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Abstract

One of the main issues in ruin theory is that existing formulae for continuous time

models can only be applied to some special claim size distributions and the analytical

expressions for other claim size distributions do not exist. This thesis addresses this

issue by considering discrete time models as approximations to continuous time models,

including the classical risk model, the Markov-modulated risk model and the classical

risk model with dividends. It also shows that how these models are affected by the

introduction of capital injections.

In Chapters 3 and 4 we construct a Gerber-Shiu function and use this to analyse

the classical risk model with capital injections both analytically and probabilistically.

Quantities such as the ultimate ruin probability and the joint density of the time of

ruin and the number of claims until ruin are obtained by the inversion of the Laplace

transform of our Gerber-Shiu function.

In Chapter 5 we develop a discrete time model to approximate the probability of

ruin in infinite and finite time under the classical risk model with capital injections,

and show that capital injections can lead to a reduction in the probability of ruin even

when claim amounts follow a heavy-tailed distribution.

In Chapter 6 we extend our numerical algorithm from Chapter 5 to approximate the

ultimate probability of ruin under a two-state Markov-modulated risk model with and

without capital injections, and the density of the time of ruin under the same model

with more than two states.

The final chapter investigates dividend strategies with capital injections. We exam-

ine the effect of capital injections on the barrier and threshold strategies and consider

a reinsurance arrangement that covers any fall below a positive pre-determined surplus

level, so that the insurance company may operate indefinitely.
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Chapter 1

A survey of risk models

Classical ruin theory is motivated by the question of insolvency of an insurance company.

It considers a simplified version of a real life insurance operation and examines the

evolution of its funds over time. The theory assumes that the insurer starts with some

non-negative amount of money. The inflow and outflow of cash include the premium

income paid by policyholders and the claim expenses incurred by the insurer. Ruin

theory is concerned with the level of an insurer’s surplus. The initial goal of early

researchers was to determine the probability of the insurer’s surplus becoming negative;

the event that we call ruin.

The aim of this chapter is to review some results in ruin theory. In the first section,

we consider classical ruin theory in the continuous time case, then in Section 2 we

provide analogues of results given in the first section in the discrete time case. The final

section presents the Gerber-Shiu function and how it gives rise to a uniform treatment

of ruin-related quantities.

1.1 The continuous time case

Throughout this chapter we consider a simple model for an insurer’s surplus, which has

only three components: initial surplus (or surplus at time zero), premiums received and

claims paid. Thus, in this model we do not take into account investment income, tax

and other expenses, yet we can gain insight using such a simple model.

The surplus process of an insurance company in continuous time is modelled by

U(t) = u+ ct− S(t)

1



where u is the initial surplus, c is the rate of premium income per unit time, which

is assumed to be received continuously, and {S(t)}t≥0 is the aggregate claims process,

defined by

S(t) =

N(t)∑
i=1

Xi

where {N(t)}t≥0 is a Poisson process with Poisson parameter λ, and N(t) denotes

the number of claims that occur in the fixed time interval [0, t]. Further, {Xi}∞i=1

is a sequence of independent and identically distributed random variables, where Xi

represents the amount of the ith claim. Let F = 1 − F̄ be the distribution function

of X1, with F (0) = 0, density function f , moment generating function MX , and nth

moment E[Xn
1 ] = mn with m1 := m. Also, the process {S(t)}t≥0 is a compound Poisson

process with Poisson parameter λ. The positive loading condition is c = (1 + θ)λm,

where θ > 0 is the premium loading factor.

We denote by G(x, t) = Pr(S(t) ≤ x) the distribution function of the random

variable S(t) with density function

g(x, t) =
∂

∂x
G(x, t) =

∞∑
n=1

e−λt
(λt)n

n!
fn∗(x) (1.1)

for x > 0, where fn∗ denotes the n-fold convolution of f with itself. See, for example,

Bowers et al. (1997).

Let α(x) be a function defined for all x ≥ 0. Then, its Laplace transform is defined

as α̃(s) =
∫∞

0
e−sxα(x)dx. The Laplace transform of S(t) which is the same as the

Laplace-Stieltjes transform of G is given by∫ ∞
0

e−sxdG(x, t) = exp{λt(f̃(s)− 1)}. (1.2)

See, for example, Panjer and Willmot (1992).

1.1.1 The probability of ultimate ruin

One of the questions considered in risk modelling is the probability that the surplus

level drops below 0. We denote the time of ruin from initial surplus u by Tu and define

it as Tu = inf{t : U(t) < 0 | U(0) = u} with Tu = ∞ if U(t) ≥ 0 for all t > 0. The

probability of ruin in infinite time is thus

ψ(u) = Pr(Tu <∞ | U(0) = u) = 1− δ(u)

2



where δ(u) is the probability of survival from initial surplus u.

There are different approaches to evaluating the probability of ruin; some give exact

values of ψ(u) and some only give an approximation. We will review these techniques

in the following theorems. We start by introducing the concept of the adjustment

coefficient, denoted by R, which plays an important role in ruin theory and is a crude

measure of risk for the surplus process {U(t)}t≥0. The adjustment coefficient is the

unique positive solution of the so-called Lundberg’s equation, which is given by

λ+ cr = λMX(r) (1.3)

assuming MX exists. Normally, the higher R is, the less risky the surplus process is.

Theorem 1.1. (Lundberg’s inequality)

Lundberg’s inequality states that the ultimate ruin probability is bounded above by

ψ(u) ≤ exp{−Ru}

assuming that R exists.

Proof. See, for example, Lundberg (1932).

Martingale and induction approaches can be used to prove Lundberg’s inequality

(see, for example, Gerber, 1979 and Dickson, 2005). Willmot and Lin (1994) presented a

Lundberg bound based on the tail of a compound geometric distribution. The Lundberg

upper bound depends on the existence of R. Willmot (1994) derived an upper bound

based on a new worse than used (NWU) distribution that can also be applied to heavy-

tailed distributions for which R does not exist.

Theorem 1.2. If B(x) is the distribution function of a non-negative random variable

and B̄(x) = 1 − B(x), then B(x) is NWU if B̄(x)B̄(y) ≤ B̄(x + y) for x ≥ 0, y ≥ 0.

Suppose B̄(x) also satisfies∫ ∞
0

(
B̄(x)

)−1

dF (x) ≤ c(x)(1 + θ),

where c(x) is a non-decreasing function for x ≥ 0, then

ψ(x) ≤ c(x)B̄(x), x ≥ 0.

Proof. See Willmot (1994, Theorem 1 and Section 5).

3



Dickson (1994a) introduced an upper bound for the ruin probability when the mo-

ment generating function MX does not exist. His approach is based on a truncated

moment generating function.

Theorem 1.3. Let t be a real positive number and Kt be the unique positive solution

to ∫ t

0

exp{Ktx}f(x) dx = 1 + θ.

Then, for 0 ≤ u ≤ t,

ψ(u) ≤ exp{−Ktu}+ β(t)

where β(t) = (1− P (t))/(1 + θ − P (t)) and

P (t) =

∫ t

0

(1− F (x)) dx/m (1.4)

is an equilibrium distribution function.

Proof. See Dickson (1994a, Section 2).

Remark 1.1. The function P is also known as the ladder hight distribution (or inte-

grated tail distribution) of F .

Other references on upper bounds for the classical risk model include, for example,

De Vylder and Goovaerts (1984), Cai and Wu (1997), and Cai and Garrido (1999).

Theorem 1.4. (Cramér’s asymptotic formula)

Cramér’s asymptotic formula states that

ψ(u) ∼ Ce−Ru (1.5)

where R is the adjustment coefficient and

C =
c/λ−m

E[XeRX ]− c/λ
.

Proof. See, for example, Gerber (1979).

Remark 1.2. Cramér’s asymptotic formula provides an estimate for the ruin proba-

bility when u is sufficiently large. This estimate is exact for exponentially distributed

individual claim amounts.
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An exact expression for the probability of ruin can be obtained for some distributions

for which we can establish and solve an integro-differential equation for δ(u).

Conditioning on the time and the amount of the first claim we obtain

δ(u) =

∫ ∞
0

λe−λt
∫ u+ct

0

f(x)δ(u+ ct− x) dx dt (1.6)

which can be manipulated to obtain an integro-differential equation.

Theorem 1.5. (Integro-differential equation)

The probability of survival satisfies

d

du
δ(u) =

λ

c
δ(u)− λ

c

∫ u

0

f(x)δ(u− x) dx (1.7)

with δ(0) = 1− λm/c.

Proof. See, for example, Gerber (1979).

Remark 1.3. In the classical risk model, the probability of ruin for initial surplus 0 is

independent of the distribution function of the individual claim amounts.

We can also express the ruin probability as satisfying a defective renewal equation.

Theorem 1.6. (Defective renewal equation)

For u ≥ 0, the probability of ruin satisfies the following defective renewal equation:

ψ(u) = ψ(0)

∫ u

0

ψ(u− y)dP (y) + ψ(0)P̄ (u) (1.8)

where P̄ (u) = 1− P (u) is the ladder height distribution from (1.4)

Proof. See, for example, Gerber (1979).

By successive substitution, we can write equation (1.8) as the so-called convolution

formula.

Theorem 1.7. (Beekman’s convolution formula)

The ruin probability can be stated as the tail of a compound geometric distribution,

i.e.

ψ(u) = δ(0)
∞∑
n=1

(ψ(0))nP̄ n∗(u)

where P̄ n∗ is the n-fold convolution of P̄ with itself.
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Proof. See, for example, Beekman (1974).

Using equation (1.7), we can create a differential equation for certain forms of f

by eliminating the integral term. For example, when individual claim amounts are

exponentially distributed, differentiation of equation (1.7) can lead to a second-order

differential equation and when claim amounts have an Erlang(n) distribution, repeated

differentiation of equation (1.7) gives rise to a higher order differential equation. These

differential equations can then be solved by standard techniques. We can also solve

equation (1.7) via Laplace transforms.

Theorem 1.8. The Laplace transform of the survival function is given by

δ̃(s) =
cδ(0)

cs− λ+ λf̃(s)
. (1.9)

Proof. See, for example, Dickson (2005).

Gerber et al. (1987) argued that the probability of ruin is a crude measure of

stability, and that we need to know how serious the situation is if ruin occurs. The next

section addresses this question.

1.1.2 The severity of ruin

Let |U(Tu)| be the deficit at the time of ruin. We define the probability that ruin occurs

and that the insurer’s deficit at ruin, or severity of ruin, is at most y by

H1(u, y) = Pr(Tu <∞ and |U(Tu)| ≤ y | U(0) = u) =

∫ ∞
0

∫ y

0

w(u, x, t) dx dt

where w(u, x, t) is the (defective) joint density of |U(Tu)| and Tu. We note that

limy→∞H1(u, y) = ψ(u), so that

H1(u, y)

ψ(u)
= Pr(|U(Tu)| ≤ y | Tu <∞, U(0) = u)

is a proper distribution function. Hence, for a given initial surplus u, H1(u, ·) is a

(defective) distribution with (defective) density

h1(u, y) =
∂

∂y
H1(u, y).
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Lemma 1.1. When the initial surplus is 0,

h1(0, y) =
λ

c
(1− F (y)).

Proof. See, for example, Bowers et al. (1997).

Using Lemma 1.1 and conditioning on the first occasion on which the surplus falls

below its initial level u, we have the following result.

Theorem 1.9. The probability and severity of ruin function satisfies

H1(u, y) =

∫ u

0

h1(0, x)H1(u− x, y) dx+

∫ u+y

u

h1(0, x) dx.

Proof. See Gerber et al. (1987).

Gerber et al. (1987) found an explicit expression for h1(u, y) when claim amounts

follow a combination of exponential distributions and a combination of gamma distri-

butions. Further, Dufresne and Gerber (1988a) defined the function ψ(u, y), satisfied

by H1(u, y) = ψ(u)−ψ(u, y), to be the probability that ruin occurs and that the deficit

at the time of ruin exceeds y. They used this function to derive the probability and

severity of ruin function for claim amounts distributed as a translation of a combination

of exponential distributions.

1.1.3 The joint distribution of the surplus prior to ruin and

the deficit at ruin

In this section, we consider the joint distribution of the surplus immediately prior to

ruin and the deficit at ruin. First, we introduce the marginal distribution of the surplus

immediately before ruin.

Let T−u be the time immediately prior to ruin, and let U(T−u ) denote the surplus

level immediately prior to payment of the claim that causes ruin. Then, the probability

that ruin occurs from initial surplus u and that the surplus immediately prior to ruin

is at most x is

H2(u, x) = Pr(Tu <∞ and U(T−u ) ≤ x | U(0) = u) =

∫ ∞
0

∫ ∞
0

∫ x

0

w(u, z, y, t) dz dy dt
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where w(u, z, y, t) is the (defective) joint density of U(T−u ), |U(Tu)| and Tu. We note

that limx→∞H2(u, x) = ψ(u), so that H2(u, x) is a (defective) distribution function

with the corresponding (defective) density

h2(u, x) =
∂

∂x
H2(u, x).

The function H2(u, x) is continuous at u = x but is not differentiable – see Dickson

(1992). Therefore, the two cases u < x and u > x must be considered separately.

We now define

H(u, x, y) = Pr(Tu <∞, U(T−u ) ≤ x, |U(Tu)| ≤ y | U(0) = u)

=

∫ ∞
0

∫ y

0

∫ x

0

w(u, z, s, t) dz ds dt

to be the (defective) joint distribution of the surplus immediately prior to ruin and the

deficit at ruin with h(u, x, y) being the (defective) joint density.

Dufresne and Gerber (1988b) considered the joint density of the surplus prior to

ruin and the deficit at ruin in terms of the marginal density of the surplus prior to ruin

as

h(u, x, y) = h2(u, x)
f(x+ y)

1− F (x)
. (1.10)

They derived an explicit expression for h(u, x, y) when claim amounts have an expo-

nential distribution and a combination of exponential distributions.

Lemma 1.2. The (defective) joint density of U(T−u ) and |U(Tu)| from initial surplus 0

is given by

h(0, x, y) =
λ

c
f(x+ y). (1.11)

Proof. See Dufresne and Gerber (1988b).

Dickson (1992) derived an expression for h(u, x, y).

Theorem 1.10. The (defective) joint density of U(T−u ) and |U(Tu)| is given by

h(u, x, y) =


h(0, x, y)1−ψ(u)

1−ψ(0)
if u < x,

h(0, x, y)ψ(u−x)−ψ(u)
1−ψ(0)

if u ≥ x.

(1.12)
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Proof. See Dickson (1992).

Remark 1.4. Dickson (1992) used a duality argument to show that the distribution

function of the surplus prior to ruin is the same as the distribution function of the

deficit at ruin when u = 0, i.e. H2(0, x) = H1(0, x).

Up until now we have discussed ruin-related quantities in an infinite time horizon.

However, it is perhaps more realistic to look at the probability that ruin occurs before

a fixed time t. The finite time ruin probability is our next topic.

1.1.4 The probability of ruin in finite time

We define

ψ(u, t) = Pr(Tu ≤ t | U(0) = u) =

∫ t

0

w(u, τ) dτ = 1− δ(u, t) (1.13)

to be the finite time ruin probability, where δ(u, t) is the finite time survival probability

and w(u, t) is the defective density of the time of ruin given by

w(u, t) =
∂

∂t
ψ(u, t).

There are two main approaches to the analysis of the distribution of the time of ruin:

(i) Prabhu’s (1961) formula, and (ii) the Gerber-Shiu function that we will introduce

later.

Prabhu (1961) provided an expression for the finite time survival probability.

Theorem 1.11. (Prabhu’s formula)

The survival probability in finite time satisfies the partial integro-differential equation:

∂

∂t
δ(u, t) = c

∂

∂u
δ(u, t)− λδ(u, t) + λ

∫ u

0

δ(u− s, t)f(s) ds (1.14)

and the solution to (1.14) is expressed as

δ(u, t) = G(u+ ct, t)− c
∫ t

0

g(u+ cs, s)δ(0, t− s) ds (1.15)

where g(u, t) is given by (1.1) and

δ(0, t) =
1

ct

∫ ct

0

G(x, t) dx. (1.16)
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Proof. See, for example, Prabhu (1961) or Seal (1974).

Seal (1974) provided a probabilistic interpretation for (1.15) and calculated values

of δ(u, t) numerically. Dickson (2007) used Prabhu’s (1961) formula to present a general

expression for the (defective) density of the time of ruin.

Theorem 1.12. When the initial surplus is u we have

w(u, t) = λe−λtF̄ (u+ ct) + λ

∫ u+ct

0

g(u+ ct− x, t)F̄ (x) dx

−c
∫ t

0

g(u+ cs, s)w(0, t− s) ds. (1.17)

Proof. See Dickson (2007).

Dickson (2007) has given probabilistic interpretation to formula (1.17) and showed

that expression (1.17) can be extended to other ruin-related quantities in finite time

using similar interpretations. Recently, Willmot (2015) applied a partial differential

equation to study the (defective) joint distribution function of the time of ruin and the

deficit at ruin. We define

W (u, y, t) = Pr(Tu ≤ t, |U(Tu)| ≤ y | U(0) = u)

to be the (defective) joint distribution function of the time of ruin and the deficit at

ruin. The following theorem is given by Willmot (2015).

Theorem 1.13. The function W (u, y, t) satisfies the partial integro-differential equa-

tion

∂

∂t
W (u, y, t) = c

∂

∂u
W (u, y, t)− λW (u, y, t) + λ

∫ u

0

W (u− x, y, t)f(x) dx

+λ
(
F̄ (u)− F̄ (u+ y)

)
(1.18)

and the solution to (1.18) may be expressed as

W (u, y, t) = e−λtα1(u+ ct, y)− α1(u, y) +

∫ u+ct

0

α1(u+ ct− x, y)g(x, t) dx

−c
∫ t

0

W (0, x, y)g(u+ c(t− x), t− x) dx

where

α1(u, y) =
1

θm

∫ u

0

(1− ψ(u− x))
(
F̄ (x)− F̄ (x+ y)

)
dx.
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Proof. See Willmot (2015).

One issue with Prabhu’s (1961) formula is that it is expressed in terms of g(x, t).

Therefore, to find explicit solutions for δ(u, t), an explicit expression for g(x, t) must

exist. Otherwise, we can apply the numerical method provided by Seal (1974). Alterna-

tively, we can approximate g(x, t) by Panjer’s (1981) recursion formula (see Section 1.2)

and compute its values recursively. For example, Dickson and Waters (1992) considered

a discrete time risk model and presented a numerical algorithm that can provide ap-

proximations to W (u, y, t). Further, Dickson and Waters (2002) applied the algorithm

in Dickson and Waters (1991) to approximate w(u, t).

1.2 The discrete time case

Discrete time risk models are of interest to us, because we can use them to approxi-

mate risk models in continuous time. Analytical expressions for ruin-related quantities

in infinite time exist, provided that we have the Laplace transform of claim amount

distributions. Also, many of the expressions for ruin-related quantities in finite time

are expressed in terms of g(x, t). Therefore, to treat such expressions we need the func-

tional form of g(x, t) which does not always exist. In a discrete time model, we can

calculate numerical values of the aggregate claims distribution and compute different

ruin-related quantities. We now introduce a discrete time risk model.

The surplus process of an insurance company at time n, n = 1, 2, 3, . . . is denoted

by Ud(n) and is defined by

Ud(n) = u+ n−
n∑
i=1

Yi

for n = 1, 2, 3, . . . , where u = Ud(0) is the insurer’s initial surplus, n is the total

premium income up to time n – assuming that the insurer’s premium income per unit

time is 1. The insurer’s aggregate claim amount in the ith time interval is denoted by Yi

and {Yi}∞i=1 is a sequence of independent and identically distributed random variables,

each distributed on the non-negative integers, with E[Y1] < 1, probability function

{g(x)}∞x=0 and distribution function G.

In our discrete time model there are two possible definitions of ruin. In the first

definition, ruin occurs when the surplus falls below 0. In the second one, ruin occurs
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when the surplus falls to 0 or below 0. We note that under the latter definition, ruin

does not occur at time 0 if u = 0. Dickson and Waters (1991, 1992) argued that the

second definition of ruin gives rise to a better approximation to the continuous time

model. Based on their definition of ruin, we denote the time of ruin from initial surplus

u by T du and define it as

T du = min{n ≥ 1 : Ud(n) ≤ 0 | Ud(0) = u}

with T du =∞ if Ud(n) > 0 for n = 1, 2, 3, . . . . The probability of ultimate ruin is thus

ψd(u) = Pr(T du <∞ | Ud(0) = u) = 1− δd(u)

where δd(u) is the probability of survival from initial surplus u. Also, for an integer

value of t, we define the finite time ruin probability as

ψd(u, t) = Pr(T du ≤ t | Ud(0) = u).

Further, let Hd(u, y) denote the probability and severity of ruin function for u =

0, 1, 2, . . . , y = 1, 2, 3, . . . . It is defined by

Hd(u, y) = Pr(T du <∞ and |Ud(T du )| < y | Ud(0) = u)

and the (defective) probability function of the severity of ruin for u = 0, 1, 2, . . . and

y = 0, 1, 2, . . . is defined as

hd(u, y) = Pr(T du <∞ and |Ud(T du )| = y | Ud(0) = u).

As we have described above, our interest in this discrete time model is because of its

capacity in the approximation of the classical risk model. The approximation procedure

involves both the rescaling of monetary units and time units. This means that in the

first step we discretise the individual claim amount distributions using a suitable scaling

parameter and then we change the time scale. If the scaling parameter is β > 0, for

i = 1, 2, 3, . . . , we can replace Xi by X1,i where X1,i is a discrete random variable

distributed on 0, 1/β, 2/β, . . . . Then, we change the time scale. In particular, we

change the Poisson parameter to 1/(1 + θ)β which means that our premium income

per unit time is 1. Therefore, for example, ψd(uβ, (1 + θ)βt) and hd(uβ, yβ) provide

approximations to ψ(u, t) and h1(u, y). We would expect such approximation to be
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good if the interval between the time points at which we check the surplus is small. In

this approximation, the larger β is, the better the approximation is.

There are a number of ways in which a continuous distribution, F , with F (0) = 0,

might be discretised. See, for example, Panjer and Lutek (1983). One approach is

through matching probabilities, proposed by De Vylder and Goovaerts (1988, Section

7).

Result 1.1. A discrete distribution with probability function {f (x)}∞x=0 and distribu-

tion function F (x), can be created from a continuous distribution with distribution

function F by

F (x) =
x∑
j=0

f (j) =

∫ x+1

x

F (y) dy. (1.19)

Such a discretisation procedure is mean preserving. See, for example, De Vylder and

Goovaerts (1988) or Dickson (2005).

After we find the discretised version of the individual claim amount distribution

we can apply Panjer’s (1981) recursion formula to calculate the probability function of

aggregate claims.

Theorem 1.14. (Panjer recursion formula)

If a counting distribution with probability function {pn}∞n=0 satisfies the recursion

pn = pn−1

(
a+

b

n

)
for n = 1, 2, 3, . . . , where a and b are constants, and individual claims have probability

function f , then the probability function of aggregate claims is given recursively by

g(x) =
1

1− af (0)

x∑
k=1

(
a+

bk

x

)
f (k)g(x− k) (1.20)

with g(0) = p0 +
∑∞

n=1 pnf (0)n.

Proof. See Panjer (1981).

Remark 1.5. When the counting distribution is Poisson with parameter λ, the Panjer

recursion formula is given by

g(x) =
λ

x

x∑
k=1

kf (k)g(x− k) (1.21)

for x = 1, 2, 3, . . . , with g(0) = exp{λ(f (0)− 1)}.
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Similar to the classical risk model we can define an upper bound for ψd(u). The

following theorem gives Lundberg’s inequality for our discrete time model.

Theorem 1.15. (Lundberg’s inequality)

The ultimate ruin probability satisfies

ψd(u) ≤ e−R
du (1.22)

where Rd is the adjustment coefficient and is the unique positive root of

E[exp{r(Y1 − 1)}] = 1. (1.23)

Proof. See, for example, Bowers et al. (1997, Section 13.2) or Dickson (2005, Section

6.5).

Gerber (1988) showed how a compound binomial model is analogous to the com-

pound Poisson model of classical risk theory. Extending Gerber’s (1988) results, Dick-

son (1994b) showed that the ultimate ruin probability for a compound binomial model

gives a good approximation to the ultimate ruin probability in the classical continuous

time compound Poisson model.

Theorem 1.16. The ultimate probability of survival is given by

δd(u) = δd(0) +
u∑
k=1

δd(k)[1−G(u− k)] (1.24)

for u = 1, 2, 3, . . . , with δd(0) = 1− E[Y1].

Proof. See Dickson (1994b).

Dickson (1994b) derived an expression for δd(u) in terms of hd(0, y), which is inter-

preted as the probability that the surplus falls below its initial level for the first time

and by amount y.

Theorem 1.17. The probability of survival can be written as

δd(u) = δd(0) +
u∑
y=1

hd(0, u− y)δd(y) (1.25)

for u = 1, 2, 3, . . . , with δd(0) = 1−
∑∞

y=0 h
d(0, y) = 1−E[Y1]. Further, δd(0) = θ/(1+θ).
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Proof. See Dickson (1994b).

Remark 1.6. Dickson et al. (1995) pointed out that expression (1.25) is stable for

recursive calculation, whereas expression (1.24) can be unstable for large values of u.

Dickson and Waters (1992) developed a recursive formula for the probability and

severity of ruin function.

Theorem 1.18. The probability and severity of ruin function Hd satisfies

Hd(u+ 1, y) = g(0)−1

(
Hd(u, y)−

u∑
j=1

g(j)Hd(u+ 1− j, y) +G(u)−G(u+ y)

)
(1.26)

for u = 0, 1, 2, . . . , and Hd(0, y) =
∑y−1

j=0(1−G(j)).

Proof. See Dickson and Waters (1992).

Explicit solutions for the finite time ruin probability are generally not available.

Dickson and Waters (1991) adapted the recursive algorithm of De Vylder and Goovaerts

(1988) to approximate the probability of ruin in finite time.

Theorem 1.19. The finite time ruin probability can be calculated recursively from

ψd(u, 1) =
∞∑

k=u+1

g(k)

and for t > 1,

ψd(u, t) = ψd(u, 1) +
u∑
k=0

g(k)ψd(u+ 1− k, t− 1). (1.27)

Proof. See Dickson and Waters (1991).

Remark 1.7. Dickson and Waters’ (1991, 1992) algorithms result in time consuming

calculations, particularly when u and t are large. De Vylder and Goovaerts (1988)

presented a truncation procedure that could be applied to such algorithms. This pro-

cedure reduces the number of calculations involved by ignoring small probabilities, and

a bound can be placed on the error that is introduced.
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Dickson and Waters (2002) showed that the finite time ruin probability could be

used to approximate the density of Tu at jh for some (small) h > 0 and j = 1, 2, 3, . . . ,

as:

w(u, t) ≈ ψd(u, jh)− ψd(u, (j − 1)h)

hψd(u)
. (1.28)

In the next section, we investigate ruin theory by means of the famous Gerber-Shiu

function.

1.3 Gerber-Shiu analysis

Up until now, we have looked at different ruin-related quantities individually. Gerber

and Shiu (1998) introduced a function that provides a uniform treatment of these

quantities. In this section, we review the classical risk model based on Gerber-Shiu

analyses.

The Gerber-Shiu discounted penalty function is defined as

φδ(u) = E
[
e−δTuω(U(T−u ), |U(Tu)|)I(Tu <∞) | U(0) = u

]
=

∫ ∞
0

e−δt
∫ ∞

0

∫ ∞
0

ω(x, y)w(u, x, y, t) dx dy dt (1.29)

for u ≥ 0, where δ is a non-negative parameter which can be considered either as the

parameter of a Laplace transform or the force of interest, I is the indicator function,

so that I(A) = 1 if the event A occurs and equals 0 otherwise and ω(x, y) is a non-

negative penalty function, defined for x ≥ 0 and y > 0. The function φδ(u) represents

different ruin-related quantities depending on the form taken by ω(x, y). For example,

if ω(x, y) = 1, then φδ(u) gives the Laplace transform of the time of ruin, and φ0(u)

is the ruin probability ψ(u). For ω(x, y) = I{x ≤ y1}I{y ≤ y2}, φ0(u) gives the

(defective) joint distribution function of the surplus immediately prior to ruin U(T−u )

and the deficit at ruin |U(Tu)|. For ω(x, y) = xnym, φ0(u) gives the joint moments of

U(T−u ) and |U(Tu)|.
Central to Gerber-Shiu analysis is the equation which Gerber and Shiu (1998) called

Lundberg’s fundamental equation. It is given by

δ + λ− cs = λf̃(s). (1.30)
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Theorem 1.20. Lundberg’s fundamental equation has a unique positive root, denoted

ρ ≡ ρ(δ) with ρ(δ) = 0 when δ = 0. There may also be a negative root, denoted

−R ≡ −R(δ).

Proof. See Gerber and Shiu (1998).

Remark 1.8. When δ = 0, equation (1.30) is equivalent to (1.3) and R is the adjust-

ment coefficient.

We now state a theorem that shows the Gerber-Shiu function φδ(u) satisfies a de-

fective renewal equation.

Theorem 1.21. (Defective renewal equation)

For δ > 0, φδ(u) satisfies the following defective renewal equation

φδ(u) =

∫ u

0

φδ(u− x)a(x) dx+ b(u) (1.31)

with

a(x) =
λ

c

∫ ∞
x

e−ρ(y−x)f(y) dy

and

b(u) =
λ

c

∫ ∞
u

e−ρ(x−u)

∫ ∞
x

ω(x, y − x)f(y) dy dx

where ρ > 0 is the unique positive solution of Lundberg’s fundamental equation.

Proof. See Gerber and Shiu (1998).

The discounted joint density of U(T−u ) and |U(Tu)| for u > 0 is defined by

hδ(u, x, y) =

∫ ∞
0

e−δtw(u, x, y, t) dt (1.32)

and for u = 0 by

hδ(0, x, y) =
λ

c
e−ρxf(x+ y). (1.33)

Further, the discounted marginal probability density function of U(T−u ) for u > 0 is

defined by

hδ,2(u, x) =

∫ ∞
0

hδ(u, x, y) dy
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and for u = 0 by

hδ,2(0, x) =
λ

c
e−ρxF̄ (x). (1.34)

Gerber and Shiu (1998) provided an equivalent expression to (1.10) when δ > 0, which

is given by

hδ(u, x, y) = hδ,2(u, x)
f(x+ y)

1− F (x)
.

We note that if we set u = 0 in equation (1.31), φδ(0) = b(0), so

λ

c

∫ ∞
0

∫ ∞
0

e−ρxω(x, y)f(x+ y) dy dx =

∫ ∞
0

∫ ∞
0

ω(x, y)hδ(0, x, y) dy dx

by (1.29) and (1.32). Since this identity holds for an arbitrary function ω(x, y) we can

simply recover equations (1.33) and (1.34). Using these results, we can write a defective

renewal equation for hδ(u, x, y) and hδ,2(u, x).

Corollary 1.1. The defective renewal equations for hδ(u, x, y) and hδ,2(u, x), for x, y, u >

0 are, respectively, given by

hδ(u, x, y) =

∫ u

0

hδ(u− z, x, y)a(z) dz +
λ

c
e−ρ(x−u)f(x+ y)I(x > u)

and

hδ(u, x) =

∫ u

0

hδ(u− z, x)a(z) dz +
λ

c
e−ρ(x−u)F̄ (x)I(x > u).

We can also write a defective renewal equation for φδ(u) by probabilistic reasoning.

Theorem 1.22. The discounted penalty function can be written as

φδ(u) =

∫ ∞
0

∫ ∞
0

∫ u

0

e−δtφδ(u− y)w(0, x, y, t) dy dx dt

+

∫ ∞
0

∫ ∞
0

∫ ∞
u

e−δtω(x+ u, y − u)w(0, x, y, t) dy dx dt

=

∫ ∞
0

∫ u

0

φδ(u− y)hδ(0, x, y) dy dx+

∫ ∞
0

∫ ∞
u

ω(x+ u, y − u)hδ(0, x, y) dy dx.

Proof. See Gerber and Shiu (1998, formula 3.21).

18



An alternative approach to presenting the Gerber-Shiu function has been introduced

by Lin and Willmot (1999) where the general solution for φδ(u) is expressed as the tail of

a compound geometric distribution function. Considering δ > 0 and ω(x, y) = 1, (1.29)

reduces to the Laplace transform of the time of ruin, denoted by K̄(u) and defined as

K̄(u) = E[e−δTuI(Tu <∞) | U(0) = u].

The next theorem gives an expression for K̄(u).

Theorem 1.23. The defective renewal equation for φδ(u) can be expressed as

φδ(u) =
1

1 + β

∫ u

0

φδ(u− x)c(x) dx+
1

1 + β
B(u) (1.35)

where (1 + β)−1 = λ
c

∫∞
0
e−ρyF̄ (y) dy, c(x) = (1 + β)a(x) and B(u) = (1 + β)b(u);

accordingly the Laplace transform of the time of ruin satisfies

K̄(u) =
1

1 + β

∫ u

0

K̄(u− x)c(x) dx+
1

1 + β
C̄(u)

which can also be expressed as the tail of a compound geometric distribution as

K̄(u) =
∞∑
n=1

β

1 + β

( 1

1 + β

)n
C̄n∗(u) (1.36)

where C̄n∗(u) is the tail of the n-fold convolution of C(u) =
∫ u

0
c(x) dx.

Proof. See Lin and Willmot (1999).

Lin and Willmot (2000) developed recursive relations for the moments of the time

of ruin, the surplus prior to ruin and the deficit at ruin. They provided examples in the

cases of claim amounts with exponential, combinations of exponential and mixtures of

Erlang distributions.

Theorem 1.24. (The nth moment of the time of ruin)

The nth moment of the time of ruin, given that ruin has occurred, is given by

E[T nu |Tu <∞] =
ψn(u)

ψ(u)

for n = 1, 2, 3, . . . , with ψ0(u) = ψ(u), the probability of ruin, and ψn(u) is given

recursively by

ψn(u) =
n

λmθ

(∫ u

0

ψ(u− x)ψn−1(x) dx+ δ(u)

∫ ∞
0

ψn−1(x) dx−
∫ u

0

ψn−1(x) dx

)
.
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Proof. See Lin and Willmot (2000).

The problem of the moments of ruin-related quantities has also been considered by

Albrecher and Boxma (2005a). Their approach is to find these moments by differenti-

ating the Laplace transform of the respective functions.

Dickson and Willmot (2005) found an expression for the density of the time of ruin

by inverting its Laplace transform through a Laplace transform relationship given in

the next theorem.

Theorem 1.25. For two functions A and B, if∫ ∞
0

e−ρtA(t) dt =

∫ ∞
0

e−δtB(t) dt

then

B(t) = ce−λtA(ct) +

∫ ct

0

x

t
g(ct− x, t)A(x) dx

where ρ is the unique positive solution of Lundberg’s fundamental equation.

Proof. See Dickson and Willmot (2005).

Cheung et al. (2008) obtained general expressions for w(u, y, t) when claim amounts

follow a combination of exponential and mixed Erlang distributions. Using this result,

Dickson (2008) derived the bivariate Laplace transform of the joint density of the time of

ruin and the deficit at ruin and applied the Laplace transform relationship of Theorem

1.25 to invert the bivariate Laplace transform in the cases of individual claim amounts

with Erlang(2) and a mixture of two exponential distributions. Dickson (2007, 2008)

investigated the density of the time of ruin with two different approaches. The func-

tional form of w(u, t) in the case of exponential claim amount distribution in Dickson

(2007) corresponds to the result had been obtained by Dickson et al. (2005). Further,

Dickson (2008) pointed out that his approach could reproduce the result in Drekic and

Willmot (2003).

When ω(x, y) = e−sx−zy, the Gerber-Shiu function represents the trivariate Laplace

transform of the time of ruin, the surplus immediately prior to ruin and the deficit

at ruin. Landriault and Willmot (2009) found an explicit expression for the (defec-

tive) joint distribution of Tu, U(T−u ) and |U(Tu)| by inverting their trivariate Laplace
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transform. Landriault et al. (2011) extended the Gerber-Shiu function and applied La-

grange’s expansion theorem to find the (defective) distribution of the number of claims

until ruin. The extended Gerber-Shiu function is given by

φr,δ(u) = E[rNTue−δTuI(Tu <∞) | U(0) = u] =
∞∑
n=1

rn
∫ ∞

0

e−δtw(u, n, t) dt

where r is the parameter of a probability generating function, NTu is the number of

claims until ruin (including the claim causing ruin), and w(u, n, t) is the joint density of

NTu and Tu, defined for n = 1, 2, 3, . . . , and t > 0. From this we can find quantities such

as the joint density of the time of ruin and the number of claims until ruin w(u, n, t),

the probability function of the number of claims until ruin p(u, n), and the moments of

the number of claims until ruin.

Dickson (2012) studied φr,δ(u) under the classical risk model by applying probabilis-

tic arguments from Prabhu (1961) to find w(u, n, t) and demonstrated that there is a

strong correlation between the number of claims until ruin and the time of ruin for the

exponential claim amounts case.

Gerber-Shiu functions have been studied for a variety of risk models, for example

by Li and Lu (2008) for a Markov-modulated risk model, discussed in the next chapter,

and by Schmidli (2015) for a risk model with interest.
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Chapter 2

Other risk models

In the previous chapter, we reviewed well-known discrete and continuous time risk

models. In this chapter, we explain other risk processes which can be obtained by

modifying the classical risk process. We start with the Markov-modulated model and

then consider barrier models. In particular, we introduce models under which the

surplus process is bounded by an upper value and/or cannot fall below a pre-determined

level.

2.1 The Markov-modulated risk model

In the classical risk model the Poisson parameter and the distribution of individual

claims are fixed throughout. It can be more realistic to relax this assumption and

to let the arrival intensities and claim size distribution change. For the first time,

this issue has been addressed by Ammeter (1948). He considered a model that starts

each year with a new intensity which is independent of the past intensities. To make

this model more realistic, we can assume that the arrival intensities are governed by

a continuous time Markov chain on a finite state space which represents, for example,

an environmental process. Discussions of risk models in a Markovian environment can

be found in, for example, Reinhard (1984), Asmussen (1989), Grandell (1991) and

Asmussen and Albrecher (2010); see also Neuts (1966) in the context of queuing theory.

22



2.1.1 The continuous time case

We denote the surplus of an insurance company in a continuous time model by U(t)

and define it as

U(t) = u+ ct−
N(t)∑
i=1

Xi

where N(t) is the number of claims that have occurred up to time t. We assume that

{J(t)}t≥0 is a homogeneous, irreducible and aperiodic continuous time Markov process

with finite state space M = {1, . . . ,m}, and intensity matrix
α11 . . . α1m

...
. . .

...

αm1 . . . αmm


where αii = −

∑m
i=1,i 6=j αij, for i ∈ M , and π = (π1, . . . , πm) is the unique stationary

probability distribution of {J(t)}t≥0, given by

πi =
(λiηi)/αi∑m
i=1(λiηi)/αi

(2.1)

where ηi is the unique stationary probability distribution of the embedded Markov chain

with transition probabilities pii = 0, pij = αij/αi and αii = −αi; see Reinhard (1984,

formula 4.2). In this model, at time t, claims occur according to a Poisson process with

intensity λi if J(t) = i and the corresponding claim amounts have distribution Fi with

finite mean mi. The initial surplus is u and c is the premium income per unit of time.

We assume that c is fixed regardless of the state of the process and satisfies the positive

loading condition (see, for example, Albrecher and Boxma, 2005a):

m∑
i=1

πimi < c
m∑
i=1

πi
λi
. (2.2)

Define Tu = inf{t : U(t) < 0 | U(0) = u}, with Tu = ∞ if U(t) ≥ 0, for all t ≥ 0

to be the time of ruin given initial surplus u. Then, the probability that ruin occurs

in infinite time due to a claim in state j, given initial state i and initial surplus u, is

defined by

ψij(u) = Pr(Tu <∞, J(Tu) = j | U(0) = u, J(0) = i)
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with δij(u) = 1−ψij(u). Further, the probability that ruin occurs in infinite time given

initial surplus u and initial environment state i is given by

ψi(u) = Pr(Tu <∞ | U(0) = u, J(0) = i) =
m∑
j=1

ψij(u)

and δi(u) = 1− ψi(u). We denote by ψi(u, t) the probability of ruin in finite time and

define it by

ψi(u, t) = Pr(Tu ≤ t | U(0) = u, J(0) = i).

Also, define

H1,ij(u, y) = Pr(Tu <∞ and |U(Tu)| ≤ y, J(Tu) = j | U(0) = u, J(0) = i)

to be the probability that ruin occurs in state j and the deficit at ruin, or the severity

of ruin, is at most y, given initial state i. Then

h1,ij(u, y) =
∂

∂y
H1,ij(u, y)

is its (defective) density, and

H1,i(u, y) = Pr(Tu <∞ and |U(Tu)| ≤ y | U(0) = u, J(0) = i)

is the probability that ruin occurs and the deficit at the time of ruin is at most y, given

initial state i. Similarly, we have that H1,i(u, y) =
∑m

j=1 H1,ij(u, y).

Main results

The Markov-modulated risk model has been investigated by many researchers. Rein-

hard (1984) considered a semi-Markov risk model and derived a system of integro-

differential equations for the survival probabilities when claim amounts are exponen-

tially distributed. Asmussen (1989) examined the ruin probability for the Markov-

modulated risk model and obtained a Cramér-Lundberg approximation and a diffusion

approximation for the ultimate ruin probability. Bäuerle (1996) considered the expected

value of the time of ruin. Lu and Li (2005) solved the system of integro-differential

equations derived by Reinhard (1984) through Laplace transform techniques. In their

model, the surplus process is given by

U(t) = u+ C(t)−
N(t)∑
i=1

Xi, t ≥ 0
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where C(t) is the aggregate premium received during the interval (0, t], defined as

C(t) =

Nε(t)∑
k=1

cJ(k−1)

(
U(k)− U(k − 1)

)
+ cJ(Nε(t))

(
t− T (Nε(t))

)
, t ≥ 0

where Nε(t) = sup{n ∈ N : U(n) ≤ t} and U(n) is the time at which the nth transition

of the environment process occurs, J(n) is the state of the environment after its nth

transition, ci is the premium rate given that at that time the process is in state i.

The Laplace transform of the survival probability derived from the integro-differential

equation in Reinhard (1984) is given in the following theorem.

Theorem 2.1. The Laplace transform of δi(u) satisfies the following equation:[
s− λi + αi

ci
+
λi
ci
f̃i(s)

]
δ̃i(s) +

αi
ci

m∑
k=1

pikδ̃k(s) = δ̃i(0)

for i = 1, 2, . . . ,m or in matrix form A(s)∆̃(s) = ∆(0), where

A(s) =


s− λ1(1−f̃1(s))+α1

c1
. . .

s− λm(1−f̃m(s))+αm
cm

+


α1

c1
. . .

αm
cm

P,
∆̃(s) = (∆̃1(s), . . . , ∆̃m(s))T , ∆(0) = (∆1(0), . . . ,∆m(0))T and P = (pij)

m
i,j=1 is the

transition probability matrix as defined above. Then, the solution to ∆̃(s) is

∆̃(s) = [A(s)]−1∆(0)

where det[A(s)] = 0 is the characteristic equation.

Proof. See Lu and Li (2005).

Lu and Li (2005) found an explicit form for the survival probability in a two-state

model for exponential claim sizes and when the claim amounts distributions belong

to the Kn-family, meaning that the Laplace transform of fi is in the form of f̃i(s) =

y
(i)
k−1(s)/y

(i)
k (s), where y

(i)
k−1(s) is a polynomial of degree k − 1 or less, while y

(i)
k (s) is a

polynomial of degree k, satisfying yk−1(0) = yk(0).

Lu (2006) studied the probability and severity of ruin function and provided solu-

tions when claim amounts have exponential and a mixture of Erlang distributions by

inverting the Laplace transform of the system of integro-differential equations developed
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by Snoussi (2002). Li and Lu (2008) analysed a Gerber-Shiu discounted penalty func-

tion and found explicit formulae when u = 0 and when the claim amounts distribution

is from the Kn-family.

Define for δ ≥ 0, u ≥ 0 and i, j ∈M ,

φi,j(u) = E
[
e−δTuω(U(T−u ), |U(Tu)|)I(Tu <∞, J(Tu) = j) | U(0) = u, J(0) = i

]
(2.3)

to be the Gerber-Shiu function if ruin is caused by a claim in state j, given initial

surplus u and initial environment state i. Then, φi(u) =
∑m

j=1 φi,j(u), is the expected

discounted penalty function at ruin, given initial surplus u and initial state i. When δ =

0 and ω(x, y) = 1, φi,j(u) simplifies to the infinite time ruin probability. The integro-

differential equation of the Gerber-Shiu function is given in the following theorem.

Theorem 2.2. For i ∈M , φi,j(u) satisfies

cφ
′

i,i(u) = (λi + δ)φi,i(u)− λi

(∫ u

0

φi,i(u− x)fi(x)dx+ ξi(u)

)
−

m∑
k=1

αi,kφk,i(u)

and for i 6= j,

cφ
′

i,j(u) = (λi + δ)φi,j(u)− λi
∫ u

0

φi,j(u− x)fi(x)dx−
m∑
k=1

αi,kφk,j(u)

where ξi(u) =
∫∞
u
ω(u, x− u)fi(x)dx.

Proof. See Li and Lu (2008).

The next theorem gives the Laplace transform of φi,j(u).

Theorem 2.3. The Laplace transform of φi,j(u) for i, j ∈M is given by

φ̃i,j(s) =

[
s− λi + δ

c
+
λi
c
f̃i(s)

]−1
(
φi,j(0)− λi

c
ξ̃i(s)I(i = j)− 1

c

m∑
k=1

αi,kφ̃k,j(s)

)

or in matrix form by

Φ̃(s) = [B(s)]−1[Φ(0)− Ξ̃(s)] =
B∗(s)Φ(0)−B∗(s)Ξ̃(s)

det[B(s)]
(2.4)
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where Φ(u) = (φi,j(u))mi,j=1, Φ̃(s) = (φ̃i,j(s))
m
i,j=1 with B∗(s) being the adjoint matrix of

B(s). Further,

Si(s) = s− λi + δ

c
+
λi
c
f̃i(s),

A = (αij)
m
i,j=1,

B(s) = diag(S1(s), S2(s), . . . , Sm(s)) + A/c,

Ξ̃(s) = diag(λ1ξ̃1(s)/c, λ2ξ̃2(s)/c, . . . , λmξ̃m(s)/c).

Proof. See Li and Lu (2008).

Li and Lu (2008) applied divided differences to solve equation (2.4) and found an

expression for φi(0). The expected discounted penalty function in a semi-Markovian

dependent risk model was investigated by Albrecher and Boxma (2005a). They con-

sidered an irreducible discrete time Markov chain that governs the transition between

states. In this model, at each instant of a claim the Markov chain jumps to a new

state and the claim amounts distribution depends on this new state. Ma et al. (2010)

gave results on the duration of negative surplus for a two-state Markov-modulated risk

model. Ng and Yang (2006) presented a closed form solution for the joint distribution

of the surplus immediately before and after ruin when the initial surplus is zero and

when the claim amounts are phase-type distributed.

In the next section, we look at the literature on Markov-modulated risk models

in discrete time. We have explained in Chapter 1 that a discrete time model can be

used to approximate a continuous time model. We can also extend this fact to the

Markov-modulated risk model. For example, Cossette et al. (2004b) showed that the

compound binomial model in a Markovian environment can approximate a risk model

based on a particular Cox model and the marked Markov-modulated Poisson process.

2.1.2 The discrete time case

Suppose {Jn}n∈N is a homogeneous, irreducible and aperiodic Markov chain with a

finite state space M = {1, . . . ,m} and transition probability matrix
p11 . . . p1m

...
. . .

...

pm1 . . . pmm


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where pij = Pr(Jn = j|Jn−1 = i, Jk k ≤ n − 1), for i, j ∈ M , and π = (π1, . . . , πm)

is the unique stationary probability distribution. The insurer’s surplus at time n,

n = 1, 2, 3, . . . is denoted Ud(n) and is defined by

Ud(n) = u+ n−
n∑
i=1

Yi,

where u = Ud(0) is the insurer’s initial surplus, or the surplus at time 0 and Yi is the

insurer’s aggregate claim amount in the ith time interval. In the Markov-modulated

model, the random variables Yi are no longer independent. In particular, the distribu-

tion of {Yn}∞n=1 is influenced by the environmental Markov chain. The conditional joint

distribution of Yn and Jn given the previous state Jn−1 is defined by

gij(x) = Pr(Yn = x, Jn = j|Jn−1 = i, Jk, Yk, k ≤ n− 1) (2.5)

= pijgj(x),

where gi(x) =
∑m

j=1 gij(x), and Gi(y) =
∑m

j=1

∑y
x=0 gij(x) for y = 0, 1, 2, . . . .

Remark 2.1. Reinhard and Snoussi (2000, 2001, 2002) defined (2.5) such that zero

claims are only possible when the state prior to the occurrence of the claim is state

1. This condition, has been relaxed in Chen et al. (2014b) and throughout we assume

gij(x) is defined for x = 0, 1, 2, . . . .

For all i, j ∈M we define

(µn)ij =
∞∑
x=1

xngij(x) <∞

to be nth moment of the aggregate claim amount in state j given initial state i, with

(µ1)ij := µij, and

(µn)i =
m∑
j=1

(µn)ij (2.6)

with (µ1)i := µi. Also, we define the probability generating function of gij(x) by g̃ij(s) =∑∞
x=0 s

xgij(x). In the discrete time model we assume that the insurer’s premium income

per unit time is 1, so that n is the total premium income up to time n.

Let T du be the time of ruin given initial surplus u, and defined as T du = min{n ≥ 1 :

Ud(n) < 0 | Ud(0) = u} with T du =∞ if Ud(n) ≥ 0 for n = 1, 2, 3, . . . .
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Remark 2.2. We remark that the definition of ruin, here, is based on papers by, for

example, Reinhard and Snoussi (2000, 2001, 2003) or Chen et al. (2014b), i.e. ruin

occurs when the surplus falls below 0, which is different from the definition of ruin in

Section 1.2, i.e. ruin occurs when the surplus falls to 0 or below 0.

The probability of ultimate ruin given initial surplus u and initial environment state

i is given by

ψdi (u) = Pr(T du <∞ | Ud(0) = u, J(0) = i) = 1− δdi (u).

To make sure that ruin is not certain, we assume the positive loading condition holds,

that is
∑m

i=1 πiµi < 1. See, for example, Chen et al. (2014b). Also, we define the

probability that ruin occurs in state j and the insurer’s deficit at ruin is y, given initial

environment state i, as

hdij(u, y) = Pr(T du <∞, |U(T du )| = y, J(T du ) = j | Ud(0) = u, J(0) = i)

and define

hdi (u, y) = Pr(T du <∞, |U(T du )| = y | Ud(0) = u, J(0) = i)

to be the probability that ruin occurs and that the deficit at ruin is y given initial state

i. We then have hdi (u, y) =
∑m

j=1 h
d
ij(u, y).

Main results

The ruin probability in the semi-Markov model has been considered by Reinhard and

Snoussi (2000). They derived recursive formulae for the probability of ruin with the

following restrictions:

m∑
j=1

g1j(0) > 1 and
m∑
j=1

gij(0) = 0, for i 6= 1.

That is, the claim size may be zero only in time periods starting from state 1. Assuming

these restrictions, Reinhard and Snoussi (2001) established a recursive system to find

the distribution of the surplus prior to ruin and in another paper, Reinhard and Snoussi

(2002), they studied the problem of the probability of ruin and the deficit at ruin.
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An extension to the compound binomial model is the compound Markov binomial

model. This model is based on the Markov Bernoulli process with a dependency be-

tween the occurrence of claims. Cossette et al. (2003) investigated the finite time and

infinite time ruin probability in a compound Markov binomial framework. They pre-

sented recursive formulae and found a Lundberg-type exponential bound for the ruin

probability under the condition that E[Y1|J(0) = i] < 1. Later, Cossette et al. (2004a)

demonstrated that the infinite time ruin probability in the compound Markov binomial

model can be expressed as the tail of a compound geometric distribution. Using this

fact, they introduced a new upper bound for the ruin probability that can overcome the

restrictions of the exponential bound they had found in their previous paper. Reinhard

and Snoussi (2004) considered the probability of ruin and the deficit at ruin and relaxed

their previous assumptions that zero claims can only happen in state 1. They devel-

oped a system of equations for the probability of ruin by a monotonically converging

algorithm. Yang et al. (2009) derived an explicit expression for the discounted joint

probability function of the surplus prior to ruin and the deficit at ruin for initial surplus

0 under a Markov-dependent model and introduced a generalised Lundberg’s equation.

Chen et al. (2014a) analysed a discrete semi-Markov risk model in the presence of an

upper barrier and studied the dividend problem in a two-state and three-state model.

Chen et al. (2014b) also considered the survival probability and found recursive for-

mulae for the calculation of survival probability. They relaxed the restrictions in the

model of Reinhard and Snoussi (2000) and provided two equations from which it is

possible to find δdi (0). These two equations are given in the following theorem.

Theorem 2.4. The survival probability can be calculated recursively by

δdi (k) =


1
f0

(
h

(i)
k −

∑k−1
n=0 δ

d
i (n)fk−n

)
if f0 6= 0,

1
f1

(
h

(i)
k+1 −

∑k−1
n=0 δ

d
i (n)fk+1−n

)
if f0 = 0 and f1 6= 0

for i = 1, 2 and k ∈ N where

ḡii(1) = gii(1)− 1, ḡii(k) = gii(k), i = 1, 2, k ∈ N \{1},

fk =
k∑

n=0

[(ḡ11(n)ḡ22(k − n))− g21(n)g12(k − n)],

h
(1)
k = e1ḡ22(k)− e2g12(k), k ∈ N,
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and for i = 1, 2, ei =
∑2

j=1 gij(0)δdj (0). Assuming that f0 > 0, values of δdi (0) for i = 1, 2

can be found from

δd1(0)(g11(0)p21 + g21(0)p12) + δd2(0)(g12(0)p21 + g22(0)p12) = p12(1− µ2) + p21(1− µ1)

and

[g11(0)(g̃22(ρ)− ρ)− g21(0)g̃12(ρ)]δd1(0) = [g22(0)g̃12(ρ)− g12(0)(g̃22(ρ)− ρ)]δd2(0)

with ρ ∈ (−1, 0) being the root of

(g̃11(ρ)− ρ)(g̃22(ρ)− ρ)− g̃21(ρ)g̃12(ρ) = 0.

Proof. See Chen et al. (2014b).

The model presented by Chen et al. (2014b) covers the compound binomial model

(with time-correlated claims) and the compound Markov binomial model (with time-

correlated claims).

2.2 Barrier models

In this section, we look at the literature on surplus processes with barriers. We can

modify a surplus process by putting a constraint on it. In a surplus process with an

upper barrier, the surplus cannot move upwards without limit and with a lower barrier,

it cannot fall below a fixed value. We now explain how the former can include dividend

payments to an insurance company’s shareholders and how the latter can lead to a

reinsurance arrangement in the form of capital injections.

2.2.1 The dividend barrier

In the first chapter, we discussed some of the shortcomings of ruin theory. One of

the defects in the assumptions of classical risk theory is that the surplus process is

allowed to grow infinitely and that the sole objective of insurers is to minimise the

ruin probability. However, in the real world, insurance companies seek to maximise

profit as well. De Finetti (1957) tackled this problem by considering a situation in

which as an insurer’s surplus increases, some of it will be paid out as dividends to

the insurance company’s shareholders. He suggested that the expected future life time
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of the company or the expected discounted value of future dividends would represent

more useful criteria than would the probability of ruin. See, for example, Bühlmann

(1970). Dividends are distributed according to a certain strategy, such as the barrier,

threshold, linear barrier, multilayer strategies, and so on. Under a barrier strategy,

whenever the surplus attains an upper barrier, say level b, the premium income c is

paid to shareholders as dividends until the next claim occurs, so that in this modified

surplus process, the surplus never attains a level greater than b. Under a threshold

strategy, whenever the surplus attains level b dividends are paid at a rate less than

c until the surplus drops below b. Unlike the barrier strategy, under the threshold

strategy, the surplus can grow above b. However, the rate of growth above b is lower

than the rate of growth below b. According to a linear barrier strategy, the upper

barrier is a straight line with intercept b and slope a with a < c. Under this strategy,

whenever the surplus attains the upper barrier, i.e. b+ at, dividends are distributed at

rate c−a until the next claim causes the surplus to fall below the linear barrier, so that

the surplus never upcrosses b + at. A multilayer strategy is a strategy with multiple

thresholds. The rate of dividend payments to shareholders depends on the level of the

surplus. For example, whenever the surplus reaches level bi, the dividend is paid out at

rate di until the surplus crosses a threshold at which point the rate of dividend payment

changes, possibly to 0.

Let the random variable D denote the sum of discounted dividends until ruin, with

Vn(u, b) = E[Dn]. Much of the literature on dividends aims to find the optimal strat-

egy such that V1(u, b) is maximised. Borch (1967, 1990) built on De Finetti’s idea

and studied this problem in the continuous time case; see also Borch et al. (2014).

Bühlmann (1970) verified that if a barrier strategy is applied, V1(u, b) satisfies an

integro-differential equation and found the optimal barrier b∗ for claim amounts with

an exponential distribution. Gerber (1974) investigated this problem under the linear

barrier strategy. Gerber and Shiu (1998) found an expression for the expected present

value of dividend payments until ruin, which is given by

V1(u, b) =
eρu −Ψ(u)

ρeρb −Ψ′(b)
, 0 ≤ u ≤ b,

where ρ is the positive root of Lundberg’s fundamental equation and Ψ(u) is the Gerber-

Shiu function for the classical risk model with ω(x, y) = eρu. They also showed that b∗
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satisfies the following condition:

∂2

∂u2
V (u, b∗)

∣∣∣
u=b∗

= 0.

Since the introduction of the Gerber-Shiu function, the study of different ruin-related

quantities has attracted the attention of researchers. Lin et al. (2003) defined a Gerber-

Shiu function by

φδ,b(u) = E
[
e−δTu,bω(U(T−u,b), |U(Tu,b)|) | U(0) = u

]
(2.7)

where Tu,b is the time of ruin, U(T−u,b) is the surplus prior to ruin and |U(Tu,b)| is the

deficit at ruin for a surplus process with dividends. Unlike in the classical risk model,

the Gerber-Shiu function for a risk model with dividends does not include I(·) as the

occurrence of ruin is certain in such a model. Lin et al. (2003) derived an integro-

differential equation for φδ,b(u) and presented its solution as a linear combination of

the Gerber-Shiu function without a dividend barrier and the solution of an associated

homogeneous integro-differential equation, as follows.

Theorem 2.5. The Gerber-Shiu function (2.7) satisfies the integro-differential equation

∂

∂u
φδ,b(u) =

λ+ δ

c
φδ,b(u)− λ

c

∫ u

0

f(x)φδ,b(u− y)dx− λ

c

∫ ∞
u

f(x)ω(u, x− u)dx

(2.8)

for 0 ≤ u ≤ b and the boundary condition is ∂
∂u
φδ,b(u)

∣∣
u=b

= 0. Further, the solution to

(2.8) is given by

φδ,b(u) = φδ(u)− φ
′

δ(b)

v′(b)
v(u) (2.9)

where φδ(u) is given by (1.29) and v(u) is the solution to the following homogeneous

integro-differential equation:

∂

∂u
v(u) =

λ+ δ

c
v(u)− λ

c

∫ u

0

f(x)v(u− x)dx.

Proof. See Lin et al. (2003).

Assuming different forms of penalty function, Lin et al. (2003) found the Laplace

transform of the time of ruin, the distribution of the surplus prior to ruin and moments

33



of the deficit at ruin. Dickson and Waters (2004) investigated the problem of optimal

dividend strategy in a discrete time risk model and showed that a discrete time risk

model can be used as an approximation to the continuous time model. They also

derived an integro-differential equation for Vn(u, b).

Theorem 2.6. If a barrier strategy is applied, Vn(u, b) satisfies the following integro-

differential equation:

d

du
Vn(u, b) =

λ+ nδ

c
Vn(u, b)− λ

c

∫ u

0

f(x)Vn(u− x, b)dx

with boundary conditions

d

du
Vn(u, b)

∣∣∣
u=b

= nVn−1(b, b)

for n = 1, 2, 3, . . . , with V0(b, b) = E[D0] = 1.

Proof. See Dickson and Waters (2004).

Dickson and Waters (2004) suggested an alternative approach to De Finetti’s in

which the shareholders are held responsible for the deficit at the time of ruin. Suppose

Yu,b is the deficit at ruin from initial surplus u. Dickson and Waters’ (2004) approach

requires the maximisation of L(u, b), given by

L(u, b) = V1(u, b)− u− E[e−δTu,bYu,b].

Gerber et al. (2006b) studied Dickson and Waters’ (2004) modification and compared

the optimal barrier level obtained by maximising V1(u, b) and L(u, b). Albrecher et al.

(2005b) developed a partial integro-differential equation for the Gerber-Shiu function

in the case when dividends are distributed according to a time-dependent linear barrier

strategy. Gerber et al. (2006a) extended the work of Lin et al. (2003) and introduced

the dividends-penalty identity through probabilistic reasoning, which is given by

φδ,b(u) = φδ(u)− φ′δ(b)V1(u, b). (2.10)

Yuen et al. (2007) showed that the idea of Lin et al. (2003) also holds under a surplus

process with interest – that is, the solution to an integro-differential equation for the

Gerber-Shiu function can be expressed as the sum of the Gerber-Shiu function with

no dividend barrier and another function which is independent of the penalty function.
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Extending their work, Cai et al. (2009) investigated the Gerber-Shiu function for a risk

model with two layers, ∆ and b. Under this model, if the surplus process exceeds ∆,

the amount of surplus in excess of ∆ earns interest and when it exceeds b dividends

are paid out at rate α to the shareholders of an insurance company. They found that

the dividends-penalty identity holds for their model as well. Gerber and Yang (2010)

provided an analytical interpretation for the dividends-penalty identity in equation

(2.10).

The threshold strategy is another topic considered, for example, by Gerber and

Shiu (2006) who derived expressions for the expected present value of dividend income

to shareholders when claims have an exponential or a mixed exponential distribution.

Dickson and Drekic (2006) considered the threshold strategy and found expressions for

V1(u, b) by probabilistic reasoning. They derived formulae in terms of the joint density

of the time of ruin and the deficit at ruin and they illustrated their applications for

claim amount distributions which are subject to a particular factorisation. Their work

was extended by Cheung et al. (2008) who derived a recursive expression for Vn(u, b)

by probabilistic reasoning. They found the optimal threshold, by considering both the

maximisation of V1(u, b) and minimisation of the coefficient of variation of discounted

dividends.

Other references on the dividend strategy include, for example, Li and Lu (2008) who

considered the dividends-penalty identity under the Markov-modulated risk model. For

a comprehensive survey on dividend strategies, see Avanzi (2009). Recently, Albrecher

et al. (2011) studied a model under which dividends are paid periodically rather than

continuously and the surplus process can be observed at random times, so that it covers

the continuous time and discrete time models as limiting cases. They obtained explicit

expressions for the Gerber-Shiu function and provided numerical examples to examine

the effect of random observation times on different ruin-related quantities.

2.2.2 Capital injections

A modification to De Finetti’s model was introduced by Borch (1990). He considered

a lower limit on the surplus of an insurance company. In his model, new capital is

injected after an unfavourable underwriting period. Borch (1990) pointed out that such

an injection can be provided by a reinsurance arrangement. Pafumi (1998) suggested a
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reinsurance contract under which whenever the surplus is negative, the reinsurer makes

the required payment to bring the surplus back to zero. Dickson and Waters (2004)

considered the reinsurance contract proposed by Pafumi (1998) in the presence of a

dividend barrier. They modified the surplus process by assuming that the initial capital

is provided by shareholders who also purchase a reinsurance policy which provides them

with the amount of the deficit each time that ruin occurs, so that the surplus at the

time of ruin is then 0 and the insurance operation can continue from this surplus level.

In such a modified process, the surplus moves indefinitely between 0 and b. Nie et al.

(2011) studied a risk model under which the insurer’s surplus starts at a level u ≥ k,

where k > 0 is a fixed constant. On any occasion that the surplus falls between the

levels 0 and k from above k, a capital injection restores the surplus level to k. If the

surplus falls below 0 from a level above k, ruin occurs. Nie et al. (2011) explained how

the capital injections can be provided by reinsurance and how an insurer can reduce its

ultimate ruin probability by effecting such insurance.

Suppose Tu,k is the time of ruin from initial surplus u in the model with capital

injections. Then

ψk(u) = Pr(Tu,k <∞ | U(0) = u).

Theorem 2.7. When the initial surplus is u ≥ k, the ultimate ruin probability is given

by

ψk(u) = ψ(u− k)−H1(u− k, k)(1− ψk(k)) (2.11)

where

ψk(k) =
ψ(0)−H1(0, k)

1−H1(0, k)
. (2.12)

Proof. See Nie et al. (2011).

Remark 2.3. For the surplus process with capital injections we use the same notation

as for the classical risk model, but with a subscript k.

Scheer and Schmidli (2011) investigated a model with both an upper and a lower bar-

rier. In their model, if the surplus falls below 0, capital is injected which not only covers

the deficit at the time of ruin, but also provides additional capital C. They showed that

the optimal strategy is of band type; that is a strategy under which dividends are paid
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according to the region where U(t) is located – for example, a barrier strategy has two

bands. Also, Scheer and Schmidli (2011) provided a method to determine the solution

to their integro-differential equation and the unknown value of C numerically. Breuer

and Badescu (2014) analysed the problem of capital injections in the Markov-additive

risk model with phase-type claims. They generalised the Gerber-Shiu function by intro-

ducing the minimal risk reserve before ruin and presented numerical examples for some

ruin-related quantities. Nie et al. (2015) considered the finite time ruin probability for

their (2011) risk model with capital injections. Their approach is based on the number

of capital injections and the times between capital injections. They obtained a general

expression for the distribution function of Tu,k, but were only able to implement their

results if the joint density w(u, y, t) admits a particular factorisation.

In this thesis, we consider the problem of capital injections under the classical risk

model, Markov-modulated risk model and risk models with dividends. We show how

capital injections can be incorporated into these models and how they would change

the underlying risk process. The rest of this thesis is organised as follows:

In Chapters 3 and 4 we apply a Gerber-Shiu discounted penalty function as a useful

tool to analyse the classical risk model with capital injections. We illustrate how the

Gerber-Shiu function can facilitate the derivation of the joint density of the time of ruin

and the number of claims until ruin. In Chapter 3 we take an analytical approach and

in Chapter 4 we demonstrate our results with probabilistic arguments. Both approaches

have advantages and disadvantages. We will see that the probabilistic approach can be

applied only to claim amounts distributions which are subject to a particular decompo-

sition, whereas the analytical approach can be applied to a wider range of distributions.

In Chapter 5 we develop a discrete time model and introduce an algorithm that

provides approximations to the continuous time model with capital injections. One

aim is to examine the effect of capital injections when claim amounts follow a heavy-

tailed distribution for which analytical expressions for ruin-related quantities do not

exist. In such cases, we need numerical methods to compute quantities such as the

probability of ruin. We investigate whether the introduction of the capital injections

gives rise to a reduction in the probability of ruin.

In Chapter 6 we consider a discrete time model and build a numerical algorithm to

approximate quantities such as the probability of ruin and the probability and severity

of ruin for a two-state Markov-modulated model. We will also consider approximating
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the density of the time of ruin for a Markov-modulated model with more than two states.

Then, we extend our results to a Markov-modulated model with capital injections.

In Chapter 7 we study dividend strategies with capital injections in a classical

risk model. We consider a reinsurance contract that provides compensation on any

occasion that the surplus falls below k, so that the company never goes out of business

and dividends could be paid indefinitely. We also investigate a threshold strategy both

by solving an inhomogeneous integro-differential equation directly and by probabilistic

arguments. Finally, we demonstrate that a dividends-penalty identity holds for our

model.
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Chapter 3

Gerber-Shiu analysis: analytical

approach

3.1 Introduction

In this chapter, we consider the classical risk model with capital injections studied by

Nie et al. (2011, 2015). We construct a Gerber-Shiu function and show that whilst this

tool is not efficient for finding the ultimate ruin probability and the joint distribution

of the surplus immediately prior to ruin and the deficit at ruin, it provides an efficient

way of studying ruin-related quantities in finite time. In particular, we find a general

expression for the joint distribution of the time of ruin and the number of claims

until ruin and find an extension of Prabhu’s (1961) formula for the finite time survival

probability in the classical risk model. We also consider the correlation coefficient

between the time of ruin and the number of claims until ruin. We then illustrate

our results in the case of claim sizes with exponential and Erlang(2) distributions and

obtain some interesting identities. In particular, we generalise results from the classical

risk model and prove the identity of two known formulae for that model in the case of

exponentially distributed claims.

3.2 A Gerber-Shiu function

We now construct a Gerber-Shiu function that allows us to analyse the probability of

ultimate ruin, the distribution of the surplus immediately prior to ruin, the distribution
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of the deficit at ruin, the density of the time of ruin and the probability function of

the number of claims until ruin. We denote our Gerber-Shiu function by φk,r,δ(u) and

define it by

φk,r,δ(u) = E
[
rNTu,ke−δTu,kω(U(T−u,k), |U(Tu,k)|)I(Tu,k <∞) | U(0) = u

]
(3.1)

for δ ≥ 0, 0 < r ≤ 1 and u ≥ k, where Tu,k is the time of ruin, NTu,k is the number of

claims until ruin, U(T−u,k) is the surplus immediately before ruin, |U(Tu,k)| is the deficit

at ruin and ω(x, y) is a penalty function defined for x ≥ k and y > 0. As in Landriault

et al. (2011), we interpret δ as the parameter of a Laplace transform and r as the

parameter of a probability generating function. Further, φk,r,δ(u) is defined to be 0 for

0 ≤ u < k.

Depending on different forms taken by ω(x, y), we can obtain explicit results for

quantities like the probability of ultimate ruin, the joint distribution of the surplus

immediately prior to ruin and the deficit at ruin and the joint density of the time of

ruin and the number of claims until ruin by inverting the Laplace transform of the

Gerber-Shiu function. Therefore, we first need to derive the Laplace transform of the

Gerber-Shiu function.

Theorem 3.1. The Laplace transform of the Gerber-Shiu function φk,r,δ(u) satisfies

φ̃k,r,δ(s)

=
1

cs− (λ+ δ) + λrf̃(s)

(
ce−skφk,r,δ(k)− λrφk,r,δ(k)

∫ ∞
k

e−su
(
F̄ (u− k)− F̄ (u)

)
du

−λr
∫ ∞
k

e−su
∫ ∞
u

f(x)ω(u, x− u) dx du

)
. (3.2)

Further,

φk,r,δ(k) =
λr
c

∫∞
k

∫∞
u
e−ρ(u−k)f(x)ω(u, x− u) dx du

1− λr
c

∫∞
k
e−ρ(u−k)

(
F̄ (u− k)− F̄ (u)

)
du
. (3.3)

Proof. Using similar arguments to Landriault et al. (2011), for u ≥ k we can write

φk,r,δ(u) =

∫ ∞
0

λre−λte−δt
∫ u+ct−k

0

f(x)φk,r,δ(u+ ct− x) dx dt

+φk,r,δ(k)

∫ ∞
0

λre−λte−δt
∫ u+ct

u+ct−k
f(x) dx dt

+

∫ ∞
0

λre−λte−δt
∫ ∞
u+ct

f(x)ω(u+ ct, x− u− ct) dx dt.
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Setting s = u+ ct we get

φk,r,δ(u) =
λr

c

∫ ∞
u

e−(λ+δ)(s−u)/c

(∫ s−k

0

f(x)φk,r,δ(s− x) dx+ φk,r,δ(k)

∫ s

s−k
f(x) dx

+

∫ ∞
s

f(x)ω(s, x− s)dx

)
ds

=
λr

c

∫ ∞
u

e−(λ+δ)(s−u)/cγ(s) ds (3.4)

where

γ(u) =

∫ u−k

0

f(x)φk,r,δ(u− x) dx+

∫ u

u−k
f(x)φk,r,δ(k) dx+ ζ(u) (3.5)

and

ζ(u) =

∫ ∞
u

f(x)ω(u, x− u) dx.

Using the operator Ts introduced by Dickson and Hipp (2001), and defined for an

integrable function f as

Tsf(u) =

∫ ∞
u

e−s(y−u)f(y) dy

we have

φk,r,δ(u) =
λr

c
Tλ+δ

c
γ(u). (3.6)

Noting that φk,r,δ(u) = 0 for 0 ≤ u < k we have

Tsφk,r,δ(k) =

∫ ∞
k

e−s(x−k)φk,r,δ(x) dx = eskφ̃k,r,δ(s),

and similarly, Tsγ(k) = eskγ̃(s). Applying the Dickson-Hipp operator to equation (3.6)

we obtain

Tsφk,r,δ(k) =
λr

c
Tλ+δ

c
Tsγ(k) =

λr

c
TsTλ+δ

c
γ(k) =

λr

c

Tλ+δ
c
γ(k)− Tsγ(k)

s− λ+δ
c

, (3.7)
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where we have used properties of Ts given in Dickson and Hipp (2001). Further,

Tsγ(k) =

∫ ∞
k

e−s(u−k)γ(u) du

= esk
∫ ∞
k

e−su
∫ u−k

0

f(x)φk,r,δ(u− x) dx du

+φk,r,δ(k)

∫ ∞
k

e−s(u−k)
(
F̄ (u− k)− F̄ (u)

)
du+

∫ ∞
k

e−s(u−k)ζ(u) du

= eskf̃(s)φ̃k,r,δ(s) + φk,r,δ(k)

∫ ∞
k

e−s(u−k)
(
F̄ (u− k)− F̄ (u)

)
du+ Tsζ(k)

= f̃(s)Tsφk,r,δ(k) + φk,r,δ(k)

∫ ∞
k

e−s(u−k)
(
F̄ (u− k)− F̄ (u)

)
du+ Tsζ(k).

Substituting in (3.7) we obtain

Tsφk,r,δ(k) =
λr

cs− λ− δ

(
Tλ+δ

c
γ(k)− f̃(s)Tsφk,r,δ(k)

−φk,r,δ(k)

∫ ∞
k

e−s(u−k)
(
F̄ (u− k)− F̄ (u)

)
du− Tsζ(k)

)

which can be written in terms of Laplace transforms as

eskφ̃k,r,δ(s) =
λr

cs− λ− δ

(
c

λr
φk,r,δ(k)− f̃(s)eskφ̃k,r,δ(s)

−φk,r,δ(k)

∫ ∞
k

e−s(u−k)
(
F̄ (u− k)− F̄ (u)

)
du−

∫ ∞
k

e−s(u−k)ζ(u) du

)
.

Rearranging this identity we obtain formula (3.2).

To obtain formula (3.3) we first note from formula (41) of Landriault et al. (2011)

that there exists ρ ≡ ρ(δ, r) which is the unique positive solution of cs−λ−δ+λrf̃(s) =

0. Then, as ρ is a zero of the denominator of the right-hand side of (3.2), it must also

be a zero of the numerator, giving formula (3.3).

3.3 The probability of ultimate ruin

We now consider the ultimate ruin probability ψk(u), for u ≥ k. Nie et al. (2011)

obtain expressions for this probability in the cases u = k and u > k by probabilistic

arguments. We now show that their results can be obtained from formulae (3.2) and
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(3.3). Setting r = 1, δ = 0 and ω(x, y) = 1 for x ≥ k and y > 0 in expression (3.1), we

see that φk,r,δ(u) reduces to ψk(u). Our first result is easily obtained.

Theorem 3.2. When the initial surplus is k we have

ψk(k) =
λ
c

∫∞
k
F̄ (u) du

1− λ
c

∫∞
k

(
F̄ (u− k)− F̄ (u)

)
du

=
ψ(0)−H1(0, k)

1−H1(0, k)
. (3.8)

Proof. From Gerber and Shiu (1998) we know that ρ = 0 when r = 1 and δ = 0.

The result immediately follows by noting that h1(0, x) = λ
c
F̄ (x) and

∫∞
k
h1(0, u)du =

ψ(0)−H1(0, k).

Theorem 3.3. When the initial surplus is u > k we have

ψk(u) = ψ(u− k)−H1(u− k, k)[1− ψk(k)]. (3.9)

Proof. Using the fact that cδ(0)

δ̃(s)
= cs − λ + λf̃(s) (see, for example, Dickson, 2005)

equation (3.2) becomes

ψ̃k(s) =
δ̃(s)

cδ(0)

(
ce−skψk(k)− λψk(k)

∫ ∞
k

e−su
(
F̄ (u− k)− F̄ (u)

)
du

−λ
∫ ∞
k

e−su
∫ ∞
u

f(x) dx du

)

= e−sk
δ̃(s)

δ(0)
ψk(k)− λδ̃(s)

cδ(0)
ψk(k)

∫ ∞
0

e−s(u+k)
(
F̄ (u)− F̄ (u+ k)

)
du

−λδ̃(s)
cδ(0)

∫ ∞
0

e−s(u+k)F̄ (u+ k) du

= e−sk

(
δ̃(s)

δ(0)
ψk(k)− δ̃(s)

δ(0)
ψk(k)

∫ ∞
0

e−su
(
h1(0, u)− h1(0, u+ k)

)
du

− δ̃(s)
δ(0)

∫ ∞
0

e−suh1(0, u+ k) du

)
. (3.10)

We now apply the following results from Dickson (1998):

h̃1(0, s) =

∫ ∞
0

e−suh1(0, u) du = 1− δ(0)

sδ̃(s)

and

H̃1(s, k) =

∫ ∞
0

e−suH1(u, k) du =
Φ̃(s, k)

1− h̃1(0, s)
=

Φ̃(s, k)sδ̃(s)

δ(0)
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where Φ̃(s, k) =
∫∞

0
e−suΦ(u, k) du, and Φ(u, k) =

∫ u+k

u
h1(0, x) dx. Next, we can use

properties of the Laplace transform of a derivative to write

H̃1(s, k) =
δ̃(s)

δ(0)

(
Φ̃
′
(s, k) +H1(0, k)

)
(3.11)

with Φ̃
′
(s, k) =

∫∞
0
e−suΦ

′
(u, k) du = sΦ̃(s, k)−H1(0, k). Further,∫ ∞

0

e−suΦ
′
(u, k) du =

∫ ∞
0

e−su
(
h1(0, u+ k)− h1(0, u)

)
du.

Using these results we can write formula (3.10) as

ψ̃k(s) = e−sk

(
δ̃(s)

δ(0)
ψk(k) +

δ̃(s)

δ(0)
ψk(k)Φ̃

′
(s, k)

− δ̃(s)
δ(0)

∫ ∞
0

e−su
(
h1(0, u+ k)− h1(0, u) + h1(0, u)

)
du

)

= e−sk

(
δ̃(s)

δ(0)
ψk(k) +

δ̃(s)

δ(0)
ψk(k)Φ̃

′
(s, k)− δ̃(s)

δ(0)
Φ̃
′
(s, k)− δ̃(s)

δ(0)
h̃1(0, s)

)
.

(3.12)

By rearranging formula (3.11) and substituting for Φ̃
′
(s, k) in (3.12) we get

ψ̃k(s) = e−sk

(
δ̃(s)

δ(0)
ψk(k) + ψk(k)

[
H̃1(s, k)− δ̃(s)

δ(0)
H1(0, k)

]

−

[
H̃1(s, k)− δ̃(s)

δ(0)
H1(0, k)

]
− δ̃(s)

δ(0)

[
1− δ(0)

sδ̃(s)

])

= e−sk

(
δ̃(s)

δ(0)

[
ψk(k)− ψk(k)H1(0, k) +H1(0, k)− 1 +

δ(0)

sδ̃(s)

]

−H̃1(s, k)[1− ψk(k)]

)
.

Inserting the right-hand side of equation (3.8) for ψk(k) in the first square bracket gives

ψ̃k(s) = e−sk

(
δ̃(s)

δ(0)

[
− δ(0) +

δ(0)

sδ̃(s)

]
− H̃1(s, k)[1− ψk(k)]

)
= e−sk[1/s− δ̃(s)]− e−skH̃1(s, k)[1− ψk(k)].

Applying the shift property of the Laplace transform, i.e.
∫∞
k
e−suα(u − k) du =

e−skα̃(s), we can invert ψ̃k(s) to get formula (3.9).
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3.4 The joint distribution of U(T−u,k) and |U(Tu,k)|

In this section we consider the joint distribution of the surplus immediately prior to

ruin and the deficit at ruin, defined by

Hk(u, z, y) = Pr(Tu,k <∞, U(T−u,k) ≤ z, |U(Tu,k)| ≤ y | U(0) = u)

with

Hk,1(u, y) = Pr(Tu,k <∞, |U(Tu,k)| ≤ y | U(0) = u)

being the (defective) distribution of the deficit at the time of ruin and

Hk,2(u, z) = Pr(Tu,k <∞, U(T−u,k) ≤ z | U(0) = u)

being the (defective) distribution of the surplus immediately before ruin. Setting r = 1,

δ = 0 and ω(a, b) = I{a ≤ x}I{b ≤ y} we can write expression (3.1) as

φk,r,δ(u) = E[I(X ≤ x)I(Y ≤ y)I(Tu,k <∞) | U(0) = u]

where X = U(T−u,k) and Y = |U(Tu,k)|. In this case, φk,r,δ(u) reduces to Hk(u, x, y).

Theorem 3.4. When the initial surplus is k we have

Hk(k, z, y) =
λ
c

∫∞
k

∫∞
u
f(x)I{u ≤ z}I{x ≤ y + u} dx du

1− λ
c

∫∞
k

(
F̄ (u− k)− F̄ (u)

)
du

=
λ
c

∫ z
k

(
F̄ (u)− F̄ (u+ y)

)
du

1−H1(0, k)

(3.13)

for z ≥ k and y > 0.

Proof. The proof follows from (3.3) since ρ = 0 when r = 1 and δ = 0.

Letting z →∞ in equation (3.13) yields

Hk,1(k, y) =

∫∞
k

(
h1(0, u)− h1(0, u+ y)

)
du

1−H1(0, k)

=
H1(0, k + y)−H1(0, k)

1−H1(0, k)
(3.14)

which is in agreement with Nie (2012). Also, letting y →∞ in equation (3.13) gives

Hk,2(k, z) =
H1(0, z)−H1(0, k)

1−H1(0, k)
(3.15)

which is also in agreement with Nie (2012).
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Theorem 3.5. When the initial surplus is u > k we have

Hk(u, z, y) = Hk(k, z, y)H1(u− k, k) +
λδ(u− k)

cδ(0)

∫ z

u

(
F̄ (x)− F̄ (x+ y)

)
I(u ≤ z) dx

− λ

cδ(0)

∫ (u∧z)−k

0

(
δ(u− k)− δ(u− k − x)

)(
F̄ (x+ k)− F̄ (x+ k + y)

)
dx.

(3.16)

Proof. We can write equation (3.2) as

H̃k(s, z, y) =
δ̃(s)

cδ(0)

(
ce−skHk(k, z, y)− λ

∫ ∞
k

e−su
(
F̄ (u− k)− F̄ (u)

)
Hk(k, z, y) du

−λ
∫ ∞
k

e−su
∫ ∞
u

f(x)I(u ≤ z)I(x ≤ u+ y) dx du

)

=
δ̃(s)

cδ(0)

(
ce−skHk(k, z, y)− λ

∫ ∞
0

e−s(u+k)
(
F̄ (u)− F̄ (u+ k)

)
Hk(k, z, y) du

−λ
∫ z

k

e−su
∫ u+y

u

f(x) dx du

)
. (3.17)

From Section 3.3 we know that Φ
′
(u, k) = λ

c

(
F̄ (u+ k)− F̄ (u)

)
. Therefore, we can

rewrite (3.17) as

H̃k(s, z, y) =
δ̃(s)

δ(0)
e−skHk(k, z, y) +

δ̃(s)

δ(0)
e−skHk(k, z, y)Φ̃

′
(s, k)

−λδ̃(s)
cδ(0)

∫ z

k

e−su
(
F̄ (u)− F̄ (u+ y)

)
du. (3.18)

Rearranging formula (3.11) and substituting for Φ̃
′
(s, k) in (3.18) we have

H̃k(s, z, y) =
δ̃(s)

δ(0)
e−skHk(k, z, y) + e−skHk(k, z, y)

[
H̃1(s, k)− δ̃(s)

δ(0)
H1(0, k)

]

−λδ̃(s)
cδ(0)

∫ z

k

e−su
(
F̄ (u)− F̄ (u+ y)

)
du

= Hk(k, z, y)e−skH̃1(s, k) +
δ̃(s)

δ(0)
Hk(k, z, y)e−sk[1−H1(0, k)]

−λδ̃(s)
cδ(0)

∫ z

k

e−su
(
F̄ (u)− F̄ (u+ y)

)
du. (3.19)
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We can invert (3.19) by applying the shift property of the Laplace transform and noting

that ∫ ∞
0

e−s(u+k)

∫ u

0

δ(u− x)
(
F̄ (x+ k)− F̄ (x+ k + y)

)
dx du

=

∫ ∞
k

e−su
∫ u−k

0

δ(u− k − x)
(
F̄ (x+ k)− F̄ (x+ k + y)

)
dx du.

We note that we need to consider separately the situations when u ≤ z and u > z, since

in the former situation ruin may or may not occur on the first drop below the initial

level, but in the latter ruin may not occur with the surplus immediately prior to ruin

being at most z. Therefore, after inserting for Hk(k, z, y) the inverse of formula (3.19)

is given by

Hk(u, z, y) = Hk(k, z, y)H1(u− k, k) +
λδ(u− k)

cδ(0)

∫ z−k

0

(
F̄ (x+ k)− F̄ (x+ k + y)

)
dx

− λ

cδ(0)

∫ (u∧z)−k

0

δ(u− k − x)
(
F̄ (x+ k)− F̄ (x+ k + y)

)
dx (3.20)

where u∧z = min(u, z). For u ≤ z, we can split the first integral so that formula (3.20)

gives

Hk(u, z, y) = Hk(k, z, y)H1(u− k, k) +
λδ(u− k)

cδ(0)

(∫ u−k

0

(
F̄ (x+ k)− F̄ (x+ k + y)

)
dx

+

∫ z−k

u−k

(
F̄ (x+ k)− F̄ (x+ k + y)

)
dx

)

− λ

cδ(0)

∫ u−k

0

δ(u− k − x)
(
F̄ (x+ k)− F̄ (x+ k + y)

)
dx

= Hk(k, z, y)H1(u− k, k) +
λδ(u− k)

cδ(0)

∫ z−k

u−k

(
F̄ (x+ k)− F̄ (x+ k + y)

)
dx

+
λ

cδ(0)

∫ u−k

0

(δ(u− k)− δ(u− k − x))
(
F̄ (x+ k)− F̄ (x+ k + y)

)
dx

(3.21)

and for u > z, formula (3.20) yields

Hk(u, z, y) = Hk(k, z, y)H1(u− k, k)

+
λ

cδ(0)

∫ z−k

0

(δ(u− k)− δ(u− k − x))
(
F̄ (x+ k)− F̄ (x+ k + y)

)
dx.

(3.22)
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From identities (3.21) and (3.22), formula (3.16) follows.

Letting y →∞, equation (3.21) becomes

Hk,2(u, z) = Hk,2(k, z)H1(u− k, k) +
λδ(u− k)

cδ(0)

∫ z−k

u−k
F̄ (x+ k) dx

+
λ

cδ(0)

∫ u−k

0

(ψ(u− k − x)− ψ(u− k)) F̄ (x+ k) dx

and formula (3.22) yields

Hk,2(u, z) = Hk,2(k, z)H1(u− k, k)

+
λ

cδ(0)

∫ z−k

0

(ψ(u− x− k)− ψ(u− k)) F̄ (x+ k) dx.

which are in agreement with Nie (2012).

We can obtain Hk,1(u, y) by inverting its Laplace transform. To find the Laplace

transform of the (defective) distribution function of the deficit at ruin we let z →∞ in

formula (3.19). Thus

H̃k,1(s, y) = e−sk

(
Hk,1(k, y)H̃1(s, k) +

δ̃(s)

δ(0)
Hk,1(k, y)[1−H1(0, k)]

−λδ̃(s)
cδ(0)

∫ ∞
0

e−su
(
F̄ (u+ k)− F̄ (u+ k + y)

)
du

)
.

We can modify formula (3.11) as

H̃1(s, k + y) =
δ̃(s)

δ(0)

(
Φ̃
′
(s, k + y) +H1(0, k + y)

)
and

Φ̃
′
(s, k + y) =

λ

c

∫ ∞
0

e−su
(
F̄ (u+ k + y)− F̄ (u)

)
du.

Then, we rewrite formula (3.23), giving

H̃k,1(s, y) = e−sk

(
Hk,1(k, y)H̃1(s, k) +

δ̃(s)

δ(0)
Hk,1(k, y)[1−H1(0, k)]− δ̃(s)

δ(0)
Φ̃
′
(s, k)

+
δ̃(s)

δ(0)
Φ̃
′
(s, k + y)

)
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and substituting for Φ̃
′
(s, k) and Φ̃

′
(s, k + y) yields

H̃k,1(s, y) = e−sk

(
Hk,1(k, y)H̃1(s, k) +

δ̃(s)

δ(0)
Hk,1(k, y)[1−H1(0, k)]

−

[
H̃1(s, k)− δ̃(s)

δ(0)
H1(0, k)

]
+

[
H̃1(s, k + y)− δ̃(s)

δ(0)
H1(0, k + y)

])

= e−sk

(
Hk,1(k, y)H̃1(s, k)− H̃1(s, k) + H̃1(s, k + y)

+
δ̃(s)

δ(0)
Hk,1(k, y)[1−H1(0, k)]− δ̃(s)

δ(0)
[H1(0, k + y)−H1(0, k)]

)
.

(3.23)

Replacing the second Hk,1(k, y) in (3.23) by formula (3.14) and inverting H̃k,1(s, y) with

respect to s, we obtain

Hk,1(u, y) = Hk,1(k, y)H1(u− k, k)−H1(u− k, k) +H1(u− k, k + y)

(3.24)

which is in agreement with Nie (2012).

In this section, we have derived existing results by applying the Gerber-Shiu func-

tion. Although, Gerber-Shiu functions are very useful, they are not always the most

efficient tools. However, we show in the next section that our Gerber-Shiu function

can be used to obtain more general results relating to finite time ruin and in the next

chapter, we see that probabilistic reasoning provides a much easier approach to finding

the results of this section.

3.5 The joint density of Tu,k and NTu,k

We now consider the joint density of the time of ruin and the number of claims until

ruin by setting 0 < r < 1, δ > 0 and ω(x, y) = 1 for x ≥ k and y > 0 in expression

(3.1). (For convenience, we use the term joint density throughout when referring to two

variables, even if one of the variables is discrete.) In this case the Gerber-Shiu function

is

φk,r,δ(u) = E
[
rNTu,ke−δTu,kI(Tu,k <∞) | U(0) = u

]
=
∞∑
n=1

rn
∫ ∞

0

e−δtwk(u, n, t) dt
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where wk(u, n, t) denotes the (defective) joint density of NTu,k and Tu,k, given initial

surplus u, defined for n = 1, 2, 3, . . . , and t > 0 so that

pk(u, n) =

∫ ∞
0

wk(u, n, t) dt

is the probability mass function of the number of claims until ruin.

The next two results give expressions for the (defective) joint density of the number

of claims until ruin and the time of ruin.

Theorem 3.6. Let the initial surplus be k. Then, the joint density of NTk,k and Tk,k

is given by

wk(k, 1, t) = λe−λtF̄0,1(ct) = λe−λtF̄ (ct+ k) (3.25)

and for n = 1, 2, 3, . . . ,

wk(k, n+ 1, t)

=
λn+1

cn

n∑
m=0

(−1)m
(
n

m

)
e−λtF̄m,n+1(ct)

+
n−1∑
j=0

e−λt
λn+1

cj+1

tn−j−1

(n− j)!

j∑
m=0

(−1)m
(
j

m

)∫ ct

0

yf (n−j)∗(ct− y)F̄m,j+1(y) dy

(3.26)

where for n = 1, 2, 3, . . . and m = 0, 1, 2, . . . , n− 2,

F̄m,n(u) =

∫ u

0

A(n−1−m)∗(x)B
(m+1)∗
k (u− x) dx (3.27)

with A(x) = F̄ (x), Bk(x) = F̄ (x+ k), and F̄n−1,n(u) = Bn∗
k (u).

Proof. We start by rewriting formula (3.3) as

φk,r,δ(k) =
λr

c

∫ ∞
k

e−ρ(u−k)F̄ (u) du
∞∑
n=0

(
λr

c

∫ ∞
k

e−ρ(u−k)
(
F̄ (u− k)− F̄ (u)

)
du

)n
and using the binomial expansion we obtain

φk,r,δ(k) =
∞∑
n=1

(λr)n

cn

n−1∑
m=0

(−1)m
(
n− 1

m

)(∫ ∞
0

e−ρuF̄ (u)du

)n−1−m

×
(∫ ∞

0

e−ρuF̄ (u+ k)du

)m+1

,
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giving

φk,r,δ(k) =
∞∑
n=1

(λr)n

cn

n−1∑
m=0

(−1)m
(
n− 1

m

)∫ ∞
0

e−ρuF̄m,n(u) du. (3.28)

To invert formula (3.28) we use formula (44) of Landriault et al. (2011), i.e.

e−ρu = e−(λ+δ)u/c +
∞∑
j=1

(λr/c)j

j!
u

∫ ∞
0

(x+ u)j−1 e−(λ+δ)(x+u)/c f j∗(x) dx.

Substituting for e−ρu in (3.28) we obtain

∞∑
n=1

rnwk(k, n, t) =
∞∑
n=1

(λr)n

cn

n−1∑
m=0

(−1)m
(
n− 1

m

)(
e−λtcF̄m,n(ct)

+
∞∑
j=1

e−λt
(λr)j

j!
tj−1

∫ ct

0

yf j∗(ct− y)F̄m,n(y) dy

)

=
∞∑
n=1

(λr)n

cn

n−1∑
m=0

(−1)m
(
n− 1

m

)
e−λtcF̄m,n(ct)

+
∞∑
n=1

rn+1

n−1∑
j=0

e−λt
λn+1

cj+1

tn−j−1

(n− j)!

j∑
m=0

(−1)m
(
j

m

)
×
∫ ct

0

yf (n−j)∗(ct− y)F̄m,j+1(y) dy.

(3.29)

Formulae (3.25) and (3.26) then follow by equating coefficients of powers of r in equation

(3.29).

We remark that if we set r = 1 in (3.29) then we obtain an expression for the density

of the time of ruin, wk(k, t).

Theorem 3.7. When u > k,

wk(u, 1, t) = λe−λtF̄ (u+ ct) (3.30)
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and for n = 1, 2, 3, . . . , we have

wk(u, n+ 1, t) = e−λt
(λt)n

n!

∫ u+ct−k

0

fn∗(u+ ct− x− k)λF̄ (x+ k) dx

+

∫ t

0

wk(k, n, t− τ)λe−λτ
(
F̄ (u+ cτ − k)− F̄ (u+ cτ)

)
dτ

+
n−1∑
m=1

∫ t

0

e−λτ
(λτ)m

m!

∫ u+cτ−k

0

fm∗(u+ cτ − k − x)

×λ
(
F̄ (x)− F̄ (x+ k)

)
dxwk(k, n−m, t− τ) dτ

−c
n∑

m=1

∫ t

0

e−λτ
(λτ)m

m!
fm∗(u+ cτ − k)wk(k, n+ 1−m, t− τ) dτ

(3.31)

with the usual convention that
∑b

j=a = 0 if b < a.

Proof. We start by noting that

φ̃k,r,δ(s) =

∫ ∞
k

e−suφk,r,δ(u) du =
∞∑
n=1

rn
∫ ∞
k

e−su
∫ ∞

0

e−δtwk(u, n, t) dt du.

Next, we rewrite formula (3.2) as

φ̃k,r,δ(s) =
1

δ + λ− λrf̃(s)− cs

(
− ce−skφk,r,δ(k)

+λrφk,r,δ(k)

∫ ∞
k

e−su
(
F̄ (u− k)− F̄ (u)

)
du+ λr

∫ ∞
k

e−suF̄ (u)du

)
(3.32)

and our approach is to invert first with respect to δ, and then with respect to s.

Our derivation uses ideas in Panjer and Willmot (1992) and is based on the Laplace

transform of S(t); see also Willmot (2015). Our starting point is to define a function

Ar(u, t) whose Laplace transform with respect to u is Ãr(s, t), and its bivariate Laplace

transform is given by

˜̃Ar(s, δ) =

∫ ∞
0

e−δtÃr(s, t) dt =
1

δ + λ− λrf̃(s)− cs
.

Inverting this expression with respect to δ gives Ãr(s, t) = exp{λrt(f̃(s) − 1) + λrt −
λt+ sct}. From the Laplace transform of S(t) in formula (1.2) we deduce that Ãr(s, t)
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is the product of the Laplace transform of Sr(t), where Sr(t) is as S(t) except that

its Poisson parameter is λrt (and its density is denoted by gr(x, t)), and the term

exp{λt(r − 1) + sct}. Hence we can write formula (3.32) as

φ̃k,r,δ(s) = ˜̃Ar(s, δ)
(
− ce−skφk,r,δ(k) + λrφk,r,δ(k)C̃(s) + λrB̃(s)

)
, (3.33)

where C(u) = (F̄ (u − k) − F̄ (u))I{u > k} and B(u) = F̄ (u)I{u > k}. Inverting

equation (3.33) with respect to δ yields

∞∑
n=1

rn
∫ ∞
k

e−suwk(u, n, t) du

= −c
∞∑
n=1

rne−sk
∫ t

0

wk(k, n, τ) exp{λr(t− τ)(f̃(s)− 1) + λ(t− τ)(r − 1) + sc(t− τ)} dτ

+λrC̃(s)
∞∑
n=1

rn
∫ t

0

wk(k, n, τ) exp{λr(t− τ)(f̃(s)− 1) + λ(t− τ)(r − 1) + sc(t− τ)} dτ

+λrB̃(s) exp{λrt(f̃(s)− 1) + λt(r − 1) + sct}.

Multiplying both sides by e−sct gives

∞∑
n=1

rne−sct
∫ ∞
k

e−suwk(u, n, t) du

= −c
∞∑
n=1

rne−sk
∫ t

0

wk(k, n, τ) exp{λr(t− τ)(f̃(s)− 1) + λ(t− τ)(r − 1)− scτ} dτ

+λrC̃(s)
∞∑
n=1

rn
∫ t

0

wk(k, n, τ) exp{λr(t− τ)(f̃(s)− 1) + λ(t− τ)(r − 1)− scτ} dτ

+λrB̃(s) exp{λrt(f̃(s)− 1) + λt(r − 1)}. (3.34)

The left-hand side of equation (3.34) can be written as

∞∑
n=1

rn
∫ ∞
k

e−s(u+ct)wk(u, n, t) du =
∞∑
n=1

rn
∫ ∞
ct+k

e−suwk(u− ct, n, t) du (3.35)

and (minus) the first term on the right-hand side as

c
∞∑
n=1

rne−sk
∫ t

0

wk(k, n, τ) exp{λr(t− τ)(f̃(s)− 1) + λ(t− τ)(r − 1)− scτ} dτ

= c
∞∑
n=1

rne−sk
∫ t

0

wk(k, n, τ)
(
g̃r(s, t− τ) + e−λr(t−τ)

)
eλ(t−τ)(r−1)−scτ dτ
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= c
∞∑
n=1

rn
∫ t

0

wk(k, n, τ)

∫ ∞
0

e−s(x+cτ+k)gr(x, t− τ)eλ(t−τ)(r−1) dx dτ

+c
∞∑
n=1

rn
∫ t

0

wk(k, n, τ)e−s(cτ+k)e−λ(t−τ) dτ

= c

∞∑
n=1

rn
∫ t

0

wk(k, n, τ)

∫ ∞
0

e−s(x+cτ+k)

∞∑
m=1

e−λ(t−τ) (λr(t− τ))m

m!
fm∗(x) dx dτ

+
∞∑
n=1

rn
∫ ct+k

k

wk(k, n, (u− k)/c)e−sue−λ(t−(u−k)/c) du

= c
∞∑
n=1

rn
∫ t

0

wk(k, n, τ)

∫ ∞
cτ+k

e−su
∞∑
m=1

e−λ(t−τ) (λr(t− τ))m

m!
fm∗(u− cτ − k) du dτ

+
∞∑
n=1

rn
∫ ct+k

k

wk(k, n, (u− k)/c)e−sue−λ(t−(u−k)/c) du

= c
∞∑
n=1

rn
∫ ct+k

k

e−su
∫ (u−k)/c

0

wk(k, n, τ)
∞∑
m=1

e−λ(t−τ) (λr(t− τ))m

m!
fm∗(u− cτ − k) dτ du

+c
∞∑
n=1

rn
∫ ∞
ct+k

e−su
∫ t

0

wk(k, n, τ)
∞∑
m=1

e−λ(t−τ) (λr(t− τ))m

m!
fm∗(u− cτ − k) dτ du

+
∞∑
n=1

rn
∫ ct+k

k

e−suwk(k, n, (u− k)/c)e−λ(t−(u−k)/c) du.

We can treat the second term of the right-hand side of equation (3.34) similarly to show

that

λrC̃(s)
∞∑
n=1

rn
∫ t

0

wk(k, n, τ) exp{λr(t− τ)(f̃(s)− 1) + λ(t− τ)(r − 1)− scτ} dτ

= λr

∞∑
n=1

rn
∫ ∞
ct

e−su
∫ t

0

wk(k, n, τ)

∫ u−cτ−k

0

∞∑
m=1

e−λ(t−τ) (λr(t− τ)m

m!
fm∗(x)

×
(
F̄ (u− cτ − k − x)− F̄ (u− cτ − x)

)
dx dτ du

+λr
∞∑
n=1

rn
∫ ct

0

e−su
∫ u/c

0

wk(k, n, τ)

∫ u−cτ

0

∞∑
m=1

e−λ(t−τ) (λr(t− τ))m

m!
fm∗(x)

×C(u− cτ − x) dx dτ du

+λr
∞∑
n=1

rn
∫ ∞
ct

e−su
∫ t

0

wk(k, n, τ)

×
(
F̄ (u− cτ − k)− F̄ (u− cτ)

)
I(u− cτ > k)e−λ(t−τ) dτ du

+λr
∞∑
n=1

rn
∫ ct

0

e−su
∫ u/c

0

wk(k, n, τ)C(u− cτ)e−λ(t−τ) dτ du. (3.36)
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Finally, the third term on the right-hand side of equation (3.34) can be expressed as∫ ∞
0

e−su

(
λre−λtF̄ (u)I(u > k) + λr

∞∑
n=1

e−λt
(λrt)n

n!

∫ u−k

0

F̄ (x+ k)fn∗(u− x− k) dx

)
du.

By equating the coefficients of e−su for u > ct+ k we obtain

∞∑
n=1

rnwk(u− ct, n, t)

= λre−λtF̄ (u) + λr

∞∑
n=1

e−λt
(λrt)n

n!

∫ u−k

0

F̄ (x+ k)fn∗(u− x− k) dx

+
∞∑
n=1

rn+1

∫ t

0

wk(k, n, τ)
[
λe−λ(t−τ)

(
F̄ (u− k − cτ)− F̄ (u− cτ)

)
+λ

∞∑
m=1

e−λ(t−τ) [λr(t− τ)]m

m!

∫ u−cτ−k

0

fm∗(x)

×
(
F̄ (u− k − cτ − x)− F̄ (u− cτ − x)

)
dx
]
dτ

−c
∞∑
n=1

rn
∞∑
m=1

∫ t

0

wk(k, n, τ)e−λ(t−τ) [λr(t− τ)]m

m!
fm∗(u− cτ − k) dτ.

This results in

∞∑
n=1

rnwk(u, n, t)

= λre−λtF̄ (u+ ct) + λr
∞∑
n=1

e−λt
(λrt)n

n!

∫ u+ct−k

0

F̄ (x+ k)fn∗(u+ ct− x− k) dx

+
∞∑
n=1

rn+1

∫ t

0

wk(k, n, t− τ)
[
λe−λτ

(
F̄ (u+ cτ − k)− F̄ (u+ cτ)

)
+λ

∞∑
m=1

e−λτ
(λrτ)m

m!

∫ u+cτ−k

0

fm∗(x)

×
(
F̄ (u+ cτ − k − x)− F̄ (u+ cτ − x)

)
dx
]
dτ

−c
∞∑
n=1

rn
∞∑
m=1

∫ t

0

wk(k, n, t− τ)e−λτ
(λrτ)m

m!
fm∗(u+ cτ − k) dτ. (3.37)

To obtain wk(u, n, t) we proceed as follows. We rewrite expression (3.37) as
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∞∑
n=1

rnwk(u, n, t)

= λre−λtF̄ (u+ ct) +
∞∑
n=1

rn+1e−λt
(λt)n

n!

∫ u+ct−k

0

fn∗(u+ ct− x− k)λF̄ (x+ k) dx

+
∞∑
n=1

rn+1

∫ t

0

wk(k, n, t− τ)λe−λτ
(
F̄ (u+ cτ − k)− F̄ (u+ cτ)

)
dτ

+
∞∑
n=1

rn+1

∫ t

0

wk(k, n, t− τ)λ
∞∑
m=1

rme−λτ
(λτ)m

m!

×
∫ u+cτ−k

0

fm∗(x)
(
F̄ (u+ cτ − k − x)− F̄ (u+ cτ − x)

)
dx dτ

−c
∞∑
n=1

rn
∞∑
m=1

rm
∫ t

0

e−λτ
(λτ)m

m!
fm∗(u+ cτ − k)wk(k, n, t− τ) dτ. (3.38)

Applying the Cauchy product
∑∞

n=1 an
∑∞

m=1 bm =
∑∞

n=1

∑n
m=1 an+1−mbm to the double

summations in (3.38) we have

∞∑
n=1

rnwkn(u, t)

= λre−λtF̄ (u+ ct) +
∞∑
n=1

rn+1e−λt
(λt)n

n!

∫ u+ct−k

0

fn∗(u+ ct− x− k)λF̄ (x+ k) dx

+
∞∑
n=1

rn+1

∫ t

0

wk(k, n, t− τ)λe−λτ
(
F̄ (u+ cτ − k)− F̄ (u+ cτ)

)
dτ

+
∞∑
n=1

rn+2

n∑
m=1

∫ t

0

wk(k, n+ 1−m, t− τ)e−λτ
(λτ)m

m!

×
∫ u+cτ−k

0

fm∗(x)λ
(
F̄ (u+ cτ − k − x)− F̄ (u+ cτ − x)

)
dx dτ

−c
∞∑
n=1

rn+1

n∑
m=1

∫ t

0

e−λτ
(λτ)m

m!
fm∗(u+ cτ − k)wk(k, n+ 1−m, t− τ) dτ.

(3.39)

Formulae (3.30) and (3.31) then follow by equating coefficients of powers of r in equation

(3.39).

Formula (3.31) generalises formula (8) of Dickson (2012) for the joint density of the
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time of ruin and the number of claims until ruin in the classical risk model – if we set

k = 0 we recover the result for the classical risk model.

Further, we obtain the following result.

Theorem 3.8. For u > k, the density of Tu,k is

wk(u, t) = λe−λtF̄ (u+ ct) + λ

∫ u+ct−k

0

F̄ (x+ k)g(u+ ct− x− k) dx

+

∫ t

0

wk(k, t− τ)
[
λe−λτ

(
F̄ (u+ cτ − k)− F̄ (u+ cτ)

)
+

∫ u+cτ−k

0

g(u+ cτ − k − x, τ)λ
(
F̄ (x)− F̄ (x+ k)

)
dx
]
dτ

−c
∫ t

0

wk(k, t− τ)g(u+ cτ − k, τ) dτ. (3.40)

Proof. Using formulae (3.30) and (3.31) we have

wk(u, t) =
∞∑
n=0

wk(u, n+ 1, t)

= λe−λtF̄ (u+ ct) +
∞∑
n=1

e−λt
(λt)n

n!

∫ u+ct−k

0

fn∗(u+ ct− x− k)λF̄ (x+ k) dx

+
∞∑
n=1

∫ t

0

wk(k, n, t− τ)λe−λτ
(
F̄ (u+ cτ − k)− F̄ (u+ cτ)

)
dτ

+
∞∑
n=2

n−1∑
m=1

∫ t

0

wk(k, n−m, t− τ)e−λτ
(λτ)m

m!

×
∫ u+cτ−k

0

fm∗(u+ cτ − k − x)λ
(
F̄ (x)− F̄ (x+ k)

)
dx dτ

−c
∞∑
n=1

n∑
m=1

∫ t

0

wk(k, n+ 1−m, t− τ)e−λτ
(λτ)m

m!
fm∗(u+ cτ − k) dτ.

Reversing the Cauchy product gives

∞∑
n=0

wk(u, n+ 1, t) = λe−λtF̄ (u+ ct)

+λ
∞∑
n=1

e−λt
(λt)n

n!

∫ u+ct−k

0

fn∗(u+ ct− x− k)F̄ (x+ k) dx

+
∞∑
n=1

∫ t

0

wk(k, n, t− τ)λe−λτ
(
F̄ (u+ cτ − k)− F̄ (u+ cτ)

)
dτ
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+
∞∑
m=1

∞∑
n=1

∫ t

0

wk(k, n, t− τ)e−λτ
(λτ)m

m!

×
∫ u+cτ−k

0

fm∗(u+ cτ − k − x)λ
(
F̄ (x)− F̄ (x+ k)

)
dx dτ

−c
∞∑
m=1

∞∑
n=1

∫ t

0

e−λτ
(λτ)m

m!
fm∗(u+ cτ − k)wk(k, n, t− τ) dτ.

= λe−λtF̄ (u+ ct) + λ

∫ u+ct−k

0

F̄ (x+ k)g(u+ ct− x− k) dx

+
∞∑
n=1

∫ t

0

wk(k, n, t− τ)λe−λτ
(
F̄ (u+ cτ − k)− F̄ (u+ cτ)

)
dτ

+
∞∑
n=1

∫ t

0

wk(k, n, t− τ)

∫ u+cτ−k

0

g(u+ cτ − k − x, τ)

×λ
(
F̄ (x)− F̄ (x+ k)

)
dx dτ

−c
∞∑
n=1

∫ t

0

wk(k, n, t− τ)g(u+ cτ − k, τ) dτ,

and the result follows.

Formula (3.40) generalises formula (5) of Dickson (2007) for the density of the time

of ruin in the classical risk model. Once again, setting k = 0 gives the result for the

classical risk model.

To understand formula (3.40), it is helpful to consider realisations of the surplus

process that are representative of the different terms in the formula. Interpretation

of components of formula (3.40) is similar to that given in Dickson (2007). We can

interpret formula (3.40) as follows.

• The term wk(u, t)dt represents the probability that ruin occurs within the time

period (t, t+ dt), from initial surplus u.

• The first term on the right-hand side of (3.40) represents the situation that there

is no claim by time t and that ruin occurs within (t, t+dt). For this to happen we

require a claim in this interval exceeding the initial surplus and the total premium

received up to time t. (Figure 3.1)

• In the second term, g(u+ ct−x−k, t) is the density associated with the situation

that the surplus in a classical risk model is at level x + k at time t. For ruin
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occurring in (t, t+ dt), we require a claim whose amount exceeds x+ k. We note

that the term g(u + ct − x − k, t) refers to aggregate claims in a classical risk

model, not the risk model with capital injections and therefore this term includes

the possibility that the surplus is below k before time t. (Figure 3.2)

• We consider

g(u+ cτ − k − x, τ)λ
(
F̄ (x)− F̄ (x+ k)

)
wk(k, t− τ)

in the third term of (3.40). This term is associated with (i) an aggregate claim

amount of u + cτ − k − x at time τ , resulting in a surplus of x + k at time τ in

a classical risk model, (ii) a claim whose amount is between x and x+ k at time

τ (so that a capital injection occurs), and (iii) ruin occurring after a further time

period of t − τ with the possibility of capital injections in this time period. We

note that the term g(u + cτ − k − x, τ) refers to aggregate claims in a classical

risk model, not the risk model with capital injections, and this term includes the

possibility that a realisation of a classical risk model which is at level x + k at

time τ has fallen below k prior to time τ . Figures 3.3 and 3.4 show realisations of

the surplus process representing the second integral term, with a capital injection

occurring at time τ . In these realisations, the surplus prior to time τ is always

above k, and we distinguish between there being further capital injections after

time τ (Figure 3.3) and no further capital injections (Figure 3.4). Figures 3.5 and

3.6 are as Figures 3.3 and 3.4 except that the surplus falls below k prior to time

τ .

• Figures 3.7 and 3.8 show realisations of the surplus process representing the final

term in formula (3.40). In these, τ is the last time at which the (classical) surplus

process upcrosses through k, and we have distinguished between the cases where

there are capital injections after time τ (Figure 3.7) and there are no capital

injections after time τ (Figure 3.8). Only Figures 3.1, 3.3 and 3.4 show realisations

of the surplus process with capital injections that result in ruin at time t. As in

Prabhu’s (1961) formula, the final term in formula (3.40) is a compensation term.

Realisations like those in Figure 3.2 are compensated for by realisations such as

that in Figure 3.8. Similarly, realisations such as those in Figures 3.5 and 3.6 are

compensated for by realisations such as that in Figure 3.7. To see this, we note
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u	

Figure 3.1: Classical surplus process

always above k prior to t

u	

Figure 3.2: Classical surplus process

below k prior to t

u	

Figure 3.3: Classical surplus process

above k prior to capital injection at

τ ; capital injected after τ

u	

Figure 3.4: Classical surplus process

above k prior to capital injection at

τ ; no capital injected after τ

u	

Figure 3.5: Classical surplus process

below k prior to capital injection at

τ ; capital injected after τ

u	

Figure 3.6: Classical surplus process

below k prior to capital injection at τ ; no capital

injected after τ
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u	

Figure 3.7: Classical surplus process

upcrosses k at τ ; ruin at t with capital

injections between τ and t

u	

Figure 3.8: Classical surplus process

upcrosses k at τ ; ruin at t without

capital injections between τ and t

that there is a last time (before time τ) at which the surplus process upcrosses

through k in Figures 3.5 and 3.6.

From these figures it is not difficult to see that there exists a version of Prabhu’s

formula for the risk model with capital injections. Define δk(u, t) = Pr(Tu,k > t | U(0) =

u) to be the survival probability in finite time and δ̃k(s, t) to be the Laplace transform

of the survival probability in finite time with respect to u. A more general version of

Prabhu’s formula is given in the following result.

Theorem 3.9. The finite time survival probability is given by

δk(u, t) = G(u+ ct− k, t)− c
∫ t

0

δk(k, t− τ)g(u+ cτ − k, τ) dτ

+λ

∫ t

0

δk(k, t− τ)

[
e−λτ

(
F̄ (u+ cτ − k)− F̄ (u+ cτ)

)
+

∫ u+cτ−k

0

g(x, τ)
(
F̄ (u+ cτ − k − x)− F̄ (u+ cτ − x)

)
dx

]
dτ.

(3.41)

Proof. We distinguish between the situations where there is a claim in the infinitesimal

time interval (0, h], or there is no claim during this interval. Thus

δk(u, t+ h) = (1− λh)δk(u+ ch, t) + λh

(∫ u+ch−k

0

δk(u+ ch− x, t)f(x) dx.

+δk(k, t)

∫ u+ch

u+ch−k
f(x) dx

)
+ o(h). (3.42)
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Noting that δk(u+ ch, t) = δk(u, t) + ch ∂
∂u
δk(u, t) + o(h), we have

δk(u, t+ h) = δk(u, t) + ch
∂

∂u
δk(u, t)− λhδk(u, t)

+λh

∫ u+ch−k

0

δk(u+ ch− x, t)f(x) dx+ o(h)

+λhδk(k, t)
(
F̄ (u+ ch− k)− F̄ (u+ ch)

)
.

Rearranging, dividing by h and letting h→ 0, we obtain

∂

∂t
δk(u, t) = c

∂

∂u
δk(u, t)− λδk(u, t) + λ

∫ u−k

0

δk(u− x, t)f(x) dx

+λδk(k, t)
(
F̄ (u− k)− F̄ (u)

)
.

Taking the Laplace transform with respect to u results in

∂

∂t
δ̃k(s, t) = csδ̃k(s, t)− ce−skδk(k, t)− λδ̃k(s, t)

+λ

∫ ∞
k

e−su
∫ u−k

0

δk(u− x, t)f(x) dx du

+λδk(k, t)

∫ ∞
k

e−su
(
F̄ (u− k)− F̄ (u)

)
du.

Rearranging we have

∂

∂t
δ̃k(s, t) + (λ− cs− λf̃(s))δ̃k(s, t)

= −e−skcδk(k, t) + λδk(k, t)

∫ ∞
k

e−su
(
F̄ (u− k)− F̄ (u)

)
du.

Solving this differential equation, yields∫ t

0

∂

∂τ
e(λ−cs−λf̃(s))τ δ̃k(s, τ) dτ = −c

∫ t

0

e−skδk(k, τ)e(λ−cs−λf̃(s))τ dτ

+λ

∫ t

0

δk(k, τ)e(λ−cs−λf̃(s))τ

∫ ∞
k

e−su
(
F̄ (u− k)− F̄ (u)

)
du dτ. (3.43)

The left-hand side in (3.43) is e(λ−cs−λf̃(s))tδ̃k(s, t)− δ̃k(s, 0) where

δ̃k(s, 0) =

∫ ∞
k

e−suδk(u, 0) du =
e−sk

s
.

Therefore,

δ̃k(s, t)

=
e−sk

s
ecst+λt(f̃(s)−1) − ce−sk

∫ t

0

δk(k, τ) exp{λ(t− τ)(f̃(s)− 1) + sc(t− τ)} dτ

+λ

∫ ∞
k

e−su
(
F̄ (u− k)− F̄ (u)

)
du

∫ t

0

δk(k, τ) exp{λ(t− τ)(f̃(s)− 1) + sc(t− τ)} dτ.
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Multiplying both sides by e−cst gives

e−cst
∫ ∞
k

e−suδk(u, t) dt

=
e−sk

s
eλt(f̃(s)−1) − ce−sk

∫ t

0

δk(k, τ) exp{λ(t− τ)(f̃(s)− 1)− scτ} dτ

+λ

∫ ∞
k

e−su
(
F̄ (u− k)− F̄ (u)

)
du

∫ t

0

δk(k, τ) exp{λ(t− τ)(f̃(s)− 1)− scτ} dτ.

(3.44)

Applying the same argument as in Theorem 3.7 and using the Laplace transform of

S(t) in formula (1.2), equation (3.44) inverts with respect to s to

δk(u− ct, t) = G(u− k, t)− c
∫ t

0

δk(k, τ)g(u− cτ − k, t− τ) dτ

+λ

∫ t

0

δk(k, τ)

[
e−λ(t−τ)

(
F̄ (u− k − cτ)− F̄ (u− cτ)

)
+

∫ u−k−cτ

0

g(x, t− τ)
(
F̄ (u− k − cτ − x)− F̄ (u− cτ − x)

)
dx

]
dτ

and the result follows by replacing u− ct by u.

We remark that δk(k, t) can be obtained by numerical integration of formula (3.41).

Alternatively, integrating wk(k, τ) from 0 to t gives ψk(k, t) from which we can find

δk(k, t). Also, given the nature of the surplus process with capital injections, where

the full amount of claims may not be paid by the insurer, it is rather remarkable that

formulae for wk(u, t) and δk(u, t) exist in terms of G and g.

3.6 Examples

In this section, we apply the results of the previous section when the individual claim

amount distributions are exponential and Erlang(2).

3.6.1 Exponential claims

We now consider the case when F̄ (x) = e−αx, where x ≥ 0 with α > 0, and provide

results for wk(u, n, t) for u = k and u > k.
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Result 3.1. When the initial surplus is k, for n = 1, 2, 3, . . . ,

wk(k, n+ 1, t) = λn+1e−αk−(λ+αc)t

n∑
j=0

(αc)n−jt2n−j

(n− j)!
(1− e−αk)j j + 1

(n+ 1)!

(3.45)

and wk(k, 1, t) = λe−αk−(λ+αc)t.

Derivation. We apply formula (3.26). For this we require F̄m,n(x), which can be ob-

tained from (3.27) with A(x) = e−αx and Bk(x) = e−α(x+k). To evaluate the integral

we use the property of the Laplace transform of a convolution. Therefore we have

Ã(s)n−1−mB̃(s)m+1 = e−αk(m+1)

(
1

α + s

)n
,

which inverts to

F̄m,n(u) =
e−αk(m+1)e−αuun−1

Γ(n)
.

Substituting F̄m,n(u) in formula (3.26) gives

wk(k, n+ 1, t) =
λn+1

cn+1
e−λt

n∑
m=0

(−1)m
(
n

m

)
e−αk(m+1)e−αcttncn+1

n!

+
n−1∑
j=0

λn+1

cj+1
e−λt

tn−j−1

(n− j)!

∫ ct

0

yαn−je−α(ct−y)(ct− y)n−j−1

(n− j − 1)!

×
j∑

m=0

(−1)m
(
j

m

)
e−αk(m+1)e−αyyj

j!
dy

= λn+1e−αk−(λ+αc)t

(
(1− e−αk)n t

n

n!

+
n−1∑
j=0

tn−j−1αn−j

cj+1(n− j)!
(1− e−αk)j

∫ ct

0

yj+1(ct− y)n−j−1

(n− j − 1)!j!
dy

)
.

As ∫ ct

0

yj+1(ct− y)n−j−1 dy = (ct)n+1 (j + 1)! (n− j − 1)!

(n+ 1)!

we obtain

wk(k, n+ 1, t) = λn+1e−αk−(λ+αc)t

(
(1− e−αk)n t

n

n!

+
n−1∑
j=0

t2n−j(αc)n−j

(n− j)!
(1− e−αk)j j + 1

(n+ 1)!

)
(3.46)
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and the result follows. Also, the formula for wk(k, 1, t) follows immediately from formula

(3.25). �

Further, we can find wk(k, t) by summing wk(k, n, t), and if we do this we obtain

wk(k, t) =
∞∑
n=1

λn

cn

n−1∑
m=0

(−1)m
(
n− 1

m

)
e−αk(1+m) e

−(λ+αc)t

Γ(n)
cntn−1

×

(
1 +

∞∑
j=1

(αcλ)j

j!
t2j

Γ(n+ 1)

Γ(n+ 1 + j)

)

= λe−αk−(λ+αc)t

∞∑
n=1

(λt(1− e−αk))n−1

(n− 1)!
0F1(n+ 1;λαct2)

(3.47)

where

0F1(b;x) =
∞∑
n=0

Γ(b)xn

Γ(b+ n)n!

is a hypergeometric function. We remark that formula (3.47) was obtained by Nie et

al. (2015) using a different approach.

We next show that formula (3.40) leads to a more concise expression for wk(u, t)

for u > k than that obtained by Nie et al. (2015), then we show that the formulae are

equivalent. The derivation of this equivalence is of interest not just for the risk model

with capital injections, but also for the classical risk model as in the case k = 0, Nie et

al.’s (2015) formula for wk(u, t) reduces to the expression for w(u, t) that can be found

in Drekic and Willmot (2003), whilst our new expression reduces to the formula for

w(u, t) first given in Dickson et al. (2005). Our approach is to adopt procedures in

Dickson (2007).

Result 3.2. When u > k,

wk(u, t) = λe−αu−(λ+αc)t

∞∑
n=0

(1− e−αk)nλntn/2

(αλ(u+ ct− k))n/2

×
(
In

(√
4αλt(u+ ct− k)

)
− ct

u+ ct− k
In+2

(√
4αλt(u+ ct− k)

))
(3.48)

where

Iν(t) =
∞∑
n=0

(t/2)2n+ν

n! (n+ ν)!
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is the modified Bessel function of order ν.

Derivation. The first two terms of equation (3.40) can be written as

λe−λtF̄ (u+ ct) + λ

∫ u+ct−k

0

F̄ (u+ ct− x)g(x, t) dx

= λe−αu−(λ+αc)t + λ

∫ u+ct−k

0

e−α(u+ct−x)

∞∑
n=1

e−λt
(λt)n

n!

αnxn−1e−αx

Γ(n)
dx

= λe−αu−(λ+αc)tI0

(√
4αλt(u+ ct− k)

)
.

Next we consider the third term of equation (3.40). Inserting for F̄ the first term in

the bracket gives us

λe−λτ
(
F̄ (u+ cτ − k)− F̄ (u+ cτ)

)
= λe−λτ (1− e−αk)e−α(u+cτ−k)

and the second term in the bracket becomes∫ u+cτ−k

0

g(x, τ)λ
(
F̄ (u+ cτ − x− k)− F̄ (u+ cτ − x)

)
dx

= λ
∞∑
n=1

e−λτ
(λτ)n

n!

∫ u+cτ−k

0

αne−αxxn−1

(n− 1)!
e−α(u+cτ−k−x)(1− e−αk) dx

= λ
∞∑
n=1

e−λτ
(λτ)n

n!

[α(u+ cτ − k)]n

n!
e−α(u+cτ−k)(1− e−αk).

Further wk(k, t− τ) comes from formula (3.47). Hence, switching τ and t− τ , we can

write the third term in (3.40) as∫ t

0

wk(k, t− τ)
[
λe−λτ

(
F̄ (u+ cτ − k)− F̄ (u+ cτ)

)
+

∫ u+cτ−k

0

g(x, τ)λ
(
F̄ (u+ cτ − x− k)− F̄ (u+ cτ − x)

)
dx
]
dτ

= λ

∫ t

0

∞∑
r=0

e−λ(t−τ) (λ(t− τ))r

r!
(1− e−αk)α

re−α(u+c(t−τ)−k)

r!
(u+ c(t− τ)− k)r

×
∞∑
n=1

(1− e−αk)n−1e−αkλnτn−1ne−τ(λ+αc)

∞∑
m=0

(αcλτ 2)m

m!(n+m)!
dτ

= λe−αu−(λ+αc)t

∞∑
n=1

(1− e−αk)nλnn
∫ t

0

η1(τ)η2(t− τ) dτ

where

η1(t) = tn−1

∞∑
m=0

(αcλt2)m

m!(n+m)!
=

t−1

(αcλ)n/2
In

(√
4αcλt2

)
66



and

η2(t) =
∞∑
n=0

[αλt(u+ ct− k)]n

n!n!
= I0

(
(4αλc)1/2

√
t2 +

u− k
c

t

)
.

We need two auxiliary results, the first of which was used in Dickson (2007). First,

from Erdélyi (1954, page 201) we have that if

φ(t) =
tν/2

(t+ β)ν/2
Iν

(
A
√
t2 + βt

)
then

φ̃(s) =
Aν√
s2 − A2

1

(s+
√
s2 − A2)ν

exp

{
β

2
(s−

√
s2 − A2)

}
. (3.49)

Second, from Gradshteyn and Ryzhnik (2007, page 1117), we have that if

ϕ(t) = t−1Iν(At),

then

ϕ̃(s) =
Aν

ν

(
s+
√
s2 − A2

)−ν
.

Applying these results with A =
√

4αλc and B = (u− k)/c, we find

η̃1(s)η̃2(s) =
1√

s2 − 4αcλ
exp

{
u− k

2c
(s−

√
s2 − 4αλc)

}
2n

n

(
s+
√
s2 − 4αλc

)−n
and using formula (3.49) this can be inverted to∫ t

0

η1(τ)η2(t− τ) dτ =
(αλc)−n/2

n

tn/2

(t+ u−k
c

)n/2
In

(√
4αλt(u+ ct− k)

)
.

The last term in equation (3.40) can be evaluated as

−c
∫ t

0

wk(k, t− τ)g(u+ cτ − k, τ) dτ

= −c
∫ t

0

∞∑
r=1

e−λ(t−τ) (λ(t− τ))r

r!

αre−α(u+c(t−τ)−k)

(r − 1)!
(u+ c(t− τ)− k)r−1

×
∞∑
n=1

(1− e−αk)n−1e−αkλnnτn−1e−τ(λ+αc)

∞∑
m=0

(αcλτ 2)m

m! (n+m)!
dτ

= −ce−αu−(λ+αc)t

∞∑
n=1

(1− e−αk)n−1λnn

∫ t

0

η1(τ)η3(t− τ) dτ,
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where η3 is given by

η3(t) =
αλt√

αλt(u+ ct− k)
I1

(√
4αλt(u+ ct− k)

)
=

√
αλt/c√
u−k
c

+ t
I1

(
√

4αλc

√
u− k
c

t+ t2

)

and by (3.49) the Laplace transform of η3 is found as

η̃3(s) =

√
αλ/c

√
4αλc√

s2 − 4αλc

1

s+
√
s2 − 4αλc

exp

{
u− k

2c
(s−

√
s2 − 4αλc)

}
.

Therefore, η̃1(s)η̃3(s) inverts to∫ t

0

η1(τ)η3(t− τ) dτ =
αλ

n(
√
αλc)n+1

(
ct

ct+ u− k

)(n+1)/2

In+1

(√
4αλt(u+ ct− k)

)
.

As a result we can write equation (3.40) as

wk(u, t)

= λe−αu−(λ+αc)tI0

(√
4αλt(u+ ct− k)

)
+λe−αu−(λ+αc)t

∞∑
n=1

(1− e−αk)nλntn/2

[αλc(t+ u−k
c

)]n/2
In

(√
4αλt(u+ ct− k)

)
−ce−αu−(λ+αc)t

∞∑
n=1

(1− e−αk)n−1αλn+1t(n+1)/2

[αλc(t+ u−k
c

)](n+1)/2
In+1

(√
4αλt(u+ ct− k)

)
(3.50)

and after simple algebra the result follows. �

Setting k = 0 in formula (3.48) yields formula (3.9) in Dickson et al. (2005) for the

density of the time of ruin in the classical risk model.

Formula (3.48) is a simpler expression than that given for wk(u, t) by Nie et al.

(2015) as it is based on infinite sums of Bessel functions, whereas the formula given by

Nie et al. (2015) involves double infinite summation of Bessel functions. We now show

formula (3.48) can be manipulated to obtain the expression given in Nie et al. (2015).

Result 3.3. We can express formula (3.48) as

wk(u, t) = e−αu−(λ+αc)t

∞∑
n=0

(1− e−αk)n
∞∑
j=1

[α(u− k)]j−1

Γ(j)
(λt)n+jt−1

× 1

Γ(n+ j)
0F1(n+ j + 1;αλct2). (3.51)
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Derivation. Expanding the modified Bessel functions in formula (3.48) yields

wk(u, t) = λe−αu−(λ+αc)t

∞∑
n=0

(1− e−αk)n(λt)n
∞∑
m=0

[αλt(u+ ct− k)]m

m! (n+m)!

−ce−αu−(λ+αc)t

∞∑
n=0

(1− e−αk)n(λt)n+2α
∞∑
m=0

[αλt(u+ ct− k)]m

m! (m+ n+ 2)!

and using the binomial expansion gives

wk(u, t)

= λe−αu−(λ+αc)t

∞∑
n=0

(1− e−αk)n(λt)n
∞∑
m=0

(αλt)m

m! (n+m)!

m∑
j=0

(
m

j

)
(u− k)j(ct)m−j

−ce−αu−(λ+αc)t

∞∑
n=0

(1− e−αk)n(λt)n+2

∞∑
m=0

α(αλt)m

m! (m+ n+ 2)!

m∑
j=0

(
m

j

)
(u− k)j(ct)m−j.

Interchanging the order of the inner summations we find

wk(u, t)

= λe−αu−(λ+αc)t

∞∑
n=0

(1− e−αk)n(λt)n
∞∑
j=0

∞∑
m=j

(αλt)m

m! (n+m)!

(
m

j

)
(u− k)j(ct)m−j

−ce−αu−(λ+αc)t

∞∑
n=0

(1− e−αk)n(λt)n+2

∞∑
j=0

∞∑
m=j

α(αλt)m

m! (m+ n+ 2)!

(
m

j

)
(u− k)j(ct)m−j

and changing the variables of summation we obtain

wk(u, t)

= λe−αu−(λ+αc)t

∞∑
n=0

(1− e−αk)n(λt)n
∞∑
j=1

∞∑
m=0

(αλt)m+j−1(u− k)j−1(ct)m

m! (j − 1)! (n+m+ j − 1)!

−ce−αu−(λ+αc)t

∞∑
n=0

(1− e−αk)n(λt)n+2

∞∑
j=1

∞∑
m=0

α(αλt)m+j−1(u− k)j−1(ct)m

m! (j − 1)! (n+m+ j + 1)!

= e−αu−(λ+αc)t

∞∑
n=0

(1− e−αk)n
∞∑
j=1

[α(u− k)]j−1

Γ(j)
(λt)n+jt−1

×

{
∞∑
m=0

(αλct2)m

m! (m+ n+ j − 1)!
−
∞∑
m=0

(αλct2)m+1

m! (m+ n+ j + 1)!

}

= e−αu−(λ+αc)t

∞∑
n=0

(1− e−αk)n
∞∑
j=1

[α(u− k)]j−1

Γ(j)
(λt)n+jt−1

× 1

(t
√
αλc)n+j−1

{
In+j−1

(
2t
√
αλc

)
− In+j+1

(
2t
√
αλc

)}
.
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From Abramowitz and Stegun (1972, formula 9.6.26) we have the following recursive

relations

Iν−1(t)− Iν+1(t) =
2ν

t
Iν(t).

Applying this identity we obtain

wk(u, t) = e−αu−(λ+αc)t

∞∑
n=0

(1− e−αk)n
∞∑
j=1

[α(u− k)]j−1

Γ(j)
(λt)n+jt−1

× n+ j

(t
√
αλc)n+j

In+j

(
2t
√
αλc

)
and using the identity

Iν(z) =
1

Γ(ν + 1)

(z
2

)ν
0F1(ν + 1; z2/4) (3.52)

the result follows. �

Setting k = 0 in formula (3.51) gives formula (2.7) of Drekic and Willmot (2003).

Thus, our technique also establishes the identity of their formula with the comparatively

simpler formula for w(u, t) given in Dickson et al. (2005).

The next result gives the probability mass function of the number of claims until

ruin.

Result 3.4. When the initial surplus is k, for n = 1, 2, 3, . . . ,

pk(k, n+ 1) = e−αk
n∑
j=0

(1− e−αk)j
(

αc

λ+ αc

)n−j (
λ

λ+ αc

)n+1
(2n− j)! (j + 1)

(n− j)! (n+ 1)!

(3.53)

and pk(k, 1) = λe−αk/(λ+ αc).

Derivation. Integrating over t in formula (3.46) gives the required result. �

Setting k = 0 in formula (3.53) recovers formula (24) of Landriault et al. (2011).

In the next result, we demonstrate that pk(k, n) is a defective probability function for

αc > λ as discussed by Landriault et al. (2011).

Result 3.5. For u = k, the ultimate ruin probability is

ψk(k) =
e−αkλ/(αc)

1− (1− e−αk)λ/(αc)
=
∞∑
n=0

e−αk(1− e−αk)n
(
λ

αc

)n+1

. (3.54)
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Derivation.

ψk(k) =
∞∑
n=1

pk(k, n)

= e−αk
∞∑
n=1

n−1∑
j=0

λn(1− e−αk)j
(

αc

λ+ αc

)n−j−1(
λ

λ+ αc

)n
(2n− j − 2)! (j + 1)

(n− j − 1)!n!

= e−αk
∞∑
j=0

∞∑
n=0

(1− e−αk)j
(

λ

λ+ αc

)n+j+1(
αc

λ+ αc

)n
(2n+ j + 1)!

n! (n+ j + 1)!

j + 1

2n+ j + 1

=
∞∑
j=0

e−αk(1− e−αk)j
(

λ

λ+ αc

)j+1

Bj+1
2

(
λαc

(λ+ αc)2

)
where Bt is the generalised binomial series given by

Bt(z) =
∞∑
k=0

(
tk + 1

k

)
1

tk + 1
zk

with the property that

Bt(z)r =
∞∑
k=0

(
tk + r

k

)
r

tk + r
zk (3.55)

and for t = 2, B2(z) = 1−
√

1−4z
2z

. See Graham et al. (1994). Therefore, it is easily seen

that

B2

(
λαc

(λ+ αc)2

)
=
λ+ αc

αc
,

giving

∞∑
n=1

pk(k, n) =
∞∑
j=0

e−αk(1− e−αk)j
(
λ

αc

)j+1

which is the same as (3.54). �

The next result gives the probability mass function of the number of claims until

ruin for u > k.
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Result 3.6. When u > k, for n = 2, 3, 4, . . . , pk(u, n) is given recursively by

pk(u, n)

=
λnαn−1e−αu

(n− 1)!2

n−1∑
j=0

(
n− 1

j

)
cj(u− k)n−j−1(n+ j − 1)!

(λ+ αc)n+j

+pk(k, n− 1)e−α(u−k)(1− e−αk) λ

λ+ αc

+λ
n−2∑
m=1

pk(k, n−m− 1)e−α(u−k)(1− e−αk)(αλ)m

m!2

m∑
j=0

(
m

j

)
cj(u− k)m−j(m+ j)!

(λ+ αc)m+j+1

−c
n−1∑
m=1

pk(k, n−m)
(αλ)me−α(u−k)

m!(m− 1)!

m−1∑
j=0

(
m− 1

j

)
cj(u− k)m−j−1(m+ j)!

(λ+ αc)m+j+1

(3.56)

and pk(u, 1) = λe−αu/(λ+ αc).

Derivation. The formula for pk(u, 1) is obtained by integrating over t in (3.30). For

n = 2, 3, 4, . . . , we integrate over t in formula (3.31). Taking a term by term approach,

the first term becomes∫ ∞
0

e−λt
(λt)n

n!

∫ u+ct−k

0

fn∗(x)λF̄ (u+ ct− x) dx dt

=

∫ ∞
0

e−λt
(λt)n

n!

∫ u+ct−k

0

αne−αxxn−1

Γ(n)
λe−α(u+ct−x) dx dt

= λe−αu
(αλ)n

n!n!

∫ ∞
0

e−(λ+αc)ttn(u+ ct− k)n dt

= λe−αu
(αλ)n

n!2

n∑
j=0

(
n

j

)
cj(u− k)n−j(n+ j)!

(λ+ αc)n+j+1
. (3.57)

The second term in (3.31) can be written as∫ ∞
0

∫ t

0

wk(k, n, t− τ)λe−λτ
(
F̄ (u+ cτ − k)− F̄ (u+ cτ)

)
dτ dt

=

∫ ∞
0

∫ t

0

wk(k, n, t− τ)λe−λτ (1− e−αk)e−α(u+cτ−k) dτ dt

= pk(k, n)e−α(u−k)(1− e−αk) λ

λ+ αc
(3.58)

which can be obtained after switching the integrals and noting that
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pk(k, n) =
∫∞

0
wk(k, n, t) dt. Then, we consider the third term. We have∫ ∞

0

n−1∑
m=1

∫ t

0

e−λτ
(λτ)m

m!

∫ u+cτ−k

0

fm∗(x)

×λ
(
F̄ (u+ cτ − k − x)− F̄ (u+ cτ − x)

)
dxwk(k, n−m, t− τ) dτ dt

= λ

n−1∑
m=1

∫ ∞
0

∫ t

0

e−λτ
(λτ)m

m!m!
(1− e−αk)αme−α(u+cτ−k)(u+ cτ − k)m

×wk(k, n−m, t− τ) dτ dt

= λ
n−1∑
m=1

pk(k, n−m)e−α(u−k)(1− e−αk)(αλ)m

m!2

m∑
j=0

(
m

j

)
cj(u− k)m−j(m+ j)!

(λ+ αc)m+j+1
.

(3.59)

The last term of formula (3.31) can be similarly evaluated, giving

−c
∫ ∞

0

n∑
m=1

∫ t

0

e−λτ
(λτ)m

m!
fm∗(u+ cτ − k)wk(k, n+ 1−m, t− τ) dτ dt

= −c
n∑

m=1

pk(k, n+ 1−m)
(αc)me−α(u−k)

m! (m− 1)!

m−1∑
j=0

(
m− 1

j

)
cj(u− k)m−j−1(m+ j)!

(λ+ αc)m+j+1
.

(3.60)

Combining (3.57), (3.58), (3.59) and (3.60) and changing n+ 1 to n, the result follows.

�

Formula (3.56) generalises the formula for p(u, n) in the classical risk model – if we

set k = 0 we obtain the result in Dickson (2012) for the classical risk model.

We conclude this section by plotting the probability function of the number of

claims until ruin given that ruin occurs as it gives us a better insight as to the nature

of pk(u, n). Figure 3.9 shows values of pk(15, n)/ψk(15) for n = 1, 2, . . . , 400, when

α = 1, c = 1.2, u = 15 and k = 2, so that ψk(15) = 0.04623, which is in the range of

practical interest. We observe that it is positively-skewed with the maximum probability

being at n = 33. This feature is compatible to the plots of p(u, n)/ψ(u) in Eǵıdio dos

Reis (2002) for the probability function of the number of claims until ruin given that

ruin occurs in the classical risk model. In addition, the plot of pk(u, n)/ψk(u) exhibits

a similar pattern to the graph of the density of the time of ruin as we would expect.

See, for example, Nie et al. (2015) or Figure 5.5.
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Figure 3.9: pk(15, n)/ψk(15), Exponential(1)

3.6.2 Erlang(2) claims

We now consider the case when individual claim amounts have an Erlang(2, α) distri-

bution with F̄ (x) = e−αx(1 + αx), where x ≥ 0 with α > 0 and provide results for

wk(u, n, t) for u = k and u > k.

Result 3.7. When the initial surplus is k, for n = 1, 2, 3, . . . ,

wk(k, n+ 1, t) = e−(λ+αc)t

n∑
j=0

j∑
m=0

(
j

m

)
amk b

j−m
k λn+1(αct)2n−m−j+1tn

(n− j)! (2n−m+ 1)!(
(1− ak)
αct

(2j −m+ 1) + (1− bk)
2j −m+ 2

2n−m+ 2

)
(3.61)

and

wk(k, 1, t) = λe−(λ+αc)t[(1− ak) + (1− bk)αct] (3.62)

where ak = 1− e−αk − αke−αk and bk = 1− e−αk.
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Derivation. We define

F̄ 1
n(t) =

n−1∑
m=0

(
n− 1

m

)
(−1)mF̄m,n(t)

=
n−1∑
m=0

(
n− 1

m

)
(−1)m

∫ t

0

A(n−1−m)∗(x)B
(m+1)∗
k (t− x) dx

and solve the integral by applying properties of the Laplace transform of a convolution

as discussed in Result 3.2. Hence, the Laplace transform of F̄ 1
n is given by

˜̄F 1
n(s) =

n−1∑
m=0

(
n− 1

m

)
(−1)mÃ(s)n−1−mB̃k(s)

m+1

= B̃k(s)
(
Ã(s)− B̃k(s)

)n−1

=

(
e−αk

α + s
+
αke−αk

α + s
+

αe−αk

(α + s)2

)
×
(

1

α + s
+

α

(α + s)2
− e−αk

α + s
− αe−αk

(α + s)2
− αke−αk

α + s

)n−1

=

(
1− ak
α + s

+
α(1− bk)
(α + s)2

)(
ak

α + s
+

αbk
(α + s)2

)n−1

=

(
1− ak
α + s

+
α(1− bk)
(α + s)2

) n−1∑
m=0

(
n− 1

m

)
amk (αbk)

n−1−m

(α + s)2n−2−m

=
n−1∑
m=0

(
n− 1

m

)
amk b

n−1−m
k αn−m

(α + s)2n−m

(
(1− ak)

α + s

α
+ (1− bk)

)
which inverts to

F̄ 1
n(t) = e−αt

n−1∑
m=0

(
n− 1

m

)
amk b

n−1−m
k

αn−mt2n−m−1

Γ(2n−m− 1)

(
1− ak
αt

+
1− bk

2n−m− 1

)
.

Writing formula (3.26) in terms of F̄ 1
n gives

wk(k, n+ 1, t)

= e−λt
λn+1

cn
F̄ 1
n+1(ct) +

n−1∑
j=0

e−λt
λn+1

cj+1

tn−j−1

(n− j)!

∫ ct

0

yf (n−j)∗(ct− y)F̄ 1
j+1(y) dy

= λn+1e−(λ+αc)t

n∑
m=0

(
n

m

)
amk b

n−m
k

(αct)n−mtn

(2n−m)!

(
(1− ak) + (1− bk)

(αct)

(2n−m+ 1)

)

+
n−1∑
j=0

e−λt
λn+1

cj+1

tn−j−1

(n− j)!

∫ ct

0

yf (n−j)∗(ct− y)F̄ 1
j+1(y) dy. (3.63)
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We first consider the integral by noting that the (n−j)-fold convolution of an Erlang(2, α)

density with itself is the Erlang(2(n− j), α) density. Inserting for F̄ 1
j+1 we get∫ ct

0

yf (n−j)∗(ct− y)F̄ 1
j+1(y) dy

= e−αct
j∑

m=0

(
j

m

)
amk b

j−m
k

∫ ct

0

eαyyα2(n−j)(ct− y)2(n−j)−1

(2n− 2j − 1)!

αj−me−αyy2j−m

(2j −m)!(
(1− ak) + (1− bk)

αy

2j −m+ 1

)
dy.

The integral can be evaluated by using a property of the beta function, giving∫ ct

0

yf (n−j)∗(ct− y)F̄ 1
j+1(y) dy

= e−αct
j∑

m=0

(
j

m

)
amk b

j−m
k

α2n−m−j(ct)2n−m+1

(2n−m+ 1)!(
(1− ak)(2j −m+ 1) + (1− bk)

αct(2j −m+ 2)

2n−m+ 2

)
.

Inserting this in (3.63), formula (3.61) follows. We can obtain formula (3.62) by applying

(3.25). �

To find the probability mass function of the number of claims until ruin we integrate

over t in formula (3.62), giving

pk(k, 1) =
λ(1− ak)
λ+ αc

+
αλc(1− bk)
(λ+ αc)2

=
λe−αk

λ+ αc

(
1 + αk +

αc

λ+ αc

)
(3.64)

where the last line is obtained after substituting for ak and bk. Similarly, integrating

over t in formula (3.61), for n = 1, 2, 3, . . . , yields

pk(k, n+ 1)

=
n∑
j=0

j∑
m=0

(
j

m

)
amk b

j−m
k

(
αc

λ+ αc

)2n−m−j (
λ

λ+ αc

)n+1
(3n−m− j)!

(n− j)!(2n−m+ 1)!(
(1− ak)(2j −m+ 1) + (1− bk)

(
αc

λ+ αc

)
(3n−m− j + 1)(2j −m+ 2)

(2n−m+ 2)

)
(3.65)

76



which also holds for n = 0.

In the next result we find the ultimate ruin probability for u = k. Although this can

be obtained from results in Nie et al. (2011) this new derivation is of some mathematical

interest.

Result 3.8. For u = k, the ultimate ruin probability is

ψk(k) =
(2e−αk + αke−αk)λ/(αc)

1− (2− αke−αk − 2e−αk)λ/(αc)
. (3.66)

Derivation. Summing over n in formula (3.65) yields

ψk(k) =
∞∑
n=1

pk(k, n)

=
∞∑
n=0

n∑
j=0

j∑
m=0

(
j

m

)
amk b

j−m
k

(
αc

λ+ αc

)2n−m−j (
λ

λ+ αc

)n+1
(3n−m− j)!

(n− j)!(2n−m+ 1)!(
(1− ak)(2j −m+ 1) + (1− bk)

(
αc

λ+ αc

)
(3n−m− j + 1)(2j −m+ 2)

(2n−m+ 2)

)
=

∞∑
j=0

∞∑
n=j

j∑
m=0

(
j

m

)
amk b

j−m
k

(
αc

λ+ αc

)2n−m−j (
λ

λ+ αc

)n+1
(3n−m− j)!

(n− j)!(2n−m+ 1)!(
(1− ak)(2j −m+ 1) + (1− bk)

(
αc

λ+ αc

)
(3n−m− j + 1)(2j −m+ 2)

(2n−m+ 2)

)
=

∞∑
j=0

∞∑
n=0

j∑
m=0

(
j

m

)
amk b

j−m
k

(
αc

λ+ αc

)2n+j−m(
λ

λ+ αc

)n+j+1
(3n−m+ 2j)!

(2n+ 2j −m+ 1)!n!(
(1− ak)(2j −m+ 1) + (1− bk)

(
αc

λ+ αc

)
(3n−m+ 2j + 1)(2j −m+ 2)

(2n+ 2j −m+ 2)

)
=

∞∑
n=0

∞∑
j=0

j∑
m=0

(
j

m

)
amk b

j−m
k

(
αc

λ+ αc

)2n+j−m(
λ

λ+ αc

)n+j+1
(3n−m+ 2j)!

(2n+ 2j −m+ 1)!n!(
(1− ak)(2j −m+ 1) + (1− bk)

(
αc

λ+ αc

)
(3n−m+ 2j + 1)(2j −m+ 2)

(2n+ 2j −m+ 2)

)
=

∞∑
n=0

∞∑
m=0

∞∑
j=m

(
j

m

)
amk b

j−m
k

(
αc

λ+ αc

)2n+j−m(
λ

λ+ αc

)n+j+1
(3n−m+ 2j)!

(2n+ 2j −m+ 1)!n!(
(1− ak)(2j −m+ 1) + (1− bk)

(
αc

λ+ αc

)
(3n−m+ 2j + 1)(2j −m+ 2)

(2n+ 2j −m+ 2)

)
=

∞∑
n=0

∞∑
m=0

∞∑
j=0

(
m+ j

m

)
amk b

j
k

(
αc

λ+ αc

)2n+j (
λ

λ+ αc

)n+m+j+1
(3n+ 2j +m)!

(2n+ 2j +m+ 1)!n!
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(
(1− ak)(2j +m+ 1) + (1− bk)

(
αc

λ+ αc

)
(3n+ 2j +m+ 1)(2j +m+ 2)

(2n+ 2j +m+ 2)

)
and by (3.55) this can be written as

∞∑
n=1

pk(k, n) =
∞∑
m=0

∞∑
j=0

(
m+ j

m

)
amk b

j
k

(
αc

λ+ αc

)j (
λ

λ+ αc

)m+j+1

B3(z)2j+m+1

(
(1− ak) + (1− bk)

αcB3(z)

λ+ αc

)
=

λB3(z)

λ+ αc

∞∑
m=0

(
λakB3(z)

λ+ αc

)m ∞∑
j=0

(
m+ j

m

)(
λαcbkB3(z)2

(λ+ αc)2

)j
(

(1− ak) + (1− bk)
αcB3(z)

λ+ αc

)
, (3.67)

where z = λ
λ+αc

(
αc

λ+αc

)2
.

Jain and Consul (1971) define the generalised negative binomial probability function

for a random variable X as

Pr(X = n) =

(
βn+ k

n

)
k

βn+ k
pn(1− p)n(β−1)+k,

for n = 0, 1, 2, . . . , where k > 0, 0 < p < 1 and |βp| < 1. As
∑∞

n=0 Pr(X = n) = 1,

(1− p)−k =
∞∑
n=0

(
βn+ k

n

)
k

βn+ k
pn(1− p)n(β−1) =

(
Bβ
(
p(1− p)β−1

))k
,

we see that

(1− p)−1 = Bβ
(
p(1− p)β−1

)
.

Hence, B3

(
λ

λ+αc

(
αc

λ+αc

)2
)

=
(
1− λ

λ+αc

)−1
. Substituting for B3(z)2 and B3(z) in equa-

tion (3.67) yields

∞∑
n=1

pk(k, n) =
λ

αc

∞∑
m=0

(
λak
αc

)m ∞∑
j=0

(
m+ j

m

)(
λbk
αc

)j
[(1− ak) + (1− bk)] .

The result follows by applying the identity (see Graham et al., 1994)

1

(1− z)n+1
=
∞∑
k=0

(
n+ k

n

)
zk

where z = λbk/(αc). �
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Figure 3.10: pk(9, n)/ψk(9), Erlang(2, 2)

For the case u > k we can follow techniques in Dickson (2007), but the resulting

equation is not suitable for computation as firstly, the expression involves triple and

quadruple summations and secondly, we may not find a robust truncation point. How-

ever we can use software to numerically integrate formula (3.26) over t to find pk(u, n).

Figure 3.10 illustrates the graph of the conditional probability function of the number

of claims until ruin for Erlang(2, 2) claims with λ = 1 and c = 1.2. We choose u = 9

and k = 2, so that ψk(9) = 0.04324, which is in the range of practical interest. We

observe that similar to Figure 3.9 the graph of pk(u, n)/ψk(u) is positively-skewed. In

this case, the maximum probability is on the occurrence of the 20th claim. As we can

see it is more likely that ruin occurs when n < 30 compared to the exponential case in

Figure 3.9. In other words, pk(u, n) takes higher values in this range and ruin, if it oc-

curs, occurs sooner for Erlang(2) claims than exponential claims. However, as pointed

out by Eǵıdio dos Reis (2002) for the classical risk model, our experience with u = 9

for exponential claims has shown that the plot of pk(u, n)/ψk(u) has the same shape as

in Figure 3.10. Comparing Figure 3.10 with the figures in Eǵıdio dos Reis (2002) we
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observe that the pattern of the probability mass function of the number of claims until

ruin given that ruin occurs in the classical risk model with capital injections is similar

to p(u, n)/ψ(u) in the classical risk model.

3.7 Covariance between Tu,k and NTu,k

In this section, we consider the covariance between the time of ruin and the number of

claims until ruin given that ruin occurs which is given by

Cov[NTu,k , Tu,k|Tu,k <∞] = E[NTu,kTu,k|Tu,k <∞]− E[NTu,k |Tu,k <∞]E[Tu,k|Tu,k <∞].

First, we derive an expression for the nth moment of Tu,k, and then provide results

without proof for the first moment of NTu,k and the joint moment of Tu,k and NTu,k

as the proofs are similar to those for the moments of Tu,k. We conclude this section

by illustrating the application of our results in the case of individual claim amounts

following an exponential distribution.

3.7.1 Moments of Tu,k and NTu,k

Moments of the time of ruin are other ruin-related quantities that can be obtained from

our Gerber-Shiu function. In this section, we adapt the recursive approach provided

by Albrecher and Boxma (2005a) to derive moments of the time of ruin for our model.

This problem is also considered by Nie et al. (2015). Their formulae for the moments

of the ruin time are based on the joint density of the time of ruin and the deficit at

ruin in the classical risk model and subject to the factorisation

w(u, y, t) =
m∑
i=1

hi(u, t)τi(y)

for some functions {hi(u, t)}mi=1 and densities {τi(y)}mi=1. This means that to implement

their method we need the density of the time of ruin, whereas our recursive approach

is based on the ultimate ruin probability which is simpler to calculate.

We set r = 1 and ω(x, y) = 1 for x ≥ k and y > 0 in equation (3.1). In this case

the Gerber-Shiu function is

φk,δ(u) = E
[
e−δTu,kI(Tu,k <∞) | U(0) = u

]
.
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We now begin by denoting ψk,n(u) to be the nth moment of the time of ruin in our risk

model with capital injections, which is given by

ψk,n(u) = E
[
T nu,k I(Tu,k <∞)

]
= (−1)n

∂n

∂δn
φk,δ(u)

∣∣∣
δ=0

with ψk,0(u) = ψk(u). Then, the nth moment of the time of ruin, given that ruin has

occurred, is given by

E
[
T nu,k|Tu,k <∞

]
=
ψk,n(u)

ψk(u)
.

The following result provides expressions for the moments of the time of ruin.

Theorem 3.10. The nth moment of the ruin time, n = 1, 2, 3, . . . , is given recursively

by

E[T nu,kI(Tu,k <∞)]

=
−n
cδ(0)

∫ u−k

0

δ(u− k − x)E[T n−1
x+k,k I(Tx+k,k <∞)] dx

− λ

cδ(0)
E[T nk,k I(Tk,k <∞)]

∫ u−k

0

δ(u− k − x)
(
F̄ (x)− F̄ (x+ k)

)
dx

+
δ(u− k)

δ(0)
E[T nk,k I(Tk,k <∞)] (3.68)

where

E[T nk,k I(Tk,k <∞)] =
n

c(1−H(0, k))

∫ ∞
k

E[T n−1
u,k I(Tu,k <∞)] du. (3.69)

Proof. We can rewrite formula (3.2) as

φ̃k,δ(s) =
1

δ + λ− λf̃(s)− cs

(
− ce−skφk,δ(k)

+λφk,δ(k)

∫ ∞
k

e−su
(
F̄ (u− k)− F̄ (u)

)
du+ λ

∫ ∞
k

e−suF̄ (u) du

)
.

The nth derivative of φ̃k,δ(s) with respect to δ by induction is found as

∂n

∂δn
φ̃k,δ(s) =

1

cs− δ − λ+ λf̃(s)

(
n
∂n−1

∂δn−1
φ̃k,δ(s) + ce−sk

∂n

∂δn
φk,δ(k)

−λ ∂
n

∂δn
φk,δ(k)

∫ ∞
k

e−su
(
F̄ (u− k)− F̄ (u)

)
du

)
. (3.70)
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Defining

h̃n(s) =
∂n

∂δn
φ̃k,δ(s)

∣∣∣
δ=0

and setting δ = 0 in equation (3.70) we obtain

h̃n(s) =
1

cs− λ+ λf̃(s)

(
nh̃n−1(s) + (−1)nce−skψk,n(k)

−(−1)nλψk,n(k)

∫ ∞
k

e−su
(
F̄ (u− k)− F̄ (u)

)
du

)

=
δ̃(s)

cδ(0)

(
nh̃n−1(s) + (−1)nce−skψk,n(k)

−(−1)nλψk,n(k)

∫ ∞
k

e−su
(
F̄ (u− k)− F̄ (u)

)
du

)
. (3.71)

To invert h̃n(s) we note that

h̃n(s) =

∫ ∞
k

e−su(−1)nψk,n(u) du = (−1)n
∫ ∞

0

e−s(u+k)ψk,n(u+ k) du.

Let An,k(u) = ψk,n(u+k). Then, the first term on the right-hand side of equation (3.71)

is

n(−1)n−1δ̃(s)

cδ(0)
e−skÃn−1,k(s)

which inverts to

n(−1)n−1

cδ(0)

∫ u−k

0

ψk,n−1(x+ k)δ(u− k − x) dx.

Using the shift property of the Laplace transform, the inverse of the second term on

the right-hand side of (3.71) is (−1)ncψk,n(k)δ(u− k)/cδ(0). Finally, the inverse of the

last term in (3.71) is given by

(−1)nλ

cδ(0)
ψk,n(k)

∫ u−k

0

(
F̄ (x)− F̄ (x+ k)

)
δ(u− k − x) dx.

Combining these results, formula (3.68) follows.

To find formula (3.69) we apply the idea of Albrecher and Boxma (2005a, Lemma

6.1). We note that when δ = 0, as s = 0 is a zero of the denominator of equation (3.70),
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it must also be a zero of the numerator. Thus

∂n

∂δn
φk,δ(k)

∣∣∣
δ=0

(
λ

∫ ∞
k

e−su
(
F̄ (u− k)− F̄ (u)

)
du− ce−sk

)
= n

∂n−1

∂δn−1
φ̃k,δ(s)

∣∣∣
δ=0

.

(3.72)

Letting s→ 0 in the bracket on the left-hand side of (3.72) gives

lim
s→0

λ

∫ ∞
k

e−su
(
F̄ (u− k)− F̄ (u)

)
du− ce−sk = c[H1(0, k)− 1].

Rearranging (3.72) we obtain

∂n

∂δn
φk,δ(k)

∣∣∣
δ=0

=
−n

c[1−H1(0, k)]
lim
s→0

∫ ∞
k

e−su
∂n−1

∂δn−1
φk,δ(u) du

∣∣∣
δ=0

=
n(−1)n

c[1−H1(0, k)]

∫ ∞
k

ψk,n−1(u) du.

Formulae (3.68) and (3.69) generalise results for the nth moment of the time of

ruin in the classical risk model first provided by Lin and Willmot (2000), and then by

Albrecher and Boxma (2005a). Indeed, their formulae can be obtained by setting k = 0

in formulae (3.68) and (3.69).

We can obtain a simplified expression for the first moment of the time of ruin for

u = k. Substituting for ψk(u) from formula (3.9) in formula (3.69) yields

ψk,1(k) =
1

c[1−H1(0, k)]

(∫ ∞
k

ψ(u− k)− 1− ψ(0)

1−H1(0, k)
H1(u− k, k) du

)
=

E[L]

c[1−H1(0, k)]
− δ(0)

c[1−H1(0, k)]2

∫ ∞
0

H1(u, k) du (3.73)

where E[L] =
∫∞

0
ψ(u) du = λm2

2(c−λm1)
with m1 and m2 being the first and the second

moments of the individual claim amount distribution. See, for example, Dickson (2005).

We now consider the moments of the number of claims until ruin by setting δ = 0,

ω(x, y) = 1 for x ≥ k and y > 0 in (3.1). In this case the Gerber-Shiu function is

φk,r(u) = E
[
rNTu,k I(Tu,k <∞) | U(0) = u

]
.

Taking the nth derivative of φk,r(u) with respect to r, then setting r = 1 gives

∂n

∂rn
φk,r(u)

∣∣∣
r=1

= E[NTu,k(NTu,k − 1) . . . (NTu,k − n+ 1)I(Tu,k <∞)].

The next two results give expressions for the first two factorial moments of the number

of claims until ruin.
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Theorem 3.11. When the initial surplus is u > k we have

E[NTu,k I(Tu,k <∞)]

=
δ(u− k)

δ(0)
E[NTk,k I(Tk,k <∞)]− λ

cδ(0)

∫ u−k

0

F̄ (x+ k)δ(u− k − x) dx

− λ

cδ(0)

(
ψk(k) + E[NTk,k I(Tk,k <∞)]

)∫ u−k

0

(
F̄ (x)− F̄ (x+ k)

)
δ(u− k − x) dx

− λ

cδ(0)

∫ u−k

0

b(u− k − x)ψk(x+ k) dx (3.74)

where b(u) =
∫ u

0
δ(u− x)f(x) dx, and

E[NTk,k I(Tk,k <∞)] =
ψk(k)H1(0, k) + ψ(0)−H1(0, k) + λ

c

∫∞
k
ψk(u) du

1−H1(0, k)
.

(3.75)

Theorem 3.12. When u > k we have

E[NTu,k(NTu,k − 1) I(Tu,k <∞)]

=
δ(u− k)

δ(0)
E[NTk,k(NTk,k − 1) I(Tk,k <∞)]

− 2λ

cδ(0)

∫ u−k

0

b(u− k − x)E[NTx+k,k I(Tx+k,k <∞)] dx

− λ

cδ(0)

(
2E[NTk,k I(Tk,k <∞)] + E[NTk,k(NTk,k − 1) I(Tk,k <∞)]

)
×
∫ u−k

0

δ(u− k − x)
(
F̄ (x)− F̄ (x+ k)

)
dx (3.76)

where b(u) =
∫ u

0
δ(u− x)f(x) dx and

E[NTk,k(NTk,k − 1) I(Tk,k <∞)]

=
2E[NTk,k I(Tk,k <∞)]H1(0, k) + 2λ

c

∫∞
k
E[NTu,k I(Tu,k <∞)] du

1−H1(0, k)
.

(3.77)

We remark that if we set k = 0 in formulae (3.74), (3.75), (3.76) and (3.77), we can

recover the results in the classical risk model without capital injections. See Dickson

(2012).

84



Next we provide results for the joint moment of Tu,k and NTu,k . Setting ω(x, y) = 1

in equation (3.1) and noting that

− ∂

∂r

∂

∂δ
φk,r,δ(u)

∣∣∣
r=1,δ=0

= E[NTu,kTu,k I(Tu,k <∞)] (3.78)

we can obtain the covariance between NTu,k and Tu,k.

Theorem 3.13. When u > k we have

E[NTu,kTu,k I(Tu,k <∞)] =
δ(u− k)

δ(0)
E[NTk,kTk,k I(Tk,k <∞)]

− λ

cδ(0)

(
E[Tk,k I(Tk,k <∞)] + E[NTk,kTk,k I(Tk,k <∞)]

)
×
∫ u−k

0

δ(u− k − x)
(
F̄ (x)− F̄ (x+ k)

)
dx

− 1

cδ(0)

∫ u−k

0

δ(u− k − x)E[NTx+k,k I(Tx+k,k <∞)] dx

− λ

cδ(0)

∫ u−k

0

b(u− k − x)E[Tx+k,k I(Tx+k,k <∞)] dx

where b(u) =
∫ u

0
δ(u− x)f(x) dx and

E[NTk,kTk,k I(Tk,k <∞)]

=
1

1−H1(0, k)

(
E[Tk,k I(Tk,k <∞)]H1(0, k) +

1

c

∫ ∞
k

E[NTu,k I(Tu,k <∞)] du

+
λ

c

∫ ∞
k

E[Tu,k I(Tu,k <∞)] du

)
. (3.79)

We show an application of our results in the next example.

Example 3.1. Suppose F (x) = 1 − e−αx, where x ≥ 0 with α > 0, then using the

above formulae and the following results

ψ(u) =
λ

αc
e−(α−λ/c)u, ψk(k) =

λe−αk

αc− λ(1− e−αk)
,

ψk(u) =
λe−(α−λ/c)(u−k)−αk

αc− λ(1− e−αk)
, H1(0, k) = ψ(0)(1− e−αk),
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we obtain

• E[Tk,k I(Tk,k <∞)] =
αcλe−αk

(αc− λ)
(
αc− λ(1− e−αk)

)2 ;

• E[T 2
k,k I(Tk,k <∞)] =

2αλce−αk
(
α2c2 − λ2(1− e−αk)

)
(αc− λ)3

(
αc− λ(1− e−αk)

)3 ;

• E[Tu,k I(Tu,k <∞)] =
λe−αk

(
αc2 + λ(u− k)

(
αc− λ(1− e−αk)

))
e−(α−λ/c)(u−k)

c(αc− λ)
(
αc− λ(1− e−αk)

)2 ;

• E[T 2
u,k I(Tu,k <∞)] =

−2

cδ(0)

∫ u−k

0

E[Tx+k,k I(Tx+k,k <∞)]δ(u− k − x) dx

+
δ(u− k)

δ(0)
E[T 2

k,k I(Tk,k <∞)]

− λ

cδ(0)
E[T 2

k,k I(Tk,k <∞)](1− e−αk) 1

α

(
1− e−(α−λ/c)(u−k)

)
;

• E[Tu,k|Tu,k <∞] =

(
αc2 + λ(u− k)

(
αc− λ(1− e−αk)

))
c(αc− λ)

(
αc− λ(1− e−αk)

) ;

• E[NTk,k I(Tk,k <∞)] =
(αc)2λe−αk

(αc− λ)
(
αc− λ(1− e−αk)

)2 ;

• E[NTk,k(NTk,k − 1) I(Tk,k <∞)] =
2(αc)3λ2e−αk

(
αc(2− e−αk)− 2λ(1− e−αk)

)
(αc− λ)3

(
αc− λ(1− e−αk)

)3 ;

• E[NTu,k I(Tu,k <∞)] =
αλe−αk

(
αc2 + λ(u− k)

(
αc− λ(1− e−αk)

))
e−(α−λ/c)(u−k)

(αc− λ)
(
αc− λ(1− e−αk)

)2 ;

• E[NTu,k |Tu,k <∞] =
α
(
αc2 + λ(u− k)

(
αc− λ(1− e−αk)

))
(αc− λ)

(
αc− λ(1− e−αk)

) ;

• E[NTu,k(NTu,k − 1) I(Tu,k <∞)] =
δ(u− k)

δ(0)
E[NTk,k(NTk,k − 1) I(Tk,k <∞)]

− 2λ

cδ(0)

∫ u−k

0

(1− e−(α−λ/c)(u−k−x))E[NTx+k,k I(Tx+k,k <∞)]dx

− λ

cδ(0)

(
2E[NTk,k I(Tk,k <∞)] + E[NTk,k(NTk,k − 1) I(Tk,k <∞)]

)
×(1− e−αk) 1

α

(
1− e−(α−λ/c)(u−k)

)
;

• Var[Tk,k|Tk,k <∞] = E[T 2
k,k|Tk,k <∞]−

(
E[Tk,k|Tk,k <∞]

)2
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=
αc
(
αc(αc+ λ)− 2λ2(1− e−αk)

)
(αc− λ)3

(
αc− λ(1− e−αk)

)2 ;

• Var[NTk,k |Tk,k <∞] = E[N2
Tk,k
|Tk,k <∞]−

(
E[NTk,k |Tk,k <∞]

)2

=
(αc)2λ

(
α2c2(2− e−αk)− αλc(1− 2e−αk)− λ2(1− e−αk)

)
(αc− λ)3

(
αc− λ(1− e−αk)

)2 ;

• E[NTk,kTk,k I(Tk,k <∞)] =
(αc)2λe−αk

(
α2c2 + αλc(2− e−αk)− 3λ2(1− e−αk)

)
(αc− λ)3

(
αc− λ(1− e−αk)

)3 ;

• E[NTu,kTu,k I(Tu,k <∞)] =
δ(u− k)

δ(0)
E[NTk,kTk,k I(Tk,k <∞)]

− λ

cδ(0)

(
E[Tk,k I(Tk,k <∞)] + E[NTk,kTk,k I(Tk,k <∞)]

)
(1− e−αk)

× 1

α

(
1− e−(α−λ/c)(u−k)

)
− 1

cδ(0)

∫ u−k

0

δ(u− k − x)E[NTx+k,k I(Tx+k,k <∞)] dx

− λ

cδ(0)

∫ u−k

0

(1− e−(α−λ/c)(u−k−x))E[Tx+k,k I(Tx+k,k <∞)] dx;

• Corr[NTu,k , Tu,k|Tu,k <∞] =
Cov[NTu,k , Tu,k|Tu,k <∞]√

Var[NTu,k |Tu,k <∞] Var[NTu,k |Tu,k <∞]
. (3.80)

The relationship between the first moment of Tu,k and NTu,k is the same as in the

classical risk model without capital injections (see Dickson, 2012), i.e.

E[NTu,k |Tu,k <∞] = αcE[Tu,k|Tu,k <∞].

Table 3.1 shows the values of correlation coefficient when α = 1 and λ = 1 for different

values of u, k and c. The key to Table 3.1 is as follows:

(1) denotes the correlation coefficient when k = 0,

(2) denotes the correlation coefficient when k = 1,

(3) denotes the correlation coefficient when k = 3,

(4) denotes the correlation coefficient when k = 5.

We note the following from Table 3.1.
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(i) There is no significant difference between Corr[NTu,k , Tu,k|Tu,k < ∞] in the clas-

sical risk model with and without capital injections. In both models, there is a

strong positive correlation between the time of ruin and the number of claims

until ruin which is unsurprising.

(ii) The greater the premium is, the smaller the correlation coefficient between Tu,k

and NTu,k becomes.

(iii) As k increases, the correlation coefficient gets larger.

(iv) We cannot identify any relationship between the initial surplus and the correlation

coefficient.

Table 3.1: Values of correlation coefficient

u c = 1.1 c = 1.3 c = 1.5

5 (1) 0.998867 0.991552 0.980306
(2) 0.998869 0.991595 0.980449
(3) 0.998915 0.991982 0.981241
(4) 0.998980 0.992360 0.981922

15 (1) 0.998868 0.991581 0.980469
(2) 0.998868 0.991598 0.980528
(3) 0.998887 0.991739 0.980821
(4) 0.998917 0.991837 0.980970

25 (1) 0.998868 0.991588 0.980510
(2) 0.998868 0.991599 0.980548
(3) 0.998879 0.991684 0.980727
(4) 0.998897 0.991736 0.980807

3.8 Concluding remarks

We saw in this chapter that our Gerber-Shiu analysis is not as helpful in dealing with

infinite time ruin problems as it is with dealing with finite time ruin problems. For

the latter it has led us to the rather surprising conclusions that both the density of the

time of ruin and the finite time survival (or ruin) probability for our risk model with

capital injections can be expressed in terms of the aggregate claims distribution for the

classical risk model.

Our analysis in the case of exponentially distributed individual claims has extended

existing results for the classical risk model, and has shown the connection between two

known formulae for the density of the time of ruin in the classical risk model.

88



We found a recursive expression for pk(u, n) when claim amounts follow an expo-

nential distribution but for Erlang(2) claims were only able to calculate pk(u, n) by

numerical integration. In the next chapter, we show that an explicit expression for

pk(u, n) can be obtained for both exponential and Erlang(2) distributions using prob-

abilistic reasoning.

Unfortunately we could obtain relatively simple expressions for wk(u, t) only when

individual claim amounts are exponentially distributed. However, by using numerical

integration of formula (3.40), it should be possible to obtain values for wk(u, t) for other

individual claim amount distributions. For example, Willmot (2015) gives an expres-

sion for g(x, t) when the individual claim amount distribution is an infinite mixture of

Erlangs. Alternatively, we might approximate g(x, t) using Panjer’s (1981) recursion

formula. In Chapters 5 and 6 we discuss another method in more detail and introduce

a discrete time model that can approximate quantities such as wk(u, t). Another ap-

proach to calculating wk(u, t) is the approximation techniques discussed by Seal (1974)

who considers finite time non-ruin probabilities in the classical risk model.

Applying techniques in Albrecher and Boxma (2005a) we obtained moments of Tu,k

and NTu,k as well as quantities like Cov(Tu,k, NTu,k). We observed that for a range of

values of u and k and different premium loading factors the correlation coefficient was

(unsurprisingly) very close to 1 in all our scenarios.
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Chapter 4

Gerber-Shiu analysis: probabilistic

approach

4.1 Introduction

In this chapter, we introduce an alternative representation of the Gerber-Shiu function

to analyse the risk model that we considered in Chapter 3. Our approach in Chapter

3 gave rise to a general recursive expression for the probability function of the number

of claims until ruin. Here, we construct our Gerber-Shiu function using a probabilistic

argument so that we can obtain explicit expressions for the probability function of the

number of claims until ruin in the case of claim amounts with exponential and Erlang(2)

distributions. However, the main disadvantage of this method is that to invert the

Laplace transform of the Gerber-Shiu function, we need to specify the functional form

of the individual claim amount distribution. More specifically, this approach can only

be applied to distribution functions that admit a particular factorisation.

4.2 A Gerber-Shiu function

We denote by wk(u, x, y, n, t) the (defective) joint density of the surplus immediately

prior to ruin (x), the deficit at ruin (y), the number of claims until ruin (n) and the

time of ruin (t), given initial surplus u for our risk model with capital injections, defined

for n = 1, 2, 3, . . . , x ≥ k, y > 0 and t > 0, with corresponding notation w(u, x, y, n, t)

for the classical risk model, defined for n = 1, 2, 3, . . . , x ≥ 0, y > 0 and t > 0. Further,
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let

w(u, y, n, t) =

∫ ∞
0

w(u, x, y, n, t) dx.

Then

φk,r,δ(u) = E
[
rNTu,ke−δTu,kω(U(T−u,k), |U(Tu,k)|) I(Tu,k <∞) | U(0) = u

]
=

∞∑
n=1

rn
∫ ∞

0

e−δt
∫ ∞
k

∫ ∞
0

ω(x, y)wk(u, x, y, n, t) dy dx dt (4.1)

=
∞∑
n=1

rn
∫ ∞

0

e−δt
{∫ ∞

0

∫ k

0

w(u− k, x, y, n, t)φk,r,δ(k) dy dx

+

∫ ∞
0

∫ ∞
k

ω(x+ k, y − k)w(u− k, x, y, n, t) dy dx
}
dt. (4.2)

From this expression, depending on the form taken by ω(x, y), we can obtain different

ruin-related quantities.

4.3 The probability of ultimate ruin

We now consider the ultimate ruin probability ψk(u), for u ≥ k. In Theorem 3.3 we

provided an expression for ψk(u). In this section, we show that expression (3.9) can be

obtained with a much simpler method.

Theorem 4.1. When the initial surplus is u ≥ k we have

ψk(u) = ψ(u− k)−H1(u− k, k)[1− ψk(k)].

Proof. Setting r = 1, δ = 0 and ω(x, y) = 1 for x ≥ 0 and y > 0 in equation (4.2), we

obtain

ψk(u) =

∫ ∞
0

∫ ∞
0

∫ k

0

w(u− k, x, y, t)ψk(k) dy dx dt

+

∫ ∞
0

∫ ∞
0

∫ ∞
k

w(u− k, x, y, t) dy dx dt

=

∫ ∞
0

∫ k

0

w(u− k, y, t)ψk(k) dy dt+

∫ ∞
0

∫ ∞
k

w(u− k, y, t) dy dt

(4.3)
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where w(u, x, y, t) is the (defective) joint density of the surplus immediately prior to

ruin, the deficit at ruin and the time of ruin and w(u, y, t) is the (defective) joint density

of the deficit at ruin and the time of ruin in the classical risk model as defined in Chapter

1. Hence, equation (4.3) can be written as

ψk(u) = H1(u− k, k)ψk(k) + ψ(u− k)−H1(u− k, k).

Setting u = k and rearranging gives ψk(k).

4.4 The joint distribution of U(T−u,k) and |U(Tu,k)|

In this section, we provide an alternative proof to Theorem 3.5 which is based on the

results in the classical risk model and does not require the Laplace transform inversion

of the Gerber-Shiu function and consequently is more straightforward.

Theorem 4.2. When the initial surplus is u ≥ k we have

Hk(u, z, y1) = Hk(k, z, y1)H1(u− k, k) +
λδ(u− k)

cδ(0)

∫ z

u

(
F̄ (x)− F̄ (x+ y1)

)
I(u ≤ z) dx

− λ

cδ(0)

∫ (u∧z)−k

0

(δ(u− k)− δ(u− k − x))
(
F̄ (x+ k)− F̄ (x+ k + y1)

)
dx.

Proof. Setting r = 1, δ = 0 and ω(x+k, y−k) = I{x ≤ z−k}I{y ≤ y1 +k} in equation

(4.2) and noting that the occurrence of ruin in the classical model, from initial surplus

level u− k with the surplus prior to ruin z − k, and the severity of ruin y1 + k, implies

ruin in the classical risk model with capital injections with initial surplus level u, the

surplus prior to ruin z and the severity of ruin y1, we get

Hk(u, z, y1) =

∫ ∞
0

∫ ∞
0

∫ k

0

w(u− k, x, y, t)Hk(k, z, y1) dy dx dt

+

∫ ∞
0

∫ z+k

0

∫ y1+k

k

w(u− k, x, y, t) dy dx dt

= H1(u− k, k)Hk(k, z, y1) +

∫ z−k

0

∫ y1+k

k

h(u− k, x, y) dy dx.

(4.4)

To proceed, we need to apply two formulae from Chapter 1. Recall that Dickson (1992)
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has shown for the classical risk model

h(u, z, y) =


h(0, z, y)1−ψ(u)

1−ψ(0)
for u < z,

h(0, z, y)ψ(u−z)−ψ(u)
1−ψ(0)

for u ≥ z.

Further, Dufresne and Gerber (1988b) have shown that h(0, x, y) = (λ/c)f(x + y).

Therefore, for u > z we have

Hk(u, z, y1) = Hk(k, z, y1)H1(u− k, k) +

∫ z−k

0

∫ y1+k

k

h(0, x, y)
ψ(u− x)− ψ(u)

δ(0)
dy dx

= Hk(k, z, y1)H1(u− k, k)

+
λ

cδ(0)

∫ z−k

0

(ψ(u− k − x)− ψ(u− k))
(
F̄ (x+ k)− F̄ (x+ k + y1)

)
dx.

(4.5)

For u ≤ z we need to distinguish between the surplus level prior to ruin being below

u− k and above u− k. Hence formula (4.4) can be written as

Hk(u, z, y1) = H1(u− k, k)Hk(k, z, y1) +

∫ u−k

0

∫ y1+k

k

h(u− k, x, y) dy dx

+

∫ z−k

u−k

∫ y1+k

k

h(u− k, x, y) dy dx

= H1(u− k, k)Hk(k, z, y1) +

∫ z−k

u−k

∫ y1+k

k

h(0, x, y)
δ(u− k)

δ(0)
dy dx

+

∫ u−k

0

∫ y1+k

k

h(0, z, y)
ψ(u− k − x)− ψ(u− k)

δ(0)
dy dx

= H1(u− k, k)Hk(k, z, y1) +
λδ(u− k)

cδ(0)

∫ z−k

u−k

(
F̄ (x+ k)− F̄ (x+ y1 + k)

)
dx

+
λ

cδ(0)

∫ u−k

0

(ψ(u− k − x)− ψ(u− k))
(
F̄ (x+ k)− F̄ (x+ k + y1)

)
dx.

(4.6)

The result follows after combining (4.5) and (4.6).

Now, if we let y1 → ∞ in (4.4), we can develop formulae (3.23) and (3.23). Thus

for u > z, we have

Hk,2(u, z) = H1(u− k, k)Hk,2(k, z)

+
λ

cδ(0)

∫ z−k

0

(ψ(u− x− k)− ψ(u− k)) F̄ (x+ k) dx
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and for u ≤ z,

Hk,2(u, z) = H1(u− k, k)Hk,2(k, z) +
λδ(u− k)

cδ(0)

∫ z−k

u−k
F̄ (x+ k) dx

+
λ

cδ(0)

∫ u−k

0

(ψ(u− x− k)− ψ(u− k)) F̄ (x+ k) dx.

Setting u = k, gives us formula (3.15).

Now to derive formula (3.24) we let z →∞ in (4.4), giving

Hk,1(u, y1) = H1(u− k, k)Hk,1(k, y1) +

∫ y1+k

k

h1(u− k, y) dy

= H1(u− k, k)Hk,1(k, y1) +H1(u− k, y1 + k)−H1(u− k, k).

Putting u = k, yields (3.14).

In the previous chapter, our approach to deriving the ruin-related quantities in

infinite time involved the inversion of the Laplace transform of the Gerber-Shiu function

which was not efficient. Here, our technique is based on probabilistic arguments which

leads to the same results and is more efficient. In the next section, we apply the same

technique to find the joint density of the time of ruin and the number of claims until

ruin in finite time.

4.5 The joint density of Tu,k and NTu,k

If we set δ > 0, 0 < r < 1 and ω(x, y) = 1 for all x and y in equations (4.1) and (4.2),

they respectively become

φk,r,δ(u) =
∞∑
n=1

rn
∫ ∞

0

e−δt
∫ ∞
k

∫ ∞
0

wk(u, x, y, n, t) dy dx dt

=
∞∑
n=1

rn
∫ ∞

0

e−δtwk(u, n, t) dt =
∞∑
n=1

rnwk,δ(u, n)

where wk,δ(u, n) =
∫∞

0
e−δtwk(u, n, t) dt (with wδ(u, n) similarly defined), and

φk,r,δ(u) =
∞∑
n=1

rn
∫ ∞

0

e−δt
∫ ∞

0

∫ k

0

w(u− k, x, y, n, t)φk,r,δ(k) dy dx dt

+
∞∑
n=1

rn
∫ ∞

0

e−δt
∫ ∞

0

∫ ∞
k

w(u− k, x, y, n, t) dy dx dt.
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Defining wδ(u, y, n) =
∫∞

0
e−δtw(u, y, n, t) dt and φr,δ(u, y) =

∑∞
n=1 r

nwδ(u, y, n) we get

φk,r,δ(u) = φk,r,δ(k)

∫ k

0

φr,δ(u− k, y) dy +

∫ ∞
k

φr,δ(u− k, y) dy. (4.7)

In particular, when u = k we have

φk,r,δ(k) =

∫∞
k
φr,δ(0, y) dy

1−
∫ k

0
φr,δ(0, y) dy

. (4.8)

Next we apply these formulae to find the probability function of the number of claims

until ruin in the case of claim amounts with exponential and Erlang(2) distributions.

4.5.1 Exponential claims

We consider the case F̄ (x) = e−αx for x ≥ 0 with α > 0. The next results give explicit

expressions for pk(u, n).

Result 4.1. When the initial surplus is k, for n = 1, 2, 3, . . . ,

pk(k, n) = e−αk
n−1∑
j=0

(1− e−αk)j
(

αc

λ+ αc

)n−j−1(
λ

λ+ αc

)n
(j + 1) (2n− j − 2)!

n! (n− j − 1)!
.

(4.9)

Derivation. According to the results for the classical risk model in Dickson (2012, Sec-

tion 7) we have

w(0, y, 1, t) = λe−λtf(ct+ y) (4.10)

and for n = 2, 3, 4, . . . ,

w(0, y, n, t) = λ

∫ ct

0

x

ct
e−λt

(λt)n−1

(n− 1)!
f (n−1)∗(ct− x)f(x+ y) dx. (4.11)

Substituting for f , formula (4.10) can be written as

w(0, y, 1, t) = λe−λt αe−α(ct+y)

= λe−λtF̄ (ct)αe−αy

= w(0, 1, t)αe−αy (4.12)
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where the last line in (4.12) comes from formula (4) of Dickson (2012). Also, we can

write formula (4.11) as

w(0, y, n, t) = λ

∫ ct

0

x

ct
e−λt

(λt)n−1

(n− 1)!
e−α(ct−x) (ct− x)n−2 αn−1

(n− 2)!
αe−α(x+y)dx

= e−λt
λn tn−1

(n− 1)!

∫ ct

0

x

ct
e−α(ct−x) (ct− x)n−2 αn−1

(n− 2)!
e−αxαe−αydx

= e−λt
λn tn−1

(n− 1)!

∫ ct

0

x

ct
f (n−1)∗(ct− x)F̄ (x) dxαe−αy

= w(0, n, t)αe−αy (4.13)

where the last line in (4.13) comes from formula (5) of Dickson (2012). Similarly,

w(u, y, 1, t) = λ e−λtf(u+ ct+ y)

= w(u, 1, t)αe−αy (4.14)

and for n = 2, 3, 4, . . . ,

w(u, y, n, t) = λ

∫ u+ct

0

e−λt
(λt)n−1

(n− 1)!
f (n−1)∗(u+ ct− x)f(x+ y) dx

−c
n−1∑
r=1

∫ t

0

e−λs
(λs)r

r!
f r∗(u+ cs)w(0, y, n− r, t− s) ds

=

(
e−λt

(λt)n−1

(n− 1)!

∫ u+ct

0

f (n−1)∗(u+ ct− x)λ F̄ (x) dx

−c
n−1∑
r=1

∫ t

0

e−λs
(λs)r

r!
f r∗(u+ cs)w(0, n− r, t− s) ds

)
αe−αy

= w(u, n, t)αe−αy (4.15)

where the last line in (4.15) comes from formula (8) of Dickson (2012). Therefore, we

can conclude that wr,δ(u, y) = wr,δ(u)αe−αy. Hence formula (4.8) can be written as

φk,r,δ(k) =
φr,δ(0) e−αk

1− φr,δ(0) (1− e−αk)
=
∞∑
i=0

e−αk(1− e−αk)iφr,δ(0)i+1 (4.16)

where for i = 0, 1, 2, . . . ,

φr,δ(0)i+1 =
∞∑

n=i+1

rn
∫ ∞

0

e−δtw(i+1)∗(0, n, t) dt
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and for i = 1, 2, 3, . . . ,

w(i+1)∗(0, n, t) =
n−1∑
j=1

∫ t

0

wi∗(0, j, s)w(0, n− j, t− s) ds.

Inverting formula (4.16) with respect to δ yields

∞∑
n=1

rnwk(k, n, t) =
∞∑
i=0

e−αk(1− e−αk)i
∞∑

n=i+1

rnw(i+1)∗(0, n, t). (4.17)

Applying the techniques in Nie et al. (2015) we can show that

∞∑
n=i+1

rnw(i+1)∗(0, n, t) = (λr)i+1 e−(λ+αc)tti (i+ 1)
∞∑
n=0

(αcλrt2)n

n! (n+ i+ 1)!
(4.18)

and inserting in equation (4.17) we obtain

∞∑
n=1

rnwk(k, n, t) =
∞∑
n=1

(λr)n e−αk(1− e−αk)n−1 e−(λ+αc)t tn−1 n
∞∑
j=0

(αcλrt2)j

j! (j + n)!
.

Integrating over t yields the probability generating function of NTk,k , denoted by p̃k,r(k),

as

p̃k,r(k) = e−αk
∞∑
n=1

(λr)n (1− e−αk)n−1 n
∞∑
j=0

Γ(2j + n)

j! Γ(n+ 1 + j)

(αcλr)j

(λ+ αc)2j+n

(4.19)

and applying the identity

∞∑
n=1

∞∑
j=0

tn,j =
∞∑
n=1

n−1∑
j=0

tj+1,n−j−1,

we obtain

p̃k,r(k) = e−αk
∞∑
n=1

(λr)n
n−1∑
j=0

(1− e−αk)j (j + 1) Γ(2n− j − 1)

(n− j − 1)!Γ(n+ 1)

(αc)n−j−1

(λ+ αc)2n−j−1

from which the result follows. �

Formula (4.9) agrees with (3.53). Setting k = 0 in formula (4.9) yields the proba-

bility function of the number of claims until ruin from initial surplus 0 in the classical

risk model. See, for example, Landriault et al. (2011).
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Result 4.2. When u > k, for n = 1, 2, 3, . . . ,

pk(u, n) = e−αu
n−1∑
i=0

i∑
m=0

(1− e−αk)m (α(u− k))i−m

(i−m)!

(
αc

λ+ αc

)n−i−1(
λ

λ+ αc

)n
×(i+ 1)(2n− i− 2)!

n! (n− i− 1)!
. (4.20)

Derivation. Formula (4.7) can be written as

φk,r,δ(u) = φk,r,δ(k)φr,δ(u− k) (1− e−αk) + φr,δ(u− k) e−αk

=
∞∑
i=0

e−αk(1− e−αk)i φr,δ(0)i φr,δ(u− k). (4.21)

To apply this expression we need an expression for φr,δ(u) in terms of φr,δ(0), and to

obtain this we extend the approach in Dickson and Li (2010). We first note that

w(u, 1, t) =

∫ ∞
u

w(0, y, 1, t) dy = w(0, 1, t) e−αu (4.22)

and for n = 2, 3, 4, . . . ,

w(u, n, t)

=
n−1∑
j=1

∫ t

0

∫ u

0

w(0, y, j, τ)w(u− y, n− j, t− τ) dy dτ +

∫ ∞
u

w(0, y, n, t) dy

=
n−1∑
j=1

∫ t

0

∫ u

0

w(0, j, τ)αe−αy w(u− y, n− j, t− τ) dy dτ +

∫ ∞
u

w(0, n, t)αe−αy dy.

(4.23)

Define

φ̃r,δ(s) =

∫ ∞
0

e−suφr,δ(u) du =
∞∑
n=1

rn
∫ ∞

0

∫ ∞
0

e−su−δtw(u, n, t) dt du =
∞∑
n=1

rn w̃δ(s, n).

Taking the bivariate Laplace transform of formula (4.22) gives

w̃δ(s, 1) = wδ(0, 1)
1

α + s

and the Laplace transform of formula (4.23) with respect to t is

wδ(u, n) =
n−1∑
j=1

wδ(0, j)

∫ u

0

αe−αy wδ(u− y, n− j) dy + wδ(0, n) e−αu. (4.24)
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Now take the Laplace transform of formula (4.24) with respect to u, which results in

w̃δ(s, n) =
n−1∑
j=1

wδ(0, j) w̃δ(s, n− j)
α

α + s
+ wδ(0, n)

1

α + s
. (4.25)

Multiplying formula (4.25) by rn and summing over n, we have

∞∑
n=2

rn w̃δ(s, n) =
∞∑
n=2

rn
n−1∑
j=1

wδ(0, j) w̃δ(s, n− j)
α

α + s
+
∞∑
n=2

rnwδ(0, n)
1

α + s
.

(4.26)

Adding rw̃δ(s, 1) to both sides of (4.26) gives

∞∑
n=1

rnw̃δ(s, n) =
∞∑
n=2

rn
n−1∑
j=1

wδ(0, j) w̃δ(s, n− j)
α

α + s
+
∞∑
n=1

rnwδ(0, n)
1

α + s

which can be written as

φ̃r,δ(s) = φr,δ(0) φ̃r,δ(s)
α

α + s
+ φr,δ(0)

1

α + s

=
φr,δ(0) 1

α+s

1− φr,δ(0) α
α+s

=
1

α

∞∑
n=1

φr,δ(0)n
(

α

α + s

)n
.

Inverting φ̃r,δ(s) with respect to s yields

φr,δ(u) =
∞∑
n=1

φr,δ(0)n
(αu)n−1 e−αu

(n− 1)!

and inserting this in equation (4.21) we get

φk,r,δ(u) =
∞∑
i=0

e−αu(1− e−αk)i
∞∑
n=1

φr,δ(0)i+n
[α(u− k)]n−1

(n− 1)!
,

which by (4.18) inverts with respect to δ to

∞∑
i=0

e−αu(1− e−αk)i
∞∑
n=1

(λr)i+ne−(λ+αc)t ti+n−1 (i+ n)
∞∑
j=0

(αcλrt2)j

j! (j + n+ i)!

[α(u− k)]n−1

(n− 1)!
.

Integrating with respect to t we find the probability generating function of NTu,k as

p̃k,r(u) =
∞∑
i=0

e−αu(1− e−αk)i
∞∑
n=0

(λr)i+n+1

∞∑
j=0

(αcλr)j (i+ n+ 1)

j! (j + n+ i+ 1)!

[α(u− k)]n

n!

× (2j + i+ n)!

(λ+ αc)2j+i+n+1
.
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We can then apply the identity

∞∑
i=0

∞∑
n=0

∞∑
j=0

ti,n,j =
∞∑
i=0

i∑
n=0

n∑
j=0

tj,n−j,i−n,

(see, for example, Graham et al., 1994, page 355) giving

p̃k,r(u) =
∞∑
i=0

ri+1e−αu
i∑

n=0

n∑
j=0

(1− e−αk)j (α(u− k))n−j

(n− j)!

(
αc

λ+ αc

)i−n(
λ

λ+ αc

)i+1

×(n+ 1) (2i− n)!

(i− n)! (i+ 1)!
.

It follows that pk(u, 1) = λe−αu/(λ+ αc), and for n = 2, 3, 4, . . . ,

pk(u, n) = e−αu
n−1∑
i=0

i∑
j=0

(1− e−αk)j (α(u− k))i−j

(i− j)!

(
αc

λ+ αc

)n−i−1(
λ

λ+ αc

)n
×(i+ 1)(2n− i− 2)!

n!(n− i− 1)!
(4.27)

which also holds for n = 1. �

We remark that setting u = k in formula (4.27) yields formula (4.9). Further, setting

k = 0 in formula (4.20) gives p(u, n), the probability function of the number of claims

until ruin in the classical model, as

p(u, n) = e−αu
n−1∑
i=0

(αu)i

i!

(
αc

λ+ αc

)n−i−1(
λ

λ+ αc

)n
(i+ 1) (2n− i− 2)!

n! (n− i− 1)!
. (4.28)

We remark that this formula is new, and can also be obtained by manipulation of

formula (23) of Landriault et al. (2011).

In this section, we have illustrated the application of the Gerber-Shiu function by

finding the probability function of the number of claims until ruin through probabilis-

tic reasoning. We saw that this approach enables us to find an explicit formula for

pk(u, n), while our method in Chapter 3 gave rise to formula (3.56), which is a recursive

expression.

In Chapter 3 we were not able to find a simple formula for pk(u, n) for claim amounts

with an Erlang(2) distribution. In the next section, we show that with the approach

explained in this chapter, we can find an explicit result for the probability function

of the number of claims until ruin when the individual claim amount distribution is

Erlang(2).
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4.5.2 Erlang(2) claims

We now consider the situation when F̄ (x) = e−αx(1 +αx), where x ≥ 0 with α > 0 and

present results for pk(u, n).

Result 4.3. When the initial surplus is k, for n = 1, 2, 3, . . . ,

pk(k, n) =
n−1∑
m=0

m∑
j=0

(
m

j

)
ajkb

m−j
k

(
λ

λ+ αc

)n(
αc

λ+ αc

)2n−m−j−2

× (3n−m− j − 3)!

(2n− j − 1)! (n−m− 1)!

(
(1− ak) (2m− j + 1)

+(1− bk)
(

αc

λ+ αc

)
(3n−m− j − 2) (2m− j + 2)

(2n− j)

)
. (4.29)

Derivation. Our proof is based on the technique in Dickson (2008). First we note that

if we set k = 0 in formula (3.3) we obtain φr,ρ(0) = λr
c

∫∞
0

∫∞
u
e−ρuf(x)ω(u, x−u) dx du,

which is the same as formula (2.26) of Gerber and Shiu (1998) when r = 1. Thus, with

ω(x, y) = e−sy, formula (2) of Dickson (2008) can be generalised to

∞∑
n=1

rn
∫ ∞

0

∫ ∞
0

e−sy−δtw(0, y, n, t) dy dt =
λr

c

∫ ∞
0

e−ρt
∫ ∞
t

e−s(y−t) f(y) dy dt. (4.30)

Inserting f(x) = α2xe−αx on the right-hand side of equation (4.30) we get

λr

c

∫ ∞
0

e−ρt
∫ ∞
t

e−s(y−t) α2ye−αy dy dt =
λr

c

(
1

α + ρ

α2

(α + s)2
+

α

(α + ρ)2

α

α + s

)
.

(4.31)

Inverting (4.30) with respect to s yields

φr,δ(0, y) =
∞∑
n=1

rnwδ(0, y, n) = γr,δ(0)α2ye−αy + ξr,δ(0)αe−αy (4.32)

where

γr,δ(0) ≡
∫ ∞

0

e−δt γr(0, t) dt =
λr

c

1

α + ρ

and

ξr,δ(0) ≡
∫ ∞

0

e−δt ξr(0, t) dt =
λr

c

α

(α + ρ)2
.
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Further, from Cheung et al. (2008) we know that if f(x) =
∑n

i=1 qi
βixi−1 exp{−βx}

Γ(i)
where∑n

i=1 qi = 1 and each qi ≥ 0 then

w(u, y, t) =
n∑
i=1

ηi(u, t)
n∑

k=n+1−i

qk
βk−n+iyk−n+i−1 exp{−βy}

Γ(k − n+ i)
.

Therefore, for n = 2 and q2 = 1 we have the following identity for u > 0:

φr,δ(u, y) =
∞∑
n=1

rnwδ(u, y, n) = γr,δ(u)α2ye−αy + ξr,δ(u)αe−αy. (4.33)

Inserting (4.32) in formula (4.8) yields

φk,r,δ(k) =
(
γr,δ(0)(1− ak) + ξr,δ(0)(1− bk)

) ∞∑
n=0

(
akγr,δ(0) + bkξr,δ(0)

)n
=

∞∑
n=0

n∑
j=0

(
n

j

)
ajk γr,δ(0)j bn−jk ξr,δ(0)n−j

(
γr,δ(0)(1− ak) + ξr,δ(0)(1− bk)

)
(4.34)

where ak = 1− e−αk − αke−αk and bk = 1− e−αk. We consider the term

γr,δ(0)j+1 ξr,δ(0)n−j =
(λr)n+1

c n+1

αn−j

(α + ρ)2n−j+1
,

which is the Laplace transform with transform parameter ρ of(
λr

c

)n+1
(αt)n−j tn e−αt

(2n− j)!

and by formula (44) of Landriault et al. (2011) is the Laplace transform with transform

parameter δ of(
λr

c

)n+1

e−(λ+αc)t

∞∑
m=0

(λrt)m (αct)n−j+2m tn cn+1 (2n− j + 1)

m! (2n− 2m− j + 1)!
.

(4.35)

Equation (4.35) generalises formula (10) of Dickson (2008). Similarly,

γr,δ(0)j ξr,δ(0)n−j+1 =
(λr)n+1

c n+1

αn−j+1

(α + ρ)2n−j+2

is the Laplace transform with transform parameter ρ of(
λr

c

)n+1
(αt)n−j+1 tn e−αt

(2n− j + 1)!
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and with the same method is the Laplace transform with transform parameter δ of(
λr

c

)n+1

e−(λ+αc)t

∞∑
m=0

(λrt)m (αct)n−j+2m+1 tn cn+1 (2n− j + 2)

m! (2n+ 2m− j + 2)!

(4.36)

which generalises formula (13) of Dickson (2008). Indeed, it covers the case when r = 1.

Substituting equations (4.35) and (4.36) in (4.34) results in

φk,r(k, t) = e−(λ+αc)t

∞∑
n=0

n∑
j=0

(
n

j

)
ajkb

n−j
k

(λr)n+1(αct)n−jtn

(2n− j)!

∞∑
m=0

(rα2c2λt3)m(2n− j + 1)!

m! (2n+ 2m− j + 1)!(
(1− ak) +

(1− bk)αct
(2n− j + 1)

(2n− j + 2)

(2n+ 2m− j + 2)

)
. (4.37)

Integrating formula (4.37) over t yields

p̃k,r(k) =
∞∑
n=1

n−1∑
j=0

(
n− 1

j

)
ajkb

n−1−j
k

∞∑
m=0

(
λr

λ+ αc

)n+m(
αc

λ+ αc

)2m+n−j−1

× (2n+ 3m− j − 2)!

m! (2n+ 2m− j − 1)!

(
(1− ak)(2n− j − 1)

+
(1− bk)αc
λ+ αc

(2n+ 3m− j − 1) (2n− j)
(2n+ 2m− j)

)
.

To find pk(k, n) we proceed as follows. Changing the order of the first two sums we get

p̃k,r(k) =
∞∑
j=0

∞∑
n=j+1

(
n− 1

j

)
ajkb

n−1−j
k

∞∑
m=0

(
λr

λ+ αc

)n+m(
αc

λ+ αc

)2m+n−j−1

× (2n+ 3m− j − 2)!

m! (2n+ 2m− j − 1)!

(
(1− ak)(2n− j − 1)

+
(1− bk)αc
λ+ αc

(2n+ 3m− j − 1) (2n− j)
(2n+ 2m− j)

)
.

Letting i = n− j − 1 we have

p̃k,r(k) = (1− ak)
∞∑
j=0

∞∑
n=0

(
n+ j

j

)
ajkb

n
k

∞∑
m=0

(
λr

λ+ αc

)n+m+j+1(
αc

λ+ αc

)2m+n

× (2n+ 3m+ j)!

m! (2n+ 2m+ j + 1)!

(
(1− ak)(2n+ j + 1)

+
(1− bk)αc
λ+ αc

(2n+ 3m+ j + 1) (2n+ j + 2)

(2n+ 2m+ j + 2)

)
.
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Then, we apply the identity

∞∑
j=0

∞∑
n=0

∞∑
m=0

tj,n,m =
∞∑
j=1

j−1∑
n=0

n∑
m=0

tm,n−m,j−n−1,

giving

p̃k,r(k) =
∞∑
j=1

j−1∑
n=0

n∑
m=0

(
n

m

)
amk b

n−m
k

(
λr

λ+ αc

)j (
αc

λ+ αc

)2j−n−m−2

× (3j − n−m− 3)!

(2j −m− 1)! (j − n− 1)!

(
(1− ak)(2n−m+ 1)

+
(1− bk)αc
λ+ αc

(3j − n−m− 2) (2n−m+ 2)

(2j −m)

)
which can be written as

p̃k,r(k) =
∞∑
n=1

n−1∑
m=0

m∑
j=0

(
m

j

)
ajkb

m−j
k

(
λr

λ+ αc

)n(
αc

λ+ αc

)2n−m−j−2

× (3n−m− j − 3)!

(2n− j − 1)! (n−m− 1)!

(
(1− ak)(2m− j + 1)

+
(1− bk)αc
λ+ αc

(3n−m− j − 2) (2m− j + 2)

(2n− j)

)
.

This is the probability generating function of the number of claims until ruin from

which formula (4.29) follows. �

Formula (4.29) is in agreement with formula (3.65) in Chapter 3.

Result 4.4. When u > k, with the convention that
∑b

i=a = 0, if b < a, for j =

1, 2, 3, . . . ,

pk(u, j)

= e−α(u−k)

j−2∑
n=0

n∑
i=0

i∑
m=0

m∑
q=0

(
m

q

)(
n−m
i−m

)
aqkb

m−q
k

(α(u− k))n+i−2m

(j − n− 2)!

×
(

λ(αc)2

(λ+ αc)3

)j (
αc

λ+ αc

)m−n−i−q−4

[
(1− ak)

(
ak

(n+ i− 2m)!
+ bk

α(u− k)

(n+ i− 2m+ 1)!

)
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×(2n+m− i− q + 2)(3j +m− n− i− q − 5)!

(2j +m− i− q − 2)!

+

(
(ak + bk − 2akbk)

(n+ i− 2m)!
+ (1− bk)bk

α(u− k)

(n+ i− 2m+ 1)!

)(
αc

λ+ αc

)
×(2n+m− i− q + 3)(3j +m− n− i− q − 4)!

(2j +m− i− q − 1)!

+
(1− bk)bk

(n− 2m+ i)!

(
αc

λ+ αc

)2
(2n+m− i− q + 4)(3j +m− n− i− q − 3)!

(2j +m− i− q)!

]

+e−α(u−k)

j−1∑
n=0

n∑
q=0

(
n

q

)
(u− k)n+q

(n+ q)!(j − n− 1)!

(
λ(αc)2

(λ+ αc)3

)j (
λ+ αc

c

)n+q+2

[
(1− ak)
α2

(2n− q + 1)(3j − n− q − 3)!

(2j − q − 1)!
+

(1− bk)
α

×
(

c

λ+ αc

)
(2n− q + 2)(3j − n− q − 2)!

(2j − q)!
+ (1− bk)

(u− k)

α(n+ q + 1)

×(2n− q + 1)(3j − n− q − 3)!

(2j − q − 1)!

]
. (4.38)

Derivation. Inserting expression (4.33) in (4.7) we obtain

φk,r,δ(u) = φk,r,δ(k)
(
ak γr,δ(u− k) + bk ξr,δ(u− k)

)
+(1− ak)γr,δ(u− k) + (1− bk)ξr,δ(u− k)

=
∞∑
n=0

n∑
j=0

(
n

j

)
ajk b

n−j
k γr,δ(0)j ξr,δ(0)n−j

(
(1− ak)ak γr,δ(0) γr,δ(u− k)

+(1− bk)ak bk ξr,δ(0) γr,δ(u− k) + (1− ak)bk γr,δ(0) ξr,δ(u− k)

+(1− bk)bk ξr,δ(0)ξr,δ(u− k) + (1− ak)γr,δ(u− k) + (1− bk)ξr,δ(u− k)
)
.

(4.39)

To find the joint density of the time of ruin and the number of claims until ruin we

need to invert expression (4.39) with respect to δ. For the Laplace transform inversion

of γr,δ(0)jξr,δ(0)n−j we can apply techniques in Result 4.3. To invert γr,δ(u − k) and

ξr,δ(u − k) we note that in the classical risk model the occurrence of ruin from initial

surplus u with a deficit of y at the first claim, is equivalent to ruin occurring from initial

surplus 0 at the first claim, with a deficit at ruin of u+ y. Hence

w(u, y, 1, t) = w(0, u+ y, 1, t). (4.40)
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For n = 2, 3, 4, . . . , we can modify equation (1) of Dickson (2008) as

w(u, y, n, t) =
n−1∑
j=1

∫ t

0

∫ u

0

w(0, x, j, τ)w(u− x, y, n− j, t− τ) dx dτ + w(0, u+ y, n, t).

Taking the Laplace transform of w(u, y, n, t) with respect to t gives, wδ(u, y, 1) =

wδ(0, u+ y, 1) and for n = 2, 3, 4, . . . ,

wδ(u, y, n) =
n−1∑
j=1

∫ u

0

wδ(0, x, j)wδ(u− x, y, n− j) dx+ wδ(0, u+ y, n). (4.41)

Multiplying both sides of (4.41) by rn and summing over n, we get

∞∑
n=2

rnwδ(u, y, n) =
∞∑
n=2

rn
n−1∑
j=1

∫ u

0

wδ(0, x, j)wδ(u− x, y, n− j) dx+
∞∑
n=2

rnwδ(0, u+ y, n).

(4.42)

Adding rwδ(u, y, 1) to both sides of (4.42) gives

∞∑
n=1

rnwδ(u, y, n) =
∞∑
n=2

rn
n−1∑
j=1

∫ u

0

wδ(0, x, j)wδ(u− x, y, n− j) dx+
∞∑
n=1

rnwδ(0, u+ y, n)

which can be written as

φr,δ(u, y) =

∫ u

0

φr,δ(0, x)φr,δ(u− x, y) dx+ φr,δ(0, u+ y). (4.43)

Inserting (4.32) and (4.33) on both sides of (4.43) yields

γr,δ(u)α2ye−αy + ξr,δ(u)αe−αy

=

∫ u

0

(
γr,δ(0)α2xe−αx + ξr,δ(0)αe−αx

)(
γr,δ(u− x)α2ye−αy + ξr,δ(u− x)αe−αy

)
dx

+γr,δ(0)α2(u+ y)e−α(u+y) + ξr,δ(0)αe−α(u+y)

and equating the coefficients of α2ye−αy and αe−αy on both sides, we find

γr,δ(u) =

∫ u

0

(
γr,δ(0)α2xe−αx + ξr,δ(0)αe−αx

)
γr,δ(u− x) dx+ γr,δ(0)e−αu

(4.44)

and

ξr,δ(u) =

∫ u

0

(
γr,δ(0)α2xe−αx + ξr,δ(0)αe−αx

)
ξr,δ(u− x) dx+ ξr,δ(0)e−αu

+γr,δ(0)αue−αu. (4.45)
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Define

γ̃r,δ(s) =

∫ ∞
0

∫ ∞
0

e−su−δt γr(u, t) dt du

and

ξ̃r,δ(s) =

∫ ∞
0

∫ ∞
0

e−su−δt ξr(u, t) dt du.

Taking the Laplace transform of (4.44) with respect to u gives

γ̃r,δ(s) =

(
γr,δ(0)

α2

(α + s)2
+ ξr,δ(0)

α

α + s

)
γ̃r,δ(s) + γr,δ(0)

1

α + s
.

Therefore, we have

γ̃r,δ(s) =
γr,δ(0) 1

α+s

1− γr,δ(0) α2

(α+s)2
− ξr,δ(0) α

α+s

= γr,δ(0)
1

α + s

∞∑
n=0

(
γr,δ(0)

α2

(α + s)2
+ ξr,δ(0)

α

α + s

)n
=

1

α

∞∑
n=0

n∑
i=0

(
n

i

)
γr,δ(0)i+1 ξr,δ(0)n−i

(
α

α + s

)n+i+1

.

Inverting γ̃r,δ(s) with respect to s yields

γr,δ(u) =
1

α

∞∑
n=0

n∑
i=0

(
n

i

)
γr,δ(0)i+1 ξr,δ(0)n−i

αn+i+1 un+i e−αu

(n+ i)!
(4.46)

and inverting γr,δ(u) with respect to δ gives

γr(u, t) = ce−αu−(λ+αc)t

∞∑
n=0

n∑
i=0

(
n

i

)(
λr

c

)n+1

α2nun+i(ct)2n−i (2n− i+ 1)

(n+ i)!

×
∞∑
q=0

(rλα2c2t3)q

q! (2n+ 2q − i+ 1)!
. (4.47)

Similarly, we can show that

ξ̃r,δ(s) =
1

α

∞∑
n=0

n∑
i=0

(
n

i

)
γr,δ(0)iξr,δ(0)n−i

(
α

α + s

)n+i+1(
ξr,δ(0) + γr,δ(0)

α

α + s

)
.

Inverting ξ̃r,δ(s) with respect to s is

ξr,δ(u) =
1

α

∞∑
n=0

n∑
i=0

(
n

i

)
γr,δ(0)iξr,δ(0)n−i

αn+i+1un+ie−αu

(n+ i)!

(
ξr,δ(0) + γr,δ(0)

αu

(n+ i+ 1)

)
(4.48)
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and inverting ξr,δ(u) with respect to δ gives

ξr(u, t) = ce−αu−(λ+αc)t

∞∑
n=0

n∑
i=0

(
n

i

)(
λr

c

)n+1

α2n+1un+i(ct)2n−i+1 1

(n+ i)!

×
∞∑
q=0

(rλα2c2t3)q

q! (2n+ 2q − i+ 1)!

(
ct

(2n− i+ 2)

(2n+ 2q − i+ 2)
+ u

(2n− i+ 1)

(n+ i+ 1)

)
.

(4.49)

Inserting (4.46) and (4.48) in equation (4.39) we get

φk,r,δ(u)

=
∞∑
n=0

n∑
j=0

(
n

j

) ∞∑
m=0

m∑
i=0

(
m

i

)
ajkb

n−j
k γr,δ(0)i+jξr,δ(0)n+m−i−j

(
(1− ak)

α
ak γr,δ(0)2 e1(u− k) +

(1− bk)
α

ak γr,δ(0) ξr,δ(0) e1(u− k)

+
(1− ak)

α
bk γr,δ(0) ξr,δ(0) e1(u− k) +

(1− ak)
α

bk γr,δ(0)2 e2(u− k)

+
(1− bk)

α
bk ξr,δ(0)2 e1(u− k) +

(1− bk)
α

bk γr,δ(0) ξr,δ(0) e2(u− k)

)
+(1− ak) γr,δ(u− k) + (1− bk) ξr,δ(u− k) (4.50)

where e1 and e2 are the Erlang(m+i+1, α) and Erlang(m+i+2, α) probability density

functions, respectively. Inverting φk,r,δ(u) with respect to δ we find

∞∑
n=1

rnwk(u, n, t)

= e−(λ+αc)t

∞∑
n=0

n∑
j=0

(
n

j

) ∞∑
m=0

m∑
i=0

(
m

i

)
ajkb

n−j
k (λrt)n+m+2(αct)n+m−i−j

×
∞∑
q=0

(λrα2c2t3)q

q!

(
(1− ak)

α

(2n+ 2m− i− j + 2)

t(2n+ 2m+ 2q − i− j + 2)!

[
ake1(u− k) + bke2(u− k)

]
+c

(2n+ 2m− i− j + 3)

(2n+ 2m+ 2q − i− j + 3)!

[
(ak + bk − 2akbk)e1(u− k) + (1− bk)bke2(u− k)

]
+c2(1− bk)

bk(αt)(2n+ 2m− i− j + 4)

(2n+ 2m+ 2q − i− j + 4)!
e1(u− k)

)
+(1− ak)γr(u− k, t) + (1− bk)ξr(u− k, t), (4.51)
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from which we can find the joint density of the time of ruin and the number of claims

until ruin. Setting r = 1, in equation (4.51) we obtain the density of the time of ruin in

the case of claim sizes with Erlang(2, α) distribution as derived by Nie et al. (2015). For

computational purposes, (4.51) can be written in terms of Hypergeometric functions as

(see, for example, Graham et al., 1994)

wk(u, t)

=
(1− ak)

α
e−(λ+αc)t

∞∑
n=0

n∑
j=0

(
n

j

) ∞∑
m=0

m∑
i=0

(
m

i

)
ajkb

n−j
k

(λrt)n+m+2(αct)n+m−i−j

t(2m+ 2n− i− j + 1)!

×
[
ake1(u− k) + bke2(u− k)

]
×0F2

(2m+ 2n− i− j + 3

2
,
2m+ 2n− i− j + 4

2
;
λrα2c2t3

4

)
+

1

α
e−(λ+αc)t

∞∑
n=0

n∑
j=0

(
n

j

) ∞∑
m=0

m∑
i=0

(
m

i

)
ajkb

n−j
k

(λrt)n+m+2(αct)n+m−i−j+1

t(2n+ 2m− i− j + 2)!

×
[
(ak + bk − 2akbk)e1(u− k) + (1− bk)bke2(u− k)

]
×0F2

(2m+ 2n− i− j + 4

2
,
2m+ 2n− i− j + 5

2
;
λrα2c2t3

4

)
+

(1− bk)
α

e−(λ+αc)t

∞∑
n=0

n∑
j=0

(
n

j

) ∞∑
m=0

m∑
i=0

(
m

i

)
ajkb

n−j+1
k

(λrt)n+m+2(αct)m+n−i−j+2

t(2n+ 2m− i− j + 3)!

× 0F2

(2m+ 2n− i− j + 5

2
,
2m+ 2n− i− j + 6

2
;
λrα2c2t3

4

)
e1(u− k)

+(1− ak)γr(u− k, t) + (1− bk)ξr(u− k, t).

Next, we find the probability generating function of the number of claims until ruin.

For this we integrate formula (4.51) over t, giving

p̃k,r(u)

= e−α(u−k)

∞∑
n=0

n∑
j=0

(
n

j

) ∞∑
m=0

m∑
i=0

(
m

i

)
ajkb

n−j
k (α(u− k))m+i

(
λrαc

(λ+ αc)2

)n+m(
λ+ αc

αc

)i+j
∞∑
q=0

(
λrα2c2

(λ+ αc)3

)q (
λr

λ+ αc

)2
[

(1− ak)
(

ak
(m+ i)!

+ bk
α(u− k)

(m+ i+ 1)!

)
×(2m+ 2n+ 3q − i− j + 1)! (2m+ 2n− i− j + 2)

q! (2q + 2m+ 2n− i− j + 2)!

+

(
(ak + bk − 2akbk)

(m+ i)!
+ (1− bk)bk

α(u− k)

(m+ i+ 1)!

)(
αc

λ+ αc

)
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×(2m+ 2n+ 3q − i− j + 2)! (2m+ 2n− i− j + 3)

q! (2q + 2m+ 2n− i− j + 3)!

+
(1− bk)bk
(m+ i)!

(
αc

λ+ αc

)2
(2m+ 2n+ 3q − i− j + 3)! (2m+ 2n− i− j + 4)

q! (2q + 2m+ 2n− i− j + 4)!

]

+e−α(u−k)

∞∑
n=0

n∑
i=0

(
n

i

)
α2n(u− k)n+i

(n+ i)!

(
λr

λ+ αc

)n+1(
c

λ+ αc

)n−i ∞∑
q=0

(
λrα2c2

(λ+ αc)3

)q
[

(1− ak)(2n− i+ 1)
(2n+ 3q − i)!

q! (2q + 2n− i+ 1)!
+ (1− bk)α(2n− i+ 2)

(
c

λ+ αc

)

× (2n+ 3q − i+ 1)!

q! (2q + 2n− i+ 2)!
+ (1− bk)

α(u− k) (2n− i+ 1)

(n+ i+ 1)

(2n+ 3q − i)!
q! (2q + 2n− i+ 1)!

]
.

Then, we change the order of the first and the second pair of summations in the first

three terms and the order of the first two summations in the last three terms, giving

p̃k,r(u)

= e−α(u−k)

∞∑
j=0

∞∑
n=j

(
n

j

) ∞∑
i=0

∞∑
m=i

(
m

i

)
ajkb

n−j
k (α(u− k))m+i

(
λrαc

(λ+ αc)2

)n+m(
λ+ αc

αc

)i+j
×
∞∑
q=0

(
λrα2c2

(λ+ αc)3

)q (
λr

λ+ αc

)2
[

(1− ak)
(

ak
(m+ i)!

+ bk
α(u− k)

(m+ i+ 1)!

)
×(2m+ 2n+ 3q − i− j + 1)!(2m+ 2n− i− j + 2)

q! (2q + 2m+ 2n− i− j + 2)!
+

(
(ak + bk − 2akbk)

(m+ i)!

+(1− bk)bk
α(u− k)

(m+ i+ 1)!

)(
λ+ αc

αc

)
×(2m+ 2n+ 3q − i− j + 2)!(2m+ 2n− i− j + 3)

q! (2q + 2m+ 2n− i− j + 3)!

+
(1− bk)bk
(m+ i)!

(
λ+ αc

αc

)2
(2m+ 2n+ 3q − i− j + 3)!(2m+ 2n− i− j + 4)

q! (2q + 2m+ 2n− i− j + 4)!

]

+e−α(u−k)

∞∑
n=0

n∑
i=0

(
n

i

)
α2n(u− k)n+i

(n+ i)!

(
λr

λ+ αc

)n+1(
c

λ+ αc

)n−i ∞∑
q=0

(
λrα2c2

(λ+ αc)3

)q
[

(1− ak)(2n− i+ 1)
(2n+ 3q − i)!

q! (2q + 2n− i+ 1)!
+ (1− bk)α(2n− i+ 2)

(
c

λ+ αc

)

× (2n+ 3q − i+ 1)!

q! (2q + 2n− i+ 2)!
+ (1− bk)

α(u− k) (2n− i+ 1)

(n+ i+ 1)

(2n+ 3q − i)!
q! (2q + 2n− i+ 1)!

]
.

Letting l = n− j and p = m− i in the first three terms and z = n− i in the last three
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terms, we have

p̃k,r(u)

= e−α(u−k)

∞∑
j=0

∞∑
n=0

(
n+ j

j

) ∞∑
i=0

∞∑
m=0

(
m+ i

i

)
ajkb

n
k(α(u− k))m+2i

(
λrαc

(λ+ αc)2

)n+m

×
∞∑
q=0

(
λrα2c2

(λ+ αc)3

)q (
λr

λ+ αc

)i+j [
(1− ak)

(
ak

(m+ 2i)!
+ bk

α(u− k)

(m+ 2i+ 1)!

)
(

λr

λ+ αc

)2
(2m+ 2n+ 3q + i+ j + 1)! (2m+ 2n+ i+ j + 2)

q! (2q + 2m+ 2n+ i+ j + 2)!

+

(
(ak + bk − 2akbk)

(m+ 2i)!
+ (1− bk)bk

α(u− k)

(m+ 2i+ 1)!

)(
λrαc

(λ+ αc)2

)(
λr

λ+ αc

)
×(2m+ 2n+ 3q + i+ j + 2)! (2m+ 2n+ i+ j + 3)

q! (2q + 2m+ 2n+ i+ j + 3)!

+
(1− bk)bk
(m+ 2i)!

(
λrαc

(λ+ αc)2

)2
(2m+ 2n+ 3q + i+ j + 3)! (2n+ 2m+ i+ j + 4)

q! (2q + 2n+ 2m+ i+ j + 4)!

]

+e−α(u−k)

∞∑
i=0

∞∑
n=0

(
n+ i

i

)
(α)2n+2i(u− k)n+2i

(n+ 2i)!

×
∞∑
q=0

(
λrc

(λ+ αc)2

)n(
λrα2c2

(λ+ αc)3

)q (
λr

λ+ αc

)i
(2n+ 3q + i)!

q! (2q + 2n+ i+ 1)![
(1− ak)(2n+ i+ 1)

(
λr

λ+ αc

)
+ (1− bk)α(2n+ i+ 2)

(
λrc

(λ+ αc)2

)

×(2n+ 3q + i+ 1)

(2q + 2n+ i+ 2)
+ (1− bk)

α(u− k)(2n+ i+ 1)

(n+ 2i+ 1)

(
λr

λ+ αc

)]
.

Applying the following identity to the first three terms

∞∑
j=0

∞∑
n=0

∞∑
i=0

∞∑
m=0

∞∑
q=0

tj,n,i,m,q =
∞∑
j=1

j−1∑
n=0

n∑
i=0

i∑
m=0

m∑
q=0

tq,m−q,i−m,n−i,j−n−1

and

∞∑
i=0

∞∑
n=0

∞∑
q=0

ti,n,q =
∞∑
i=1

i−1∑
n=0

n∑
q=0

tq,n−q,i−n−1

to the last three terms yields
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p̃k,r(u)

= e−α(u−k)

∞∑
j=1

rj+1

j−1∑
n=0

n∑
i=0

i∑
m=0

m∑
q=0

(
m

q

)(
n−m
i−m

)
aqkb

m−q
k

(α(u− k))n+i−2m

(j − n− 1)!

×
(

λ(αc)2

(λ+ αc)3

)j (
αc

λ+ αc

)m−n−i−q (
λ

λ+ αc

)
[

(1− ak)
(

ak
(n+ i− 2m)!

+ bk
α(u− k)

(n+ i− 2m+ 1)!

)
×
(
λ+ αc

αc

)2
(2n+m− i− q + 2)(3j +m− n− i− q − 2)!

(m− i+ 2j − q)!

+

(
(ak + bk − 2akbk)

(n+ i− 2m)!
+ (1− bk)bk

α(u− k)

(n+ i− 2m+ 1)!

)(
λ+ αc

αc

)
×(2n+m− i− q + 3)(3j +m− n− i− q − 1)!

(m− i+ 2j − q + 1)!

+
(1− bk)bk

(n− 2m+ i)!

(2n+m− i− q + 4)(3j +m− n− i− q)!
(m− i+ 2j − q + 2)!

]

+e−α(u−k)

∞∑
i=1

ri
i−1∑
n=0

n∑
q=0

(
n

q

)
α2i−2(u− k)n+q

(n+ q)!(i− n− 1)!

(
λc2

(λ+ αc)3

)i(
λ+ αc

c

)n+q+1

[
(1− ak)

(
λ+ αc

c

)
(2n− q + 1)(3i− n− q − 3)!

(2i− q − 1)!
+ (1− bk)α

×(2n− q + 2)(3i− n− q − 2)!

(2i− q)!
+ (1− bk)

α(u− k)

(n+ q + 1)

(
λ+ αc

c

)
×(2n− q + 1)(3i− n− q − 3)!

(2i− q − 1)!

]
. (4.52)

Formula (4.38) follows by equating coefficients of powers of r in (4.52). �

We conclude this section by remarking that with the approach in Chapter 3, we could

only calculate values of pk(u, n) by numerical integration of formula (3.26), whereas

using the method of this chapter we are able to find a computationally tractable result

for the probability mass function of the number of claims until ruin for claim amounts

with the Erlang(2) distribution.
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4.6 Concluding remarks

In this chapter, we have applied the probabilistic argument of the Gerber-Shiu func-

tion and obtained explicit results for ruin-related quantities in infinite and finite time.

Similar to Chapter 3, we have found general expressions for quantities such as ψk(u)

and Hk(u, x, y). Our techniques in Sections 4.3 and 4.4 were only based on existing

results in the classical risk model and we did not need to invert the Laplace trans-

form of the Gerber-Shiu function. Therefore, the method that we adopted here is more

straightforward than in the previous chapter. Unlike in Chapter 3, we could not find

a general expression for wk(u, n, t). Our analysis in this chapter can be extended to

other distributions provided that they satisfy a particular decomposition. However, as

we have seen it is difficult to obtain neat explicit solutions even for individual claim

amount with an Erlang(2) distribution, we do not pursue further solutions.

In general, as explained before, it can be concluded that the method in this chapter

is useful in finding ruin-related quantities in infinite time. By contrast, the method

in the previous chapter is more helpful for quantities in finite time as the formula for

wk(u, n, t) in Chapter 3 can be applied to a wider range of distributions.
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Chapter 5

A discrete time risk model with

capital injections

5.1 Introduction

Many formulae in risk theory are only applicable to specific claim amount distributions.

For example, in Chapter 3 we saw that the formula for wk(u, t) can be implemented on

the condition that an explicit expression for g(x, t) exists. In this chapter, we explain

an alternative way of finding values of wk(u, t) through an approximation method.

One purpose of this chapter is to present a numerical algorithm that can provide

approximations to the finite time probability of ruin in the classical risk model with

capital injections. Another purpose is to study the mechanism of such a risk model. Nie

et al. (2011) show how capital injections can be provided by reinsurance and how an

insurer can both reduce its ultimate ruin probability by effecting such reinsurance and

release capital to other parts of its business when individual claim amounts follow an

exponential and a mixed exponential distribution. In this chapter, we build a numerical

algorithm that enables us to carry out the same analysis in the case of individual claim

amounts following a heavy-tailed distribution for which analytical expressions for ruin

probabilities do not exist.
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5.2 Notation and definitions

In Chapter 3 we have explained that the underlying process for our risk model with

capital injections is the classical risk model. Since our purpose in this chapter is to

establish a risk model that can be used to approximate the classical risk model with

capital injections, we assume that the underlying process is the surplus process that

can be applied to approximate the classical risk model. In particular, we consider

the discrete time risk model that we have described in Section 1.2. Recall that for

n = 1, 2, 3, . . . we define the insurer’s surplus by

Ud(n) = u+ n−
n∑
i=1

Yi

where u = Ud(0) is the initial surplus and Yi is the insurer’s aggregate claim amount in

the ith time interval. We assume that the insurer’s premium income per unit time is 1,

so that n is total premium income up to time n. Also, T du , ψd(u), ψd(u, t) and Hd(u, y)

are the time of ruin, the probability of ruin in infinite time, the probability of ruin in

finite time and the probability and severity of ruin function, respectively. See Section

1.2 for details.

We now introduce our model. We consider a modified surplus process such that on

any occasion the surplus falls below a positive integer k, but stays above 0 the deficit

is recovered either internally through coinsurance or externally through a reinsurance

arrangement and there is no capital injection when u = k. We say that ruin occurs

when the surplus falls from above k to either 0 or below 0. For our risk model we use

the same notation as in Section 1.2, but with a subscript k. Therefore, for example,

T du,k is the time of ruin from initial surplus u = k, k+ 1, . . . for the process modified by

capital injections. The ultimate probability of ruin is thus

ψdk(u) = Pr(T du,k <∞ | Ud(0) = u).

Further, for an integer value of t, we define the finite time ruin probability as

ψdk(u, t) = Pr(T du,k ≤ t | Ud(0) = u).

In the following we build recursive formulae for ψdk(u) and ψdk(u, t) and explain how

we can use these formulae to compute their values.
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5.3 The probability of ultimate ruin

In this section, we use our discrete time risk model with capital injections to approx-

imate the continuous time classical risk model with capital injections. To do this, we

first provide a recursive expression for ψdk(u) and then explain how we can apply this

to approximate ψk(u) in the classical risk model with capital injections.

Theorem 5.1. When the initial surplus is u = k, k + 1, . . . , we have

ψdk(u+ 1) = g(0)−1

(
ψdk(u)−

u+1−k∑
x=1

g(x)ψdk(u+ 1− x)

− (G(u)−G(u+ 1− k))ψdk(k)− 1 +G(u)

)
. (5.1)

Proof. Considering the aggregate claim amount, Y1 in the first time period we have

three situations:

(i) if Y1 = x, x = 0, 1, 2, . . . , u+ 1− k, then the surplus at time 1 is u+ 1− x,

(ii) if Y1 = x, x = u+ 2− k, . . . , u, then the surplus at time 1 is k, because whenever

the surplus falls to a positive level below k capital is injected to restore the surplus

to k,

(iii) if Y1 > u, then Ud(1) ≤ 0 and so ruin occurs at time 1.

Hence, for u = k, k + 1, . . . ,

ψdk(u) =
u+1−k∑
x=0

g(x)ψdk(u+ 1− x) +
u∑

x=u+2−k

g(x)ψdk(k) +
∞∑

x=u+1

g(x)

which can be written recursively as (5.1).

A recursive expression like (5.1) needs an initial value which is given by the following

result.

Theorem 5.2. When the initial surplus is k we have

ψdk(k) =
ψd(0)−Hd(0, k)

1−Hd(0, k)
(5.2)

where Hd(0, k) =
∑k−1

x=0(1−G(x)).
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Proof. Using the argument of conditioning on the amount of the first drop of the surplus

process below its initial level we have

ψdk(k) =
k−1∑
x=1

hd(0, x)ψdk(k) +
∞∑
x=k

hd(0, x),

where hd(0, x) is defined in Section 1.2. After rearranging, formula (5.2) follows.

We can calculate values of ψdk(u) numerically to approximate ψk(u). Our numerical

procedure is based on the algorithm introduced by Dickson and Waters (1991, 1992).

The idea is to rescale the time unit, so that the premium income is always 1 within

the unit of time. For this, we assume that the the number of claims follows a Poisson

distribution with parameter 1/[(1 + θ)β], where β is an integer-valued scaling factor.

Then, we observe the surplus of the company and the aggregate claim amount at times

0, 1/β, 2/β, . . . . We note that in this algorithm we need to change both monetary

units and time units. We can apply the method of De Vylder and Goovaerts (1988) to

discretise the individual claim amount distributions and then we use Panjer’s (1981)

recursion formula to find values of the aggregate claim probability function. In the

following we consider three distributions: exponential, Pareto and lognormal.

Applying Result 1.1 and rescaling with parameter β, we can find the discretised

version of a scaled exponential distribution with parameter α by

f (0) = 1− β

α
(1− e−α/β) (5.3)

and for x = 1, 2, 3, . . . , by

f (x) =
β

α
e−α(1+x)/β(eα/β − 1)2. (5.4)

The discretised version of a scaled Pareto distribution with parameters a and b is given

by

f (0) = 1− (βb)a

1− a
(
(1 + βb)1−a − (βb)1−a) (5.5)

and for x = 1, 2, 3, . . . , by

f (x) =
(βb)a

1− a
(
−(βb+ x+ 1)1−a + 2(βb+ x)1−a − (βb+ x− 1)1−a) . (5.6)
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The discretised version of a scaled lognormal distribution with parameters µ and σ is

F (x) = (x+ 1)Φ

(
log(x+ 1)− (µ+ log β)

σ

)
− xΦ

(
log x− (µ+ log β)

σ

)
− exp{µ+ log β + σ2/2} (Φ(L2)− Φ(L1)) (5.7)

where L1 = log x−(µ+log β)
σ

− σ and L2 = log(x+1)−(µ+log β)
σ

− σ. We can apply formula

26.2.17 in Abramowitz and Stegun (1972) to calculate Φ.

Further, we note that if uβ, kβ and yβ are positive integers, then ψdkβ(uβ) and

Hd(uβ, yβ) give approximation to ψk(u) and H1(u, y), respectively. See Dickson and

Waters (1992, Section 1) or Dickson (2005, Section 7.9.2).

5.3.1 The premium for the reinsurance policy

We have explained that capital injections can be provided either as a reinsurance ar-

rangement or as coinsurance. Here, we consider a reinsurance contract under which

whenever the surplus falls between 0 and k, the reinsurance company provides pay-

ments. To evaluate the cost of such a contract, we first need to determine the expected

value of total amounts of payments to be made by the reinsurer. Let Su,k denote the ag-

gregate amount required to restore the process to level k given initial surplus u. Then,

the expected value of all payments to be made by the reinsurance company is given by

the following result.

Theorem 5.3. When the initial surplus is u = k, k + 1, . . . , we have

E[Su,k] =
k−1∑
y=0

(y + E[Sk,k])h
d(u− k, y) (5.8)

where

E[Sk,k] =

∑k−1
y=0 yh

d(0, y)

1−Hd(0, k)
. (5.9)

Proof. We can write

E[Su,k] =
k−1∑
y=0

yhd(u− k, y) + E[Sk,k]
k−1∑
y=0

hd(u− k, y)

by noting that the first term is the expected payment resulting from the first drop below

k and the second term represents the expected value of the total payments that will

happen after that from level k. Setting u = k and rearranging yields (5.9).
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Using these results, we can calculate the reinsurance premium based on the expected

value principle as Q(u, k) = (1 + θR)E[Su,k], where θR is the reinsurer’s loading factor.

5.3.2 Numerical illustrations

One objective in the classical risk model with capital injections is to minimise the

probability of ruin. A large value of k for the insurer is a guarantee that if a large claim

causes the surplus to drop between 0 and k, it can restart from level k without incurring

a huge loss. However, this means that the reinsurance policy will be expensive for the

insurer and even unattractive to the reinsurer. On the other hand, a low level of k may

not help the company to be on the safe side. Thus, there is a trade-off between k and

the probability of ruin.

In this section, we consider three claim amount distributions:

(i) Exponential(1) with mean 1 and variance 1,

(ii) Pareto(4, 3) with mean 1 and variance 2,

(iii) Lognormal(−0.69315, 1.17741) with mean 1 and variance 3.

Further, we assume λ = 1, θ = 0.2, β = 100, θR = 0.6 or 2. As in Nie et al. (2011)

let U be the available funds (before scaling) that the insurer allocates to a portfolio

U = u+Q(u, k), where u ≤ U is the initial surplus and Q(u, k) is the cost of reinsurance.

Our goal is to find different combinations of u and k that minimise the probability of

ruin subject to the constraint U = u+(1+θR)E[Su,k] and see under which circumstances

reinsurance is effective.

Figures 5.1, 5.2, 5.3 and 5.4 show the probability of ruin for different combinations

of u and the corresponding k that minimise ψk(u). The red dashed line represents

the probability of ruin without capital injections from a pre-determined initial surplus

U and the green solid line represents the probability of ruin with capital injections

for surplus level u which is minimum and a unique k that satisfy the constraint U =

u+ (1 + θR)E[Su,k]. We note that ψ(u) is approximated by the method in Section 1.2

and ψk(u) by the method in Section 5.3. Also, all numbers in these figures are expressed

before scaling. Figures 5.1 and 5.2 illustrate the probability of ruin when claim amounts

follow a lognormal distribution. In Figure 5.1 ψ(15) = 0.225, k is found subject to

15 = u + 1.6E[Su,k] and reinsurance is always effective, that is ψk(u) ≤ ψ(U) for all u
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Figure 5.1: Claim amounts have a lognormal distribution with U = 15 and θR = 0.6
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Figure 5.2: Claim amounts have a lognormal distribution with U = 20 and θR = 2
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Figure 5.3: Claim amounts have a Pareto distribution with U = 15 and θR = 0.6
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Figure 5.4: Claim amounts have a Pareto distribution with U = 20 and θR = 2
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and k, whereas in Figure 5.2 ψ(20) = 0.1581, k is found subject to 20 = u + 3E[Su,k]

and reinsurance is not always effective. As we can see for some combinations of u and

k, ψk(u) exceeds ψ(U). In this figure, the minimum value of ψk(u) = 0.1435 is obtained

when u = 17.5 and k = 4.54, which is equal to a reduction of about 9.23% in the

probability of ruin. In Figure 5.1 when u = 11.5 and k = 5.90 the probability of ruin is

reduced by 15.4%, which is considerably larger than 9.23%.

Figures 5.3 and 5.4 illustrate the probability of ruin when claim amounts have a

Pareto distribution. Similar to the lognormal claim amounts, reinsurance is always

effective in Figure 5.3 where ψ(15) = 0.158 and the probability of ruin is minimised

subject to 15 = u + 1.6E[Su,k]. In this figure, the ruin probability is minimised when

u = 11, k = 5.97 and the probability of ruin has decreased by 32.8% from 15.8%

to 10.62%. However, in Figure 5.4 reinsurance is not always effective. In this figure,

ψ(20) = 0.097 and the constraint is 20 = u + 3E[Su,k]. We can see that the minimum

value of the probability of ruin is found for u = 16.5 and k = 5.38 where ψk(u) decreases

by 27.73% from 0.097 to 0.0701. We note that, although the means of the Pareto and

lognormal distributions are the same, their variances are different and this has affected

the shape of the graphs in Figures 5.1 and 5.3.

We remark that our findings for claim amounts with heavy-tailed distributions are

compatible with the results in Nie et al. (2011). In other words, there are some

combinations of u and k for which reinsurance is not always effective.

Up until now, we have looked at the optimal values of u and k from the insurer’s

perspective. However, as mentioned before, large values of k can be costly for the

company and such reinsurance may not be provided by a reinsurance company. Now,

we keep the level of k constant and consider a value of u to be optimal if it minimises

ψk(u). Our purpose is to see the effect of capital injections on a portfolio whose claim

amounts follow a heavy-tailed distribution. The results are presented in Tables 5.1, 5.2

and 5.3. The key to these tables are as follows:

(1) approximate values of U , ψk(u) and the optimal u with the condition U = u +

1.2E[Su,k],

(2) approximate values of U , ψk(u) and the optimal u with the condition U = u +

1.6E[Su,k],
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Table 5.1: Claim sizes have an exponential distribution

U ψ(U) k = 2 k = 3

u ψk(u) u ψk(u)

16.88 5% (1) 16.69 0.0351 16.47 0.0213
(2) 16.63 0.0354 16.32 0.0219
(3) 16.39 0.0369 15.72 0.0242
(4) 16.63 0.0352 16.32 0.0216

18.22 4% (1) 18.07 0.0279 17.89 0.0168
(2) 18.02 0.0281 17.78 0.0171
(3) 17.84 0.0290 17.33 0.0185
(4) 18.02 0.0279 17.78 0.0170

19.95 3% (1) 19.84 0.0207 19.71 0.0124
(2) 19.80 0.0209 19.62 0.0126
(3) 19.67 0.0213 19.31 0.0133
(4) 19.80 0.0208 19.62 0.0125

22.38 2% (1) 22.30 0.0138 22.22 0.0082
(2) 22.28 0.0138 22.17 0.0083
(3) 22.19 0.0140 21.97 0.0085
(4) 22.28 0.0137 22.17 0.0082

26.54 1% (1) 26.50 0.0068 26.46 0.0040
(2) 26.49 0.0069 26.43 0.0041
(3) 26.44 0.0069 26.34 0.0041
(4) 26.49 0.0068 26.43 0.0040

(3) approximate values of U , ψk(u) and the optimal u with the condition U = u +

3E[Su,k],

(4) exact values of U , ψk(u) and the optimal u with the condition U = u+ 1.6E[Su,k]

for comparison with (2) – see Nie et al. (2011).

We consider three different situations to see how the results change with different

premium assumptions. To examine the accuracy of our algorithm we compare the

outputs in (2) with the exact results provided in Nie et al. (2011) in the case of

exponential claims. The first column gives the value of the capital required to keep the

ultimate probability of ruin at a pre-determined level. According to Tables 5.1, 5.2 and

5.3 the required U for the lognormal claims is higher than for the Pareto claims and the

least capital is required for exponential claims. When the price of the reinsurance policy

increases and the capital U is constant, less initial surplus u, can be allocated. This

pattern can be observed for all three distributions but the effect is not very significant

for lognormal claims and as U gets larger we cannot see any significant difference in

initial surplus with different constraints. Moreover, the probability of ruin has not

changed much when claims are lognormally distributed. If we look at different values

of u and their corresponding probabilities for different levels of k, we notice that for
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Table 5.2: Claim sizes have a lognormal distribution

U ψ(U) k = 2 k = 3

u ψk(u) u ψk(u)

37.67 5% (1) 37.61 0.0469 37.55 0.0443
(2) 37.60 0.0469 37.52 0.0444
(3) 37.54 0.0471 37.39 0.0447

41.31 4% (1) 41.27 0.0375 41.22 0.0355
(2) 41.25 0.0375 41.19 0.0355
(3) 41.20 0.0377 41.09 0.0357

46.10 3% (1) 46.07 0.0282 46.03 0.0267
(2) 46.06 0.0282 46.01 0.0267
(3) 46.02 0.0282 45.94 0.0268

53.03 2% (1) 53.01 0.0188 52.98 0.0178
(2) 53.00 0.0188 52.97 0.0178
(3) 52.98 0.0188 52.92 0.0179

65.38 1% (1) 65.37 0.0094 65.36 0.0090
(2) 65.36 0.0094 65.35 0.0090
(3) 65.35 0.0094 65.33 0.0090

Table 5.3: Claim sizes have a Pareto distribution

U ψ(U) k = 2 k = 3

u ψk(u) u ψk(u)

27.01 5% (1) 26.92 0.0442 26.82 0.0392
(2) 26.89 0.0444 26.76 0.0394
(3) 26.79 0.0448 26.53 0.0403

29.44 4% (1) 29.37 0.0354 29.29 0.0314
(2) 29.35 0.0354 29.24 0.0315
(3) 29.27 0.0357 29.06 0.0320

32.61 3% (1) 32.56 0.0265 32.50 0.0236
(2) 32.54 0.0266 32.46 0.0236
(3) 32.48 0.0267 32.33 0.0239

37.16 2% (1) 37.12 0.0178 37.09 0.0158
(2) 37.11 0.0178 37.06 0.0158
(3) 37.08 0.0178 36.98 0.0160

45.25 1% (1) 45.23 0.0089 45.21 0.0080
(2) 45.22 0.0089 45.20 0.0080
(3) 45.21 0.0089 45.16 0.0080

larger k we have less initial surplus available, but as U increases the difference between

initial surplus for the same reinsurance policy is not noticeable.
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Table 5.4: The released capital given a fixed probability of ruin

ψ(U) U u E[Su,k] Ru,k(1) Ru,k(2) Ru,k(3)

5% (*) Exponential(k = 2) 16.88 14.53 0.2188 2.09 2.00 1.69
16.88 14.56 0.2183 2.06 1.97 1.67

(*) Exponential(k = 3) 16.88 11.30 0.8 4.62 4.30 3.18
16.88 11.36 0.7986 4.56 4.24 3.12

Lognormal (k = 2) 37.67 36.56 0.0456 1.06 1.04 0.97
Lognormal (k = 3) 37.67 35.58 0.1052 1.96 1.92 1.77

Pareto (k = 2) 27.01 25.59 0.0803 1.32 1.29 1.18
Pareto (k = 3) 27.01 24.18 0.2002 2.59 2.51 2.23

4% (*) Exponential(k = 2) 18.22 15.87 0.175 2.14 2.07 1.83
18.22 15.90 0.1746 2.11 2.04 1.80

(*) Exponential(k = 3) 18.22 12.64 0.6438 4.81 4.55 3.65
18.22 12.70 0.6388 4.75 4.50 3.60

Lognormal (k = 2) 41.31 40.20 0.0358 1.07 1.05 1.00
Lognormal (k = 3) 41.31 39.23 0.0823 1.98 1.95 1.83

Pareto (k = 2) 29.44 28.02 0.0633 1.34 1.32 1.23
Pareto (k = 3) 29.44 26.61 0.1574 2.64 2.58 2.36

3% (*) Exponential(k = 2) 19.95 17.60 0.1313 2.19 2.14 1.96
19.95 17.63 0.1309 2.16 2.11 1.93

(*) Exponential(k = 3) 19.95 14.36 0.4875 5.01 4.81 4.13
19.95 14.42 0.4796 4.95 4.76 4.09

Lognormal (k = 2) 46.10 44.99 0.0261 1.08 1.07 1.03
Lognormal (k = 3) 46.10 44.02 0.0600 2.01 1.98 1.90

Pareto (k = 2) 32.61 31.19 0.0465 1.36 1.35 1.28
Pareto (k = 3) 32.61 29.79 0.1153 2.68 2.64 2.47

2% (*) Exponential(k = 2) 22.38 20.03 0.0875 2.25 2.21 2.09
22.38 20.06 0.0873 2.22 2.18 2.06

(*) Exponential(k = 3) 22.38 16.80 0.3188 5.20 5.07 4.62
22.38 16.86 0.3193 5.14 5.01 4.56

Lognormal (k = 2) 53.03 51.93 0.0168 1.08 1.07 1.05
Lognormal (k = 3) 53.03 50.97 0.0385 2.01 2.00 1.94

Pareto (k = 2) 37.16 35.75 0.0301 1.37 1.36 1.32
Pareto (k = 3) 37.16 34.36 0.0744 2.71 2.68 2.58

1% (*) Exponential(k = 2) 26.54 24.19 0.0438 2.30 2.28 2.22
26.54 24.22 0.0436 2.27 2.25 2.19

(*) Exponential(k = 3) 26.54 20.95 0.1625 5.40 5.33 5.10
26.54 21.01 0.1599 5.34 5.27 5.05

Lognormal (k = 2) 65.38 64.29 0.0080 1.08 1.08 1.07
Lognormal (k = 3) 65.38 63.33 0.0181 2.03 2.02 2.00

Pareto (k = 2) 45.25 43.84 0.0142 1.39 1.39 1.37
Pareto (k = 3) 45.25 42.46 0.0350 2.75 2.73 2.69

Table 5.4 shows how a company can release its capital by not allowing the surplus

to fall below a specified level. The key to Table 5.4 is as follows:

• Ru,k(1) = U − u− 1.2E[Su,k],

• Ru,k(2) = U − u− 1.6E[Su,k],

• Ru,k(3) = U − u− 3E[Su,k],

• (∗) exact values in the continuous time case – see Nie et al. (2011).
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The outcomes of our algorithm for the exponential distribution are close to the exact

values in the continuous time case. Table 5.4 illustrates that even if capital injections

do not reduce the ruin probability considerably, they can still provide the company with

the opportunity to release capital. As we can see the amount of released capital for our

heavy-tailed claim distributions is not as much as for the exponential claim distribution.

For example when θR = 0.6 the percentage of released capital for k = 2 when claims

are lognormally distributed ranges from 1.08 out of 65.38 available capital to 1.04 out

of 37.67 available capital, i.e. 1.7% to 2.8% and for k = 3 ranges from 2.02 out of 65.38

to 1.92 out of 37.67, i.e. 3% to 5%. This amount for the Pareto claims distribution

with k = 2 is from 3% to 5% and with k = 3 ranges from 6% to 9% which are obviously

less than for the exponential claims distribution. The percentage of released capital

for individual claim amounts with an exponential distribution is about 9% to 12% for

k = 2 and 20% to 25% for k = 3.

5.4 The probability of ruin in finite time

In this section, we consider the probability of ruin in finite time and provide recursive

formulae which we can use to approximate the finite time ruin probability in the classical

risk model with capital injections. The method is based on the algorithm of Dickson

and Waters (1991).

Theorem 5.4. For u = k, k + 1, . . . , when t = 1,

ψdk(u, 1) =
∞∑

x=u+1

g(x) = 1−G(u)

and for t > 1,

ψdk(u, t) =
u+1−k∑
x=0

g(x)ψdk(u+ 1− x, t− 1) + (G(u)−G(u+ 1− k))ψdk(k, t− 1)

+1−G(u). (5.10)

Proof. We start by considering ψdk(u, 1). If ruin occurs in the first time period, the

aggregate claim amount must be greater than u so that in the first time period, the

surplus is less than or equal to 0. Further, for the case t > 1 we note that if the

aggregate claim amount is less than u + 1− k, ruin can subsequently occur from level
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u + 1 − x, if the aggregate claim amount is greater than u + 1 − k, but less than u,

then ruin can subsequently occur from level k. Finally, if the aggregate claim amount

exceeds u, ruin occurs. Hence, the expression for the probability of finite time ruin

follows.

The probability of ruin at time t can be calculated from the probability of ruin

at times t − 1, t − 2, . . . , 1, recursively. To do this, first we must find ψdk(w, 1) for

w = k, k+1, . . . , u+ t−1, then ψdk(w, 2) for w = k, k+1, . . . , u+ t−2, etc. See Dickson

and Waters (1991, Section 2). When we know the values of ψdk(u, t), we can apply the

method of Dickson and Waters (2002, Section 6) to approximate the (defective) density

of the time of ruin in the classical risk model with capital injections for u ≥ k and

j = 1, 2, . . . , (1 + θ)βt by

(1 + θ)β
(
ψdk(u, j)− ψdk(u, j − 1)

)
(5.11)

where ψdk(u, j) is based on the values obtained from formula (5.10), i.e. after rescaling.

Dividing formula (5.11) by ψdk(u) gives the approximation for the proper density of the

time of ruin.

In Chapter 3 we found an explicit expression for the density of the time of ruin in the

classical risk model with capital injections that can be implemented in the case of claim

amounts for which g(x, t) can be explicitly identified. Our interest here is to show that

with our numerical method we can approximate the density of the time of ruin in the

classical risk model with capital injections even for claim sizes following a heavy-tailed

distribution. To examine the accuracy of our algorithm, we apply formula (3.48) and

select a suitable truncation point to graph the conditional density of the ruin time for

claim amounts that follow an exponential distribution. Figure 5.5 shows the exact and

approximate density of the time of ruin, given that ruin occurs for u = 10, β = 20,

θ = 0.2 and k = 1, 2, 3 with u and t being expressed before scaling. As we can see,

the exact and approximate densities are virtually indistinguishable. Now we apply our

numerical procedure to plot the density of the time of ruin when claim amounts have

Pareto and lognormal distributions. Figures 5.6 and 5.7 illustrate approximations to

the density of the time of ruin for Pareto and lognormal claim distributions. We observe

that when claim sizes have these heavy-tailed distributions, it is more likely that ruin

occurs earlier in time compared to the exponential distribution. However, looking at

Figures 5.5, 5.6 and 5.7 we can see that the likelihood of ruin occurring is higher for
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Figure 5.5: Exact and approximate densities of the time of ruin when claims have an expo-

nential distribution
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distribution
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have an exponential distribution
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Figure 5.10: Approximations to the cumulative distribution of the time of ruin when claims

have a lognormal distribution
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Pareto and lognormal claim distributions than the exponential claim distribution for

later time periods. However, the patterns are similar to those in Figure 5.5; the graph

for k = 1 is located above k = 2 and k = 3. However, in the case of claim amounts with

a Pareto distribution, it is not easy to distinguish between the graphs for k = 2 and

k = 3 and in the case of claim amounts with a lognormal distribution, the difference is

less clear for different levels of k. The density of the time of ruin has a fatter tail when

claims are lognormally distributed compared to the claims with exponential and Pareto

distributions. Further, we observe that the density of the time of ruin is positively-

skewed in the risk model with capital injections for claim amounts with heavy-tailed

distributions. This result is also noted by Dickson and Waters (2002) in the case of the

classical risk model without capital injections.

Figures 5.8, 5.9 and 5.10 illustrate approximations to the cumulative distribution

of the time of ruin for claims with exponential, Pareto and lognormal distributions,

respectively. In Figure 5.8 the upper 5th percentile corresponds to Tu,k = 150, 160 and

168 for k = 1, 2 and 3, respectively. In the case of the lognormal distribution the upper

5th percentile is equivalent to Tu,k = 237, 245 and 254 for k = 1, 2, 3. When claim sizes

have a Pareto distribution, the corresponding Tu,k for the upper 5th percentile is 193

for k = 1, 202 for k = 2 and 211 for k = 3. We observe that the common feature of all

these figures is that the the graph for k = 1 is over the graph for k = 2 and the graph

for k = 3 is beneath the other two graphs, consequently the graph for k = 2 is between

k = 1 and k = 3.

5.5 Concluding remarks

In this chapter, we have presented a numerical algorithm to study the classical risk

model with capital injections. For this, we have introduced a discrete time risk model

with capital injections and produced analogues of the results in Nie et al. (2011).

We have applied our algorithm to approximate the finite time and infinite time ruin

probability in the classical risk model with capital injections when claim amounts have

Pareto and lognormal distributions. Comparing our results with Nie et al. (2011, 2015)

we have demonstrated that our algorithm produces close approximations to the exact

values. Further, we found that this model can lead to a reduction in the ultimate ruin

probability when claim amounts have heavy-tailed distributions.
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Chapter 6

The Markov-modulated risk model

6.1 Introduction

In this chapter, we study Markov-modulated risk models. In the continuous time model,

the arrival intensities and the distribution of the individual claim amounts in different

periods of time depend on a state process, representing, for example, different weather,

economic, or environmental conditions, and therefore can be considered more flexible

than the classical risk model. There is much research that considers different ruin-

related quantities in the framework of the continuous time Markov-modulated model –

see Chapter 2 and references therein. However, an issue is that, similar to the classi-

cal risk model, either explicit expressions for such quantities do not exist or they are

complicated to obtain.

An aim of this chapter is to introduce a discrete time model that can be used

to approximate ruin-related quantities in the continuous time Markov-modulated risk

model. For this, we first adapt ideas of Reinhard and Snoussi (2002) and Chen et

al. (2014b) to build recursive formulae for the probability of ruin and probability

and severity of ruin in a discrete time model. Then, we use these formulae and by

modifying Dickson and Waters’ (1991, 1992) algorithm for the approximation of the

classical risk model, create stable algorithms that can provide approximations to the

probability of ruin and probability and severity of ruin in the continuous time Markov-

modulated model. Following that we extend our algorithm from Chapter 5 to analyse

the (defective) density of the time of ruin in an m-state Markov-modulated model.

In the final section, we introduce capital injections to the continuous time Markov-
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modulated model and provide formulae for the probability of ruin. We then create

algorithms to approximate the probability of ruin and the (defective) density of the

time of ruin in the continuous time Markov-modulated model with capital injections.

6.2 Notation and definitions

In Section 2.1 we have introduced the continuous time Markov-modulated risk model.

Throughout this chapter we adopt the same notation and definitions as in Section 2.1.

In this section, we consider a discrete time model that can be used to approximate

the continuous time Markov-modulated model. Such a discrete time model has been

explained in detail in Section 2.1.2. Using the same notation, the surplus of an insurance

company at time n = 1, 2, 3, . . . is modelled by

Ud(n) = u+ n−
n∑
i=1

Yi (6.1)

where u is the insurer’s initial surplus, n is the total premium income up to time n –

assuming that the insurer’s premium income per unit time is 1 – and Yi denotes the

insurer’s aggregate claim amount in the ith time interval. Let {Jn}n∈N be a homoge-

neous, irreducible and aperiodic Markov chain with a finite state space M = {1, . . . ,m}
and transition probabilities pij = Pr(Jn = j|Jn−1 = i, Jk k ≤ n− 1), for i, j,∈M . The

conditional joint distribution of Yn and Jn given the previous state Jn−1 is defined by

gij(x) = Pr(Yn = x, Jn = j|Jn−1 = i, Jk, Yk, k ≤ n− 1) = pijgj(x)

where gi(x) =
∑m

j=1 gij(x), and Gi(y) =
∑m

j=1

∑y
x=0 gij(x) for y = 0, 1, 2, . . . . Further,

g̃ij(s) =
∑∞

x=0 s
xgij(x). For all i, j ∈ M we define (µn)ij =

∑∞
x=1 x

ngij(x) < ∞ to be

nth moment of the aggregate claim amount in state j, given initial state i.

Let T du be the time of ruin given initial surplus u, and define as T du = min{n ≥ 1 :

Ud(n) ≤ 0 | Ud(0) = u} with T du =∞ if Ud(n) > 0 for n = 1, 2, 3, . . . . We remark that

in this chapter we adopt the same definition of ruin as in Chapter 5.

Denote by ψdi (u) the ultimate probability of ruin given initial surplus u and initial

environment state i which is given by

ψdi (u) = Pr(T du <∞ | Ud(0) = u, J(0) = i) = 1− δdi (u)
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where δdi (u) is the probability of survival. Also, we denote by ψdi (u, t) the finite time

probability of ruin given initial surplus u and initial environment state i which is given

by

ψdi (u, t) = Pr(T du ≤ t | Ud(0) = u, J(0) = i).

Also, we define the probability that ruin occurs in state j and the insurer’s deficit at

ruin is at most y, given initial environment state i, as

Hd
ij(u, y) = Pr(T du <∞, |U(T du )| ≤ y, J(T du ) = j | Ud(0) = u, J(0) = i)

with the probability mass function being hdij(u, y) and hdi (u, y) =
∑m

j=1 h
d
ij(u, y). Fur-

ther, Hd
i (u, y) =

∑m
j=1 H

d
ij(u, y).

6.3 The probability of ruin and the probability and

severity of ruin

In this section, we present recursive formulae for ψdi (u) and hdi (u, y) when m = 2. As a

recursive formula needs an initial value, we first derive expressions for ψdi (0) and hdi (0, y)

and then provide results which we can use to calculate the ultimate probability of ruin

and the probability and severity of ruin in our discrete time model.

6.3.1 Starting values ψdi (0) and hdij(0, y)

Chen et al. (2014b) have derived two equations that define the relationship between

δd1(0) and δd2(0) under their definition of ruin. Here we develop the equivalent of their

equations for our definition of ruin. The first equation is obtained by a different method,

but for the second equation, we use the method of generating functions as in Chen et

al. (2014b).

Theorem 6.1. When m = 2 and u = 0, δd1(0) and δd2(0) satisfy

p12δ
d
2(0) + p21δ

d
1(0) = p12(1− µ2) + p21(1− µ1) (6.2)

and

(g̃11(ρ)(g̃22(ρ)− ρ)− g̃12(ρ)g̃21(ρ)) δd1(0) = (g̃12(ρ)g̃22(ρ)− g̃12(ρ)(g̃22(ρ)− ρ)) δd2(0),

(6.3)

134



where ρ ∈ (0, 1) is the solution to

L1(s) = (g̃11(s)− s) (g̃22(s)− s)− g̃12(s)g̃21(s) = 0. (6.4)

Proof. We begin with

ψdi (u) =
2∑
j=1

u∑
x=0

gij(x)ψdj (u+ 1− x) +
2∑
j=1

∞∑
x=u+1

gij(x). (6.5)

We assume that
∑∞

u=0 ψ
d
i (u) exists and discuss conditions under which this assumption

holds in the Appendix.

Summing over u from 0 to ∞ in (6.5) gives

∞∑
u=0

ψdi (u) =
2∑
j=1

∞∑
u=0

u∑
x=0

gij(x)ψdj (u+ 1− x) +
2∑
j=1

∞∑
u=0

∞∑
x=u+1

gij(x). (6.6)

Setting u+ 1 = n in the first term on the right-hand side of (6.6) we get

∞∑
u=0

ψdi (u) =
2∑
j=1

∞∑
n=1

n−1∑
x=0

gij(x)ψdj (n− x) +
2∑
j=1

∞∑
u=0

∞∑
x=u+1

gij(x).

Then, changing the order of summation yields

∞∑
u=0

ψdi (u) =
2∑
j=1

(
∞∑
x=0

gij(x)
∞∑
u=1

ψdj (u) +
∞∑
x=1

xgij(x)

)

=
2∑
j=1

(
pij

∞∑
u=1

ψdj (u) + µij

)
,

which for i = 1 can be written as

ψd1(0) +
∞∑
u=1

ψd1(u) = p11

∞∑
u=1

ψd1(u) + µ11 + p12

∞∑
u=1

ψd2(u) + µ12 (6.7)

and for i = 2,

ψd2(0) +
∞∑
u=1

ψd2(u) = p21

∞∑
u=1

ψd1(u) + µ21 + p22

∞∑
u=1

ψd2(u) + µ22. (6.8)

Rearranging (6.7) and (6.8) gives usψd1(0) + p12

∑∞
u=1 ψ

d
1(u) = µ1 + p12

∑∞
u=1 ψ

d
2(u),

ψd2(0) + p21

∑∞
u=1 ψ

d
2(u) = µ2 + p21

∑∞
u=1 ψ

d
1(u)
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and formula (6.2) follows.

We can build the second relationship between δd1(0) and δd2(0) using the method of

generating functions similar to Chen et al. (2014b). After adjusting for our definition

of ruin, we can rewrite formula (3) of their paper as

δdi (u) =
2∑
j=1

u∑
x=0

gij(x)δdj (u+ 1− x). (6.9)

Multiplying both sides by su+1 and summing over u yields

∞∑
u=0

su+1δdi (u) =
2∑
j=1

∞∑
u=0

su+1

u∑
x=0

gij(x)δdj (u+ 1− x).

We define δ̃di (s) =
∑∞

x=0 s
xδdi (x). Setting u+ 1 = n, we find that

sδ̃di (s) =
2∑
j=1

∞∑
n=1

n−1∑
x=0

sngij(x)δdj (n− x)

=
2∑
j=1

∞∑
n=1

(
n∑
x=0

sngij(x)δdj (n− x)− sngij(n)δdj (0)

)

=
2∑
j=1

(
∞∑
n=1

n∑
x=0

sngij(x)δdj (n− x)−
∞∑
n=1

sngij(n)δdj (0)

)
,

and by noting that

g̃ij(s)δ̃
d
j (s) =

∞∑
n=0

n∑
x=0

sngij(x)δdj (n− x)

we get

sδ̃di (s) =
2∑
j=1

g̃ij(s)δ̃
d
j (s)−

2∑
j=1

g̃ij(s)δ
d
j (0)

=
2∑
j=1

g̃ij(s)δ̃
d
j (s)− ei(s), (6.10)

where ei(s) =
∑2

j=1 g̃ij(s)δ
d
j (0). We can rewrite (6.10) as a system of equations. Thus(g̃11(s)− s) δ̃d1(s) + g̃12(s)δ̃d2(s) = e1(s),

g̃21(s)δ̃d1(s) + (g̃22(s)− s) δ̃d2(s) = e2(s).
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It follows that

((g̃11(s)− s) (g̃22(s)− s)− g̃12(s)g̃21(s)) δ̃d1(s) = e1(s) (g̃22(s)− s)− e2(s)g̃12(s).

(6.11)

Equation (6.11) is similar to equation (5) of Chen et al. (2014b). The only difference is

the definitions of e1(s) and e2(s) on the right-hand side. In their paper, ei(s) is defined

in terms of gij(0), whereas here, it is defined in terms of g̃ij(s). To find a relationship

between δd1(0) and δd2(0) we proceed as follows. Following Chen et al. (2014b), we can

write equation (6.11) as L1(s)δ̃d1(s) = L2(s), so that

L1(s) = (g̃11(s)− s) (g̃22(s)− s)− g̃12(s)g̃21(s). (6.12)

Substituting e1(s) and e2(s) on the right-hand side of (6.11) yields

L2(s) = (g̃11(s) (g̃22(s)− s)− g̃12(s)g̃21(s)) δd1(0)

+ (g̃12(s) (g̃22(s)− s)− g̃12(s)g̃22(s)) δd2(0). (6.13)

Then, by noting that g̃ij(0) = gij(0), we have

L2(0) = (g11(0)g22(0)− g12(0)g21(0)) δd1(0)

and that g̃ij(1) = pij, we get

L2(1) = (p11(p22 − 1)− p12p21) δd1(0)− p12δ
d
2(0).

We assume L2(0) > 0 which holds under the condition that p11p22 > p12p21 – see case

2 in Chen et al. (2014b, page 210) – and applies to all our numerical examples that

follow. Further, given that L2(1) < 0, we can conclude that there exists ρ ∈ (0, 1),

which is the solution to L1(ρ) = 0 so that L2(ρ) = 0. Setting L2(ρ) = 0 in expression

(6.13), we can find the second relationship between δd1(0) and δd2(0) which is given by

(6.3).

The next result gives starting values hdij(0, y).

Theorem 6.2. When m = 2, the initial surplus is 0 and y = 0, 1, 2, . . . , hd11(0, y) and

hd21(0, y) satisfy

p12h
d
21(0, y) + p21h

d
11(0, y) = p12 (p21 −G21(y)) + p21 (p11 −G11(y)) (6.14)
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and

hd11(0, y) (g̃11(ρ) (g̃22(ρ)− ρ)− g̃12(ρ)g̃21(ρ)) + g̃12(ρ)
∞∑
u=0

ρu+1g21(u+ 1 + y)

= hd21(0, y) (g̃12(ρ)g̃22(ρ)− g̃12(ρ) (g̃22(ρ)− ρ)) + (g̃22(ρ)− ρ)
∞∑
u=0

ρu+1g11(u+ 1 + y).

(6.15)

Further, hd22(0, y) and hd12(0, y) satisfy

p12h
d
22(0, y) + p21h

d
12(0, y) = p12 (p22 −G22(y)) + p21 (p12 −G12(y)) (6.16)

and

hd12(0, y) (g̃11(ρ) (g̃22(ρ)− ρ)− g̃12(ρ)g̃21(ρ)) + g̃12(ρ)
∞∑
u=0

ρu+1g22(u+ 1 + y)

= hd22(0, y) (g̃12(ρ)g̃22(ρ)− g̃12(ρ) (g̃22(ρ)− ρ)) + (g̃22(ρ)− ρ)
∞∑
u=0

ρu+1g12(u+ 1 + y),

(6.17)

provided that p22p11 > p12p21 and

p12A21(1, y) + p21A11(1, y) < | ((p22 − 1)p11 − p12p21) | hd11(0, y)

+ | ((p22 − 1)p12 − p12p22) | hd21(0, y),

(6.18)

where Aij(s, y) =
∑∞

u=0 s
u+1gij(u+ 1 + y) and ρ is the solution to equation (6.4).

Proof. We adapt ideas in Reinhard and Snoussi (2002) to our ruin definition and write

hdij(u, y) =
2∑
l=1

u∑
x=0

gil(x)hdlj(u+ 1− x, y) + gij(u+ 1 + y). (6.19)

Assuming
∑∞

u=0 h
d
ij(u, y) exists (which it will if

∑∞
u=0 ψ

d
i (u) exists), summing over u

yields

∞∑
u=0

hdij(u, y) =
2∑
l=1

∞∑
u=0

u∑
x=0

gil(x)hdlj(u+ 1− x, y) +
∞∑
u=0

gij(u+ 1 + y).
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Setting u+ 1 = n, u+ 1 + y = x and changing the order of summation gives

∞∑
u=0

hdij(u, y) =
2∑
l=1

∞∑
n=1

n−1∑
x=0

gil(x)hdlj(n− x, y) +
∞∑

x=1+y

gij(x)

=
2∑
l=1

∞∑
x=0

gil(x)
∞∑

n=x+1

hdlj(n− x, y) + (pij −Gij(y))

which can be rewritten as

hdij(0, y) +
∞∑
u=1

hdij(u, y) =
2∑
l=1

pil

∞∑
u=1

hdlj(u, y) + (pij −Gij(y)) .

When i = j = 1, we have

hd11(0, y) + p12

∞∑
u=1

hd11(u, y) = p12

∞∑
u=1

hd21(u, y) + (p11 −G11(y)) , (6.20)

and when i = 2 and j = 1, we have

hd21(0, y) + p21

∞∑
u=1

hd21(u, y) = p21

∞∑
u=1

hd11(u, y) + (p21 −G21(y)) . (6.21)

Multiplying (6.20) by p21 and (6.21) by p12 and adding the resulting equations, we obtain

the relationship between hd11(0, y) and hd21(0, y), which is given by (6.14). Similarly, we

can derive equation (6.16) which shows the relationship between hd12(0, y) and hd22(0, y).

We apply the method of generating functions to build the second pair of equations.

Multiplying formula (6.19) by su+1 and summing over u yields

∞∑
u=0

su+1hdij(u, y) =
2∑
l=1

∞∑
u=0

u∑
x=0

su+1gil(x)hdlj(u+ 1− x, y) +
∞∑
u=0

su+1gij(u+ 1 + y).

(6.22)

We define h̃dij(s, y) =
∑∞

u=0 s
uhdij(u, y), and set n = u + 1 in the first term on the

right-hand side of (6.22) to get

sh̃dij(s, y) =
2∑
l=1

∞∑
n=1

n−1∑
x=0

sngil(x)hdlj(n− x, y) + Aij(s, y).

Hence

sh̃dij(s, y) =
2∑
l=1

g̃il(s)h̃
d
lj(s, y)− eij(s, y) + Aij(s, y) (6.23)

139



where eij(s, y) =
∑2

l=1 g̃il(s)h
d
lj(0, y). We can write (6.23) for i = 1, 2 and j = 1 as(g̃11(s)− s)h̃d11(s, y) + g̃12(s)h̃d21(s, y) = e11(s, y)− A11(s, y)

g̃21(s)h̃d11(s, y) + (g̃22(s)− s)h̃d21(s, y) = e21(s, y)− A21(s, y),

giving

((g̃11(s)− s) (g̃22(s)− s)− g̃12(s)g̃21(s)) h̃d11(s, y)

= (g̃22(s)− s) e11(s, y)− g̃12(s)e21(s, y) + g̃12(s)A21(s, y)− (g̃22(s)− s)A11(s, y).

(6.24)

Similarly, for i = 1, 2 and j = 2 we have(g̃11(s)− s)h̃d12(s, y) + g̃12(s)h̃d22(s, y) = e12(s, y)− A12(s, y)

g̃21(s)h̃d12(s, y) + (g̃22(s)− s)h̃d22(s, y) = e22(s, y)− A22(s, y),

giving

((g̃11(s)− s) (g̃22(s)− s)− g̃12(s)g̃21(s)) h̃d12(s, y)

= (g̃22(s)− s) e12(s, y)− g̃12(s)e22(s, y) + g̃12(s)A22(s, y)− (g̃22(s)− s)A12(s, y).

(6.25)

Inserting for e11(s, y) and e21(s, y), we can write equation (6.24) as L1(s)h̃d11(s, y) =

L
(1)
2 (s), where L1(s) is given by (6.12), and

L
(1)
2 (s) = ((g̃22(s)− s) g̃11(s)− g̃12(s)g̃21(s))hd11(0, y) + g̃12(s)A21(s, y)

+ ((g̃22(s)− s) g̃12(s)− g̃12(s)g̃22(s))hd21(0, y)− (g̃22(s)− s)A11(s, y).

Similarly, equation (6.25) can be written as L1(s)h̃d12(s, y) = L
(2)
2 (s), where

L
(2)
2 (s) = ((g̃22(s)− s) g̃11(s)− g̃12(s)g̃21(s))hd12(0, y) + g̃12(s)A22(s, y)

+ ((g̃22(s)− s) g̃12(s)− g̃12(s)g̃22(s))hd22(0, y)− (g̃22(s)− s)A12(s, y).

Setting s = 0, and noting that Aij(0, y) = 0, we have

L
(1)
2 (0) = (g22(0)g11(0)− g12(0)g21(0))hd11(0, y).
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Also, setting s = 1, and noting that Aij(1, y) =
∑∞

u=0 gij(u+ 1 + y) < pij gives

L
(1)
2 (1) = ((p22 − 1) p11 − p12p21)hd11(0, y) + p12A21(1, y)

+ ((p22 − 1) p12 − p12p22)hd21(0, y) + p21A11(1, y).

Assuming L
(1)
2 (0) > 0 and L

(1)
2 (1) < 0, which holds under the assumptions stated in

the theorem and applies to all our numerical examples, we can conclude that there

exists ρ ∈ (0, 1) such that L1(ρ) = L
(1)
2 (ρ) = 0, and by the same argument that

L1(ρ) = L
(2)
2 (ρ) = 0. Therefore, we can find the second pair of equations that define

the relationship between h11(0, y), h21(0, y) and h12(0, y), h22(0, y).

6.3.2 The probability of ultimate ruin

In this section, building on the idea of Chen et al. (2014b), we first develop two recursive

formulae for the probability of ruin in our discrete time model when m = 2, then we

show that as these formulae are unstable for computation we need to construct an

algorithm in terms of {hdij(0, y)}∞y=0, i, j = 1, 2. Our approach is different from Chen

et al. (2014b) in one major respect: we follow the definition of ruin in Chapter 5, i.e.

ruin occurs when the surplus falls to or goes below zero. With our definition of ruin,

equation (3) of Chen et al. (2014b) changes to

ψdi (u) =
2∑
j=1

u∑
x=0

gij(x)ψdj (u+ 1− x) +
2∑
j=1

∞∑
x=u+1

gij(x). (6.26)

We can write (6.26) for each state as

ψd1(u+ 1) = f−1
0

(
g12(0)ψd2(u)− g22(0)ψd1(u)

+
u∑
x=1

ψd1(u+ 1− x) (g22(0)g11(x)− g12(0)g21(x))

+
u∑
x=1

ψd2(u+ 1− x) (g22(0)g12(x)− g12(0)g22(x))

+g22(0) (1−G1(u))− g12(0) (1−G2(u))

)
(6.27)
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for u = 0, 1, 2, . . . , where f0 = g12(0)g21(0) − g11(0)g22(0) as defined by Chen et al.

(2014b, Section 3) and

ψd2(u+ 1) = f−1
0

(
g21(0)ψd1(u)− g11(0)ψd2(u)

+
u∑
x=1

ψd1(u+ 1− x) (g11(0)g21(x)− g21(0)g11(x))

+
u∑
x=1

ψd2(u+ 1− x) (g11(0)g22(x)− g21(0)g12(x))

+g11(0) (1−G2(u))− g21(0) (1−G1(u))

)
. (6.28)

Proceeding numerically with formulae (6.27) and (6.28) we have faced a problem of

instability. This problem arises because these two formulae involve subtracting many

terms. According to Panjer and Wang (1993, Section 11.5) this is a reason for a recursion

scheme to be unstable. To solve this problem, we modify equation (6.5) of Dickson et

al. (1995). The result is given in the following.

Theorem 6.3. When m = 2, for u = 1, 2, 3, . . . , we have

ψd1(u) = f−1

((
1− hd22(0, 0)

)
ψd1(0) + hd12(0, 0)ψd2(0)

+
u−1∑
x=1

ψd1(u− x)
((

1− hd22(0, 0)
)
hd11(0, x) + hd12(0, 0)hd21(0, x)

)
+

u−1∑
x=1

ψd2(u− x)
((

1− hd22(0, 0)
)
hd12(0, x) + hd12(0, 0)hd22(0, x)

)
−
(
1− hd22(0, 0)

) u−1∑
x=0

hd1(0, x)− hd12(0, 0)
u−1∑
x=0

hd2(0, x)

)
(6.29)

and

ψd2(u) = f−1

((
1− hd11(0, 0)

)
ψd2(0) + hd21(0, 0)ψd1(0)

+
u−1∑
x=1

ψd1(u− x)
((

1− hd11(0, 0)
)
hd21(0, x) + hd21(0, 0)hd11(0, x)

)
+

u−1∑
x=1

ψd2(u− x)
((

1− hd11(0, 0)
)
hd22(0, x) + hd21(0, 0)hd12(0, x)

)
−
(
1− hd11(0, 0)

) u−1∑
x=0

hd2(0, x)− hd21(0, 0)
u−1∑
x=0

hd1(0, x)

)
(6.30)
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where f =
(
1− hd11(0, 0)

) (
1− hd22(0, 0)

)
− hd12(0, 0)hd21(0, 0).

Proof. We begin with

ψdi (u) =
2∑
j=1

u−1∑
x=0

hdij(0, x)ψdj (u− x) +
2∑
j=1

∞∑
x=u

hdij(0, x). (6.31)

By noting that ψdi (0) =
∑∞

x=0 h
d
i (0, x) we can write (6.31) as

ψd1(u) = hd11(0, 0)ψd1(u) + hd12(0, 0)ψd2(u) +
u−1∑
x=1

hd11(0, x)ψd1(u− x)

+
u−1∑
x=1

hd12(0, x)ψd2(u− x) + ψd1(0)−
u−1∑
x=0

hd1(0, x) (6.32)

and

ψd2(u) = hd21(0, 0)ψd1(u) + hd22(0, 0)ψd2(u) +
u−1∑
x=1

hd21(0, x)ψd1(u− x)

+
u−1∑
x=1

hd22(0, x)ψd2(u− x) + ψd2(0)−
u−1∑
x=0

hd2(0, x). (6.33)

Rearranging (6.32) and (6.33), and solving a system of equations we can obtain (6.29)

and (6.30), respectively.

We have not experienced any problem of numerical instability with formulae (6.29)

and (6.30) as discussed by Dickson et al. (1995) for the approximation of the classical

risk model. These formulae can be easily applied provided that we know the values of

ψdi (0) and hdij(0, 0) for i, j = 1, 2.

Unfortunately, we were not able to calculate the ultimate ruin probability for m > 2.

This issue arises, because we need m equations to be able to find the initial values for

an m-state model. Using formulae (6.5) and (6.9), we can only obtain two equations

which are not sufficient for finding the initial values in a model with more than two

states. In Section 6.5.2 we suggest a method that gives us an estimate for the ultimate

ruin probability for a model with m > 2 states.

6.3.3 The probability and severity of ruin

In this section, we derive recursive formulae for the probability and severity of ruin

function in our discrete time model when m = 2. For this, we can modify equation
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(4.2) of Dickson et al. (1995), which can be used to approximate H1(u, y) in the classical

risk model, and write expressions for the probability and severity of ruin function from

which we can approximate H1,i(u, y) in the Markov-modulated risk model.

Theorem 6.4. For m = 2, u = 1, 2, 3, . . . and y = 0, 1, 2, . . . we have

Hd
1 (u, y) = f−1

((
1− hd22(0, 0)

) (
Hd

1 (0, u+ y)−Hd
1 (0, u)

)
+hd12(0, 0)

(
Hd

2 (0, u+ y)−Hd
2 (0, u)

)
+

u−1∑
x=1

Hd
1 (u− x, y)

(
hd11(0, x)

(
1− hd22(0, 0)

)
+ hd12(0, 0)hd21(0, x)

)
+

u−1∑
x=1

Hd
2 (u− x, y)

(
hd12(0, x)

(
1− hd22(0, 0)

)
+ hd12(0, 0)hd22(0, x)

))
(6.34)

and

Hd
2 (u, y) = f−1

(
hd21(0, 0)

(
Hd

1 (0, u+ y)−Hd
1 (0, u)

)
+
(
1− hd11(0, 0)

) (
Hd

2 (0, u+ y)−Hd
2 (0, u)

)
+

u−1∑
x=1

Hd
1 (u− x, y)

((
1− hd11(0, 0)

)
hd21(0, x) + hd21(0, 0)hd11(0, x)

)
+

u−1∑
x=1

Hd
2 (u− x, y)

((
1− hd11(0, 0)

)
hd22(0, x) + hd21(0, 0)hd12(0, x)

))
(6.35)

where f =
(
1− hd11(0, 0)

) (
1− hd22(0, 0)

)
− hd12(0, 0)hd21(0, 0).

Proof. We start with

Hd
i (u, y) =

2∑
j=1

u−1∑
x=0

hdij(0, x)Hd
j (u− x, y) +

2∑
j=1

u+y−1∑
x=u

hdij(0, x)

= Hd
i (0, u+ y)−Hd

i (0, u) +
2∑
j=1

u−1∑
x=0

hdij(0, x)Hd
j (u− x, y) (6.36)

where the last line is obtained by noting that Hd
i (0, y) =

∑y−1
x=0 h

d
i (0, x). For i = 1,
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(6.36) can be written as

Hd
1 (u, y) = Hd

1 (0, u+ y)−Hd
1 (0, u) + hd11(0, 0)Hd

1 (u, y) + hd12(0, 0)Hd
2 (u, y)

+
u−1∑
x=1

hd11(0, x)Hd
1 (u− x, y) +

u−1∑
x=1

hd12(0, x)Hd
2 (u− x, y)

and for i = 2 we have

Hd
2 (u, y) = Hd

2 (0, u+ y)−Hd
2 (0, u) + hd21(0, 0)Hd

1 (u, y) + hd22(0, 0)Hd
2 (u, y)

+
u−1∑
x=1

hd21(0, x)Hd
1 (u− x, y) +

u−1∑
x=1

hd22(0, x)Hd
2 (u− x, y).

After rearranging and solving a system of equations we obtain (6.34) and (6.35).

In the next section, we develop algorithms to approximate the probability of ruin

and probability and severity of ruin in the continuous time Markov-modulated model

by applying equations (6.29), (6.30), (6.34) and (6.35).

6.4 Numerical illustrations

In this section, we extend our numerical algorithm in Chapter 5, which is based on the

ideas of Dickson and Waters (1991, 1992), to approximate the probability of ruin and

the probability and severity of ruin in the continuous time Markov-modulated model.

Their idea is that if we split a time interval into a large set of small intervals we can use

a discrete time model as an approximation to a continuous time model. Therefore, the

application of our algorithms is based on rescaling of the time unit and the monetary

unit. To discretise a continuous distribution we apply Result 1.1. For the time unit,

without loss of generality we assume that premium income per unit of time is c = 1,

and rescale the time period so that this assumption always holds. Therefore, if ct is the

total premium income up to time t in the continuous time model, t = 1/cβ would be

our time unit in the discrete time model, where β is the scaling factor for discretisation.

We consider two claim amount distributions: exponential with mean 1/µi, i = 1, 2,

for which explicit results can be obtained in the continuous time case (and therefore we

can compare our approximate values with the true values), and Pareto with parameters

ai and bi for which we cannot find analytical formulae.
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The first step is similar to our algorithm in the previous chapter. We need to

discretise the claim size distributions – the discretised versions of scaled exponential

and Pareto distributions are given by (5.4) and (5.5), respectively. Then, we can apply

Panjer’s (1981) recursion formula to calculate the aggregate claim amount distributions

in states 1 and 2 given {pij}2
i,j=1.

The next step is the computation of ψd1(u), ψd2(u) and their initial values. Equations

(6.3), (6.15) and (6.17) are based on the probability generating functions of the aggre-

gate claim amount with parameter ρ and in order to find ρ we need to solve L1(ρ) = 0

from formula (6.4). In our model, where the distribution of the number of claims over

(0, t) in state j is Poisson with parameter λjt, we can define g̃ij by

g̃ij(s) = pij g̃j(s) = pij exp{λjt(f̃j(s)− 1)},

where f̃j(s) =
∑∞

x=0 s
xfj(x). The probability generating function of the claim amount

distribution, has an explicit form in the case of the discretised exponential distribution.

Therefore, we can calculate g̃ij(s) and substitute in (6.4) and solve L1(ρ) = 0 to find

ρ. However, the explicit form for the probability generating function of the discretised

Pareto distribution does not exist, and we need to find ρ by numerical methods such

as the Newton-Raphson method, where we find a sequence {ρn} given by

ρn+1 = ρn −
L1(ρn)

L
′
1(ρn)

where

L1(ρn) = (g̃11(ρn)− ρn) (g̃22(ρn)− ρn)− g̃21(ρn)g̃12(ρn)

and

L
′

1(ρn) = g̃
′

11(ρn)g̃22(ρn) + g̃
′

22(ρn)g̃11(ρn)−
(
g̃
′

12(ρn)g̃21(ρn) + g̃12(ρn)g̃
′

21(ρn)
)

+2ρn −
(
g̃11(ρn) + ρng̃

′

11(ρn) + g̃22(ρn) + ρg̃
′

22(ρn)
)
.

Further, we have

g̃
′

ij(ρn) = pijλjtf̃
′

j (ρn) exp{λjt(f̃j(ρn)− 1}

and f̃ ′j (ρn) =
∑∞

x=1 xρ
x−1
n fj(x) for which we require to truncate the summation. Let L

be the truncation point. Then, we choose L such that F̄i(L) =
∑∞

i=L fi(x) < ε, where ε

is a small strictly positive value.
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As the sojourn times in states 1 and 2 are exponentially distributed with intensity

rate αi in the continuous time model and as our time intervals are very short, we can

calculate the transition probability matrix as follows(
e−α1/cβ 1− e−α1/cβ

1− e−α2/cβ e−α2/cβ

)
.

In our numerical examples, we consider the situations in which α1 takes values of

0.1, 0.3, 0.5, 0.7, 0.9, and α2 = 0.5 is fixed. Our aim is to examine the impact of the

length of stay on the probability of ruin in different states. Specifically, we will consider

situations when either both states have equal expected aggregate claim amount E[Si],

or one of them has greater E[Si]. Without loss of generality, we assume that the arrival

rate and the mean of the individual claims in state 1 is 1, i.e. λ1 = m1 = 1. Hence

E[S1] = 1, and we assume that E[S2] is either equal, greater or less than E[S1]. Our

numerical example is based on the following six cases for the continuous time model:

1. E[S1] = E[S2]: λ1 = 1, λ2 = 2, µ1 = 1, µ2 = 2,

2. E[S1] > E[S2]: λ1 = 1, λ2 = 0.5, µ1 = 1, µ2 = 2,

3. E[S1] < E[S2]: λ1 = 1, λ2 = 2, µ1 = 1, µ2 = 0.5,

4. E[S1] = E[S2]: λ1 = 1, λ2 = 2, a1 = 2, b1 = 1, a2 = 3, b2 = 1,

5. E[S1] > E[S2]: λ1 = 1, λ2 = 0.5, a1 = 2, b1 = 1, a2 = 3, b2 = 1,

6. E[S1] < E[S2]: λ1 = 1, λ2 = 2, a1 = 2, b1 = 1, a2 = 3, b2 = 4.

Further, we assume that the notional premium loading factor θ is 0.1 so that the positive

loading condition given by (2.2) is satisfied.

Our experiments with different scaling factors show that, contrary to the classical

risk model, β = 20 and β = 50 do not give satisfactory approximations and the approx-

imate values of ruin probabilities are equal to the exact values only up to two decimal

places. With β = 100 there are few cases that the approximations agree with the exact

values to four decimal places. With β = 300, the approximation improves further.

However, with β = 500 we did not observe significant improvement. Therefore, we set

β = 300 throughout.
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The last thing to consider is the truncation point. We need to test how robust the

calculation of ρ is with respect to L. Table 6.1 shows the upper tail probability and the

calculated ρ for different values of L in the case of exponential and Pareto distributions

when E[S1] > E[S2], i.e. Cases 2 and 5.

Table 6.1: Values of F̄1(L), F̄2(L) and ρ when β = 300

Scaled L 3000 6000 20000 65000

Exponential (1) 4.5× 10−5 2.1× 10−9 1.1× 10−29 8.0× 10−95

(2) 2.1× 10−9 4.3× 10−18 1.3× 10−58 6.4× 10−189

ρ 0.997108645688 0.997108645695 0.997108645695 0.997108645695

Pareto (1) 8.0× 10−3 2.1× 10−3 1.2× 10−4 7.2× 10−6

(2) 7.5× 10−4 1.1× 10−4 2.3× 10−6 4.5× 10−8

ρ 0.997284980997 0.997284981604 0.997284981604 0.997284981604

As we can observe, the calculated value of ρ is not highly sensitive to L and our

experiments with the above values show that it does not impact approximations con-

siderably. Since the choice of L affects the running time of our programmes, we set

(scaled) L = 3000 in all our numerical examples.

6.4.1 Approximations to ψ1(u) and ψ2(u)

Tables 6.2, 6.3 and 6.4 show exact and approximate values for the ultimate ruin prob-

ability with initial surplus u in the continuous time model when the individual claim

amounts are exponentially distributed. We can apply the methods of Li and Lu (2008)

for u = 0 to show that

ψii(0) =
λiµi (c− λjµj + cρ∗µj + αjµi(1 + ρ∗µj))

c(1 + ρ∗µi)(c− λjµj + cρ∗µj)
(6.37)

and

ψij(0) =
αiλjµ

2
j

c(c− λjµj + cρ∗µj)
(6.38)

where i, j = 1, 2, and i 6= j with ρ∗ being the unique positive solution of the equation(
ρ∗ − α2

c
− λ2

c
(1− f̃2(ρ∗))

)(
ρ∗ − α1

c
− λ1

c
(1− f̃1(ρ∗))

)
− α1α2

c2
= 0 (6.39)

where f̃i(s) is the Laplace Transform of the claim size distribution and in the case

of claim amounts following exponential distributions with parameter 1/µi, is f̃i(s) =
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µ−1
i /(s + µ−1

i ). Equation (6.39) is, in fact, equation (13) of Lu and Li (2005) adjusted

to our assumption of constant premium income regardless of the state being occupied.

For u > 0 we can apply the Gerber-Shiu function from Li and Lu (2008) given by

formula (2.3) and write a system of differential equations that can be solved through

the Laplace transform method after substituting for f . Define ψ̃ij(s) to be the Laplace

transform of the probability of ruin in the continuous time Markov-modulated model.

Then, we can show that

ψ̃ii(s) =
sψii(0)− λi

c
+ ψii(0)

µi
−
((
sψji(0) +

ψji(0)

µj

)(
sαi
c

+ αi
cµi

))
/Aj(s)

Ai(s)−
((

sαj
c

+
αj
cµj

)(
sαi
c

+ αi
cµi

))
/Aj(s)

(6.40)

and

ψ̃ij(s) =
sψij(0)−

(
sαi
c

+ αi
cµi

)
ψ̃jj(s) + ψij(0)/µi

Ai(s)
(6.41)

where

Ai(s) = s2 − s
(
αi + λi
c

− 1

µi

)
− αi
cµi

. (6.42)

Formulae (6.40) and (6.41) can be readily inverted with mathematical software.

The key for Tables 6.2 to 6.7 is as follows:

(1) denotes the approximation to ψ1(u),

(2) denotes the exact value of ψ1(u),

(3) denotes the ratio of the value in (1) to that in (2),

(4) denotes the approximation to ψ2(u),

(5) denotes the exact value of ψ2(u),

(6) denotes the ratio of the value in (4) to that in (5).
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Table 6.2: Exponential distribution when E[S1] = E[S2]

Unscaled α1 = 0.1 α1 = 0.3 α1 = 0.5 α1 = 0.7 α1 = 0.9
u α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5

c = 1.1 c = 1.1 c = 1.1 c = 1.1 c = 1.1

0 (1) 0.90491 0.89968 0.89682 0.89523 0.89438
(2) 0.90491 0.89967 0.89680 0.89520 0.89434
(3) 1.00000 1.00001 1.00002 1.00003 1.00004
(4) 0.92997 0.92477 0.92136 0.91899 0.91727
(5) 0.92999 0.92479 0.92139 0.91901 0.91728
(6) 0.99998 0.99998 0.99997 0.99998 0.99999

5 (1) 0.55287 0.51824 0.49457 0.47734 0.46423
(2) 0.55288 0.51825 0.49458 0.47733 0.46421
(3) 0.99998 0.99998 0.99998 1.00002 1.00004
(4) 0.54820 0.51403 0.49076 0.47388 0.46106
(5) 0.54820 0.51403 0.49076 0.47386 0.46103
(6) 1.00000 1.00000 1.00000 1.00004 1.00007

10 (1) 0.33750 0.29784 0.27182 0.25346 0.23982
(2) 0.33750 0.29784 0.27183 0.25345 0.23979
(3) 1.00000 1.00000 0.99996 1.00004 1.00013
(4) 0.33434 0.29514 0.26949 0.25141 0.23799
(5) 0.33434 0.29515 0.26949 0.25139 0.23796
(6) 1.00000 1.00003 1.00000 1.00008 1.00013

15 (1) 0.20602 0.17116 0.14938 0.13457 0.12387
(2) 0.20602 0.17116 0.14939 0.13456 0.12385
(3) 1.00000 1.00000 0.99993 1.00007 1.00016
(4) 0.20408 0.16961 0.14810 0.13348 0.12293
(5) 0.20408 0.16961 0.14810 0.13346 0.12290
(6) 1.00000 1.00000 1.00000 1.00015 1.00024

20 (1) 0.12576 0.09836 0.08209 0.07145 0.06398
(2) 0.12576 0.09836 0.08210 0.07144 0.06397
(3) 1.00000 1.00000 0.99988 1.00014 1.00016
(4) 0.12458 0.09747 0.08139 0.07087 0.06349
(5) 0.12457 0.09746 0.08140 0.07085 0.06348
(6) 1.00008 1.00010 0.99988 1.00028 1.00016

25 (1) 0.07677 0.05652 0.04512 0.03793 0.03305
(2) 0.07676 0.05652 0.04513 0.03793 0.03304
(3) 1.00013 1.00000 0.99978 1.00000 1.00030
(4) 0.07605 0.05601 0.04473 0.03762 0.03280
(5) 0.07604 0.05600 0.04474 0.03762 0.03279
(6) 1.00013 1.00018 0.99978 1.00000 1.00030

30 (1) 0.04686 0.03248 0.02479 0.02014 0.01707
(2) 0.04685 0.03247 0.02480 0.02014 0.01706
(3) 1.00021 1.00031 0.99960 1.00000 1.00059
(4) 0.04642 0.03219 0.02458 0.01998 0.01694
(5) 0.04641 0.03218 0.02459 0.01997 0.01693
(6) 1.00022 1.00031 0.99959 1.00050 1.00059

60 (1) 0.00242 0.00117 0.00068 0.00045 0.00032
(2) 0.00241 0.00116 0.00069 0.00045 0.00032
(3) 1.00415 1.00862 0.98551 1.00000 1.00000
(4) 0.00240 0.00116 0.00068 0.00045 0.00032
(5) 0.00238 0.00115 0.00069 0.00045 0.00032
(6) 1.00840 1.00870 0.98551 1.00000 1.00000
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Table 6.3: Exponential distribution when E[S1] > E[S2]

Unscaled α1 = 0.1 α1 = 0.3 α1 = 0.5 α1 = 0.7 α1 = 0.9
u α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5

c = 0.9625 c = 0.790625 c = 0.6875 c = 0.61875 c = 0.569643

0 (1) 0.92023 0.92661 0.92758 0.92723 0.92652
(2) 0.92031 0.92673 0.92765 0.92719 0.92633
(3) 0.99991 0.99987 0.99992 1.00004 1.00021
(4) 0.85296 0.87965 0.89060 0.89640 0.89995
(5) 0.85300 0.87970 0.89053 0.89616 0.89951
(6) 0.99995 0.99994 1.00008 1.00027 1.00049

5 (1) 0.61221 0.62592 0.61928 0.60803 0.59608
(2) 0.61247 0.62630 0.61939 0.60766 0.59504
(3) 0.99958 0.99939 0.99982 1.00061 1.00175
(4) 0.54953 0.57815 0.57972 0.57388 0.56586
(5) 0.54973 0.57845 0.57970 0.57332 0.56458
(6) 0.99964 0.99948 1.00003 1.00098 1.00227

10 (1) 0.40758 0.42361 0.41468 0.40028 0.38531
(2) 0.40788 0.42406 0.41479 0.39979 0.38404
(3) 0.99926 0.99894 0.99973 1.00123 1.00331
(4) 0.36584 0.39128 0.38818 0.37779 0.36577
(5) 0.36609 0.39166 0.38820 0.37719 0.36437
(6) 0.99932 0.99903 0.99995 1.00159 1.00384

15 (1) 0.27134 0.28669 0.27768 0.26351 0.24908
(2) 0.27163 0.28713 0.27777 0.26303 0.24786
(3) 0.99893 0.99847 0.99968 1.00182 1.00492
(4) 0.24356 0.26481 0.25993 0.24871 0.23644
(5) 0.24380 0.26519 0.25997 0.24816 0.23517
(6) 0.99902 0.99857 0.99985 1.00222 1.00540

20 (1) 0.18065 0.19403 0.18594 0.17348 0.16101
(2) 0.18090 0.19442 0.18602 0.17306 0.15997
(3) 0.99862 0.99799 0.99957 1.00243 1.00650
(4) 0.16215 0.17922 0.17406 0.16373 0.15284
(5) 0.16236 0.17956 0.17409 0.16327 0.15178
(6) 0.99871 0.99811 0.99983 1.00282 1.00698

25 (1) 0.12027 0.13131 0.12451 0.11420 0.10408
(2) 0.12047 0.13164 0.12457 0.11386 0.10325
(3) 0.99834 0.99749 0.99952 1.00299 1.00804
(4) 0.10795 0.12129 0.11655 0.10779 0.09880
(5) 0.10813 0.12159 0.11658 0.10742 0.09796
(6) 0.99834 0.99753 0.99974 1.00344 1.00857

30 (1) 0.08007 0.08887 0.08337 0.07518 0.06728
(2) 0.08023 0.08914 0.08342 0.07491 0.06663
(3) 0.99801 0.99697 0.99940 1.00360 1.00976
(4) 0.07187 0.08209 0.07804 0.07096 0.06387
(5) 0.07201 0.08233 0.07807 0.07067 0.06322
(6) 0.99806 0.99708 0.99962 1.00410 1.01028

60 (1) 0.00698 0.00854 0.00752 0.00612 0.00491
(2) 0.00700 0.00861 0.00751 0.00608 0.00482
(3) 0.99714 0.99187 1.00133 1.00658 1.01867
(4) 0.00626 0.00789 0.00704 0.00578 0.00466
(5) 0.00628 0.00795 0.00703 0.00573 0.00457
(6) 0.99682 0.99245 1.00142 1.00873 1.01969
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Table 6.4: Exponential distribution when E[S1] < E[S2]

Unscaled α1 = 0.1 α1 = 0.3 α1 = 0.5 α1 = 0.7 α1 = 0.9
u α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5

c = 1.65 c = 2.3375 c = 2.75 c = 3.025 c = 3.22143

0 (1) 0.89881 0.88536 0.87870 0.87592 0.87521
(2) 0.89869 0.88529 0.87868 0.87592 0.87523
(3) 1.00013 1.00008 1.00002 1.00000 0.99998
(4) 0.96109 0.94876 0.93948 0.93274 0.92785
(5) 0.96108 0.94876 0.93950 0.93278 0.92790
(6) 1.00001 1.00000 0.99998 0.99996 0.99995

5 (1) 0.70638 0.71981 0.71177 0.70512 0.70093
(2) 0.70608 0.71968 0.71176 0.70518 0.70104
(3) 1.00042 1.00018 1.00001 0.99991 0.99984
(4) 0.82782 0.81297 0.79259 0.77682 0.76525
(5) 0.82771 0.81292 0.79259 0.77687 0.76534
(6) 1.00013 1.00006 1.00000 0.99994 0.99988

10 (1) 0.60098 0.61654 0.60085 0.58770 0.57856
(2) 0.60061 0.61637 0.60083 0.58779 0.57871
(3) 1.00062 1.00028 1.00003 0.99985 0.99974
(4) 0.71205 0.69814 0.67009 0.64819 0.63220
(5) 0.71184 0.69801 0.67002 0.64819 0.63227
(6) 1.00030 1.00019 1.00010 1.00000 0.99989

15 (1) 0.51621 0.52944 0.50798 0.49038 0.47795
(2) 0.51580 0.52924 0.50792 0.49044 0.47810
(3) 1.00079 1.00038 1.00012 0.99988 0.99969
(4) 0.61238 0.59962 0.56660 0.54093 0.52234
(5) 0.61210 0.59941 0.56644 0.54085 0.52237
(6) 1.00046 1.00035 1.00028 1.00015 0.99994

20 (1) 0.44387 0.45473 0.42951 0.40921 0.39487
(2) 0.44346 0.45448 0.42940 0.40922 0.39500
(3) 1.00092 1.00055 1.00026 0.99998 0.99967
(4) 0.52664 0.51503 0.47914 0.45146 0.43161
(5) 0.52632 0.51474 0.47888 0.45129 0.43156
(6) 1.00061 1.00056 1.00054 1.00038 1.00012

25 (1) 0.38174 0.39058 0.36320 0.34151 0.32626
(2) 0.38130 0.39028 0.36302 0.34146 0.32633
(3) 1.00115 1.00077 1.00050 1.00015 0.99979
(4) 0.45293 0.44241 0.40523 0.37684 0.35668
(5) 0.45256 0.44203 0.40485 0.37656 0.35655
(6) 1.00082 1.00086 1.00094 1.00074 1.00036

30 (1) 0.32830 0.33550 0.30716 0.28504 0.26959
(2) 0.32787 0.33515 0.30690 0.28492 0.26961
(3) 1.00131 1.00104 1.00085 1.00042 0.99993
(4) 0.38953 0.38005 0.34277 0.31460 0.29479
(5) 0.38914 0.37959 0.34226 0.31421 0.29457
(6) 1.00100 1.00121 1.00149 1.00124 1.00075

60 (1) 0.13286 0.13502 0.11278 0.09673 0.08608
(2) 0.13252 0.13441 0.11205 0.09616 0.08573
(3) 1.00257 1.00454 1.00651 1.00593 1.00408
(4) 0.15765 0.15308 0.12609 0.10704 0.09439
(5) 0.15728 0.15223 0.12496 0.10604 0.09367
(6) 1.00235 1.00558 1.00904 1.00943 1.00769
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We note the following points about Tables 6.2, 6.3 and 6.4.

(i) In Tables 6.2 and 6.4 most of the approximations agree with the exact values up

to four decimal places with the best results being obtained in Table 6.2 when the

sojourn time is the same in both states, i.e. α1 = α2 = 0.5. The approximations

in Table 6.3 are in agreement with the exact values up to three decimal places.

In this table we get better approximations when α1 < 0.9.

(ii) The ratios of the approximate values to the exact values show that some of our

approximations are overestimated and some are underestimated. For example, in

Table 6.3 when α1 = 0.7, 0.9, the ruin probability is overestimated and the ratios

are greater than one, whereas for α1 = 0.1, 0.3, 0.5, it is mostly underestimated.

In Table 6.4, unlike in Table 6.3, if α1 = 0.1, 0.3, 0.5, the ruin probability is

overestimated and if α1 = 0.7, 0.9, and u = 0, 5, 10, 15, all the approximations

are underestimated. We cannot observe any pattern for the ratios with different

values of u and α1 in Table 6.2.

(iii) Generally, we observe that the approximation in the case of exponential distribu-

tions performs better for small values of u and α1.

(iv) Regarding the relationship between ψ1(u) and ψ2(u) we can see that as u increases,

ψ1(u) gets closer to ψ2(u). In Table 6.3, where E[S1] > E[S2], values of ψ1(u) are

always greater than ψ2(u). In Table 6.4, where E[S1] < E[S2], ψ1(u) is always

less than ψ2(u), but in Table 6.2, where E[S1] = E[S2], we cannot identify any

consistent pattern between ψ1(u) and ψ2(u) except that for a given value of u if

ψ1(u) > ψ2(u), it will hold across the table regardless of the mean of the sojourn

time. In fact, we can see that the values of ψ1(u) and ψ2(u) are very close.

Tables 6.5, 6.6, and 6.7 show the approximate values of ψi(u) with initial surplus

u in the continuous time model for claim sizes with Pareto distributions. The Laplace

transform of a Pareto distribution with parameters ai and bi is given by (see Nadarajah

and Kotz, 2006)

f̃i(s) = ai(bis)
aiΓ(−ai, bis)ebis.
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Table 6.5: Pareto distribution when E[S1] = E[S2]

Unscaled α1 = 0.1 α1 = 0.3 α1 = 0.5 α1 = 0.7 α1 = 0.9
u α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5

c = 1.1 c = 1.1 c = 1.1 c = 1.1 c = 1.1

0 (1) 0.90486 0.89971 0.89703 0.89562 0.89492
(2) 0.90485 0.89970 0.89701 0.89559 0.89488
(3) 1.00001 1.00001 1.00002 1.00003 1.00004
(4) 0.93026 0.92472 0.92115 0.91872 0.91697
(5) 0.93028 0.92474 0.92118 0.91874 0.91699
(6) 0.99998 0.99998 0.99997 0.99998 0.99998

5 (1) 0.70355 0.67201 0.64976 0.63324 0.62050
(4) 0.70432 0.67279 0.65052 0.63397 0.62120

10 (1) 0.59768 0.55358 0.52211 0.49853 0.48019
(4) 0.59668 0.55265 0.52126 0.49775 0.47947

15 (1) 0.52112 0.47026 0.43413 0.40712 0.38616
(4) 0.51991 0.46914 0.43309 0.40616 0.38527

20 (1) 0.46135 0.40695 0.36866 0.34023 0.31827
(4) 0.46020 0.40589 0.36768 0.33932 0.31744

25 (1) 0.41284 0.35686 0.31789 0.28919 0.26719
(4) 0.41180 0.35591 0.31701 0.28839 0.26645

30 (1) 0.37250 0.31618 0.27743 0.24917 0.22765
(4) 0.37158 0.31534 0.27667 0.24847 0.22701

60 (1) 0.22491 0.17636 0.14518 0.12360 0.10783
(4) 0.22443 0.17596 0.14483 0.12329 0.10757

Table 6.6: Pareto distribution when E[S1] > E[S2]

Unscaled α1 = 0.1 α1 = 0.3 α1 = 0.5 α1 = 0.7 α1 = 0.9
u α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5

c = 0.9625 c = 0.790625 c = 0.6875 c = 0.61875 c = 0.569643

0 (1) 0.91660 0.92231 0.92389 0.92416 0.92396
(2) 0.91668 0.92242 0.92394 0.92410 0.92375
(3) 0.99991 0.99988 0.99995 1.00006 1.00023
(4) 0.87111 0.88682 0.89430 0.89860 0.90137
(5) 0.87116 0.88688 0.89425 0.89838 0.90095
(6) 0.99994 0.99993 1.00006 1.00024 1.00047

5 (1) 0.73206 0.73109 0.72392 0.71549 0.70717
(4) 0.70246 0.70751 0.70403 0.69816 0.69174

10 (1) 0.63301 0.62837 0.61737 0.60536 0.59376
(4) 0.61139 0.61124 0.60304 0.59297 0.58281

15 (1) 0.55976 0.55261 0.53935 0.52535 0.51199
(4) 0.54268 0.53914 0.52817 0.51575 0.50356

20 (1) 0.50151 0.49257 0.47793 0.46280 0.44851
(4) 0.48747 0.48156 0.46885 0.45506 0.44176

25 (1) 0.45346 0.44324 0.42779 0.41208 0.39736
(4) 0.44165 0.43403 0.42023 0.40568 0.39181

30 (1) 0.41291 0.40180 0.38590 0.36998 0.35516
(4) 0.40281 0.39395 0.37951 0.36459 0.35051

60 (1) 0.25906 0.24654 0.23156 0.21736 0.20456
(4) 0.25425 0.24291 0.22869 0.21500 0.20258
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Table 6.7: Pareto distribution when E[S1] < E[S2]

Unscaled α1 = 0.1 α1 = 0.3 α1 = 0.5 α1 = 0.7 α1 = 0.9
u α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5

c = 1.65 c = 2.3375 c = 2.75 c = 3.025 c = 3.22143

0 (1) 0.89905 0.88658 0.88077 0.87845 0.87790
(2) 0.89894 0.88651 0.88075 0.87845 0.87792
(3) 1.00012 1.00008 1.00002 1.00000 0.99998
(4) 0.95988 0.94672 0.93741 0.93094 0.92636
(5) 0.95987 0.94672 0.93743 0.93098 0.92641
(6) 1.00001 1.00000 0.99998 0.99996 0.99995

5 (1) 0.76919 0.76736 0.75968 0.75461 0.75168
(4) 0.85178 0.83295 0.81604 0.80408 0.79570

10 (1) 0.69679 0.69378 0.68181 0.67334 0.66785
(4) 0.77097 0.75055 0.72959 0.71469 0.70428

15 (1) 0.63713 0.63172 0.61635 0.60538 0.59808
(4) 0.70277 0.68139 0.65771 0.64088 0.62916

20 (1) 0.58523 0.57739 0.55944 0.54664 0.53804
(4) 0.64348 0.62131 0.59572 0.57758 0.56501

25 (1) 0.53922 0.52914 0.50925 0.49512 0.48560
(4) 0.59118 0.56829 0.54135 0.52236 0.50925

30 (1) 0.49805 0.48597 0.46461 0.44955 0.43939
(4) 0.54461 0.52104 0.49321 0.47369 0.46027

60 (1) 0.32095 0.30111 0.27719 0.26102 0.25025
(4) 0.34680 0.32053 0.29253 0.27364 0.26096

Applying the method in Li and Lu (2008), we can show that

ψii(0) =
λi

c(ai − 1)

(
bi +

(
1− ai + ρ∗bi + (ai − 1)aie

ρ∗bi(ρ∗bi)
aiΓ(−ai, ρ∗bi)

)
×
(
αj + λj − cρ∗ − ajλjeρ

∗bj(ρ∗bj)
ajΓ(−aj, ρ∗bj)

)
/(ρ∗Bj(ρ

∗))
)

(6.43)

and

ψij(0) =
αiλj

(
1− aj + ρ∗bj + (aj − 1)aje

ρ∗bj(ρ∗bj)
ajΓ(−aj, ρ∗bj)

)
cρ∗(aj − 1)Bj(ρ∗)

, (6.44)

where Bj(ρ
∗) = cρ∗ − λj + ajλje

ρ∗bj(ρ∗bj)
ajΓ(−aj, ρ∗bj), i 6= j, and ρ∗ can be found

from formula (6.39). The key to Tables 6.5, 6.6 and 6.7 is the same as before.

In the classical risk model, the expression for the starting value of the ruin probabil-

ity is independent of the individual claim amount distribution. Although this does not

hold here as ψij(0) depends on the Laplace transform of the claim amount distribution

in the continuous time case and on their probability generating function in the discrete

time case, we can see that the initial values for exponential and Pareto distributions are

fairly close for Cases 1 and 4, Cases 2 and 5 and Cases 3 and 6. We can identify a simi-

lar pattern between the approximate values of the ruin probability with claim amounts
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following Pareto distributions and claim amounts following exponential distributions.

For example, in Table 6.6 when α1 = 0.7, 0.9 the ruin probability when u = 0 is overes-

timated, whereas for α1 = 0.1, 0.3 it is underestimated, which is different to Table 6.7

in which the ruin probability is overestimated for α1 = 0.1, 0.3, and underestimated for

α1 = 0.7, 0.9. In addition, similar to Table 6.2 no particular pattern can be observed

for Table 6.6.

This algorithm is a generalisation of that in Dickson and Waters (1991) for the

approximation of the classical risk model. It can be concluded that our algorithm

provides a reasonably close approximation to the exact values in the continuous time

Markov-modulated model.

6.4.2 Approximations to H1,1(u, y) and H1,2(u, y)

In this section, we consider numerical approximations to the probability and severity of

ruin for the surplus levels u = 0, 20, 60, 100 in the continuous time model. The transition

rates are α1 = 0.1, 0.3, 0.5, 0.7, 0.9 and α2 = 0.5 and we set the level of the deficit at

ruin as y = 1 and y = 3. To calculate the exact starting values of the probability and

severity of ruin we can apply the method of Li and Lu (2008). It is well-known that

in the classical risk model when the individual claim amounts follow an exponential

distribution, we can decompose the severity of ruin function into the probability of ruin

and a function of y. Similarly, we can use this fact to find the initial values of the

probability and severity of ruin in the case of the Markov-modulated model. Thus

H1,ij(0, y) = ψij(0)(1− e−y/µj), (6.45)

for i, j = 1, 2. Further, the exact values of the probability and severity of ruin for

u > 0 are calculated by applying the Gerber-Shiu function in formula (2.3) similar

to the probability of ruin. So, we can establish a system of differential equations and

solve them through the Laplace transform method. Define H̃1,ij(s, y) to be the Laplace

transform of the probability and severity of ruin function in the Markov-modulated

model. We can show that

H̃1,ii(s, y)

=
1

Ai(s)−
((

sαj
c

+
αj
cµj

)(
sαi
c

+ αi
cµi

))
/Aj(s)

{
− λi

c

(
1− e−y/µi

)
+ sH1,ii(0, y)
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+
H1,ii(0, y)

µi
−
((

sH1,ji(0, y) +
H1,ji(0, y)

µj

)(
sαi
c

+
αi
cµi

))
/Aj(s)

}
(6.46)

and

H̃1,ij(s, y) =
sH1,ij(0, y)−

(
sαi
c

+ αi
cµi

)
H̃1,jj(s, y) +H1,ij(0, y)/µi

Ai(s)
(6.47)

where Ai(s) is given by (6.42). Formulae (6.46) and (6.47) can be inverted easily with

mathematical software.

The key for Tables 6.8 to 6.19 is as follows:

(1) denotes the approximation to H1,1(u, y),

(2) denotes the exact value of H1,1(u, y),

(3) denotes the ratio of the value in (1) to that in (2),

(4) denotes the approximation to H1,2(u, y),

(5) denotes the exact value of H1,2(u, y),

(6) denotes the ratio of the value in (4) to that in (5).

We note the following points about Tables 6.8 to 6.13.

(i) In all tables the approximation performs better for y = 3 than y = 1. This accords

with the classical risk model as pointed out by Dickson and Waters (1992) that

the approximation improves for higher values of y.

(ii) In Tables 6.10 and 6.11 the approximations for α1 = 0.1, 0.3, 0.5 are underesti-

mated and for α1 = 0.7, 0.9 are overestimated when u > 0. This is in line with

what we had observed for the ruin probability.

(iii) In Tables 6.12 and 6.13 all the approximate values for α1 = 0.5, 0.7, 0.9 are under-

estimated and in this case the approximation performs better than other cases.
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Table 6.8: Exponential distribution, y = 1 and E[S1] = E[S2]

Unscaled α1 = 0.1 α1 = 0.3 α1 = 0.5 α1 = 0.7 α1 = 0.9
u α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5

c = 1.1 c = 1.1 c = 1.1 c = 1.1 c = 1.1

0 (1) 0.58538 0.60443 0.61999 0.63297 0.64398
(2) 0.58587 0.60489 0.62045 0.63341 0.64441
(3) 0.99916 0.99924 0.99926 0.99931 0.99933
(4) 0.72919 0.73487 0.73947 0.74329 0.74650
(5) 0.72998 0.73566 0.74027 0.74409 0.74730
(6) 0.99892 0.99893 0.99892 0.99892 0.99893

20 (1) 0.08178 0.06689 0.05768 0.05146 0.04699
(2) 0.08185 0.06695 0.05774 0.05150 0.04703
(3) 0.99914 0.99910 0.99896 0.99922 0.99915
(4) 0.08102 0.06629 0.05718 0.05104 0.04663
(5) 0.08108 0.06634 0.05724 0.05108 0.04666
(6) 0.99926 0.99925 0.99895 0.99922 0.99936

60 (1) 0.00158 0.00080 0.00048 0.00032 0.00024
(2) 0.00157 0.00079 0.00049 0.00033 0.00024
(3) 1.00637 1.01266 0.97959 0.96970 1.00000
(4) 0.00156 0.00079 0.00048 0.00032 0.00024
(5) 0.00155 0.00078 0.00048 0.00032 0.00024
(6) 1.00645 1.01282 1.00000 1.00000 1.00000

100 (1) 0.00003 0.00000 0.00000 0.00000 0.00000
(2) 0.00002 0.00000 0.00001 0.00000 0.00000
(4) 0.00003 0.00000 0.00000 0.00000 0.00000
(5) 0.00002 0.00000 0.00001 0.00000 0.00000

Table 6.9: Exponential distribution, y = 3 and E[S1] = E[S2]

Unscaled α1 = 0.1 α1 = 0.3 α1 = 0.5 α1 = 0.7 α1 = 0.9
u α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5

c = 1.1 c = 1.1 c = 1.1 c = 1.1 c = 1.1

0 (1) 0.86249 0.86209 0.86292 0.86428 0.86583
(2) 0.86268 0.86224 0.86305 0.86437 0.86590
(3) 0.99978 0.99983 0.99985 0.99990 0.99992
(4) 0.91246 0.90935 0.90750 0.90633 0.90557
(5) 0.91260 0.90948 0.90762 0.90645 0.90568
(6) 0.99985 0.99986 0.99987 0.99987 0.99988

20 (1) 0.11995 0.09442 0.07918 0.06917 0.06213
(2) 0.11997 0.09443 0.07920 0.06917 0.06212
(3) 0.99983 0.99989 0.99975 1.00000 1.00161
(4) 0.11883 0.09356 0.07850 0.06861 0.06165
(5) 0.11885 0.09357 0.07852 0.06861 0.06165
(6) 0.99983 0.99989 0.99975 1.00000 1.00000

60 (1) 0.00231 0.00112 0.00066 0.00044 0.00031
(2) 0.00230 0.00111 0.00067 0.00044 0.00031
(3) 1.00435 1.00901 0.98507 1.00000 1.00000
(4) 0.00229 0.00111 0.00065 0.00043 0.00031
(5) 0.00227 0.00110 0.00066 0.00043 0.00031
(6) 1.00881 1.00909 0.98485 1.00000 1.00000

100 (1) 0.00004 0.00001 0.00000 0.00000 0.00000
(2) 0.00003 0.00000 0.00002 0.00000 0.00000
(4) 0.00004 0.00001 0.00000 0.00000 0.00000
(5) 0.00003 0.00000 0.00002 0.00000 0.00000
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Table 6.10: Exponential distribution, y = 1 and E[S1] > E[S2]

Unscaled α1 = 0.1 α1 = 0.3 α1 = 0.5 α1 = 0.7 α1 = 0.9
u α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5

c = 0.9625 c = 0.790625 c = 0.6875 c = 0.61875 c = 0.569643

0 (1) 0.58380 0.59470 0.60330 0.61136 0.61909
(2) 0.58442 0.59543 0.60405 0.61207 0.61972
(3) 0.99894 0.99877 0.99876 0.99884 0.99898
(4) 0.58572 0.61291 0.62916 0.64126 0.65112
(5) 0.58624 0.61356 0.62982 0.64188 0.65168
(6) 0.99911 0.99894 0.99895 0.99903 0.99914

20 (1) 0.11439 0.12377 0.11969 0.11276 0.10571
(2) 0.11467 0.12417 0.11990 0.11265 0.10518
(3) 0.99756 0.99678 0.99825 1.00098 1.00504
(4) 0.10268 0.11433 0.11204 0.10643 0.10034
(5) 0.10292 0.11468 0.11221 0.10628 0.09980
(6) 0.99767 0.99695 0.99849 1.00141 1.00541

60 (1) 0.00441 0.00545 0.00484 0.00398 0.00322
(2) 0.00444 0.00550 0.00484 0.00396 0.00317
(3) 0.99324 0.99091 1.00000 1.00505 1.01577
(4) 0.00396 0.00503 0.00453 0.00375 0.00306
(5) 0.00398 0.00508 0.00453 0.00373 0.00300
(6) 0.99497 0.99016 1.00000 1.00536 1.02000

100 (1) 0.00017 0.00024 0.00020 0.00014 0.00010
(2) 0.00017 0.00025 0.00019 0.00014 0.00010
(3) 1.00000 0.96000 1.05263 1.00000 1.00000
(4) 0.00015 0.00022 0.00018 0.00013 0.00009
(5) 0.00015 0.00024 0.00018 0.00013 0.00009
(6) 1.00000 0.91667 1.00000 1.00000 1.00000

Table 6.11: Exponential distribution, y = 3 and E[S1] > E[S2]

Unscaled α1 = 0.1 α1 = 0.3 α1 = 0.5 α1 = 0.7 α1 = 0.9
u α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5

c = 0.9625 c = 0.790625 c = 0.6875 c = 0.61875 c = 0.569643

0 (1) 0.87473 0.88217 0.88470 0.88605 0.88703
(2) 0.87503 0.88255 0.88505 0.88631 0.88717
(3) 0.99966 0.99957 0.99960 0.99971 0.99984
(4) 0.81989 0.84734 0.85963 0.86685 0.87178
(5) 0.82010 0.84760 0.85981 0.86689 0.87163
(6) 0.99974 0.99969 0.99979 0.99995 1.00017

20 (1) 0.17167 0.18457 0.17709 0.16544 0.15376
(2) 0.17195 0.18500 0.17723 0.16510 0.15283
(3) 0.99837 0.99768 0.99921 1.00206 1.00609
(4) 0.15409 0.17048 0.16577 0.15615 0.14596
(5) 0.15434 0.17086 0.16586 0.15577 0.14500
(6) 0.99838 0.99778 0.99946 1.00244 1.00662

60 (1) 0.00662 0.00812 0.00716 0.00584 0.00469
(2) 0.00665 0.00819 0.00716 0.00580 0.00460
(3) 0.99549 0.99145 1.00000 1.00690 1.01957
(4) 0.00595 0.00750 0.00670 0.00551 0.00445
(5) 0.00597 0.00756 0.00670 0.00547 0.00437
(6) 0.99665 0.99206 1.00000 1.00731 1.01831

100 (1) 0.00026 0.00036 0.00029 0.00021 0.00014
(2) 0.00026 0.00038 0.00028 0.00020 0.00014
(3) 1.00000 0.94737 1.03571 1.05000 1.00000
(4) 0.00023 0.00033 0.00027 0.00019 0.00014
(5) 0.00023 0.00035 0.00026 0.00019 0.00013
(6) 1.00000 0.94286 1.03846 1.00000 1.07692
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Table 6.12: Exponential distribution, y = 1 and E[S1] < E[S2]

Unscaled α1 = 0.1 α1 = 0.3 α1 = 0.5 α1 = 0.7 α1 = 0.9
u α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5

c = 1.65 c = 2.3375 c = 2.75 c = 3.025 c = 3.22143

0 (1) 0.49229 0.44055 0.42038 0.40962 0.40299
(2) 0.49267 0.44086 0.42067 0.40990 0.40327
(3) 0.99923 0.99930 0.99931 0.99932 0.99931
(4) 0.40556 0.38889 0.38119 0.37646 0.37325
(5) 0.40606 0.38926 0.38151 0.37676 0.37354
(6) 0.99877 0.99905 0.99916 0.99920 0.99922

20 (1) 0.18830 0.18459 0.17255 0.16364 0.15750
(2) 0.18838 0.18471 0.17271 0.16382 0.15769
(3) 0.98996 0.99935 0.99907 0.99890 0.99880
(4) 0.22340 0.20903 0.19242 0.18045 0.17208
(5) 0.22357 0.20921 0.19261 0.18066 0.17229
(6) 0.99924 0.99914 0.99901 0.99884 0.99878

60 (1) 0.05634 0.05461 0.04502 0.03843 0.03416
(2) 0.05629 0.05463 0.04507 0.03849 0.03423
(3) 1.00089 0.99963 0.99889 0.99844 0.99796
(4) 0.06684 0.06184 0.05020 0.04238 0.03732
(5) 0.06681 0.06187 0.05026 0.04245 0.03740
(6) 1.00045 0.99952 0.99881 0.99835 0.99786

100 (1) 0.01686 0.01616 0.01175 0.00903 0.00741
(2) 0.01682 0.01616 0.01176 0.00905 0.00743
(3) 1.00238 1.00000 0.99915 0.99779 0.99731
(4) 0.02000 0.01830 0.01310 0.00995 0.00809
(5) 0.01996 0.01830 0.01312 0.00998 0.00812
(6) 1.00200 1.00000 0.99848 0.99699 0.99631

Table 6.13: Exponential distribution, y = 3 and E[S1] < E[S2]

Unscaled α1 = 0.1 α1 = 0.3 α1 = 0.5 α1 = 0.7 α1 = 0.9
u α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5

c = 1.65 c = 2.3375 c = 2.75 c = 3.025 c = 3.22143

0 (1) 0.79895 0.75472 0.73680 0.72761 0.72245
(2) 0.79917 0.75496 0.73705 0.72787 0.72272
(3) 0.99972 0.99968 0.99966 0.99964 0.99963
(4) 0.76636 0.74824 0.73811 0.73138 0.72665
(5) 0.76690 0.74865 0.73848 0.73173 0.72699
(6) 0.99930 0.99945 0.99950 0.99952 0.99953

20 (1) 0.35466 0.35726 0.33614 0.31972 0.30824
(2) 0.35643 0.35735 0.33632 0.31995 0.30851
(3) 0.99503 0.99975 0.99946 0.99928 0.99912
(4) 0.42078 0.40457 0.37483 0.35256 0.33676
(5) 0.42085 0.40473 0.37507 0.35284 0.33707
(6) 0.99983 0.99960 0.99936 0.99921 0.99908

60 (1) 0.10612 0.10570 0.08770 0.07508 0.06685
(2) 0.10596 0.10568 0.08776 0.07518 0.06696
(3) 1.00151 1.00019 0.99932 0.99867 0.99836
(4) 0.12590 0.11970 0.09779 0.08280 0.07303
(5) 0.12576 0.11970 0.09787 0.08291 0.07316
(6) 1.00111 1.00000 0.99918 0.99867 0.99822

100 (1) 0.03175 0.03127 0.02288 0.01763 0.01450
(2) 0.03166 0.03125 0.02290 0.01767 0.01453
(3) 1.00284 1.00064 0.99913 0.99774 0.99794
(4) 0.03767 0.03541 0.02551 0.01944 0.01584
(5) 0.03758 0.03540 0.02554 0.01948 0.01588
(6) 1.00240 1.00028 0.99883 0.99795 0.99748
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(iv) Regarding the relationship between H1,1(u, y) and H1,2(u, y), we can see that

similar to the probability of ruin, as the initial surplus increases the values for

H1,1(u, y) and H1,2(u, y) get closer to each other. In Tables 6.8 to 6.11 the rela-

tionship between H1,1(u, y) and H1,2(u, y) is constant for a given value of u. This

pattern holds in Table 6.12 when y = 1, but we cannot detect any consistent

relationship when y = 3.

Tables 6.14 to 6.19 show approximations to the probability and severity of ruin when

claim amounts follow Pareto(ai, bi) distributions. In this case using the method in Li

and Lu (2008), the exact values of H1,1(0, y), and H1,2(0, y) can be obtained from

H1,ii(0, y) =
λi
c
w̃i(0) +

ρ∗ − αj
c
− λj

c

(
1− f̃j(ρ∗)

)
1− λj

cρ∗

(
1− f̃j(ρ∗)

) λi
cρ∗

(w̃i(ρ
∗)− w̃i(0)) (6.48)

and

H1,ij(0, y) = − αiλj (w̃j(ρ
∗)− w̃j(0))

c2ρ∗
(

1− λj
cρ∗

(
1− f̃j(ρ∗)

)) , (6.49)

where f̃i(ρ
∗) = ai(biρ

∗)aiebiρ
∗
Γ(−ai, biρ∗), w̃i(ρ∗) =

∫∞
0
e−ρ

∗u
(
Fi(u+y)−Fi(u)

)
du, and

ρ∗ is the unique positive solution to equation (6.39).

As we can see, all approximations for u = 0 are underestimated. In Tables 6.14 and

6.15 the relationship between H1,1(u, y) and H1,2(u, y) does not change for a given value

of u, meaning that if H1,1(u, y) > H1,2(u, y) for a given value of u, this relationship holds

across the table. In Tables 6.16 and 6.17, where E[S1] > E[S2], H1,1(u, y) > H1,2(u, y).

In Tables 6.18 and 6.19, where E[S1] < E[S2], H1,1(u, y) is always less than H1,2(u, y).

Overall, our algorithm performs reasonably well and provides good approximations to

the exact values in the continuous time Markov-modulated model.
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Table 6.14: Pareto distribution, y = 1 and E[S1] = E[S2]

Unscaled α1 = 0.1 α1 = 0.3 α1 = 0.5 α1 = 0.7 α1 = 0.9
u α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5

c = 1.1 c = 1.1 c = 1.1 c = 1.1 c = 1.1

0 (1) 0.47011 0.49533 0.51457 0.52980 0.54220
(2) 0.47039 0.49560 0.51484 0.53007 0.54248
(3) 0.99940 0.99946 0.99948 0.99949 0.99948
(4) 0.60203 0.61284 0.62096 0.62729 0.63238
(5) 0.60258 0.61340 0.62153 0.62787 0.63297
(6) 0.99909 0.99909 0.99908 0.99908 0.99907

20 (1) 0.07934 0.07815 0.07706 0.07610 0.07528
(4) 0.07920 0.07801 0.07693 0.07598 0.07516

60 (1) 0.02433 0.02046 0.01775 0.01577 0.01426
(4) 0.02426 0.02039 0.01770 0.01572 0.01421

100 (1) 0.01097 0.00835 0.00672 0.00561 0.00482
(4) 0.01094 0.00833 0.00670 0.00559 0.00480

Table 6.15: Pareto distribution, y = 3 and E[S1] = E[S2]

Unscaled α1 = 0.1 α1 = 0.3 α1 = 0.5 α1 = 0.7 α1 = 0.9
u α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5

c = 1.1 c = 1.1 c = 1.1 c = 1.1 c = 1.1

0 (1) 0.69467 0.71521 0.73073 0.74289 0.75270
(2) 0.69479 0.71530 0.73080 0.74295 0.75275
(3) 0.99983 0.99987 0.99990 0.99992 0.99993
(4) 0.78721 0.79629 0.80311 0.80842 0.81268
(5) 0.78740 0.79647 0.80329 0.80861 0.81287
(6) 0.99976 0.99977 0.99978 0.99977 0.99977

20 (1) 0.15715 0.14883 0.14273 0.13806 0.13436
(2) 0.15682 0.14852 0.14245 0.13779 0.13411

60 (1) 0.04923 0.03992 0.03378 0.02944 0.02623
(4) 0.04909 0.03980 0.03367 0.02935 0.02614

100 (1) 0.02235 0.01645 0.01291 0.01060 0.00897
(4) 0.02230 0.01641 0.01288 0.01057 0.00895

Table 6.16: Pareto distribution, y = 1 and E[S1] > E[S2]

Unscaled α1 = 0.1 α1 = 0.3 α1 = 0.5 α1 = 0.7 α1 = 0.9
u α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5

c = 0.9625 c = 0.790625 c = 0.6875 c = 0.61875 c = 0.569643

0 (1) 0.47610 0.50320 0.52022 0.53262 0.54246
(2) 0.47648 0.50371 0.52078 0.53319 0.54302
(3) 0.99920 0.99899 0.99892 0.99893 0.99897
(4) 0.40959 0.45140 0.47894 0.49912 0.51490
(5) 0.40979 0.45167 0.47922 0.49938 0.51511
(6) 0.99951 0.99940 0.99942 0.99948 0.99959

20 (1) 0.08634 0.09111 0.09179 0.09120 0.09025
(4) 0.08218 0.08767 0.08889 0.08870 0.08805

60 (1) 0.02902 0.02966 0.02869 0.02735 0.02602
(4) 0.02818 0.02898 0.02814 0.02690 0.02563

100 (1) 0.01378 0.01371 0.01290 0.01197 0.01111
(4) 0.01348 0.01347 0.01271 0.01182 0.01098
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Table 6.17: Pareto distribution, y = 3 and E[S1] > E[S2]

Unscaled α1 = 0.1 α1 = 0.3 α1 = 0.5 α1 = 0.7 α1 = 0.9
u α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5

c = 0.9625 c = 0.790625 c = 0.6875 c = 0.61875 c = 0.569643

0 (1) 0.70405 0.72886 0.74278 0.75221 0.75938
(2) 0.70427 0.72916 0.74308 0.75247 0.75956
(3) 0.99969 0.99959 0.99960 0.99965 0.99976
(4) 0.61814 0.66207 0.68865 0.70713 0.72106
(5) 0.61824 0.66220 0.68873 0.70711 0.72092
(6) 0.99984 0.99980 0.99988 1.00003 1.00019

20 (1) 0.17240 0.17801 0.17698 0.17414 0.17094
(4) 0.16431 0.17147 0.17154 0.16949 0.16688

60 (1) 0.05905 0.05906 0.05641 0.05330 0.05032
(4) 0.05736 0.05773 0.05534 0.05241 0.04958

100 (1) 0.02822 0.02749 0.02553 0.02349 0.02164
(4) 0.02759 0.02701 0.02516 0.02319 0.02140

Table 6.18: Pareto distribution, y = 1 and E[S1] < E[S2]

Unscaled α1 = 0.1 α1 = 0.3 α1 = 0.5 α1 = 0.7 α1 = 0.9
u α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5

c = 1.65 c = 2.3375 c = 2.75 c = 3.025 c = 3.22143

0 (1) 0.39573 0.35490 0.33890 0.33102 0.32676
(2) 0.03960 0.35510 0.33908 0.33119 0.32693
(3) 0.99932 0.99944 0.99947 0.99949 0.99948
(4) 0.40752 0.38036 0.36606 0.35725 0.35134
(5) 0.40803 0.38072 0.36637 0.35753 0.35161
(6) 0.99875 0.99905 0.99915 0.99922 0.99923

20 (1) 0.13030 0.12994 0.12349 0.11885 0.11575
(4) 0.15088 0.14381 0.13434 0.12782 0.12341

60 (1) 0.05880 0.05813 0.05274 0.04895 0.04643
(4) 0.06519 0.06272 0.05621 0.05172 0.04875

100 (1) 0.03030 0.02917 0.02537 0.02282 0.02118
(4) 0.03310 0.03121 0.02686 0.02398 0.02212

Table 6.19: Pareto distribution, y = 3 and E[S1] < E[S2]

Unscaled α1 = 0.1 α1 = 0.3 α1 = 0.5 α1 = 0.7 α1 = 0.9
u α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5 α2 = 0.5

c = 1.65 c = 2.3375 c = 2.75 c = 3.025 c = 3.22143

0 (1) 0.63841 0.60345 0.58913 0.58258 0.57965
(2) 0.63855 0.60359 0.58927 0.58272 0.57979
(3) 0.99978 0.99977 0.99976 0.99976 0.99976
(4) 0.71220 0.68090 0.66275 0.65112 0.64320
(5) 0.71266 0.68124 0.66306 0.65141 0.64347
(6) 0.99935 0.99950 0.99953 0.99955 0.99958

20 (1) 0.26647 0.27051 0.25973 0.25157 0.24605
(4) 0.30738 0.29875 0.28207 0.27018 0.26202

60 (1) 0.12113 0.12180 0.11165 0.10432 0.09941
(4) 0.13419 0.13136 0.11896 0.11021 0.10434

100 (1) 0.06262 0.06126 0.05384 0.04876 0.04545
(4) 0.06837 0.06553 0.05699 0.05122 0.04747
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6.5 The probability of ruin in finite time

In this section, we consider the probability of ruin in finite time by extending our

technique in Chapter 5 which is based on the ideas of Dickson and Waters (1991).

First, we provide recursive formulae which can be used to approximate ψi(u, t) for

i ∈ M . Then, we explain how we can apply the modified truncation method of De

Vylder and Goovaerts (1988, Section 5) to improve the computational efficiency of our

numerical algorithm.

Theorem 6.5. For u = 0, 1, 2, . . . , when t = 1,

ψdi (u, 1) =
m∑
j=1

∞∑
x=u+1

gij(x) = 1−Gi(u) (6.50)

and for t > 1,

ψdi (u, t) = ψdi (u, 1) +
m∑
j=1

u∑
x=0

gij(x)ψdj (u+ 1− x, t− 1). (6.51)

Proof. We first consider ψdi (u, 1). For ruin to occur in the first time period, we require

that the aggregate claim amount, Y1, exceeds the initial surplus u. Hence (6.50) follows.

For t > 1 we note that if ruin occurs at or before time t, then either

(i) Y1 > u so that ruin occurs at time 1, or

(ii) Y1 = x, x = 0, 1, 2, . . . , u and ruin occurs in the next t − 1 time periods, from

surplus level u+ 1− x at time 1.

Thus, (6.51) follows.

We can use formulae (6.50) and (6.51) to calculate finite time ruin probabilities,

recursively. First we need to calculate ψdi (w, 1) for w = 0, 1, 2, . . . , u+ t−1 from (6.50),

then using equation (6.51) we calculate ψdi (w, 2) for w = 0, 1, 2, . . . , u+t−2. We continue

this process until we reach to the point calculating ψdi (w, t) for w = 0, 1, 2, . . . , u+ t−τ ,

where τ = t. This method requires a lot of time and computations, particularly when

the values of u and t are large. Since many of the probabilities used in the calculations

will be very small, we can reduce the number of calculations involved by modifying the

truncation method of De Vylder and Goovaerts (1988, Section 5) which is based on
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ignoring small probabilities. Suppose ki,1 is the least integer such that Gi(ki,1) ≥ 1− ε,
where ε is a small positive value. Then

gεij(x) =

gij(x) for x = 0, 1, 2, . . . , ki,1

0 for x = ki,1 + 1, ki,1 + 2, . . .

and

ψdεi (u, 1) =

1−Gi(u) for u = 0, 1, 2, . . . , ki,1

0 for u = ki,1 + 1, ki,1 + 2, . . .
(6.52)

Therefore, the upper truncation point in (6.50) is ki,1 and in (6.51) is min(u, ki,1). For

example, the aggregate claim amount distribution in state 1 is truncated at k1,1 and in

state 2 at k2,1. Further, if ki,t is the least integer such that ψdi (ki,t, t − 1) ≥ ε, we will

calculate ψdj (u, t) for u = 0, 1, 2, . . . , kj,t. In other words, the lower truncation point in

(6.51) is max(0, u + 1 − kj,t−1). Thus, we can evaluate the finite time ruin probability

with the following expression

ψdεi (u, t) = ψdεi (u, 1) +
m∑
j=1

U∑
x=L

gεij(x)ψdεj (u+ 1− x, t− 1) (6.53)

where L = max(0, u + 1 − kj,t−1) and U = min(u, ki,1). We can demonstrate that

similar to the classical risk model, the error introduced by using (6.52) and (6.53) in

the Markov-modulated model can be bounded.

Theorem 6.6. For t = 1 we have

ψdi (u, 1)− ε ≤ ψdεi (u, 1) ≤ ψdi (u, 1)

and for t = 2, 3, . . . we have

ψdi (u, t)− 2tε ≤ ψdεi (u, t) ≤ ψdi (u, t). (6.54)

Proof. The proof is similar to De Vylder and Goovaerts (1988, Section 5) or Dickson

and Waters (1991, Section 6) for their discrete time models.

When t = 1, ψdεi (u, 1) = ψdi (u, 1) for u ≤ ki,1 and ψdεi (u, 1) = 0 for u > ki,1, therefore

ψdi (u, 1) < ε.

165



Now assume ψdi (u, n)− 2nε ≤ ψdεi (u, n) holds for n = t, then by induction we have

ψdi (u, t+ 1)− ψdεi (u, t+ 1) = ψdi (u, 1) +
m∑
j=1

u∑
x=0

gij(x)ψdj (u+ 1− x, t)

−ψdεi (u, 1)−
m∑
j=1

u∑
x=0

gεij(x)ψdεj (u+ 1− x, t)

≤ ε+
m∑
j=1

u∑
x=0

{gij(x)− gεij(x)}ψdj (u+ 1− x, t)

+
m∑
j=1

u∑
x=0

gεij(x){ψdj (u+ 1− x, t)− ψdεj (u+ 1− x, t)}

≤
m∑
j=1

u∑
x=0

{gij(x)− gεij(x)}+ 2tε
m∑
j=1

u∑
x=0

gεij(x) + ε

≤ ε+ 2εt+ ε ≤ 2ε(t+ 1).

Therefore, we can conclude that (6.54) holds true for n = t+ 1.

6.5.1 The density of the time of ruin for m = 2

The finite time ruin probability enables us to study the density of the time of ruin.

In particular, it is easier to interpret the graph of a density function rather than a

distribution function. Define

wi(u, t) =
∂

∂t
ψi(u, t)

to be the (defective) density of the time of ruin in the continuous time Markov-

modulated model. Adjusting the technique of Dickson and Waters (2002), we can

approximate the (defective) density of the time of ruin in continuous time at t = j/cβ

by

c β

[
ψdi

(
u,

j

cβ

)
− ψdi

(
u,
j − 1

cβ

)]
(6.55)

for j = 1, 2, . . . , cβt, where ψdi (u, t) is calculated by formulae (6.50) and (6.51). Dividing

(6.55) by ψdi (u) using the algorithm described in Section 6.4 gives us an approximation

to the proper density of the time of ruin in the Markov-modulated model.

We now illustrate the application of (6.55) by considering the density of the time of

ruin for six cases that we discussed in Section 6.4. In all figures α1 = 0.1, α2 = 0.5, β =
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Figure 6.1: Case 1: ψ1(40) = 0.01744 and ψ2(40) = 0.01727
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Figure 6.2: Case 2: ψ1(40) = 0.03418 and ψ2(40) = 0.03071
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Figure 6.3: Case 3: ψ1(120) = 0.02304 and ψ2(120) = 0.02721
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Figure 6.4: Case 4: ψ1(40) = 0.30885 and ψ2(40) = 0.30812
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Figure 6.5: Case 5: ψ1(40) = 0.34427 and ψ2(40) = 0.33677
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Figure 6.6: Case 6: ψ1(40) = 0.43292 and ψ2(40) = 0.47021
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20, and θ = 0.1. We remark that the accuracy of the approximations for the scaling

factor 20 is only up to two decimal places. However, this precision is sufficient for our

purpose here.

Figures 6.1, 6.2 and 6.3, show the proper density of the ruin time for exponential

claim amounts. For these figures, we have chosen the initial surplus such that the

ultimate ruin probability is in the range of practical interest. Figure 6.1 displays the

density of the time of ruin, given that ruin occurs when E[S1] = E[S2] for u = 40

(unscaled), where ψ1(40) = 0.01744 and ψ2(40) = 0.01727. In Section 6.4.1 we saw

that when E[S1] = E[S2], the ultimate ruin probabilities in states 1 and 2 are fairly

close. Here, we observe that when E[S1] = E[S2], the conditional density of the time

of ruin in state 1 coincides with that in state 2. Figure 6.2 shows the situation when

E[S1] > E[S2], ψ1(40) = 0.03418 and ψ2(40) = 0.03071. We observe that for the time

interval t ∈ (170, 264) (unscaled) the density of the time of ruin, given that ruin occurs,

in state 1 is located above that in state 2. As we can see in Figures 6.1 and 6.2 the

maximum density is around t = 200 (unscaled). In Figure 6.3 we choose u = 120

(unscaled) with ψ1(120) = 0.02304 and ψ2(120) = 0.02721. This figure presents the

density of the time of ruin, given that ruin occurs when E[S1] < E[S2]. We observe

that the conditional density of the time of ruin in state 2 is located above the density

in state 1. Therefore, we can conclude that the relationship between the density of

the time of ruin in states 1 and 2 is the same as the relationship between ψ1(u) and

ψ2(u). Figures 6.4, 6.5 and 6.6 illustrate the density of the time of ruin, given that

ruin occurs when claim amounts follow Pareto distributions and initial surplus is 40

(unscaled). The pattern of these graphs is the same as the graphs for the exponential

claim amounts. In other words, in Figure 6.4, where E[S1] = E[S2], the conditional

density of the time of ruin in both states is the same, in Figure 6.5 where E[S1] > E[S2]

the conditional density of the time of ruin in state 1 is above that in state 2, and in

Figure 6.6 when E[S1] < E[S2], the conditional density of the time of ruin in state 1

is below the density of the time of ruin in state 2. We can observe that the common

feature of all these figures is that they are all positively-skewed and the skewness is

heightened when claim amounts follow a heavy-tailed distribution.
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6.5.2 The density of the time of ruin for m > 2

In Section 6.5 we provided an algorithm that can evaluate the probability of ruin in

finite time in an m-state discrete time model. We then showed how we can apply this

algorithm to approximate the density of the time of ruin when m = 2. In this section,

we apply our numerical procedure to the case m > 2. There is nothing new about this

algorithm except the estimation of the transition probabilities for which we suggest the

following two methods and our experiments show both give very similar results:

(i) pii = e−αii/cβ and pij = (1− e−αii/cβ)αij/αii,

(ii) pii = 1− αii/cβ and pij = αij/cβ.

We remark that (i) is in fact the method that we have already used in our numerical

calculations for the case m = 2.

We consider a three-state model with the following intensity matrix
−0.6 0.2 0.4

0.1 −0.3 0.2

0.5 0.3 −0.8

 .

We calculate c = 1.13548 in the continuous time model so that formula (2.2) is satisfied

and set β = 20. Figure 6.7 shows an approximation to the (defective) density of the time

of ruin when arrival intensities are 1 in each state and claim amounts are exponentially

distributed with means m1 = 1,m2 = 0.5 and m3 = 2. Figure 6.8 illustrates the

situation when claim amounts follow Pareto distributions with parameters a1 = 2, b1 =

1, a2 = 3, b2 = 1 and a3 = 2, b3 = 1 and arrival intensities λ1 = λ2 = 1 and λ3 = 2. We

observe that the common features of Figures 6.7 and 6.8 are that they are positively-

skewed and the graph for the (defective) density of the time of ruin in state 3, where

E[S3] is higher than the expected aggregate claim amount in the two other states, is

located on the top and for state 2, where E[S2] is less than that in states 1 and 3, is

at the bottom with the graph for state 1, where E[S3] > E[S1] > E[S2], being in the

middle.

If we let the finite time period be sufficiently large, the graph of the cumulative

distribution of the time of ruin can give us an approximation to the ultimate ruin

probability for an m-state model. For example, our observation with the graphs of the
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cumulative distribution of the time of ruin for claim amounts with exponential distribu-

tions shows that for u = 10 (unscaled), ψi(10) for i = 1, 2, 3 approaches 0.55864, 0.52368

and 0.58057, respectively and when claim amounts follow Pareto distributions we can

observe that for u = 10 (unscaled), ψi(10) for i = 1, 2, 3 approaches 0.60752, 0.58292

and 0.62175, respectively. This method can be extended easily to m > 3. However,

we cannot verify the accuracy of the resulting ψi(u) values, particularly, when claim

amount distributions are Pareto.

We remark that Li et al. (2014) considered the density of the time of ruin in

the continuous time Markov-modulated model. They derived a general expression for

wi(u, t) and using numerical integration, implemented their formulae for u = 0, 5 when

claim amounts in state 1 follow an exponential distribution and in state 2 follow an

Erlang(2) distribution. As with the classical risk model, the formula for the (defective)

density of the time of ruin in the Markov-modulated risk model, is expressed in terms

of the density of the aggregate claim amount. However, in contrast to the classical risk

model, the solution to the integro-differential equation that satisfies the distribution of

the aggregate claim amount does not lead to a neat expression as formula (1.1). This

issue arises as Gij(x) is a matrix under the Markov-modulated risk model. In general,

it appears that our approach for the approximation of wi(u, t) is more straightforward

than their numerical integration.

6.6 The Markov-modulated model with capital in-

jections

In this section, we consider the Markov-modulated risk model with capital injections.

First, we provide formulae for the ultimate ruin probability in the continuous time case.

Then, we extend the algorithm used in Section 6.4 to approximate the probability of

ruin in infinite time. Following that we discuss the finite time ruin probability and

show how the algorithm in Section 6.5 can be modified to provide approximations to

the density of the time of ruin in our model.
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6.6.1 Notation and definitions

The underlying surplus process for a Markov-modulated risk model with capital injec-

tions is the Markov-modulated risk model which is defined by

U(t) = u+ ct−
N(t)∑
i=1

Xi

where N(t) is the number of claims that have occurred up to time t. We assume that

{J(t)}t≥0 is a homogeneous, irreducible and aperiodic continuous time Markov process.

See Section 2.1.1 for details.

Our risk model of interest is a Markov-modulated risk model modified by capital

injections. Specifically, starting from initial surplus u ≥ k > 0, if the surplus process

falls between 0 and k a capital injection restores the surplus level to k, and ruin occurs

only if the surplus process falls below 0 from a level above k. For the surplus process

with capital injections we use the same notation as for the Markov-modulated risk

model, but with a subscript k, so that, for example, Tu,k denotes the time of ruin from

initial surplus u ≥ k and ψk,i(u) denotes the ultimate ruin probability given initial

surplus u and initial environment state i, defined by

ψk,i(u) = Pr(Tu,k <∞ | U(0) = u, J(0) = i) = 1− δk,i(u)

where δk,i(u) is the survival probability. Also,

ψk,i(u, t) = Pr(Tu,k ≤ t | U(0) = u, J(0) = i)

is the finite time ruin probability given initial surplus u and initial environment state i.

Our aim in this section is to develop a discrete time risk model which can be used to

approximate the continuous time Markov-modulated risk model with capital injections.

For this, we consider the discrete time surplus process that can be used to approximate

the continuous time Markov-modulated risk model as the underlying surplus process.

Therefore, for n = 1, 2, 3, . . . we define the insurer’s surplus by

Ud(n) = u+ n−
n∑
i=1

Yi

where u is the insurer’s initial surplus and Yi is the insurer’s aggregate claim amount in

the ith time interval. We assume {Jn}n∈N is a homogeneous, irreducible and aperiodic
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Markov chain with a finite space M = {1, . . . ,m} and transition probabilities {pij}mi,j=1.

See Section 6.2 for details. To approximate the continuous time Markov-modulated risk

model with capital injections, we consider this discrete time risk model with capital

injections. Using the same notation as in Section 6.2 with a subscript k, we denote by

T du,k the time of ruin from initial surplus u = k, k + 1, . . . for the process modified by

capital injections. Thus

ψdk,i(u) = Pr(T du,k <∞ | Ud(0) = u, J(0) = i) = 1− δdk,i(u)

is the ultimate probability of ruin given initial surplus u and initial environment state

i. Further,

ψdk,i(u, t) = Pr(T du,k ≤ t | Ud(0) = u, J(0) = i)

is defined to be the finite time probability of ruin given initial surplus u and initial

environment state i. In our model ruin occurs when the surplus falls to 0 or below 0,

and capital is injected when the surplus goes below a positive integer k, but stays above

0.

6.6.2 The probability of ultimate ruin in continuous time

In Chapters 3 and 4 we have derived expressions for the probability of ultimate ruin

in the classical risk model with capital injections. Here, we extend our results to the

Markov-modulated risk model with capital injections.

Theorem 6.7. When the initial surplus is k,

ψk,i(k) =

∑m
j=1,i 6=j H1,ij(0, k)ψk,j(k) + ψi(0)−H1,i(0, k)

1−H1,ii(0, k)
(6.56)

and when u > k,

ψk,i(u) = ψi(u− k)−H1,ii(u− k, k) (1− ψk,i(k))

−
m∑

j=1,i 6=j

H1,ij(u− k, k) (1− ψk,j(k)) . (6.57)

Proof. We start with the situation when u = k. Conditioning on the amount of the
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first drop below the initial surplus level we have

ψk,i(k) =
m∑
j=1

∫ k

0

h1,ij(0, y)ψk,j(k) dy +

∫ ∞
k

h1,i(0, y) dy

=
m∑
j=1

H1,ij(0, k)ψk,j(k) + ψi(0)−H1,i(0, k)

which can also be written as (6.56). Using the same argument for u > k, we can write

ψk,i(u) =
m∑
j=1

∫ k

0

h1,ij(u− k, y)ψk,j(k) dy +

∫ ∞
k

h1,i(u− k, y) dy

=
m∑
j=1

H1,ij(u− k, k)ψk,j(k) + ψi(u− k)−H1,i(u− k, k)

which can be expressed as (6.57).

Setting m = 1 in (6.56) and (6.57), we can recover the results in the classical risk

model with capital injections given by Theorem 3.3. We can find analytical expres-

sions for (6.56) and (6.57) when individual claim sizes follow distributions for which

expressions for ψi(u) and h1,i(u) exist. However, in the case of heavy-tailed claim dis-

tributions there is no closed form for these functions and we need a method that gives

approximation to ψk,i(u).

6.6.3 The probability of ultimate ruin in discrete time

We now provide recursive formulae for ψdk,i(u), when i = 1, 2 that can be used to

approximate ψk,i(u) in the Markov-modulated risk model with capital injections when

m = 2.

Theorem 6.8. When m = 2, for u = k, k + 1, . . . , and i = 1,

ψdk,1(u) = f−1

(
u−k−1∑
x=1

ψdk,1(u− x)
(
hd11(0, x)

(
1− hd22(0, 0)

)
+ hd12(0, 0)hd21(0, x)

)
+

u−k−1∑
x=1

ψdk,2(u− x)
(
hd12(0, x)

(
1− hd22(0, 0)

)
+ hd12(0, 0)hd22(0, x)

)
+
(
1− hd22(0, 0)

) (
Hd

11(0, u)−Hd
11(0, u− k)

)
ψdk,1(k)

+hd12(0, 0)
(
Hd

21(0, u)−Hd
21(0, u− k)

)
ψdk,1(k)
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+
(
1− hd22(0, 0)

) (
Hd

12(0, u)−Hd
12(0, u− k)

)
ψdk,2(k)

+hd12(0, 0)
(
Hd

22(0, u)−Hd
22(0, u− k)

)
ψdk,2(k)

+
(
1− hd22(0, 0)

) (
ψd1(0)−Hd

1 (0, u)
)

+ hd12(0, 0)
(
ψd2(0)−Hd

2 (0, u)
))
(6.58)

and for i = 2,

ψdk,2(u) = f−1

(
u−k−1∑
x=1

ψdk,1(u− x)
(
hd11(0, x)hd21(0, 0) + hd21(0, x)

(
1− hd11(0, 0)

))
+

u−k−1∑
x=1

ψdk,2(u− x)
(
hd12(0, x)hd21(0, 0) + hd22(0, x)

(
1− hd11(0, 0)

))
+hd21(0, 0)

(
Hd

11(0, u)−Hd
11(0, u− k)

)
ψdk,1(k)

+
(
1− hd11(0, 0)

) (
Hd

21(0, u)−Hd
21(0, u− k)

)
ψdk,1(k)

+hd21(0, 0)
(
Hd

12(0, u)−Hd
12(0, u− k)

)
ψdk,2(k)

+
(
1− hd11(0, 0)

) (
Hd

22(0, u)−Hd
22(0, u− k)

)
ψdk,2(k)

+hd21(0, 0)
(
ψd1(0)−Hd

1 (0, u)
)

+
(
1− hd11(0, 0)

) (
ψd2(0)−Hd

2 (0, u)
))
(6.59)

where f =
(
1− hd11(0, 0)

) (
1− hd22(0, 0)

)
− hd12(0, 0)hd21(0, 0) with

ψdk,1(k) =
ψd1(0)−Hd

1 (0, k) +Hd
12(0, k)ψdk,2(k)

1−Hd
11(0, k)

(6.60)

and

ψdk,2(k) =
ψd2(0)−Hd

2 (0, k) +Hd
21(0, k)ψdk,1(k)

1−Hd
22(0, k)

. (6.61)

Proof. We start with the situation when u = k. In this case, either a claim causes the

surplus to fall between 0 and k, so the capital is injected in order to bring it back to

level k and subsequently ruin occurs from level k, or a claim results in ruin by causing

the surplus to fall to 0 or below 0. Thus

ψdk,i(k) =
2∑
j=1

k−1∑
x=0

hdij(0, x)ψdk,j(k) +
2∑
j=1

∞∑
x=k

hdij(0, x). (6.62)
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Rearranging (6.62) yields (6.60) and (6.61).

We can now write an expression for ψdk,i(u) by noting that on the first occasion that

the surplus falls below its initial level u, we have three situations:

(i) the surplus falls to u− x such that it stays above k and ruin subsequently occurs

from this surplus level,

(ii) the surplus falls below k but remains above 0 so that capital is injected and ruin

occurs from level k,

(iii) ruin occurs when the surplus falls to either 0 or below 0.

Hence, we have

ψdk,i(u) =
2∑
j=1

u−k−1∑
x=0

hdij(0, x)ψdk,j(u− x) +
2∑
j=1

u−1∑
x=u−k

hdij(0, x)ψdk,j(k) +
2∑
j=1

∞∑
x=u

hdij(0, x)

=
2∑
j=1

u−k−1∑
x=0

hdij(0, x)ψdk,j(u− x) +
2∑
j=1

(
Hd
ij(0, u)−Hd

ij(0, u− k)
)
ψdk,j(k)

+ψdi (0)−Hd
i (0, u). (6.63)

For i = 1, we have

ψdk,1(u) = hd11(0, 0)ψdk,1(u) + hd12(0, 0)ψdk,2(u) +
u−k−1∑
x=1

hd11(0, x)ψdk,1(u− x)

+
u−k−1∑
x=1

hd12(0, x)ψdk,2(u− x) +
(
Hd

11(0, u)−Hd
11(0, u− k)

)
ψdk,1(k)

+
(
Hd

12(0, u)−Hd
12(0, u− k)

)
ψdk,2(k) + ψd1(0)−Hd

1 (0, u) (6.64)

and for i = 2,

ψdk,2(u) = hd21(0, 0)ψdk,1(u) + hd22(0, 0)ψdk,2(u) +
u−k−1∑
x=1

hd21(0, x)ψdk,1(u− x)

+
u−k−1∑
x=1

hd22(0, x)ψdk,2(u− x) +
(
Hd

21(0, u)−Hd
21(0, u− k)

)
ψdk,1(k)

+
(
Hd

22(0, u)−Hd
22(0, u− k)

)
ψdk,2(k) + ψd2(0)−Hd

2 (0, u). (6.65)

Rearranging (6.64) and (6.65) and solving a system of equations we obtain (6.58) and

(6.59), respectively.
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We can readily evaluate ψdk,1(u) and ψdk,2(u) if we know the values of hdij(0, x). We

remark that if we set k = 0 in (6.63) we can recover equation (6.31).

6.6.4 Numerical illustrations

Tables 6.20, 6.21 and 6.22 show exact and approximate values of ψk,1(u) and ψk,2(u)

when individual claim amounts follow distributions of Cases 1, 2 and 3 in Section 6.4.

We can apply Theorem 6.7 and the methods in Sections 6.4.1 and 6.4.2 to calculate

exact values of ψk,1(u) and ψk,2(u). In all tables, α1 = 0.1, α2 = 0.5, and θ = 0.1. The

key for these tables is as follows:

(1) denotes the exact value of ψk,1(u) and ψk,2(u),

(2) denotes the approximation to ψk,1(u) and ψk,2(u) with β = 300,

(3) denotes the approximation to ψk,1(u) and ψk,2(u) with β = 100,

(4) denotes the approximation to ψk,1(u) and ψk,2(u) with β = 20.

We note the following points about Tables 6.20, 6.21 and 6.22.

(i) As β gets larger, approximations improve. We commented in Section 6.4 that the

best approximations were obtained when β = 300.

(ii) We get a better approximation as u increases. This applies to all scaling factors

and is in line with what we have observed in Section 6.4.

(iii) Some of the approximate values are overestimated and some are underestimated

and unlike in Section 6.4 there is no general rule about how this can happen.

(iv) In general, for β = 300, the approximations are close to the exact values.

179



Table 6.20: Exponential distribution when E[S1] = E[S2]

Unscaled k = 1 k = 2 k = 3

u ψk,1(u) ψk,2(u) ψk,1(u) ψk,2(u) ψk,1(u) ψk,2(u)

5 (1) 0.51762 0.51244 0.40086 0.39489 0.24428 0.23833
(2) 0.51789 0.51208 0.40158 0.39444 0.24529 0.23753
(3) 0.51828 0.51251 0.40273 0.39563 0.24685 0.23911
(4) 0.52061 0.51502 0.40951 0.40264 0.25607 0.24848

10 (1) 0.31597 0.31299 0.24467 0.24233 0.14907 0.14761
(2) 0.31608 0.31310 0.24501 0.24267 0.14954 0.14807
(3) 0.31631 0.31334 0.24571 0.24337 0.15048 0.14901
(4) 0.31770 0.31475 0.24982 0.24748 0.15611 0.15460

20 (1) 0.11774 0.11664 0.09117 0.09032 0.05555 0.05502
(2) 0.11778 0.11667 0.09130 0.09044 0.05572 0.05520
(3) 0.11786 0.11675 0.09155 0.09069 0.05607 0.05554
(4) 0.11834 0.11724 0.09305 0.09220 0.05815 0.05761

40 (1) 0.01635 0.01620 0.01266 0.01254 0.00771 0.00764
(2) 0.01635 0.01620 0.01268 0.01256 0.00774 0.00766
(3) 0.01636 0.01621 0.01271 0.01259 0.00778 0.00771
(4) 0.01642 0.01627 0.01291 0.01279 0.00807 0.00799

120 (1) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
(2) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
(3) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
(4) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table 6.21: Exponential distribution when E[S1] > E[S2]

Unscaled k = 1 k = 2 k = 3

u ψk,1(u) ψk,2(u) ψk,1(u) ψk,2(u) ψk,1(u) ψk,2(u)

5 (1) 0.58243 0.52276 0.47302 0.42454 0.30490 0.27355
(2) 0.58280 0.52145 0.47427 0.42259 0.30756 0.27103
(3) 0.58264 0.52137 0.47496 0.42329 0.30905 0.27245
(4) 0.58165 0.52092 0.47888 0.42729 0.31771 0.28074

10 (1) 0.38787 0.34814 0.31502 0.28274 0.20305 0.18225
(2) 0.38770 0.34799 0.31515 0.28286 0.20350 0.18263
(3) 0.38734 0.34770 0.31541 0.28312 0.20437 0.18343
(4) 0.38520 0.34601 0.31682 0.28458 0.20941 0.18808

20 (1) 0.17202 0.15440 0.13971 0.12540 0.09005 0.08083
(2) 0.17183 0.15424 0.13968 0.12537 0.09019 0.08096
(3) 0.17145 0.15391 0.13961 0.12533 0.09046 0.08120
(4) 0.16919 0.15198 0.13915 0.12500 0.09197 0.08262

40 (1) 0.03384 0.03037 0.02748 0.02467 0.01771 0.01590
(2) 0.03375 0.03030 0.02744 0.02463 0.01772 0.01590
(3) 0.03359 0.03015 0.02735 0.02455 0.01772 0.01591
(4) 0.32640 0.02932 0.02685 0.02412 0.01774 0.01594

120 (1) 0.00005 0.00005 0.00004 0.00004 0.00003 0.00002
(2) 0.00005 0.00004 0.00004 0.00004 0.00003 0.00002
(3) 0.00005 0.00004 0.00004 0.00004 0.00003 0.00002
(4) 0.00005 0.00004 0.00004 0.00003 0.00002 0.00002
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Table 6.22: Exponential distribution when E[S1] < E[S2]

Unscaled k = 1 k = 2 k = 3

u ψk,1(u) ψk,2(u) ψk,1(u) ψk,2(u) ψk,1(u) ψk,2(u)

5 (1) 0.69657 0.81802 0.66574 0.78578 0.61216 0.72808
(2) 0.69674 0.82063 0.66595 0.79031 0.61303 0.73617
(3) 0.69746 0.82092 0.66692 0.79085 0.61438 0.73712
(4) 0.70181 0.82268 0.67270 0.79405 0.62236 0.74272

10 (1) 0.59344 0.70349 0.56968 0.67572 0.52733 0.62603
(2) 0.59384 0.70396 0.57016 0.67645 0.52795 0.62718
(3) 0.59465 0.70445 0.57116 0.67718 0.52926 0.62831
(4) 0.59957 0.70746 0.57716 0.68154 0.53707 0.63497

20 (1) 0.43825 0.52014 0.42094 0.49961 0.38998 0.46286
(2) 0.43869 0.52050 0.42145 0.50004 0.39059 0.46343
(3) 0.43958 0.52120 0.42246 0.50091 0.39181 0.46457
(4) 0.44494 0.52545 0.42855 0.50609 0.39911 0.47133

40 (1) 0.23957 0.28434 0.23011 0.27311 0.21318 0.25302
(2) 0.23996 0.28471 0.23053 0.27352 0.21366 0.25350
(3) 0.24076 0.28546 0.23138 0.27435 0.21460 0.25445
(4) 0.24558 0.29002 0.23654 0.27934 0.22029 0.26015

120 (1) 0.02139 0.02539 0.02055 0.02439 0.01904 0.02259
(2) 0.02148 0.02549 0.02064 0.02449 0.01913 0.02270
(3) 0.02167 0.02569 0.02082 0.02469 0.01931 0.02290
(4) 0.02279 0.02692 0.02195 0.02593 0.02045 0.02415

6.6.5 The probability of ruin in finite time

We take a similar approach to Section 6.5 to approximate ψk,i(u, t) in the Markov-

modulated risk model with capital injections. We then discuss the truncation method

of De Vylder and Goovaerts (1988) to improve the computational efficiency of our

numerical algorithm.

Theorem 6.9. When t = 1 and for u = k, k + 1, . . . ,

ψdk,i(u, 1) =
m∑
j=1

∞∑
x=u+1

gij(x) = 1−Gi(u), (6.66)

and when t > 1,

ψdk,i(u, t) = ψdk,i(u, 1) +
m∑
j=1

u−k∑
x=0

gij(x)ψdk,j(u+ 1− x, t− 1)

+
m∑
j=1

u∑
x=u−k+1

gij(x)ψdk,j(k, t− 1). (6.67)

Proof. We first consider the case ψdk,i(u, 1). For ruin to occur within the first time

period, we require that the aggregate claim amount Y1 exceeds the initial surplus u.
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Hence (6.66) follows. Next we consider the case t > 1. Ruin occurs at or before time t

under the following situations:

(i) Y1 > u, so that ruin occurs at time 1,

(ii) Y1 = x, x = 0, 1, 2, . . . , u− k and ruin occurs in the next t− 1 time periods, from

surplus level u+ 1− x at time 1,

(iii) Y1 = x, x = u−k+1, . . . , u and ruin occurs in the next t−1 periods, from surplus

level k at time 1.

Therefore, (6.67) follows.

We can use (6.66) and (6.67) to evaluate ψdk,i(w, t) by first calculating ψdk,i(w, 1) for

w = k, k + 1, . . . , u + t − 1. Then, we need to find ψdk,i(w, 2) for w = k, k + 1, . . . , u +

t − 2, and finally ψdk,i(w, t) for w = k, k + 1, . . . , u + t − τ , where τ = t. As stated

before, this is computationally intensive and time-consuming. To solve this problem,

we can modify De Vylder and Goovaerts’ (1988) algorithm for the approximation of

the classical risk model and truncate the summations by ignoring small values of gij(x)

and ψdk,j(u + 1 − x, t − 1). The summation in (6.66) can be truncated at ki,1, where

ki,1 is the least integer such that Gi(ki,1) ≥ 1 − ε, ε > 0. The second term in (6.67) is

calculated only for values that max(0, u + 1 − kj,t−1) ≤ x ≤ min(u − k, ki,1) and the

third term for u− k + 1 ≤ x ≤ min(u, ki,1). Thus

ψεdk,i(u, 1) = 1−Gε
i(u), u = k, k + 1, . . . , ki,1,

and for t > 1

ψεdk,i(u, t) = ψεdk,i(u, 1) +
m∑
j=1

U∑
x=L

gεij(x)ψεdk,j(u+ 1− x, t− 1)

+
m∑
j=1

min(u,ki,1)∑
x=u−k+1

gεij(x)ψεdk,j(k, t− 1) (6.68)

where L = max(0, u+ 1− ki,t−1) and U = min(u− k, ki,1).
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6.6.6 The density of the time of ruin

In this section, our aim is to illustrate the shape of the density of the time of ruin

under the Markov-modulated model with capital injections. We can apply the tech-

nique described in Section 6.5.1 and use formulae (6.66) and (6.67) to approximate the

(defective) density of the time of ruin in continuous time at t = j/cβ by

cβ

[
ψdk,i

(
u,

j

cβ

)
− ψdk,i

(
u,
j − 1

cβ

)]
(6.69)

for j = 1, 2, . . . , cβt. Dividing (6.69) by ψdk,i(u) gives approximations to the proper

density of the time of ruin.

Figures 6.9 to 6.14 show the approximate density of the time of ruin, given that ruin

occurs, for α1 = 0.1, α2 = 0.5, β = 20 and θ = 0.1. Figure 6.9 presents the situation

when claim amounts follow exponential distributions (Case 1), for u = 40 (unscaled).

As we can see, the conditional density of the time of ruin in state 1 and state 2 is

not distinguishable. This feature can also be observed in Figure 6.12 which shows the

density of the time of ruin, given that ruin occurs, when claim amounts follow Pareto

distributions (Case 4) and u = 40 (unscaled). In both these figures the expected value

of aggregate claim amount in state 1 and 2 is the same. Figures 6.10 and 6.13 display

the conditional density of Tu,k for Cases 2 and 5, respectively when u = 40 (unscaled).

In both these figures, the expected aggregate claim amount in state 1 is greater than

the expected aggregate claim amount in state 2 and we can see that the conditional

density of the time of ruin in state 1 is located above the conditional density of the time

of ruin in state 2. However, this is not quite clear in Figure 6.13 when claim amounts

follow Pareto distributions. Similarly, when the expected aggregate claim amount in

state 1 is less than the expected aggregate claim amount in state 2 we can see that the

conditional density of the time of ruin in state 2 is above that in state 1. Cases 3 and

6 are illustrated by Figures 6.11 and 6.14, respectively. Unlike in Figure 6.13, this is

obvious in Figure 6.14 where the dashed lines representing the density in state 2 are

above the smooth lines representing the density in state 1.

The consistent feature of these figures is that they are all positively-skewed. This

feature has been observed under the Markov-modulated model in Section 6.5.1 and the

classical risk model with capital injections in Section 5.4 as well. Also, we can see that

the density of the time of ruin for k = 1 is located above the density for k = 2 and

k = 3 and the density of the time of ruin for k = 2 is above the density for k = 3.
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Figure 6.9: Exponential claim amounts when E[S1] = E[S2]
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Figure 6.10: Exponential claim amounts when E[S1] > E[S2]
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Figure 6.11: Exponential claim amounts when E[S1] < E[S2]
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Figure 6.12: Pareto claim amounts when E[S1] = E[S2]
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Figure 6.13: Pareto claim amounts when E[S1] > E[S2]
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Figure 6.14: Pareto claim amounts when E[S1] < E[S2]
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Figure 6.15: Exponential claims
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Figure 6.16: Pareto claims
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This feature appears in all figures, although for Cases 4, 5 and 6 when individual claim

amounts follow Pareto distributions, it is not quite obvious.

Figures 6.15 and 6.16 show the (defective) density of the time of ruin in a three-state

Markov-modulated model with capital injections for claim amounts following exponen-

tial and Pareto distributions, respectively when u = 10 (unscaled). We use the same

parameters as in Section 6.5.2. As we can see, the graphs exhibit the same pattern as in

Section 6.5.2, i.e. the density of the time of ruin in state 3 is located above the density

of the time of ruin in state 1 and the density of the time of ruin in state 1 is above

the density in state 2, which is not surprising as the expected aggregate claim amount

in state 3 is greater than that in state 1 and the expected aggregate claim amount in

state 1 is greater than that in state 2. Further, the densities follow the same order as

in Section 5.4. We observe that the density of the time of ruin when k = 2 is above

the density of the time of ruin when k = 3. As with the density of the time of ruin in

a two-state Markov-modulated model, the density of the time of ruin in Figures 6.15

and 6.16 is positively-skewed.

6.7 Concluding remarks

In this chapter, we have extended our numerical algorithm in Chapter 5, which is

based on the ideas of Dickson and Waters (1991, 1992), to the Markov-modulated risk

model with and without capital injections. We have developed a discrete time version

of the Markov-modulated model that can be used to approximate some ruin-related

quantities in the continuous time Markov-modulated risk model. We have considered

two distributions for individual claim amounts: exponential and Pareto. Comparing

our results with exact values when claim amounts are exponentially distributed, we

found that our algorithm can produce approximate values which are close to the exact

values. In Section 6.5.2 we have graphed the density of the time of ruin for m = 3

and explained that this method can be extended to m > 3. It may also be possible

to approximate the ultimate ruin probability by looking at the cumulative distribution

of the time of ruin. In the final section, we incorporated capital injections into our

model and showed how our modified algorithm can approximate the probability of ruin

in infinite time when m = 2 and probability of ruin in finite time when m > 2.
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Chapter 7

Dividend strategies with capital

injections

7.1 Introduction

In this chapter, we consider the question of dividend strategies. Our aim is to examine

the impact of capital injections on dividend payments to shareholders of an insurance

company. We begin with the situation introduced by De Finneti (1957) and find the

optimal level of surplus at which dividends start being distributed among shareholders

under our model, by maximising the expected discounted value of dividend payments.

Then, we propose a reinsurance arrangement under which any fall below the level k is

compensated by this contract, meaning that the idea of capital injections is extended

to any situation when the surplus falls below k, and as a result the insurance company

may do business indefinitely. We illustrate the application of our results for individual

claim amounts with exponential and mixed exponential distributions. Following that

we discuss a threshold strategy and find the optimal value of the dividend barrier using

two methods. In the final section, we demonstrate that the dividends-penalty identity

given by Lin et al. (2003) holds for a model with capital injections.

7.2 Barrier strategy

In this section, we apply the idea of De Finneti (1957) to our risk model with capital

injections.
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We define Vk(u, b) to be the expected present value at force of interest δ of dividends

payable to shareholders prior to ruin whenever the surplus attains level b in the presence

of capital injections. Let τ denote the time at which the surplus would reach b if there

were no claims, so that u+ cτ = b. Thus, by considering whether or not a claim occurs

before time τ for k ≤ u < b, we have

Vk(u, b) = e−(λ+δ)τ Vk(b, b) +

∫ τ

0

λe−(λ+δ)t

∫ u+ct−k

0

f(x)Vk(u+ ct− x) dx dt

+

∫ τ

0

λe−(λ+δ)t

∫ u+ct

u+ct−k
f(x)Vk(k, b) dx dt.

Substituting s = u+ ct we obtain

Vk(u, b) = e−(λ+δ)(b−u)/c Vk(b, b) +
λ

c

∫ b

u

e−(λ+δ)(s−u)/c

∫ s−k

0

f(x)Vk(s− x, b) dx ds

+
λ

c

∫ b

u

e−(λ+δ)(s−u)/c

∫ s

s−k
f(x)Vk(k, b) dx ds, (7.1)

and then differentiating with respect to u we get

∂

∂u
Vk(u, b) =

λ+ δ

c
Vk(u, b)−

λ

c

∫ u−k

0

f(x)Vk(u− x, b) dx

−λ
c

(
F̄ (u− k)− F̄ (u)

)
Vk(k, b). (7.2)

Similarly, by considering dividend payments before and after the first claim, we have

Vk(b, b) =

∫ ∞
0

λe−(λ+δ)tc s̄t dt+

∫ ∞
0

λe−(λ+δ)t

∫ b−k

0

f(x)Vk(b− x, b) dx dt

+

∫ ∞
0

λe−(λ+δ)t

∫ b

b−k
f(x)Vk(k, b) dx dt (7.3)

where s̄t = (eδt − 1)/δ is the accumulated amount at time t of payments at rate 1

per unit time at force of interest δ per unit time. Integrating out in equation (7.3) we

obtain

Vk(b, b) =
c

λ+ δ
+

λ

λ+ δ

∫ b−k

0

f(x)Vk(b− x, b) dx

+
λ

λ+ δ

(
F̄ (b− k)− F̄ (b)

)
Vk(k, b). (7.4)

From equation (7.2) we find that

c

λ+ δ

∂

∂u
Vk(u, b)

∣∣∣
u=b

= Vk(b, b)−
λ

λ+ δ

∫ b−k

0

f(x)Vk(b− x, b) dx

− λ

λ+ δ

(
F̄ (b− k)− F̄ (b)

)
Vk(k, b)
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which, together with equation (7.3), gives the boundary condition

∂

∂u
Vk(u, b)

∣∣∣
u=b

= 1. (7.5)

In the following results, we find an expression for Vk(u, b) in the case of exponential and

mixed exponential claim amounts.

Result 7.1. When F (x) = 1− e−αx, x ≥ 0, with α > 0,

Vk(u, b) =
D1(k)eρu −D2(k)e−Ru

D1(k)ρeρb +D2(k)Re−Rb
(7.6)

with

D1(k) = c(α + ρ)e(α−R)k − λ(eαk − 1)e−Rk,

D2(k) = c(α−R)e(α+ρ)k − λ(eαk − 1)eρk, (7.7)

where ρ ≡ ρ(δ) > 0 and −R ≡ −R(δ) < 0 are the roots of Lundberg’s fundamental

equation, given by

s2 +

(
α− λ+ δ

c

)
s− αδ

c
= 0. (7.8)

Derivation. Substituting for f , we write equation (7.2) as

∂

∂u
Vk(u, b) =

λ+ δ

c
Vk(u, b)−

λ

c

∫ u

k

αe−α(u−x)Vk(x, b) dx

−λ
c
e−αu(eαk − 1)Vk(k, b), (7.9)

and differentiation of equation (7.9) yields

∂2

∂u2
Vk(u, b) +

(
α− λ+ δ

c

)
∂

∂u
Vk(u, b)−

αδ

c
Vk(u, b) = 0. (7.10)

The general solution of equation (7.10) is given by

Vk(u, b) = γ1e
ρu + γ2e

−Ru (7.11)

and from (7.5) the boundary condition is

γ1ρe
ρb − γ2Re

−Rb = 1.
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We can now insert the functional form (7.11) of Vk(u, b) into equation (7.9), giving

γ1ρe
ρu − γ2Re

−Ru

=
λ+ δ

c

(
γ1e

ρu + γ2e
−Ru)− αλ

c
e−αu

∫ u

k

(
γ1e

(α+ρ)x + γ2e
(α−R)x

)
dx

−λ
c
e−αu(eαk − 1)

(
γ1e

ρk + γ2e
−Rk) . (7.12)

Rearranging this identity we obtain

γ1e
ρu

(
ρ− λ+ δ

c
+
αλ

c

1

α + ρ

)
− γ2e

−Ru
(
R +

λ+ δ

c
− αλ

c

1

α−R

)
+e−αu

[
λ

c
(eαk − 1)

(
γ1e

ρk + γ2e
−Rk)− αλ

c

(
γ1

α + ρ
e(α+ρ)k +

γ2

α−R
e(α−R)k

)]
= 0.

Since

ρ− λ+ δ

c
+
αλ

c

1

α + ρ
=

1

α + ρ

(
ρ2 +

(
α− λ+ δ

c

)
ρ− αδ

c

)
= 0

and

R +
λ+ δ

c
− αλ

c

1

α−R
=
−1

α−R

(
R2 −

(
α− λ+ δ

c

)
R− αδ

c

)
= 0

by equation (7.8), the coefficients of eρu and e−Ru are 0; consequently, we have

γ1

γ2

=
−(eαk − 1)e−Rk + e(α−R)kα/(α−R)

(eαk − 1)eρk − e(α+ρ)kα/(α + ρ)
.

By noting that (α + ρ)(α−R) = αλ/c (see Dickson, 2005) we can write this as

γ1

γ2

=
c(α + ρ)e(α−R)k − λ(eαk − 1)e−Rk

λ(eαk − 1)eρk − c(α−R)e(α+ρ)k
= −D1(k)

D2(k)
. (7.13)

Using the boundary condition, formula (7.6) follows. �

To find the optimal values of b and k, we differentiate (7.6) once with respect to

b and once with respect to k and then equate to zero. Hence we need to solve the

following system of equations:
(
D1(k)ρ2eρb −D2(k)R2e−Rb

) (
D1(k)eρu −D2(k)e−Ru

)
= 0(

D
′
1(k)eρu −D′2(k)e−Ru

) (
D1(k)ρeρb +D2(k)Re−Rb

)
−
(
D
′
1(k)ρeρb +D

′
2(k)Re−Rb

) (
D1(k)eρu −D2(k)e−Ru

)
= 0
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so, (
D1(k)ρeρb +D2(k)Re−Rb

) (
D1(k)ρ2eρb −D2(k)R2e−Rb

)
×
(
D
′

1(k)eρu −D′2(k)e−Ru
)

= 0. (7.14)

To find the optimal value of b from (7.14) we have

D1(k)ρ2eρb −D2(k)R2e−Rb = 0. (7.15)

Thus

b∗ =
1

ρ+R
log

R2D2(k)

ρ2D1(k)
. (7.16)

Further, as

D
′

1(k) = c(α + ρ)(α−R)e(α−R)k + λRe−Rk(eαk − 1)− λαe(α−R)k

= λRe−Rk(eαk − 1),

and k > 0, D1(k) is an increasing function of k. Also, as

D
′

2(k) = c(α−R)(α + ρ)e(α+ρ)k − λρeρk(eαk − 1)− λαe(α+ρ)k

= −λρeρk(eαk − 1),

D2(k) is a decreasing function of k and D2(k) < 0 for k ≥ −1
α

log λ−c(α−R)
λ

. There-

fore, expression (7.16) shows the relationship between b∗ and k that can lead to the

maximisation of Vk(u, b) on the condition that

0 < k <
−1

α
log

λ− c(α−R)

λ
. (7.17)

We note that the numerator of (7.6) is independent of b. Therefore, we can get the

same result as (7.16) if we minimise the denominator of (7.6). If we set k = 0, (7.16)

gives the optimal value of b in Bühlmann (1970), who considered the classical risk

model with dividends, where he has shown that the first moment of discounted value

of dividend payments can be factorised by V1(u, b) = C(b)h(u). (Recall from Chapter 1

that V1(u, b) is the expected present value at force of interest δ of dividends payable to

the shareholders prior to ruin whenever the surplus attains level b in the classical risk

model without capital injections.) We can see that such a factorisation applies to our

model as well.
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Figure 7.1: Vk(u, b) for k = 2, exponential claims
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From equation (7.16) we can conclude that the optimal value of b is independent of

u. Now, to see the impact of capital injections on the optimal value of b we differentiate

identity (7.16) with respect to k. Then

d

dk
b∗ =

1

ρ+R

D
′
2(k)D1(k)−D′1(k)D2(k)

D1(k)D2(k)
.

We know that D
′
2(k)D1(k) < 0 and D

′
1(k)D2(k) > 0. Therefore, we can conclude

that the optimal value of b is a decreasing function of k, which is reasonable, since as

k increases, the likelihood of the surplus falling below 0 decreases and the insurance

company is more confident to start paying dividends earlier, and the earlier the insurer

starts distributing dividends, the higher Vk(u, b) is.

Figures 7.1 and 7.2 illustrate the values of Vk(u, b) when α = 1, λ = 100, c = 110

and δ = 0.1 for different values of u and k. From (7.17) we require that 0 < k < 4.70.

The fact that the optimal value of b is independent of u can be observed from Figure

7.1. Also, in Figure 7.2 as k increases, the optimal value of b decreases as we would

expect.

Result 7.2. When f(x) = pαe−αx + qβe−βx, where p + q = 1, 0 < p < 1 and α < β,

we have

Vk(u, b) =
1

L(b)

(
(A2(k)B3(k)− A3(k)B2(k)) eρu

+ (A3(k)B1(k)− A1(k)B3(k)) e−R1u + (A1(k)B2(k)− A2(k)B1(k)) e−R2u
)

(7.18)

where

L(b) = ρeρb (A2(k)B3(k)− A3(k)B2(k)) +R1e
−R1b (A1(k)B3(k)− A3(k)B1(k))

+R2e
−R2b (A2(k)B1(k)− A1(k)B2(k)) (7.19)

and

A1(k) =
α

α + ρ
e(α+ρ)k − (eαk − 1)eρk,

A2(k) =
α

α−R1

e(α−R1)k − (eαk − 1)e−R1k,

A3(k) =
α

α−R2

e(α−R2)k − (eαk − 1)e−R2k,
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B1(k) =
β

β + ρ
e(β+ρ)k − (eβk − 1)eρk,

B2(k) =
β

β −R1

e(β−R1)k − (eβk − 1)e−R1k,

B3(k) =
β

β −R2

e(β−R2)k − (eβk − 1)e−R2k, (7.20)

where ρ ≡ ρ(δ) > 0, −Ri ≡ −Ri(δ), i = 1, 2 are the solutions to Lundberg’s fundamen-

tal equation (see Gerber et al., 2006b, formula 7.13), given by

s3 +

(
α + β − λ+ δ

c

)
s2 +

(
αβ + (pα + qβ)

λ

c
− (α + β)

λ+ δ

c

)
s− αβδ

c
= 0.

(7.21)

Derivation. Substituting for f , we write equation (7.2) as

∂

∂u
Vk(u, b) =

λ+ δ

c
Vk(u, b)−

λ

c

∫ u

k

(
pαe−α(u−x) + qβe−β(u−x)

)
Vk(x, b) dx

−λ
c

(
pe−αu(eαk − 1) + qe−βu(eβk − 1)

)
Vk(k, b). (7.22)

Next, we apply the operator
(
∂
∂u

+ α
) (

∂
∂u

+ β
)

to both sides of equation (7.22). To do

this, we differentiate equation (7.22) with respect to u. Hence

∂2

∂u2
Vk(u, b) =

λ+ δ

c

∂

∂u
Vk(u, b)−

λ

c
(pα + qβ)Vk(u, b)

+
λ

c

∫ u

k

(
pα2e−α(u−x) + qβ2e−β(u−x)

)
Vk(x, b) dx

+
λ

c

(
pαe−αu(eαk − 1) + qβe−βu(eβk − 1)

)
Vk(k, b). (7.23)

Differentiation of equation (7.23) with respect to u gives

∂3

∂u3
Vk(u, b) =

λ+ δ

c

∂2

∂u2
Vk(u, b)−

λ

c
(pα + qβ)

∂

∂u
Vk(u, b) +

λ

c
(pα2 + qβ2)Vk(u, b)

−λ
c

∫ u

k

(
pα3e−α(u−x) + qβ3e−β(u−x)

)
Vk(x, b) dx

−λ
c

(
pα2e−αu(eαk − 1) + qβ2e−βu(eβk − 1)

)
Vk(k, b), (7.24)

and hence we get

∂3

∂u3
Vk(u, b) +

(
α + β − λ+ δ

c

)
∂2

∂u2
Vk(u, b)

+

(
αβ + (pα + qβ)

λ

c
− (α + β)

λ+ δ

c

)
∂

∂u
Vk(u, b)−

αβδ

c
Vk(u, b) = 0.

(7.25)
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Thus, the general solution of equation (7.25) is of the form

Vk(u, b) = η0e
ρu + η1e

−R1u + η2e
−R2u. (7.26)

Further, from equation (7.5) the first boundary condition is given by

η0ρe
ρb − η1R1e

−R1b − η2R2e
−R2b = 1. (7.27)

We can now insert the functional form (7.26) of Vk(u, b) into equation (7.22), giving

η0ρe
ρu − η1R1e

−R1u − η2R2e
−R2u =

λ+ δ

c

(
η0e

ρu + η1e
−R1u + η2e

−R2u
)

−λ
c

∫ u

k

(
pαe−α(u−x) + qβe−β(u−x)

) (
η0e

ρx + η1e
−R1x + η2e

−R2x
)
dx

−λ
c

(
pe−αu(eαk − 1) + qe−βu(eβk − 1)

) (
η0e

ρk + η1e
−R1k + η2e

−R2k
)
.

Rearranging, we obtain

η0e
ρu

(
ρ− λ+ δ

c
+
αλ

c

p

α + ρ
+
βλ

c

q

β + ρ

)
−η1e

R1u

(
R1 +

λ+ δ

c
− αλ

c

p

α−R1

− βλ

c

q

β −R1

)
−η2e

−R2u

(
R2 +

λ+ δ

c
− αλ

c

p

α−R2

− βλ

c

q

β −R2

)
=

λ

c
e−αu

[
η0

α + ρ
pαe(α+ρ)k +

η1

α−R1

pαe(α−R1)k +
η2

α−R2

pαe(α−R2)k

−p(eαk − 1)
(
η0e

ρk + η1e
−R1k + η2e

−R2k
) ]

+
λ

c
e−βu

[
η0

β + ρ
qβe(β+ρ)k

+
η1

β −R1

qβe(β−R1)k +
η2

β −R2

qβe(β−R2)k − q(eβk − 1)
(
η0e

ρk + η1e
−R1k + η2e

−R2k
) ]
.

The coefficient of eρu is zero, since

ρ− λ+ δ

c
+
αλ

c

p

α + ρ
+
βλ

c

q

β + ρ
=

1

(α + ρ)(β + ρ)

×
[
ρ3 +

(
α + β − λ+ δ

c

)
ρ2 +

(
αβ + (pα + qβ)

λ

c
− (α + β)

λ+ δ

c

)
ρ− αβδ

c

]
= 0

by equation (7.21). Similarly, we can show that the coefficients of e−R1u and e−R2u are

also zero. Consequently, the coefficients of e−αu and e−βu are zero and we can write

A1(k)η0 + A2(k)η1 + A3(k)η2 = 0,

B1(k)η0 +B2(k)η1 +B3(k)η2 = 0, (7.28)
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Figure 7.3: Vk(u, b) for k = 2, mixed exponential claims
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where Ai(k) and Bi(k) for i = 1, 2, 3 are given by (7.20). We can find η0, η1 and η2 from

equations (7.28) and the boundary condition in equation (7.27) and hence the result

follows. �

Conditions (7.28) are a special case of equation (7.8) of Gerber et al. (2006b).

We can see that similar to the exponential claim amounts case, as the denominator is

independent of u, it is possible to maximise Vk(u, b) by minimising the denominator.

Therefore, the optimal barrier b satisfies the relationship

ρ2B3(k)eρb
∗ −R1R2B1(k)e−R2b∗

R2
1B3(k)e−R1b∗ −R2

2B2(k)e−R2k
=
A1(k)B3(k)− A3(k)B1(k)

A2(k)B3(k)− A3(k)B2(k)
. (7.29)

Now we consider the function f(x) = 1
3
(1

2
e−x/2) + 2

3
(2e−2x) with λ = 100, δ = 0.1

and c = 110. Substituting in (7.21) we get ρ = 0.00884516,−R1 = 0.0670988,−R2 =

1.53175.

Figures 7.3 and 7.4 show values of Vk(u, b) for different values of b when k = 2

is fixed in Figure 7.3 and u = 10 is fixed in Figure 7.4. We observe from Figure 7.3

that the optimal value of b is independent of u and as the initial surplus increases, the

expected present value of dividend payments rises. This is consistent with Figure 7.1.

However, unlike in Figure 7.2 we can see in Figure 7.4 that as k increases, the reduction

in the optimal value of b is not very evident.

7.3 A reinsurance arrangement

In this section, we assume that the shareholders input u, and when the surplus drops

either below k, or below 0, a compensation which is equal to the amount of the fall below

k is provided by a reinsurance contract which has been purchased by shareholders, so

that the surplus is restored to k. The insurance company can then continue from this

surplus level, and the operation from the time of the fall is independent of the past, so

that each time a claim causes the surplus to fall below k, after the capital injection, the

surplus goes back to k and this time point is a renewal point of the new process. The

surplus process is now moving indefinitely between k and b.

Let Yu,b,k be the deficit at ruin and let Tu,b,k be the time of ruin in our model, as-

suming the initial surplus is u. We define Rk(u, b) = E[e−δTu,b,kYu,b,k] to be the expected

present value of the deficit at ruin and R̃k(u, b) = E[e−δTu,b,k ] to be the expected present
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value of a unit payable at the time of ruin at force of interest δ. Also, let Tu,b and Yu,b

be the time of ruin and the deficit at the time of ruin in the classical model without

capital injections when the surplus is bounded by the upper level b, respectively. Our

purpose is to examine how our reinsurance contract affects the expected present value

of net income to the shareholders. So, let Ṽk(u, b) denote the expected present value

of dividends only. Then, by noting that V1(u − k, b − k) is the expected present value

at force of interest δ of dividends payable to the shareholders prior to ruin whenever

the surplus attains level b in the classical risk model without capital injections, we can

write

Ṽk(u, b) = V1(u− k, b− k) + E[e−δTu−k,b−k ]Ṽk(k, b). (7.30)

Hence

Ṽk(k, b) =
V1(0, b− k)

1− E[e−δT0,b−k ]
. (7.31)

Further, let W̃k(u, b) denote the expected present value of payments to be made by the

reinsurance company when the surplus falls below k. Then

W̃k(u, b) = E[e−δTu−k,b−kYu−k,b−k] + E[e−δTu−k,b−k ]W̃k(k, b) (7.32)

which gives

W̃k(k, b) =
E[e−δT0,b−kY0,b−k]

1− E[e−δT0,b−k ]
. (7.33)

Defining Nk(u, b) to be the expected present value of net income to the shareholders,

our strategy is to find the value of b which maximises

Nk(u, b) = Ṽk(u, b)− (1 + θR)W̃k(u, b)− u. (7.34)

We already know expressions for Vk(u, b) and we can use formulae (44) of Dickson and

Waters (2004) for n = 1 to find E[e−δTu,bYu,b] and E[e−δTu,b ] for exponentially distributed

claim amounts. Therefore, it is straightforward to calculate the expected present value

of net income for exponential claims. However, in the case of claim amounts following

a mixed exponential distribution, we first derive expressions for E[e−δTu,b,kYu,b,k] and

E[e−δTu,b,k ]. Then, setting k = 0, gives the results for E[e−δTu,bYu,b] and E[e−δTu,b ].
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By considering the time and the amount of the first claim, and whether or not the

first claim occurs before time τ , standard arguments – see, for example, Dickson and

Waters (2004) – lead to

∂

∂u
Rk(u, b) =

λ+ δ

c
Rk(u, b)−

λ

c

∫ u−k

0

f(y)Rk(u− y, b) dy

−λ
c

(
F̄ (u− k)− F̄ (u)

)
Rk(k, b)−

λ

c

∫ ∞
u

(y − u)f(y) dy.

(7.35)

For u = b we get

Rk(b, b) =

∫ ∞
0

λe−(λ+δ)t

(∫ b−k

0

f(y)Rk(b− y, b) dy +

∫ b

b−k
f(y)Rk(k, b) dy

+

∫ ∞
b

(y − b)f(y) dy

)
dt

=
λ

λ+ δ

(∫ b−k

0

f(y)Rk(b− y, b) dy +

∫ b

b−k
f(y)Rk(k, b) dy

+

∫ ∞
b

(y − b)f(y) dy

)
. (7.36)

Setting u = b in (7.35) yields

∂

∂u
Rk(u, b)


u=b

=
λ+ δ

c
Rk(b, b)−

λ

c

∫ b−k

0

f(y)Rk(b− y, b) dy

−λ
c

∫ b

b−k
f(y)Rk(k, b) dy −

λ

c

∫ ∞
b

(y − b)f(y) dy (7.37)

and we can find the boundary condition as ∂
∂u
Rk(u, b)


u=b

= 0.

Result 7.3. When f(x) = pαe−αx + qβe−βx for p+ q = 1, 0 < p < 1 and α < β,

Rk(u, b) =
1

αβL(b)

((
R1e

−R1b(βB3(k)− αA3(k)) +R2e
−R2b(αA2(k)− βB2(k))

)
eρu

+
(
ρeρb(βB3(k)− αA3(k)) +R2e

−R2b(βB1(k)− αA1(k))
)
e−R1u

+
(
ρeρb(αA2(k)− βB2(k)) +R1e

−R1b(αA1(k)− βB1(k))
)
e−R2u

)
(7.38)

where L(b) is given by (7.19) and Ai(k) and Bi(k) for i = 1, 2, 3 are given by (7.20).

Further, ρ, R1 and R2 are the roots of Lundberg’s fundamental equation given by (7.21).
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Derivation. Substituting for f , we can write (7.35) as

∂

∂u
Rk(u, b) =

λ+ δ

c
Rk(u, b)−

λ

c

∫ u

k

(
pαe−α(u−y) + qβe−β(u−y)

)
Rk(y, b) dy

−λ
c

(
pe−αu(ek − 1) + qe−βu(eβk − 1)

)
Rk(k, b)

−λ
c

(
p
e−αu

α
+ q

e−βu

β

)
. (7.39)

From this, it is straightforward to obtain

∂3

∂u3
Rk(u, b) +

(
α + β − λ+ δ

c

)
∂2

∂u2
Rk(u, b)

+

(
αβ + (pα + qβ)

λ

c
− (α + β)

λ+ δ

c

)
∂

∂u
Rk(u, b)−

αβδ

c
Rk(u, b) = 0.

(7.40)

Thus, the general solution of equation (7.40) is of the form

Rk(u, b) = ζ0e
ρu + ζ1e

−Ru + ζ2e
−R2u (7.41)

with the boundary condition from formula (7.37) being

ζ0ρe
ρb − ζ1R1e

−R1b − ζ2R2e
−R2b = 0. (7.42)

We now insert the functional form (7.41) of Rk(u, b) into equation (7.39), giving

ζ0ρe
ρu − ζ1R1e

−R1u − ζ2R2e
−R2u =

λ+ δ

c

(
ζ0e

ρu + ζ1e
−R1u + ζ2e

−R2u
)

−λ
c

∫ u

k

(
pαe−α(u−y) + qβe−β(u−y)

) (
ζ0e

ρy + ζ1e
−R1y + ζ2e

−R2y
)
dy

−λ
c

(
pe−αu(eαk − 1) + qe−βu(eβk − 1)

) (
ζ0e

ρk + ζ1e
−R1k + ζ2e

−R2k
)

−λ
c

(
p
e−αu

α
+ q

e−βu

β

)
. (7.43)

Rearranging, we obtain

ζ0e
ρu

(
ρ− λ+ δ

c
+
αλ

c

p

α + ρ
+
βλ

c

q

β + ρ

)
−ζ1e

−R1u

(
R1 +

λ+ δ

c
− αλ

c

p

α−R1

− βλ

c

q

β −R1

)
−ζ2e

−R2u

(
R2 +

λ+ δ

c
− αλ

c

p

α−R2

− βλ

c

q

β −R2

)
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=
λ

c
e−αu

[
ζ0

α + ρ
pαe(α+ρ)k +

ζ1

α−R1

pαe(α−R1)k +
ζ2

α−R2

pαe(α−R2)k

−p(eαk − 1)
(
ζ0e

ρk + ζ1e
−R1k + ζ2e

−R2k
)
− p

α

]
+
λ

c
e−βu

[ ζ0

β + ρ
qβe(β+ρ)k

+
ζ1

β −R1

qβe(β−R1)k +
ζ2

β −R2

qβe(β−R2)k − q(eβk − 1)
(
ζ0e

ρk + ζ1e
−R1k + ζ2e

−R2k
)
− q

β

]
.

Since the coefficients of eρu, e−R1u and e−R2u are zero, we see that the coefficients of

e−αu and e−βu are zero, and find the following conditions

ζ0A1(k) + ζ1A2(k) + ζ2A3(k)− 1

α
= 0,

ζ0B1(k) + ζ1B2(k) + ζ2B3(k)− 1

β
= 0. (7.44)

Using (7.42) and (7.44), the result follows. �

In the case of exponential claim amounts, we can use the memoryless property of

the exponential distribution and derive E[e−δTu,b,k ]. For the mixed exponential claims

we need to find E[e−δTu,b,k ] directly. Therefore, by the argument of conditioning on the

time and the amount of the first claim we find the analogues of formula (7.35) as

∂

∂u
R̃k(u, b) =

λ+ δ

c
R̃k(u, b)−

λ

c

∫ u−k

0

f(y)R̃k(u− y, b) dy

−λ
c

(
F̄ (u− k)− F̄ (u)

)
R̃k(k, b)−

λ

c

∫ ∞
u

f(y) dy (7.45)

with the boundary condition being ∂
∂u
R̃k(u, b)

∣∣∣
u=b

= 0. Now, we can insert f in equa-

tion (7.45) and follow the same technique as before to obtain the following differential

equation as

∂3

∂u3
R̃k(u, b) =

(
α + β − λ+ δ

c

)
∂2

∂u2
R̃k(u, b)

+

(
αβ + (pα + qβ)

λ

c
− (α + β)

λ+ δ

c

)
∂

∂u
R̃k(u, b)−

αβδ

c
R̃k(u, b) = 0.

The general solution to this equation is given by

R̃k(u, b) = ς0e
ρu + ς1e

−R1u + ς2e
−R2u (7.46)

and the boundary condition is ς0ρe
ρb − ς1R1e

−R1b − ς2R2e
−R2b = 0. Inserting the func-

tional form (7.46) of R̃k(u, b) into equation (7.45), after simplifications we obtain two
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other conditions as

ς0A1(k) + ς1A2(k) + ς2A3(k) = 1,

ς0B1(k) + ς1A2(k) + ς2A3(k) = 1,

where Ai(k) and Bi(k) for i = 1, 2, 3 are given by (7.20). Applying the boundary

condition, it follows that

R̃k(u, b) =
1

L(b)

((
R1e

−R1b(B3(k)− A3(k)) +R2e
−R2(A2(k)−B2(k))

)
eρu

+
(
ρeρb(B3(k)− A3(k)) +R2e

−R2b(B1(k)− A1(k))
)
e−R1u

+
(
ρeρb(A2(k)−B2(k)) +R1e

−R1b(A1(k)−B1(k))
))

(7.47)

where L(b) is given by (7.19) and ρ, R1 and R2 are the roots of Lundberg’s fundamental

equation given by (7.21).

Setting k = 0 in formulae (7.18), (7.38) and (7.47) gives expressions for V1(u, b),

E[e−δTu,bYu,b] and E[e−δTu,b ], respectively, when claim amounts follow a mixed exponen-

tial distribution.

We now illustrate the applications of these formulae for claim amounts with expo-

nential and mixed exponential distributions.

7.3.1 Exponential claims

Table 7.1 presents the results for the situation when claim amounts follow an exponential

distribution with mean 1, δ = 0.1, λ = 100.

The key to Tables 7.1 and 7.2 is as follows:

(1) capital is injected when the surplus falls below k = 1,

(2) capital is injected when the surplus falls below k = 2,

(3) capital is injected when the surplus falls below k = 3,

b̃ is the optimal barrier that maximises (7.34), Ṽk is the expected present value of

total dividends, W̃k is the expected present value of total payments to be made

by the reinsurance company, and Nk is expected present value of net income.
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Table 7.1: Exponential claims with c = 110

u θR b̃ Ṽk W̃k Nk

10 0.2 (1) 15.81 129.96 30.68 83.15
(2) 16.81 129.22 30.91 82.13
(3) 17.81 128.54 31.20 81.10

15 (1) 15.81 134.34 30.13 83.19
(2) 16.81 133.39 30.17 82.19
(3) 17.81 132.47 30.23 81.18

20 (1) 20.00 124.41 18.4103 82.32
(2) 20.00 126.42 20.6333 81.66
(3) 20.00 128.73 23.17 80.93

10 0.30 (1) 18.38 120.53 23.0956 80.51
(2) 19.38 119.85 23.3730 79.46
(3) 20.38 119.21 23.6988 78.40

15 (1) 18.38 124.59 22.2935 80.61
(2) 19.38 123.71 22.3874 79.60
(3) 20.38 122.86 22.5115 78.59

20 (1) 20.00 124.41 18.4103 80.48
(2) 20.00 126.42 20.6333 79.60
(3) 20.38 127.44 22.1672 78.62

We can observe the following from Table 7.1.

(i) As long as u < b the optimal value of b is independent of u, otherwise u = b.

(ii) When u < b, as u increases, the expected present value of dividend payments and

the expected present value of net income both increase, but the expected present

value of compensations made by the reinsurer decreases. This is compatible with

our expectations; since when u increases, it is less likely that the surplus falls

below k.

(iii) As k increases, the cost of the reinsurance contract goes up and the optimal value

of b increases. Also, provided that u < b the expected present value of dividend

payments and the expected present value of net income both decrease.

(iv) As θR increases, i.e. the reinsurance policy becomes more expensive, the optimal

value of b increases, and the expected present value of dividend payments, com-

pensations made by the reinsurer, and the expected present value of net income

all decrease.

In general, the expected present value of net income is always positive, despite the fact

that the reinsurance is expensive.
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Table 7.2: Mixed exponential claims with c = 110

u θR b̃ Ṽk W̃k Nk

10 0.20 (1) 19.56 139.10 42.1660 78.50
(2) 20.56 138.46 42.5008 77.46
(3) 21.56 137.87 42.8817 76.41

15 (1) 19.56 142.90 41.0912 78.59
(2) 20.56 142.06 41.2342 77.58
(3) 21.56 141.26 41.4110 76.57

20 (1) 20.00 145.73 39.2840 78.59
(2) 20.56 146.58 40.8190 77.60
(3) 21.56 145.61 40.8456 76.60

10 0.30 (1) 23.06 126.96 32.4163 74.82
(2) 24.06 126.38 32.7956 73.75
(3) 25.06 125.85 33.2177 72.66

15 (1) 23.06 130.43 31.0750 75.94
(2) 24.06 129.67 31.2767 74.01
(3) 25.06 128.94 31.5096 72.98

20 (1) 23.06 134.71 30.4732 75.09
(2) 24.06 133.80 30.5447 74.09
(3) 25.06 132.91 30.6391 73.08

7.3.2 Mixed exponential claims

Table 7.2 shows the results for the situation when individual claim amounts follow the

density function f(x) = 1
3
(1

2
e−x/2) + 2

3
(2e−2x) with λ = 100, δ = 0.1 and c = 110.

We can observe the following from Table 7.2.

(i) As long as u < b the optimal value of b is independent of u, otherwise u = b.

(ii) As u increases, the expected present value of dividends and the expected present

value of net income both increase, but W̃k decreases.

(iii) As k increases, the optimal barrier b increases, but the expected present value of

dividend payments and the expected present value of net income both decrease,

and W̃k increases slightly.

(iv) When θR increases, the optimal barrier b increases, but the expected present

value of dividend payments, the compensation to be made by the reinsurer, and

the expected present value of net income all decrease.

(v) In general the results for exponential and mixed exponential claims follow a similar

pattern. However, the expected present value of payments to be made by the

reinsurer in the case of mixed exponential claims is greater than in the case of
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exponential claims. Consequently, the expected present value of net income under

mixed exponential claims is less than that under exponential claims.

7.4 Threshold strategy

In this section, we consider the situation in which when the surplus exceeds level b

only part of the premium is paid to the shareholders. In other words, the insurer pays

dividends at rate ĉ < c and receives premium at rate c∗ = c− ĉ. See Section 2.2.1. We

study the threshold dividend strategy by means of two methods. First we consider the

case of exponential claim amounts and derive an integro-differential equation for the

expected present value of dividend income to the shareholders of an insurance company

which is denoted by Vk(u, b) and solve this equation by techniques in Gerber and Shiu

(2006). We then show how a probabilistic approach, which is based on the idea in

Dickson and Drekic (2006), can lead us to the same expression more easily. Finally, we

apply this method to claim amounts with a mixed exponential distribution.

When k < u < b, no dividend is payable and the premium is received at rate c.

Therefore, by considering whether or not a claim occurs before time τ , replacing Vk(u, b)

by Vk(u, b), we can obtain the equivalent equation (7.2) for Vk(u, b) as before. When

u > b we have three situations:

(i) if the amount of the first claim, x, at time t > 0 is less than u+ c∗t− k, then the

total value of the dividends at time t is ĉs̄t + Vk(u+ c∗t− x, b).

(ii) if the amount of the first claim, x, at time t > 0 is such that u + c∗t − k ≤ x <

u+ c∗t, then the total value of the dividends at time t is ĉs̄t + Vk(k, b).

(iii) if the amount of the first claim, x, at time t > 0 exceeds u + c∗t, then the total

value of the dividends at time t is ĉs̄t .

Hence

Vk(u, b) =

∫ ∞
0

λe−(λ+δ)t

∫ u+c∗t−k

0

f(x)Vk(u+ c∗t− x, b) dx dt

+

∫ ∞
0

λe−(λ+δ)t

∫ u+c∗t

u+c∗t−k
f(x)Vk(k, b) dx dt

+

∫ ∞
0

λe−(λ+δ)tĉs̄t dt.
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Setting u+ c∗t = s we have

Vk(u, b) =
ĉ

λ+ δ
+
λ

c∗

∫ ∞
u

e−(λ+δ)(s−u)/c∗
∫ s−k

0

f(x)Vk(s− x, b) dx ds

+
λ

c∗

∫ ∞
u

e−(λ+δ)(s−u)/c∗
∫ s

s−k
f(x)Vk(k, b) dx ds.

Differentiating with respect to u we obtain

∂

∂u
Vk(u, b) =

λ+ δ

c∗
Vk(u, b)−

ĉ

c∗
− λ

c∗

∫ u−k

0

f(x)Vk(u− x, b) dx

− λ
c∗

∫ u

u−k
f(x)Vk(k, b) dx. (7.48)

Further, according to Gerber and Shiu (2006), ∂
∂u

Vk(u, b) is not necessarily continuous

at u = b. After replacing Vk(u, b) by Vk(u, b) in (7.2), from the resulting equation and

(7.48) we can find the condition

c∗
∂

∂u
Vk(u, b)

∣∣∣
u=b+

= c
∂

∂u
Vk(u, b)

∣∣∣
u=b−

− ĉ (7.49)

which is reduced to the boundary condition in the barrier dividend strategy if c∗ =

c− ĉ = 0.

The next result gives an expression for Vk(u, b) in the case of claim amounts with

an exponential distribution.

Result 7.4. When F (x) = 1− e−αx, x ≥ 0, with α > 0, for k ≤ u < b we have

Vk(u, b) =
ĉR̂

δαL(b)

(
D1(k)eρu −D2(k)e−Ru

)
(7.50)

where

L(b) = D1(k)eρb −D2(k)e−Rb − (α− R̂)e−αb
(
D1(k)

α + ρ

(
e(α+ρ)b − e(α+ρ)k

)
−D2(k)

α−R
(
e(α−R)b − e(α−R)k

))
− (α− R̂)

α
(eαk − 1)e−αb

(
D1(k)eρk −D2(k)e−Rk

)
,

(7.51)

D1(k) and D2(k) are given by (7.7), and −R̂ ≡ −R̂(δ) is the negative root of Lundberg’s

fundamental equation, given by (7.8) with premium c∗ = c − ĉ. Also, ρ ≡ ρ(δ) and

−R ≡ −R(δ) are the roots of Lundberg’s fundamental equation with premium c.

Further, for u ≥ b, we have

Vk(u, b) =
ĉ

δ

(
1− e−R̂(u−b)

)
+ e−R̂(u−b)Vk(b, b). (7.52)
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Derivation. For k ≤ u < b we can simply substitute f in equation (7.2) and differentiate

with respect to u. The general solution of the resulting equation is given by

Vk(u, b) = γ1e
ρu + γ2e

−Ru. (7.53)

For u ≥ b we can write (7.48) as

∂

∂u
Vk(u, b) =

λ+ δ

c∗
Vk(u, b)−

ĉ

c∗
− λ

c∗

∫ u

k

αe−α(u−x)Vk(x, b) dx

− λ
c∗
e−αu

(
eαk − 1

)
Vk(k, b). (7.54)

Differentiation of equation (7.54) yields

∂2

∂u2
Vk(u, b) +

(
α− λ+ δ

c∗

)
∂

∂u
Vk(u, b)−

αδ

c∗
Vk(u, b) +

αĉ

c∗
= 0

with the solution being given by

Vk(u, b) = τ1e
ρ̂u + τ2e

−R̂u + C (7.55)

where C is the particular solution and ρ̂ ≡ ρ̂(δ) and −R̂ ≡ −R̂(δ) are the roots of

Lundberg’s fundamental equation with premium c∗. From ideas in Gerber and Shiu

(2006), limu→∞ Vk(u, b) = ĉ/δ, which is the present value of a perpetuity with continu-

ous payments at rate ĉ. This leads to τ1 = 0 and C = ĉ/δ in (7.55). Thus

Vk(u, b) = τ2e
−R̂u +

ĉ

δ
. (7.56)

We can now insert the functional form (7.53) and (7.56) of Vk(u, b) into equation (7.54),

giving

−τ2R̂e
−R̂u

=
λ+ δ

c∗

(
τ2e
−R̂u +

ĉ

δ

)
− ĉ

c∗
− αλ

c∗
e−αu

∫ b

k

(
γ1e

(α+ρ)x + γ2e
(α−R)x

)
dx

− λ
c∗

∫ u

b

αe−α(u−x)

(
τ2e
−R̂x +

ĉ

δ

)
dx− λ

c∗
e−αu(eαk − 1)

(
γ1e

ρk + γ2e
−Rk) .

Rearranging gives

−τ2e
−R̂u

(
R̂ +

λ+ δ

c∗
− αλ

c

1

α− R̂

)
= e−αu

[αλ
c∗

τ2

α− R̂
e(α−R̂)b +

λ

c∗
ĉ

δ
eαb

−αλ
c∗

γ1

α + ρ

(
e(α+ρ)b − e(α+ρ)k

)
− αλ

c∗
γ2

α−R
(
e(α−R)b − e(α−R)k

)
− λ
c∗

(eαk − 1)
(
γ1e

ρk + γ2e
−Rk) ].
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As the coefficient of e−R̂u is 0 we have

γ1

(
α

α + ρ

(
e(α+ρ)b − e(α+ρ)k

)
+ (eαk − 1)eρk

)
+γ2

(
α

α−R
(
e(α−R)b − e(α−R)k

)
+ (eαk − 1)e−Rk

)
=
ĉ

δ
eαb +

α

α− R̂
τ2e

(α−R̂)b.

(7.57)

From (7.13) we know that γ1 = −D1(k)
D2(k)

γ2. Therefore (7.57) can be rewritten as

γ2

( α

α−R
(
e(α−R)b − e(α−R)k

)
+ (eαk − 1)e−Rk − D1(k)

D2(k)
(eαk − 1)eρk

−D1(k)

D2(k)

α

α + ρ

(
e(α+ρ)b − e(α+ρ)k

) )
=
ĉ

δ
eαb +

ατ2

α− R̂
e(α−R̂)b. (7.58)

From the continuity condition in (7.49) we require that

Vk(b
−, b) = Vk(b

+, b) (7.59)

where Vk(b
−, b) from (7.53) is given by

Vk(b
−, b) = γ1e

ρb + γ2e
−Rb = γ2

(
e−Rb − D1(k)

D2(k)
eρb
)

and Vk(b
+, b) from (7.56) by

Vk(b
+, b) =

ĉ

δ
+ τ2e

−R̂b.

Using (7.58) and (7.59), formula (7.50) follows. For u ≥ b, noting that the right-hand

side of (7.59) is Vk(b, b) from (7.56) we can find

τ2 = eR̂b(Vk(b, b)− ĉ/δ).

Thus

Vk(u, b) =
ĉ

δ
(1− e−R̂(u−b)) + e−R̂(u−b)Vk(b, b)

which is (7.52). �

We remark that setting k = 0 in formulae (7.50) and (7.52), recovers results in

Gerber and Shiu (2006) and Dickson and Drekic (2006) in the classical risk model with

dividends.

210



We can maximise Vk(u, b) by minimising L(b). Hence the solution to

∂

∂b
L(b) = D1(k)ρeρb +D2(k)Re−Rb + (α− R̂)e−αb

[
αD1(k)

α + ρ

(
e(α+ρ)b − e(α+ρ)k

)
−αD2(k)

α−R
(
e(α−R)b − e(α−R)k

)
−D1(k)e(α+ρ)b +D2(k)e(α−R)b

+(eαk − 1)
(
D1(k)eρk −D2(k)e−Rk

) ]
= 0 (7.60)

gives the optimal value of b.

7.5 Threshold strategy: alternative approach

In this section, we adapt the ideas of Dickson and Drekic (2006) to find an expression

for Vk(u, b) under the threshold dividend strategy.

Suppose dividends are payable at rate ĉ when the surplus level is above level b, with

c∗ = c− ĉ > λm1, and that if ruin occurs, no further dividends are payable. Let T̂u be

the time of ruin and ŵ(u, y, t) be the joint density of the deficit at ruin and the time

of ruin for a classical surplus process with initial surplus u and premium rate c∗. We

define Tk(u, b) to be the expected present value of a unit payable when u = b for the

first time. See Gerber (1979, page 147). For k ≤ u ≤ b, dividends will be payable only

if the surplus process reaches b without ruin first occurring. Thus

Vk(u, b) = Tk(u, b)Vk(b, b). (7.61)

For u ≥ b, dividends are payable immediately at rate ĉ until the first time when the

surplus falls below b (an event which may not occur). Conditioning on the time and

the amount of the first fall below b we have two situations:

(i) the fall below b is less than b− k, so that the surplus process restarts from level

u− b, or

(ii) the fall below b exceeds b − k, but is still less than b and the surplus process

restarts from level k.
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As the time of the fall below b is identical in distribution to T̂u−b, we can write

Vk(u, b) = ĉE
[
ā
T̂u−b

]
+

∫ ∞
0

e−δt
∫ b−k

0

ŵ(u− b, y, t)Vk(b− y, b) dy dt

+

∫ ∞
0

e−δt
∫ b

b−k
ŵ(u− b, y, t)Vk(k, b) dy dt

=
ĉ

δ

(
1− E

[
e−δT̂u−b

])
+ Vk(b, b)

∫ ∞
0

e−δt
∫ b−k

0

ŵ(u− b, y, t)Tk(b− y, b) dy dt

+Tk(k, b)Vk(b, b)

∫ ∞
0

e−δt
∫ b

b−k
ŵ(u− b, y, t) dy dt. (7.62)

For u = b, equation (7.62) is written as

Vk(b, b) =
ĉ

δ

(
1− E

[
e−δT̂0

])
+ Vk(b, b)

∫ ∞
0

e−δt
∫ b−k

0

ŵ(0, y, t)Tk(b− y, b) dy dt

+Tk(k, b)Vk(b, b)

∫ ∞
0

e−δt
∫ b

b−k
ŵ(0, y, t) dy dt

which gives

Vk(b, b)

=
(ĉ/δ)E

[
e−δT̂0

]
1−

∫∞
0
e−δt

∫ b−k
0

ŵ(0, y, t)Tk(b− y, b) dy dt− Tk(k, b)
∫∞

0
e−δt

∫ b
b−k ŵ(0, y, t) dy dt

.

Substituting in (7.61) for k ≤ u ≤ b we obtain

Vk(u, b)

=
(ĉ/δ)E

[
e−δT̂0

]
Tk(u, b)

1−
∫∞

0
e−δt

∫ b−k
0

ŵ(0, y, t)Tk(b− y, b) dy dt− Tk(k, b)
∫∞

0
e−δt

∫ b
b−k ŵ(0, y, t) dy dt

.

(7.63)

Next, we derive an expression for Tk(u, b). By considering whether or not a claim occurs

before time τ for k ≤ u < b, we have

Tk(u, b) = e−(λ+δ)τTk(b, b) +

∫ τ

0

λe−(λ+δ)t

∫ u+ct−k

0

f(x)Tk(u+ ct− x, b) dx dt

+

∫ τ

0

λe−(λ+δ)t

∫ u+ct

u+ct−k
f(x)Tk(k, b) dx dt.
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Setting s = u + ct and differentiating with respect to u we find an integro-differential

equation for Tk(u, b) as

∂

∂u
Tk(u, b) =

λ+ δ

c
Tk(u, b)−

λ

c

∫ u−k

0

f(x)Tk(u− x, b) dx

−λ
c

(
F̄ (u− k)− F̄ (u)

)
Tk(k, b). (7.64)

We now introduce an auxiliary function hk, which is independent of b and satisfies the

integro-differential equation

∂

∂u
hk(u) =

λ+ δ

c
hk(u)− λ

c

∫ u−k

0

f(x)hk(u− x) dx

−λ
c

(
F̄ (u− k)− F̄ (u)

)
hk(k). (7.65)

Comparing (7.64) and (7.65) we can write Tk(u, b) = C(b)hk(u). By noting that

Tk(b, b) = 1 we have

Tk(u, b) =
hk(u)

hk(b)
. (7.66)

The next result shows the application of (7.63) and (7.66) in the case of claim amounts

with an exponential distribution.

Result 7.5. When F (x) = 1− e−αx, with α > 0, for k ≤ u ≤ b, we have

Vk(u, b) =
ĉR̂

αδL(b)

(
D1(k)eρu −D2(k)e−Ru

)
(7.67)

where

L(b)

=
(
D1(k)eρb −D2(k)e−Rb

)
− (α− R̂)e−αb

(
D1(k)

α + ρ

(
e(α+ρ)b − e(α+ρ)k

)
−D2(k)

α−R
(
e(α−R)b − e(α−R)k

))
− (1− R̂/α)e−αb(eαk − 1)(D1(k)eρk −D2(k)e−Rk),

D1(k) and D2(k) are given by (7.7), and −R̂ ≡ −R̂(δ) is the negative root of Lundberg’s

fundamental equation, given by (7.8) with premium c∗ = c − ĉ. Also, ρ ≡ ρ(δ) and

−R ≡ −R(δ) are the roots of Lundberg’s fundamental equation with premium c.

Further, for u ≥ b, we have

Vk(u, b) =
ĉ

δ
(1− e−R̂(u−b)) + e−R̂(u−b)V k(b, b). (7.68)
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Derivation. Substituting f in (7.65) we have

∂

∂u
hk(u) =

λ+ δ

c
hk(u)− λ

c

∫ u

k

αe−α(u−x)hk(x) dx− λ

c
e−αu(eαk − 1)hk(k). (7.69)

Differentiating with respect to u we get

∂2

∂u2
hk(u) +

(
α− λ+ δ

c

)
∂

∂u
hk(u)− αδ

c
hk(u) = 0 (7.70)

with the general solution being hk(u) = σ1e
ρu + σ2e

−Ru. Then, we insert the general

solution in equation (7.69) and simplify to get

σ1

σ2

=
c(α + ρ)e(α−R)k − λ(eαk − 1)e−Rk

λ(eαk − 1)eρk − c(α−R)e(α+ρ)k
= −D1(k)

D2(k)
.

It follows that

hk(u) = C
(
D1(k)eρu −D2(k)e−Ru

)
where C is an arbitrary constant. See Gerber (1979). Thus Tk(u, b) is given by

Tk(u, b) =
D1(k)eρu −D2(k)e−Ru

D1(k)eρb −D2(k)e−Rb
=
hk(u)

hk(b)
. (7.71)

Hence, for k ≤ u ≤ b, we get

Vk(u, b)

=
(ĉ/δ)

(
1− E

[
e−δT̂0

])
hk(u)

hk(b)−
∫∞

0
e−δt

∫ b−k
0

ŵ(0, y, t)hk(b− y) dy dt− hk(k)
∫∞

0
e−δt

∫ b
b−k ŵ(0, y, t) dy dt

.

(7.72)

Considering first the numerator of (7.72), we have (see, for example, Gerber and Shiu,

1998, or Dickson and Drekic, 2006)

E[e−δT̂0 ] = 1− R̂/α (7.73)

where −R̂ < 0 is the negative solution of Lundberg’s fundamental equation with pre-

mium rate c∗. Next, let L(b) denote the denominator of (7.72). Then by noting that
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ŵ(u, y, t) = ŵ(u, t)αe−αy we have

L(b) = hk(b)−
∫ ∞

0

e−δt
∫ b−k

0

ŵ(0, y, t)hk(b− y) dy dt

−hk(k)

∫ ∞
0

e−δt
∫ b

b−k
ŵ(0, y, t) dy dt

= hk(b)−
∫ ∞

0

e−δtŵ(0, t)

∫ b

k

αe−α(b−y)hk(y) dy dt

−hk(k)

∫ ∞
0

e−δtŵ(0, t)

∫ b

b−k
αe−αy dy dt. (7.74)

Now we consider the inner integral of the second term in (7.74):∫ b

k

αe−α(b−y)
(
D1(k)eρy −D2(k)e−Ry

)
dy

= αe−αb
(
D1(k)

α + ρ

(
e(α+ρ)b − e(α+ρ)k

)
− D2(k)

α−R
(
e(α−R)b − e(α−R)k

))
.

Therefore, L(b) is given by

L(b)

=
(
D1(k)eρb −D2(k)e−Rb

)
− (α− R̂)e−αb

(
D1(k)

α + ρ

(
e(α+ρ)b − e(α+ρ)k

)
−D2(k)

α−R
(
e(α−R)b − e(α−R)k

))
− (1− R̂/α)e−αb(eαk − 1)(D1(k)eρk −D2(k)e−Rk).

It follows that for k ≤ u ≤ b,

Vk(u, b) =
ĉR̂

αδL(b)

(
D1(k)eρu −D2(k)e−Ru

)
(7.75)

which is (7.67). Further, for u > b, we insert for ŵ(u, y, t) and Tk(u, b) in (7.62), giving

Vk(u, b) =
ĉ

δ

(
1− E

[
e−δT̂u−k

])
+Vk(b, b)

(∫ ∞
0

e−δtŵ(u− b, t)
∫ b

k

αe−α(b−y)hk(y)

hk(b)
dy dt

+
hk(k)

hk(b)

∫ ∞
0

e−δtŵ(u− b, t)
∫ b

b−k
αe−αy dy dt

)
. (7.76)

From Dickson and Drekic (2006) we know

E[e−δT̂u−k ] =

∫ ∞
0

e−δtŵ(u− b, t) dt = (1− R̂/α)e−R̂(u−b). (7.77)
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Substituting in (7.76) we get

Vk(u, b) =
ĉ

δ

(
1− (1− R̂/α)e−R̂(u−b)

)
+Vk(b, b)(1− R̂/α)e−R̂(u−b)

(∫ b

k

αe−α(b−y)hk(y)

hk(b)
dy dt

+
hk(k)

hk(b)

∫ b

b−k
αe−αy dy dt

)
. (7.78)

For u = b we can write (7.78) as

Vk(b, b) =
ĉR̂

δα
+ Vk(b, b)(1− R̂/α)

(∫ b

k

αe−α(b−y)hk(y)

hk(b)
dy dt+

hk(k)

hk(b)

∫ b

b−k
αe−αy dy dt

)
.

Thus, (7.78) is written as

Vk(u, b) =
ĉ

δ

(
1− (1− R̂/α)e−R̂(u−b)

)
+ e−R̂(u−b)

(
Vk(b, b)−

ĉR̂

δα

)
=

ĉ

δ

(
1− e−R̂(u−b)

)
+ e−R̂(u−b)Vk(b, b) (7.79)

which is (7.68). �

We can find the optimal value of b numerically by solving ∂
∂b
L(b) = 0.

Formulae (7.67) and (7.68) correspond to expressions (7.50) and (7.52) in Result

7.4 where we have solved the integro-differential equation directly. This method can be

readily applied to other distributions. For example, in the case of mixed exponential

distribution we can apply (7.62) and (7.63) if we know the expressions for E[e−δT̂0 ],

ŵ(u, y, t) and Tk(u, b) which can be expressed in terms of hk. The first two of these

terms can be obtained from Dickson and Drekic (2006). For hk we substitute f(x) =

pαe−αx + qβe−βx, where p > 0, q > 0 and p+ q = 1 in (7.65) to get

∂

∂u
hk(u) =

λ+ δ

c
hk(u)− λ

c

∫ u

k

(
pαe−α(u−x) + qβe−β(u−x)

)
hk(x) dx

−λ
c

(
pe−αu(eαk − 1) + qe−βu(eβk − 1)

)
hk(k). (7.80)

Taking the second and third derivatives of hk and applying ∂3

∂u3
hk(u)+(α+β) ∂2

∂u2
hk(u)+

αβ ∂
∂u
hk(u), after simplifications we obtain

∂3

∂u3
hk(u) +

(
α + β − λ+ δ

c

)
∂2

∂u2
hk(u) +

(
αβ + (pα + qβ)

λ

c

−(α + β)
λ+ δ

c

)
∂

∂u
hk(u)− αβδ

c
= 0. (7.81)
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Therefore,

hk(u)

hk(b)
= %0e

ρu + %1e
−R1u + %2e

−R2u (7.82)

with the boundary condition

%0e
ρb + %1e

−R1b + %2e
−R2b = 1

where ρ > 0,−R1 < 0 and −R2 < 0 are the solutions of Lundberg’s fundamental

equation in (7.21). Inserting the functional form hk(u)/hk(b) into equation (7.80) yields

%0ρe
ρu − %1R1e

−R1u − %2R2e
−R2u =

λ+ δ

c

(
%0e

ρu + %1e
−R1u + %2e

−R2u
)

−λ
c

∫ u

k

(
pαe−α(u−x) + qβe−β(u−x)

) (
%0e

ρx + %1e
−R1x + %2e

−R2x
)
dx

−λ
c

(
pe−αu(eαk − 1) + qe−βu(eβk − 1)

)(
%0e

ρk + %1e
−R1k + %2e

−R2k
)
.

We can solve for %0, %1 and %2 using the boundary condition and the following equalities:

%0A1(k) + %1A2(k) + %2A3(k) = 0,

%0B1(k) + %1B2(k) + %2B3(k) = 0,

where Ai(k) and Bi(k) for i = 1, 2, 3 are given by (7.20).

As in Chapter 4 although the probabilistic argument is a more straightforward

approach, it can only be applied to distributions which are subject to a particular

factorisation.

7.6 Dividends-penalty identity

In Chapter 2 we have reviewed literature on the dividends-penalty identity and ex-

plained that such an identity holds under a variety of risk models. In this section, we

verify that a dividends-penalty identity holds in our classical risk model with capital

injections as defined in Section 7.2.

We now establish a Gerber-Shiu function for our risk model by applying the idea of

Lin et al. (2003). Define the Gerber-Shiu function for a surplus process with dividends

and capital injections by

φb,k,δ(u) = E[e−δTu,b,kω(U(T−u,b,k), |U(Tu,b,k)|) | U(0) = u]
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where Tu,b,k is the time of ruin, ω(x, y) is a penalty function defined for x ≥ k and

y > 0, U(T−u,b,k) is the surplus immediately prior to ruin and |U(Tu,b,k)| is the deficit

at ruin from initial surplus u. We note that as ruin is certain under a risk model with

dividends our Gerber-Shiu function does not contain I(Tu,b,k <∞).

Theorem 7.1. The function φb,k,δ(u) satisfies

φb,k,δ(u) = φk,δ(u)− φ′k,δ(b)Vk(u, b). (7.83)

Proof. Conditioning on the time and the amount of the first claim and noting that ruin

can occur before time τ (where u+ cτ = b) we can write

φb,k,δ(u) =

∫ τ

0

λe−(λ+δ)t

∫ u+ct−k

0

f(x)φb,k,δ(u+ ct− x) dx dt

+

∫ τ

0

λe−(λ+δ)t

∫ u+ct

u+ct−k
f(x)φb,k,δ(k) dx dt

+

∫ τ

0

λe−(λ+δ)t

∫ ∞
u+ct

f(x)ω(u+ ct, x− u− ct) dx dt

+

∫ ∞
τ

λe−(λ+δ)t

∫ b−k

0

f(x)φb,k,δ(b− x) dx dt

+

∫ ∞
τ

λe−(λ+δ)t

∫ b

b−k
f(x)φb,k,δ(k) dx dt

+

∫ ∞
τ

λe−(λ+δ)t

∫ ∞
b

f(x)ω(b, x− b) dx dt.

Setting s = u+ ct and differentiating with respect to u we obtain

∂

∂u
φb,k,δ(u) =

λ+ δ

c
φb,k,δ(u)− λ

c

∫ u−k

0

f(x)φb,k,δ(u− x) dx

−λ
c

(
F̄ (u− k)− F̄ (u)

)
φb,k,δ(k)− λ

c

∫ ∞
u

f(x)ω(u, x− u) dx.

(7.84)

For u = b we have

φb,k,δ(b) =

∫ ∞
0

λe−(λ+δ)t

(∫ b−k

0

f(x)φb,k,δ(b− x) dx+

∫ b

b−k
f(x)φb,k,δ(k) dx

+

∫ ∞
b

f(x)ω(b, x− b) dx
)
dt

=
λ

λ+ δ

(∫ b−k

0

f(x)φb,k,δ(b− x) dx+

∫ b

b−k
f(x)φb,k,δ(k) dx

+

∫ ∞
b

f(x)ω(b, x− b) dx
)
.
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Also, from (7.84) we have

∂

∂u
φb,k,δ(u)

∣∣∣
u=b

=
λ+ δ

c
φb,k,δ(b)−

λ

c

∫ b−k

0

f(x)φb,k,δ(b− x) dx

−λ
c

(
F̄ (b− k)− F̄ (b)

)
φb,k,δ(k)− λ

c

∫ ∞
b

f(x)ω(b, x− b) dx.

Therefore, we find the boundary condition as

∂

∂u
φb,k,δ(u)

∣∣∣
u=b

= 0. (7.85)

Our approach to solving (7.84) is similar to Lin et al. (2003) and Gerber et al.

(2006a). In other words, we set up a dividends-penalty identity for our model. For

this we write the solution to equation (7.84) as a linear combination of the Gerber-Shiu

function when there is no dividend barrier and an auxiliary equation. Thus we write

φb,k,δ(u) = φk,δ(u) + ηhk(u)

= φk,δ(u)− φ′k,δ(b)
hk(u)

h
′
k(b)

(7.86)

where η can be found by applying the boundary condition from (7.85) and φk,δ(u) is

the solution to the integro-differential equation for the Gerber-Shiu function under the

classical risk model with capital injections which can be obtained by differentiating

(3.4) with respect to u, giving

∂

∂u
φk,δ(u) =

λ+ δ

c
φk,δ(u)− λ

c

∫ u−k

0

f(x)φk,δ(u− x) dx− λ

c

(
F̄ (u− k)− F̄ (u)

)
φk,δ(k)

−λ
c

∫ ∞
u

f(x)ω(u, x− u) dx. (7.87)

Further hk(u) is the solution to (7.65). If we compare (7.2) and (7.65) we can see that

these two expressions are proportional. Applying an idea of Bühlmann (1970) we can

write

Vk(u, b) = C(b)hk(u). (7.88)

To find C(b) we substitute (7.88) in (7.4), giving

C(b)hk(b) =
c

λ+ δ
+

λ

λ+ δ
C(b)

∫ b−k

0

f(x)hk(b− x) dx

+
λ

λ+ δ

(
F̄ (b− k)− F̄ (b)

)
C(b)hk(k).
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Rearranging yields

C(b) =
c/(λ+ δ)

hk(b)− λ
λ+δ

∫ b−k
0

f(x)hk(b− x) dx− λ
λ+δ

(
F̄ (b− k)− F̄ (b)

)
hk(k)

=
1

h
′
k(b)

. (7.89)

It follows that

Vk(u, b) =
hk(u)

h
′
k(b)

. (7.90)

Hence (7.86) can be written as (7.83).

7.7 Concluding remarks

In this chapter, we have considered the classical risk model modified by capital injec-

tions. We have found the optimal barrier b according to De Finneti (1957) and observed

that in the case of both exponential and mixed exponential claim amounts, the opti-

mal value of b is independent of u, which is a common feature in our model and the

classical risk model. We have then considered a reinsurance contract that enables the

company to operate indefinitely. Our numerical analysis shows that although such a

contract is expensive, the expected present value of net income to the shareholders is

positive. Also, we have found the optimal dividend barrier for our model under the

threshold strategy by using probabilistic arguments and direct solution of an inhomo-

geneous integro-differential equation. Finally, we have verified that a dividends-penalty

identity holds for our model.
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Chapter 8

Conclusion

We have considered one way that capital injections can be incorporated into risk models

such as the classical risk model, the Markov-modulated risk model and the classical risk

model with dividends.

Our analysis under the classical risk model with capital injections was based on

the well-known Gerber-Shiu function. We have found different ruin-related quantities

including the ultimate ruin probability, the (defective) joint distribution of the surplus

immediately prior to ruin and the deficit at ruin, the joint (defective) density of the

time of ruin and the number of claims until ruin, and the covariance between the

time of ruin and the number of claims until ruin. We have shown that although our

Gerber-Shiu function is a useful tool to study ruin-related quantities in finite time, it

is not an efficient way to derive such quantities in infinite time. We have obtained

recursive and explicit expressions in the case of claim amounts following exponential

and Erlang(2) distributions and pointed out that for other claim amount distributions

either explicit expressions do not exist or they are difficult to obtain. To address this

issue we proposed an approximation method which is based on the discretisation of

the classical risk process and created a numerical algorithm that can approximate the

probability of ruin in infinite and finite time under the classical risk model with capital

injections in the case of claim amounts following heavy-tailed distributions.

As with the classical risk model, it is difficult to obtain computationally tractable ex-

pressions for ruin-related quantities under the Markov-modulated risk model. We have

tackled this issue by developing a discrete time risk model that can provide approx-

imation to the continuous time Markov-modulated model. Our numerical algorithms
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approximate the probability of ruin and the probability and severity of ruin function for

a two-state model and the (defective) density of the time of ruin for an m-state model.

Also, we have briefly discussed how the approximation to the cumulative distribution

function of the time of ruin can give an approximation to the ultimate ruin probability

in an m-state model when m > 2. We have also shown how we can modify our algo-

rithms to approximate the density of the time of ruin in an m-state Markov-modulated

risk model with capital injections.

Insurance companies distribute parts of their surplus under different strategies

among their shareholders, but what happens when they are certain that their surplus

will not go below a certain level? We have considered the advantage of this situation to

the shareholders by maximising the expected present value of net income allowing for

capital injections provided by a reinsurance arrangement. We have observed that under

our assumptions, the expected present value of net income to the shareholders is always

positive, and although the cost of such a reinsurance contract can be high, dividends

may be payable to the shareholders indefinitely. We have also considered the problem

of the optimal dividend level under barrier and threshold strategies in our risk model

and verified that the dividends-penalty identity holds for a risk model with dividends

and capital injections.

There is scope for study of a number of questions based on this thesis. For example:

(1) how some of the results of this research would change if we allow for capital injections

in the form of co-insurance within an insurance company through a simulation study?

(2) in the context of ruin probability, can we find optimal risk-sharing arrangements

for a two (or more) risk processes? (3) can we extend the results of this study to

dependent claim amounts involving a copula function? (4) is there an alternative way

to approximate the continuous time Markov-modulated risk model?
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Appendix

In this section, our purpose is to show conditions under which
∑∞

x=0 ψ
d
i (x) exists for

the discrete time Markov-modulated model of Chapter 6 when m = 2.

We first consider the situation that the net premium condition holds in both states

1 and 2 – see Section 2.1.2. So, we are assuming E[Y1|J(1) = 1] < 1 and E[Y1|J(1) =

2] < 1. Noting that under this condition the adjustment coefficient exists in both states,

we can apply the method in Cossette et al. (2004a) to show that ψdi (u) ≤ e−R
∗u where

R∗ = min(R1, R2) and R1 and R2 are the adjustment coefficients in states 1 and 2,

respectively. Therefore, in this case,
∑∞

x=0 ψi(x) <∞.

Now we consider the situation that the adjustment coefficient does not exist in both

states.

Let {dLn}∞n=0 be the aggregate loss process in our Markov-modulated model, and let
dLi be a discrete random variable representing the maximum aggregate loss. Denote the

distribution function of dLi by δdi (u), with ψdi (u) = 1 − δdi (u). Then, the first moment

of the maximum aggregate loss is given by

E[dLi] =
∞∑
u=0

ψdi (u) =
∞∑
u=0

Pr(dLi > u).

Therefore, we can conclude that
∑∞

u=0 ψ
d
i (u) < ∞, if E[dLi] exists. The next result

gives an expression for E[dLi] and is motivated by the ideas of Dickson and Waters

(1992, Section 3).

Theorem. For i = 1, 2, the first moment of the maximum aggregate loss is given by

E[dLi] = −J ′i (1)

where

J1(s) =
1 + (1− s−1)

(
ψd1(0)g̃11(s) + ψd2(0)g̃12(s)

)
− g̃1(s) + s−1g̃12(s)J2(s)

1− s−1g̃11(s)

(A.1)
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and

J2(s) =
1 + (1− s−1)

(
ψd1(0)g̃21(s) + ψd2(0)g̃22(s)

)
− g̃2(s) + s−1g̃21(s)J1(s)

1− s−1g̃22(s)
.

(A.2)

Proof. Our starting point is equation (6.26). We can rewrite it as

ψdi (u) =
2∑
j=1

gij(0)ψdj (u+ 1) +
2∑
j=1

u∑
x=1

gij(x)ψdj (u+ 1− x) +
2∑
j=1

∞∑
x=u+1

gij(x).

We define

di(0) = ψdi (0)

=
2∑
j=1

gij(0)ψdj (1) +
2∑
j=1

u∑
x=1

gij(x)ψdj (1− x) +
2∑
j=1

∞∑
x=u+1

gij(x), (A.3)

and

di(u) = ψdi (u)− ψdi (u− 1)

=
2∑
j=1

gij(0)ψdj (u+ 1) +
2∑
j=1

u∑
x=1

gij(x)ψdj (u+ 1− x) + 1−Gi(u)

−
2∑
j=1

gij(0)ψdj (u)−
2∑
j=1

u−1∑
x=1

gij(x)ψdj (u− x)− 1 +Gi(u− 1). (A.4)

Then, by noting that ψdi (1) = di(1) + di(0), equation (A.4) can be written as

di(u) =
2∑
j=1

gij(0)dj(u+ 1) +
2∑
j=1

gij(u)dj(0) +
2∑
j=1

u∑
x=1

gij(x)dj(u+ 1− x)− gi(u).

(A.5)

Further, we define Ji(s) = di(0) +
∑∞

n=1 s
ndi(n). Then, by (A.3) and with the usual

convention that
∑b

j=a = 0 when b > a, we have

Ji(s) =
2∑
j=1

gij(0)
(
dj(1) + dj(0)

)
+ 1− gi(0) +

2∑
j=1

∞∑
n=1

sn
(
gij(0)dj(n+ 1)

+gij(n)dj(0)− gi(n) +
n∑
x=1

gij(x)dj(n+ 1− x)

)
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=
2∑
j=1

gij(0)
(
dj(1) + dj(0)

)
+ 1− gi(0) +

2∑
j=1

(
g̃ij(s)− gij(0)

)
dj(0)

+s−1

2∑
j=1

gij(0)
(
Jj(s)− sdj(1)− dj(0)

)
− (g̃i(s)− gi(0))

+s−1

2∑
j=1

(
g̃ij(s)− gij(0)

)(
Jj(s)− dj(0)

)
. (A.6)

Rearranging (A.6), formulae (A.1) and (A.2) follow.

Our aim is to find an expression for E[dLi]. For this we note that

J
′

i (s) =
∞∑
x=1

xsx−1
(
ψdi (x)− ψdi (x− 1)

)
,

and therefore J
′
i (1) = −

∑∞
x=0 ψ

d
i (x) = −E[dLi]. Taking the derivatives of (A.1) and

(A.2), and setting s = 1, and noting that g̃
′
ij(1) = µij, gives us the following system of

equations p12J
′
1(1) = p11d1(0) + p12d2(0)− µ1 + p12J

′
2(1),

p21J
′
2(1) = p21d1(0) + p22d2(0)− µ2 + p21J

′
1(1).

(A.7)

In the next step we multiply the first equation of (A.7) by p21 and the second one by

p12 and add the resulting equations together so that J
′
1(s) and J

′
2(s) are eliminated.

Hence

p21d1(0) + p12d2(0) = p12µ2 + p21µ1,

which is the same as equation (6.2).

Taking the second derivative of (A.1) and (A.2), and noting that

g̃
′′
ij(1) = (µ2)ij − µij, yields

p2
12J

′′
1 (1) = 2d1(0)(µ11 − p11) + 2p12d2(0)(µ1 − 1) + 2p12(µ1 − 1)J

′
2(1)

+p2
12J

′′
2 (1) + µ1(1 + p11 − 2µ11)− (µ2)1 p12,

p2
21J

′′
2 (1) = 2p21d1(0)(µ2 − 1) + 2d2(0)(µ22 − p22) + 2p21(µ2 − 1)J

′
1(1)

+p2
21J

′′
1 (1) + µ2(1 + p22 − 2µ22)− (µ2)2 p21.

(A.8)
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Multiplying the first equation in (A.8) by p2
21 and the second one by p2

12, then adding

the resulting equations gives rise to the elimination of J
′′
1 (s) and J

′′
2 (s) and we get a

relationship between J
′
1(1) and J

′
2(1) as

2p21p
2
12(1− µ2)J

′

1(1) + 2d1(0)
[
p21p

2
12(1− µ2)− p2

21(µ11 − p11)
]

+2p12p
2
21(1− µ1)J

′

2(1) + 2d2(0)
[
p12p

2
21(1− µ1)− p2

12(µ22 − p22)
]

= µ2p
2
12

[
1 + p22 − 2µ22

]
+ µ1p

2
21

[
1 + p11 − 2µ11

]
− (µ2)1 p12p

2
21 − (µ2)2 p21p

2
12

that together with one of the equations in (A.7) gives E[dL1] and E[dL2] as follows

E[dL1] =
−1

2p21p2
12(µ2 − 1) + 2p12p2

21(µ1 − 1)

{
2ψd1(0)

[
p2

21(p11 − µ11)

+p2
12p21(1− µ2) + p11p

2
21(µ1 − 1)

]
+ 2ψd2(0)

[
p12p

2
21(1− µ1)

+p2
12(p22 − µ22) + p12p

2
21(µ1 − 1)

]
+ µ1p

2
21(1 + p11 − 2µ11)

+µ2p
2
12(1 + p22 − 2µ22)− p12p21((µ2)1 p21 + (µ2)2 p12)− 2µ1p

2
21(µ1 − 1)

}
,

(A.9)

and

E[dL2] =
−1

2p21p2
12(µ2 − 1) + 2p12p2

21(µ1 − 1)

{
2ψd1(0)

[
p2

21(p11 − µ11)

+p2
12p21(1− µ2)− p11p21p12(µ2 − 1)

]
+ 2ψd2(0)

[
p12p

2
21(1− µ1)

+p2
12(p22 − µ22)− p21p

2
12(µ2 − 1)

]
− µ1p

2
21(1 + p11 − 2µ11)

−µ2p
2
12(1 + p22 − 2µ22) + p12p21((µ2)1 p21 + (µ2)2 p12) + 2µ1p21p12(µ2 − 1)

}
.

(A.10)

We recall that (µn)i represents the nth moment of the aggregate claim amounts given

initial state i which is given by

(µn)i =
2∑
j=1

(µn)ij =
2∑
j=1

pij(µn)j.

From (A.9) and (A.10) we can conclude that E[dL1] and E[dL2] exist on the condition

that (i) denominators in (A.9) and (A.10) are not zero and (ii) moments, i.e. µi for

i = 1, 2 exist.

235


	Contents
	A survey of risk models
	The continuous time case
	The probability of ultimate ruin
	The severity of ruin
	The joint distribution of the surplus prior to ruin and the deficit at ruin
	The probability of ruin in finite time

	The discrete time case
	Gerber-Shiu analysis

	Other risk models
	The Markov-modulated risk model
	The continuous time case
	The discrete time case

	Barrier models
	The dividend barrier
	Capital injections


	Gerber-Shiu analysis: analytical approach
	Introduction
	A Gerber-Shiu function
	The probability of ultimate ruin
	The joint distribution of U(T-u,k) and |U(Tu,k)|
	The joint density of Tu,k and NTu,k
	Examples
	Exponential claims
	Erlang(2) claims

	Covariance between Tu,k and NTu,k
	Moments of Tu,k and NTu,k

	Concluding remarks

	Gerber-Shiu analysis: probabilistic approach
	Introduction
	A Gerber-Shiu function
	The probability of ultimate ruin
	The joint distribution of U(T-u,k) and |U(Tu,k)|
	The joint density of Tu,k and NTu,k
	Exponential claims
	Erlang(2) claims

	Concluding remarks

	A discrete time risk model with capital injections
	Introduction
	Notation and definitions
	The probability of ultimate ruin
	The premium for the reinsurance policy
	Numerical illustrations

	The probability of ruin in finite time
	Concluding remarks

	The Markov-modulated risk model
	Introduction
	Notation and definitions
	The probability of ruin and the probability and severity of ruin
	Starting values di(0) and hdij(0,y)
	The probability of ultimate ruin
	The probability and severity of ruin

	Numerical illustrations
	Approximations to 1(u) and 2(u)
	Approximations to H1,1(u,y) and H1,2(u,y)

	The probability of ruin in finite time
	The density of the time of ruin for m=2
	The density of the time of ruin for m>2

	The Markov-modulated model with capital injections
	Notation and definitions
	The probability of ultimate ruin in continuous time
	The probability of ultimate ruin in discrete time
	Numerical illustrations
	The probability of ruin in finite time
	The density of the time of ruin

	Concluding remarks

	Dividend strategies with capital injections
	Introduction
	Barrier strategy
	A reinsurance arrangement
	Exponential claims
	Mixed exponential claims

	Threshold strategy
	Threshold strategy: alternative approach
	Dividends-penalty identity
	Concluding remarks

	Conclusion
	References
	Appendix 

