unit

(typified by tea and talks every day). Peter Dayan, the director deserves credit for

keeping it the way it is, and for somehow making time in his busy schedule to attend

every talk that everyone gives. I would like to thank him, and the other faculty, Arthur,

Maneesh and Peter L., for help, comments and advice. Many thanks also to David

Dunson and Erik Sudderth, both of whom made time for me when I visited towards

the end of my PhD, as well as to my examiners, Arnaud Doucet and Mark Girolami,

for finding time to read and comment on this thesis.

I’d like to thank Chris Sherlock, Guido Sanguinetti, Iain Murray and Ryan Adams for

making their code available to me (the LATEX template of this thesis can be traced back

to Iain).

In my nearly-five-but-still-not-enough years in London, I have made many dear friends

whom I hope to stay in touch with. There are many others from before as well; I owe

them all thanks. I won’t try to list everyone, and apologize to those I’ve forgotten;

at the Gatsby, I’d especially like to thank Amit, Andriy, Biljana, David B, David S,

Gabi, Jan, Kai, Lars, Mani, Maria, Phillipp, Ricardo and Ross. Charles and Lloyd, my

officemates over the last two years deserve special credit for putting up with me.

My PhD was funded by the Gatsby charitable foundation, and I am grateful for their

support. I also thank the Bogue foundation for sponsoring a research visit to the US.

Finally, and most importantly, I’d like to thank my parents Pramesh and Parvathy Rao

for their love and support throughout the years.

Contents

Front matter

Abstract . 3

Acknowledgments . 4

Contents . 5

List of figures . 8

List of tables . 10

List of algorithms . 11

1 Introduction 12

1.1 Modelling in continuous time . 12

1.2 Thesis contributions and organization 13

2 The Poisson process 16

2.1 Introduction . 16

2.2 The Poisson process . 16

2.3 Properties of the Poisson process . 18

2.4 Finite Poisson processes . 21

2.5 Properties of the finite Poisson process 25

2.6 The Poisson process on the real line . 27

3 Markov jump processes 31

3.1 Introduction . 31

3.2 Markov Jump Processes . 32

3.2.1 Finite state MJPs . 34

3.3 Uniformization for MJPs . 35

3.3.1 Probability densities for MJPs 37

3.4 MJPs in Bayesian modelling applications 40

3.5 MCMC inference via Uniformization . 41

3.5.1 Comparison with existing sampling algorithms 45

3.5.2 Bayesian inference on the MJP parameters 47

3.5.3 Experiments . 48

3.6 Markov modulated Poisson processes (MMPPs) 50

3.6.1 Experiments . 52

CONTENTS 6

3.7 Discussion . 54

4 Continuous-time Bayesian networks (CTBNs) 56

4.1 Introduction . 56

4.2 Inference in CTBNs . 59

4.2.1 Auxiliary Variable Gibbs sampling for CTBNs 61

4.3 Experiments . 65

4.3.1 The Lotka-Volterra process . 65

4.3.2 Average relative error vs number samples 66

4.3.3 Time requirements . 68

4.4 Discussion . 68

5 Modulated renewal processes 71

5.1 Introduction . 71

5.2 Renewal processes . 71

5.2.1 Hazard functions . 72

5.2.2 Modulated renewal processes . 74

5.2.3 Gaussian process intensity functions 76

5.2.4 Related work . 77

5.3 Sampling via Uniformization . 78

5.3.1 Inference . 80

5.3.2 Computational considerations . 84

5.4 Experiments . 85

5.4.1 Synthetic data . 85

5.4.2 Identifiability of the Gamma shape parameter 86

5.4.3 Coal mine disaster data . 88

5.4.4 Spike timing data . 89

5.4.5 Computational efficiency and mixing 89

5.5 Discussion . 90

6 Beyond uniformization: subordinating to general continuous-time

processes 92

6.1 Introduction . 92

6.2 Semi-Markov processes . 93

6.3 Dependent thinning for semi-Markov processes 97

6.4 Posterior inference via MCMC . 101

6.4.1 Resampling the thinned events given the sMJP trajectory 101

6.4.2 Resampling the sMJP trajectory given the set of times W 103

6.5 Calculations for an sMJP with Weibull hazards 105

6.6 Experiments . 107

6.6.1 Effect of the observations . 108

6.6.2 Effect of the observation interval length 111

CONTENTS 7

6.7 Linearizing inference in the length of W 111

6.8 Discussion . 112

7 MJPs with unbounded rates 114

7.1 Introduction . 114

7.2 Dependent thinning for MJPs . 114

7.3 The M/M/c/c queue . 118

7.3.1 Experiments . 120

7.4 The effect of an unstable state . 121

7.5 Discussion . 123

8 Spatial repulsive point processes 124

8.1 Introduction . 124

8.2 Matérn repulsive point processes . 126

8.2.1 The Matérn type-III repulsive point process 127

8.2.2 Probability density of the Matérn type-III point process 129

8.2.3 Inference for Matérn type-III processes 131

8.3 Experiments . 133

8.4 Generalized Matérn type-III processes 136

8.4.1 Inference for the inhomogeneous Matérn type-III process 137

8.4.2 Experiments . 139

8.5 Discussion . 143

9 Summary and future work 145

References 147

List of figures

2.1 Thinning a sample from a homogeneous Poisson process 26

3.1 Sample path from a Markov jump process 32

3.2 Uniformization: subordinating a Markov chain to a Poisson process . . . 36

3.3 Uniformization-based auxiliary variable Gibbs sampler 43

3.4 Effect of subordinating Poisson rate on sampler performance 49

3.5 Demonstration of the rapid burn-in of the MCMC sampler 50

3.6 The Markov modulated Poisson process 50

3.7 Comparison of MMPP samplers for a) increasing interval lengths and b)

increasing number of Poisson events . 52

3.8 Comparison of MMPP samplers as the number of MJP states is increased 53

4.1 The predator-prey network and the drug-effect CTBN 57

4.2 The CTBN as a continuous time DBN 57

4.3 Gibbs update for a node of a CTBN. 63

4.4 Posterior distributions over prey and predator populations 66

4.5 Average relative error vs number of samples for CTBN samplers 67

4.6 CPU time vs a) length of CTBN chain b) number of states of CTBN

nodes c) time interval of CTBN paths 70

5.1 Various example hazard functions . 73

5.2 A multiplicatively modulated hazard function 75

5.3 Gamma hazard functions . 77

5.4 Blocked Gibbs sampler for GP-modulated renewal processes 81

5.5 Empirical evaluation on synthetic datasets 86

5.6 Identifiability of the shape parameter of the gamma renewal process . . 87

5.7 Posterior distributions over the gamma shape parameter and the GP-

modulating function on a synthetic dataset 88

5.8 Posterior distributions for the coal mine data set 89

5.9 Posterior distributions for neural spiking data 90

6.1 Sample sMJP trajectory . 94

6.2 Sample sMJP trajectory with thinned events 98

LIST OF FIGURES 9

6.3 Discrete-time Markov chain for the forward-backward algorithm 99

6.4 Resampling the sMJP trajectory given the set of times W 103

6.5 Weibull hazard functions . 106

6.6 Empirical evaluation of our sampler and particle MCMC 109

6.7 Empirical evaluation of our sampler and particle MCMC (contd.) 110

7.1 Gillespie’s algorithm for MJPs (with auxiliary Poisson events) 115

7.2 Thinning based construction for MJPs (with auxiliary Poisson events) . 116

7.3 Resampling the MJP trajectory . 117

7.4 Effective sample sizes per unit time for the M/M/∞ queue 120

7.5 Comparison of samplers as the leaving rate of a state increases. 122

8.1 The Matérn type-III hardcore point process 127

8.2 Inference for the Matérn type-III hardcore point process 132

8.3 The redwood tree dataset and the Swedish pine tree dataset 134

8.4 Posterior distributions of the homogeneous Matérn type-III hardcore

model for the Redwood dataset . 134

8.5 Posterior distributions of the homogeneous Matérn type-III hardcore

model for the Swedish pine tree dataset 134

8.6 Matérn type-III softcore point processes with: a) varying interaction

radii b) probabilistic deletion . 135

8.7 Posterior mean and standard deviation of the intensity of the primary

process for the redwood tree dataset . 141

8.8 Posterior rate of deletions due to Matérn thinning, and Poisson thinning

for redwood tree dataset . 141

8.9 Posterior distribution of the Matérn intensity, interaction radius and the

number of thinned events for the redwood dataset. 141

8.10 Posterior mean and standard deviation of the intensity of the primary

process for the Swedish pine tree dataset 142

8.11 Posterior rate of deletions due to Matérn thinning, and Poisson thinning

for Swedish pine tree dataset . 142

8.12 Posterior distribution of the Matérn intensity, interaction radius and the

number of thinned events for the Swedish pine tree dataset. 143

List of tables

5.1 l2 distance from the truth, and mean log-predictive probabilities of held-

out datasets for three synthetic datasets. 86

5.2 Convergence of the posterior on the Gamma shape paremeter 88

5.3 Comparison of our sampler with an incremental birth-death sampler . . 90

8.1 Effective sample sizes (per 1000 samples) for the Matérn type-III hard-

core model . 135

8.2 Effective sample sizes (per 1000 samples) for the inhomogeneous Matérn

type-III softcore model . 143

List of algorithms

3.1 Gillespie’s algorithm to sample an MJP path on the interval [tstart, tend] 35

3.2 Block Gibbs sampler for a Markov jump process on the interval [tstart, tend] 45

4.1 Algorithm to sample a CTBN trajectory on the interval [tstart, tend] . . . 59

5.1 Blocked Gibbs sampler for GP-modulated renewal process on the interval

[tstart, tend] . 83

6.1 Algorithm to sample an sMJP path on the interval [tstart, tend] 96

6.2 State-dependent thinning for sMJPs . 99

8.1 MCMC sampler for posterior inference in a Matérn type-III hardcore

process on the space S . 133

8.2 Algorithm to sample an inhomogeneous Matérn type-III softcore point

process on a space S . 137

8.3 MCMC sampler for an inhomogeneous Matérn type-III softcore point

process on a space S . 139

Chapter 1

Introduction

1.1 Modelling in continuous time

Many applications require modelling the time evolution of a dynamical system. A

simple and popular approach is to discretize time and work with the resulting discrete-

time model. Such systems have been well studied in the time series modelling literature

(Rabiner, 1989; Murphy, 2002) and find wide application in fields like statistics, machine

learning, signal processing, computational biology etc. A particular driving force for the

growing sophistication of these models has been the parallel development of techniques

for efficient inference. Some of the most popular and flexible approaches to inference

are sampling-based Monte Carlo approaches, see for example (Robert and Casella,

2005; Gilks et al., 1996; Gelman et al., 2010; Doucet et al., 2001). These have been

particularly important in the Bayesian community, where they form a natural approach

to posterior inference in probabilistic models of various phenomena. The modularity of

these techniques has allowed the straightforward development of complex, hierarchical

models based on simple building blocks.

Often, one is interested in modelling a system whose evolution is asynchronous with

a number of different time scales. In such a situation, the behaviour of the resulting

time-discretized model can be sensitive to the chosen time scale. To achieve reasonable

approximations, a sufficiently fine time-resolution may be needed that can make these

approaches impractical for large problems. A more natural approach is to work directly

in continuous time; in fact, it is often convenient make continuous approximations to

inherently discrete systems (for example in genetics, where base-position along a strand

of DNA is sometimes treated as a real number). Moreover, continuous-time systems

often lend themselves to easier theoretical analysis, and often arise naturally out of the

physical and statistical laws characterizing the systems’ evolution.

A major impediment towards the more widespread use of these models is the problem

of inference. While the system itself might be easy to characterize, introducing partial

Thesis contributions and organization 13

and noisy observations of its state introduces interactions which break down the sim-

plicity of these models. In the language of Bayesian statistics, a continuous-time model

specifies a prior distribution over continuous-time trajectories, and the posterior dis-

tribution resulting from observations via some likelihood function is often intractable.

Additionally, the parameters governing the system dynamics are often not known, and

must also be inferred from data. The focus of this thesis is on sampling algorithms that

can be used to explore these intractable distributions.

A typical approach to posterior sampling for continuous-time models involves discretiz-

ing time and then running an appropriate discrete-time sampling algorithm on the

resulting system. This has a number of drawbacks, not least of which is that we lose

the advantages that motivated the use of a continuous-time model in the first place.

Time-discretization introduces biases into our inferences, and to control this, one might

have to discretize time at a resolution that results in a very large number of discrete

time steps. This can be computationally expensive.

In this thesis, we bring a workhorse of the discrete-time domain, the forward-filtering

backward-sampling algorithm (Früwirth-Schnatter, 1994; Carter and Kohn, 1996), to

continuous-time. The forward-backward algorithm is a dynamic programming algo-

rithm that recursively accounts for successive observations during a forward pass though

time. Having filtered in all observations, it then instantiates a trajectory of the system

via a backward pass. While developed originally for finite state hidden Markov models

and linear Gaussian systems, this algorithm also forms the core of samplers for more

complicated systems like nonlinear and non-Gaussian time series (Neal et al., 2004),

infinite state time series (Van Gael et al., 2008), non-Markovian systems (Dewar et al.,

2012) etc. We show in this thesis how to extend these ideas to the continuous-time

domain.

The core of our approach is an auxiliary variable Gibbs sampler that proceeds by

repeating two steps. The first uses a random discretization of time to sample a new

trajectory using the forward-backward algorithm. The second then samples a new time

discretization given this new trajectory. A random discretization allows a relatively

coarse grid, while still keeping inferences unbiased. The forward-backward algorithm

can thus be run on relatively short chains, resulting in computational savings. We

show how resampling the random time-discretization can be performed efficiently by

exploiting properties of the Poisson process.

1.2 Thesis contributions and organization

In this thesis, we focus on discrete-state pure-jump processes in continuous-time where

any finite time interval has only a finite number of state transitions. Generalizing a

classical idea called uniformization (Jensen, 1953), we show how it is often possible to

Thesis contributions and organization 14

characterize such systems as discrete-time systems resulting from a random discretiza-

tion of time. In constrast to methods that discretize time with a regular grid, random-

ization allows us to eliminate bias using a much coarser grid; resulting a discrete-time

systems with fewer time steps. Given such a characterization, we proceed to develop

auxiliary variable Gibbs samplers that alternately resample the system trajectory given

the random discretization, and then a new time-discretization given the system trajec-

tory. Fot the first step, we can leverage the large literature on MCMC for discrete-time

systems, bringing their power to continuous-time problems. We exploit properties of

the Poisson process to carry out the second step efficiently.

We briefly outline the contents of the various chapters.

• Chapter 2 provides a review of properties of the Poisson process. The Poisson

process is fundamental to the ideas developed in this thesis. Firstly, it forms

the basis of different randomized characterizations of the systems we will study.

Additionally, the efficiency of our algorithms stem, in large part, from the inde-

pendence or memoryless properties of the Poisson process. We also introduce the

notion of the probability density of the Poisson process. This will prove useful

in representing probabilities of the more complicated systems we study, and will

allow us to prove results more easily.

• Chapter 3 describes our first contribution, an MCMC sampler for Markov jump

processes. Our sampler is based on the idea of uniformization and was described

in (Rao and Teh, 2011a). In additional to work from that paper, we also apply

our sampler to the Markov-modulated Poisson process, where we show it to be

significantly more efficient than a state-of-the-art sampler designed specifically

for this model.

• Chapter 4 is also based on work in (Rao and Teh, 2011a) and applies our ideas

to a class of structured MJPs called continuous-time Bayesian networks. We

elaborate on the material from that paper, showing on how to extend our sampler

from chapter 3 for greater efficiency and why the resulting algorithm is correct.

In doing so, we lay the seeds for the more general thinning schemes described in

chapter 6.

• In Chapter 5 we move beyond memoryless systems to renewal processes. These

are generalizations of the Poisson process with arbitrary waiting times. To demon-

strate the usefulness of our sampler, we describe a non-stationary renewal process

that generalizes work by Adams et al. (2009) for doubly stochastic Poisson pro-

cesses. We should how uniformization allows us to draw exact samples from the

model and allows us to perform efficient inference. This work was published in

(Rao and Teh, 2011b).

• In Chapters 6 and 7, we move beyond the framework of uniformizing to a more

general scheme of dependent thinning. Working in such a framework allows us to

Thesis contributions and organization 15

extend our methods to a wider class of models with unbounded event rates. This

framework also affords us more flexibility to trade-off the computational cost per

MCMC iteration and the independence across MCMC samples. Work from these

chapters is described in a paper that is under submission.

• Chapter 8 shows how our ideas can be adapted to processes on more general

spaces. In particular, we look at a class of ‘repulsive processes’ on a 2-dimensional

Euclidean space. These processes also have a thinning construction starting from

an underlying Poisson process. We show how our sampler can allow us to perform

efficient MCMC inference on this class of models. Part of the work in this chapter

was done with David Dunson at Duke University.

• Finally, we end with a summary, and a discussion of possible avenues for future

research in Chapter 9.

Chapter 2

The Poisson process

2.1 Introduction

Most of the systems studied in this thesis are built upon an underlying Poisson process.

Even if it may not be traditional to view these systems this way, the MCMC sampling

algorithms that we will describe exploit this construction, and involve reconstructing

this latent Poisson process at some stage. With this in mind, we begin with an in-

troduction to the Poisson process. Though most of this thesis is devoted to processes

on the real line, we do consider point processes on more general Euclidean spaces in

chapter 8, with further generalizations possible. Moreover, it is useful to distinguish

between properties intrinsic to the Poisson process, and those imposed by the ordering

of the real line. Thus, our exposition will follow Kingman (1993) by considering Poisson

processes on general spaces. We will review the Poisson process on the real line towards

the end of this chapter, where we establish some conventions that we will follow for

all stochastic processes on the real line. In our study of the Poisson process, we will

also introduce the notion of the probability density of a Poisson process (Daley and

Vere-Jones, 2008), something that will simplify calculations in later chapters.

2.2 The Poisson process

Informally, the Poisson process is a probability distribution over countable subsets of

some space. A sample from this process is thus a collection of points in the space,

so that the Poisson process is an example of a stochastic point process. The space in

which the points lie is commonly the real line or a d-dimensional Euclidean space (often

subsets thereof), but more generally can be some complete, separable, metric space T .

Let Σ be the Borel σ-algebra on T , generated by the open sets in the topology on T .

Let Π be the random set drawn from the Poisson process, and for any measurable∗ set

∗We shall henceforth deal only with measurable sets, and occasionally drop this qualifier.

The Poisson process 17

A ∈ Σ, let Π(A) denote the number of points lying in A:

Π(A) = #{Π ∩A} (2.1)

Then for some measure Λ(·) on (T ,Σ), we have the following definition:

Definition 2.1. A Poisson process with mean Λ(·) is a stochastic point process satis-

fying the following properties:

1. The number of points in disjoint subsets of T are independent random variables.

2. The number of points in any set A, Π(A), is Poisson distributed with mean Λ(A).

Recalling the definition of the Poisson distribution, we have that

P (Π(A) = n) =
Λ(A)n exp(−Λ(A))

n!
(2.2)

Observe that to distinguish individual points, we need Σ to include the singleton sets

{t} ∀t ∈ T . Moreover, since the random set Π either includes or does not include a

point t, Π({t}) can either equal 0 or 1. It follows from equation (2.2) that for the

Poisson process to be well defined, the measure Λ(·) must be non-atomic, so that

Λ({t}) = 0 ∀t ∈ T (2.3)

It turns out that the non-atomicity of the mean measure is almost sufficient to

guarantee the existence of the Poisson process; all that is additionally required is

a mild σ-finiteness condition that Λ be expressible as a countable sum of finite measures:

Theorem 2.1. (Existence theorem, Kingman (1993)) Let Λ be a non-atomic measure

on T which can be expressed in the form

Λ =
∞∑
n=1

Λn, Λn(T) <∞ (2.4)

Then there exists a Poisson process on T having Λ as its mean measure.

While it is common to think of realizations Π of a Poisson process on (T ,Σ) as ‘col-

lections of points in T ’, the standard approach to constructing a probability space for

this stochastic process involves viewing Π as a random measure on (T ,Σ) (Kingman,

1993). In particular, a sample Π from a Poisson process is an element of N , the space

of integer-valued measures on T . The measure Π(A) of any subset A ∈ Σ is the number

of points in that subset. This defines a map πA(Π) : N → Z+†; the σ-algebra on N
is then defined as the σ-algebra generated by the set of maps πA for all A ∈ Σ. Call

†Z+ being the space of nonnegative integers

Properties of the Poisson process 18

this ΣN ; thus ΣN is the smallest σ-algebra containing the sets π−1
A (B) for all A ∈ Σ

and all sets of nonnegative integers B. Completing the specification of the probability

triplet, one requires that for some measure Λ (the mean measure) and any disjoint

sets A1, A2, ..., An in Σ, the random variables Π(Ai) are Poisson distributed with mean

Λ(Ai) and are jointly independent. The existence theorem tells us that there does exist

a probability measure PΛ that satisfies this, and the triplet (N ,ΣN , PΛ) constitutes the

Poisson process. In this context, the independence property of the Poisson process is

sometimes called complete randomness, so that the Poisson process is an example of a

completely random measure (Kingman, 1993).

2.3 Properties of the Poisson process

We now list a number of useful properties of the Poisson process; we refer the interested

reader to Kingman (1993) for proofs. In section 2.4, we provide some elementary

proofs for the special case when the Poisson mean measure is finite (i.e. Λ(T) <∞).

Theorem 2.2. (Disjointness theorem, Kingman (1993)) Let Π1 and Π2 be independent

Poisson processes on T , and let A be a measurable set with Λ1(A) and Λ2(A) finite.

Then Π1 and Π2 are disjoint with probability 1 on A:

P{Π1 ∩Π2 ∩A = ∅} = 1 (2.5)

The next theorem states the obvious but useful result that a Poisson process restricted

to some measurable set is still a Poisson process, whose mean measure is now the

restriction of the original mean measure to that set.

Theorem 2.3. (Restriction theorem, Kingman (1993)) Let Π be a Poisson process

with mean measure Λ on T and let T1 be a measurable subset of T . Then the random

set Π1 = Π ∩ T1 can be regarded either as a Poisson process on T with mean measure

Λ1(A) = Λ(A∩T1) or as a Poisson process on T1 whose mean measure is the restriction

of Λ to T1.

This theorem is a straightforward consequence of the definition of the Poisson process.

Besides allowing us to easily study restrictions of a Poisson process, it (along with the

independence property) also allows us to define a ‘global’ Poisson process by combining

independent Poisson processes defined on disjoint spaces. The next theorem tells us

that we can also ‘combine’ independent Poisson processes defined on the same space

T to get a Poisson process.

Theorem 2.4. (Superposition theorem, Kingman (1993)) Let Π1,Π2, . . . be a countable

collection of independent Poisson processes on T , and let Πn have mean measure Λn

Properties of the Poisson process 19

for each n. Then, their superposition

Π =
∞⋃
n=1

Πn (2.6)

is a Poisson process with mean measure

Λ =

∞∑
n=1

Λn (2.7)

The following theorem characterizes the result of applying a transformation to the

points sampled from a Poisson process; under appropriate conditions, this is still a

Poisson process (with a different mean measure).

Theorem 2.5. (Mapping theorem, Kingman (1993)) Let Π be a Poisson process with

mean measure Λ on the space T1, and let f : T1 → T2 be a measurable function such that

the induced measure Λ∗ has no atoms. Then f(Π) is a Poisson process on T2 having

Λ∗ as its mean measure.

A common mapping function is the projection operator π : T1 × T2 → T2, which maps

a Poisson process on a product space down to one of the component spaces. The next

theorem describes the ‘inverse’ of this projection, where a Poisson process is ‘lifted’

into an ambient product space. Towards this, let Π be a Poisson process on the space

T with mean measure Λ. Consider a probability measure P (t, ·) on some other space

M (note that P is allowed to depend on t). Assign each point t of Π a random ‘mark’

drawn independently from P (t,dm), thus transforming it to a point in the product

space T ×M . Then the set

Π∗ = {(t,ms) : t ∈ Π} (2.8)

forms a random subset of T ×M . Not surprisingly, this is also a Poisson process:

Theorem 2.6. (Marking theorem, Kingman (1993)) The random subset Π∗ is a Pois-

son process on T ×M with mean measure Λ∗ given by

Λ∗(A) =

∫∫
(t,m)∈A

Λ(dt)P (t,dm) (2.9)

It is possible to generalize the mapping theorem from deterministic transformations to

stochastic ones. Most of the time, these can be viewed as the result of sequentially

applying the mapping and the marking theorems.

Finally, for completeness, we include two important properties of the Poisson process.

The first is Campbell’s theorem:

Properties of the Poisson process 20

Theorem 2.7. (Campbell’s theorem, Kingman (1993)) Let Π be a Poisson process

with mean measure Λ on the space T . For a measurable function f : T → R, the sum

Σ = 〈Π, f〉 =
∑
t∈Π

f(t)

is absolutely convergent if and only if∫
T

min(|f(t)|, 1)Λ(dt) <∞

When this is true,

E(eθΣ) = exp

{∫
T

(
eθf(t) − 1

)
Λ(dt)

}
(2.10)

for any complex θ for which the integral on the right converges (and thus whenever θ is

purely imaginary). Moreover,

E(Σ) =

∫
T
f(t)Λ(dt) (2.11)

if and only if the integral converges. In that case,

var(Σ) =

∫
T
f(t)2Λ(dt) (2.12)

whether finite or infinite.

Equation (2.10) in Campbell’s theorem gives the characteristic functional of the Poisson

process; if, for some stochastic point process, this holds for a sufficiently large class of

functions, we can establish that point process to be Poisson. Bertoin (2006) calls

equation (2.10) Campbell’s formula, though some authors (eg. Daley and Vere-Jones

(2008)) use that name to refer to equation (2.11).

Now, for an event, B ∈ ΣN and any event A ∈ Σ, define Campbell’s measure, C(B,A)

as:

C(B,A) = E [1B(Π)Π(A)] (2.13)

Here 1B is the indicator function for the set B, so that the expression above gives (upto

a normalization constant) the expected number of Poisson events in A conditioned on

B being true. Clearly, for any B, C(B, ·) is absolutely continuous w.r.t. Λ(·), allowing

us to define the Radon-Nikodym derivative:

dC(B, ·)
dΛ

(t) = P tΛ(B) (2.14)

The quantity P tΛ(·) corresponds (again, upto a normalization factor) to a probability

Finite Poisson processes 21

measure on (N ,ΣN), and is called the Palm distribution. The Palm distribution of a

point process can be thought as the posterior distribution given that there is an event

at location t. The independence property of the Poisson property suggests that the

distribution of Π under the posterior P tΛ is identical the distribution of Π + δt, with Π

distributed according to the Poisson process prior. Not only is this true, but this also

characterizes the Poisson process (Zuyev, 2006):

Theorem 2.8. (Slivnyak’s theorem, (Slivnyak, 1962), or the Palm formula, (Bertoin,

2006)) Let Π be a Poisson process with mean measure Λ on the space T . For a non-

negative measurable functional G : T × N → R+,

E (〈Π, G(·,Π)〉) ≡ E

(∑
t∈Π

G(t,Π)

)
=

∫
T
E (G(t, δt + Π)Λ(dt)) (2.15)

Letting Et denote expectations with respect to P tΛ, we then also have the refined Camp-

bell formula:

E (〈Π, G(·,Π)〉) =

∫
T
Et (G(t,Π)) Λ(dt) (2.16)

Compare this with equation (2.11), where the functional G(t,Π) was restricted to be

independent of Π.

The results above apply to general Poisson processes, and for a demonstation of their

usefulness in this context, see for example Rao and Teh (2009). Instead, from now on,

we shall limit ourselves to the special case of Poisson processes with finite realizations.

In this case, the Poisson process has an intuitive constructive definition that will obviate

the need for any existence proofs. Moreover, many of the Poisson properties listed above

will follow intuitively from this definition. Following Daley and Vere-Jones (2008), we

shall also introduce the notion of the probability density of a Poisson process, and

simple manipulations of this density will allow us to establish the remaining Poisson

properties.

2.4 Finite Poisson processes

Suppose that the total measure of the space T is finite, i.e. Λ(T) <∞. By definition,

the total number of Poisson events, #Π = Π(T) is Poisson distributed with mean Λ(T),

and is thus finite almost surely. Let {A1, A2, · · · , Ap} be a partition of the space T
(i.e. these are disjoint sets whose union is T). Then, from the definition of the Poisson

Finite Poisson processes 22

process,

P (Π(A1) = n1,Π(A2) = n2, · · · ,Π(Ap) = np) =

p∏
i=1

Λ(Ai)
ni exp(−Λ(Ai))

ni!
(2.17)

Conditioning on Π(T) =
∑p

i=1 ni = n, it follows from Bayes’ rule that

P (Π(A1) = n1, · · · ,Π(Ap) = np|Π(T) = n) =
n!

Λ(T)n

p∏
i=1

(
Λ(Ai)

ni

ni!

)
(2.18)

=
n!

n1! · · ·np!

p∏
i=1

(
Λ(Ai)

Λ(T)

)ni
(2.19)

Equation (2.19) is just the multinomial distribution; since this is true for any measurable

partition of T , it follows that conditioned on the total number of Poisson events, the

locations of the points are i.i.d. variables drawn from the probability measure Λ(·)
Λ(T) .

This last insight provides a very intuitive way to think about the finite mean Poisson

process: first sample the number of events from a Poisson distribution with mean

Λ(T), and then sample their locations i.i.d. from the normalized mean measure. We

shall use this as the definition of the Poisson process. Such a constructive definition

has the advantage of allowing us to bring geometric intuition into our handling of

the Poisson process. Furthermore, by limiting ourselves to the finite mean Poisson

process, we can introduce the notion of the probability density of a Poisson process,

something that once again is more intuitive than the traditional approach of dealing

with characteristic functionals of Poisson processes. This will prove useful in later

sections when we study other stochastic processes based on an underlying Poisson

process. Working with densities will, for instance, allow the straightforward application

of Bayes’ rule, allowing us to make inferences about the latent Poisson process.

We emphasize again that these ideas apply only to Poisson processes whose realizations

are finite almost surely. We shall consequently consider a Poisson process as a stochastic

process taking values in the space T ∪ of all finite sequences in T . We shall refer to

elements of this space (and thus realizations of the Poisson process) as T , rather than

Π or Π∗ (though sometimes, we use other capital letters like S,E or G). For each

finite n, let T n be the n-fold product space of T , equipped with the usual product

σ-algebra, Σn. We shall refer to elements of T n as Tn. Note that Tn is a random

sequence of length n, i.e. Tn ≡ (t1, · · · , tn). We define T 0 as a single point satisfying

T 0 × T = T × T 0 = T and equip it with the trivial σ-algebra Σ0 = {∅, T 0}. Then,

define T ∪ ≡
⋃∞
i=0 T i as the resulting union space, which we equip with the σ-algebra

Σ∪ ≡ {
⋃∞
i=0A

i ∀Ai ∈ Σi}. Thus,

B ∩ T n ∈ Σn ∀B ∈ Σ∪ (2.20)

Finite Poisson processes 23

Next, assume a measure µ on (T ,Σ) (for Euclidean spaces, µ is typically the Lebesgue

measure). Letting µn be the n-fold product measure on the product space (T n,Σn),

assign any set B ∈ Σ∪ the measure

µ∪(B) =

∞∑
i=1

1

i!
µi(B ∩ T i) (2.21)

=

∞∑
i=1

∫
B∩T i

1

i!
µi(dT i) (2.22)

Now assume the Poisson mean measure Λ admits a density λ with respect to µ, so that

Λ(A) =

∫
A
λ(t)µ(dt), A ∈ Σ (2.23)

Following our constructive definition of the Poisson process, we have that for a sequence

T in T ∪ of length |T | = n,

P (T ∈ dT) =
exp(−Λ(T))

n!

n∏
j=1

Λ(dtj) (2.24)

= exp(−Λ(T))

 n∏
j=1

λ(tj)

 µn(dT)

n!
(2.25)

= exp(−Λ(T))

 |T |∏
j=1

λ(tj)

µ∪(dT) (2.26)

Thus, the distribution of the random sequence T has density exp (−Λ(T))
∏|T |
j=1 λ(tj)

w.r.t. the measure µ∪. We shall call this density λs, i.e.

λs(T) = exp(−Λ(T))

|T |∏
j=1

λ(tj) (2.27)

The subscript s is a reminder that this density on sequences in (T ∪,Σ∪) is symmetric

in the coordinates. In particular, the sequence T ≡ (t1, · · · , tn) is an ordered sequence,

whereas a random set sampled from a Poisson process is unordered. Under our

representation, each of the n! permutations of T corresponds to the same Poisson

process realization and has the same density. The factorial term in the base measure

(equation (2.21)) corrects for this many-to-one mapping. The density λs is sometimes

called the Janossy density of the finite point process (Daley and Vere-Jones, 2008).

Theorem 2.9. (Density of a Poisson process) The density λs(T) on (T ∪,Σ∪) is a prob-

ability density w.r.t. µ∪, and the resulting stochastic process corresponds to a Poisson

process on (T ,Σ) with intensity λ(t).

Finite Poisson processes 24

Proof. That λs(T) is a probability density can be easily seen:∫
T ∪

λs(T)µ∪(dT) = exp(−Λ(T))

∞∑
n=0

∫
T n
λs(T)µ∪(dT) (2.28)

= exp(−Λ(T))
∞∑
n=0

1

n!

∫
T n

n∏
j=1

λ(tj)µ
n(dTn) (2.29)

= exp(−Λ(T))

∞∑
n=0

1

n!
Λ(T)n (2.30)

= 1 (2.31)

Next, consider the event that k out of n events lie in a set A. Call this event Bn. Since

there are
(
n
k

)
ways of choosing k out of n components, it follows that the probability of

Bn is given by

P (Bn) =
n!

k!(n− k)!
exp(−Λ(T))

∫
Bn

|T |∏
j=1

λ(tj)µ
∪(dT) (2.32)

=
1

k!(n− k)!
exp(−Λ(T))

∫
Bn

|T |∏
j=1

λ(tj)µ
n(dTn) (2.33)

=
exp(−Λ(T))

k!(n− k)!
Λ(A)k (Λ(T)− Λ(A))n−k (2.34)

Define B as the event that k events occur in the set A. It follows that

P (B) =
∞∑
n=k

P (Bn) (2.35)

= exp (−Λ(T))
∞∑
n=k

Λ(A)k(Λ(T)− Λ(A))n−k

k!(n− k)!
(2.36)

=
Λ(A)k exp (−Λ(T))

k!

∞∑
i=0

(Λ(T)− Λ(A))i

i!
(2.37)

=
Λ(A)k exp(−Λ(A))

k!
(2.38)

Thus, the number of events in a set A is Poisson distributed with mean Λ(A) for any

A ∈ Σ. It remains to show that for disjoint sets {A1, · · · , Ap}, the random variables

{Π(A1), · · · ,Π(Ap)} are independent. This follows from Rényi’s theorem (corollary

12.9, (Kallenberg, 2002)), so that the density λs defines a Poisson process with mean

Λ (and intensity λ).

Properties of the finite Poisson process 25

2.5 Properties of the finite Poisson process

Clearly, all the properties listed in section 2.3 continue to hold in the finite case. Nev-

ertheless, it is worth reviewing them in light of the intuitive properties of the finite

Poisson process. For instance, both the disjointness theorem and the restriction the-

orem are obvious consequences of the constructive definition of the Poisson process.

Similarly, recall the construction of the point process Π∗ (equation (2.8)) outlined in

the marking theorem; this involved assigning every element ti ∈ Π a random mark

mi ∼ P (ti, ·). In the finite case, this corresponds to sampling a Poisson(Λ(T)) number

of points, and then drawing their locations in T ×M i.i.d. from Λ(dt)P (t,dm)
Λ(T) by first

drawing t from Λ(·)/Λ(T) and then drawing m conditionally from P (t,dm). It follows

by definition that Π∗ is a Poisson process on T ×M with mean measure Λ(dt)P (t,dm).

Now, consider an application of the marking theorem where the marks only take k

discrete values (so that P (t, ·) is a discrete distribution for any t). Let T be the original

Poisson process and T ∗ the marked Poisson process. The restriction theorem implies

that T ∗i , the subset of points in T ∗ with mark i, is also a Poisson process with mean

measure Λ(dt)P (t, i) (and intensity λ(t)P (t, i)).

As an important and well known consequence, consider two Poisson processes with

intensities λ∗(t) and λ(t), with λ∗(t) ≥ λ(t) ∀t ∈ T . Let T ∗ be the random set sampled

from the first Poisson process, and to each point t ∈ T ∗ assign one of two marks,

‘O’ (or ‘keep’) with probability λ(t)
λ∗(t) and ‘X’ (or ‘thin’) with probability

(
1− λ(t)

λ∗(t)

)
.

See figure 2.1, and define T as the set of points with label ‘O’ (the ‘kept’ points). Then:

Theorem 2.10 (Thinning theorem, Lewis and Shedler (1979)). The random set T is

a draw from a Poisson process with intensity λ(t).

Proof. We saw in the previous section that this is true from the marking and restriction

theorems; however, we provide an alternate proof to show the utility of the Poisson

process density introduced in section 2.4.

Recall that the sample T ∗ has density

P (T ∗) = exp (−Λ∗(T))
∏
t∈T ∗

λ∗(t) (2.39)

Properties of the finite Poisson process 26

o x o o x o
Figure 2.1: Thinning a sample from a homogeneous Poisson process

Let T = {t1, · · · , tn} denote the subset of T ∗ that was assigned the mark ‘keep’. Let

T c = T ∗ \ T be its complement. Let the size of T c be k, so that |T |∗ = (n+ k). Since

both T ∗ and T are unordered, there are
(
n+k
n

)
was of choosing T from T ∗. Then,

P (T ∗, T) =
(n+ k)!

n!k!

∏
t∈T c

(
1− λ(t)

λ∗(t)

)∏
t∈T

λ(t)

λ∗(t)

(
exp (−Λ∗(T))

(∏
t∈T ∗

λ∗(t)

))
(2.40)

=
(n+ k)!

n!k!
exp (−Λ∗(T))

∏
t∈T c

(λ∗(t)− λ(t))
∏
t∈T

λ(t) (2.41)

Integrating out the locations in T c (and recalling that |T c| = k), we have

P (T, k) =
(n+ k)!

n!k!
exp (−Λ∗(T))

(
n!

(n+ k)!

∏
t∈T c

∫
T

(λ∗(t)− λ(t))µ(dt)

)∏
t∈T

λ(t)

(2.42)

= exp (−Λ∗(T))
1

k!
(Λ∗(T)− Λ(T))k

∏
t∈T

λ(t) (2.43)

The k!
(n+k)! = 1

(n+k)(n+k−1)··· term arises since µ∪(A×Bn−1) = 1
nµ(A)µ∪(Bn−1) for A ∈

Σ, Bn−1 ∈ Σn−1. Summing out k, we have

P (T) = exp (−Λ∗(T))

(∏
t∈T

λ(t)

) ∞∑
k=0

1

k!
(Λ∗(T)− Λ(T))k (2.44)

= exp (−Λ∗(T))

(∏
t∈T

λ(t)

)
exp (Λ∗(T)− Λ(T)) (2.45)

= exp (−Λ(T))
∏
t∈T

λ(t) (2.46)

This is the density of a Poisson process with intensity λ(·), completing the proof.

The thinning theorem has important practical consequences, allowing one to sample

from a Poisson process with a complicated intensity λ(t) by thinning a sample from a

simpler Poisson process whose intensity function λ∗(t) dominates λ(t) everywhere. Ob-

The Poisson process on the real line 27

serve that our original construction of the Poisson process requires solving the possibly

intractable integral

Λ(T) =

∫
T
λ(t)µ(dt) (2.47)

Λ(T) is both the mean of the Poisson distribution governing the number of events

as well as the normalization constant of the distribution governing their locations.

Sampling by the thinning construction only requires evaluating λ(t) pointwise. The

bounding intensity is usually taken to be a constant, see figure 2.1 for an illustration.

The thinning theorem was exploited by Adams et al. (2009) to define an elegant non-

parametric approach to modelling inhomogeneous Poisson processes. We review this

work in chapter 5, where (among other things) we develop a more efficient MCMC

sampler by exploiting a corollary to this theorem. The notion of independent thinning

can also be relaxed to allow the marks depend on each other, allowing the construction

of non-Poissonian processes from the original Poisson processes. The bulk of this thesis

is devoted to developing and studying efficient MCMC algorithms for such models.

Note that by symmetry, the set of thinned points with label ‘X’, T c ≡ T ∗ \ T is

also a Poisson process, now with intensity λ∗(t) − λ(t). Moreover, the sets T × {‘O’}
and T × {‘X’} are disjoint, so that by the independence property, these two Poisson

processes are independent. Combined with the superposition theorem, we have the

following simple corollary:

Corollary 2.1. Let T be a Poisson process with intensity λ(s), constructed by thinning

a Poisson process T ∗ with a larger intensity λ∗(t). Then, conditioned on T , the thinned

points T c ≡ T ∗ \ T are distributed as an independent Poisson process with intensity

λ∗(t) − λ(t). After sampling T c independently of T , the union T ∪ T c is a Poisson

process with intensity λ∗(t).

This result will prove very useful in subsequent chapters.

2.6 The Poisson process on the real line

We now address the important special case of the Poisson process on the real line. In

this case, the space T is often referred to as ‘time’ and its elements are indexed by t.

In most modelling applications, the process is defined on the nonnegative real line R+;

in fact, in this thesis, we shall only consider finite intervals [tstart, tend] for some finite

time tend (resulting, when µ is the Lebesgue measure, in a finite Poisson process). The

ordering of the real line means that Poisson events can be thought to occur sequentially,

and in many contexts, it is convenient to view the Poisson process on the real line as a

stochastic process with right-continuous piecewise-constant paths‡. The time between

‡We leave this development for later chapters.

The Poisson process on the real line 28

successive events is referred to as the waiting time or the holding time, and it is well

known that for a homogeneous Poisson process with intensity λ, the waiting time is

exponentially distributed with rate λ. For the inhomogeneous case, given that the ith

event occurs at time ti, the probability that the waiting time until the event i + 1 is

larger that τ is

P (ti+1 > ti + τ) = exp

(
−
∫ ti+τ

ti

λ(t)µ(dt)

)
(2.48)

Note that this is a simple consequence of equation (2.2), since P (ti+1 > ti + τ) is just

the probability that no events occur in the interval (ti, ti+τ]. The latter interpretation

reveals that equation (2.48) is true whether or not an event occured at time ti; thus,

the memorylessness of the exponential distribution is identical to the independence

property or the complete randomness of the Poisson process.

Now, consider a sample T ≡ {t1, · · · , tn} from a Poisson process on the interval

[tstart, tend] whose intensity function is λ(t) w.r.t. Lebesgue measure µ. Following sec-

tion 2.4, the density of this sample w.r.t. µ∪ is given by

P (T) = exp

(
−
∫ tend

tstart

λ(t)µ(dt)

) n∏
i=1

λ(ti) (2.49)

=

(
n∏
i=1

λ(ti) exp

(
−
∫ ti

ti−1

λ(t)µ(dt)

))
exp

(
−
∫ tend

tn

λ(t)µ(dt)

)
(2.50)

where t0 = tstart.

For the homogeneous case, equation (2.50) has the simple interpretation as the density

of n independent draws (t1, t2− t1, · · · , tn− tn−1) from a rate λ exponential multiplied

by the probability of a final draw larger than (T − tn). Using equation (2.48), this

generalizes to the inhomogeneous case, so that the probability density of the next

Poisson event after an event at time ti is given by

P (ti+1 = ti + τ) = λ(ti + τ) exp

(
−
∫ ti+τ

ti

λ(t)µ(dt)

)
(2.51)

The ordered structure of the real line makes it possible to associate a sample from

the Poisson process on the real line with a unique ordered sequence. In particular,

we can associate the random set {t1, · · · , tn} with the random sequence (t1, · · · , tn),

where ti < ti+1. This is more intuitive that the many-to-one mapping outlined in

section 2.4 for Poisson processes on general spaces, and in this thesis, we shall follow

this convention for all stochastic processes on the real line. Thus, we shall define a

Poisson process on the interval [tstart, tend] as a random sequence of random length,

obtained by sequentially sampling times t1, t2, · · · etc from equation (2.51) until we

exit the interval. Implicitly, this sequential construction defines a distribution over the

The Poisson process on the real line 29

sequence length n as well as a distribution over event times (note that latter is an

asymmetric distribution, with ti always less than ti+1). Define the resulting density

over length n sequences (w.r.t. µn) as

λa(T) = exp

(
−
∫ tend

tstart

λ(t)µ(dt)

) N∏
i=1

λ(ti) ti+1 > ti ∀i (2.52)

= 0 otherwise (2.53)

The subscript ‘a’ in λa is a reminder that the density is asymmetric in the components.

Again, as in section 2.4, we shall consider a Poisson process as an element of (T ∪,Σ∪),

the union of the product spaces (T n,Σn). We define a measure µ< on this space as

µ<(B) =

∞∑
i=0

µi(B ∩ T i) (2.54)

Note that unlike the measure µ∪ from equation (2.21), we do not need a factorial

correction, since we associate each Poisson sample with a unique sequence in T ∪. It is

clear from theorem 2.9 that for any T ∈ T ∪, the density λa(T) w.r.t. the measure µ<

defines a Poisson process on T .

We conclude by introducing the (nonstationary) hazard rate function, h(t, τ) (often just

called the hazard function). We shall define this more carefully in chapter 5; for now, it

suffices to say that this gives the instantaneous event rate at time t, τ time units after

the last event. In other words, this is just the conditional density P (ti+1 = t|ti = t−τ),

and from equations (2.48) and (2.51), is given by

h(t, τ) = λ(t) (2.55)

This is yet another manifestation of the independence or memorylessness of the Poisson

process: the rate at which events occur is independent of the past, depending only on

the current value of the intensity function.

Equation (2.55) provides an intuitive way of thinking about the thinning theorem (the-

orem 2.10). Recall that the latter allows one to sample from a Poisson process with

intensity λ(·) by first sampling from a Poisson process with intensity λ∗(·) that point-

wise dominates λ(·), and then keeping a point located at t with probability λ(t)/λ∗(t).

Clearly, sampling from a higher rate Poisson process produces more events on average

than the Poisson process of interest. The second step tells us that whether to keep or

reject a point at t depends only on the values of the two intensity functions evaluated

at t (as equation (2.55) suggests). In particular, if λ∗(t) is c times larger than λ(t),

then we keep the point at t with probability 1/c.

In later chapters, we shall look at a generalization of thinning called uniformization.

The Poisson process on the real line 30

This will allow the construction of non-Poissonian systems with memory from an un-

derlying Poisson process. Again, the idea is similar to thinning: we first sample a set

of points from a Poisson process whose intensity at any time dominates the event rates

of the process of interest. Now, rather than deleting points independently, we do so via

a forward pass through the sample. The probability of keeping a point will be given by

the ratio of the event rate of the stochastic process conditioned on its instantiated past

divided by the instantaneous rate of the Poisson process. We will finally generalize this

even further, by allowing the underlying point process to also be non-Poisson.

Chapter 3

Markov jump processes

3.1 Introduction

In this chapter, we introduce the Markov jump process (MJP), while the next chapter

(chapter 4) focuses on a class of structured MJPs called continuous-time Bayesian

networks (CTBNs). MJPs are one of the simplest continuous-time stochastic processes

(see for example Çinlar (1975), or for a more rigorous introduction, Gikhman and

Skorokhod (2004)), and find wide application in fields such as chemistry (Gillespie,

1977), genetics (Fearnhead and Sherlock, 2006), social network dynamics, (Fan and

Shelton, 2009), human-computer interaction (Nodelman and Horvitz, 2003) etc. In all

these applications, the MJP serves as a prior distribution over the trajectory of the state

of a system which evolves in a piecewise-constant manner. Typically, this trajectory

is only partially observed, and the challenge in the Bayesian framework is then to

characterize the posterior distribution over trajectories (and any related parameters)

given observations.

Our contribution in this chapter is to develop a novel and flexible Markov chain Monte

Carlo (MCMC) sampler for posterior inference in MJPs. Our sampler is based on

a generalization of the thinning theorem (theorem 2.10) called uniformization, that

constructs an MJP sample from an underlying Poisson process. In our experiments,

we demonstrate state-of-the-art performance with our sampler, its efficiency stemming

from the independence property of the Poisson process and the Markov property of

MJP.

We start with a review of Markov jump processes in section 3.2. In section 3.3 we

introduce the idea of uniformization, and in section 3.5, we describe our MCMC sam-

pler for the simple case of a homogeneous Markov jump process with discrete, noisy

observations. In section 3.6, we apply our sampler to the more complicated Markov

modulated Poisson process. In our experiments, we study properties of our sampler

and compare it to a state-of-the-art sampler for Markov modulated Poisson processes.

Markov Jump Processes 32

Figure 3.1: Sample path from a Markov jump process

We end with a discussion in section 3.7.

3.2 Markov Jump Processes

A Markov jump process {S(t), t ∈ [0,∞)} is a stochastic process on the nonnegative

real line R+ with right-continuous, piecewise-constant paths (see figure 3.1). The state

space of the paths is some measurable space (S,Σ) which is typically assumed to be

countable (and often, finite), though neither need be the case (see for instance, Breuer

(2003)). We require that the singletons sets are measurable, i.e. {s} ∈ Σ, ∀s ∈ S.

Let F be the space of right-continuous piecewise-constant functions f : R+ → S from

the nonnegative real line to S. Thus, for every f ∈ F and t ∈ R+, there exists a δ

such that f(t + h) = f(t) ∀h ∈ [0, δ). For each t, define a map πt : F → S projecting

an element of F to its value at the time instant t. We endow F with the σ-algebra

generated by the sets {π−1
t (A) : t ∈ [u, v]}, ∀u < v ∈ R+, A ∈ Σ; call this σ-algebra

ΣF . The triplet (u, v,A) corresponds to the set of all functions in F taking values in

A at all times in the interval [u, v]. Let P be a probability measure on (F ,ΣF), and

let S(t) denote the induced random variable on S at any time t. Then the stochastic

process S = {S(t)}t≥0 associated with the triplet (F ,ΣF , P) is a pure jump process.

The stochastic process S is called a Markov process if for all u < t and A ∈ Σ,

P
(
S(t) ∈ A|{S(t′) : 0 ≤ t′ ≤ u

)
} = P (S(t) ∈ A|S(u)) (3.1)

This is the familiar notion that given the present, the future is independent of the past.

Finally, we introduce the notion of stochastic continuity: this means that the probability

of a jump at any time is 0. Thus, a pure jump process is stochastically continuous when

lim
h→0

P (S(t+ h) ∈ A|S(t) = s) = 1A(s) (3.2)

for all t ∈ R+, s ∈ S and A ∈ Σ (here 1A(·) is the indicator function for the set A).

Markov Jump Processes 33

Definition 3.1. A Markov jump process S is a stochastically continuous, pure jump

Markovian process on R+.

Now, consider the event Qst1t2 = {S(t) = s ∀t ∈ (t1, t2] |S(t1) = s}. This is the

(measurable) event that the MJP remains in state s over the interval (t1, t2] given that

it started in state s at time t1. We denote its probability by D(s, t1, t2), so that

D(s, t1, t2) = P (S(t) = s ∀t ∈ (t1, t2] |S(t1) = s) (3.3)

Denoting by τ(t1) the time of the next jump after t1, we also have that

D(s, t1, t2) = P (τ(t1) > t2 |S(t1) = s) , t2 > t1 (3.4)

Following Gikhman and Skorokhod (2004), it is not hard to see that D(s, t1, t2) is

monotonically nonincreasing in t2, satisfies limh→0+ D(s, t, t+ h) = 1 as well as

D(s, t1, t2) = D(s, t1, t̃)D(s, t̃, t2) for t1 < t̃ < t2 (3.5)

Consequently, we can show that D has the representation

D(s, t1, t2) = exp

(
−
∫ t2

t1

q(s, u)du

)
(3.6)

for a nonnegative function q(s, u). We can view the state of the MJP as evolving with

time, with q(s, u) giving the rate of leaving state s at time u. It is worth comparing

equation (3.6) with equation (2.48), the waiting time until the next event in a Poisson

process. We see that if s is the current state of the MJP, then the waiting time until

the next jump is identical to the waiting time until the next event of a Poisson process

with intensity q(s, u). Thus, from the independence property of the Poisson process,

given the current state of the MJP, the time until the next jump is independent of the

past.

We next look at characterizing the new state the process enters after leaving the current

state. Gikhman and Skorokhod (2004) show that there are probability distributions

Πt(s, ·) on (S,Σ) such that

P (u < τ(t1) ≤ v,S(τ(t1)) ∈ B |S(t1) = s)

= e
−

∫ u
t1
q(s,w)dw

(∫ v

u
e−

∫ t
u q(s,w)dwq(s, t)Πt(s,B)dt

)
(3.7)

The interpretation of the terms in the equation above is clear. The first is the proba-

bility of staying in state s over the interval (t1, u], while e−
∫ t
u q(s,w)dwq(s, t) is the prob-

ability density of the time of the first jump after u occuring at time t (i.e. τ(u) = t).

The distributions Πt(s, ·) represent the probability of jumping from state s into some

measurable set B, conditioned on the jump time being t. Finally, we integrate over all

Markov Jump Processes 34

possible values of t in (u, v].

We can now define the infinitesimal generator At of a Markov jump process:

At(s,B) ≡ q(s, t) (Πt(s,B)− 1B(s)) (3.8)

The generator can be viewed as the net rate at which the MJP in state s moves into

the set B; observe that this quantity can be negative. The generator function (along

with an initial distribution over states at time 0) specifies all marginal distributions of

the MJP and thus, via Kolmogorov’s extension theorem (Kallenberg, 2002), completely

characterizes the Markov jump process.

For a homogeneous MJP, the generator function At as well as the leaving rates q(s, t)

and the distributions Πt are independent of time, and we write them as A(s, ·), q(s) and

Π(s, ·). It then follows from equation (3.6) that when the system is in state s, the time

until the next jump is exponentially distributed with rate q(s), after which the system

samples a new state from the distribution Π(s, ·). This is the essence of Gillespie’s

algorithm, whose description we leave until the next section.

3.2.1 Finite state MJPs

When the state space S of a Markov jump process is countable, it is common to map

it to the space of natural numbers, i.e. S = {1, 2, · · · }. For a countable state-space, the

infinitesimal generator is completely specified by the set of rates

At(s, {s′}) = q(s, t)
(
Πt(s, s

′)− 1s′(s)
)
∀s, s′ ∈ S (3.9)

For an N -state MJP, At is just an N -by-N matrix. For the homogeneous case, we drop

the subscript and call the generator A. This matrix A is called the generator or rate

matrix of the Markov jump process. Its off-diagonal elements are non-negative, with

Ass′ representing the rate of transiting from state s to state s′. The diagonal entries

are As ≡ Ass = −
∑

s′ 6=sAss′ for each s so that its rows sum to 0. |As| characterises

the total rate of leaving state s.

As mentioned earlier, the marginal distributions of the MJP, and thus the MJP itself

is completely charaterized by the rate matrix A along with the initial distribution over

states (we call the latter π0). For a finite state MJP, we can calculate the marginal πt

at any time t analytically using the matrix exponential. In particular,

πt = exp(At)ᵀπ0 (3.10)

Uniformization for MJPs 35

Recall that exp(At) is given by the (always converging) power series

exp(At) =
∞∑
i=0

1

i!
(At)i (3.11)

The equation above hints at a connection with the Poisson process (see for example

equation (2.2)); we shall reveal the exact nature of this relation in section 3.3.

We shall now restrict ourselves to MJPs on a finite time interval T ≡ [tstart, tend]. In this

case, if all event rates are finite, a trajectory of the MJP will almost surely have only a

finite number of jumps. Let these occur at the ordered times (t1, · · · , tn) (so that there

are n state transitions). Define T ≡ (t0, t1, · · · , tn, tn+1), where t0 = tstart and tn+1 =

tend. Let S be the corresponding sequence of states, i.e. S = (s0, s1, · · · , sn, sn+1) where

si = S(ti). Observe that this pair (S, T) completely characterizes the MJP trajectory

over T ; in fact, t0 as well as the last pair (sn+1, tn+1) are redundant (we still include

these for notational convenience). The filled circles in figure 3.1 represent the pair

(S, T). We can sample (S, T) by the following generative process (called Gillespie’s

algorithm (Gillespie, 1977)):

Algorithm 3.1 Gillespie’s algorithm to sample an MJP path on the interval [tstart, tend]

Input: The rate matrix A and the initial distribution over states π0.
Output: An MJP trajectory S(t) ≡ (S, T).

1: Assign the MJP a state s0 ∼ π0. Set t0 = tstart and i = 0.
2: while ti < tend do
3: Draw z ∼ exp(|Asi |) and increment i.
4: Let ti = ti−1 + z.
5: The MJP jumps to a new state si at time ti, with
6: p(si = l|si−1) ∝ Asi−1l ∀l 6= si−1

7: end while
8: Set ti = tend, and si = si−1.

It is clear that so long as the leaving rates Ai are finite, the procedure above will

terminate, returning a trajectory with a finite number of jumps.

3.3 Uniformization for MJPs

Gillespie’s algorithm is the most direct way to sample a trajectory from an MJP. In

this section, we introduce an alternate scheme called of uniformization (Jensen, 1953;

Çinlar, 1975; Hobolth and Stone, 2009). While less intuitive than Gillespie’s algorithm,

uniformization establishes a direct connection between the Markov jump process and

the Poisson process. In later sections, we shall exploit this construction (and the

independence property of the Poisson process) to develop an efficient MCMC sampling

algorithm for posterior inference in MJPs.

Uniformization for MJPs 36

Figure 3.2: Uniformization: thin events from a subordinating Poisson process
by running a discrete-time Markov chain on this set. The empty circles are the
thinned events.

Recall that for an MJP with rate matrix A, element Ass′ , s 6= s′, is rate of leaving state

s for s′, while |As| is the total rate of leaving state s. Choose some Ω ≥ maxs (|As|)
and let W = (w1, · · · , w|W |) be an ordered set of times on the interval [tstart, tend]

sampled from a homogeneous Poisson process with intensity Ω. We will treat W as a

set of candidate jump times for the MJP. Because the Poisson rate Ω dominates the

leaving rates of all states of the MJP, W will on average contain more events than an

MJP trajectory on the same interval will have jumps. Thus, we will construct an MJP

sample from W by thinning events from W (as well as assigning states to the remaining

times).

The thinning theorem (theorem 2.10) from the previous chapter constructs a sample

from a Poisson process by independently deleting events from a Poisson process with a

higher rate. The Markov structure of the MJP means that such independent thinning

no longer applies. Instead, the Markov property implies that whether a point wi should

be kept or not depends only on the rate of exiting the state the MJP is currently in.

This in turn is determined by the MJP state at the previous Poisson event wi−1, since

by construction, no intervening events could have occured. This suggests that deciding

to thin or keep points in W amounts to running a discrete-time Markov chain on the

set of times W . This is exactly what uniformization does.

Let I be the identity matrix, and define

B =

(
I +

1

Ω
A

)
(3.12)

Observe that B is a stochastic matrix with nonnegative elements and rows adding

up to 1. Now, consider a discrete-time Markov chain with initial distribution π0 and

transition matrix B. Assign tstart a state drawn from π0, and sequentially assign

each time wi in W a state vi conditioning on the state vi−1 at wi−1, with B as the

Uniformization for MJPs 37

Markov transition operator. This discrete-time Markov chain (sometimes called the

embedded Markov chain) is said to be subordinated to the original Poisson process.

It will assign a sequence of states V to the times W ; just as (S, T) characterizes

an MJP path, (V,W) also characterizes a sample path of some piecewise-constant,

right-continuous stochastic process on [tstart, tend]. Importantly, note that unlike

(S, T), the discrete-time trajectory represented by (V,W) can have self-transitions.

We will call these virtual jumps, and treat (V,W) as a redundant representation of a

continuous-time jump process without self-transitions. As the parameter Ω increases,

the number of events in W increases; at the same time the diagonal entries of B

start to dominate, so that the number of self-transitions also increases. The following

theorem shows that these two effects exactly compensate each other, so that the

process represented by (V,W) is precisely the desired MJP:

Theorem 3.1 (Uniformization theorem, Jensen (1953)). For any Ω ≥ maxs (|As|),
(S, T) and (V,W) define the same Markov jump process S(t).

Proof. We follow Hobolth and Stone (2009). From equations (3.12) and (3.10),

πt = exp(At)ᵀπ0

= exp (Ω(B − I)t)ᵀ π0

= exp (−Ωt) exp (ΩtB)ᵀ π0

=

∞∑
i=0

((
exp (−Ωt)

(Ωt)i

i!

)(
(Bᵀ)i π0

))
(3.13)

The first term in the summation is the probability of a rate Ω Poisson producing i

events in an interval of length t, i.e. |W | = i. The second term gives the marginal

distribution over states for a discrete-time Markov chain after i steps, given that the

initial state is drawn from π0, and subsequent states are assigned according a transition

matrix B. Summing over i, we obtain the marginal distribution over states at the end

time t. Thus, the transition kernels induced by the uniformization procedure agree with

those of the Markov jump process (exp(At)) for all t. The two processes also share the

same initial distribution of states, π0. Consequently, all finite dimensional distributions

also agree, so that following Kolmogorov’s extension theorem (Kallenberg, 2002), both

define the same stochastic process.

3.3.1 Probability densities for MJPs

It is clear from Gillespie’s algorithm that if the transition rates of all states are bounded,

then an MJP will make only a finite number of state transitions over a finite interval

T . As described earlier, the set of times T , and the corresponding states S completely

Uniformization for MJPs 38

specify the MJP trajectory over T . Recalling that the state space of the MJP is S,

it follows that a sample from an MJP can be viewed as a sequence of elements in the

product space M ≡ S × T . Just as in section 2.4, we define Mi as the i-fold product

space and then construct a union space M∪ ≡
⋃∞
i=1Mi, elements of which represent

finite length pure-jump paths. Recall from section 2.6 that T ∪ is the space of finite

sequences in T , and µ< is measure defined on this space as:

µ<(B) =
∞∑
i=1

µi(B ∩ T i) (3.14)

=
∞∑
i=1

∫
B∩T i

µi(dT i) (3.15)

From Gillespie’s algorithm, we see that sampling an MJP trajectory involves sequen-

tially sampling waiting times from an exponential density and new states from a discrete

distribution, both of which depend on the current state. This suggests that under an

MJP, a random element (S, T) in M∪ of length |T | = |S| has density

P (S, T) = π0(s0)

|T |−1∏
i=1

|Asi−1 |e
−|Asi−1 |(ti−ti−1)Asi−1si

|Asi−1 |

 · e−|As|T |−1
|(t|T |−t|T |−1)

(3.16)

= π0(s0)

|T |−1∏
i=1

Asi−1si

 exp

(
−
∫ tend

tstart

|AS(t)|dt
)

(3.17)

w.r.t. the measure µ<. The ith term in the product in equation (3.16) is the

probability density of waiting for time ti − ti−1 in state si−1 (with rate Asi−1), and

then transitioning to state si. The last term is the probability of waiting for longer

than t|T | − t|T |−1 in state s|T |−1; this is because the last time t|T | does not correspond

to an MJP transition (rather it is the end of the observation interval).

Theorem 3.2. (Density of a Markov jump process) The Markov jump process is a

stochastic process on (M∪,Σ∪) with a density w.r.t. the measure µ< given by

P (S, T) = π0(s0)

|T |−1∏
i=1

Asi−1si

 exp

(
−
∫ tend

tstart

|AS(t)|dt
)

(3.18)

Proof. We know the density of a Poisson process w.r.t. the measure µ< (theorem 2.9).

Also, the uniformization theorem tells us how to contruct an MJP trajectory from

a sample from a Poisson process. Thus we can prove the result above by a simple

application of the rules of probability. Accordingly, consider a sample W from a Poisson

process with intensity Ω. Its density w.r.t. µ< is

Uniformization for MJPs 39

P (W) = exp (−Ω(tend − tstart)) Ω|W | (3.19)

For convenience, in this section, we define W to not include the endpoints (though T

does). Let the subordinated Markov chain change state n times. As defined previously,

let T = (t0, · · · tn+1) be this set of times (including the end times), so that |T | = n+ 2,

and let S be the corresponding state values. Let there be mi virtual jumps on the

interval (ti, ti+1), so that the Markov chain rejected mi opportunities to change state

before moving from si to si+1. Thus,

P (V ,W) = exp (−Ω(tend − tstart)) Ω|W |π0(s0)

|T |−1∏
i=1

mi−1∏
j=1

(
1−
|Asi−1 |

Ω

) Asi−1si

Ω

m|T |−1∏
j=1

(
1−
|As|T |−1

|
Ω

) (3.20)

= π0(s0) exp (−Ω(tend − tstart))|T |−1∏
i=1

(
Ω− |Asi−1 |

)mi−1 Asi−1si

(Ω− |As|T |−1
|
)m|T |−1

(3.21)

Next, integrate out the locations of the virtual jumps, so that

P (S, T, {mi}) = π0(s0) exp (−Ω(tend − tstart))
|T |−1∏
i=1

Asi−1si (3.22)

|T |∏
i=1

((
Ω− |Asi−1 |

)mi−1

∫ ti

ti−1

· · ·
∫ ti

umi−1

µ(du1) · · ·µ(dumi−1)

)

= π0(s0) exp (−Ω(tend − tstart))
|T |−1∏
i=1

Asi−1si

|T |∏
i=1

((
Ω− |Asi−1 |

)mi−1 (ti − ti−1)mi−1

mi−1!

)

Here we have recognized that the integration above just calculates the volume of a

MJPs in Bayesian modelling applications 40

simplex of side (ti − ti−1). Summing out the mi’s, we get

P (S, T) = πs0 exp (−Ω(tend − tstart))
|T |−1∏
i=1

Asi−1si (3.23)

|T |−1∏
i=0

(∞∑
mi=0

((Ω− |Asi |) (ti+1 − ti))mi

mi!

)

= πs0 exp (−Ω(tend − tstart))
|T |−1∏
i=1

Asi−1si

|T |−1∏
i=0

exp ((Ω− |Asi |) (ti+1 − ti))

= πs0

|T |−1∏
i=1

Asi−1si

|T |−1∏
i=0

exp (−|Asi | (ti+1 − ti))

= πs0

|T |−1∏
i=1

Asi−1si

 exp

(
−
∫ tend

tstart

|AS(t)|dt
)

(3.24)

3.4 MJPs in Bayesian modelling applications

The Markov property of the MJP makes it both a realistic model for various physi-

cal and chemical phenomena, as well as a convenient approximation for more complex

phenomena in biology, finance, queuing systems etc. In Bayesian modelling applica-

tions, the MJP plays the role of a prior over the state of some system that evolves in

a piecewise-constant manner. Examples of such applications include chemical and bio-

logical systems, where the state of the MJP represents the sizes of various interacting

species (eg. Gillespie (1977); Golightly and Wilkinson (2011)). In queuing applica-

tions, the state may represent the number of pending jobs in a queue (Asmussen, 2003;

Breuer, 2003; Tijms, 1986), with the arrival and processing of jobs treated as indepen-

dent events. Another application is genetics, where ‘time’ actually represents position

along a strand of genetic matter. Here, the MJP trajectory represents a segmentation

of, say, a strand of DNA, with different regions corresponding to, say, different muta-

tion rates (Fearnhead and Sherlock, 2006; Rodrigue et al., 2008). MJPs also find wide

application in finance, for example, Elliott and Osakwe (2006) use an MJP to model

switches in the parameters that govern the dynamics of stock prices (the latter being

modelled as a Lévy process).

In the applications listed above, the MJP trajectory is usually not observed completely.

Instead, one is provided with observations at a discrete set of times, and often, these

observations are noisy. In a Bayesian setting, one then attempts to characterize the

posterior distribution over state-trajectories given these observations. This distribu-

tion is almost always not an MJP, and obtaining analytic characterizations of this is

MCMC inference via Uniformization 41

impossible in all but the simplest situations. The situation is further complicated by

the fact that one usually does not know the MJP parameters, and has to work with a

prior distribution over these as well.

One approach is to deterministically approximate the intractable posterior with a sim-

pler class of distributions. Examples of such an approach include mean-field approxima-

tions, expectation propagation and other variational approximations (Nodelman et al.,

2002, 2005; Opper and Sanguinetti, 2007; Cohn et al., 2010). These methods have the

disadvantage of being biased; moreover they are not easily adapted to situations where

the MJP is part of a larger hierarchical model, for example, when one requires the

posterior distribution over some unknown parameters as well. Consequently, Monte

Carlo based inference methods are by far the most popular approach to approximating

the MJP posterior. Various sampling based approximations have been proposed in the

literature (Fearnhead and Sherlock, 2006; Boys et al., 2008; El-Hay et al., 2008; Fan and

Shelton, 2008; Hobolth and Stone, 2009), but these also have disadvantages: usually

they involve expensive computations like matrix exponentiation, matrix diagonalization

or root-finding, or are biased, involving some form of time discretization. Additionally,

many of these methods do not extend easily to complicated likelihood functions, which

require specialized sampling algorithms. For instance, the contribution of Fearnhead

and Sherlock (2006) is to develop an exact sampler for Markov modulated Poisson

processes (MMPPs), where an MJP modulates the rate of a Poisson process. In next

section, we describe a novel sampler that addresses these limitations of existing meth-

ods.

3.5 MCMC inference via Uniformization

Consider the problem of sampling an MJP path S(t) over the interval T = [tstart, tend],

given a set of noisy observations of its state. In the simplest case, we observe the state

of the process at the boundaries tstart and tend. More generally, we are given the initial

distribution over states π0 as well as a set of O noisy observations X = {Xto1
, ...XtoO

} at a

discrete set of times T o = {to1, . . . , toO}. The observations have likelihoods P (Xtoi
|S(toi))

and we wish to sample from the posterior P (S|X), or equivalently P (S, T |X). In sec-

tion 3.6 on Markov modulated Poisson processes, as well as in chapter 4 on continuous-

time Bayesian networks, we consider observations that are effectively continuous-time.

As we will show, our method handles these cases quite naturally as well.

To understand our approach, first recall that the MJP is the continuous-time limit of a

discrete-time Markov chain. Sampling a trajectory of a finite state discrete-time Markov

chain given noisy observations can be easily and efficiently done using the forward

filtering backward sampling dynamic programming algorithm. During the forward

pass, this algorithm iteratively calculates the marginal distribution over states at step

i given the observations until this time. At the end of the forward pass, we have the

MCMC inference via Uniformization 42

marginal distribution over states at the end time given all observations, and we sample

a value from this distribution. We then make a backward pass through the chain,

successively sampling the state at step i given the associated marginal distribution

calculated during the forward pass, and the sampled value at step (i+ 1). The Markov

dependencies allow all calculations to be performed very efficiently, and at the end we

have a sample of the Markov chain from the posterior distribution.

We can try to adapt this approach to the MJP by discretizing time, and running the

forward-backward algorithm on this system. This will return a trajectory that can

change state only at a finite set of times, chosen a priori. Since an MJP can change

state at any time, such an approach is clearly biased. To keep this bias small, we will

need to discretize time at a fine resolution. This now requires us to run the forward-

backward algorithm on a long Markov chain, and can be inefficient.

Instead of trying to reduce the bias by choosing a fine time-discretization, our approach

will be to eliminate it altogether by choosing a random discretization. Uniformization

provides us with exactly such a randomized discretization.

Recall that uniformization proceeds by sampling a set of Poisson events W and then

assigning them state-labels V via a discrete-time Markov chain. We will define W =(
w0, w1, · · · , w|W |

)
to include the endpoints of the interval (i.e. w0 = tstart and w|W | =

tend). W forms a random discretization of the interval [tstart, tend], and under the

MJP, we assign W labels V by running a Markov chain with transition matrix B from

equation (3.12). Resampling the labels V now involves running the forward-backward

algorithm with transition matrix B. Each transition from wi to wi+1 must incorporate

evidence from all observations in the interval (wi, wi+1]. At the end, we obtain a new

state sequence Ṽ , and the pair (Ṽ ,W) maps to a new MJP path (S̃, T̃) (see the bottom

two panels in figure 3.3).

The question now remains: how do we obtain the set W? In subsection 3.5.1, we review

some methods that try to sample W from P (W |X), its posterior distribution given the

observations (Hobolth and Stone, 2009; Fearnhead and Sherlock, 2006). In general, this

is not straightforward, depending critically on the likelihood model. Instead, we will

show that sampling from P (W |S(·), X), conditioned on the current MJP trajectory,

is easy. In fact, we will see that P (W |S(·), X) = P (W |S(·)), so that unlike methods

that involve sampling P (W |X), our sampler applies to a wide range of observation

processes (the observations enter only via the likelihood terms in the forward-backward

algorithm). At a high level, our sampler is an auxiliary variable Gibbs sampler that

proceeds by alternately sampling the Poisson events W given the MJP trajectory, and

then a new trajectory given W .

Look at figure 3.3 and remember that the pairs (S, T) and (V,W) map to the same MJP

trajectory. The only difference is the existence of a set of virtual jumps in (V,W). Call

this U ; recovering the uniformized representation (V,W) given (S, T) involves sampling

MCMC inference via Uniformization 43

Figure 3.3: Uniformization-based Gibbs sampler: starting with an MJP tra-
jectory, resample the thinned events and then resample the trajectory giving all
Poisson events

U given (S, T). Now, W is drawn from a rate Ω Poisson process, while the probability

that an element of W also belongs to U (i.e. the probability of it being thinned) when

the MJP is in state s is (1 − |As|Ω). The last expression is the probability that the

embedded Markov chain makes a self-transition. Corollary 2.1 of the thinning theorem

then suggests that we can reconstruct such thinned events by sampling from a Poisson

process with rate (Ω− |As|). Of course, the state of the MJP and thus the probability

of thinning varies with time; so consider sampling U from an inhomogeneous Poisson

process with intensity (Ω − |AS(t)|). This intensity is piecewise-constant, taking the

value (Ω− |Asi |) on the interval [ti, ti+1). Define |Ui| as the number of auxiliary times

in this interval, so that |U | =
∑|T |−1

i=0 |Ui|. The probability density of U is then

P (U |S, T) =

|T |−1∏
i=0

(Ω− |Asi |)|Ui|
 exp

(
−
∫ tend

tstart

(Ω− |AS(t)|)dt
)

(3.25)

MCMC inference via Uniformization 44

Proposition 3.1. For any Ω ≥ maxs (|As|), the Markov jump process (S, T) with aux-

iliary times U sampled from equation (3.25) is equivalent to the times W sampled from

the subordinating Poisson process along with the states V assigned via the subordinated

Markov chain. In other words, P (S, T, U) = P (V,W).

Proof. Multiplying equation (3.17) with equation (3.25), we see that

P (S, T, U) =
Ω|U |+|T |−2

eΩ(tend−tstart)
· π0(s0)

|T |−1∏
i=0

(
1− |Asi |

Ω

)|Ui| |T |−1∏
i=1

Asisi−1

Ω
(3.26)

The first term on the right is the probability of an ordered set of times T ∪ U under

a homogeneous Poisson process with rate Ω (recall that the endpoints of T are fixed).

The second term is the probability of a sequence of states under a Markov chain with

initial distribution π0 and transition matrix B = (I + 1
ΩA). These are just W and

V .

Having resampled U (and thus W), we assign W a new set of labels Ṽ by running

the forward-backward algorithm as described earlier. To incorporate the likelihoods of

observations X into this process, let X[wi,wi+1) represent the observations in the interval

[wi, wi+1). Throughout this interval, the MJP is in state vi, giving a likelihood term:

Li(vi) = p
(
X[wi,wi+1)|S(t) = vi

)
, t ∈ [wi, wi+1) (3.27)

For the case of noisy observations of the MJP state at a discrete set of times T o, this

simplifies to

Li(vi) =
∏

j:toj∈[wi,wi+1)

p(Xtoj
|S(toj) = vi) (3.28)

Conditioned on the times W , V is a Markov chain with likelihoods given by equa-

tion (3.27), so we can efficiently resample V using the standard forward filtering-

backward sampling algorithm. The cost of this is O(N2|V |), quadratic in the number

of states and linear in the length of the chain. Further any structure in A (e.g. sparsity)

is inherited by B and can be exploited easily.

Let Ṽ be the new state sequence. Then (Ṽ ,W) will correspond to a new MJP path

S̃(t) ≡ (S̃, T̃), obtained by discarding virtual jumps from (Ṽ ,W).

Proposition 3.2. The auxillary variable Gibbs sampler described above has the poste-

rior distribution p(S(t)|X) as its stationary distribution. Moreover, if Ω > maxi(|Ai|),
the resulting Markov chain is ergodic.

MCMC inference via Uniformization 45

Proof. The first statement follows from the fact that the algorithm simply introduces

auxiliary variables U followed by conditionally sampling V given X and W . To show

ergodicity, note that if Ω > maxs(|As|), then the intensity of the subordinating Pois-

son process is strictly positive. Consequently, there is positive probability density of

sampling appropriate auxiliary jump times U and moving from any MJP path to any

other.

Algorithm 3.2 Block Gibbs sampler for a Markov jump process on the interval
[tstart, tend]

Input: A set of observations X and parameters A (the rate matrix), π0 (the
initial distribution over states) and Ω > maxs(|As|).
The previous MJP path, S(t) ≡ (S, T), where T is the set of transition
times (including end times), and S is the set of corresponding state values.

Output: A new MJP trajectory S̃(t) ≡ (S̃, T̃).

1: Sample U ⊂ [tstart, tend] from a Poisson process with piecewise-constant rate (Ω−
|AS(t)|). Define W = T ∪ U .

2: Sample a path from a discrete-time Markov chain with |W | steps using the forward-
backward algorithm. The transition matrix of the Markov chain is B = (I + 1

ΩA),
while the initial distribution over states is π0. The likelihood of state s at step i
is Li(s) = P

(
X[wi,wi+1)|S(t) = s

)
, t ∈ [wi, wi+1) with X[wi,wi+1) representing the

observations in the interval [wi, wi+1).
3: Let T̃ be the set of times in W when the Markov chain changes state (as well as

the end times). Define S̃ as the corresponding set of state values.

Note that it is essential for Ω > maxs(|As|); equality is not sufficient for ergodicity. For

example, if all diagonal elements of A are equal to −Ω, then the subordinating Poisson

process will have intensity 0, and consequently the set of jump times T will never

be changed by the sampler above. In fact, the only dependence between successive

samples of the Gibbs sampler is through the shared jump times T , since the state

sequence Ṽ is independent of V given W . By increasing Ω, more auxiliary virtual

jumps are introduced, increasing the probability of different jump times, leading to

faster mixing. Of course, as a consequence, the HMM chain grows longer, leading to a

linear increase in the computational cost per Gibbs iteration. Thus the parameter Ω

allows a trade-off between mixing rate and computational cost. We look at the effect

of this parameter in subsection 3.5.3; in all other experiments, we set Ω = maxs(2|As|).
We find this works quite well, with the samplers typically converging after less than 5

iterations.

3.5.1 Comparison with existing sampling algorithms

A simple Monte Carlo approach to obtaining posterior samples from an endpoint-

conditioned MJP (i.e. an MJP with noiseless observations at the endpoints of an obser-

vation interval) is rejection sampling: sample paths from the prior given the observed

MCMC inference via Uniformization 46

start-state and reject those that do not end in the observed end-state (Nielsen, 2002).

For multiple noiseless observations over an interval, one uses the Markov property of

the MJP to break the problem into a number of independent endpoint conditioned

inference problems.

Rejection sampling can be extended to the case of noisy observations by importance

sampling or, more practically, by sequential Monte Carlo methods like particle filter-

ing (Fan and Shelton, 2008). Recently, Golightly and Wilkinson (2011) have applied

particle MCMC methods to correct the bias introduced by standard particle filter-

ing methods. However, these methods are efficient only in situations where the data

exerts a relatively weak influence on the trajectory (compared to the prior): a large

state-space or an unlikely end state can result in large numbers of rejections or small

effective sample sizes. Though these algorithms are simple and general purpose, their

flexibility means they do not fully exploit the structure of the MJP, and often require

complicated modifications to make proposals that ‘hit the data’.

A second approach, more specific to the MJP, uses matrix exponentiation (equa-

tion (3.10)) to integrate out the infinitely many paths leading from the state at the

time of one observation to state at the next. In particular, let ti be the time of the ith

observation, and P (S(ti)|X[0,ti]) be a vector of the probability over states at time ti,

given all observations upto (and including) the ith observation. Then,

P (S(ti+1) = s|X[0,ti+1]) ∝ P (Xti+1 |s)
[
exp (A(ti+1 − ti))ᵀ P (S(ti)|X[0,ti])

]
s

(3.29)

This suggests a dynamic programming algorithm to sample the MJP state at a finite set

of times T̃ ≡ (t̃1, · · · t̃m): make a forward pass through this set, successively calculating

the marginal distribution over states using equation (3.29) (starting with the initial

distribution over states, π0). Having calculated the distribution at the end time t̃m,

sample the MJP state at this time. Now, make a backward pass through the times,

conditionally sampling a new state at t̃i given the state at time t̃i+1. For more details,

see (Hobolth and Stone, 2009) and the references therein.

This method has the advantage of exploiting the properties of the MJP to make ‘op-

timal’ proposals, which unlike with the methods of the previous paragraph are always

accepted. One might view this difference as similar to that between running the stan-

dard forward-filtering backward-sampling algorithm and say, a particle filter on the

discrete-time Markov chain. However, this analogy breaks down computationally, since

matrix exponentiation is an expensive operation that scales as O(N3), N being the

number of states. Thus, this method does not scale well when the dimensionality of

the MJP state space is large, and in particular, this does not extend to MJPs with

infinite state spaces. Also, the matrix resulting from matrix exponentiation is dense

and any structure, e.g. sparsity, in the rate matrix A cannot be exploited. Note also

that the set of times T̃ must include the set of observation times, and we therefore need

at least as many matrix-exponentiations as there are observations. As we will see in

MCMC inference via Uniformization 47

the section on Markov modulated Poisson processes, there are many situations where

the frequency of observations is much higher than the frequency of state changes in the

MJP, and ideally, we would like the number of expensive matrix exponentials to scale

with the latter quantity. Our MCMC sampler does not require any expensive matrix

exponentiations; moreover, the length of the discrete-time Markov chain scales with the

number of Poisson events (and thus, on the uniformization rate Ω). This is a property

of the dynamics of the MJP, rather than, say, the observation process. We elaborate

on this point in section 3.6.

Another limitation of the previous scheme is that we recover the MJP state only at a

finite set of times. Having marginalized out the states at all remaining times, we need

an additional step to fill in the rest of the trajectory. Sampling the entire trajectory

is important in situations where one is performing inference on the MJP parameters

(subsection 3.5.2), here one needs statistics like the total time spent in each state and

the number of transitions between each pair of MJP states. One option to fill in the

MJP trajectory is to use rejection sampling. A more popular approach is to use uni-

formization as outlined in Hobolth and Stone (2009). Like our sampler, these methods

proceed by sampling the Poisson events W in the interval between observations, and

then running a discrete-time Markov chain on this set of times to sample a new tra-

jectory. However, sampling from the posterior distribution over the number of Poisson

events can be tricky (depending crucially on the observation process), and usually re-

quires a random number of O(N3) matrix multiplications (as the sampler iterates over

the possible number of Poisson events). Our sampler is also based on unformization,

but unlike existing work which produce independent samples, ours is an MCMC al-

gorithm. By sampling the Poisson process conditioned on the current trajectory, the

details of the observation process become irrelevant. The latter only enter when run-

ning the HMM forward-backward algorithm. In this sense, our sampler is a convenient

general purpose sampler for MJP-based models, with the user only having to provide

a function that calculates the probability of observations in any segment of time where

the MJP remains in a fixed state. At the price of producing correlated samples, our

method extends naturally to various extensions of MJPs, scales as O(n2), does not re-

quire matrix exponentiation, and easily exploits structure in the rate matrix. Moreover,

we demonstrate that our sampler mixes very rapidly.

3.5.2 Bayesian inference on the MJP parameters

Having described an MCMC algorithm to sample a new MJP trajectory given an old

trajectory and a set of parameters A and π0, we can perform a fully Bayesian analysis by

placing priors on the MJP parameters as well. We can then embed our MCMC sampler

within an outer Gibbs sampler that alternately resamples the trajectory given the

parameters, and then the parameters given the trajectory. Working in this framework

further amplifies the benefits of our method. As we shall see, the computational cost

MCMC inference via Uniformization 48

other samplers incur to produce independent samples of the MJP trajectory is now

even more wasteful, since the mixing of the overall Gibbs sampler is fairly insensitive

to whether the conditional updates are independent or correlated.

Like Fearnhead and Sherlock (2006), we place independent gamma priors on the diag-

onal elements |As| (i.e. on the leaving rate of each state s) and independent Dirichlet

priors on the probabilities of transitioning from each state to all the other states. In

particular, defining ps,s′ =
As,s′
|As| , we let:

|As| ∼ Gamma(α1, α2) (3.30)

(ps,1, . . . , ps,s−1, ps,s+1, . . . ps,N) ∼ Dirichlet(β) (3.31)

This prior over the rate matrix A is conjugate; the sufficient statistics required to

calculate the posterior (given a trajectory S(t)) are the total number of state transitions,

the total amount of time spent in each state and the number of transitions between

each pair of states. Thus, let ns,s′ be the number of transitions from state s to s′, and

ns be the number of times the MJP leaves state s (so that ns =
∑

s′∈S ns,s′). Let Ts

be the total amount of time spent in state s. Then,

|As| | (S, T) ∼ Gamma(α̂1,s, α̂2,s) (3.32)

(ps,1, . . . , ps,s−1, ps,s+1, . . . ps,N)|(S, T) ∼ Dirichlet (β + (ns,1, . . . , ns,s−1, ns,s+1, . . . ns,N))

(3.33)

Here α̂1,s = α1 + ns and 1/α̂2,s = 1/α2 + 1/Ts.

We either fix π0, the initial distribution over states, to the discrete uniform distribution

or set it equal to the equilibrium distribution of the rate matrix A. In the latter case, the

distribution described previously becomes a Metropolis-Hastings proposal distribution,

and we accept an Anew sampled from this distribution with probability proportional to

the probability of initial state under the equilibrium distribution of Anew divided by

that of the initial state under the equilibrium distribution of Aold. Note that computing

the equilibrium distribution requires solving an O(N3) eigenvector problem, so that in

this case, the overall Gibbs sampler is cubic (even though our MCMC sampler scales

as O(N2)).

3.5.3 Experiments

In this set of experiments, we look at the effect of the subordinating Poisson rate Ω

on the mixing of our MCMC sampler. We generated a random 5-by-5 matrix A (with

hyperparameters α1 = α2 = β = 1, see equations (3.30) and (3.31)). The state of

this MJP trajectory was observed via a Poisson likelihood model (see section 3.6), and

Markov modulated Poisson processes (MMPPs) 49

samples produced by a C++ implementation of our algorithm were used to characterize

the resulting posterior. Each run consisted of 10000 iterations with a burn-in of 1000

samples. The left plot in figure 3.4 shows effective sample sizes (ESS) against compu-

tation times for different values of the ratio (Ω/maxs(|As|)). For each MCMC sample,

we calculated the the number of transitions as well as the time the MJP trajectory

spent in each state, and for all MCMC runs, the effective sizes of these statistics were

calculated using R-CODA (Plummer et al., 2006). The ‘overall’ ESS of an MCMC

run was the median ESS across all these statistics. Figure 3.4 (left) shows this median

averaged across a 1000 runs, keeping A fixed. We see that increasing Ω does increase

the mixing rate, however the added computational cost quickly swamps out any benefit

this might afford. Figure 3.4 (right) is a similar plot for the case of Bayesian inference

on the MJP parameters: here rather than keeping the parameters fixed, these were

resampled as described in subsection 3.5.2. Now, the effective sample size of an MCMC

run was the median ESS of all MJP parameters; the figure shows this number averaged

across a 1000 runs. Interestingly, for this problem, ESSs are fairly insensitive to Ω,

suggesting an dependent Gibbs update is as effective as a conditionally independent

Gibbs update. We found this to be true in general; when embedded within an outer

Gibbs sampler, our sampler (with Ω = 2 maxs(|As|)) produced similar effective param-

eter sizes as an MJP sampler that produces independent samples. In any case, we shall

see that the computational savings provided by our sampler far outweigh the cost of

dependent samples.

0 1 2 3 4
2000

4000

6000

8000

10000

12000

1.1

1.5

2

5
10 20

Time (seconds)

E
ff

e
c
ti
v
e

 s
a

m
p

le
 s

iz
e

0 2 4 6 8
4000

5000

6000

7000

8000

1.11.5
2 5 10 20

Time (seconds)

E
ff

e
c
ti
v
e

 s
a

m
p

le
 s

iz
e

Figure 3.4: Effective sample sizes vs computation times for different settings of
Ω for (left) a fixed rate matrix A and (right) Bayesian inference on the rate matrix

In light of these results, for all subsequent experiments, we set Ω = 2 maxs(|As|). Fig-

ure 3.5 shows the initial burn-in of a sampler with this setting for different initializations

(the vertical axis shows the number of state transitions in the current MJP sample).

This quantity quickly reaches its equilibrium value within a few samples.

Markov modulated Poisson processes (MMPPs) 50

2 4 6 8
0

200

400

600

800

1000

Iteration number

N
u

m
b

e
r

o
f

tr
a

n
s
it
io

n
s
 i
n

 M
J
P

 p
a

th

Figure 3.5: Traceplot of the number of MJP jumps for different initializations

Figure 3.6: A realization of a Markov modulated Poisson process. Note that
that Poisson events ‘x’ are unrelated to the uniformization-based construction,
and need not be aligned with eg. the MJP jumps

3.6 Markov modulated Poisson processes (MMPPs)

A Markov modulated Poisson processes (figure 3.6) is an doubly-stochastic Poisson

process (also called a Cox process (Cox, 1955)) whose intensity function is piecewise-

constant and distributed according to a Markov jump process. Let the MJP have N

states, and supposed it is parametrized by an initial distribution over states π0 and

a rate matrix A. Associate with each state s a nonnegative constant λs, call this the

output or emission rate of state s. Then a set of points O is distributed as an MMPP

when

S(t) ∼ MJP(π0, A) (3.34)

O ∼ Poiss(λS(t)) (3.35)

Note that the Poisson process O is different from the subordinating Poisson process

used in the uniformization-based construction of the MJP, and we shall refer to it as

the output Poisson process. MMPPs have been used to model phenomenon like the

distribution of rare DNA motifs along a gene (Fearnhead and Sherlock (2006)), photon

arrival in single molecule fluorescence experiments (Burzykowski et al., 2003), web page

Markov modulated Poisson processes (MMPPs) 51

requests (Scott and Smyth, 2003) etc.

The Poisson observations effectively form continuous-time observations of the latent

MJP, with the absence of Poisson events also providing information about the MJP

state. For example, the absence of observed Poisson events over any long interval

would suggest that it is unlikely for the latent MJP to have spent that interval in a

state with a high emission rate.

Fearnhead and Sherlock (2006) developed an exact sampler for MMPPs, exploiting the

fact that over an interval where the MJP remains in a fixed state, the probability of no

Poisson events is exponential in the length of the interval (equation (2.48)). Observing

that the MJP waiting times are also exponentially distributed, they define an extended

MJP where the rate of exiting any state is the sum of rate of leaving that state and

the sum of the emission rate corresponding to that state. Upon exiting the state,

the extended system can either move to another MJP state or (on emitting a output

Poisson event), move to an absorbing state. Given a distribution over states at any

time, this allowed them to calculate the distribution over states at any subsequent time:

for times after the next Poisson event, the system will be in the absorbing state; for

times before the next Poisson event, the distribution over states can by calculated by

matrix-exponentiating the extended rate matrix (equation (3.10)). Thus, they start

with an initial distribution over states, and sequentially calculate the distribution over

states just before a Poisson observation, given the distribution over states just before

the previous observation. They follow this forward-filtering stage with a backward-

sampling stage where they instantiate the state of the MJP at all Poisson events (as

well as at the start and end times). Having sampled the state of the MJP at this set

of discrete times, they finally use a uniformization-based endpoint conditioned MJP

sampler to fill in the MJP trajectory between every pair of adjacent times.

The main advantage of this method is that it produces independent samples from

the MMPP posterior. However, it does so at the price of being fairly complicated

and computationally intensive. Moreover, it has the disadvantage of operating at the

timescale of the Poisson observations rather than the dynamics of the latent MJP: for

large Poisson rates, this can be quite inefficient as we shall demonstrate.

Our MCMC sampler outlined in the previous section can be straightforwardly extended

to the MMPP without any of these disadvantages. Resampling the subordinating

Poisson events (step 1 in algorithm 3.2) remains unaffected, since conditioned on the

current MJP trajectory, their distribution is independent of the observations. Step 2

requires calculating the emission likelihoods Li(s); over any interval [wi, wi+1), this is

given by

Li(s) = (λs)
|Oi| exp (−λs(wi+1 − wi)) , (3.36)

Here, |Oi| is the number of output Poisson events in the interval [wi, wi+1) and λs is

Markov modulated Poisson processes (MMPPs) 52

the Poisson rate of state s. We place conjugate Gamma priors on the λs’s. Note that

evaluating equation (3.36) requires counting the number of observed Poisson events

between every successive pair of subordinating Poisson process events. The flexibility

of our approach can be seen by comparing this modification of our original algorithm

with the complicated approach Fearnhead and Sherlock (2006) had to take.

3.6.1 Experiments

In the following, we compare a C++ implementation of our algorithm with an im-

plementation∗ of the algorithm of Fearnhead and Sherlock (2006), coded in C. We

performed fully Bayesian inference, sampling both the MJP parameters (as described

in subsection 3.5.2) and the Poisson likelihood rates λs. In all instances, our algorithm

did significantly better, the performance improvement increasing with the complexity

of the problem.

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

C
P

U
 t

im
e

 (
s
e

c
o

n
d

s
)

Fearnhead

Our sampler

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

10
1

10
0

10
1

10
2

10
−4

10
−2

10
0

10
2

Figure 3.7: CPU time to produce a 100 effective samples as we observe (left)
increasing number of Poisson events in an interval of length 10 (centre), 10 Pois-
son events over increasing time intervals and (right) increasing intervals with the
number of events increasing on average.

Figure 3.7 shows the first set of experiments, where the number of states of the latent

MJP was fixed to 5. Like in the previous experiment, the prior on the rate matrix

A had parameters α1 = α2 = β = 1. The shape parameter of the Gamma prior

on the output Poisson rate of state s, λs was set to s (thereby breaking symmetry

across states), the scale parameter was fixed at 1. We used the same hyperpriors over

the MMPP parameters for all runs. In all cases, we estimated the time required to

produce 100 effective samples from a run of 10000 samples (with a burn-in of 1000).

For each MCMC iteration, we alternately sampled the MJP trajectory and the MMPP

parameters, and at the end of the MCMC run, the effective sample size (ESS) of each

parameter was estimated. The ‘overall’ effective sample size was the median ESS of all

parameters; this and the overall simulation time was used to estimate the time required

to produce 100 effective samples. Each point in the figures is this time, averaged over

10 random datasets.

In the leftmost plot, we plot this time as an increasing number of Poisson events were

observed, randomly distributed on an interval of fixed length 10. For our sampler,

∗Downloaded from Chris Sherlock’s webpage

Markov modulated Poisson processes (MMPPs) 53

we see that increasing the number of observations leaves the computation time largely

unaffected, while for the sampler of Fearnhead and Sherlock (2006), this increases quite

significantly. This reiterates the point that our sampler works at the timescale of the

latent MJP, while Fearnhead and Sherlock (2006) work at the timescale of the observed

Poisson process.

In the middle plot, we fix the number of observations to 10, increasing the length of

the observation interval instead, while in the final plot, we increase both the interval

length and the average number of observations in that interval. In both these cases, once

again our sampler offers improvements of more than an order of magnitude. In fact,

the only problems where we observed the sampler of Fearnhead and Sherlock (2006) to

outperform ours were low-dimensional problems with only a few Poisson observations

in a long interval, and with a rate matrix with a single, very unstable state. The latter

condition results in a high uniformization rate Ω but only a few state transitions (since

the system typically spends most of the time in the stable states). The resulting large

number of virtual jumps can make our sampler inefficient. We return to this problem

in chapter 7.

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

C
P

U
 t
im

e
 (

s
e
c
o
n
d
s
)

dimension

Fearnhead

Our sampler

Fearnhead (fixed prior)

Our sampler (fixed prior)

Figure 3.8: CPU time required to produce 100 effective samples as the state
space of the MJP is increased

In figure 3.8, we plot the time to produce 100 effective samples as the size of the MJP

state space increases. In this case, we fixed the number of Poisson observations to 10,

over an interval of length 10. We see that our sampler (plotted with squares) offers

substantial speed-up over the sampler of Fearnhead and Sherlock (2006) (plotted with

circles); however we see that for both samplers, computation time scales cubically with

the latent dimension. However, recall that this cubic scaling is not a property of our

MJP-path sampler; rather it is a consequence of using the equilibrium distribution of a

sampled rate matrix as the initial distribution over states (this requires calculating an

eigenvector of a proposed rate matrix). If we fix the initial distribution over states to

Discussion 54

the discrete uniform distribution, we observe that our sampler now scales quadratically

(the cyan curve with downward triangles).

3.7 Discussion

In this chapter, we proposed a novel Markov chain Monte Carlo sampling method for

Markov jump processes. Our method exploits the simplification of the structure of the

MJP resulting from the introduction of auxiliary variables via uniformization. This

constructs a Markov jump process by subordinating a discrete-time Markov chain to a

Poisson process. Our sampler is a blocked Gibbs sampler in this augmented space and

proceeds by alternately resampling the Poisson process given the Markov chain and

vice versa. This auxiliary variable Gibbs sampler is computationally very efficient as

it does not require time discretization, matrix exponentiation or diagonalization, and

can exploit structure in the rate matrix. Importantly, our sampler easily generalizes to

MJP-based models like Markov modulated Poisson processes. In our experiments, we

studied our sampler empirically, demonstrating a significant speed-up compared to a

state-of-the-art sampler for MMPPs.

Our sampler will form the basis of the more complicated algorithms studied in later

chapters. In all cases, we will first provide an alternate approach to sampling from

a system of interest; this will involve thinning a sample from a system with higher

event rates. The alternate system as well as the thinning procedure will usually be

more complicated than a Poisson process and a discrete-time Markov chain. However,

inference will still proceed as we did here: reconstruct the thinned events using proper-

ties of the Poisson process and then resample the trajectory using sampling ideas from

discrete-time systems.

Our method opens a number of avenues that we do not explore in this thesis. One

concerns the subordinating Poisson rate Ω which acts as a free-parameter of the sampler.

While our heuristic of setting this to 2 maxs |As| worked well in our experiments, this

may not be the case for rate matrices with states of widely varying stability. One

approach is to ‘learn’ a good setting of this parameter via adaptive MCMC methods

(Andrieu and Thoms, 2008). More fundamentally, it would be interesting to investigate

if theoretical claims can be made about the ‘best’ setting of this parameter under

some measures of mixing speed and computational cost. In chapter 7, we describe an

alternate approach, where rather that using a single rate Ω, we associate different rates

with different states.

Next, there are a number of immediate generalizations of our sampler. First, our algo-

rithm is easily applicable to inhomogeneous Markov jump processes where techniques

based on matrix exponentiation cannot be applied. Chapter 5 will reveal how this can

be done in a straightforward manner. In chapter 6 we will also look at generalizing our

Discussion 55

sampler to semi-Markov processes where the holding times of the states follow non-

exponential distributions; these models find applications in fields like biostatistics and

queuing theory (Mode and Pickens, 1988), neuroscience (McFarland et al., 2011) etc.

By combining our technique with slice sampling ideas (Neal, 2003a), we can explore

Markov jump processes with a countably infinite state spaces. In our case, the com-

plication with these models is not so much the infinite state spaces involved; rather it

is the fact that the maximum event rate in these models can be infinite. This means

that we cannot directly choose a Poisson rate Ω that dominates all event rates in the

system; so that a straightfoward application of our ideas impossible. We shall see such

problems in the next two chapters, though we will leave it until chapter 6 before we

fully resolve this issue.

Chapter 4

Continuous-time Bayesian

networks (CTBNs)

4.1 Introduction

Continuous-time Bayesian networks (CTBNs) are compact, multi-component repre-

sentations of Markov jump processes that have structured rate matrices (Nodelman

et al., 2002). Special instances of these models have long existed in the literature,

particularly stochastic kinetic models like the Lotka-Volterra equations (these describe

interacting populations of animal species, chemical reactants, gene regulation networks,

etc (Wilkinson, 2009)). There have also been many related developments (see for ex-

ample Bolch et al. (1998); Didelez (2008)). We shall however deal with CTBNs, a

framework introduced in Nodelman et al. (2002) that harnesses the representational

power of Bayesian networks to characterize structured MJPs.

Just as the familiar Bayesian network uses a collection of smaller conditional probabil-

ity tables to represent a probability table whose size is exponential in the number of

variables, so too a CTBN represents a structured rate matrix with smaller conditional

rate matrices. An m-component CTBN represents the state of an MJP with the states

of m nodes S1(t), . . . ,Sm(t) in a directed (and possibly cyclic) graph G. Figure 4.1

shows two CTBNs, the ‘predator-prey network’ and the ‘drug-effect network’. The for-

mer is a CTBN governed by the Lotka-Volterra equations; it describes the dynamics of

the population sizes of two interacting species, a ‘predator’ and a ‘prey’. We shall look

at it more closely in subsection 4.3.1. The latter is a popular CTBN used to model the

dependencies in events leading to and following a patient taking a drug.

Loosely speaking, each node of the CTBN acts as an MJP with a particular rate matrix

that depends on the instantaneous configuration of its parents (and not its children,

although the presence of cycles means a child can be a parent as well). The trajectories

of all nodes are piecewise constant, and when a node changes state, the event rates of

Introduction 57

HungryEating

Uptake

Drowsi-
 ness

 Full
stomach

Joint
pain

Concen-
tration

Baro-
meter

Figure 4.1: The predator-prey network (left) and the drug-effect CTBN (right)

HungryEating

Uptake

HungryEating

Uptake

HungryEating

Uptake

HungryEating

Uptake

Figure 4.2: Expanded CTBN

all its children change. The graph G and the set of rate matrices (one for each node

and for each configuration of its parents) characterize the dynamics of the CTBN. The

former describes the structure of the dependencies between the various components of

the CTBN, and the later quantifies these dependencies. Completing the specification of

the CTBN is an initial distribution π0 over the nodes, often specified via some directed

acyclic Bayesian network B.

It is convenient to think of a CTBN as a compact representation of an expanded (and

now acyclic) graph, consisting of the nodes of G repeated infinitely along a continuum

(viz. time). In this graph, arrows lead from a node at a time t to instances of its children

at time t+dt. Figure 4.2 displays this for a section of the drug-effect CTBN. The rates

associated with a particular node at time t+ dt are determined by the configuration of

its parents at time t. Figure 4.2 is the continuous-time limit of a class of discrete-time

models called dynamic Bayesian networks or DBNs (Murphy, 2002). In a DBN, the

Introduction 58

state of a node at stage i+ 1 is sampled from a probability distribution determined by

the configuration of its parents at stage i. Just as MJPs are continuous-time limits of

discrete-time Markov chains, CTBNs are also continuous-time limits of DBNs.

If we collapse the nodes at each stage of a DBN into a single node, we recover a

discrete-time Markov chain whose transition matrix is easily computed from the various

transition matrices of the nodes of the DBN. In exactly the same sense, it is possible to

combine all local rate matrices of a CTBN into one global rate matrix; see Nodelman

et al. (2002) for a description of this operation which they call amalgamation. In this

sense, a CTBN is just an MJP whose state-space is the product state-space of all

component nodes and whose rate matrix lends itself to local decomposition.

The fact that we can write down an overall rate matrix on the joint state-space of the

CTBN makes it possible, conceptually at least, to sample a trajectory over an interval

[tstart, tend] using Gillespie’s algorithm. However, with an eye towards inference, we

would like to do this by exploiting the structure in the graph G. If G had no loops

(i.e. it were a chain or a tree), we could view the CTBN as a hierarchy of Markov

jump processes modulated by Markov jump processes. We could then sample an overall

CTBN trajectory by sampling trajectories of the root nodes, and then moving down the

graph sampling trajectories of those nodes whose parents have instantiated trajectories.

For the last step, we run Gillespie’s algorithm on each interval over which a node’s

parents remain unchanged, using the rate matrix dictated by the parents’ states, and

using the terminating state in the previous interval as the initial state for the current

interval.

To sample from a CTBN with a general graph G, we return to its representation in

figure 4.2. As mentioned earlier, the configuration of the CTBN nodes at time t deter-

mines the rates of all possible state transitions, and these rates remain unchanged until

the next event (when the CTBN configuration changes). Recall from section 2.6 that a

constant event rate λ implies that the waiting time till the next event is exponentially

distributed with parameter λ. Thus, given the CTBN configuration at time t, we read

off the rates of all possible events (each event corresponding to a node of the CTBN

leaving its current state for some new state), sample all waiting times, and choose the

first to occur. We move the clock forward by this time and update the configuration of

the CTBN accordingly. Then, exploiting the memoryless property of the exponential

distribution, we once again resample future waiting times of all events (discarding their

previous values), and repeat this procedure until we exit the interval. Of course, as with

Gillespie’s algorithm, it is possible to exploit properties of the exponential to directly

sample the time of the earliest event (this has a rate equal to the sum of all event rates)

and then sample the event identity (now each event has a probability proportional to

its rate). In other words, we proceed by repeatedly sampling the time of the next state

change and then the identity of this state transition.

Algorithm 4.1 summarizes the generative process for the CTBN. Like chapter 3, we will

Inference in CTBNs 59

represent the trajectory of the CTBN, S(t), with the pair of sequences (S, T). Assume

that the CTBN has m nodes. Then si, the ith element of S, is an m-component vector

representing the states of all nodes at ti, the time of the ith jump. We write this as

si = (s1
i , · · · , smi). The rate matrix of an node n will vary over time as the configuration

of its parents changes, and we will write An,t for the relevant matrix at time t.

Algorithm 4.1 Algorithm to sample a CTBN trajectory on the interval [tstart, tend]

Input: The CTBN graph G, a set of rate matrices {A} for all nodes and for all
parent configurations and an initial distribution over states π0.

Output: A CTBN trajectory S(t) ≡ (S, T).

1: Assign the CTBN a configuration s0 ≡ (s1
0, s

2
0, ...) ∼ π0. Set t0 = tstart and i = 0.

2: while ti < tend do
3: For each node k, draw zk ∼ exp(|Ak,ti

ski
|). Increment i.

4: Let K = argmink z
k be the first node to jump.

5: Let ti = ti−1 + zK be the next jump time.
6: Suppose sKi−1 = s′. Set sKi = s with P (sKi = s|sKi−1 = s′) ∝ AK,tis′s ∀s 6= s′.
7: Set ski = ski−1 ∀k 6= K.
8: end while
9: Set ti = tend, and si = si−1.

From algorithm 4.1, and following subsection 3.3.1, we can write down the probability

density of (S, T) as

P (S, T) = π0(s0)

|T |−1∏
i=1

P (si, ti|si−1, ti−1), where (4.1)

P (si, ti|si−1, ti−1) =

m∏
n=1

(
exp

(
−|An,ti−1

sni−1
|(ti − ti−1)

)(
A
n,ti−1

sni−1s
n
i

)1(sni 6=sni−1)
)

(4.2)

We recall that An,ti−1 is the rate matrix of node n determined by the configuration of

its parents at time ti−1. The first part of the term in the product in equation (4.2) is

the probability of node remaining unchanged from ti−1 to ti, while the second term is

the probability of node n changing from sni−1 to sni (if it does).

4.2 Inference in CTBNs

Have described the prior distribution over trajectories that a CTBN encodes, we now

consider the problem of posterior inference over trajectories given (possibly noisy) ob-

servations at a discrete set of times∗. Even though a CTBN can be interpreted as a

simple MJP over an expanded state space, this state space is exponentially large in the

number of nodes, so that sampling algorithms (even our algorithm from section 3.2)

∗Extensions to more complicated observations like a Poisson process modulated by the CTBN tra-
jectory are easily handled.

Inference in CTBNs 60

cannot be applied directly. To develop a tractable MCMC sampler that exploits the

structure represented by the graph G, we instead consider a Gibbs sampler. This will

proceed by iteratively resampling the trajectory of each node, conditioned on the tra-

jectories of the other nodes in the CTBN.

Write the parents and children of a node n as P(n) and C(n) respectively. LetMB(n)

be the Markov blanket of node n, so that

MB(n) = P(n) ∪ C(n) ∪ {P(c) ∀c ∈ C(n)} (4.3)

Given the entire trajectories of all nodes inMB(n), node n is independent of all other

nodes in the network (Nodelman et al., 2002). Note however that we have to condition

on the entire trajectory of the Markov blanket, otherwise the temporal dynamics of

the network cause all nodes in the graph to become entangled (Nodelman et al., 2002).

That is, the present state of some node outside the Markov blanket tells us something

about that node’s previous states, which in turn tells us something about previous

configurations of the Markov blanket MB(n), thus resulting in dependence with the

current state of n.

The Markov property of the CTBN suggests a Gibbs sampling scheme where the trajec-

tory of each node is resampled given that of its Markov blanket. This was the approach

followed by El-Hay et al. (2008). However, even without any observations, sampling

a node trajectory conditioned on the complete trajectory of its Markov blanket is not

straightforward. To see this, plug equation (4.2) into equation (4.1), and interchange

the order of multiplication; we get

P (S, T) = π0(s0)

m∏
n=1

|T |∏
i=1

(
exp

(
−|An,ti−1

sni−1
|(ti − ti−1)

)(
A
n,ti−1

sni−1s
n
i

)1(sni 6=sni−1)
)

(4.4)

= π0(s0)
m∏
n=1

φ(Sn, Tn|SP(n), TP(n)) (4.5)

In equation (4.5), we represent the trajectory of a set of nodes N as (SN , TN). In par-

ticular we write the trajectory of node n as (Sn, Tn), and of its parents as (SP(n), TP(n)).

Note that (S, T) ≡ (SG , T G). Also,

φ(Sn, Tn|SP(n), TP(n)) =

|T |∏
i=1

exp
(
−|An,ti−1

sni−1
|(ti − ti−1)

)(
A
n,ti−1

sni−1s
n
i

)1(sni 6=sni−1)
(4.6)

Now, if An,ti−1 is constant, the factor φ(·) in equation (4.6) is just the density of an

MJP with initial state s0 (see subsection 3.3.1). Since An,ti−1 varies in a piecewise-

constant manner, φ(·) is actually the density of a piecewise-inhomogeneous MJP (or of

a sequence of MJPs). In any event, sampling such a trajectory is straightforward. The

complication however is that the trajectory of node n also affects the densities of its

Inference in CTBNs 61

children C(n). In particular, the conditional distribution over (Sn, Tn) has the form

P (Sn, Tn) ∝ π0(s0)φ(Sn, Tn|SP(n), TP(n))
∏

c∈C(n)

φ(Sc, T c|SP(c), TP(c)) (4.7)

Thus, even over an interval of time where the parent configuration remains constant,

the conditional distribution of the path is not a homogeneous MJP because of the ef-

fect of the node’s children; these act as ‘observations’ that are continuously observed.

Effectively, we have a ‘Markov jump process-modulated Markov jump process’, and we

need to sample the latent MJP having observed the modulated child MJPs. Observe

that this problem is a generalization of the inference problem for the Markov modulated

Poisson process (section 3.6). As we mentioned earlier, an additional (though minor)

complication is the piecewise-constant inhomogeneity introduced by transitions of par-

ent nodes of n. Additionally, the parameters governing the likelihood of the children

also vary in a piecewise-constant manner, due to changes in the state of the childrens

other parents. Finally, we also need to account for actual observations of the state of

the CTBN node.

El-Hay et al. (2008) described a matrix-exponentiation-based Gibbs sampler that re-

peatedly samples the time of the next transition of node n and assigns the node a new

state. At a high-level, each Gibbs step of their sampler is similar to that of Fearn-

head and Sherlock (2006), with the Poisson observations of the MMPP generalized to

transitions in the trajectories of child nodes. Consequently, it involves an expensive

forward-backward algorithm involving matrix exponentials. In addition El-Hay et al.

(2008) resort to discretizing time: to obtain the time of the next transition of the node,

they perform a binary search on the time interval up to a specified accuracy (they

argue that this approximation allows the user to specify a desired ‘precision’). We next

show how our uniformization-based sampler from chapter 3 can easily be adapted to

produce samples efficiently without having to resort to any approximations: all this

essentially requires is a new likelihood function Li(s) that depends on the number of

state transitions the children make as well as how much time they spend in each state

for each parent configuration. In our experiments, we show that besides being exact,

our sampler produces significant computational gains.

4.2.1 Auxiliary Variable Gibbs sampling for CTBNs

In this section, we describe a Gibbs sampling algorithm to simulate the CTBN posterior

over an interval [tstart, tend], given a set of observations X at times {to1, ...toO}. An

iteration of the overall algorithm proceeds by performing Gibbs updates on all nodes in

the CTBN; in the following we describe the update step for a single node n. Thus, we

are given the complete sample paths of all nodes in node n’s Markov blanket MB(n)

and a starting distribution π0 over states at time tstart. Importantly, our algorithm

Inference in CTBNs 62

produces a dependent Gibbs update, so that we also need the old trajectory of node

n. To avoid notational clutter, we suppress all references to the node index n. Thus,

call the old trajectory of node n, S(t) ≡ (S, T), and the new trajectory S̃(t) ≡ (S̃, T̃).

Recall also that over the time interval [tstart, tend], the parents of node n can change

state; consequently the rate matrix governing the dynamics of node n changes in a

piecewise constant manner. We do not indicate the dependence of rate matrices on the

configuration of the parents, and instead just call the relevant rate matrix at time t,

At.

The Gibbs update for node n begins as depicted in subplot a of figure 4.3, with the

current trajectory of node n and that of its Markov blanket. Like chapter 3, we first

reconstruct the thinned Poisson events, and then update the trajectory. In principle,

we could imagine (S, T) had a uniformized construction from a subordinating Pois-

son process with rate Ω, so that we resample the thinned events from an piecewise-

inhomogeneous Poisson process with rate (Ω−|AtS(t)|). However, such an Ω would have

to dominate the event rates corresponding to all configurations of the parents of node

n. Abusing notation, let Ap be the rate matrix when P(n) takes on configuration p (it

will always be clear from the context whether the superscript refers to time or parent

configuration). Then we need

Ω ≥ |Aps| ∀p, s (4.8)

This can be inefficient, particularly in large CTBNs with a few unstable states. In such

a situation, the subordinating Poisson rate Ω can be determined by a possibly atypical

configuration p of P(n) that leads to instability in node n (and thus large values of |Aps|
for some s). This can leads to a very large number of thinned events, and a consequent

inefficiency in the forward-backward algorithm.

Instead, since the rate matrix At varies in a piecewise-constant manner, we might

consider subordinating it to a piecewise inhomogeneous Poisson process. For a rate

matrix Ap, define a corresponding Poisson rate Ωp ≥ maxs(|Aps|), and (abusing notation

again) define Ωt as the Poisson rate at time t. We then resample the thinned events,

now from a Poisson process with rate
(

Ωt − |AtS(t)|
)

. Now, the Poisson rate at any

time time t is dictated by the relevant configuration of the Markov blanket of the node.

Like chapter 3, the posterior Poisson intensity of the thinned events is still piecewise

constant, changing only when either S(t) changes state (the times in T) or when one

of the parents changes state (we call this set of times P).

The correctness of such an approach is obvious for a piecewise-inhomogeneous MJP;

we can just view this as a sequence of MJPs with different parameters. Our situation

is a bit more subtle (though still straightforward). In particular, the rate matrix At at

any time t is not fixed, but varies from Gibbs iteration to iteration as the configuration

of MB(n) changes. One way to see why our scheme is still valid is by viewing the

overall Gibbs update from S(t) to S̃(t) as a transition operator parametrized by the

Inference in CTBNs 63

a)

b)

c)

Figure 4.3: Gibbs update for a node of a CTBN. The colours refer to the asso-
ciated Markov blanket configuration.

Poisson rate Ω. We saw in section 3.5 that any operator with Ω > maxs |Ats| has the

correct stationary distribution. Now, under our scheme, we choose a particular Ω (and

therefore a particular transition operator) depending on the configuration of the node’s

Markov blanket. This is valid.

Figure 4.3(b) shows the result of resampling the thinned events U from the rate (Ωt −
|AiS(t)|) Poisson process. We have coloured the Poisson events to correspond to the

Inference in CTBNs 64

associated Markov blanket configuration.

Figure 4.3(c) shows the final step in the Gibbs update, where we thin the set W ≡
(T∪U) by constructing a subordinated Markov chain on the set of times W̃ ≡ T∪U∪P .

For this step, we include P only to emphasize that the parameters of the Markov chain

(its transition and emission matrices) change after events in P ; it is important to realize

that the MJP path for node n will not change state at the times in P (so that when

t ∈ P the transition matrix is simply Bt = I). At times t ∈ T ∪ U , the transition

matrix is

Bt = I +
1

Ωt
At (4.9)

Since the Poisson rate Ωt varies with time, the transition operator Bt must do so too.

Characterizing the emission matrix of the Markov chain is easy; observe that if node n

had no children, we could proceed by resampling the states of the subordinated hidden

Markov model using the likelihood function Li(s) in equation (3.28). To account for

the presence of children C, we must weigh the probability of a complete trajectory

S(t) with the probabilities of the child trajectories under that path, see equation (4.7).

Each child factor φ(Sc, T c|SP(c), TP(c)) is the density an MJP, and from the Markov

property, this factorizes as

φ(Sc, T c|SP(c), TP(c)) =

|W̃ |−1∏
i=0

φi(Sc, T c|SP(c), TP(c)) (4.10)

Here, φi(Sc, T c|SP(c), TP(c)) is the density of a segment of the child trajectory over

(w̃i, w̃i+1) for successive elements in W̃ . As before, we define w̃0 = tstart, and w̃|W̃ | =

tend. Evaluating φi under any configuration of sn is now a simple matter of counting

how much time the child node spent in each state, and well as the number of transitions

between each pair of states, under each setting of the other parents of c.

The total likelihood function for the state of node n at step i of the hidden Markov model

(i.e. over the interval [wi, wi+1)) must include all children as well as the observations.

This is just the product of the individual terms:

L̃i(s) = Li(s)
∏
c∈C

φi(Sc, T c|SP(c), TP(c)) (4.11)

Calculating equation (4.11) is straightforward as we make a forward pass through the

event times. Given the transition probability (equation (4.9)) and the likelihood (equa-

tion (4.11)) of the Markov chain at step i, we use the forward filtering-backward sam-

pling algorithm to obtain a trajectory of node n (subplot c in figure 4.3).

Since the new trajectory S̃(t) is obtained via introducing auxiliary variables and con-

ditionally sampling a new path in the extended space, the MCMC sampler retains the

Experiments 65

conditional distribution as its stationary distribution. Ergodicity of the conditional

update, and thus the overall Gibbs sampler is straightforward to see, so that we have

the result:

Proposition 4.1. The auxillary variable Gibbs sampler described above converges to

the posterior distribution over the CTBN sample paths.

Note that unlike the Gibbs sampler of El-Hay et al. (2008) which produces independent

samples from the conditional distribution, ours produces dependent Gibbs updates.

With the trajectory updates part of an overall Gibbs cycle, we find that a condition-

ally independent sample has a negligible benefit towards mixing, and is significantly

wasteful, once the computational cost is factored in.

4.3 Experiments

In the following, we evaluate a C++ implementation of our algorithm on a num-

ber of CTBNs. As in chapter 3, for a rate-matrix Ap, the parameter Ωp was set to

2 maxs(|Aps|), so that for any node, the rate of the subordinating Poisson process varies

with the configuration of its parents.

4.3.1 The Lotka-Volterra process

We first apply our sampler to the Lotka-Volterra process (Wilkinson, 2009; Opper and

Sanguinetti, 2007). Commonly referred to as the predator-prey model, this describes

the evolution of two interacting populations of ‘prey’ and ‘predator’ species. The two

species form the two nodes of a cyclic CTBN (figure 4.1), whose states x and y represent

the sizes of the prey and predator populations. The process rates are given by

A ({x, y} → {x+ 1, y}) = αx A ({x, y} → {x− 1, y}) = βxy

A ({x, y} → {x, y + 1}) = δxy A ({x, y} → {x, y − 1}) = γy

where the parameters were set as follows: α = 5×10−4, β = 1×10−4, γ = 5×10−4, δ =

1 × 10−4. All other rates are 0. This defines two infinite sets of infinite-dimensional

conditional rate matrices. In its present form, our sampler cannot handle this infinite

state-space; observe that for any of the two rate matrices, max(|As|) =∞, so that uni-

formization is impossible. We describe how to overcome this limitation in chapter 7.

Here, like Opper and Sanguinetti (2007), we limit the maximum number of individ-

uals of each species to 200, leaving us with 400 200-dimensional matrices. Note that

these matrices are tridiagonal and very sparse; at any time the size of each population

can change by at most one. Consequently, the complexity of our algorithm scales lin-

early with the number of states (we did not modify our code to exploit this structure,

Experiments 66

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

True path

Mean−field approx.

MCMC approx.

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

30

Figure 4.4: Posterior (mean and 90% confidence intervals) over (left) prey and
(right) predator paths (observations (circles) only until 1500).

though this is fairly straightforward). A ‘true’ path of predator-prey population sizes

was sampled from this process, and its state at time t = 0 was observed noiselessly.

Additionally 15 noisy observations were generated, and spaced uniformly at intervals

of 100 from t = 100 onwards. The noise process was:

p(X(t)|S(t)) ∝ 1

2|X(t)−S(t)| + 10−6
(4.12)

Given these observations (as well as the true parameter values), we approximated

the posterior distribution over paths by two methods: using 1000 samples from our

uniformization-based MCMC sampler (with a burn-in period of 100) and using the

mean-field (MF) approximation of Opper and Sanguinetti (2007)†. Figure 4.4 shows

the true paths (in black), the observations (as circles) as well as the posterior means

and 90% confidence intervals produced by the two algorithms for the prey (left) and

predator (right) populations. As can be seen, both algorithms do well over the first

half of the interval where data is present. In the second half, the MF algorithm appears

to underestimate the predicted size of the predator population; on the other hand, the

MCMC posterior reflects the truth better. In general, we found the MF algorithm to

underestimate the posterior variance in the MJP trajectories, especially over regions

with few observations.

4.3.2 Average relative error vs number samples

For the remaining experiments, we compared our sampler with the Gibbs sampler of

El-Hay et al. (2008); for this comparison, we used the CTBN-RLE package of Shelton

et al. (2010) (also implemented in C++). In all our experiments, as with the MMPP,

we found our algorithm to be significantly faster, especially for large inference problems.

To prevent details of the two implementations from clouding the picture and to reiterate

the benefit afforded by avoiding complex computations, we also measured the amount

†We thank Guido Sanguinetti for providing us with his code

Experiments 67

10 100 1000 10000
Number of samples

10−1

 100

 101

Uniformization

El Hay et al.

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

Figure 4.5: Average relative error vs number of samples for 1000 independent
runs; burn-in = 200. Note that in this scenario Uniformization was about 12
times faster, so that for the same computational effort it produces significantly
lower errors.

of time CTBN-RLE spent calculating matrix exponentials. This constituted between

10% to 70% of the total running time of the algorithm. In the plots we refer to this as

‘El Hay et al. (Matrix Exp.)’. We found that our algorithm took less time than even

this.

In our next experiment, we followed El-Hay et al. (2008) in studying how average

relative error varies with the number of samples from the Markov chain. Average

relative error is defined by
∑

j
|θ̂j−θj |
θj

, and measures the total normalized difference

between empirical (θ̂j) and true (θj) averages of sufficient statistics of the posterior.

The statistics in question are the time spent by each node in different states as well

as the number of transitions from each state to the others. The exact values were

calculated by numerical integration when possible, otherwise from a very long run of

CTBN-RLE.

As in El-Hay et al. (2008), we consider a CTBN with the topology of a chain, consisting

of 5-nodes, each with 5 states. The states of the nodes was observed at times 0 and 20

and we produced posterior samples of paths over the time interval [0, 20]. We calculate

the average relative error as a function of the number of samples, with a burn-in of

200 samples. Figure 4.5 shows the results from running 1000 independent chains for

both samplers. Not surprisingly, the sampler of El-Hay et al. (2008), which produces

conditionally independent samples, has slightly lower errors. However the difference

in relative errors is minor, and is negligible when considering the dramatic (sometimes

up to two orders of magnitude; see below) speed improvements of our algorithm. For

instance, to produce the 10000 samples, the El-Hay et al. (2008) sampler took about 6

minutes, while our sampler ran in about 30 seconds.

Discussion 68

4.3.3 Time requirements

In the next three experiments, we compare the times required by CTBN-RLE and our

uniformization-based sampler to produce 100 effective samples for CTBNs of different

configurations. These times were estimated from runs of 10000 samples after a burn-in

of a 1000 samples. Since CTBN-RLE does not support Bayesian inference for CTBN

parameters, we kept these fixed and produced ESS estimates from the number of tran-

sitions of each node and the amount of time spent in each state (see subsection 3.6.1

for details). Each MCMC run produced samples from an endpoint-conditioned CTBN

with random parameters and each point in the figures is an average over 10 simulations.

In the first of this set of experiments, we measured the times to produce these samples

for the chain-shaped CTBN described above, as the number of nodes in the chain

increases. The topmost plot in figure 4.6 shows the results. As might be expected, the

time required by our algorithm grows linearly with the number of nodes. For El-Hay

et al. (2008), the complete algorithm has a cost that grows faster than linear (quickly

becoming unmanageable). The time spent calculating matrix exponentials does grow

linearly, however our uniformization-based sampler always takes less time than even

this.

Next, we kept the length of the chain fixed at 5, instead increasing the number of states

per node. Once again, our sampler is always faster. Asymptotically, one would expect

our sampler to scale as O(n2) and El-Hay et al. (2008) as O(n3), and while we haven’t

hit that regime yet, we can see that the cost of our sampler grows more slowly with

the number of states.

Our final experiment (to the bottom) measures the time required as the length of the

time interval over which the CTBN paths take values increases. For this experiment,

we used the drug-effect network shown in figure 4.1: here the parameters were set to

standard values (obtained from CTBN-RLE) and the state of the network was fully

observed at the beginning and end times. Again, our algorithm is the faster of the two

showing a linear increases in computational costs with the length of the interval. It

is worth pointing out here that the algorithm of El-Hay et al. (2008) has a ‘precision’

parameter, and that by reducing the desired temporal precision, faster performance

can be obtained. However, since our sampler produces exact samples (up to numerical

precision), we feel our comparison is fair. In the experiments, we left this parameter at

its default value.

4.4 Discussion

In this chapter, we extended our uniformization-based sampler from chapter 3 to

CTBNs. In our experiments, we showed a significant performance improvement over a

Discussion 69

state-of-the-art Gibbs sampler for CTBNs. More broadly, this chapter served to demon-

strate the flexibility of our approach of alternately resampling thinned events given a

trajectory, and then a new trajectory with the forward-backward algorithm. In later

chapters, we shall extend this approach to more general continuous-time systems. A

novelty of our approach in this chapter is that we allowed the uniformization parameter

to vary with the configuration of the Markov blanket. We will later extend this idea by

allowing the uniformization rate to depend on the current state of the node of interest.

Among other things, this will allow us to avoid truncating the state-space of the MJP

to bound maximum event rates. We shall revisit the Lotka-Volterra model in chapter 7

in the light of these ideas.

Discussion 70

10
0

10
1

10
2

10
−2

10
0

10
2

C
P

U
 t
im

e
 i
n
 s

e
c
o
n
d
s

Length of CTBN chain

Uniformization

El−Hay

El−Hay (exp)

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

C
P

U
 t
im

e
 i
n
 s

e
c
o
n
d
s

Dimensionality of nodes in CTBN chain

Our sampler

El−Hay

El−Hay (exp)

10
0

10
1

10
2

10
0

10
2

10
4

C
P

U
 t

im
e

 i
n

 s
e

c
o

n
d

s

Length of CTBN time−interval

Our sampler

El−Hay

El−Hay (exp)

Figure 4.6: (top) CPU time vs length of CTBN chain. (middle) CPU time vs
number of states of CTBN nodes. (bottom) CPU time vs time interval of CTBN
paths.

Chapter 5

Modulated renewal processes

5.1 Introduction

In this chapter, we study generalizations of the Poisson process on the real line called re-

newal processes; these will allow us to relax the sometimes unrealistic independence (or

memorylessness) assumptions of the Poisson process. We introduce a uniformization-

based construction for these stochastic point processes, and demonstrate its utility by

proposing a nonparametric Bayesian model where a renewal process is modulated by

a Gaussian process intensity function. Without uniformization, drawing exact samples

from this model (and thus posterior inference) is intractable. Our model extends work

by Adams et al. (2009) on the Poisson process, using uniformization instead of Poisson

thinning. In the style of previous chapters, we exploit properties of the Poisson process

and develop a more natural and efficient blocked Gibbs sampler than the incremental

Metropolis-Hastings algorithm used in Adams et al. (2009). In our experiments we

demonstrate the usefulness of our model and sampler on a number of synthetic and

real datasets.

5.2 Renewal processes

Renewal processes are stochastic point processes on the real line where waiting times

between successive events are drawn i.i.d. from some distribution. The simplest ex-

ample of a renewal process is the homogeneous Poisson process; as we saw in sec-

tion 2.6, this has inter-event times that are exponentially distributed. While the inde-

pendence/memoryless property of the Poisson process is convenient from the point of

analysis and simulation, it is often not appropriate for modelling real-world phenomena.

To borrow terminology from the reliability engineering literature, the independence

property encodes an ‘as bad as old after a repair’ property (Lawless and Thiagarajah,

1996) that is often not realistic. Thus, suppose that events correpond to failures of

Renewal processes 72

a component (which is then repaired instantaneously): one might expect the rate of

failure immediately after a repair to be lower than before the breakdown. Similarly, in

neuroscience, immediately after firing, a neuron is depleted of its resources and inca-

pable of firing again, and the gamma distribution is used to model interspike intervals

that have ‘recovery times’ (Cunningham et al., 2008; Kass and Ventura, 2001). Simi-

larly, because of the phenomenon of elastic rebound, some time is required to recharge

stresses released after an earthquake, and an inverse Gaussian distribution is used to

model intervals between major earthquakes (Parsons, 2008). Other examples include

using the Pareto distribution to better capture the burstiness and self-similarity of

network traffic arrival times (Paxson and Floyd, 1995), and the Erlang distribution to

model the fact that buying incidence of frequently purchased goods is less variable than

Poisson (Wu, 2000).

In this chapter, we shall deal with finite renewal processes defined on some finite interval

of the real line, T ≡ [tstart, tend]. A renewal process is characterized by a renewal density

g, with waiting times between successive events drawn independently from g. Thus,

one samples a realization of a renewal process by sampling an ordered sequence of

times (t1, t2, · · · , tn) with (ti − ti−1) ∼ g until one exits the interval. Here, we define

t0 = tstart; since t1 − tstart ∼ g, we are assuming that there is an event at tstart. For

simplicity, we shall work with this assumption; often, the waiting time until the first

event is taken to be exponentially distributed. It is easy to adapt our ideas to handle

this case as well. As in earlier sections, we define tn+1 = tend, and view the random

sequence T ≡ (t0, t1, · · · , tn+1) as a point in the space T ∪ of finite random sequences

in T . It is clear that any element T of T ∪ has density w.r.t. the measure µ< given by

p(T) =

{ (∏|T |−1
i=1 g(ti − ti−1)

) (
1−G(t|T | − t|T |−1)

)
ti+1 > ti ∀i

0 otherwise
(5.1)

Here, |T | = n+2 and G(·) is the cumulative distribution function of the renewal density

g(·). The ith term in equation (5.1) is the probability density that the ith event occurs

after a delay of ti − ti−1, while the last term is the probability that no event occurs

in the interval (tn, tend]. When g(·) is the exponential distribution, this reduces to the

Poisson density in equation (2.52).

5.2.1 Hazard functions

Associated with the renewal density g(·) is a hazard function h(·). The (stationary)

hazard function h(τ) is defined as the event rate after τ time units have elapsed since

the previous event, conditional on the waiting time being at least τ . Thus, for an

infinitesimal ∆ > 0, h(τ)∆ is the probability of the inter-event interval being in [τ, τ+∆]

Renewal processes 73

Figure 5.1: Left to right: hazard functions h(τ) for memoryless (Poisson), re-
fractory and bursty renewal processes, and the bathtub hazard function. τ is the
time since the last event.

conditioned on it being at least τ , so that:

h(τ) =
g(τ)

1−
∫ τ

0 g(u)du
(5.2)

Given h(τ), one can also calculate the renewal density (we derive this in proposition 5.1

for more general case of a nonstationary hazard function), so that there is a one-to-one

correspondence between g(τ) and h(τ).

The hazard function provides a clear illustration of the nature of the deviation from

memorylessness of a particular renewal density g. The upper left plot in figure 5.1

shows the hazard function of a homogeneous Poisson process; this is a constant (equal

to the Poisson process intensity), and is independent of the time since the last event.

The top right plot shows the hazard function of a refractory renewal process; here the

event rate drops immediately after an event, as the system ‘recovers’ from the last

event. Such hazard functions are commonly produced by the gamma distribution or

the Weibull distribution, both with shape parameter greater than 1. Also common are

distributions like the inverse-Gaussian or the Levy distribution. To the bottom left,

we have a hazard function used to model bursty and heavy-tailed activity. Hazard

functions of this kind are produced by gamma or Weibull distribution, now with shape

parameter less than 1. Both these distributions reduce to the exponential (and thus,

the corresponding renewal processes to the Poisson) when this parameter is set to 1.

Of course, more complex hazard functions are possible and widely used. A common

example is the ‘bathtub curve’ from reliability engineering (this is the bottom right plot

in figure 5.1); unlike the other functions, this is not a monotone function of the time

since the last event. For simplicity however, we shall restrict ourselves to the gamma

Renewal processes 74

and the Weibull distributions in this thesis.

5.2.2 Modulated renewal processes

Modelling inter-event times as i.i.d. draws from a general renewal density can allow

larger or smaller variances than an exponential with the same mean (called, respectively,

underdispersion and overdispersion), but this now encodes an ‘as good as new after a

repair’ property: after an event, the system is reset back to its ‘initial state’. This is

often only an approximation: because of age or other time-varying factors, the inter-

event distribution of the point process can vary with time. For instance, internet traffic

can vary with time of the day, day of the week and in response to advertising and

seasonal trends. Similarly, an external stimulus can modulate the firing rate of a neuron,

economic trends can modulate financial transactions etc. The most popular approach

to modelling such nonstationarity is via the time-varying intensity of an inhomogeneous

Poisson process. In this case, rather than being some constant (like the leftmost plot in

figure 5.1), the instantaneous hazard function varies with time and we write it as h(t)∗.

As we saw in section 2.6, this means that the rate at which events occur now varies

with time. Because renewal processes are not memoryless, in their case, the event rate

will depend not just on the current time t, but also the time since the last event τ .

We write this as h(τ, t). There has been work extending nonstationarity to renewal

processes, and different approaches differ in how they couple the effects of the memory

of the renewal process with the nonstationarity of the process. We review these in

subsection 5.2.4, first however, we describe a simple approach that we will follow.

Let λ(t) be some time-varying intensity function; this is the external signal that char-

acterizes the nonstationarity of the renewal process. We let this signal modulate the

instantaneous value of the hazard function h(τ) so that the event rate now depends

on both the time τ since the last event, as well as on the absolute time t (Cox, 1972;

Kass and Ventura, 2001). In other words, we define the inhomogeneous hazard function

h(τ, t) as:

h(τ, t) = m(h(τ), λ(t)) (5.3)

Here m(·, ·) : R+×R+ → R+ is some interaction function the governs how the rates λ(·)
and h(·) are coupled together. Simple possibilities include include additive interactions

(h(τ) + λ(t)) or multiplicative interactions (h(τ)λ(t)). For concreteness, we assume

multiplicative interactions in what follows, however our results extend easily to general

interaction functions. Figure 5.2 illustrates how such a function λ(t) modulates the

hazard rate (the grey curve) in the time following an event.

With a modulated hazard rate, the distribution of inter-event times is no longer

stationary, and the deviation from g(·) is determined by how much λ deviates from

∗In chapter 2 we called this λ(t).

Renewal processes 75

Figure 5.2: A modulated hazard function h(τ, t), produced by a multiplicative
interaction between h(τ) (grey) and λ(t).

some baseline. It is however possible to solve for the distribution of inter-event times,

as we show in the next proposition:

Proposition 5.1. For a renewal process with a nonstationary hazard function h(τ, t),

the density of τ , the waiting time until the next event, given that the last event occured

at time tprev is given by

g(τ |tprev) = h(τ, tprev + τ) exp

(
−
∫ τ

0
h(u, tprev + u)du

)
(5.4)

Proof. By definition of the hazard function,

h(τ, tprev + τ) =
g(τ |tprev)

1−
∫ τ

0 g(u|tprev)du
(5.5)

Let y = 1−
∫ τ

0 g(u|tprev)du. It follows that

h(τ, tprev + τ) =
−dy/dτ

y
, so that (5.6)

y = exp

(
−
∫ τ

0
h(u, tprev + u)du

)
(5.7)

Substituting back for y, we get

1−
∫ τ

0
g(u|tprev)du = exp

(
−
∫ τ

0
h(u, tprev + u)du

)
(5.8)

Differentiating w.r.t. τ , we get equation (5.4).

Renewal processes 76

Observe that with a constant hazard function and multiplicative modulation, equa-

tion (5.4) recovers the inter-event time for the inhomogeneous Poisson process.

5.2.3 Gaussian process intensity functions

Our goal in this chapter is to study a doubly stochastic renewal process with a random

intensity function. Having described the mechanism by which a given nonstationarity

modulates a renewal process, we now specify a prior on the intensity function λ(t).

Coupled with priors on the parameters of the hazard function, such a doubly stochas-

tic model is useful in applications where one is interested in estimating both hazard

parameters as well as the intensity function λ(t). Rather than limiting λ(t) to some

parametric class of functions, we take a Bayesian nonparametric approach, modelling

λ(t) with a Gaussian process (GP) prior. Such a nonparametric prior has support

over a rich class of functions and avoids the need for any ‘hard’ decisions about which

function class we wish to limit ourselves to. We refer the reader to (Rasmussen and

Williams, 2006) for details about Gaussian processes. For our purposes, it suffices to

state that a GP prior is characterized by a mean function µ(·) and a covariance kernel

K(·, ·). The random function f evaluated on any finite set of points X is distributed as

a Gaussian, with a mean and covariance matrix corresponding to µ and K evaluated

on this set of points. We call the resulting model a Gaussian process modulated renewal

process.

An issue with the model specified above is that samples from a GP can take negative

values. Following (Adams et al., 2009), we address this by transforming the GP with

a sigmoidal link function. Besides ensuring that the intensity function is nonnegative,

this provides us with a bound on the modulating function. This is important for a

uniformization-based construction of a renewal process, where we will need to sample

from a Poisson process whose rate dominates all event rates in the system of interest.

Finally, we use the gamma family for the hazard function (figure 5.3):

h(τ) =
τγ−1e−γτ∫∞

τ uγ−1e−γudu
(5.9)

Here γ is the gamma shape parameter. Note that in order to ensure identifiability, we

parametrize the hazard function to produce 1 event per unit time; any deviation from

this rate can then be attributed to the modulating function. This allows us to decouple

the rate of observed events from how they are spread out or clustered in time. Other,

more flexible parametrizations may be used as well. Our complete model is thus

l(·) ∼ GP(µ,K), (5.10)

λ(·) = λ̂σ(l(·)), (5.11)

G ∼ R(λ(·), h(·)) (5.12)

Renewal processes 77

0 2 4 6 8 10
0

1

2

3

4

5

0 2 4 6 8 10
0

0.5

1

1.5

2

Figure 5.3: Hazard functions for the Gamma distribution with γ = 0.7 (left) and
γ = 2 (right).

Here, R(λ(·), h(·)) refers to the modulated renewal process described earlier with

a base hazard function h(·), and a modulating function λ(·). λ̂ is a positive scale

parameter, and σ(x) = (1 + exp(−x))−1 is the sigmoidal link function. We place a

gamma hyperprior on λ̂ as well as hyperpriors on the GP hyperparameters.

5.2.4 Related work

The idea of defining a nonstationary renewal process by modulating the hazard function

dates back to Cox (1972). Early work (Berman, 1981) focussed on hypothesis testing

for the stationarity assumption. (Ogata, 1981; Berman and Turner, 1992; Lawless

and Thiagarajah, 1996) proposed parametric (generalized linear) models where the

intensity function was a linear combination of some known functions; these regression

coefficients were estimated via maximum likelihood. Sahin (1993) consider general

modulated hazard functions as well; however they assume it has known form and are

concerned with calculating statistical properties of the resulting process. Finally, Kass

and Ventura (2001) describe a model that is a generalization of ours, but again have

to resort to maximum likelihood estimation of the relevant parameters. Our ideas can

easily be extended to their more general model as well.

A different approach to producing inhomogeneity is by first sampling from a homo-

geneous renewal process and then rescaling time (Brown et al., 2002; Gerhardt and

Nelson, 2009). The trend renewal process (Lindqvist, 2011) uses such an approach,

and the authors propose an iterative kernel smoothing scheme to approximate a maxi-

mum likelihood estimate of the intensity function. Cunningham et al. (2008) also use

time-rescaling to introduce inhomogeneity and, like us, place a Gaussian process prior

on the intensity function. Unlike us however, they had to discretize time and used a

variational approach to inference.

Finally, we note that our approach generalizes Adams et al. (2009), who describe a

Sampling via Uniformization 78

model which is a special case of ours, using exponential waiting times instead of a more

general renewal distribution. Thus, they define a doubly stochastic Poisson process,

and are able to sample from it without any time discretization by exploiting the thinning

theorem. In the next sections we describe a generalization of their sampling scheme to

more general renewal processes using a construction based on uniformization. We also

describe how to perform inference more efficiently than they did.

5.3 Sampling via Uniformization

Before we consider Markov chain Monte Carlo (MCMC) inference for our model, ob-

serve that even näıvely generating samples from the prior is expensive. This requires

evaluating integrals of a continuous-time function drawn from a GP (see equation (5.4)).

One approach is to discretize time, instantiate the GP on this grid, and then approxi-

mate any integrals by the corresponding summations (Cunningham et al., 2008). This,

however, can be time consuming, and introduces biases into our inferences. In this

section, we show how uniformization allows us to efficiently draw exact samples from

the model without any approximations such as time-discretization. In this sense, uni-

formization in fundamental to our problem, which is otherwise intractable. Contrast

this with uniformization for MJPs, where it served as an alternate sampling scheme

that we exploited to develop an efficient algorithm for MCMC inference.

Ideas relating a renewal process to a thinned latent Poisson process exist in the literature

(Ogata, 1981; Shanthikumar, 1986), but these are usually for homogeneous renewal

processes, and were not developed with an eye towards inference and sampling. Recall

that uniformization for MJPs generalized thinning for Poisson processes by accounting

for the Markov dependencies of the MJP. Rather than thinning points independently,

we did so by running a discrete-time Markov chain over a set of events sampled from

a dominating Poisson process. A similar idea extends to the case of renewal processes.

We will assume that both the intensity function λ(t) and the hazard function h(τ) are

bounded, so that there exists a constant Ω such that

Ω ≥ max
t,τ

h(τ)λ(t) (5.13)

Note that because of the sigmoidal link function, our model has λ(t) ≤ λ∗, while the

gamma hazard h(τ) is bounded by the shape parameter γ if γ ≥ 1 (see figure 5.3). We

now sample a set of times E = {E0 = tstart, E1, E2, . . .} from a homogeneous Poisson

process with rate Ω, and thin this set by running a discrete time Markov chain on the

times in E. Let Y0 = 0, Y1, Y2, . . . be an integer-valued Markov chain, where each Yi

either equals Yi−1 or i. We interpret Yi as indexing of the last unthinned event prior

or equal to Ei. That is, Yi = Yi−1 means that Ei is thinned, and Yi = i means Ei is

not thinned. Note that Ei − EYi−1 gives the time since the last unthinned event, so

Sampling via Uniformization 79

that h(Ei−EYi−1)λ(Ei) gives the hazard rate at time Ei given the state of the renewal

process instantiated so far. Since we have generated events from a Poisson process with

rate Ω, it follows that we keep event Ei with probability
h(Ei−EYi−1

)λ(Ei)

Ω . Thus, for

i > j ≥ 0, define the transition probabilities of the Markov chain (conditioned on E)

as follows,

p(Yi = i|Yi−1 = j) =
h(Ei − Ej)λ(Ei)

Ω
, (accept Ei) (5.14)

p(Yi = j|Yi−1 = j) = 1− h(Ei − Ej)λ(Ei)

Ω
(thin Ei) (5.15)

All other probabilities are 0. After drawing a sample from Y , we define

F = {Ei ∈ E s.t. Yi = i}.

Proposition 5.2. For any Ω ≥ maxt,τ h(τ)λ(t), F is a sample from a modulated

renewal process with hazard h(·) and modulating intensity λ(·).

Proof. For a proof of a similar result, see Ogata (1981). Below, we include a different

proof based on densities.

We need to show that Fi − Fi−1 ∼ g(·), defined in equation (5.4).

Denote by E∗ = (e∗1, · · · , e∗n) the restriction of E to the interval (Fi−1, Fi), not including

boundaries, so that |E∗| = n. Then,

P (Fi, E
∗|Fi−1)

= Ωn+1 exp(−Ω(Fi − Fi−1))

n∏
j=1

(
1−

λ(e∗j)h(e∗j − Fi−1)

Ω

)
λ(Fi)h(Fi − Fi−1)

Ω

= exp(−Ω(Fi − Fi−1))

n∏
j=1

(
Ω− λ(e∗j)h(e∗j − Fi−1)

)
λ(Fi)h(Fi − Fi−1) (5.16)

The first term in the first expression above is the probability density of an (n+1)-event

sample (E∗ followed by Fi) under a rate Ω Poisson process, while the second term given

the probability of thinning all events except the last. Integrating out the locations of

the elements in E∗, we have

P (Fi, n|Fi−1) = λ(Fi)h(Fi − Fi−1) exp (−Ω(Fi − Fi−1))∫ Fi

Fi−1

∫ Fi

t1

...

∫ Fi

tn−1

dt1dt2...dtn

n∏
j=1

(Ω− λ(tj)h(tj − Fi−1)) (5.17)

= λ(Fi)h(Fi − Fi−1) exp (−Ω(Fi − Fi−1))

1

n!

(∫ Fi

Fi−1

dt (Ω− λ(t)h(t− Fi−1))

)n
(5.18)

Sampling via Uniformization 80

Summing over n, we then have

P (Fi|Fi−1) = λ(t)h(Fi − Fi−1)exp (−Ω(Fi − Fi−1)) exp

(∫ Fi

Fi−1

dt (Ω− λ(t)h(t− Fi−1))

)

= λ(Fi)h(Fi − Fi−1) exp

(
−
∫ Fi

Fi−1

dtλ(t)h(t− Fi−1)

)
(5.19)

Comparing with equation (5.4), we see we have the desired result.

Now recall that l(·) is distributed according to a Gaussian process. The uniformization

procedure above only requires values of the intensity function at the times in E (which

is a finite set on a finite interval), and this is easily obtained by sampling from a

finite dimensional Gaussian N (µE ,KE), with mean and covariance corresponding to

the GP parameters µ and K evaluated at E. Our procedure to sample from a GP-

modulated renewal process now follows: sample E from a homogeneous Poisson process

on [tstart, tend], instantiate the GP on this finite set of points and then thin the set by

running the Markov chain described previously. Defining lE as l(t) evaluated on the

set E, E∗i as the restriction of E to the interval (Fi−1, Fi), and T = tend− tstart, we can

write the joint distribution:

P (F, l, E) = Ω|E|−2e−ΩTN (lE |µE ,KE)

|F |−1∏
i=1

(
λ(Fi)h(Fi−Fi−1)

Ω

) |F |∏
i=1

∏
e∈E∗i

(
1− λ(e)h(e−Fi−1)

Ω

)
(5.20)

5.3.1 Inference

We now consider posterior inference over the modulating function λ(t) (and any un-

known hyperparameters) given an observed set of event times G. Our sampling algo-

rithm is similar to that from chapter 3. We imagine G was generated via uniformization,

so that there exists an unobserved set of thinned events G̃. We then proceed by Markov

chain Monte Carlo, setting up a Markov chain whose state consists of the number and

locations of G̃, the values of the GP on the set G∪G̃ = E as well as the current sampled

hyperparameters. Note from equation (5.20) that given these values, the value of the

modulating function at any other location is independent of the observations and can

be sampled from the conditional distribution of a multivariate Gaussian.

The challenge now is to construct a transition operator that results in this Markov

chain having the desired posterior distribution as its equilibrium distribution. In their

work on doubly stochastic Poisson processes, Adams et al. (2009) defined a birth-

death transition operator that proposed insertions and deletions of thinned events.

They also defined an operator that randomly perturbed the locations of the thinned

Sampling via Uniformization 81

events. The proposals generated by these operators were accepted or rejected using a

Metropolis-Hastings correction. The remaining variables were updated using standard

Gaussian process techniques. Following ideas from chapter 3, we show that instead of

incrementally updating G̃, it is actually possible to produce a new independent sample

of the entire set G̃ (conditioned on all other variables). This leads to a more natural

sampler that does not require any external tuning and that mixes more rapidly because

of the global nature of the transitions. Algorithm 5.1 lists the steps involved, while

figure 5.4 illustrates the key ideas.

a)

b)

c)

Figure 5.4: a) Renewal events (filled circles) and the GP values (evaluated on
two discarded thinned events as well) b) New thinned events (empty circles) and
their GP values. The GP values at the old thinned locations, depicted with filled
squares are discarded at the end of this step c) Resample GP values

To understand our algorithm, suppose first that the modulating function λ(t) is known

for all t. Then, from equation (5.4), the probability density of the set of events G on

Sampling via Uniformization 82

the interval [tstart, tend] is†:

P (G|λ(t)) =

|G|−1∏
i=1

λ(Gi)h(Gi −Gi−1)

|G|∏
i=1

exp

(
−
∫ Gi

Gi−1

λ(t)h(t−Gi−1)dt

)
(5.21)

Now, suppose that in each consecutive interval (Gi−1, Gi) we independently sample a

set of events G̃∗i from an inhomogeneous Poisson process with rate (Ω−λ(t)h(t−Gi−1)),

and let G̃ = ∪iG̃∗i . A little algebra shows that:

P (G̃,G|λ(t)) =

|G|∏
i=1

exp

(
−
∫ Gi

Gi−1

dt (Ω− λ(t)h(t−Gi−1)

) ∏
g̃∈G̃∗i

(Ω− λ(g̃)h(g̃ −Gi−1))


×
|G|−1∏
i=1

λ(Gi)h(Gi −Gi−1)

|G|∏
i=1

exp

(
−
∫ Gi

Gi−1

λ(t)h(t−Gi−1)dt

)
(5.22)

= Ω|G|+|G̃|−2 exp (−ΩT)

|G|−1∏
i=1

(
λ(Gi)h(Gi −Gi−1)

Ω

) |G|∏
i=1

∏
g̃∈G̃∗i

(
1− λ(g̃)h(g̃ −Gi−1)

Ω

)
(5.23)

Comparing with equation (5.20), we have the following proposition:

Proposition 5.3. The sets (E,F) and (G ∪ G̃,G) are equivalent i.e. they have the

same distribution.

In other words, given a set of event times G, sampling from the inhomogeneous Poisson

process G̃ reconstructs the events thinned in the procedure of section 5.3. Let Glast(t)

represent the renewal event before time t, so that the thinned events are sampled from

a Poisson process with intensity (Ω−λ(t)h(t−Glast(t))). Compare this with chapter 3,

where the thinned events were distributed as a Poisson process with rate (Ω− |AS(t)|);
in both cases, this is just Ω minus the hazard rate at time t.

The only complication left is that we do not know the function λ(t) everywhere. This

is easily overcome by uniformization (in fact, just by thinning, since G̃ is a Poisson

process). Specifically, let G be the set of observed events and G̃prev the previous set

of thinned events. To sample the new set G̃∗i from the Poisson process on [Gi−1, Gi]

with rate (Ω− λ(t)h(t−Gi−1)), we first sample a set of points A from a homogeneous

Poisson process on [Gi−1, Gi] with rate Ω and instantiate the Gaussian process on those

points, conditioned on G ∪ G̃prev and lG∪G̃prev . All this step involves is conditionally

sampling from a multivariate Gaussian; in particular, it does not require any compli-

cated GP-sampling algorithm. Finally, we keep an element a ∈ A with probability

1 − λ(a)h(a−Gi−1)
Ω . By the thinning theorem, this gives us a sample from the Poisson

process with intensity (Ω− λ(t)h(t−Gi−1)).

†Recall that G0 = tstart and G|G| = tend are not renewal events.

Sampling via Uniformization 83

Having resampled G̃ (and the associated set of GP values), we next must resample

the value of the GP at G. Observe from equation (5.20) that this step is identical to

GP inference for a classification problem: the thinned events are assigned to class ‘0’

and the renewal events to class ‘1’, with the likelihood of class ‘1’ at time Ei given by
h(Ei−EYi−1

)λ(Ei)

Ω . There are a number of standard MCMC approaches to this problem

(eg. hybrid Monte Carlo (Neal, 1993)); we proceed by elliptical slice sampling (Murray

et al., 2010) using code available on Iain Murray’s website‡.

Algorithm 5.1 Blocked Gibbs sampler for GP-modulated renewal process on the
interval [tstart, tend]

Input: Sets G and G̃prev of event and thinned times, and values of l on G∪G̃prev.
Output: A new set of thinned times G̃new and a new instantiation lG∪G̃new of the

GP on G ∪ G̃new.

1: Sample A ⊂ [tstart, tend] from a Poisson process with rate Ω.
2: Sample lA|lG∪G̃prev from a Gaussian conditional.

3: Thin A, keeping element a ∈ A∩ [Gi−1, Gi] with probability
(

1− λ̂σ(l(a))h(a−Gi−1)
Ω

)
.

4: Let G̃new be the resulting set and lG̃new be the restriction of lA to this set. Discard

G̃prev and lG̃prev .
5: Resample lG∪G̃new using, for example, elliptical slice sampling.

Additionally, we sample the relevant hyperparameters. The gamma prior on λ̂ is conju-

gate to the density of the homogeneous Poisson process (see equation (2.27)), resulting

in a gamma posterior:

λ̂|E ∼ Gamma(α̂, β̂) (5.24)

Here, α̂ = α + |E|, while 1/β̂ = 1/β + 1/(tend − tstart). We resampled the GP hyper-

parameters using a slice sampler (Murray and Adams, 2010) (once again, using code

from Iain Murray’s webpage).

We also placed a prior on the parameter γ of the hazard function (see equation (5.9)).

Recall that for our approach to apply, we require that the hazard function h(τ) be

bounded. For values of γ less than 1 (corresponding to ‘bursty’ renewal processes), the

gamma hazard function becomes unbounded, and our uniformization-based approach

no longer applies. We discuss how to deal with such unbounded hazard function in

chapter 6. For now, we restrict ourselves to values larger than 1 by placing an expo-

nential prior shifted to have a minimum value of 1:

(γ − 1) ∼ exp(χ) (5.25)

The parameter γ of the hazard function was then updated using random walk

Metropolis-Hastings moves, with the acceptance ratios calculated using equations (5.20)

and (5.25).

‡http://homepages.inf.ed.ac.uk/imurray2/

http://homepages.inf.ed.ac.uk/imurray2/

Sampling via Uniformization 84

5.3.2 Computational considerations

The computational bottleneck for inference in our model involves the Gaussian process:

sampling a GP on a set of points is, in the worst case, cubic in the size of that set.

In our model, each iteration sees on average |G| + 2|E| values of the GP, where |G|
is the number of observations and |E| is the average number of points sampled from

the subordinating Poisson process. Note that |E| varies from iteration to iteration

(being proportional to the scaling factor λ∗). Since we perform posterior inference

on λ∗, the complexity of our model can be thought to adapt to that of the problem.

This is in contrast with time-discretization approaches, where a resolution is picked

beforehand, fixing the complexity of the inference problem accordingly. For instance,

Cunningham et al. (2008) use a resolution of 1ms to model neural spiking, making

it impossible to näıvely deal with spike trains extending over more than a second.

However as they demonstrate in their work, instantiating a GP on a regular lattice

allows the development of fast biased inference algorithms that scale linearly with the

number of grid-points. In our case, the Gaussian processes is sampled at random

locations. Moreover, these locations change each iteration, requiring the inversion of a

new covariance matrix; this is the price we have to pay for an exact sampler.

In chapter 6, we discuss an approach that will allow us to reduce the computational

burden by reducing the number of thinned events |E|. Essentially, instead of subor-

dinating the renewal process to a homogeneous Poisson process, we construct another

point process whose hazard rate more tightly bounds h(τ, t). This scheme will also

allow us to overcome the requirement that the hazard function be bounded, allowing

us to deal with bursty renewal processes (such as a Gamma renewal process with shape

parameter less that 1).

Such an approach can only reduce the number of thinned events, and will not be of much

use if |G|, the number of observations itself is large. In such a situation, rather that

working with a general covariance kernel (such as a squared-exponential kernel), one

can limit oneself to covariance kernels giving precision matrices with compact support.

The resulting banded diagonal precision matrix, combined with the fact that we are

working in 1-dimensional time, will allow us to use the forward-backward algorithm to

carry our inference efficiently. Essentially such an algorithm will exploit a Gaussian

process with a Markov structure. Inference for such models will scale cubically with

the number of points that lie within an interval of width equal to the support of the

kernel, and only linearly with the total observation interval.

An alternate approach is to call upon the vast literature concerning approximate in-

ference for Gaussian processes (Rasmussen and Williams, 2006). A question then is

how these approximations compare with discrete-time observations like in Cunning-

ham et al. (2008). This is an interesting question in its own right, and raises the

possibility of approximate inference algorithms that combine ideas from Cunningham

Experiments 85

et al. (2008) with the adaptive nature of our approach.

5.4 Experiments

In this section we evaluate our model and sampler on a number of datasets. All ex-

periments were run using implementations in Matlab. In all experiments, the baseline

event-rate of the modulated renewal process (i.e. the rate when the intensity function is

fixed at 1) was set to the empirical rate of the observed point process. As a result, any

inferences about the shape parameter are a consequence of the dispersion of the point

process rather than of some sort of rate matching. In all experiments, we set the ex-

ponential parameter χ to 0.1 (see equation (5.25)), resulting in a fairly noninformative

prior on γ.

5.4.1 Synthetic data

Our first set of experiments used three synthetic datasets generated by modulating

a gamma renewal process (with the shape parameter γ set to 3) with three different

functions (see figure 5.5):

• λ1(t) = 2 exp(t/5) + exp(−((t− 25)/10)2, t ∈ [0, 50]: 44 events

• λ2(t) = 5 sin(t2) + 6, t ∈ [0, 5]: 12 events

• λ3(t): a piecewise linear function , t ∈ [0, 100]: 153 events

For each function, we also generated 10 test sets. We then ran three settings of our

model: with the shape parameter fixed to 1, with the shape parameter fixed to the truth,

and with a shifted-exponential hyperprior on the shape parameter. We call these setting

(MRP Exp), (MRP Gam3) and (MRP Full) respectively. For comparison, we also ran

an approximate discrete-time sampler where the Gaussian process was instantiated on

a regular grid covering the interval of interest. In this case, all intractable integrals

were approximated numerically and we used elliptical slice sampling to run MCMC on

this Gaussian vector. In all cases, we used a GP with a squared exponential kernel,

and placed log-normal priors on the GP hyperparameters.

Figure 5.5 shows the results from 5000 MCMC samples after a burn-in of 1000 sam-

ples. We quantify these in Table 5.1 by calculating the l2 distance of the posterior

means (evaluated on a fixed grid) from the truth. We also calculated the mean pre-

dictive probabilities of the 10 test sequences. Not surprisingly, the inhomogeneous

Poisson process forms a poor approximation to the gamma renewal process; in particu-

lar, it underestimates the intensity function required to produce a clustered sequence of

events. Fixing the shape parameter to the truth significantly reduces the l2 error and

increases the predictive probabilities, but interestingly, for these datasets, the model

Experiments 86

MRP Exp MRP Gam3 MRP Full Disc25 Disc100

l2 error 7.8458 3.19 2.548 4.089003 2.426973

log pred. prob. -47.5469 -38.0703 -37.3712 -41.646350 -41.016425

l2 error 141.0067 56.2183 58.4361 91.321069 57.896300

log pred. prob. -3.704396 -2.945298 -3.280871 -5.245478 -3.848443

l2 error 82.0289 11.4167 13.4441 122.335151 38.047332

log pred. prob. -89.8787 -48.2777 -48.57 87.170034 -55.802997

Table 5.1: l2 distance from the truth, and mean log-predictive probabilities of the
held-out datasets for synthetic datasets 1(top) to 3(bottom).

with a prior on the shape parameter performs comparably with the ‘oracle’ model. We

have also included plots of the posterior distribution over the gamma parameter; these

are peaked around 3. Discretizing time into a 100 bins (Disc100) results in comparable

performance for the first two datasets on the l2 error. For the third, (which spans a

longer interval and has a larger event count), we had to increase the resolution to 500

bins to improve accuracy. Discretizing to 25 bins was never sufficient. A conclusion

is that with time discretization, to keep the bias small, one must be conservative in

choosing the time-resolution; however, evaluating a GP on a fine grid can result in slow

mixing. Our sampler has the advantage of automatically picking the ‘right’ resolution.

However as we discussed in the section on computation, time discretization has its own

advantages that make it a viable approach (Cunningham et al., 2008).

0 10 20 30 40 50
−0.5

0

0.5

1

1.5

2

2.5

3

In
te

ns
ity

Truth
MRP Exp
MRP Gam3
MRP Full
Disc100

0 1 2 3 4 5
−2

0

2

4

6

8

10

12

0 20 40 60 80 100

0

1

2

3

1 2 3 4 5
0

0.05

0.1

0.15

0.2

1 2 3 4 5
0

0.05

0.1

0.15

0.2

1 2 3 4 5
0

0.1

0.2

0.3

0.4

Figure 5.5: Synthetic Datasets 1-3: Posterior mean intensities plotted against
time (top) and gamma shape posteriors (bottom)

5.4.2 Identifiability of the Gamma shape parameter

In this experiment, we looked more carefully at the issue of the identifiability of the

Gamma shape parameter under our model. We generated a sequence of renewal events

Experiments 87

0 1 2 3 4 5 6 7 8
0

0.1

0.2
 5 seconds
(4 events)

0 1 2 3 4 5 6 7 8
0

0.1

0.2
 10 seconds
(9 events)

0 1 2 3 4 5 6 7 8
0

0.2

0.4
 20 seconds
(21 events)

0 1 2 3 4 5 6 7 8
0

0.5

1
 50 seconds
(71 events)

0 1 2 3 4 5 6 7 8
0

0.5

1
 100 seconds
(142 events)

0 1 2 3 4 5 6 7 8
0

0.5

1
 200 seconds
(258 events)

Figure 5.6: Posterior over the gamma shape parameter having observed the
modulated renewal process over intervals of increasing length

from our GP-modulated renewal process over the interval [0, 200]. The modulating

function was drawn from a Gaussian process with a squared exponential covariance

kernel. The GP mean was set to 2, and both the log-length scale and the log-variance

of the kernel were set to 1. The GP was transformed by a sigmoid function, scaled by

a factor of 5, and then used to modulate a Gamma(2,1/2) renewal process to produce

a sequence of 258 events over the interval [0, 200].

We then looked at the posterior inferences produced by our sampler as we observed

longer and longer sequences of renewal events. In other words, we restricted the modu-

lated renewal events to the interval [0, T], and for increasing values of T , looked at the

sequence of posterior distributions over γ. We placed an exponential prior on (γ − 1),

the mean of this distribution was set to 10, resulting in an uninformative prior over

γ. We placed a Gamma(5, 1) prior on λ̂, the scaling constant of the sigmoid. The

cubic cost of inference with the squared exponential kernel meant that we could not

handle interval lengths much longer than 200. Moreover, the most expensive opera-

tion of our sampler is the slice-sampler that resamples the GP hyperparmeters, and we

therefore fixed the GP hyperparameters to their true values. Thus the parameters we

performed inference over were the latent GP, the scale parameter λ̂ and the Gamma

shape parameter γ.

Figure 5.6 shows the posterior distribution over γ as T took values 1, 5, 10, 50, 100 and

200. The posterior over γ starts from very uninformative to a distribution more and

more concentrated around the truth. This suggests that we are able to average out

Experiments 88

5 seconds 10 seconds 20 seconds 50 seconds 100 seconds 200 seconds

Mean 4.8312 3.7600 2.8498 2.1137 2.2360 2.0484

Median 4.7001 3.3738 2.7561 2.0827 2.2368 2.0386

.1 quartile 2.2144 1.7721 1.7149 1.6683 1.8989 1.8305

.9 quartile 7.6652 6.3029 4.0993 2.6126 2.5602 2.2693

Table 5.2: Convergence of the posterior on the Gamma shape paremeter

1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50
−2

0

2

4

6

8

Figure 5.7: (left) Posterior over the Gamma shape parameter having observed
258 events over 200 seconds (right) The true modulating function (green), as well
as the posterior mean ±1.5 standard deviations

the fluctuations introduced by the nuisance parameter (the GP) and identify the true

refractoriness of the model. The posterior was constructed from 2000 MCMC iterations,

after a burnin period of 500.

Figure 5.7 shows more clearly the posterior distribution given the entire set of 258

renewal events. It also includes the true modulating function (in green), and the pos-

terior distribution over the modulating function (along with 1.5 standard deviations).

For clarity we plot only the restriction to the interval [0, 50]. The modulating function

is clearly not identifiable due to statistical noise (equivalently, we have only a fixed

amount of information about the GP value at any time, independent of the length of

the renewal sequence). However, if we observe more and more renewal sequences mod-

ulated by the same function, we can obtain enough information to recover this quantity

as well.

5.4.3 Coal mine disaster data

For our next experiment, we ran our model on the coal mine disaster dataset commonly

used in the point process literature. This dataset records the dates of a series of 191

coal mining disasters, each of which killed ten or more men (Jarrett, 1979). Figure

5.8(left) shows the posterior mean of the intensity function (surrounded by 1 standard

deviation) returned by our model. Not included is the posterior distribution over the

shape parameter; this concentrated in the interval from 1 to 1.1, suggesting that the

data is well modelled as an inhomogeneous Poisson process, and is in agreement with

Experiments 89

1850 1900 1950
−1

0

1

2

3

4

In
te

ns
ity

1850 1900 1950
−1

0

1

2

3

4

1 1.5 2
0

0.05

0.1

0.15

0.2

Figure 5.8: Left: Posterior mean intensity for coal mine data with 1 standard
deviation error bars (plotted against time in years). Centre: Posterior mean in-
tensity for ‘thinned’ coalmine data with 1 standard deviation error bars. Right:
Gamma shape posterior for ‘thinned’ coal mine data.

(Jarrett, 1979). As sanity check, and to shed further light on the issue of identifiability,

we processed the dataset by deleting every alternate event. With such a transformation,

a homogeneous Poisson would reduce to a gamma renewal process with shape 2. This

need not be the case for an inhomogeneous Poisson process, with the result depending

on the nature of the inhomogeneity. Our model returns a posterior peaked around 1.5

(in agreement with the shape of the inhomogeneity). Note that the posteriors over

intensity functions are similar (except for the obvious scaling factor of about 2).

5.4.4 Spike timing data

We next ran our model on neural spike train data recorded from grasshopper auditory

receptor cells (Rokem et al., 2006). § Rokem et al. (2006). This dataset is characterized

by a relatively high firing rate (∼ 150 Hz), making refractory effects more prominent.

We plot the posterior distribution over the intensity function given a sequence of 200

spikes in a 1.6 second interval. We also included the posterior distribution over gamma

shape parameters in figure 5.9; this concentrates around 1.5, agreeing with the refrac-

tory nature of neuronal firing. The results above follow from using noninformative hy-

perpriors; we have also plotted the log-transformed stimulus, an amplitude-modulated

signal. In practice, other available knowledge (viz. the shape parameter, the stimulus

length-scale, the transformation from the stimulus to the input of the neuron etc) can

be used to make more accurate inferences.

5.4.5 Computational efficiency and mixing

For our final experiment, we compare our proposed blocked Gibbs sampler with the

Metropolis-Hastings sampler of Adams et al. (2009)¶. We ran both algorithms on two

datasets, synthetic dataset 1 from section 5.4.1 and the coal mine disaster dataset.

§Collected by Ariel Rokem at Andreas Herz’s lab; provided through the CRCNS program (http:
//crcns.org)
¶We thank Ryan Adams for providing us with his code.

http://crcns.org
http://crcns.org

Discussion 90

0 500 1000 1500
1.5

2

2.5

3

Time (ms) 1 1.5 2
0

0.1

0.2

Figure 5.9: Left: Posterior mean intensity for neural data with 1 standard de-
viation error bars. Superimposed is the log stimulus (scaled and shifted). Right:
Posterior over the gamma shape parameter.

Synthetic dataset 1 Coalmine dataset
Mean ESS Minimum ESS Time(sec) Mean ESS Minimum ESS Time(sec)

Gibbs 93.45± 6.91 50.94± 5.21 77.85 53.54± 8.15 24.87± 7.38 282.72
MH 56.37± 10.30 19.34± 11.55 345.44 47.83± 9.18 18.91± 6.45 1703

Table 5.3: Sampler comparisons. Numbers are per 1000 samples.

All involved 20 MCMC runs of 5000 iterations each (following a burn-in period of a

1000 iterations). For both datasets, we evaluated the latent GP on a uniform grid

of 200 points, calculating the effective sample size (ESS) of each component of the

Gaussian vectors (using R-CODA (Plummer et al., 2006)). For each run, we return the

mean and the minimum ESS across all 200 components. In Table 5.3, we report these

numbers: not only does our sampler mix faster (resulting in larger ESSs), but also

takes less computation time. Additionally, our sampler is simpler and more natural to

the problem, and does not require any external tuning parameters.

5.5 Discussion

In this chapter, we have described how uniformization allows us to produce exact

samples from a nonstationary renewal process whose hazard function is modulated by

a Gaussian process. Like the previous chapters, we exploited our uniformization-based

construction to develop a novel and efficient MCMC sampler for posterior inference.

There are a number of interesting avenues worth following. First is the restriction that

the hazard function be bounded: while this covers a large and useful class of renewal

processes, it would be useful to extend our approach to produce exact samples for

renewal processes with unbounded hazard functions. We leave the description of such

a scheme for the next chapter. In any case, following Ogata (1981), it is easy to extend

our ideas to Bayesian inference for more general point processes with bounded hazard

rates. For instance, the firing rate at any instant can depend not just on the time since

the last event, but on the entire pattern of the previous event history. Such models are

Discussion 91

often more realistic descriptions of various phenomena (Paninski et al., 2007), and for

the case of a completely observed point process, we can handle such extensions without

incurring any additional computational burden.

Observe that while our generative process involved running a Markov chain on the

set of Poisson events, unlike chapter 3, posterior inference did not involve running the

forward-backward algorithm. The reason is that we are working in a framework where

the renewal events are completely and perfectly observed. We can easily relax this

restriction, allowing the event times to be observed noisily, and even allow missing

times. Such a situation will require a forward-backward sampling scheme, and can

have a complexity that scales quadratically with the number of Poisson events (this is

not linear like the MJP because our system is no longer Markov). The next chapter

which describes inference for continuous-time semi-Markov jump processes will make

clear how one might deal with issues like noisy observation times, missing events etc.

A limitation with our proposal of using a Gaussian process prior on the modulating func-

tions is that inference scales cubically with the total number of Poisson points (thinned

or otherwise). Thus our approach will not scale well to large problems. As we suggested,

because we are working with point processes (and therefore GPs) on the real line, it is

possible to choose covariance kernels (other than the squared-exponential) that allow

efficient, linear inference. The idea is essentially to use a kernel whose precision matrix

has a finite support, and then use efficient forward-backward sampling techniques. We

also show in the next chapter how we can reduce the number of thinned events, making

GP inference easier. There is also a vast literature concerning approximate sampling

for Gaussian processes. An important question is how these approximations compare to

approximations introduced via time-discretization. Additionally, even though we con-

sidered GP modulating functions, our uniformization-based sampler will also be useful

for Bayesian inference involving simpler priors on modulating functions, eg. splines or

Markov jump processes.

Chapter 6

Beyond uniformization:

subordinating to general

continuous-time processes

6.1 Introduction

In the last three chapters, we studied a framework for efficient posterior inference in

continuous-time discrete-state systems based on the idea of uniformization. We started

with the Markov jump process, and after studying two extensions of this model (viz. the

MMPP and the CTBN), we moved on to renewal processes. In this chapter, we extend

our ideas to semi-Markov processes. Semi-Markov processes are essentially generaliza-

tions of the MJP where the waiting times of each state follow some general density

on R+ beyond the memoryless exponential. Equivalently, these are generalizations of

renewal processes that allow for multiple states with different dynamics. Working with

these processes, we shall see that the uniformization framework of the previous chapters

can prove restrictive, and we will develop methods beyond uniformization to carry out

MCMC inference.

Recall that uniformization involves first sampling candidate event times from a Poisson

process whose rate dominates all event rates in the system of interest. This restricts

us to systems with bounded event rates; we saw for example that our methods in the

last chapter do not extend to bursty renewal densities with unbounded hazard rates.

Similarly, recall that in the Lotka-Volterra model (subsection 4.3.1), birth and death

rates are proportional to the sizes of the relevant populations. Since we cannot a priori

bound the maximum size of a population over any finite interval, we cannot construct

a constant bound on all event rates in the system. In chapter 4, we got around this

issue by approximating the original system with a truncated one that does have a

bounded population size. This however introduces a bias into our inferences, and to

Semi-Markov processes 93

keep this small, we needed a conservative bound on the population size (and thus on

the maximum event rate in the system). This in turn can lead to bounding rates that

are significantly larger than typical rates witnessed in the system, introducing a large

number of thinned events that have to be resampled at the time of inference. A related

source of inefficiency is the presence of states in an MJP with widely differing event

rates. Again, by picking a single rate Ω that dominates all event rates in the system, the

average number of Poisson events (and thus the computational cost of our algorithm)

scales with the leaving rate of the most unstable state. At the same time, this state is

often the one that the system will spend the least amount of time in.

A hint of the ideas that follow was provided when we studied inference for CTBNs

(section 4.2). There, rather than picking a single dominating Poisson rate for a node

of a CTBN, we allowed the dominating rate to depend on the current configuration of

the parents of the node. In this chapter, we extend this idea, allowing the dominating

Poisson rate to vary not just with configuration of a node’s Markov blanket (if any) but

also with the state of the node itself. This will allow us to develop a general framework

for MCMC inference for a much wider variety of continuous-time discrete-state systems.

First however, to provide ourselves with a concrete problem to address, we introduce

semi-Markov processes.

6.2 Semi-Markov processes

Like the Markov jump process, a semi-Markov process is a right-continuous, piecewise-

constant stochastic process on the nonnegative real-line taking values in some state

space S (Feller, 1964; Sonderman, 1980). We abbreviate this process as sMJP, the

‘J’ emphasizing that it always is a jump process. For simplicity, we assume the state

space S is finite, labelling its elements from 1 to N . We also assume the process

is stationary. Then, the sMJP is parametrized by π0, a probability measure on S
giving the initial distribution over states, as well as an N ×N matrix of subdistribution

functions D = [Dss′(·)]. The value Dss′(τ) gives the cumulative probability distribution

of the system transitioning to state s′, τ time units after entering state s. Thus, Dss′(τ)

is a positive, monotonic function of τ , with∑
s′∈S

Dss′(∞) = 1 ∀s (6.1)

We point out that unlike an MJP, sMJPs are usually defined to allow self-transitions;

this amounts to resetting the current waiting time τ of a state. Assume that the

distributions Dss′(τ) admit densities with respect to Lebesgue measure, and call these

rss′(τ). From equation (6.1), we see that Dss′(∞) is usually less than 1, so that rss′(τ)

is not normalized. Rather, it is related the joint probability of waiting in state s for a

time τ and then jumping to state s′ (however, when we talk of sampling a time τ from

Semi-Markov processes 94

Figure 6.1: A Sample sMJP trajectory. The times of the filled dots correspond
to T , while the corresponding values of L(t) and S(t) correspond to L and S
respectively.

rss′(·), we will mean from the normalized density). Let Ass′(τ) be the hazard function

associated with the density rss′(τ), so that following chapter 5, we can easily show that:

rss′(τ) = Ass′(τ) exp

(
−
∫ τ

0
Ass′(u)du

)
, (6.2)

Ass′(τ) =
rss′(τ)∫∞

0 rss′(u)du−
∫ τ

0 rss′(u)du
, and (6.3)

Dss′(τ) = 1− exp

(
−
∫ τ

0
Ass′(u)du

)
(6.4)

Ass′(τ) gives the rate of transitioning to state s′, τ time units after having entered state

s. Entering state s initiates a ‘race’ between the hazard functions Ass′(·) ∀s′ ∈ S to

produce the first event. Accordingly, we sample waiting times τs′ ∼ Ass′(·) ∀s′ ∈ S (we

shall interchangeably talk about sampling a waiting time from the density rss′(·) or from

its associated hazard function Ass′(·)). The sMJP then enters a new state corresponding

to the smallest of these waiting times. Let this state be snew (we allow self-transitions,

so snew can equal s), and let the waiting time be τhold (so that τhold = τsnew = mins′ τs′).

Then, advance the current time by τhold, set the sMJP state to snew, and repeat this

procedure, now with the rate functions Asnews′(·) ∀s′ ∈ S. This direct approach to

sampling an sMJP trajectory corresponds to Gillespie’s algorithm for Markov jump

processes. The lower plot in figure 6.1, shows a sample sMJP trajectory, with the filled

dots representing the state transitions times T and the corresponding state values S.

Semi-Markov processes 95

From equation (6.4), we have that

P (τhold > τ) =
∏
s′∈S

P (τs′ > τ) (6.5)

=
∏
s′∈S

exp

(
−
∫ τ

0
Ass′(u)du

)
(6.6)

= exp

(
−
∫ τ

0
As(u)du

)
(6.7)

where

As(τ) =
∑
s′∈S

Ass′(τ) (6.8)

Similarly, it follows that

rs(τhold) ≡ P (τhold = τ) (6.9)

= As(τ) exp

(
−
∫ τ

0
As(u)du

)
(6.10)

Comparing with equation (6.2), we see (as we might expect) that As(τ), gives the rate

of any transition out of state s occurring (including self-transitions), after τ time units

have elapsed since entering s. Thus As(·) is the hazard function of the minimum waiting

time τhold. Let snext be the new state that the sMJP now jumps into, and scurr be the

current state. Then from equations (6.2) and (6.10) we see that

P (snext = s′|scurr = s, τhold = τ) ∝ Ass′(τ) (6.11)

so that

P (snext = s′, tnext = tcurr + τhold|scurr = s) =

Ass′(τhold) exp

(
−
∫ τhold

0
As(u)du

)
(6.12)

Thus, an equivalent way to sample an sMJP trajectory is by first sampling the time un-

til the next jump, thold, from equation (6.10), and then sampling the new state s′ from

equation (6.11). When the hazard functions Ass′(·) are all constant (so that the distri-

butions rss′(·) are exponential), and when Ass = 0 for all s ∈ S, we recover the Markov

jump process. Gillespie’s algorithm corresponds to directly sampling the waiting time

thold from equation (6.10), and then picking a new state using equation (6.11). Note

that the rate matrix A defined here for the MJP is slightly different from the generator

matrix A defined in chapter 3. For the latter, the diagonal element Ass equalled −As,
the negative of the total rate of leaving state s. Here, on the other hand, the diagonal

Semi-Markov processes 96

element Ass gives the rate of making a self-transition from state s back to itself. We

shall work with this definition of A for this and the next chapter.

In chapter 3, we represented a sample trajectory as S(t) ≡ (S, T), where T is is the set

of jump times (including the endpoints) and S is the corresponding set of state values.

For the sMJP, S(t) alone is not sufficient to identify when self-transitions occurred.

There are a number of ways to augment S(t) to identify self-transitions as well. For

later purposes, we do this by including another function L(t) (shown in figure 6.1). At

any time t, this gives the time since the last state transition (inclusive of the current

time t); i.e.

L(t) = min
t∗∈T,t∗≤t

(t− t∗) (6.13)

Now, the pair (S(t),L(t)) is an equivalent representation of (S, T). Observe that L(t)

evaluated on the set of times in T equals 0.

Figure 6.1 shows all the relevant quantities, while algorithm 6.1 describes the steps

involved in sampling an sMJP trajectory over a finite interval [tstart, tend].

Algorithm 6.1 Algorithm to sample an sMJP path on the interval [tstart, tend]

Input: The initial distribution over states π0 and the collection of subdistribution
functions Dss′(·) ∀s, s′ ∈ S. The latter specify the transition hazard rates
Ass′(·) and the waiting time densities rss′(·).

Output: An sMJP trajectory (S, T).

1: Assign the MJP a state s0 ∼ π0. Set t0 = tstart and i = 0.
2: while ti < tend do
3: Increment i.
4: For all s ∈ S, draw τs ∼ rsi−1s(·). Let z = argmin τs and τhold = τz.
5: Set ti = ti−1 + τhold.
6: Set si = z. Note that si can equal si−1.
7: end while
8: Set ti = tend, and si = si−1.

By allowing the waiting times to follow a general density, the process S(t) is no longer

Markov. We can thus include memory effects like burstiness and refractoriness in the

system dynamics. However, given the state of the system at any time, knowing when the

process entered that state helps predict the time and destination of the next transition.

Thus, given the pair (S(t),L(t)), the future is independent of the past, and this system

is Markov. Later, when we describe an MCMC sampler for sMJPs, we will construct

a forward-backward sampling algorithm on a Markov chain whose state at time t is

(S(t),L(t)). For later use, we note down the transition densities for this augmented

Markov chain. Let t3 > t2 ≥ t1, and let t−3 be the time infinitesimally before t3. Then,

Dependent thinning for semi-Markov processes 97

from equations (6.10) and (6.7), we have

P (S(t3) = s′,L(t3) = 0,L(t−3) = t3 − t1|S(t2) = s,L(t2) = t2 − t1)

= As(t3 − t1) exp

(
−
∫ (t3−t1)

(t2−t1)
As(τ)dτ

)
Ass′(t3 − t1)

As(t3 − t1)
(6.14)

= Ass′(t3 − t1) exp

(
−
∫ (t3−t1)

(t2−t1)
As(τ)dτ

)
(6.15)

The first term on the right-hand side of equation (6.14) is the probability of thold

equalling (t3− t1) conditioned on it being greater that (t2− t1). The second term is the

probability of then jumping to state s′ (we repeat that s′ can equal s). We also have

that

P (S(t3) = s, L(t3) = t3 − t1|S(t2) = s,L(t2) = t2 − t1)

= P (L(t3) = t3 − t1|S(t2) = s,L(t2) = t2 − t1) (6.16)

= exp

(
−
∫ (t3−t1)

(t2−t1)
As(τ)dτ

)
(6.17)

6.3 Dependent thinning for semi-Markov processes

Chapter 5 suggests a uniformization-based approach to sampling from a semi-Markov

process by subordinating it to a Poisson process with rate Ω ≥ sups,s′,τ Ass′(τ). Such

an approach was described in Sonderman (1980). Assuming such a finite Ω exists, this

procedure is a straightforward combination of the uniformization schemes for MJPs

and for renewal processes. We do not specify it here; as we shall see later, this will

turn out to be a special case of the algorithm we propose. Instead, we reiterate its

limitations. First, if Ω is much larger than typical events rates in the system, then the

large number of thinned events can lead to significant inefficiency. More importantly,

this scheme requires sups,s′,τ Ass′(τ) to be finite. As we saw in the introduction, this

is not always the case (a simple example is when the density of a waiting time r(τ) is

gamma distributed with shape parameter less than 1).

In this section, we will describe an alternate approach to sampling an sMJP trajectory,

based on a procedure of dependent thinning. We saw in the previous section that we

could sample an sMJP trajectory (S, T) by successively sampling τhold, the waiting time

until the next event, and then the event identity. Our approach here is to sample a

candidate event time from a distribution corresponding to a rate Us(τ) that dominates

As(τ). Thus, for every hazard function As(τ), pick some other dominating hazard

function Us(τ), so that

Us(τ) ≥ As(τ) ∀s, τ (6.18)

Dependent thinning for semi-Markov processes 98

Figure 6.2: A Sample sMJP trajectory. The filled dots correspond to actual
events, while the empty dots are thinned events. Note that we can distinguish
self-transitions from thinned events from the values of L(·) at these times.

To correct for the fact that candidate events are being produced at a rate higher than

the actual event rate in the system, we probabilistically thin these events. Define

the sequence W as the union of actual event times, T (the filled dots in figure 6.2),

together with the thinned event times (which we call W̃ , these are the empty circles in

figure 6.2). We define V = (v0, · · · , v|W |) as the sequence of state assignments to the

times W , and L =
(
l1, · · · , l|W |

)
as the corresponding values of l (so that li = L(wi)).

These quantities are also shows in figure 6.2. Observe now that vi = vi+1 does not

necessarily imply a self-transition at time wi, since vi could correspond to a thinned

candidate event. For actual events (including self-transitions), li = 0, otherwise li tells

us that the last actual transition occured at time wi − li.

Our scheme is now a straightforward application of the fact that given (vi, li), the future

is completely independent of events before wi. Suppose the system just entered state

vi at time wi (so that li = 0). We sample the next candidate event time wi+1, with

∆wi = (wi+1−wi) drawn from the hazard function Uvi(·). Recall that Uvi(·) dominates

Avi(·), so that ∆wi will on average be smaller than a sample from Avi(·). We correct

for this by treating wi+1 as an actual event with probability
Avi (∆wi+li)

Uvi (∆wi+li)
. If this is the

case, we sample a new state vi+1 with probability proportional to Uvivi+1 (∆wi + li),

and set li+1 = 0. On the other hand, if the event is rejected, we keep vi+1 equal

Dependent thinning for semi-Markov processes 99

Figure 6.3: Discrete-time Markov chain for the forward-backward algorithm.
∆wi = wi+1−wi, and xi represents actual observations in the interval (wi, wi+1).

to vi, and set li+1 = (∆wi + li). We now sample ∆wi+1 (and thus wi+2), such that

(∆wi+1 + li+1) ∼ Uvi+1(·). More simply, we sample a waiting time from Uvi+1(·),
conditioned on it being greater than li+1. Again, accept this point with probability
Avi+1 (∆wi+1+li+1)

Uvi+1 (∆wi+1li+1) , and repeat this process.

Figure 6.2 and algorithm 6.2 describes our dependent thinning scheme; this amounts to

successively sampling a new candidate time wi, and assigning it label (vi, li). Figure 6.3

summarizes this procedure with a graphical model. The latter also depicts observations

X of the sMJP trajectory; we explain this later.

Algorithm 6.2 State-dependent thinning for sMJPs

Input: A matrix of hazard functions Ass′(τ), ∀s, s′ ∈ S and an initial distribution
over states π0.
For each state s, a dominating hazard function Us(τ) ≥ As(τ) ∀τ , where
As(τ) =

∑
j Asj(τ).

Output: An sMJP path (V,L,W) ≡ ((vi, li, wi)) on the interval [tstart, tend].

1: Draw v0 ∼ π0 and set w0 = tstart. Set l0 = 0 and i = 0.
2: while wi < tend do
3: Sample τhold ∼ Uvi(·), conditioning on τhold > li.
4: Let ∆wi = τhold − li, and wi+1 = wi + ∆wi.

5: with probability
Avi (τhold)

Uvi (τhold)

6: Set li+1 = 0, and sample vi+1, with P (vi+1 = s′|vi) ∝ Avis′(τhold), s′ ∈ S.
7: else
8: Set li+1 = li + ∆wi, and vi+1 = vi.
9: end

10: Increment i.
11: end while
12: Set w|W | = tend, v|W | = v|W |−1, l|W | = l|W | + w|W | − w|W |−1.

Conceptually, our algorithm can be thought to bridge a gap between Gillespie’s algo-

rithm and uniformization. When the dominating hazard functions Ui(·) are identical

to the corresponding hazard functions Ai(·), we recover Gillespie’s algorithm (where

we have no thinned events). Uniformization corresponds to a single, constant domi-

nating hazard function; since this is constant across all states of the system, we can

first instantiate the subordinating events W and then assign them labels. Our strategy

here attempts to contruct a dominating hazard function that approximates the actual

Dependent thinning for semi-Markov processes 100

hazard function of interest more closely, while still introducing latent thinned events.

This offers us the necessary wiggle room to construct an MCMC algorithm for pos-

terior inference; simultaneously, it avoids the inefficiency that results from too many

thinned events. It is important to realize that while generating fewer thinned events

can ‘increase efficiency’ by requiring fewer computations per MCMC iteration, it also

increases the dependence between the thinned events W and the sMJP trajectory, re-

sulting in slower mixing. We explain this more carefully in the section on inference,

but the trade-off here is similar to the choice of the bounding rate Ω for uniformization

from chapter 3. Our scheme offers a more refined control over how we can trade off

mixing rate and computational cost of each iteration.

It is worth emphasizing that the coupled construction of the point process and the

label-assignment process means that the former is not a Poisson process. However,

conditioned on the sMJP trajectory, this point process has a simple structure that

allows efficient inference. Again, we shall look at this in section 6.4 on inference; first

however, we show that algorithm 6.2 is correct.

Proposition 6.1. The path (V,L,W) returned by algorithm 6.2 corresponds to a sam-

ple from the semi-Markov process parametrized by (π0, D).

Proof. Without any loss of generality, assume that the system has just entered state

s ∈ S at time 0. We need to show that the probability density of the system next

transitioning to a state s′ at time t follows equation (6.12).

Suppose that t is the time of nth candidate jump, so that there were n − 1 rejected

transitions on the interval [0, t]. Let these occur at times (w1, w2, . . . , wn−1), with

t = wn. Recalling that these were generated from the hazard function Us(t), and

letting [n− 1] represent the set of integers {1, · · · , n− 1}, we have:

P ((w1, . . . wn) , {vi = s, li = (wi − w0) ∀i ∈ [n− 1]}, vn = s′, ln = 0|w0, v0 = s)

=

(
n−1∏
k=1

Us(lk) exp

(
−
∫ lk

lk−1

Us(τ)dτ

)(
1− As(lk)

Us(lk)

))
(6.19)(

Us(ln−1 + ∆wn−1) exp

(
−
∫ ln−1+∆wn−1

ln−1

Us(τ)dτ

)(
Ass′(ln−1 + ∆wn−1)

Us(ln−1 + ∆wn−1)

))

= exp

(
−
∫ ln−1+∆wn−1

0
Us(τ)dτ

)(n−1∏
k=1

(Us(lk)−As(lk))

)
Ass′(ln−1 + ∆wn−1)

(6.20)

Posterior inference via MCMC 101

Integrating out w1 to wn−1 (and thus l1 to ln−1), we have

P (wn = t, {vi = s ∀i ∈ [n− 1]}, vn = s′, ln = 0|w0 = 0, v0 = s) (6.21)

= exp

(
−
∫ t

0
Us(τ)dτ

)
Ass′(wn)(∫ t

0

∫ t

l1

. . .

∫ t

ln−2

n−1∏
k=1

(Us(lk)−As(lk)dlk)

)

= Ass′(t) exp

(
−
∫ t

0
Us(τ)dτ

)
1

(n− 1)!

(∫ t

0
dτ (Us(τ)−As(τ))

)n−1

(6.22)

The expression above gives the probability of transitioning from state s to s′ after a

wait of t time units, with n− 1 rejected candidate jumps. Summing out n− 1, we get

the transition probability. Thus,

P (snext = s′, tnext = t|scurr = s, tcurr = 0)

= Ass′(t) exp

(
−
∫ t

0
Us(τ)dτ

) ∞∑
n−1=0

1

(n− 1)!

(∫ t

0
dτ (Us(τ)−As(τ))

)n−1

= Ass′(t) exp

(
−
∫ t

0
As(τ)dτ

)
(6.23)

From equation (6.12), we see that this is the desired result.

6.4 Posterior inference via MCMC

Our thinning-based construction outlined in the previous section simplifies the structure

of the sMJP posterior, and allows us to now define an auxiliary variable Gibbs sampler

on the augmented space (V,L,W). As in previous chapters, we alternately resample the

thinned events given the current trajectory of the sMJP, and then the sMJP trajectory

given the union of the thinned events with transition times of the previous trajectory,

setting up a Markov chain over the thinned representation (V,L,W) of the sMJP. We

describe both operations in detail below.

6.4.1 Resampling the thinned events given the sMJP trajectory

Let (S, T) be the current sMJP trajectory. We need to resample the thinned events

(we called this set W̃) to recover the thinned representation (V,L,W). Note that each

thinned event w̃i ∈ W̃ in the interval (ti, ti+1) has a corresponding label (ṽi, l̃i) equal

to (si, w̃i − ti).

To simplify notation, we define the instantaneous hazard function A(t), and the instan-

Posterior inference via MCMC 102

taneous dominating hazard function U(t) as

A(t) = AS(t)(L(t)) (6.24)

U(t) = US(t)(L(t)) (6.25)

The black and coloured curves in figure 6.2 show these quantities. Observe that the

sMJP trajectory completely determines these hazard rates. Loosely speaking, we can

view the set of events W as a sample from a Poisson process with intensity U(t), and

the actual set of transition times T as a subset of W sampled from a Poisson process

with rate A(t) (see figure 6.2). Corollary 2.1 for the thinning theorem then suggests

that we can recover the thinned events W̃ by sampling from a Poisson process with

intensity (U(t)−A(t)). The following proposition shows that this is indeed the case.

Proposition 6.2. Conditioned on a trajectory (S, T) of the sMJP, the thinned events

W̃ are distributed as a Poisson process with intensity U(t)−A(t).

Proof. We will consider the interval of time [ti, ti+1], so that the sMJP entered state

si at time ti, and remained there until time ti+1, when it transitioned to state si+1.

Exploiting the independence properties of the sMJP and the Poisson process, we only

need to consider resampling thinned events on this interval. Call this set of thinned

events W̃ ≡ {w̃1, · · · , w̃n−1} ∈ [ti, ti+1], and call the corresponding set of labels Ṽ ≡
{ṽ1, · · · , ṽn−1} and L̃ ≡ {l̃1, · · · , l̃n−1} (to avoid notational clutter, we do not indicate

that W̃ and L̃ are actually restrictions to [ti, ti+1]). Observe that each element of

ṽj ∈ Ṽ equals si, while each element l̃j ∈ L̃ equals w̃j − ti. We write this as Ṽ = si and

L̃ = W̃ − ti. Then, by Bayes rule, with equations (6.19) and (6.15) as the joint and

marginal, we have

P (W̃ ,Ṽ = si, L̃ = W̃ − ti|si, ti, si+1, ti+1) (6.26)

=
P (W̃ , Ṽ = si, L̃ = W̃ − ti, vn = si+1, wn = ti+1, ln = 0|v0 = si, w0 = ti, l0 = 0)

P (si+1, ti+1|si, ti)

=
exp

(
−
∫ ti+1

ti
U(τ)dτ

)(∏n−1
k=1 (U(w̃k)−A(w̃k))

)
Asisi+1(ti+1 − ti)

Asisi+1(ti+1 − ti) exp
(
−
∫ ti+1

ti
A(τ)dτ

)
= exp

(
−
∫ ti+1

ti

U(τ)−A(τ)dτ

)(n−1∏
k=1

(U(vk)−A(vk))

)

This is just the density of a Poisson process on (ti, ti+1) with intensity (U(t) − A(t)),

which is what we set out to prove.

Observe that this step is independent of any observations. Sampling from the Poisson

process is relatively straightforward by choosing the bounding rates Ui appropriately;

we provide a concrete example in section 6.5. The hazard functions A(t) and U(t)

remain unchanged at the end of this step.

Posterior inference via MCMC 103

Figure 6.4: Resampling the sMJP trajectory: observe that a new trajectory
results in a new bounding rate U(t), and we need to account for the probability
of the Poisson events W under this rate function.

6.4.2 Resampling the sMJP trajectory given the set of times W

This step is a bit more subtle than with the MJP. Like chapter 3, we want to assign

each element wi ∈W a label (vi, li), by running the forward filtering backward sampling

Posterior inference via MCMC 104

algorithm over the set of times in W . Observe however, that li can take values in the

set {0, wi − wi−1, · · · , wi − w0}, so that the dimensionality of the state space at step i

is i (and thus increases with |W |). Consequently, the forward-backward algorithm for

the sMJP is more expensive than for the MJP. The usual N2C scaling of the forward-

backward algorithm (N being the number of states and C being the length of the chain)

would suggest a computational cost that scales cubically with |W |. Note, however, that

li can only equal 0 or li−1+∆wi−1. This sparsity in the possible state transitions results

only in a quadratic scaling (at worst).

Next, observe from figure 6.4 that changing the sMJP trajectory results in a change

in the instantaneous hazard functions A(t) and U(t). This is a consequence of the fact

that unlike uniformization, candidate jump times are now drawn from a point process

whose intensity depends on the sMJP trajectory. A new trajectory results in a new

hazard function, and we need to account for the probability of the events in W under

this new hazard function. It is however straightforward to adapt the forward-backward

sampling algorithm to make this correction; we effectively treat the elements of W as

additional ‘observations’ of the state of the Markov chain. During the forward filtering

pass, as we calculate the probability of being in a particular state (vi, li) over an interval

(wi, wi+1), we also include the probability of waiting for a time ∆wi = (wi+1−wi) until

the next event under the resulting hazard function Uvi(τ + li). Write this probability

as P (wi+1|wi, vi, li), it is given by

P (wi+1|wi, vi, li) = Uvi(li + ∆wi) exp

(
−
∫ (li+∆wi)

li

Uvi(τ)dτ

)
(6.27)

When running the forward-backward algorithm, we must also include this term in our

calculations.

Figure 6.3 provides a graphical demonstration of the overall discrete-time system we

have to solve. It includes observations X of the sMJP state, with xi representing all

observations in the interval (wi, wi+1). Let P (xi|vi) be the corresponding likelihood

function. Then, the joint distribution over the entire set of variables factorizes as:

P (V,L,W,X) = P (v0, l0, w0)

|W |−1∏
i=0

P (xi|vi)P (wi+1|vi, li)P (vi+1, li+1|vi, li,∆wi) (6.28)

Observe also that w|W | = tend does not correspond to a real event, rather it is the end

of the observation interval. Consequently, while for i < (|W | − 1), P (wi+1|wl, vi, li) is

given by equation (6.28), we also have that

P (w|W ||w|W |−1, v|W |−1, l|W |−1) = exp

(
−
∫ (l|W |−1+∆w|W |−1)

(l|W |−1)
Uv|W |−1

(τ)dτ

)
(6.29)

The forward-filtering stage moves sequentially through the times in W , successively

Calculations for an sMJP with Weibull hazards 105

calculating the probabilities P (vi, li, w1:i+1, x1:i) using the recursion:

P (vi, li, w1:i+1,x1:i) = P (xi|vi)P (wi+1|vi, li) (6.30)∑
vi−1,li−1

P (vi, li|vi−1, li−1,∆wi)P (vi−1, li−1, w1:i, x1:i−1)

The transition probabilities P (vi, li|vi−1, li−1) are given in equations (6.15) and (6.17),

with the probabilities of all other state transitions equal to 0. In the summation above,

vi and vi−1 take values in S. Additionally, li either equals 0 or li−1 + ∆wi−1, while

li−1 takes values in {0, wi−1 −wi−2, · · · , wi−1 −w0}. Thus, the ith step of the forward

filtering stage scales as O(N2i). Since there are |W | such updates, the overall iteration

of the MCMC sampler scales as O(N2|W |2).

6.5 Calculations for an sMJP with Weibull hazards

In this section, we work through the details of a particular sMJP that we will later use

in our experiments. Consider the Weibull density with shape parameter α and scale

parameter λ; this has the form

r(τ |α, λ) =

{
α
λ

(
τ
λ

)α−1
exp (−(τ/λ)α) τ ≥ 0

0 τ < 0
(6.31)

Straightforward calculation shows that the cumulative distribution function is given

by:

D(τ |α, λ) = 1− exp (−(τ/λ)α) (6.32)

and the hazard function A(τ |α) is given by:

A(τ |α, λ) =
α

λ

(τ
λ

)α−1
(6.33)

The shape parameter α controls the ‘burstiness’, with α > 1 giving a refractory dis-

tribution, and values less than 1 giving burstiness or underdispersion (α = 1 recovers

the exponential distribution). Figure 6.5 plots the logarithm of these hazard functions

for α = 2 and 0.7. Note that for α < 1, the hazard function is unbounded, tending to

infinity as τ → 0. Additionally, unlike the gamma hazard which plateaus as τ → ∞
when α > 1, the Weibull hazard is also unbounded for the refractory case, tending to

infinity as τ tends to infinity. This is less of an issue since we always deal with sMJP

trajectories over finite intervals. Given the closed form of the distribution function

(equation (6.32)), we can easily draw various conditional samples from the Weibull dis-

tribution. This is particularly useful when we must sample from r(τ |α, λ) conditioned

Calculations for an sMJP with Weibull hazards 106

0 1 2 3 4 5
−1

−0.5

0

0.5

1

1.5

2

0 1 2 3 4 5
−8

−6

−4

−2

0

2

4

Figure 6.5: Log-hazard functions for the Weibull distribution with α = 0.7 (left)
and α = 2 (right). In both cases, λ = 1.

on τ being larger than some minimum value τmin.

Now, consider a semi-Markov process with Weibull hazard functions. For each pair of

states s and s′, the corresponding rate funtion Ass′(·) takes the form given in equa-

tion (6.33) with its own pair of parameters (αss′ , λss′).

For the Weibull hazard A(·), for some Ω > 1, we use the following simple upper bound

U(τ):

U(τ) = ΩA(τ |α, λ) =
Ωα

λ

(τ
λ

)α−1
=
α

λ̃

(
τ

λ̃

)α−1

(6.34)

Here, λ̃ = λ/ α
√

Ω. Thus sampling from the distribution corresponding to this dominat-

ing hazard function reduces to straightforward sampling from a Weibell with a smaller

scale parameter λ̃. Note that with this choice of U(·), each candidate event is rejected

with probability 1− 1
Ω ; this can be a guide to choosing Ω. In our experiments, we set Ω

equal to 2. More generally, we can assign a different Ωs to each state s. This allows the

dominating point processes across different states to resemble each other, and makes

resampling a new trajectory less sensitive to the current set of events W (recall that

we sample the new trajectory conditioned on W).

We now provide some details of the inference algorithm for the sMJP with Weibull

holding times.

1. Resampling the rejected events W̃ given the semi-MJP trajectory:

Consider the interval (ti, ti+1), with the sMJP entering state si at ti, and remain-

ing there until ti+1. Resampling the thinned events W̃ over this interval involves

sampling from a Poisson process with intensity (U(t) − A(t)) = (Ω − 1)A(t) =

(Ω − 1)
∑

s′ Asis′(t − ti). By the superposition theorem (theorem 2.4), we can

instantiate this by sampling N independent Poisson processes on the interval

(0, ti+1 − ti). The nth has intensity (Ω − 1)Asin(·) ≡ Âsin(·), where, like before,

Âsin(·) is a Weibull hazard function obtained by an (Ω − 1)1/αsin correction to

Experiments 107

the scale factor of Asin(·). A simple way to sample such a Poisson process is

by first drawing the number of events from a Poisson distribution with mean∫ (ti+1−ti)
0 Âsin(u)du, and then drawing that many events i.i.d. from the Weibull

Âsin, conditioning on them being less than ti+1 − ti. Call this sequence T̃n, and

define T̃ = ∪n∈S T̃n. Then W ≡ T̃ + ti is the set of resampled thinned events on

the interval (ti, ti+1). From the independence property of the Poisson process, we

can repeat this over each segment of the sMJP path.

2. Resampling the semi-MJP trajectory given the set of times W :

This just involves running the forward-backward algorithm on a discrete-time

Markov chain as outlined in the previous section. For the Weibull distribution,

we have that

exp

(
−
∫ ti+1

ti

Usi(τ)dτ

)
=
∏
s′

exp

(
−
∫ ti+1

ti

Usis′(τ)dτ

)
(6.35)

=
∏
s′

exp

(
−Ω

∫ ti+1

ti

αsis′

λsis′

(
τ

λsis′

)αsis′−1

dτ

)
(6.36)

=
∏
s′

exp

(
Ω

(
ti
λsis′

)αsis′
− Ω

(
ti+1

λsis′

)αsis′)
(6.37)

Using this (as well as the equations provided at the beginning of this section), we

can easily compute all probabilities for the forward filtering (equation (6.30)) as

well as the backward sampling stages of the forward-backward algorithm.

6.6 Experiments

In this section, we evaluate our sampler on the Weibull sMJP described in the previous

section. In all experiments, the number of states was set to 3. The shape parameters

for each hazard function (αss′) were uniformly distributed on the interval [0, 3], so that

a transition from a state s to a state s′ was bursty with probability 1/3 (recall that

uniformization cannot handle this situation). The scale parameter was always set to 1.

We compared the performance of our sampler with a particle MCMC sampler (An-

drieu et al., 2010); in particular, we implemented the particle independent Metropolis-

Hastings sampler described in that paper. Let P be the number of particles; in any

iteration, at any time t, each of these P particles represents a trajectory from the be-

ginning of the observation interval until t. Let Sp(t) represent the state of particle p

at time t. We then propagate each of these trajectories via algorithm 6.1 to the time

to > t of the next observation xo. At this time, we assign particle p a weight wpo equal

to P (xo|Sp(to)), the likelihood of its current state under the observation xo. Define

Zo as the sum of the particle weights, i.e. Zo =
∑P

p=1w
p
o , and resample P particles

(with replacement) with probability equal to the weights normalized by Zo. We repeat

Experiments 108

this procedure, traversing all observations until we reach the end of the observation

interval. At this time, we once again assign each particle a weight and now pick 1 of

the P particles proportional to its weight (if there are no observations at the endtime,

we pick one of the particles uniformly at random). The trajectory of this particle serves

as our Metropolis-Hastings proposal, call this Snew(·). Associated with this trajectory

is a weight Znew equal to the product of all the weights it encountered as it traversed

the observations i.e. Znew =
∏|O|
o=1 Zo (|O| being the number of observations). Let

Sold(·) be the MCMC trajectory at the current iteration of the Markov chain, and let

Zold be its associated weight. Then, we set the trajectory for the next iteration of the

Markov chain equal to Snew(·) with probability min(1, Znew/Zold), otherwise leaving

it at Sold(·). We refer the reader to Andrieu et al. (2010) for more details. We tried

various values for the number of particles P ; for our problems, 10 seemed to produce

the most effective samples per unit time.

We implemented both our thinning-based sampler and the particle MCMC sampler

in Matlab. We observed that low settings of α resulted in numerical errors with our

implementations of both samplers, and to avoid such issues, any α less that 0.6 was

thresholded to 0.6. All experiments averaged results across multiple runs with different

random parameter settings.

6.6.1 Effect of the observations

Our first experiment compared the performance of both samplers as the effect of the

observations became stronger and stronger. We set the number of observations to 10,

distributing these over an interval of length 25. Each observation had an associated

likelihood term that favoured a particular, random state (the ‘true’ state) over the

other two states. We set the ratio of the likelihood of the true state to the likelihood

of any other state, p(xi|strue)/p(xi|sother), to be 100. We then associated an ‘inverse-

temperature’ parameter inv with the likelihood term P (xi|s), so that the effective

likelihood at the ith observation was (P (xi|s))inv. As this parameter varied from 0

to 1, the problem moved from sampling from the prior (where the observations were

irrelevant) to a situation where the trajectory was observed (almost) perfectly at 10

random times.

As described in the previous section, our MCMC sampler was set up with the domi-

nating hazard rate at any instant equal to twice the true hazard rate (i.e. Ω = 2 and

Uij(t) = 2Aij(t)), giving a probability of thinning equal to 0.5. After each simulation,

we calculated the empirical distribution of the time spent in each state as well as the

number of state transitions, and then (as in chapter 3), used R-coda (Plummer et al.,

2006) to estimate effective sample sizes for these quantities. The effective sample size

of the simulation was then set as the median of the effective sample sizes of all these

statistcs.

Experiments 109

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

E
ff

e
c
ti
v
e

 s
a

m
p

le
s
 p

e
r

s
e

c
o

n
d

Thinning

particle MCMC10

particle MCMC20

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

E
ff

e
c
ti
v
e

 s
a

m
p

le
s
 p

e
r

s
e

c
o

n
d

Thinning

particle MCMC10

particle MCMC20

Figure 6.6: The number of effective samples produced per unit time vs the
inverse-temperature of the likelihood, when the trajectories are over an interval of
length 25 (left) and 2 (right). We compare our sampler with a 10 and 20 particle
MCMC sampler.

The left plot in figure 6.6 shows the effective number of samples produced per unit

time by both samplers as the inverse-temperature is increased, averaging results from

10 random parametrizations of the sMJP. We see (as one might expect), that when the

effect of the observations is weak, particle MCMC (which uses the prior distribution to

make local proposals), outperforms our thinning-based sampler. Particle MCMC also

has the benefit of being simpler implementation-wise, and is about 2-3 times faster (in

terms of raw computation time) for a Weibull sMJP, than our sampler. However as the

effect of the likelihood increases, the number accepted proposals starts to decreases,

and particle MCMC started to have more and more difficulty hitting the data. In

contrast, we see that our sampler is fairly insensitive to the effect of the likelihood,

eventually outperforming the particle MCMC sampler. While there exist techniques to

generate more data-driven proposals for the particle MCMC (Andrieu et al., 2010; Go-

lightly and Wilkinson, 2011), these compromise the appealing simplicity of the original

particle MCMC sampler. Moreover, none of these really have the ability to propagate

information back from the future (unlike our forward-backward algorithm), rather they

make more and more local moves (for instance, by updating the sMJP trajectory on

smaller and smaller subsets of the observation interval).

Varying the strength of the observations is one way to study how the two samplers

handle problems where the posterior deviates from the prior. A second approach is to

distribute the same number of observations over intervals of decreasing length. We set

each observation to favour a random state of the sMJP, so that distributing these obser-

vations over shorter and shorter intervals demands an sMJP trajectory that switches

states more and more rapidly. The right plot in figure 6.6 plots the same quanti-

ties described in the previous paragraph, now with the observation interval set to a

smaller length of 2. Here, the benefit of our sampler is even more pronounced, with the

forward-backward step in our algorithm handling the effect of the observations without

any difficulty. An additional benefit is that over short intervals, the quadratic cost of

Experiments 110

 2 5 10 20 50

0

10

20

30

40

E
ff

e
c
ti
v
e

 s
a

m
p

le
s
 p

e
r

s
e

c
o

n
d

Thinning

particle MCMC10

 2 5 10 20 50
0

10

20

30

E
ff

e
c
ti
v
e

 s
a

m
p

le
s
 p

e
r

s
e

c
o

n
d

Thinning

particle MCMC10

 2 5 10 20 50

0

5

10

15

20

25

30

E
ff

e
c
ti
v
e

 s
a

m
p

le
s
 p

e
r

s
e

c
o

n
d

Thinning

particle MCMC10

Figure 6.7: The number of effective samples produced per unit time vs interval
length, for low, medium and high inverse-temperature settings.

the forward-backward step of our algorithm is much less pronounced.

Linearizing inference in the length of W 111

6.6.2 Effect of the observation interval length

The next experiment studies more carefully the performance of the two samplers as the

timescales required to explain the observations deviate from the prior. For three setting

of the inverse temperature parameter (0.1, 0.5 and 0.9), we calculated the number of

effective samples produced per unit time over intervals whose lengths increased from 2 to

50. Once again, we averaged results from 10 random settings of the sMJP parameters.

Figure 6.7 shows the results for the low, medium and high settings of the the inverse

temperature. As expected, our sampler performs best in the low temperature and

short interval regimes where the posterior deviates from the prior. Additionally, for

short observation intervals, both samplers took similar times to run the same number

of MCMC iterations.

We point out here that a combination of shorter computation time per iteration along

with the ability to propagate back information from future observations does not nec-

essarily imply larger effective sample sizes per unit time. Even in the absence of obser-

vations, samples produced by our algorithm are correlated because of the dependence

between the sMJP trajectory and the candidate jump times W . Consider for instance

two states s and s′ with widely different leaving rates As and As′ . Under our construc-

tion here, the bounding rates Us and Us′ are multiples of As and As′ , and thus will

also differ significantly. Recall now that when we resample a trajectory, we need to

account for the probability of the events W under the resulting hazard function (see

figure 6.4). Thus, if the sMJP were in state s over an interval of time, it is unlikely

to be in state s′ over the same interval in the new sample. In general, our scheme is

unlikely to produce a new trajectory whose hazard function Unew(·) differs too much

from that of the old trajectory, Uold(·). Such a dependence did not arise in the case of

uniformization, where Unew and Uold were constant and equal. In that case, the only

dependence between two successive samples was a shared subset of candidate transition

times. By contrast, in the absence of observations, successive samples produced by the

particle MCMC sampler are independent.

6.7 Linearizing inference in the length of W

In this section, we return to the issue of the cost of inference scaling quadratically with

the number of candidate jump times |W |. Recall that this is a consequence of the fact

that for a general sMJP, the future behaviour depends not just on the current state

si, but also on the duration for which the sMJP has been in that state. Thus, when

running the forward-backward algorithm, at stage i, we need to explicitly represent

probabilities corresponding to all possible values of li, the time since the sMJP entered

state si. For sMJPs observed over long intervals, the set W can be large, making

quadratic scaling intolerably expensive.

Discussion 112

There are a number of approaches to addressing this issue for discrete-time sMJPs,

and we can adapt these to the forward-backward sampling stage of our MCMC algo-

rithm. One simple approach is break the observation interval into a number of smaller

segments, and sequentially update the trajectory in each segment conditioned on the

rest of the trajectory. An alternative is to follow a slice-sampling approach (Dewar

et al., 2012). Here, at the ith stage of the forward-backward algorithm, rather than

allowing li to take all values {0, wi − wi−1, · · · , wi − w0}, we restrict its range from

{0, · · · , wi−wci} for some random slice variable ci ∈ {0, · · · , i}. By allowing si to vary

from one iteration to the next, we can construct an exact MCMC chain, while taking

advantage of the fact that very long holding times are atypical.

The quadratic scaling of inference for sMJPs is a worst case result, and there exist

hazard rates which still allow efficient inference over long observation intervals. Clearly,

the MJP, with constant transition rates is one such example. In general, if the hazard

function has a constant tail (so that the corresponding waiting-time density has an

exponential tail), then the system has only a finite window of memory. Thus, suppose

that for some time τwin, the hazard function has the form:

A(τ) = Ã(τ) τ ≤ τwin
= Atail τ > τwin (6.38)

Then at time t during the forward filtering state, we need to account only for those

values of ln that range from 0 to τwin; all larger values of ln can be summarized by a

single state. Consequently, the cost of the resulting forward-backward dynamic pro-

gramming algorithm now scales quadratically with the length of this memory window

τ , and only linearly with the total observation interval.

Even if the actual hazard function is not of this form, we can approximate it with

such a hazard function, and use the sampled paths as Metropolis-Hastings proposals

for samples from the original system. Such an approximation would be suitable for the

gamma hazard functions from chapter 5 for example; recall that these plateau out to a

constant value as τ →∞.

6.8 Discussion

In this chapter, we described a general framework for MCMC inference in semi-Markov

processes. Our scheme is based on a procedure of dependent thinning that general-

izes uniformization. Given the state of the system at any instant, we define a hazard

function that dominates the true hazard function. Our scheme then proceeds by se-

quentially sampling the time of the next candidate event given this function, and then

updating the state of the system at this time. Our scheme now allows us to perform

MCMC inference by alternately sampling thinned events given the current trajectory,

Discussion 113

and then a new trajectory given all candidate event times. At a high level, the first

step can be viewed as sampling a random discretization of time. We showed how this

can be done relatively easily exploiting properties of the Poisson process. Given this

discretization of time, we can leverage available discrete-time MCMC schemes to up-

date the sMJP trajectory. In general, it is straightforward to extend our approach here

to piecewise-constant stochastic processes with a more complicated dependence on the

past.

There are a number of possible avenues for further study. In our experiments in this

chapter, we set the dominating rates to be twice the true event rates at any time.

While this is convenient, it can result in poor mixing because of the requirement that

the new and old instantaneous hazard functions resemble each other. Recall that for

uniformization, the dominating hazard function was a constant Ω independent of the

state of the system. By constructing more complicated dominating functions, it is

possible to approximate such a constant rate, while avoiding the need for a very high

dominating rate that results from say, rare events with very high leaving rates. Such

an approach allows us to trade off computational costs and mixing rates more carefully.

The reason we needed the old and new hazard functions to resemble each other was

because they both had to explain the same set of candidate transition times W . We can

thus also consider schemes that propose a new set of candidate times Wnew, allowing

more global moves.

We saw that for general sMJPs, inference scales quadratically with W , the number of

candidate jump times. We discussed a number of possible approaches to dealing with

this problem in section 6.7, it is worth studying them in further detail. In our exper-

iments, we studied sMJPs with fixed parameters. Like subsection 3.5.2, it is possible

to take a fully Bayesian approach, placing priors on these parameters as well. For in-

stance, Berger and Sun (1993) discuss parameter inference for the Weibull distribution.

With such a Bayesian approach, care needs to be taken with state-dependent bounding

functions that attempt to approximate uniformization, since this will have to adapt to

the varying parameter values.

Chapter 7

MJPs with unbounded rates

7.1 Introduction

Armed with ideas from the previous chapter, we return back to the problem of MCMC

inference for Markov jump processes. We consider two limitations of the uniformization-

based approach described in chapter 3: the need to truncate the state-space of systems

with unbounded event rates, and the inefficiency resulting from using a single bound-

ing rate for systems with combinations of very stable and very unstable states. Our

approach based on dependent thinning from chapter 6 is directly applicable to such

systems, and allows us to construct MCMC algorithms with fewer thinned events than

the uniformization-based sampler. In this chapter, we provide an alternate (but equiv-

alent) description of the approach outlined in chapter 6; this is based on a construction

of the MJP from a family of Poisson processes. Besides helping us understand our

algorithm better, this can also lead to extensions which can improve the performance

of the sampler. As an application, we will consider a model from queuing theory, the

M/M/c/c queue.

7.2 Dependent thinning for MJPs

Consider a Markov jump process with state-space S. We allow the cardinality of S to

be countably infinite. We will follow the notation of the previous chapter (rather than

chapter 3), so that Ass′ gives the rate of transitioning from state s to s′ for all s and

s′. In particular, since we are dealing with MJPs, Ass = 0 ∀s. For any state s ∈ S,

the leaving rate is a constant As =
∑

s′∈S Ass′ . We require As to be finite for each s,

however unlike chapter 3, we will not require a finite constant Ω > As,∀s. Upon leaving

state s, the probability of transitioning to state s′ is ps(s
′) ∝ Ass′ , with ps(s) = 0. Given

an initial distribution over states π0, Gillespie’s algorithm (algorithm 3.1) provides a

simple and direct way to sample a trajectory of this system over an interval [tstart, tend].

Dependent thinning for MJPs 115

Figure 7.1: Gillespie’s algorithm for MJPs (with auxiliary Poisson events)

In chapter 6, we described a thinning-based alternative to Gillespie’s algorithm. For

each As, define a constant Us > As. Us gives the rate at which candidate leaving times

are generated in state s, so that the time until the next candidate time is sampled from

an exponential with rate Us. We reject each such event with probability
(

1− As
Us

)
,

otherwise we transition to state s′ with probability ps(s
′). Note that since we are

dealing with a Markov system, we do not need to represent the duration for which the

system has been in its current state. This makes the entire procedure considerably

simpler that that for general semi-Markov processes (chapter 6).

The Markov structure of the problem allows us to define an equivalent construction

in terms of a family of Poisson processes, one for each state. This is demonstrated

in Figure 7.1. For each state s, sample a realization of a rate As Poisson process on

[tstart, tend]. Assign all events of this process the label s. Now, to sample a trajectory,

assign the MJP an initial state drawn from the prior π0. Suppose we pick state s0,

then the MJP remains in this state until the first event labelled s0. By the memoryless

property of the Poisson process, this waiting time is exponentially distributed with

rate As0 , as required by the definition of the MJP. At this time, the MJP moves to

a random new state s1, with ps0(s1) ∝ As0s1 . Repeat the procedure until the end

of the interval. Clearly, this procedure is equivalent to to Gillespie’s algorithm. The

cyan-shaded region of figure 7.1 then defines the MJP trajectory (S, T). The times

of all events in this regions define T , while their corresponding labels define S. By

the independence property of the Poisson process, everything outside this region is

Dependent thinning for MJPs 116

Figure 7.2: Thinning based construction for MJPs (with auxiliary Poisson
events)

irrelevant.

We can now introduce auxiliary thinned variables by an obvious application of the

thinning theorem. For each state s, sample events from a Poisson process, now with

the rate Us > As on [tstart, tend]. To sample a trajectory, once again assign the MJP

an initial state s0 drawn from π0. Once again, the MJP remains in this state until the

first event labelled s0, however now it changes state only with probability As0/Us0 . If

it does decide to change state, it picks a new state s1 with probability proportional

to As0s1 . Again, repeat the procedure until the end of the interval. It is clear that

this procedure is equivalent to the dependent thinning scheme outlined earlier (and in

chapter 6). Figure 7.2 demonstrates this graphically; once again, the events inside the

cyan region define (V,W) the thinning representation of the MJP. Like chapter 3, we

no longer need the set of waiting times L, since the original system is now Markov

without self-transitions.

It is now easy to understand the MCMC sampler of the previous chapter. Recall that

this proceeded by alternately resampling the thinned events given the MJP trajectory,

and then the trajectory given the set of candidate transition times. Knowing the MJP

trajectory amounts to knowing the the cyan region in figure 7.2 (as well as the events

at the right edges corresponding to actual transitions). Resampling the thinned events

Dependent thinning for MJPs 117

Figure 7.3: Resampling the MJP trajectory

in the interior of the cyan region is now a simple application of the corollary to the

thinning theorem (corollary 2.1): when in a region corresponding to state s, sample

from a Poisson process with constant intensity (Us − As). Proposition 6.2 shows that

this is correct.

Resampling a new trajectory given the set of candidate times involves discarding the

old labels of the Poisson events in the cyan region, and relabelling the events using

the forward-backward algorithm. This is shown in figure 7.3. Note that we need to

account for the probability of the new labels assigned to the Poisson events; we saw in

the previous chapter how we to adapt the forward-backward algorithm to do so.

By assigning labels to candidate jump times, we associate each segment of the MJP

trajectory with a window of events from the Poisson process labelled with the corre-

sponding state. Since each of these Poisson processes has a finite rate, we will have

only a finite number of candidate state transitions over any finite interval. Even if

the maximum event rate in the system is unbounded, any realization of the system

trajectory will have a finite maximum rate.

By contrast, uniformization involves constructing a MJP from a single subordinating

Poisson process. In order to avoid assigning labels to these Poisson events, we need its

rate to dominate all event rates in the system, something which is not always possible.

However, since the Poisson process is independent of the system trajectory, there is a

smaller dependence across samples. Note though, that our new algorithm requires only

a slight modification of the uniformization-based sampler. It samples the thinned events

The M/M/c/c queue 118

from a slightly different Poisson process, and has a single additional term P (∆wi|vi) in

the forward-backward algorithm.

7.3 The M/M/c/c queue

In this section, we apply our ideas to a simple MJP, the M/M/c/c queue. In queuing

theory (Kendall, 1953), an M/M/c/k queue is a system consisting of c ‘servers’ and a

queue of size k − c. A much studied instance of these systems is the M/M/c/∞ queue

(abbreviated as M/M/c); here the queue is infinitely large. In this section, we focus

on the M/M/c/c queue, which, despite its name, does not possess any queue. The ‘M’

terms indicate that the arrival process is Poisson and service times of each server is

exponentially distributed (so that both processes are memoryless). For an M/M/c/c

queue, individuals (customers, messages, packets, manufacturing jobs etc) arrive via

a homogeneous Poisson process and are instantly handed to one of the servers; when

no servers are free, they are discarded. The M/M/c/c queue is sometimes called the

Erlang loss model (Medhi, 2002) and has been used to model a variety of phenomena

such as traffic in telephone networks, computer networks etc (Asmussen, 2003).

Let α be the rate of the arrival process, and let the average service time of the servers

be 1/β (remember that this quantity is exponentially distributed). Let S(t) represent

the number of busy servers at time t. Then, under the M/M/c/c queue, the stochastic

process S(t) evolves according to a simple Markov jump process on the space S =

{1, · · · , c}. This MJP is a birth-death process whose state can change only by 1. When

S(t) = s < c, a transition from s to s + 1 occurs with a rate α. On the other hand, a

transition from s to s − 1 occurs with rate sβ. In our previous notation, the various

transition rates Ass′ are:

Ass′ =


α s′ = s+ 1, s < c

sβ s′ = s− 1

0 otherwise

(7.1)

A special instance of the M/M/c/c is the M/M/∞ queue, where the number of servers

is infinite. This is sometimes called an immigration-death process (Asmussen, 2003).

Individuals enter the population according to a homogeneous Poisson process whose rate

is independent of the population size, while each individual has a fixed rate of dying (so

that the rate at which the population decreases by 1 is proportional to the population

size). This is often used as an approximation of the M/M/c/c queue with large numbers

of servers, although it is an interesting model in its own right. Observe that since the

number of active jobs in the M/M/∞ queue is unbounded, we cannot upper bound the

event rates in the system (see equation (7.1)). Thus, our uniformization-based MCMC

sampler is not applicable to this system. Instead, one has to approximate the system

The M/M/c/c queue 119

with an M/M/c/c queue; this is how we proceeded when we faced a similar problem

with the Lotka-Volterra model in subsection 4.3.1. By contrast, the leaving rate of any

state s is sα+ β. Since this is finite, we can apply our thinning based sampler.

In the following, we consider the evolution of an M/M/∞ queue over an interval [0, tend].

Our dependent thinning scheme ensures only a finite number of candidate state tran-

sitions over this interval. Suppose that the state of the system was perfectly observed

at time 0 to be s0. The birth-death nature of the process means that at the ith can-

didate jump time wi, S(wi) can take a maximum value of (s0 + i). Thus in this case,

the dimensionality of all messages is finite, allowing a straightforward application of

the forward-backward algorithm. A complication arises when the initial state is noisily

observed. If we allow the range of s0 to be infinite, then even if the number of steps in

the forward-backward algorithm is finite, the dimensionality of each message is infinite.

A simple way around this problem is to take a slice sampling approach (Neal, 2003a;

Walker, 2007), instantiating only a finite number of states at any iteration.

Accordingly, associate a slice variable l with the initial distribution over states, and let

it be uniformly distributed on the interval [0, 1]. Observe that

π0(s0) = P (l < π0(s0)) =

∫ 1

0
1(l < π0(s0))dl (7.2)

Thus, the joint probability of initial state s0 and l is given by

P (s0, l) = 1(l < π0(s0)) (7.3)

Given the state s0, we resample l uniformly on the interval [0, π0(s)]. Conversely, for

a given value of the slice variable l, s0 is uniformly distribution over all states s such

that π0(s) > l.

Let smax0 be the largest state satisfying this condition:

smax0 (l) = max s s.t. π0(s) > l (7.4)

Let l be the current value of the slice variable, so that smax0 (l) is the maximum value of

state at time 0. Then, the maximum value of the si, the state at step i of the forward-

backward algorithm, is smax0 (l) + i. We now can easily run the forward-backward

algorithm to sample a new trajectory. At the end of this step, let s̃0 be the new state

at time 0; we then resample a new value of the slice variable l̃ as follows:

l̃ ∼ U (0, π0(s̃)) (7.5)

It it possible to introduce more slice variables for more control over the dimensionality

of the MJP state space; however, we will not discuss such schemes here.

The M/M/c/c queue 120

 1 2 5 10 20
0

10

20

30

40

50

60

E
ff

e
c
ti
v
e

 s
a

m
p

le
s
 p

e
r

s
e

c
o

n
d

Uniformization

Dependent thinning

Thinning (trunc)

 1 2 5 10 20
10

20

30

40

50

60

70

E
ff

e
c
ti
v
e

 s
a

m
p

le
s
 p

e
r

s
e

c
o

n
d

 p
e

r
u

n
it
 i
n

te
rv

a
l
le

n
g

th

Uniformization

Dependent thinning

Thinning (trunc)

Figure 7.4: The M/M/∞ queue: (left) ESS per unit time, (right) ESS per unit
time scaled by interval length.

7.3.1 Experiments

In the following, we considered an M/M/∞ queue, with parameters α and β set to

10 and 1 respectively. For some tend, the state of the system was observed perfectly

at three times 0, tend/10 and tend, with values 10, 2 and 15 respectively. Conditioned

on these, we sought the posterior distribution of the state trajectory on the interval

[0, tend]. We compared our uniformization-based sampler from chapter 3 with the the

generalized thinning-based sampler we outlined in this chapter. To run uniformization,

we approximated the M/M/∞ system with an M/M/50/50 system. We also applied

the thinning-based sampler to this truncated approximation, labelling it as ‘Thinning

(trunc)’. All samplers were implemented in Matlab. For the uniformization-based

sampler, we set Ω = 2, so that the subordinating Poisson process had a rate of 120.

For the other two samplers, we set the thinning probability equal to a half, so that for

any state s with leaving rate As, candidate leaving events were generated from a rate

2As process. The large state spaces involved makes particle MCMC very inefficient,

and we did not include it in our results.

For all three samplers, we calculated effective sample sizes produced per unit time as

we varied the interval length tend from 1 to 20. In all cases, we ran 10000 MCMC

iterations with a burn-in period of 1000. At the end of any MCMC run, we calculated

the number of state transitions, as well the amount of time spent in states 0 to 20.

We estimated effective sample sizes for all these statistics, and summarized them with

their median. The left plot in figure 7.4 plots this for the three samplers as we varied

tend. Sampling a trajectory on a long interval will take more time than on a short one,

and to more clearly distinguish performance for large values of tend, the right plot in

figure 7.4 scales the each result from the left plot with the length of the interval tend.

We see from figure 7.4 that for short intervals, uniformization is significantly more in-

efficient that our other two samplers. This is because the subordinating Poisson rate of

120 is much larger than the observed rates in typical trajectories sampled from the pos-

The effect of an unstable state 121

terior. Thus, a large number of the candidate transition times had to be thinned and the

long Markov chains for the forward-backward algorithm resulted in long computation

times. By contrast, the other two samplers produce much fewer candidate transition

times, and therefore require much less computation time per iteration. Slower mixing

notwithstanding, they perform much better. Interestingly, running the thinning-based

sampler on the truncated M/M/50 queue offers no significant computational benefit

over running it on the full model.

As the observation interval becomes longer and longer, the MJP can make larger and

larger excursions (especially over the interval [tend/10, tend]). Thus as tend increases,

the number of thinned events in all three samplers starts to become comparable. This,

coupled with its faster mixing, causes the uniformization-based sampler to approach

the performance of the other two samplers. At the same time, we see that the difference

between the truncated and the untruncated samplers starts to widen. Of course, we

should also remember that over long intervals, the effect of truncating the system size

to 50 becomes more and more likely to introduce biases into our inferences.

7.4 The effect of an unstable state

In our next experiment, we compared Matlab implementations of the uniformization-

based sampler (which we call ‘uniformization’), its thinning-based generalization (we

just call this ‘thinning’) and a particle MCMC sampler. The first two samplers were

set up as in the last section, while particle MCMC was run with 20 particles.

All three samplers were applied to a simple 3 state MJP. Two of the states of this

system had leaving rates equal to 1, while the leaving rate of the third state was varied

from 1 to 20 (call this rate γ). On leaving state i, the probability of transitioning to

state j = (i+ 1) mod 3 was uniformly drawn between 0 and 1:

pi(j) ∼ U(0, 1) ∀i, with j = (i+ 1) mod 3 (7.6)

Thus, the transition probability to (i+ 2) mod 3 was just 1− pi(j).

Following this procedure, we constructed 10 random parameterizations of the MJP for

each setting of γ. We then distributed 5 random observation times over the interval

[0, 10]; these observations were set to randomly favour one state over the others by a

factor of 100. As in subsection 6.6.1, the likelihood functions were raised to an inverse

temperature inv, and we considered 3 settings of this parameter: ‘low’ (0.1), ‘mid’ (0.5)

and ‘high’ (0.9).

For each inverse temperature setting, and for each setting of γ, we evaluated the per-

formance of the three samplers on the 10 random MJPs. Figure 7.5 shows the results

for the low, medium and high settings of inv. Each plot shows the number of effective

The effect of an unstable state 122

 1 2 5 10 20
0

20

40

60

80

100

E
ff
e
c
ti
v
e
 s

a
m

p
le

s
 p

e
r

s
e
c
o
n

d

Uniformization

Thinning

particle MCMC

 1 2 5 10 20
0

20

40

60

80

100

E
ff
e

c
ti
v
e
 s

a
m

p
le

s
 p

e
r

s
e
c
o
n

d

Uniformization

Thinning

particle MCMC

 1 2 5 10 20

0

20

40

60

80

E
ff
e
c
ti
v
e
 s

a
m

p
le

s
 p

e
r

s
e
c
o
n
d

Uniformization

Thinning

particle MCMC

Figure 7.5: Comparison of samplers as the leaving rate γ of a state increases.
Temperature decreases from top to botton

samples (estimated as in chapter 6) produced per unit time, for increasing values of γ.

Firstly, we see that the two samplers significantly outperform the particle MCMC

sampler. The Markov structure of the MJP makes our Poisson samplers very natural

and efficient (in particular, they are much simpler than the samplers for the semi-

Discussion 123

Markov process). The dependencies introduced by the shared Poisson processes is

also much weaker than with the sMJP. Additionally, running a particle filter with 20

particles took about twice as long as the other two samplers.

Next, we find that while both the uniformization and the thinning samplers perform

comparably for low values of γ, the thinning sampler starts to outperform uniformiza-

tion for γ’s greater than 2. In fact, for weak observations and large γs, even particle

MCMC outperforms uniformization.

7.5 Discussion

In this chapter, we applied our dependent-thinning based sampler to MJPs, showing

under what circumstances it offers a more efficient approach to inference than uni-

formization. In our experiments, we compared the two samplers on a queuing model

as well as an MJP with one very unstable state.

In our experiments we looked at M/M/c/c queuing systems, though it is possible to

generalize to other systems. Examples include the M/M/c queue (this has c servers,

but unlike the lossy M/M/c/c systems, jobs are buffered in an infinite queue). Now,

the state of the system must include the state of the queue. In general, we can look

at M/M/c/k systems with c servers, and a queue of size k. Other generalizations

include G/G/c/k queues, where the arrival and service times are generalized beyond

the memoryless exponential. Similarly, we can generalize the birth-death nature of

these processes to allow global state changes (such as catastrophies where the system is

reset, or the parameters are modulated by some external factor). We can also look at

networks of interacting queues, the Lotka-Volterra model of chapter 4 being an example

of such a system.

Chapter 8

Spatial repulsive point processes

8.1 Introduction

In this chapter, we show how ideas from previous chapters can be extended from the

real line to more general spaces. We shall restrict outselves to spatial point processes

defined on two-dimensional Euclidean spaces, although it should be clear how these

ideas generalize to more complex spaces. Spatial point processes find wide use in

fields such as ecology (Hill, 1973), geography (Kendall, 1939), epidemiology (Knox,

2004), sociology (Hansford-Miller, 1968), astronomy (Peebles, 1974) etc. As one might

imagine, the simplest and most popular model for such processes is the Poisson process.

However, the independence property of the Poisson process is a simplification that

is often unsuitable for modelling applications, and one might also wish to capture

interactions between nearby events. For example, when a point process is used to model

the distribution of trees in a geographical area, competition for light and other resources

would suggest an inter-event distance that is more spread out than the Poisson process

(Strand, 1972). Other applications where modelling such interactions is important

include the distribution of cities (Glass and Tobler, 1971), galaxies (Peebles, 1974),

infected agents in epidemiological studies (Jewell et al., 2009) etc.

In chapter 5, we saw that point processes on the real line could deviate from the Poisson

by either being more ‘bursty’ or more ‘refractory’. In higher dimensions, these are called

clustered and repulsive point processes respectively. Our focus in this chapter will be

the latter, characterized by being more regular (underdispersed) than the Poisson pro-

cess. The physical reasons for such repulsion could be competition for finite resources

(in the case of cities or trees, for example), interaction between rigid objects (such as

cells) or repulsive forces between particles. However, developing a flexible and tractable

statistical framework to study such repulsiveness is not straightforward on spaces more

complicated than the real line. For the latter, we saw a powerful and convenient frame-

work, viz. that of renewal processes. In essence, renewal processes exploit the ordering

of the real line to define a Markov process where the time of an event depends only on

Introduction 125

the time since the last event∗. By allowing these waiting times to have distributions

other than the exponential, one can define more flexible classes of point processes. Such

an approach does not generalize easily to higher dimensions, however. For instance,

consider the avoidance function, a(A); this is the probability that no events occur in

a set A (Daley and Vere-Jones, 2008). For the homogeneous Poisson with intensity λ,

letting µ(A) represent the area of this set, we have from equation (2.2) that this proba-

bility decays exponentially with the area of the set (i.e. P (N(A) = 0) = exp(−λµ(A))).

As with renewal processes, one might try to generalize this, noting from Daley and

Vere-Jones (2008) that a simple† point process is completely specified by its avoidance

function evaluated on all measurable sets. However, care needs to be taken to ensure

that such a process is well defined, since unlike the renewal process, such a general-

ization does not provide us with a direct constructive definition of the point process.

Additionally, the specification above does not intuitively describe the nature of, say,

pairwise interactions between events. Inference over any parameters of the avoidance

function is also not straightforward.

A more direct framework for modelling interactions in point processes is that of Gibbs

processes (Daley and Vere-Jones, 2008). Such processes arose from the statistical

physics literature to describe systems of interacting particles. A Gibbs process as-

signs a potential energy U(S) to any configuration of events S = {s1, · · · , sn}, defined

most generally as:

U({s1, · · · , sn}) =
n∑
i=1

∑
1≤j1<···<ji≤n

ψi(sj1 , · · · , sji) (8.1)

where ψi is an ith order potential term. Usually, interactions are limited to pairwise

interactions, so that the energy is given by

U({s1, · · · , sn}) =
n∑
i=1

ψ1(si) +
n∑
i=1

n∑
j=i+1

ψ2(si, sj) (8.2)

By choosing the pairwise potentials appropriately, we can flexibly model different kinds

of interactions. Usually, the interaction kernels are chosen to be stationary, depending

only on the distance r between the two points. Typical choices include

ψ2(r) = − log(1− e−(r/σ)2) (8.3)

ψ2(r) = −(σ/r)n (8.4)

∗One can easily generalize to more complicated dependencies on the past.
†A point process is simple if no more than one event can occur at any location.

Matérn repulsive point processes 126

Alternately, we can have ‘hardcore’ processes with interaction potentials defined as

ψ2(r) =

{
∞ r ≤ R
0 r > R

(8.5)

Recalling the notion of the Janossy density of a point processes (section 2.4), the prob-

ability density of any configuration is then proportional to its exponentiated negative

energy. Letting θ represent the parameters that characterize the potential energy, we

have

p(S|θ) =
exp(−U(S; θ))

Z(θ)
(8.6)

Here, we see the price we have to pay for the flexibility afforded by this modelling

framework. The normalization constant Z(θ) is usually intractable, making even sam-

pling from the prior difficult (typically, this requires a coupling from the past approach

(Møller and Waagepetersen, 2007)). Inference over the parameters usually proceeds by

maximum likelihood or pseudolikelihood methods (Møller and Waagepetersen, 2007;

Mateu and Montes, 2001).

8.2 Matérn repulsive point processes

A simple and direct approach to constructing repulsive point processes was proposed in

Matérn (1986) and is based on the idea of thinning a Poisson process. Matérn actually

proposed three related schemes, now called (in order of increasing complexity) the

Matérn type-I, type-II and type-III hardcore point processes. The type-I process has

the following generative process: sample a primary point process from a homogeneous

Poisson process with some intensity (say λ), and then delete all points separated by

a distance less than R. While the simplicity of this scheme makes it amenable to

theoretical analysis, the thinning strategy here is often too aggressive. In particular,

one can show that the average number of events in any area is not monotonic in the

intensity λ; rather it first increases to a maximum value, before then decreasing with

λ. The reason for this is that as the number of primary Poisson events increase, the

probability of a point falling within a radius R of some other point also increases,

thereby increasing the probability of it being thinned. As we increase λ, this latter

effects begins to dominate, so that eventually the density of points begins to decrease

with λ.

The Matérn type-II process tries to rectify this. Rather than deleting both interacting

points, we break symmetry by assigning each point an ‘age’. When there is a conflict

between two points, the older point always wins. Observe that this construction implies

that an event can be thinned because of the influence of an earlier point that was also

thinned. This makes this procedure slightly unnatural; one might expect only surviving

Matérn repulsive point processes 127

Figure 8.1: The Matérn type-III hardcore point process on a one dimensional
space S: The filled dots (projected onto S) represent the Matérn events, the empty
dots being the thinned events. The shaded region is the Matérn shadow.

points to influence future events. Additionally, while this process supports higher event

densities than the type-I process, this density is still not monotonic with λ, making this

parameter hard to interpret.

The final process, the Matérn type-III process does not have these limitations; as we

describe more carefully in the next section, a newer event is thinned only if it falls

within a radius R of an older event that was not thinned before. We shall focus on

variations of this process for the rest of this chapter.

8.2.1 The Matérn type-III repulsive point process

A Matérn type-III hardcore point process on a space (S,Σ) is a repulsive point process

parametrized by an intensity λ and an interaction radius R. The process is obtained by

thinning events of a homogeneous primary Poisson process F with intensity λ. Each

event f ∈ F of the primary process is independently assigned a random mark t, the

‘time’ of its birth. Without any loss of generality, we assume this takes values in the

interval [0, 1], which we call T . From the marking theorem (theorem 2.6), the set of

pairs (fi, ti) forms a Poisson process F+ on the space S ×T (whose intensity is still λ).

We shall call the set of birth times TF , and write F+ as (F, TF). The set TF induces

an ordering on the events in F+ (with probability 1, all events will have different times

of birth), and thus on F . The secondary process G+ ≡ (G,TG) is then obtained by

traversing the elements of F+ in this order and deleting all points within a distance R

of any earlier and undeleted point. We obtain the Matérn process G by projecting G+

onto S.

Matérn repulsive point processes 128

Figure 8.1 shows the relevant events, with the filled dots forming the Matérn process

G and the empty dots representing thinned events. Both together form the primary

process. Define the ‘shadow’ of a point u ≡ (s, t) as the subset of S × T consisting of

all locations whose S-coordinate differs from s by less than R, and whose T -coordinate

is greater than t:

H (u,R) =
{

(s̃, t̃) ∈ S × T : ‖s− s̃‖ < R and t < t̃
}

The shadow of a set is the union of the shadows of its elements. The shaded area in

figure 8.1 shows the shadow of all Matérn events, G. Note that all thinned events must

lie in the shadow of the Matérn events, otherwise they couldn’t have been thinned.

Similarly, Matérn points cannot lie in each others shadows; however, they can fall

within the shadow of some thinned event.

The Matérn type-III process has a number of desirable properties. Firstly, in many

applications, its thinning mechanism is more natural than that of the type-I and II

processes. In particular, it is a realistic model for various spatio-temporal phenomena,

where the latent birth times are not observed, and must be inferred. Another advantage

is that the average number of points in any area increases monotonically with the

intensity λ of the primary process; in fact as λ tends to infinity, this average reaches

the ‘jamming limit’, viz. the maximum density at which spheres of radius R can be

packed in a bounded area (Møller et al., 2010). This implies that this process can

support higher packing densities than the type-I and type-II processes with the same

parameters. The monotonicity property is also important in applications where we

model inhomogeneity by allowing λ to vary with location (see section 8.4), since λ now

has an easy interpretibility.

In spite of these properties, the Matérn type-III repulsive process has not found

widespread use in the spatial point process modelling community. Theoretically, it

is the least well understood of the three Matérn processes; for instance, there does not

exist a closed form expression for the average number of points in any region. This

complication arises because of the dependent nature of the thinning. For the type-I

and II processes, to decide whether a point is thinned or not, one only has to look

at the primary Poisson process within a neighbourhood of radius R. For the type-III

process, one also needs to know whether each of these neighbouring points was thinned

or not, thereby requiring knowledge of primary points within neighbourhoods of those

points as well. This expanding influence means that any primary event can potentially

affect all points that were born afterwards. This can also result in tricky edge effects if

one regards the area of interest, S, as a subset of a larger ambient space (Møller et al.,

2010). For the type-I and II processes, this would require us to instantiate the primary

process on the union of S with a surrounding boundary of width R. For the type-III

process, because of the effect described previously, this boundary can be arbitrarily

wide. We bypass this latter issue by defining the Matérn process as generated by a

Matérn repulsive point processes 129

Poisson process on S (and not as an observed subset of some larger process).

A more practical impediment to the use of this process (and this is true for all Matérn

processes) is that there do not exist efficient techniques for inference over parameters

like λ or the radius of interaction R. Typical inference schemes involve incremental

birth-death samplers which proceed by randomly inserting or deleting thinned events,

setting up a Markov chain which converges to the true posterior over thinned events

(Møller et al., 2010; Huber and Wolpert, 2009; Adams, 2009). Given the entire set

of thinned events, one can perform inference over the parameters λ and R. However,

the incremental nature of these updates can make the sampler mix quite slowly. The

birth-death sampler can be adapted to a coupling from the past scheme to draw perfect

samples of the thinned events (Huber and Wolpert, 2009). This can then be used to

approximate the likelihood p(G|λ,R) or perhaps, to drive a Markov chain following

ideas from Andrieu and Roberts (2009). However, this too can be quite inefficient,

with long waiting times until the sampler returns a perfect sample.

In the following sections, we show how to perform efficient inference for the Matérn

type-III sampler using ideas similar to those in previous chapters. First, however, we

specify the probability density of this point process; this will enable us to verify the

correctness of our sampler.

8.2.2 Probability density of the Matérn type-III point process

Since the Matérn process is derived by thinning a primary Poisson process, it will

be a finite point process if the primary process is finite. We restrict ourselves to this

situation, thus associating (unordered) samples from the Matérn process with random

sequences in the space (S∪,Σ∪) of finite sequences in S (see section 2.4). On the

other hand, events of the augmented point process F+ and G+ lie in the product

space (S × T), where T is just the unit interval with the usual Borel σ-algebra. Let

µ be a base measure on this product space; for the case when S is a subset of the

two-dimensional Euclidean space, µ is just the Lebesgue measure on R3. We will

then derive the density of the augmented Matérn type-III process G+ = (G,TG) with

respect to the measure µ∪. Recall from equation (2.21) that this base measure has

a factorial term correcting for the many-to-one mapping from the space of ordered

sequences to an unordered sample. We will write down the density of the augmented

primary Poisson process F+ w.r.t. the measure µ∪, and then use the thinning

construction of the Matérn type-III process to calculate the probability density of G+.

Theorem 8.1. Let G+ = (G,TG) be a sample from a Matérn type-III process aug-

mented with the set of birth times. Let the process have intensity λ and interaction

radius R. Then, letting I denote the indicator function, its density w.r.t. the measure

Matérn repulsive point processes 130

µ∪ is given by

P (G+|λ,R) = exp
(
−λµ

(
(S × T) \H (G+, R)

))
λ|G

+|

|G+|∏
i=1

I(G+ ∩H (g+
i , ri) = ∅)


(8.7)

Proof. Recall the definition of H (G+, R), the shadow of G+:

H (G+, R) = {(s, t) : ∃ i such that ‖s− gi‖ < R and t > tGi }

In equation (8.7) above, (S × T)\H (G+, R) represents the complement of the shadow

H (G+, R). Also, I is the indicator function, with the product term requiring that no

Matérn event lie within the Matérn shadow. Now, let |G|, the size of the set G be k.

G+ is obtained by thinning F+, a sample from a homogeneous Poisson process with

intensity λ. Let the size of F+ be n > k; its density w.r.t. the measure µ∪ is then

P (F+) = exp (−λµ(S × T))λn (8.8)

Now, there are
(
n
k

)
ordered versions of F+ mapping deterministically to the Matérn

sequence G+, so that the conditional density of G+ is given by

P (G+|F+) =
n!

k!(n− k)!
I(F+ ∈H (G+, R))

|G|∏
i=1

I
(
G+ ∩H (g+

i , ri) = ∅
)

(8.9)

The first indicator term in the equation above requires all primary points F+ to fall

within the shadow H (G+, R), and the second term requires that no Matérn event

lies in the shadow. Following Huber and Wolpert (2009), we write this term more

compactly as Iρ(G)>R, where ρ(G) is the minimum distance between the elements of

the set G. Thus,

P (G+|F+) =
n!

k!(n− k)!
I(F ∈H (G+, R))Iρ(G)>R (8.10)

Then we have

P (F+, G+) =
n!

k!(n− k)!
exp(−λµ(S × T))λnI(F ∈H (G+, R))Iρ(G)>R (8.11)

Integrating out the locations of n− k thinned events, we have

P
(
G+, |F+| = n

)
=

n!

k!(n− k)!
exp(−λµ(S × T))λk

(λµ(H (G+, R)))
n−k

n!/k!
Iρ(G)>R

(8.12)

= exp(−λµ(S × T))λk
(λµ(H (G+, R)))

n−k

(n− k)!
Iρ(G)>R (8.13)

Matérn repulsive point processes 131

The n!/k! term arises because of the factorial term in the base measure µ∪, see equa-

tion (2.42). Finally, summing out n, we have

P
(
G+
)

= exp(−λµ(S × T))λkIρ(G)>R

∞∑
n=k

(λµ(H (G+, R)))
n−k

(n− k)!
(8.14)

= exp
(
−λ
(
µ(S × T)− µ(H (G+, R))

))
λkIρ(G)>R (8.15)

This is what we set out to prove. A similar result was derived in Huber and Wolpert

(2009); they express the Matérn type-III density with respect to a homogeneous Pois-

son process with intensity 1. However, their proof technique is less direct than ours,

proceeding via a coupling from the past construction.

8.2.3 Inference for Matérn type-III processes

We now show how the apparently complicated dependent thinning in the generative

procedure of the Matérn type-III process actually allows for efficient inference. The

insight here is that a point of the primary Poisson process F can be thinned only by an

element of the secondary process. Consequently, given the secondary process, there are

no interactions between the thinned events themselves. It turns out then, that given the

secondary process, the thinned events are just Poisson distributed, making it possible

to sample them directly. This can be much more efficient than an incremental scheme

that updates the thinned Poisson set one event at a time. Note that such a strategy

does not extend to Matérn type-I and II processes, where the fact that thinned events

can delete each other means that the posterior is no longer Poisson. For instance, for

any of these processes, it is not possible for a thinned event to occur by itself within

any neighbourhood of radius R (else it couldn’t have been thinned in the first place).

However, two or more events can occur together. Clearly such a process is not Poisson,

rather it possesses a clustered structure.

Now consider a sample G from a Matérn type-III process. Assume the birth times

of these events have been instantiated, so that we have a realization of G+. The

thinned events (call them G̃+, so that F+ = G+ ∪ G̃+) can only lie within the shadow

H (G+, R) (see figure 8.1). Recalling that the primary process is a sample from a

homogeneous Poisson process with intensity λ, it might appear that the thinned events

are distributed as the Poisson process restricted to the shadow H (G+, R). The next

proposition verifies that this intuition is correct.

Proposition 8.1. Let G+ = (G,TG) be a sample from an Matérn type-III hardcore

process on the space (S,Σ), augmented with its birth times. Let the primary intensity

be λ and the radius of interaction be R. Then, the posterior distribution of the locations

and birth times of the thinned set, F̃+ = (F̃ , T F̃) given G+ is a Poisson process with

intensity λ, restricted to the shadow of the observations H (G+, R).

Matérn repulsive point processes 132

Figure 8.2: Updating latent variable in the Matérn type-III process. (left) cur-
rent value of G+, (centre) after resampling F̃+, (right) after resampling TG

Proof. Plugging equation (8.10) and equation (8.9) into Bayes’ rule, we have

p(G̃+|G+) =
p(G̃+, G+)

p(G+)
=
p(F+)

p(G+)
(8.16)

= exp
(
−λ
(
H (G+, R)

))
λ|G̃

+|I(G̃+ ∈H (G+, R)) (8.17)

This is just the density of a Poisson process whose intensity is λ(x) for x ∈ S(G) and

0 everywhere else.

Having reconstructed the primary Poisson process F+, we next want to resample the

birth times TG of the Matérn events G. We do this iteratively, conditionally resampling

these one at a time for all elements of G. Observe that for any primary event, the birth

time is a priori distributed uniformly on the interval [0, 1]. For a Matérn event, we have

the additional constraint that its resampled birth time does not expose any thinned

event to lie outside the resulting shadow H (see figure 8.1). In other words, for element

g ∈ G, we resample tGg uniformly on the interval [0, tmin], where tmin is the time of the

oldest thinned event that does not lie in H ((G \ g)+, R). We can easily prove this the

way we proved proposition 8.1.

We note that unlike, say, the MJP, where we used the forward-backward algorithm to

jointly resample the labels of the underlying Poisson process, we can no longer easily

produce a joint update of the birth times TG that is conditionally independent of the

previous values. While it is possible to develop more global moves, we found it sufficient

to sweep through the Matérn events, updating their birth times one at a time. This,

together with jointly updating all the thinned event locations and birth times was

sufficient to ensure that the Markov chain mixed rapidly. Figure 8.2 shows the steps

in one such cycle.

In our experiments, we näıvely resampled the thinned events G̃+ applying the restriction

theorem (theorem 2.3). In particular, we sampled a Poisson process on (S × T) and

thinned out all those points that did not lie within H (G+, R). Again, it is possible to

be more clever about this (eg. by covering H (G,R) with a disjoint set of rectangles).

We found this additional complexity to be unnecessary for the values of λ and µ(S×T)

that we considered.

Experiments 133

Having reconstructed the thinned events, it is straightforward to resample the Matérn

parameters λ and R. Like the birth times TG, for any prior on R, the posterior is

just this prior distribution truncated so that the resulting shadow H (G+, Rnew) is

consistent with all the events and their labels (see equation (8.11)). The lower bound

for this truncation requires that no thinned event lie outside the new shadow, while the

upper bound requires that no Matérn event lie inside the shadow. We place a uniform,

noninformative prior on R. We also place a Gamma(a, b) prior on the primary Poisson

intensity λ; as we saw in chapter 5, this is conjugate to the primary Poisson process

and results in a Gamma(apost, bpost) posterior where apost = a+ |F |, 1
bpost

= 1
b + 1

µ(X) .

Algorithm 8.1 describes one iteration of our sampler.

Algorithm 8.1 MCMC sampler for posterior inference in a Matérn type-III hardcore
process on the space S
Input: The set of Matérn observations G, and their birth times tG.

The values of the parameters λ and R.

Output: A new set of thinned events G̃+ ≡ (G̃, T G̃) and Matérn birth times TG.
New values of the parameters λ and R.

1: Construct the shadow H (G+, R) of G+.
2: Sample G̃+ from a Poisson process with intensity λ restricted to H .
3: Proceed iteratively through the Matérn events G. For each event g, resample its

birth time, ensuring that the new shadow still supports all thinned events F̃+.
4: Resample the interaction radius R ensuring that the new shadow a) supports all

thinned events F̃+, and b) does not cover any Matérn event g+ ∈ G+.
5: Resample the Poisson intensity λ from its gamma posterior.

8.3 Experiments

In this section, we evaluate our sampler on two datasets, the classic redwood dataset

(Ripley, 1977) and the Swedish pine tree dataset (Ripley, 1988) (see figure 8.3). The

former records the locations of trees belonging to the Californian giant redwood family,

and consists of 62 trees located within an area normalized to a square whose sides have

length 5. The Swedish pine tree dataset consists of 71 trees, again located in a 5-by-5

square. Both datasets are available as part of R package spatstat (Baddeley and Turner,

2005). We model the locations of the trees in both datasets as distributed according to

a Matérn type-III hardcore point process, placing a Gamma(1, 1) prior on the intensity

λ and a noninformative prior on the radius R (or equivalently a uniform prior in the

interval [0, 5]). Results were obtained from MCMC runs with 10000 iterations, with

a burn-in of 1000 samples (a Matlab implementation of our sampler takes about 10

seconds to produce 10000 MCMC samples).

The left and centre plots in figure 8.4 shows the posterior distributions over λ and

R produced by our sampler for the redwood dataset, while figure 8.5 shows these

Experiments 134

0 2 4

0

1

2

3

4

5

0 2 4

0

1

2

3

4

5

Figure 8.3: The redwood tree dataset (left) and the Swedish pine tree dataset
(right)

1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0 0.02 0.04 0.06 0.08 0.1
0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

Figure 8.4: Redwood dataset: posterior distributions of Matérn intensity (left),
interaction radius (centre) as well as the number of thinned events (right).

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20
0

0.1

0.2

0.3

0.4

Figure 8.5: Swedish pine tree dataset: posterior distributions of Matérn intensity
(left), interaction radius (centre) as well as the number of thinned events (right).

Generalized Matérn type-III processes 135

Redwood dataset Swedish tree dataset
Matérn interaction radius 473.64 344.51

Latent times (averaged across observations) 1000 989.47
Primary Poisson intensity 988.93 954.7

Table 8.1: Effective sample sizes (per 1000 samples) for the Matérn type-III hardcore
model

Figure 8.6: Matérn type-III softcore point processes with: a) varying interaction
radii b) probabilistic deletion

quantities for the Swedish dataset. Recall that the area of the square is 25, while

the number of Matérn events is of the order 70 in both datasets. The fact that the

posterior distributions over the intensities λ concentrate around 2.5 to 3 suggests that

the number of thinned events is small. That this is indeed the case can be seen from the

rightmost plots in the two figures showing the posterior distributions over the number

of points deleted due to Matérn thinning. A small number of thinned events suggests

a weak repulsive effect.

The reason for this weak repulsion is because the Matérn type-III hardcore model

specified above is too inflexible for this data. Observe that the posterior distribution of

the interaction radius is bounded above by the minimum separating distance between

all pairs of observations (otherwise one of these events would have deleted the other).

In both datasets, we have at least one pair of events that has a very small separation.

A small interaction radius results in a small shadow, and since thinned events are

restricted to lie within this shadow, we have a small number of thinned events. This

suggests that a hardcore model with a single interaction radius is inappropriate for

these datasets. Another limitation can be seen for the redwood dataset. Though our

model is homogeneous, this process clearly is not. We address these limitations in the

next section. For completeness we also include effective sample sizes produced by our

sampler; these are shown in table 8.1 and demonstrate that our sampler mixes rapidly.

Generalized Matérn type-III processes 136

8.4 Generalized Matérn type-III processes

For more applications of the Matérn type-III process, we refer the reader to Møller

et al. (2010) or Huber and Wolpert (2009). However, the real advantage of our MCMC

sampler is that it easily and efficiently extends to more complicated variations of the

Matérn type-III process. For instance, instead of requiring all Matérn events to have

identical interaction radii, we can assign each one an independent radius drawn from

some prior distribution p(R). Such Matérn processes are called ‘softcore’ (Huber and

Wolpert, 2009). In this case, the primary process can be viewed as a Poisson process

on a space whose coordinates are location S, birth time T and interaction radius R.

Given a realization of this process F+ ≡ (F, TF , RF), we define a secondary point

process G+ ≡ (G,TG, RG) by thinning deleting all points that fall within the radius

associated with an older, undeleted primary event. The set of locations G constitue a

sample from the softcore Matérn type-III process. Given the triplet (G,TG, RG), we

can once again calculate the shadow H , now defined as:

H (G+) = {(s, t) : ∃ i such that ‖s− gi‖ < rGi and t > tGi }

Figure 8.6(a) illustrates such a shadow; note that the interaction radii of the thinned

events are irrelevant. Resampling the thinned events is now identical to the previous

section, viz. resample a Poisson process with intensity restricted to the shadow H (G+).

We now need to resample the interaction radius rGg of each Matérn event g as well, and

we do this by sequentially updating these one at a time. Once again, the posterior is the

prior P (R) truncated so that the resulting shadow is consistent with the instantiated

primary and secondary events. A change in a radius rGg now produces only a local

change in the shadow H , so that most of these updates are uncoupled.

Another approach to soft repulsion is to probabilistically thin events of the primary

Poisson process; such an approach was suggested in (Adams, 2009). The probability

of deletion can depend on the distance of a point to a previous unthinned point, and

a primary event is retained only if it is left unthinned by all surviving points with

earlier birth times. To keep this process efficient, (Adams, 2009) suggests using a

deletion kernel with compact support; figure 8.6(b) illustrates the resulting shadow.

Where previously the Matérn events defined a black-or-white shadow, now the shadow

can have intermediate grey values corresponding to the probability of deletion. Our

sampler handles this case without any difficulty; following corollary 2.1, it is easy to

see that the thinned events F̃ are now drawn from a Poisson process with intensity

λH (G+). Sampling from this Poisson process is a simple application of the thinning

theorem: instantiate a Poisson process with intensity λ on S × T , and keep each point

with probability H (G+). Notice that for the hardcore model, this reduces to the

sampling scheme of proposition 8.1.

Another extension, suggested in Adams (2009), and which follows naturally from ideas

Generalized Matérn type-III processes 137

in chapter 5, is to allow nonstationarity in the intensity function λ. Instead of requiring

the primary process to be homogeneous with a constant intensity λ, we allow λ(s) to

vary over S. Such a model would be suitable for the redwood dataset, for instance. Like

chapter 5, we place a (transformed) Gaussian process prior on the intensity function

λ(t) as follows:

l(·) ∼ GP(µ,K), (8.18)

λ(·) = λ̂σ(l(·)) (8.19)

where µ(·) and K(·, ·) are the GP mean and covariance kernel, λ̂ is a positive scale

parameter, and σ(x) = (1 + exp(−x))−1 is the sigmoid transformation. Like chapter 5,

this sigmoid transformation serves two purposes: to ensure that the intensity λ(s)

is nonnegative, and to provide a bound λ̂ on the Poisson intensity. As we saw in

chapter 5, such a bound makes sampling from the inhomogeneous primary process a

straightforward application of the thinning theorem: sample a random set E from a

homogeneous Poisson process with intensity λ̂, instantiate the Gaussian process l(·) on

this set and keep an element e with probability σ(l(e)). Observe that there are now two

stages of thinning, the first is an application of the Poisson thinning theorem to obtain

the inhomogeneous primary process F from the homogeneous Poisson process E, and

the second, the Matérn thinning to obtain G from F . In algorithm 8.2, we outline the

generative process for an inhomogeneous Matérn type-III softcore process.

Algorithm 8.2 Algorithm to sample an inhomogeneous Matérn type-III softcore point
process on a space S
Input: A Gaussian process prior GP(µ,K) on the space S, a constant λ̂ and a

distribution p(R) over interaction radii.
Output: A sample G from the Matérn type-III process.

1: Sample E from a homogeneous Poisson process with intensity λ̂.
2: Sample from the Gussian process l(·) on this set of points. Call this lE .
3: Let λE = σ(lE). Keep a point e ∈ E with probability λ(e), otherwise thin it. The

surviving set of points form the primary process F .
4: Assign F a set of random birth times TF uniformly on the interval [0, 1].
5: Assign F a set of random interaction radii RF i.i.d. from P (R).
6: Proceed through the elements of F in the order of their birth, deleting any event

that lies within a radius rFi of an earlier, undeleted event i.
7: The surviving set of points G form the secondary Matérn type-III point process.

Like subsection 8.2.3, we place a gamma hyperprior on λ̂. We can also place hyperpriors

on the GP hyperparameters.

8.4.1 Inference for the inhomogeneous Matérn type-III process

(Adams, 2009) defined an inhomogeneous softcore Matérn process similar to the model

Generalized Matérn type-III processes 138

in the algorithm 8.2 (their model introduced softcore repulsions by probabilistic thin-

ning, instead of the independent interaction radius approach we took). To perform

posterior inference given the Matérn events, they defined an MCMC algorithm that

proceeded via an incremental birth-death process. More specifically, conditioned on all

other variables (including the GP values lE), they defined Metropolis-Hastings propos-

als by randomly adding to or deleting elements from the thinned sets G̃ and F̃ (here,

G∪ G̃ = F and F ∪ F̃ = E). They also defined proposals that perturbed the locations

of the elements of these sets. After updating the set E, they could perform inference

on the latent GP values, and λ̂. Additionally, rather than inducing an ordering on

F indirectly via a set of birth times, they directly defined a random permutation on

the elements of F . Inference on this permutation proceeded via moves that select and

attempt to swap pairs of elements in the permutation. All these moves listed above are

local and incremental, and can result in very poor mixing.

We saw in subsection 5.3.1 how we could jointly resample F̃ , the Poisson events deleted

in the first thinning stage that produced the inhomogeneous Poisson process F from E.

This is a straightforward application of the corollary of the thinning theorem (corol-

lary 2.1): F̃ is a draw from an inhomogeneous Poisson process with intensity (λ̂−λ(·)).
Similarly, following subsection 8.2.3, we can easily see how to resample the Matérn

-thinned events G̃: these can be sampled from a Poisson process with intensity λ(·)
restricted to the shadow H (G+). Observe that this step jointly produces a condition-

ally independent sample of the number of Matérn -thinned events, their locations and

their relative ordering given the ordering of the Matérn events. Each of these steps was

performed on an element by element basis in Adams (2009).

Resampling the GP evaluated on the set E = F ∪ F̃ reduces to a GP classification

problem, with elements of F belonging to class 1 and those of F̃ belonging to class 0

(see chapter 5). We used elliptical slice sampling (Murray et al., 2010) to perform this

step. Similarly, following chapter 5 we resampled the GP bound λ̂ from its gamma

posterior.

Finally, we resampled the marks of the Matérn events (viz. their birth times and in-

teraction radii) incrementally as described in subsection 8.2.3. We describe our overall

sampler in algorithm 8.3.

Generalized Matérn type-III processes 139

Algorithm 8.3 MCMC sampler for an inhomogeneous Matérn type-III softcore point
process on a space S
Input: A set of Matérn events G+ ≡ (G,TG, RG), a set of thinned primary events

G̃+ ≡ (G̃, T G̃) and a set of thinned Poisson events F̃ . A GP sample lE
on E ≡ G ∪ G̃ ∪ F̃

Output: New sets TGnew, RGnew, G̃+
new, Ẽnew and a new instantiation of the GP on

G ∪ G̃new ∪ F̃new.

1: Calculate the shadow H (G+) of G+.
2: Resample the Matérn thinned events G̃+:

3:
Sample a set of events A+ ≡ (A, TA) from a homogeneous Poisson process with intensity
λ̂ on S × T . Keep only those in the shadow H (G+).

4: Sample lA|lE (conditionally from a multivariate normal). Let λA = σ(lA).
5: Keep a point a ∈ A with probability λ(a), otherwise thin it.
6: The surviving set of points form the new set of Matérn thinned events G̃+

new.
7:

8: Resample the Poisson thinned events F̃ :
9: Define Enew ≡ G ∪ G̃new ∪ F̃

10:
Sample a set of events B+ ≡ (B, TB) from a homogeneous Poisson process with inten-
sity λ̂ on S × T .

11: Sample lB|lEnew (conditionally from a multivariate normal). Let λB = σ(lB).

12:
Keep a point b ∈ B with probability 1 − λ(b), otherwise thin it. The surviving set of
points form the new set of Poisson thinned events F̃new.

13: Define Enew ≡ G ∪ G̃new ∪ F̃new
14:

15: Resample the Matérn birth-times and interaction radii:

16:
For each Matérn observation g, resample its birth time TGg uniformly between 0 and
the time of the earliest thinned event that lies only in its shadow.

17:

For each Matérn observation g, resample its interaction radius RGg . This is just the
prior on R truncated so that no thinned event lies outside the resulting shadow and no
Matérn event lies in it.

18:

19: Resample the GP values lEnew :
20: We used elliptical slice sampling (Murray et al., 2010).

8.4.2 Experiments

We return to the redwood and the Swedish tree datasets, now modelling them with the

nonstationary softcore Matérn type-III process described in the previous section. We

assigned each Matérn observation an interaction radius drawn uniformly on the interval

(0, 5)‡, and placed a Gamma(1, 1) prior on the scaling parameter λ̂. We modelled

the inhomogeneous intensity function λ(·) using a Gaussian process with a squared-

exponential kernel, and placed lognormal hyperpriors on the GP hyperparameters. Like

chapter 5, we used elliptical slice sampling (Murray et al., 2010) to resample the GP

values given all thinned events (step 19 in algorithm 8.3). The GP hyperparameters

were resampled by slice-sampling (Murray and Adams, 2010). Again, all results were

from 10000 iteration MCMC runs, with a burn-in period of 1000.

‡We could also place hyperpriors on the limits of this distribution, though we did not do this.

Generalized Matérn type-III processes 140

Figure 8.7 shows the posterior mean and standard deviation of the intensity of the

modulating function λ(·) for the redwood dataset. The intensity function deviates

strongly from a constant, and the nonstationary process is clearly far more suitable for

this dataset than the homogeneous Matérn process. The left plot in figure 8.8 displays

the strength of the repulsion between events. Here, we divided S into a 30 by 30 grid,

and for each element of this grid, we plot the average number of primary Poisson events

that were deleted due to Matérn thinning (|F̃ |) divided by the area of the grid element.

The plot thus shows the rate at which events are deleted due the Matérn repulsion.

A high rate of Matérn thinning suggests that the process deviates strongly from the

primary Poisson process. We see that while this rate of thinning is indeed high in

the regions with clusters of trees, it is restricted to a relatively small portion of S.

Because the trees are clustered together in regions where the intensity λ(·) is high, the

interaction radii are small, as are the number of events deleted due to Matérn thinning.

This is confirmed by figure 8.9, showing posterior distributions of the scale parameter

λ̂, the interaction radii RG (pooled across all events) as well as the number of Matérn

-thinned events. We see that the Matérn radii are fairly small, suggesting this dataset

might be modelled quite well by an inhomogeneous Poisson process.

We have also estimated and plotted of the rate at which events F̃ are thinned during

the construction of the inhomogeneous Poisson process F from E. The right plot in

figure 8.8 shows this rate of deletion; by definition it is given by (λ̂− λ(·)). In regions

where this quantity is high, a large number of the primary Poisson events were thinned.

Recall that this thinning required evaluating the GP on this set of points, so that a

large set will affect the efficiency of our algorithm. We can try to improve efficiency by

modulating a more complicated bounding function than a constant, thereby reducing

the number of GP evaluations. However, now we will have to perform inference over

this function as well (instead of just the constant λ̂), and this can slow down mixing.

Figure 8.10 and figure 8.11 shows the corresponding plots for the Swedish dataset.

In this case, the intensity function is fairly constant, agreeing with the fact the the

distribution of the trees is fairly uniform. Thus, a homogeneous Matérn type-III process

might be suitable for this dataset. However, the plot showing the rates of Matérn

thinning suggests that this process is significantly more dispersed that a Poisson process.

This is confirmed by plots for the number of thinned events and the posterior over the

interaction radii (figure 8.12). Thus, this dataset could be viewed as a sample from a

homogeneous Matérn type-III softcore process.

Finally, we include plots showing the effective number of samples of various statistics

produced per 1000 MCMC iterations (table 8.2). For the last row of the table, we

evaluated the GP intensity on a regular 10 by 10 grid. For each component of the

resulting vector, we calculated the effective sample size and reported the median value.

Once again, the table demonstrates that our sampler mixes the relatively rapidly. The

1 in 20 effective sample size for the GP intensity for the redwood dataset is typical

Generalized Matérn type-III processes 141

Mean

2

4

6

8

10
Std dev.

1

2

3

4

5

Figure 8.7: Posterior mean (left) and standard deviation (right) of the intensity
of the primary process for the redwood tree dataset

Repulsion

2

4

6

8

10
Thinning

2

4

6

8

10

Figure 8.8: Left: Posterior rate of deletions due to repulsion, and right: Posterior
rate of deletions in sampling the primary process of the redwood tree dataset

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

Figure 8.9: Redwood dataset: Posterior distribution of Matérn intensity (left),
radius (centre) as well as the number of thinned events (right).

Generalized Matérn type-III processes 142

Mean

7.6

7.8

8

8.2

8.4

8.6

8.8
Std dev.

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

Figure 8.10: Posterior mean (left) and standard deviation (right) of the rate of
the primary process of the Swedish pine tree dataset

Repulsion

1

2

3

4

5

6

7

8

9
Thinning

3

4

5

6

7

8

9

Figure 8.11: Left: Posterior rate of deletions due to repulsion, and right: Pos-
terior rate of deletions in sampling the primary process of the Swedish pine tree
datasets

Discussion 143

0 10 20 30
0

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8
0

0.05

0.1

0.15

0.2

0 100 200 300 400
0

0.1

0.2

0.3

0.4

Figure 8.12: Swedish pine tree dataset: Posterior distribution of Matérn intensity
(left), radius (centre) as well as the number of thinned events (right).

Redwood dataset Swedish tree dataset
Average Matérn interaction radius 314.13 370.01

Latent times (averaged across observations) 994.86 988.18
Primary Poisson GP intensity (evaluated on a grid) 52.6 627.19

Table 8.2: Effective sample sizes (per 1000 samples) for the inhomogeneous Matérn
type-III softcore model

for Gaussian process (Murray et al., 2010); the larger number for the Swedish dataset

reflects the fact that it is relatively homogeneous.

8.5 Discussion

In this chapter, we described how to perform MCMC inference for the Matérn type-

III point process, a class of repulsive point processes generated by thinning a primary

Poisson process. Continuing with the theme of this thesis, our scheme exploits the

independence properties of the the Poisson process to jointly resample thinned events

given the Matérn events. Having reconstructed the latent Poisson process, we then

resample the remaining variables. We showed how our sampler easily generalizes to

more complicated extensions of the Matérn type-III process, and as an example, studied

an inhomogeneous softcore Matérn type-III process. The efficiency of our sampler stems

from its ability to jointly resample the various sets of thinned events. The variables

associated with the Matérn events (such as the birth times TG and the interaction radii

RG of the Matérn events) were updated sequentially. Though we found this to perform

adequately, it is worth attempting to devise more global moves for these quantities.

Similarly, we saw that the posterior distributions of the thinned events in Matérn type-

I and II processes is not Poisson. Using our approach of characterizing the posteriors

with probability densities, it is interesting to see when we can efficiently sample the

thinned events in these models (eg. by transforming a sample from a Poisson process).

In our experiments, we applied our sampler to two datasets, the Swedish and the

redwood tree datasets. These modelled the distributions of events in a 2-dimensional

space, though it is easy to generalize to higher dimensions. This could be useful to

model, say, the distribution of galaxies in space, features in some feature space etc.

Discussion 144

Our experiments assumed the Matérn events G were observed perfectly, though we can

also introduce noise into this observation process. In this case, given the observed point

process Gobs, we have to instantiate the latent Matérn process G. Given this, we can

resample all other variables as outlined previously. However, resampling the locations

of the events in G would require incremental updates, and if we allow for missing or

extra events, we would need a birth-death sampler as well. A direction for future study

to see how these moves can be made efficiently.

The use of a GP prior on the intensity function means that like chapter 5, we will not

be able to scale our inhomogeneous model to problems with a very large number of

Matérn events. In such situations, we must look at approximate inference methods for

GP inference, or using alternate, more tractable priors to model nonstationarity.

Chapter 9

Summary and future work

In this thesis, we described a framework for exact MCMC inference in continuous-time

discrete-state systems. At a high level, our approach builds upon a thinning construc-

tion for continuous-time systems where candidate events are generated at rates higher

than those in the system. Given such a construction, we proceed by first resampling

the thinned events given the current trajectory of the system. The new set of thinned

events, along with the actual events of the old trajectory, results in a random discretiza-

tion of time, and given this, we sample a new trajectory of the system. This results in an

auxiliary variable Gibbs sampler with the correct stationary distribution. We showed

how one can expoit independence properties of the Poisson process to perform the first

step efficiently. We can leverage MCMC sampling techniques from the discrete-time

literature like the forward-backward algorithm to perform the second step efficiently.

The first application of our sampler that we considered was inference in Markov jump

processes, where we achieved state-of-the-art performance on a number of models based

on the MJP. We then showed how our sampler can be extended to related models like

renewal and semi-Markov processes, as well as spatial processes like Matérn type-III

processes (which have a latent, unobserved temporal ordering).

Conceptually, the idea of randomly discretizing time is related to ideas from Andrieu

and Roberts (2009). There, the authors describe and analyze a general framework for

exact Metropolis-Hastings sampling, where an intractable acceptance ratio is replaced

by an unbiased estimate. Particle MCMC is a particular construction of such a ‘pseudo-

marginal’, applicable to time-series data. Our idea of a random time-discretization is

an other construction, now relevant to continuous-time models. Of course, our sampler

is an auxiliary variable Gibbs sampler; however, it can be adapted to produce an exact

Metropolis-Hastings sampler as well. It is then worth investigating how our ideas

can be combined with ideas from particle MCMC and Andrieu and Roberts (2009) to

construct samplers with improved mixing properties. Similarly, such an approach would

help understand our sampler better theoretically; all our evaluations in this thesis have

been empirical. A concrete example of such theoretical problem is the choice of the

146

subordinating Poisson rate Ω for uniformization sampler of chapter 3. This parameter

trades of mixing and computational cost, and it is of interest to be able to quantify its

effect in a precise way. Similarly, we saw in chapter 7, how to reduce the number of

thinned events by allowing state-dependent dominating event rates. This too comes at

the price of slower mixing, and it would be interesting to study this theoretically.

The idea of a Poisson discretization of time is closely connected to work on the exact

sampling for diffusions; for instance, Beskos and Roberts (2005) describe a rejection

sampling scheme to sample from stochastic differential equations based on this idea. It

is thus worth seeing if our ideas can be extended to stochastic processes with continuous

state spaces. Similarly, we can look at whether our ideas are applicable to jump diffusion

processes (Casella and Roberts, 2011).

An application of our sampler that we have not discussed in this thesis is from (Teh

et al., 2011), Here, our uniformization-based sampler from chapter 3 was used for

inference in a class of Bayesian nonparametric models called Fragmentation Coagu-

lation processes; these were applied to problems in population genetics. Our sam-

pler is also applicable to other nonparametric models such models on trees (viz. the

Dirichlet diffusion tree (Neal, 2003b), and Kingman’s coalescent (Kingman, 1982; Teh

et al., 2008),these are respectively fragmentation and coagulation processes in continu-

ous time), as well as infinite-state Markov jump processes (Saeedi and Bouchard-Côté,

2011). Closely related to ideas from chapter 5 is the problem of survival analysis,

and we can apply our ideas to the problem of nonparametric hazard function estima-

tion (Berliner and Hill, 1988; Nieto-Barajas and Walker, 2010). Another application is

to continuous-time Markov decision processes (Guo and Hernández-Lerma, 2009) (or

controlled MJPs).

Bibliography

R. P. Adams. Kernel methods for nonparametric Bayesian inference of probability

densities and point processes. PhD thesis, University of Cambridge, 2009.

(pages 129, 136, 137, and 138)

R. P. Adams, I. Murray, and D. J. C. MacKay. Tractable nonparametric Bayesian

inference in Poisson processes with Gaussian process intensities. In Proceedings of

the 26th International Conference on Machine Learning (ICML), 2009.

(pages 14, 27, 71, 76, 77, 80, and 89)

C. Andrieu and G. O. Roberts. The pseudo-marginal approach for efficient Monte Carlo

computations. The Annals of Statistics, 37(2):697–725, Apr. 2009. ISSN 0090-5364.

(pages 129 and 145)

C. Andrieu and J. Thoms. A tutorial on adaptive MCMC. Statistics and Computing,

18(4):343–373, Dec. 2008. ISSN 0960-3174. (page 54)

C. Andrieu, A. Doucet, and R. Holenstein. Particle Markov chain Monte Carlo methods.

Journal of the Royal Statistical Society Series B, 72(3):269–342, 2010.

(pages 107, 108, and 109)

S. Asmussen. Applied Probability and Queues. Applications of Mathematics. Springer,

2003. ISBN 9780387002118. (pages 40 and 118)

A. Baddeley and R. Turner. Spatstat: an R package for analyzing spatial point patterns.

Journal of Statistical Software, 12(6):1–42, 2005. ISSN 1548-7660. (page 133)

J. Berger and D. Sun. Bayesian analysis for the poly-Weibull distribution. J. Amer.

Statist. Assoc., 88:1412–1418, 1993. (page 113)

L. M. Berliner and B. M. Hill. Bayesian nonparametric survival analysis. Journal of the

American Statistical Association, 83(403):pp. 772–779, 1988. ISSN 01621459. URL

http://www.jstor.org/stable/2289303. (page 146)

M. Berman. Inhomogeneous and modulated gamma processes. Biometrika, 68(1):143,

1981. (page 77)

http://www.jstor.org/stable/2289303

BIBLIOGRAPHY 148

M. Berman and T. R. Turner. Approximating point process likelihoods with GLIM.

Journal of the Royal Statistical Society. Series C (Applied Statistics), 41(1):pp. 31–

38, 1992. ISSN 00359254. (page 77)

J. Bertoin. Random fragmentation and coagulation processes, volume 102 of Cambridge

Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2006.

(pages 20 and 21)

A. Beskos and G. Roberts. Exact simulation of diffusions. Annals of applied probability,

15(4):2422 – 2444, November 2005. (page 146)

G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi. Queueing networks and Markov

chains: modeling and performance evaluation with computer science applications.

Wiley-Interscience, New York, NY, USA, 1998. ISBN 0-471-19366-6. (page 56)

R. J. Boys, D. J. Wilkinson, and T. B. L. Kirkwood. Bayesian inference for a discretely

observed stochastic kinetic model. Statistics and Computing, 18(2):125–135, 2008.

(page 41)

L. Breuer. From Markov jump processes to spatial queues. Springer, 2003. ISBN

978-1-4020-1104-7. (pages 32 and 40)

E. N. Brown, R. Barbieri, V. Ventura, R. E. Kass, and L. M. Frank. The time-rescaling

theorem and its application to neural spike train data analysis. Neural computation,

14(2):325–46, Feb. 2002. ISSN 0899-7667. (page 77)

T. Burzykowski, J. Szubiakowski, and T. Rydén. Analysis of photon count data from

single-molecule fluorescence experiments. Chemical Physics, 288(2-3):291–307, 2003.

(page 50)

C. K. Carter and R. Kohn. Markov chain Monte Carlo in conditionally Gaussian state

space models. Biometrika, 83:589–601, 1996. (page 13)

B. Casella and G. O. Roberts. Exact simulation of jump-diffusion processes with Monte

Carlo applications. Methodology and Computing in Applied Probability, 13(3):449–

473, 2011. (page 146)

E. Çinlar. Introduction to Stochastic Processes. Prentice Hall, 1975. (pages 31 and 35)

I. Cohn, T. El-Hay, N. Friedman, and R. Kupferman. Mean field variational approxi-

mation for continuous-time Bayesian networks. J. Mach. Learn. Res., 11:2745–2783,

December 2010. ISSN 1532-4435. (page 41)

D. Cox. The statistical analysis of dependencies in point processes. In P. Lewis, editor,

Stochastic point processes, pages 55–56. New York: Wiley 1972, 1972.

(pages 74 and 77)

BIBLIOGRAPHY 149

D. R. Cox. Some Statistical Methods Connected with Series of Events. Journal of the

Royal Statistical Society. Series B (Methodological), 17(2):129–164, 1955. (page 50)

J. P. Cunningham, B. M. Yu, K. V. Shenoy, and M. Sahani. Inferring neural firing

rates from spike trains using Gaussian processes. In Advances in Neural Information

Processing Systems 20, 2008. (pages 72, 77, 78, 84, and 86)

D. J. Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes.

Springer, 2008. (pages 16, 20, 21, 23, and 125)

M. Dewar, C. Wiggins, and F. Wood. Inference in hidden Markov models with explicit

state duration distributions. IEEE Signal Processing Letters, page To Appear, 2012.

(pages 13 and 112)

V. Didelez. Graphical models for marked point processes based on local independence.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(1):

245–264, 2008. ISSN 1467-9868. (page 56)

A. Doucet, N. de Freitas, and N. J. Gordon. Sequential Monte Carlo Methods in

Practice. Statistics for Engineering and Information Science. New York: Springer-

Verlag, May 2001. (page 12)

T. El-Hay, N. Friedman, and R. Kupferman. Gibbs sampling in factorized continuous-

time Markov processes. In UAI, pages 169–178, 2008.

(pages 41, 60, 61, 65, 66, 67, and 68)

R. Elliott and C.-J. Osakwe. Option pricing for pure jump processes with Markov

switching compensators. Finance and Stochastics, 10:250–275, 2006. (page 40)

Y. Fan and C. Shelton. Learning continuous-time social network dynamics. In Proceed-

ings of the Twenty-Fifth Conference Annual Conference on Uncertainty in Artificial

Intelligence (UAI-09), pages 161–168, Corvallis, Oregon, 2009. AUAI Press. (page 31)

Y. Fan and C. R. Shelton. Sampling for approximate inference in continuous time

Bayesian networks. In Tenth International Symposium on Artificial Intelligence and

Mathematics, 2008. (pages 41 and 46)

P. Fearnhead and C. Sherlock. An exact Gibbs sampler for the Markov-modulated

Poisson process. Journal Of The Royal Statistical Society Series B, 68(5):767–784,

2006. (pages 31, 40, 41, 42, 48, 50, 51, 52, 53, and 61)

W. Feller. On semi-Markov processes. Proceedings of the National Academy of Sciences

of the United States of America, 51(4):pp. 653–659, 1964. ISSN 00278424. (page 93)

Früwirth-Schnatter. Data augmentation and dynamic linear models. J. Time Ser.

Anal., 15:183–202, 1994. (page 13)

BIBLIOGRAPHY 150

A. Gelman, S. Brooks, G. Jones, and X. Meng. Handbook of Markov Chain Monte

Carlo. Chapman & Hall/CRC Handbooks of Modern Statistical Methods. CRC

Press, 2010. ISBN 9781420079418. (page 12)

I. Gerhardt and B. L. Nelson. Transforming renewal processes for simulation of non-

stationary arrival processes. INFORMS Journal on Computing, 21(4):630–640, Apr.

2009. ISSN 1091-9856. (page 77)

I. I. Gikhman and A. V. Skorokhod. The theory of stochastic processes. II. Translated

from the Russian by S. Kotz. Corrected printing of the first edition. Classics in

Mathematics. Berlin: Springer. viii, 2004. (pages 31 and 33)

W. R. Gilks, S. Richardson, and D. J. Spiegelhalter. Markov Chain Monte Carlo in

Practice. Chapman and Hall, 1996. (page 12)

D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. J. Phys.

Chem., 81(25):2340–2361, 1977. ISSN 0022-3654. (pages 31, 35, and 40)

L. Glass and W. R. Tobler. Uniform distribution of objects in a homogeneous field:

Cities on a plain. Nature, 233(5314):67–68, June 1971. (page 124)

A. Golightly and D. J. Wilkinson. Bayesian parameter inference for stochastic bio-

chemical network models using particle Markov chain Monte Carlo. Interface Focus,

1(6):807–820, December 2011. (pages 40, 46, and 109)

X. Guo and O. Hernández-Lerma. Continuous-Time Markov Decision Processes: The-

ory and Applications. Stochastic Modelling and Applied Probability. Springer, 2009.

ISBN 9783642025464. URL

http://books.google.co.uk/books?id=tgi-opMlLTwC. (page 146)

F. H. Hansford-Miller. A geographical and statistical analysis of religious nonconformity

in England and Wales. PhD thesis, University College London, 1968. (page 124)

M. O. Hill. The intensity of spatial pattern in plant communities. Journal of Ecology,

61(1):pp. 225–235, 1973. ISSN 00220477. (page 124)

A. Hobolth and E. A. Stone. Simulation from endpoint-conditioned, continuous-time

Markov chains on a finite state space, with applications to molecular evolution. Ann

Appl Stat, 3(3):1204, 2009. ISSN 1941-7330. (pages 35, 37, 41, 42, 46, and 47)

M. L. Huber and R. L. Wolpert. Likelihood-based inference for Matérn type III repulsive

point processes. Advances in Applied Probability, 41(4), 2009. 958–977.

(pages 129, 130, 131, and 136)

B. Y. R. G. Jarrett. A note on the intervals between coal-mining disasters. Biometrika,

66(1):191–193, 1979. (pages 88 and 89)

http://books.google.co.uk/books?id=tgi-opMlLTwC

BIBLIOGRAPHY 151

A. Jensen. Markoff chains as an aid in the study of Markoff processes. Skand. Aktuar-

ietiedskr., 36:87–91, 1953. (pages 13, 35, and 37)

C. P. Jewell, T. Kypraios, P. Neal, and G. O. Roberts. Bayesian Analysis for Emerging

Infectious Diseases. Bayesian Analysis, 4(4):465–496, 2009. (page 124)

O. Kallenberg. Foundations of Modern Probability. Probability and its Applications.

Springer-Verlag, New York, Second edition, 2002. ISBN 0-387-95313-2.

(pages 24, 34, and 37)

R. E. Kass and V. Ventura. A spike-train probability model. Neural Computation, 13

(8):1713–1720, 2001. (pages 72, 74, and 77)

D. G. Kendall. Stochastic Processes Occurring in the Theory of Queues and their

Analysis by the Method of the Imbedded Markov Chain. The Annals of Mathematical

Statistics, 24(3):338–354, 1953. ISSN 00034851. (page 118)

M. G. Kendall. The geographical distribution of crop productivity in england. Journal

of the Royal Statistical Society, 102(1):21–62, 1939. ISSN 09528385. (page 124)

J. F. C. Kingman. The coalescent. Stochastic Processes and their Applications, 13:

235–248, 1982. (page 146)

J. F. C. Kingman. Poisson processes, volume 3 of Oxford Studies in Probability. The

Clarendon Press Oxford University Press, New York, 1993. ISBN 0-19-853693-3.

Oxford Science Publications. (pages 16, 17, 18, 19, and 20)

G. Knox. Epidemiology of childhood leukemia in northumberland and durham. The

Challenge of Epidemiology: Issues and Selected Readings, 1(1):384–392, Jan 2004.

(page 124)

J. F. Lawless and K. Thiagarajah. A point-process model incorporating renewals and

time trends, with application to repairable systems. Technometrics, 38(2):131–138,

1996. (pages 71 and 77)

P. A. W. Lewis and G. S. Shedler. Simulation of nonhomogeneous Poisson processes

with degree-two exponential polynomial rate function. Operations Research, 27(5):

1026–1040, Sept. 1979. ISSN 0030-364X. (page 25)

B. H. Lindqvist. Nonparametric estimation of time trend for repairable systems data.

In V. Rykov, N. Balakrishnan, and M. Nikulin, editors, Mathematical and Statistical

Models and Methods in Reliability, Statistics for Industry and Technology, pages

277–288. Birkhuser Boston, 2011. ISBN 978-0-8176-4971-5. (page 77)

B. Matérn. Spatial Variation. Springer-Verlag Berlin and Heidelberg GmbH & Co. K,

second edition, 1986. ISBN 3540963650. (page 126)

BIBLIOGRAPHY 152

J. Mateu and F. Montes. Likelihood inference for Gibbs processes in the analysis of

spatial point patterns. International Statistical Review / Revue Internationale de

Statistique, 69(1):pp. 81–104, 2001. ISSN 03067734. (page 126)

J. M. McFarland, T. T. G. Hahn, and M. R. Mehta. Explicit-Duration Hidden Markov

Model Inference of UP-DOWN States from Continuous Signals. PLoS ONE, 6(6),

June 2011. (page 55)

J. Medhi. Stochastic Models in Queueing Theory, Second Edition. Academic Press, 2

edition, Nov. 2002. ISBN 0124874622. (page 118)

C. J. Mode and G. T. Pickens. Computational methods for renewal theory and semi-

Markov processes with illustrative examples. The American Statistician, 42(2):pp.

143–152, 1988. ISSN 00031305. (page 55)

J. Møller and R. P. Waagepetersen. Modern Statistics for Spatial Point Processes.

Scandinavian Journal of Statistics, 34(4):643–684, Dec. 2007. ISSN 0303-6898.

(page 126)

J. Møller, M. L. Huber, and R. L. Wolpert. Perfect simulation and moment properties

for the Matérn type III process. Stochastic Processes and their Applications, 120(11):

2142–2158, 2010. (pages 128, 129, and 136)

K. P. Murphy. Dynamic Bayesian Networks: Representation, Inference and Learning.

PhD thesis, University of California, Berkeley, 2002. (pages 12 and 57)

I. Murray and R. P. Adams. Slice sampling covariance hyperparameters of latent

Gaussian models. In Advances in Neural Information Processing Systems 23, 2010.

(pages 83 and 139)

I. Murray, R. P. Adams, and D. J. MacKay. Elliptical slice sampling. JMLR: W&CP,

9, 2010. (pages 83, 138, 139, and 143)

R. M. Neal. Probabilistic inference using Markov chain Monte Carlo methods. Technical

Report CRG-TR-93-1, Department of Computer Science, U of Toronto, 1993.

(page 83)

R. M. Neal. Slice sampling. Annals of Statistics, 31:705–767, 2003a. (pages 55 and 119)

R. M. Neal. Density modeling and clustering using Dirichlet diffusion trees. In Bayesian

Statistics, volume 7, pages 619–629, 2003b. (page 146)

R. M. Neal, M. J. Beal, and S. T. Roweis. Inferring state sequences for non-linear

systems with embedded hidden Markov models. In Advances in Neural Information

Processing Systems 16 (NIPS), volume 16, pages 401–408. MIT Press, 2004. (page 13)

R. Nielsen. Mapping mutations on phylogenies. Syst Biol, 51(5):729–739, 2002. (page 46)

BIBLIOGRAPHY 153

L. E. Nieto-Barajas and S. G. Walker. Bayesian nonparametric survival analysis via

levy driven markov processes. Statistica Sinica, 2010. URL

http://kar.kent.ac.uk/10538/. (page 146)

U. Nodelman and E. Horvitz. Continuous time Bayesian networks for inferring users

presence and activities with extensions for modeling and evaluation. Technical Report

MSR-TR-2003-97, Microsoft Research, 2003. (page 31)

U. Nodelman, C. Shelton, and D. Koller. Continuous time Bayesian networks. In

Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence

(UAI), pages 378–387, 2002. (pages 41, 56, 58, and 60)

U. Nodelman, D. Koller, and C. Shelton. Expectation propagation for continuous time

Bayesian networks. In Proceedings of the Twenty-first Conference on Uncertainty in

AI (UAI), pages 431–440, July 2005. (page 41)

Y. Ogata. On Lewis’ simulation method for point processes. IEEE Transactions on

Information Theory, 27(1):23–31, 1981. (pages 77, 78, 79, and 90)

M. Opper and G. Sanguinetti. Variational inference for Markov jump processes. In

Advances in Neural Information Processing Systems 20, 2007. (pages 41, 65, and 66)

L. Paninski, J. Pillow, and J. Lewi. Statistical models for neural encoding, decoding,

and optimal stimulus design. Progress in brain research, 165:493, 2007. (page 91)

T. Parsons. Earthquake recurrence on the south Hayward fault is most consistent with

a time dependent, renewal process. Geophysical Research Letters, 35, 2008. (page 72)

V. Paxson and S. Floyd. Wide area traffic: the failure of Poisson modeling. IEEE/ACM

Transactions on Networking, 3(3):226–244, June 1995. ISSN 10636692. (page 72)

P. J. E. Peebles. The nature of the distribution of galaxies. Astronomy and Astrophysics,

32:197, May 1974. (page 124)

M. Plummer, N. Best, K. Cowles, and K. Vines. CODA: Convergence diagnosis and

output analysis for MCMC. R News, 6(1):7–11, March 2006. (pages 49, 90, and 108)

L. Rabiner. A tutorial on hidden Markov models and selected applications in speech

recognition. Proceedings of the IEEE, 77:257–285, 1989. (page 12)

V. Rao and Y. W. Teh. Spatial normalized gamma processes. In Advances in Neural

Information Processing Systems, 2009. (page 21)

V. Rao and Y. W. Teh. Fast MCMC sampling for Markov jump processes and con-

tinuous time Bayesian networks. In Proceedings of the International Conference on

Uncertainty in Artificial Intelligence, 2011a. (page 14)

V. Rao and Y. W. Teh. Gaussian process modulated renewal processes. In Advances

in Neural Information Processing Systems 23, 2011b. (page 14)

http://kar.kent.ac.uk/10538/

BIBLIOGRAPHY 154

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning.

MIT Press, 2006. (pages 76 and 84)

B. D. Ripley. Modelling spatial patterns. Journal of the Royal Statistical Society. Series

B (Methodological), 39(2):pp. 172–212, 1977. ISSN 00359246. (page 133)

B. D. Ripley. Statistical inference for spatial processes / B.D. Ripley. Cambridge

University Press, Cambridge [England] ; New York, 1988. (page 133)

C. P. Robert and G. Casella. Monte Carlo Statistical Methods (Springer Texts in Statis-

tics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005. ISBN 0387212396.

(page 12)

N. Rodrigue, H. Philippe, and N. Lartillot. Uniformization for sampling realizations of

Markov processes: applications to Bayesian implementations of codon substitution

models. Bioinformatics, 24(1):56–62, 2008. (page 40)

A. Rokem, S. Watzl, T. Gollisch, M. Stemmler, and A. V. Herz. Spike-Timing Pre-

cision Underlies the Coding Efficiency of Auditory Receptor Neurons. Journal of

Neurophysiology, pages 2541–2552, 2006. (page 89)

A. Saeedi and A. Bouchard-Côté. Priors over Recurrent Continuous Time Processes.

In Advances in Neural Information Processing Systems 24 (NIPS), volume 24, 2011.

(page 146)

I. Sahin. A generalization of renewal processes. Operations Research Letters, 13(4):

259–263, May 1993. ISSN 01676377. (page 77)

S. L. Scott and P. Smyth. The Markov modulated Poisson process and Markov Poisson

cascade with applications to web traffic modeling. Bayesian Statistics, 7:1–10, 2003.

(page 51)

J. G. Shanthikumar. Uniformization and hybrid simulation/analytic models of renewal

processes. Oper. Res., 34:573–580, July 1986. ISSN 0030-364X. (page 78)

C. Shelton, Y. Fan, W. Lam, J. Lee, and J. Xu. Continuous time Bayesian network

reasoning and learning engine, 2010. (page 66)

I. Slivnyak. Some properties of stationary flows of homogeneous random events. Theory

Probab. Appl., 7:336–341, 1962. (page 21)

D. Sonderman. Comparing semi-Markov processes. Mathematics of Operations Re-

search, 5(1):110–119, 1980. (pages 93 and 97)

L. Strand. A model for stand growth. In IUFRO Third Conference Advisory Group of

Forest Statisticians, INRA, Institut National de la Recherche Agronomique, Paris.,

pages 207–216, 1972. (page 124)

BIBLIOGRAPHY 155

Y. W. Teh, H. Daume III, and D. M. Roy. Bayesian agglomerative clustering with

coalescents. In Advances in Neural Information Processing Systems, volume 20, 2008.

(page 146)

Y. W. Teh, C. Blundell, and L. T. Elliott. Modelling genetic variations with

fragmentation-coagulation processes. In Advances In Neural Information Process-

ing Systems, 2011. (page 146)

H. Tijms. Stochastic modelling and analysis: a computational approach. Wiley series

in probability and mathematical statistics: Applied probability and statistics. Wiley,

1986. ISBN 9780471909118. (page 40)

J. Van Gael, Y. Saatci, Y. W. Teh, and Z. Ghahramani. Beam sampling for the infinite

hidden Markov model. In Proceedings of the International Conference on Machine

Learning, volume 25, 2008. (page 13)

S. G. Walker. Sampling the Dirichlet mixture model with slices. Communications in

Statistics - Simulation and Computation, 36:45, 2007. ISSN 0361-0918. (page 119)

D. J. Wilkinson. Stochastic modelling for quantitative description of heterogeneous

biological systems. Nature Reviews Genetics, 10:122–133, 2009. (pages 56 and 65)

C. Wu. Counting your customers: Compounding customer’s in-store decisions, inter-

purchase time and repurchasing behavior. European Journal of Operational Research,

127(1):109–119, Nov. 2000. ISSN 03772217. (page 72)

S. Zuyev. Strong Markov property of Poisson processes and Slivnyak formula. In

Lecture Notes in Statistics, pages 77–84. Springer, 2006. (page 21)

	Abstract
	Acknowledgments
	Contents
	List of figures
	List of tables
	List of algorithms
	Introduction
	Modelling in continuous time
	Thesis contributions and organization

	The Poisson process
	Introduction
	The Poisson process
	Properties of the Poisson process
	Finite Poisson processes
	Properties of the finite Poisson process
	The Poisson process on the real line

	Markov jump processes
	Introduction
	Markov Jump Processes
	Finite state MJPs

	Uniformization for MJPs
	Probability densities for MJPs

	MJPs in Bayesian modelling applications
	MCMC inference via Uniformization
	Comparison with existing sampling algorithms
	Bayesian inference on the MJP parameters
	Experiments

	Markov modulated Poisson processes (MMPPs)
	Experiments

	Discussion

	Continuous-time Bayesian networks (CTBNs)
	Introduction
	Inference in CTBNs
	Auxiliary Variable Gibbs sampling for CTBNs

	Experiments
	The Lotka-Volterra process
	Average relative error vs number samples
	Time requirements

	Discussion

	Modulated renewal processes
	Introduction
	Renewal processes
	Hazard functions
	Modulated renewal processes
	Gaussian process intensity functions
	Related work

	Sampling via Uniformization
	Inference
	Computational considerations

	Experiments
	Synthetic data
	Identifiability of the Gamma shape parameter
	Coal mine disaster data
	Spike timing data
	Computational efficiency and mixing

	Discussion

	Beyond uniformization: subordinating to general continuous-time processes
	Introduction
	Semi-Markov processes
	Dependent thinning for semi-Markov processes
	Posterior inference via MCMC
	Resampling the thinned events given the sMJP trajectory
	Resampling the sMJP trajectory given the set of times W

	Calculations for an sMJP with Weibull hazards
	Experiments
	Effect of the observations
	Effect of the observation interval length

	Linearizing inference in the length of W
	Discussion

	MJPs with unbounded rates
	Introduction
	Dependent thinning for MJPs
	The M/M/c/c queue
	Experiments

	The effect of an unstable state
	Discussion

	Spatial repulsive point processes
	Introduction
	Matérn repulsive point processes
	The Matérn type-III repulsive point process
	Probability density of the Matérn type-III point process
	Inference for Matérn type-III processes

	Experiments
	Generalized Matérn type-III processes
	Inference for the inhomogeneous Matérn type-III process
	Experiments

	Discussion

	Summary and future work
	References

