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Abstract

ADVANCED autonomous systems are typically associated with high per-
formance requirements. A motivating example that will be the basis of the

research project is a controlled defensive missile under the autopilot and guid-
ance subsystems. In such a system, the missile is required to be able to intercept
a target, which is potentially highly manoeuvrable, with precision and pace. The
resulting dynamics of the engagement are non-linear and often constrained, for
example, the missile must be operated within an envelope such that aerodynamic
models used to develop the controller are valid. The ensuing dynamics can there-
fore be quite difficult to be handled by the control system.

Model-predictive control is a potentially effective method for missile autopilot
and guidance due to its ability in directly handling the non-linear and constrained
dynamics of a demanding missile engagement. However, model-predictive con-
trollers typically has high levels of computational load, an issue accentuated by
the fast sampling rate required in applications with fast dynamics such as missile
control. Consequently, the required computational capacity of the implementa-
tion hardware – that predominantly determines the implementation cost – is an
important design consideration for model-predictive control systems. Despite the
motivation, current approaches mostly focus only on the optimisation of control
performance and treat computational capacity as a constraint. In cases where im-
plementation design is not known a priori, the upper-bound on required compu-
tational capacity can only be assumed, potentially leading to either a sub-optimal
design that is too conservative or a design that could not meet both performance
and computational requirements. This warrants the development of a multi-
domain design scheme that is effective in optimising closed-loop performance
as well as the required computational capacity for real-time implementation.

This thesis investigates a multi-objective design method for model-predictive
control, and explores its application in advanced defensive missile control.
Firstly, the mathematical formulation of the design approach is presented. The
first optimised objective is the control performance metric, based on closed-loop
simulations of the plant, that measures how well the controller steers the plant
for a given set of initial conditions and/or tracking trajectories. Alongside
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performance, the required computational capacity is to be minimised, measured
by the utilisation number that is a multiplier metric indicating the required
computational power of the implementation hardware relative to the hardware
used for the closed-loop simulations performed. The tuned design parameters
are the sampling time and prediction horizon length. These are associated with
the controller algorithm and affect both design objectives, and denoted as the
structural parameters. Parameters that are associated with the implementation of
the controller and/or those affecting only one design objective are fixed. The
solution of the optimisation problem is the Pareto front that defines the optimal
trade-off relationship between the two design objectives. This curve provides
useful insights to the practitioner and aids the design process of the
model-predictive controller, for instance, the optimal performance for a range of
computational capacity of the implementation hardware.

Secondly, analytical results are obtained for the proposed multi-objective op-
timisation problem. These include the smoothness properties of the objectives
functions with respect to the parameters, particularly continuity and differentia-
bility, as well as the bounds on the optimal parameter set. This is important as
the proposed design method involves closed-loop simulations for each objective
evaluation, and thus can be very time-consuming. An effective and efficient opti-
miser is valuable to the practicability of the proposed method. Subsequently, the
obtained properties are defined in a number of theorems that are verified through
numerical results and used to prescribe necessary and sufficient conditions for an
effective and efficient optimiser. A compliant algorithm that satisfies the condi-
tions is proposed and its performance justified through numerical studies.

Thirdly, the multi-objective design method is demonstrated on a proposed
model-predictive integrated missile controller. Following recent developments
in missile systems, the proposed controller integrates the autopilot and guidance
subsystems to exploit the synergies between the two, removing in particular the
lag between commanded the tracked acceleration or roll manoeuvres. The perfor-
mance of the proposed model-predictive integrated missile control is numerically
studied under the presence of disturbance and compared with a separated control
based on proportional navigation and assumed ideal autopilot that is prevalent
in industry. Numerical results show the potential superiority of the proposed
controller in intercepting a target in challenging scenarios.
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Chapter 1
Introduction

ADVANCED autonomous systems warrant multi-domain design schemes
capable of meeting the challenging task of achieving the best possible

system performance that is feasible under cost constraints for implementation.
Such systems are becoming increasingly pervasive in many engineering
technologies across many industries, including agriculture [EKSH09],
manufacturing [HPT+12], transportation [APPI10] and defence [Sio04]. At the
heart of the design process are the consideration of intelligent algorithms and
capable implementation hardwares for the system. Although proven to be
reliable, traditional approaches often treat algorithm and implementation
designs separately, potentially leading to increased costs and/or sub-optimal
designs that may no longer be sufficient for increasingly demanding design
requirements. A multi-domain design scheme is potentially effective to improve
system performance and computational resource efficiency in the design of
advanced systems, not only for the physical aspect but also the associated
computational platforms.

1.1 Background

Control system technologies are prevalent in defence applications, in particular
where missiles are used as means of protection against the enemy [Sio04]. In
recent years, with the increase of required defence capabilities in autonomous
countermeasures and surveillance, advanced control systems have been increas-
ingly used, not only for missiles, but other controlled projectiles including aerial
vehicles such as drones [GKM10].

The implementation of control requires consideration across multiple
domains. At the highest level, the system can be generally decomposed into the
algorithm and implementation designs. The algorithm defines the control law
that governs the autonomy of the controlled plant, whilst the implementation
design defines the resources available for the real-time implementation of the
developed control law. For the control law, model-predictive control (MPC) is an
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Introduction

advanced technique that promises optimal use of available hardware capacity to
achieve demanding tasks. MPC is therefore suited for complex autonomous
systems of high capabilities, offering much potential for applications in defence.
By incorporating a dynamic model to calculate future behaviour of the
controlled plant, the optimality and constraint-abiding principles of MPC allow
the plant to be operated in maximal-performance regimes whilst satisfying
operational limits as well as stability under disturbance.

The need for an advanced control law to achieve the best performance of an
autonomous system is clear. However, such a law – most particularly in the case
of MPC – typically requires costly computational capacity. Consequently, the bal-
ance between performance and cost of the required computational capacity asso-
ciated with the algorithm and implementation design in MPC-based controllers
is a critical consideration. This need is accentuated in defence applications where
the dynamics involved are often fast, up to the order of milliseconds. In such
cases, there is necessity to use computationally-capable hardware implements,
which are often expensive, that can handle the high computational load of MPC.

Control system

Aerodynamics

Propulsion

Materials

Baseline

Mission 
requirements

Design
iteration

Testing

Algorithm 
design

Implementation 
design

Testing

Design
iteration

Figure 1.1: Schematic of missile system design process. Adapted from [Fle01].
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1.2 Research goal

In overall, the design of MPC as a digital controller has the objective of a good
closed-loop performance in the presence of computational constraints that de-
fine the cost of real-time implementation. Traditionally, associated subsystems
are often treated separately, each with specific design objectives that come from
baseline requirements [Fle01] as illustrated in Fig. 1.1. Such an independent ap-
proach treats design objectives within individual subsystems in isolation, poten-
tially leading to a protracted refinement cycle to meet all required thresholds.
Feasibility is a potential issue whereby some requirements are unachievable due
to prior design decisions on preceding subsystems. Furthermore, even if feasible,
designs resulting from the separated approach can be sub-optimal, for instance, a
conservative or over-specified hardware to achieve a given performance require-
ment. This presents a potential issue on cost that comes from extensive design
iterations, further added to the cost of the required resources and implementa-
tion of the system.

1.2 Research goal

In light of the motivation above, the research project considers the design/tuning
of MPC with a multi-objective design outlook and its application in an advanced
missile control. The approach will consider closed-loop performance and re-
quired computational capacity as design objectives in synchrony. The two metrics
are closely interrelated, often with a specifically competing relationship that can
be balanced in the maximisation of performance and minimisation of the required
resources. There is a potential merit in the simultaneous consideration of the
two metrics as a more effective design process of MPC. In particular, such an ap-
proach will provide a selection of optimal system designs that are tailored to the
given problem, providing the practitioner assistance in making well-grounded
decisions and avoiding any unnecessary costs when designing the MPC.

1.3 Thesis layout

The thesis first reviews the topics of missile control, model-predictive control and
multi-objective design approach in current literature. The literature review in
Chapter 2 pays attention to the potential contribution of (1) a multi-objective de-
sign approach for MPC and the development of an associated optimiser that is

3



Introduction

targeted to the problem, as well as (2) a model-predictive missile control system
that can address superior specifications in performance. Subsequently, the chap-
ter poses three research aims of the project.

The mathematical formulation of the proposed multi-objective design
approach for MPC is presented in Chapter 3, formalising the design objectives
and parameters that underlies the problem. The subsequent chapter analyses
the proposed design scheme and presents several lemmas and theorems based
on which an effective and efficient optimiser algorithm is developed on.
Chapter 4 concludes by demonstrating the use of the proposed approach on two
real-world test plants and validating the effectiveness and efficiency of the
proposed solution method for the MOD-MPC problem. The two chapters cover
the first and second research aims of the thesis.

In Chapter 5, the proposed model-predictive integrated missile control is in-
troduced. The proposed control system is based on the integration of interrelated
subsystems to achieve superior performance in engaging a manoeuvring target.
To complete the fulfilment of the third research aim, Chapter 6 demonstrates the
MOD-MPC approach for the design of the proposed control system.

Chapter 7 summarises the contribution of the thesis with respect to the gaps
highlighted in literature review. Finally, the chapter describes potential exten-
sions to the study for future work.

1.4 Notational conventions and definitions

For an ordered list (column vector) v ∈ Rn, its size is denoted by nv := |v|.
The element values are thus v := (v1, . . . , vnv). Unless stated otherwise, a set
containing several ordered list is defined in calligraphy, e.g. V with entries V :={

v1, . . . , v|V|
}

. For M ∈ Rn×n, v ∈ Rn×m and s ∈ R with appropriate n and m,

‖v‖2
M := vTMv and ‖v‖ :=

√
v2

1 + . . . + v2
nv .

‘m-min’ denotes a multi-objective optimisation (minimisation) problem that
finds the Pareto optimal (see Definition 1.5) set of points given a search space/set
to optimise in, and distinguished from ‘min’ that denotes a single-objective prob-
lem. U[a, b] is a random number distributed uniformly between a and b. Binary
operators such as =, <,≤, etc. define element-wise relationship. The big-O nota-
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1.4 Notational conventions and definitions

tion is such that f (x) = O(g(x)) ⇔ ∃a ∈ R>0, x0 ∈ R>0 : | f (x)| ≤ a|g(x)| ∀x ∈
[0, x0). Let O(g1(·), . . . , gn(·)) = ∑n

i=1O(gi(·)).

Definition 1.1 (Continuity [Ste11]). f (·) : Rn → R is continuous at s ∈ Rn if
limx→s f (x) = f (s).

Definition 1.2 (Differentiability [Ste11]). f (·) : Rn → R is differentiable at s ∈ Rn

if it can be approximated linearly in the neighbourhood of the point, i.e.

f (s + δ) = f (s) + ∆(s) · δ + L(s, δ) · δ,

for some gradient ∆(s) ∈ Rn that is independent of δ. limδ→0 L(s, δ) = 0, ∀s ∈
Rn constitutes higher order terms. Differentiability at s implies continuity at s.

Definition 1.3 (Lipschitz continuity [Kha02]). A function (x(t), u(t)) 7→
f (x(t), u(t)) is globally Lipschitz continuous in x, uniformly in u and t if

‖ f (x(t), u(t))− f (y(t), u(t))‖ ≤ L‖x(t)− y(t)‖

for all x ∈ Rnx , y ∈ Rny , and ∀u ∈ Rnu .

Definition 1.4 (Domination [Deb01]). For a vector containing several objective
values `(·), `(p•) ≺ `(p) or p• ≺ p denotes that the point `(p•) dominates the
point `(p). This is true iff `i(p•) ≤ `i(p) for all i ∈ {1, . . . , n`} and `i(p•) < `i(p)
for at least one i.

Definition 1.5 (Pareto optimality [Deb01]). A point `(p•) with p• ∈ P is a Pareto
point iff there does not exist another design choice p ∈ P such that `(p) domi-
nates it.

Definition 1.6 (Competing functions). Two functions s 7→ f (s) and s 7→ g(s)
are competing with each other in the design set S iff s 7→ f (s) is monotonically
increasing and s 7→ g(s) is monotonically decreasing, or vice versa, for all s ∈ S .

List of notation

Variables, functions and constants

0n×m n×m matrix with zero elements
1n×m n×m matrix with 1 as all elements
a polynomial constants in solution time upper-bound model
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h sampling time
` design objective vector
o predictive state vector after disturbance
p design parameter vector
u, u input vector in continuous-time (of plant and prediction, respectively)
u predictive input vector in discrete-time
w disturbance vector
x, x continuous state vector (of plant and prediction, respectively)
x predictive state vector in discrete-time
z concatenated optimisation variable
A state transition matrix
A active set
B input transition matrix
In n× n identity matrix
J open-loop cost function
N number of prediction horizon steps
P design parameter set
Q state cost weight
R input cost weight
S state-input cross cost weight
T length of prediction horizon
U closed-loop cost function
U predictive input (constraint) set
V sum of weighted closed-loop cost functions
X predictive state (constraint) set
η utilisation (capacity) number
µ Lagrange multiplier vector
ψ optimiser convergence metric
σ standard deviation
ζ solution time upper-bound model
ζFLOP required floating-point operations

Missile variables

a relative acceleration
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1.4 Notational conventions and definitions

aM, aT acceleration (of missile and target, respectively)
q pitch rate
r relative distance (range)
s relative position
sM, sT position (of missile and target, respectively)
v relative velocity
vM, vT velocity (of missile and target, respectively)
CL aerodynamic lift coefficient
CM aerodynamic pitching moment coefficient
FL aerodynamic lift
M aerodynamic pitching moment
VM missile speed
α angle-of-attack
χ seeker angle
δ effective actuation (e.g. fin deflection angle)
δc commanded fin deflection angle
∆ miss distance
λ line-of-sight angle
θ pitch angle

Operators

⊗ element-wise multiplication
� element-wise division

∂s(·) derivative evaluated at s, e.g. ∂s(M) := ∂M
∂s

∣∣∣
s

=(·) imaginary part
λi(·) ith eigenvalue

Subscripts, superscripts and embellishments

(·)• Pareto optimal
(·)c related to entirely continuous design parameters
(·)o steady state value
(·)s related to the searched set
(·)t related to terminal state
(·)z related to the dense OCP representation

7
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(·)C related to the competitive set
(·)F related to feasibility
(·)S related to stability
(·)SQP related to the sequential quadratic programming algorithm
(·)+ value after perturbation, e.g. M+ := M(s + δs)

(·)∗ optimal value
(·)CL related to the closed-loop system
(·)OL related to the open-loop system
(̃·) related to tracking
(·) upper-bound, or related to discrete-time formulation, or mean value
(·) lower-bound
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Chapter 2
Literature review

MULTI-OBJECTIVE design of model-predictive control and its application
in a missile system underpin the aims of this research. This chapter pro-

vides an overview of the current literature on the topic in hand. Relevant studies
are drawn out to elaborate the value of the thesis for the motivating background
in Chapter 1. The chapter first introduces the basics of missile control and its
different components. Then, model-predictive control (MPC) is introduced and
its potential value in missile control applications is highlighted. Finally, studies
in multi-objective optimisation are reviewed to found the multi-domain design
approach that is proposed in this research. Literature gaps are presented along
the way, which are subsequently summarised to emphasise the potential contri-
bution of this work, as the basis to finally propose the aims of the research.

2.1 Model-predictive control

Model-predictive control is a model-based, optimal control technique that has
the capabilities to directly handle non-linearities and constraints whilst operating
near optimal conditions and guaranteeing stability even under disturbance. Since
its introduction in the 1960s, MPC has grown into arguably the most promising
control architecture to replace classical PID controllers. It is the only advanced
control architecture to have a significant impact in the industrial control engineer-
ing [Mac02]. Its main advantage in the ability to optimally handle multi-variable
plants and constraints yields a high-performance controller that operates plants
at their maximum capabilities [CB04, GPM89].

In most applications, MPC is implemented in discrete-time such that control
actions are applied at intervals for some sampling time h. The idea of MPC re-
volves around the use of a prediction model – an explicit mathematical model
representing the dynamics of the controlled plant – in an optimisation setting to
predict future plant behaviour in response to changes in the control input(s) over
a finite prediction horizon T. The prediction horizon length is typically an integer
multiple of sampling time, defined by N prediction steps, so that T = Nh. For a

9



Literature review
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New prediction

New optimal input
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Predict
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(Re)predict

(a)

(b)

(c)

(d)

Constraint

Set-point

Constraint

Figure 2.1: Illustration of the receding horizon in MPC. Adapted from [She12].

discrete-time configuration, the basic operation of MPC is illustrated in Fig. 2.1.
In subfigure (a), the controlled plant is at its current state at some sampling in-
stant ti. At the sampling instant, and any subsequent ones for that matter, MPC
solves an optimal control problem (OCP) whose solution represents the control
input sequence that optimises a specified cost function measuring control perfor-
mance, subject to the prediction model and the modelled operating constraints,
as illustrated in subfigure (b). The first portion of the optimal control solution is
applied to the plant, and the system evolves as per subfigure (c). Note that the
predicted and actual behaviour of the plant does not necessarily match. Finally,
in subfigure (d), the process is repeated at the next sampling instant with the new
(current) state of the plant and the receded prediction horizon.

A basic form of the OCP might look as the following

(x∗(p), u∗(p)) := arg min
(x,u)

J(x, u, p), J(x, u, p) :=
N−1

∑
k=0

∥∥∥∥∥
[

xk

uk

]∥∥∥∥∥
2

[
Q S
ST R

] + ‖xN‖2
Qt

(2.1a)

s.t. x0 = xi (2.1b)
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2.1 Model-predictive control

xk+1 = f (xk, uk, p) := xk +
∫ ti+h

ti

f (x(τ), uk, p) dτ ∀k ∈ {0, . . . , N − 1} (2.1c)

xk ∈ [x, x] , uk ∈ [u, u] ∀k ∈ {0, . . . , N − 1} (2.1d)

The minimised cost function in (2.1a) is the chosen metric representing the open-
loop performance of the plant within some prediction horizon N. This cost is
commonly composed of the stage cost defined by the summation term and termi-
nal cost defined by the second term weighted by Qt. The cost function is to be
optimised subject to (2.1b) and (2.1c) that define the prediction model used in the
OCP, whilst the constraints (2.1d) define the operational constraint that the pre-
dicted states and inputs must satisfy. In this form, the OCP is defined in discrete-
time with predicted states xk, ∀k ∈ {0, . . . , N} and inputs uk, ∀k ∈ {0, . . . , N− 1}.

The solution of the OCP (x∗(p), u∗(p)) is the predicted optimal response of
the plant within the prediction horizon. This depends on some design param-
eters p of the OCP, that can include attributes of the cost function such as the
cost weights Q and R, as well as sampling time h and prediction horizon length
N. The open-loop value function is the value of the cost function at the optimal
solution, defined as J∗ := J(x∗, u∗, p).

Non-linearities in the plant dynamics can be handled in various ways. Com-
mon examples include modelling to directly capture the complexities in the pre-
diction model used in the OCP, as well as the constraining the predicted states
and inputs so that the plant operates near where the simplified (e.g. linearised)
prediction model is valid. In doing so, the control law calculates input commands
with better information of the plant behaviour than most traditional controllers.
Furthermore, the ability of MPC in incorporating and handling constraints in the
prediction allows for the plant to be operated near its limits. This results in a
superior performance to more traditional control methods, whereby ad-hoc ap-
proaches are used to handle constraints, for instance, operating points that are
at a safe distance away from the constraints are often chosen to avoid constraint
violation, albeit being sub-optimal [Mac02]. The optimal nature of MPC enables
more effective operation near the constraint boundaries without violating them.
The ensuing control law, however, is non-linear and is associated with more in-
volved analytical solutions.
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With a finite prediction horizon, the general form of MPC does not guaran-
tee stability [BWG91]. In the early developments, most of the theories derived
to guarantee stability in MPC revolve around the use of a terminal constraint as
an additional constraint to the OCP that imposes the terminal state xN to be
within some predetermined terminal set, for instance, the origin as the termi-
nal point [MM91,MM90]. Subsequent developments use the notion of a terminal
set to increase the feasibility of the optimisation problem and allow for shorter
prediction horizons, alleviating some of the computational cost of the controller
[MR09, MRRS00, MM93]. To make the problem formulation simple for computa-
tional purposes, the terminal set has been approximated as an ellipsoid [CA98]
and a polytope [CDK03]. In lieu of using a terminal constraint, an appropriate
terminal cost and a sufficiently long prediction horizon can be used to guarantee
stability for a given set-point [KM00, PZ95]. This may be more relevant in appli-
cations where computational cost needs to be kept minimal, prohibiting the use
of the additional terminal constraint.

The main drawback in MPC is the high computational load as it needs to solve
the associated optimisation problem in each sampling instant. First, the OCP is
a constrained optimisation problem so that an explicit form of the solution is not
directly obtainable. A numerical solver is required to solve the problem, and
thus the time needed by the solver to find the control action that is to be applied
is a fundamental factor in MPC. Furthermore, applications in systems involv-
ing difficult dynamics often require the use of a non-linear prediction model to
minimise/eliminate plant-model mismatch to avoid detrimental effects such as
steady-state output error or instability. With a non-linear prediction model, the
OCP becomes a non-convex optimisation which is more difficult to solve than
a convex optimisation associated with a linear prediction model. This presents
a challenge especially for applications in electromechanical plants requiring fast
sampling times that heavily limit the time to solve the optimisation problem, in-
cluding advanced defensive missiles.

2.2 Missile control

The basis of missile control is the manipulation of actuators to produce aerody-
namic forces and moments that steers the missile to intercept a target. This is
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2.2 Missile control

Figure 2.2: Illustration of a missile-target engagement.

illustrated in Fig. 2.2. In the figure, the missile is controlled in a two-dimensional
plane for one of the control channels, e.g. pitch control, with the effective actu-
ation δ that generates aerodynamic lift and pitching moment FL and M, respec-
tively. The missile is a distance r away from a moving target, with line-of-sight
(LOS) angle λ. Intercept is achieved when the locations of the target and missile
coincides or are sufficiently close to each other so that the range of the warhead
explosive device can reach the target.

Component-wise, missile control can be sub-divided into several distinct sub-
systems as illustrated by a simplified diagram in Fig. 2.3. Given a target velocity
and position relative to the missile, the guidance law calculates the required ac-
celeration for a successful intercept. The information of the target is measured by
a seeker/homing system that is either internal or external to the missile, or both.
The autopilot takes acceleration commands from the guidance law and generates
actuation commands in an attempt to track the desired accelerations. The inertial
measurement unit (IMU), which includes accelerometers and gyroscopes, mea-
sures the attitude (pitch, bank and yaw), translational acceleration and angular
rate of the missile and feeds this information back to the autopilot. Such mea-
surements are not obtained instantly, and can be modelled with a delay, e.g. a
second-order system [Jac10]. The degree of accuracy of the measurements is sub-
ject to disturbance that can be handled by appropriate countermeasures [TPB00].
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Figure 2.3: Schematic of missile feedback control.

2.2.1 Guidance

For guidance, proportional navigation (PN) was devised in the mid 1900s [Adl56]
and is based on parallel navigation that relies on the line-of-sight (LOS) direction.
The LOS is defined by the elevation and azimuth angles of the target as viewed
from the missile. The idea is that the rate of line-of-sight (LOS) angle λ must be
zero i.e. λ̇ = 0 for an intercept, as demonstrated in Fig. 2.2. PN achieves this by
commanding a missile acceleration proportional to the LOS rate [PBL10a]

ac = Kvclλ̇ (2.2)

where ac is the commanded missile acceleration, vcl is the closing velocity be-
tween the missile and target, and K is a control gain. Given a positive closing
velocity so that the missile is approaching the target, a zero LOS rate guarantees
intercept. However, the zero LOS rate condition in itself is neither a sufficient nor
necessary condition for intercept. The missile is generally required to travel faster
than the target, although this depends on the relative position and velocity be-
tween the missile and the target. Ever since its first successful application, PN is
the most widely used guidance law as noted by [NZ81] and others [Yan08,Zar12].

PN guidance laws can be categorised based on the direction of the
commanded acceleration. True proportional navigation (TPN) calculates desired
acceleration commands normal to the LOS, and pure proportional navigation
(PPN) calculates the acceleration commands normal to the missile velocity. In
planar engagement, PPN has been shown to be superior to TPN in terms of
implementation, robustness and control effort required [SM90], as well as
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capture region [Gue76]. A law dubbed ideal proportional navigation (IPN)
commands acceleration normal to the relative velocity between the missile and
the target. This approach has been shown to have a larger capture region whilst
requiring more control effort [YC92]. The principles of PN has also been
extended into other guidance laws, the most popular being augmented
proportional navigation (APN) which uses the acceleration of the target as
additional information to the LOS rate in calculating the desired missile
acceleration [Yan08].

More modern guidance laws are based on optimal control principles. These
guidance laws minimise the required missile acceleration, i.e. the controller effort,
in an engagement [PBL10b]. Under the assumptions of zero missile dynamics
(ideal autopilot), a non-accelerating target, as well as a constant closing velocity
vcl := ṙ so that r = vcltgo, the optimal guidance law simplifies down to

ac = 3

(
s2 + ṡ2tgo

t2
go

)
= 3vcl

(
s2vcl + ṡ2r

r2

)
.

For small values of λ so that λ ' s2/r and λ̇ ' (s2vcl + ṡ2r)/r2, the expression
above yields the PN law (2.2). This concludes that, with a gain of K = 3, the
PN law is equivalent to an optimal guidance law. These types of missile guid-
ance laws have been shown to reduce the terminal miss distance and acceleration
command saturation compared to PN [Cot71]. A minimised commanded accel-
eration (control effort) is desirable as missile acceleration capabilities are often
limited. Although a greater acceleration capability is generally desirable for a
missile, there are cases where an excessive acceleration can lead to larger miss
distance due to overshoot [Zar99]. This can happen due to an image re-solution
of the target when the missile is close enough to the target and the tracking point
instantaneously shifts from the centroid of the target to a specific part of the tar-
get, e.g. the warhead of an attacking missile.

The popularity of PN is a testament to its performance. However, as an op-
timal guidance law, PN predicts future behaviour until intercept, essentially re-
lying on the time-to-go tgo that measures the time until the missile intercepts the
target. Optimal guidance laws with a (shorter) receding prediction horizon that is
fixed irrespective of the time-to-go have been proposed in [KKK00,KYK01] as an
attempt to move away from the reliance on time-to-go that is only available as an
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estimate. However, these approaches are not based on parallel navigation (LOS
rate regulation), but on nullifying the separation between the missile and the tar-
get, thus susceptible to large overshoots especially in cases of non-zero altitude
angles which were not considered by the authors.

2.2.2 Autopilot

In autopilot applications, missile dynamics are typically decoupled into separate
channels of pitch, yaw and roll. There are several examples of studies for the in-
dividual pitch [CBG03, KKS04, NRR93, Rei92, SC93], yaw [BM93] and roll control
[HC07, TGKP11] in the literature. With this decoupled configuration, a missile
can either be controlled in a sequential bank-to-turn (BTT or twist-and-steer) or
skid-to-turn (STT) strategy. For the former, the missile manoeuvres by making a
banked turn that is first achieved by rolling to a desired direction then pitching to
turn whilst regulating sideslip angle to zero. The latter strategy involves control
in the yaw plane to make a sideslip angle to turn, before pitching accordingly. For
an axisymmetric missile, the STT strategy is preferred as it is quicker than a co-
ordinated banked turn. However, for a missile that is asymmetric and has better
manoeuvrability in either pitching or yawing, a banked turn can take advantage
by turning via the appropriate channel [Sch94].

Autopilot controls the actuators of the missile to track the acceleration com-
mand given by the guidance law. The type of actuators varies, including control
surfaces (fins) as well as active propulsion. Any actuator configuration can be
aggregated into three control variables that define the effective actuation input
for roll, pitch and yaw through the use of a mixing logic. An example for an
STT missile with a cruciform fin configuration is given in [Sio04] and one for a
BTT missile is given in [Sch94]. Actuation does not occur instantaneously and
their response can be modelled by a first-order [KKS04, Sch94] or a second-order
response [DHS01, NRR93, SC93], often with saturation.

High-performing missiles are often pushed to operate near their physical lim-
its, at high angles of attack where aerodynamics are highly non-linear [GQD12].
Therefore it is crucial for the autopilot to directly take into account plant non-
linearities and handle constraints explicitly, to maximise missile performance
without exceeding operational limits. Current challenges in missile control often
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revolve around the inability to account for the non-linearities, changes in missile
behaviour during flight and different missile configurations [Jac10].

Early missile autopilots are based on proportional control. A ‘three-loop’ de-
sign was employed in [NN84] involving a corrector for angular rate in the inner
loop and acceleration in the outside. Other authors looked at the use of PI control
[FSF97], gain-scheduling [NRR93] and sliding-mode control [TI98]. Although ef-
fective, these classical controllers are unable to handle constraints and the highly
non-linear dynamics of the missile directly, potentially resulting in a sub-optimal
performance of the missile.

2.2.3 Integrated autopilot and guidance

Traditionally, guidance law and autopilot have normally been designed sepa-
rately. Much effort has been concentrated on integrating the autopilot and guid-
ance subsystems to improve missile performance [MO01a, MSOM04]. The unifi-
cation of the control algorithm has direct benefits for the performance of the mis-
sile, primarily by circumventing the lag between the commanded and tracked
acceleration from guidance and autopilot, respectively. Several control strate-
gies have been proposed following this design outlook, including sliding mode
control [ISG07, SIG06, ST09], state feedback regulators [MSO03, PJ99] and model-
based approaches [KWK16]. The approach used in [MSO03] involves linearisa-
tion of the dynamic missile model with state-dependent coefficients, and stabil-
isation via the solution of the state-dependent Riccati equation. Similar results
are obtained in [SIG06] with an integrated sliding-mode control algorithm. The
improved performance is achieved by exploiting the synergies between the two
subsystems [MO01b]. The integration of subsystems can also simplify the con-
troller design process, possibly alleviating associated costs.

2.3 MPC in missile control

The dynamics of the missile are highly non-linear. Coupled with the
non-linearities, models for the stability and control derivatives used are often
accurate only locally around an operating point. Therefore, the model of the
missile is constrained within a specific set of operational bounds, as well as
constraints related to the physical limits of the missile frame and actuators.
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Lastly, it goes without saying that mission requirements often demand
high-performing missiles that can operate near constraints. Given these
underlying aspects, an MPC-based controller naturally fits in the problem
setting due to its features in handling non-linearities and constraints.

Naturally, there have been attempts to address the performance requirements
in missile control with model-based approaches in the literature. For instance, the
prevalent proportional navigation law for guidance can be derived from an un-
constrained model-based control with a linear prediction model and a prediction
horizon based on the engagement period [PBL10b]. In autopilot, a generalised
predictive control has been applied for pitch autopilot [CBG03]. The approach
uses an analytical formulation to obtain control commands rather than an on-
line optimisation, hence reducing the computational load significantly. However,
with this approach, constraints can only be imposed on the derivative of the con-
trol variable. For general flight control, MPC has been proposed as a theoretically
fault-tolerant scheme owing to the reconfigurability of its prediction model and
ability to handle constraints explicitly, enabling it to control airframes under dam-
ages such as actuator failures [KC02, Rui04]. More recently, a stable non-linear
MPC approach with full state and input constraints has been studied, albeit for
the case of roll autopilot [HC07]. Roll dynamics are simpler than that of pitch or
yaw, therefore less burdensome to calculate in the ensuing OCP, allowing for a
more straightforward implementation of MPC. Studies of MPC for the more gen-
eral non-linear and constrained control of missile, particularly in the pitch and/or
yaw axis, remain scarce.

The consideration of non-linear dynamics and/or constraints in MPC offer
much potential for applications in high-performing missiles. This, however,
comes at a cost of an increased computational load from the need to solve an
optimisation problem at each sampling instant. This issue is accentuated in
missile control applications where high sampling rates are needed. Typical rates
used in the studies of missile control lie between 80 to 200 Hz [BTW12, HC07].
This corresponds to sampling times of around 15 to 5 ms, which are much faster
than the sampling times in the process industry where MPC is traditionally
used. Nonetheless, with the advancement in computing processors, applications
of MPC have grown to be more widely used in industries involving relatively
faster dynamics such as transportation [AAT08, ATA09].
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The issue of limited computational time of MPC in missile control has been
discussed and mitigated to some extent, often with the compromise in
performance. For an application in missile pitch control, some studies tackle the
problem of the OCP being unsolved within the sampling time by using a
sub-optimal feedback based on the optimal input sequence from the previous
sampling instant whilst preserving stability [HC07]. Another approach is to use
a reduced form of MPC to lessen the load of the online optimisation. One study
proposes a predictive functional control scheme, formulating the input sequence
as a weighted linear sum of basis functions to reduce the number of decision
variables of the OCP and hence computational load [TC12]. However, a linear
prediction model is used and state and output constraints are removed to obtain
an analytical optimal solution. Due to the simplification of constraints, similar to
the previously cited general predictive control [CBG03], the approach would
suffer the same drawbacks in control performance.

2.4 Calibration of MPC

The original full form of MPC can be calibrated, i.e. designed/tuned, to achieve
a desired design. This can be done in lieu or as an addition to the use of reduced
or sub-optimal designs to minimise the computational load of MPC. Calibration
involves the tuning of pertinent parameters of the controller, in particular those
associated with the formulated OCP (2.1). Some of the parameters of the OCP that
can be calibrated include attributes of the cost function such as the cost weights
Q and R, as well as sampling time h and prediction horizon length N. These
parameters can be calibrated to optimise the design objectives of MPC.

2.4.1 Optimisation of performance

Control performance, especially in closed-loop, is first and foremost the design
metric that is to be maximised when designing MPC, or any controller for that
matter. This follows on arguably the first attempt in controller calibration in the
Ziegler-Nichols gain tuning for proportional controllers [ZN42]. Along with per-
formance, implementation cost is another optimisable metric, that is predomi-
nantly dictated by the computational capacity required to functionally implement
the controller. Although control performance is traditionally the more preva-
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lently considered design objective, required computational capacity is an equally
important design consideration, especially for model-based controllers which are
typically power-hungry and expensive as indicated earlier in the introduction of
MPC. The influence of computational cost is further amplified in control of plants
with difficult dynamics where fast sampling rates necessitate a high processing
power, for instance in missile control.

Much focus has been given to find the best control performance in single-
objective optimisation, separate to the consideration of the required computa-
tional capacity. Following on the calibration of proportional controllers, perfor-
mance optimisation is investigated for more complex controllers such as slid-
ing mode [Ha96, RP01]. Calibration of model-based controllers soon follows, but
there are still a number of knowledge gaps in existing design approaches. MPC
tuning for control performance is mostly done via methods that rely on rules-of-
thumb and general guidelines [GS10, QB03, RU97]. Further developments have
been made consequently, using metaheuristic optimisers such as particle swarm
optimisation [JMK14] and genetic algorithms [vdLSY08], as well as gradient de-
scent [BFFB12], for the single-objective optimisation of MPC performance.

Several multi-objective optimisation techniques for control system design
have also been studied for the optimisation of control performance. In these
studies, more than one metric for performance are considered, including, for
example, the overshoot and rise-time of the plant output. Similar to that of the
single-objective counterpart, metaheuristic methods are prevalently
used for the multi-objective tuning of classical control, such as PID
[AdSC12, RMGNSB13, XLG10], sliding mode control [MTB14, TMTCV14], as
well as others [RMBSM14]. A similar approach is applied in MPC tuning by
using an off-the-shelf method of goal attainment [ET10, VFT08]. Although more
systematic than general tuning guidelines, these techniques provide
non-specialised means that do not exploit certain characteristics of the problem
and potentially require a rather exhaustive and possibly computationally
impractical search to produce the optimal design set. As an alternative to
methods based on guidelines and metaheuristics, analytical approaches
employing problem simplifications have been proposed [BKS14, SE11, SC98].
However, these typically overlook some aspects of the original problem such as
explicit constraint handling.
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Lastly, control performance is often represented by the open-loop value func-
tion (J∗ from the example OCP (2.1)) [BKS14, BB14]. Since the controller is im-
plemented in closed-loop, the open-loop value function might not be the best
measure for control performance, albeit still a good indicative quantity. Instead,
a measure based on the closed-loop simulation of the plant can be used [MHL99].

2.4.2 Multi-objective optimisation of performance and cost

The studies discussed so far consider control performance as the sole design ob-
jective, whether with a single- or multi-objective outlook, for instance, trading-off
rise-time and overshoot. The approach separates algorithm and implementation
design, paying focus on only the former and reveals only half the insight in con-
trol design. Implementation design largely determines the cost for the controller
hardware and is often not known a priori, thus is a part of the overall design
process. The co-design of algorithm and implementation provides a more com-
prehensive technique that optimises control performance as well as implemen-
tation cost that is dictated by the required computational capacity for real-time
implementation. Rather than treating the required capacity as a fixed constraint,
it should be co-optimised alongside control performance, avoiding system over-
design or the need to re-design the system.

In consideration of the above discussion, the value of a co-design approach
in streamlining the design process of control systems has been noted [AH14].
Further, the fundamental concept of an algorithm and implementation co-design
for real-time optimisation has been studied [Ker14, SLKC13], although analyti-
cal results to support applications in MPC are still yet to be fully developed. In
particular, investigations involving required computational capacity as a design
consideration alongside control performance are limited. Furthermore, previous
studies, such as [BKS14, ET10, JMK14], have typically only considered parame-
ters that only affect the closed-loop performance, primarily the cost function at-
tributes of the OCP, since they only aim to optimise performance. Parameters
that affect both performance and implementation cost – such as sampling rate
and prediction horizon length – are excluded from the analysis and treated as
fixed. Nonetheless, these structural parameters have an underlying role for MPC
design improvement, particularly due to the fact that they prescribe not only con-
trol performance but also computational attributes.

21



Literature review

2.5 Multi-objective optimisation

The two design metrics of performance and required computational capacity (im-
plementation cost) are interrelated. In particular, they are often competing, so
that an improvement on one metric must likely come at the expense of the other.
Therefore, there is an underlying trade-off relationship between the two. On one
extreme, a controller can be designed with, for example, fast sampling rates and
high-fidelity models so that it can best predict plant dynamics to optimally con-
trol the plant. At this extreme, the computational load of the controller will be at
the highest levels. On the other hand, controllers can be designed with shorter
prediction horizon lengths or a reduced form to alleviate computational load at
the expense of a reduced performance.

The balance between control performance and required computational capac-
ity is a critical consideration in MPC design. This idea is encapsulated in a multi-
objective optimisation problem, as formulated in the following

P•(Ps) := arg m-min
p

`(p)

s.t. p ∈ Ps.

The multi-objective optimisation problem searches the design parameter set Ps

for the optimisation (minimisation) of the design objectives contained in the ob-
jective vector `. The solution is the optimal design set is denoted by P•, namely
the Pareto optimal solution. In the objective space, the solution is the Pareto front
L(Ps) := {`(p), ∀p ∈ P•(Ps)}, at which one objective cannot be improved with-
out compromise of all the other objectives. The curve1 L defines the optimal
trade-off between the objectives to assist with the design decisions for the opti-
misation of the design objectives `, which in this case are the control performance
and required computational capacity, as illustrated in Fig. 2.4. For instance, the
Pareto curve indicates the best performance for a range of computational capac-
ity, as well as the sensitivity between the two objectives, for example, the re-
quired cost in computational capacity for a unit improvement in closed-loop per-
formance.

1The term curve is used as opposed to the more general term of manifold as focus is given on
trade-offs between two objectives.
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Figure 2.4: Illustration of the Pareto front in a set of objective points.

Both objectives depend on a number of design parameters of the controller,
concatenated together in p. With the outlook of multi-objective optimisation, fo-
cus will be on the design parameters that affect both objectives. These are the
structural design parameters that include, but are not limited to, the sampling
time and prediction horizon length. The relationship between the objectives and
parameters is not always straightforward. In the case where state and input con-
straints are absent from the OCP, the closed-loop control performance have been
shown to be non-monotonic with respect to the sampling time [LSA71], partic-
ularly so near the limit of zero sampling time [MK71]. The effect on sampling
time on control performance has been studied further in the topic of real-time
optimisation [BC08, BDNB08], albeit for the unconstrained problem.

Other than the non-trivial relationship between objective and performance,
the evaluation of a point `(p) involves a set of closed-loop simulations of the con-
trolled plant which can be very time-consuming. Multiple simulations are nec-
essary to investigate, for example, a range of initial conditions or average perfor-
mance under disturbance. Therefore, the optimiser used needs to be accurate and
fast in finding the optimal solution. Examples of multi-objective optimisers in-
clude those based on derivative-free approaches such as evolutionary algorithms
[DPAM02], line search [CMVV11], particle-swarm optimisation [CCL02], simu-
lated annealing [BSMD08] and Lipschitzian optimisation [WIHM08]. Gradient-
based optimisers include those of gradient-descent [BFFB12] as well as more in-
volved approaches such as extremum-seeking [GD15]. The effectiveness and ef-
ficiency of the optimiser depend on the properties of the optimisation problem at
hand, particularly smoothness properties of the objective functions and nature of
the design parameter set, that can be revealed by proper analysis of the problem.
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2.6 Summary

Application of MPC in missile control is a potentially effective mean of improv-
ing engagement performance to address exigent mission requirements, primarily
from increased target capabilities, that raise the need for an advanced control
strategy which is both precise and robust. The notion is motivated by the innate
abilities in handling non-linear dynamics, constraints and disturbance that are
ingrained in the operation principles of MPC. Although a number of simulative
studies have looked at applying MPC for missile control and demonstrated its
advantages, many of the studies did not comprehensively consider the full au-
topilot and guidance control.

Although potentially performance-optimal, MPC-based controllers are
sparsely used in practice due to the high computational power requirement for
solving an optimisation problem at each sampling instant. This requirement is
therefore an intrinsic design factor, directly associated with implementation cost
of a capable processing hardware that is often not known a priori. Although an
important element in MPC design, the implementation cost is traditionally often
regarded as a constraint that is enforced when designing for an optimal
performance. This approach is susceptible to sub-optimal overall design, for
instance, when the controller is designed with over-specified hardware and
over-meets mission requirements for performance, or under-designed such that
the performance specifications are infeasible under the imposed implementation
cost constraint. Setting best the cost constraint is thus a difficult task for the
practitioner who aims to avoid unnecessary bills costed from over-design
and/or the need for multiple design cycles in meeting mission requirements.

Multi-objective optimisation to maximise performance, as well as minimise
implementation cost that often underlies application on fast systems, is poten-
tially an effective design approach for MPC. The solution provides the practi-
tioner a set of (Pareto) optimal choices to assist in the controller design process
to balance performance and cost. This would avoid the need to pay unneces-
sary costs due to over-design or required re-design of the system that the cur-
rent methods are susceptible to. There is novelty in the study of such a design
technique for MPC, examining the tuning of structural control parameters for
the optimisation of both performance and cost, as the current literature focusses
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Controller Parameters

Objectives

Performance Performance &
required costSingle-obj. Multi-obj.

PID Gains [ZN42]
Sliding mode Gains, manifold [RP01] [MTB14]

MPC Non-structural [GS10] [BKS14]
Structural [BB14]a [Ker14]b

aThe study investigates the role of sampling time in linear quadratic regulator (not MPC).
bThe study is a technical note for the co-design of real-time optimisation and does not provide

comprehensive results for MPC.

Table 2.1: Overview in literature in controller calibration. A representative study
is cited where applicable, not including the full list that has been discussed.

mostly on performance tuning and non-structural parameters. This is demon-
strated in Table 2.1, where a brief overview of some of the studies in the literature
of controller calibration is given, showing that the multi-objective optimisation of
performance and required computational cost is still underdeveloped.

Finally, although general optimisers for a multi-objective optimisation ap-
proach are available, they lack in a targeted tack for controller design applica-
tions. The dependence of the MPC design objectives on the structural OCP pa-
rameters is non-trivial. Furthermore, the evaluation of closed-loop performance
can be costly in time. An effective and efficient numerical optimiser is therefore
required so that solutions can be obtained accurately and rapidly.

From the discussion above, the research gap in the current literature in the
topics of this thesis is threefold,

1. A multi-objective design approach for MPC that considers closed-loop perfor-
mance and implementation cost as dictated by required computational capac-
ity is due to be fully investigated. Challenges arise from the fact that the two
generally competing objectives are governed by a specific yet potentially com-
plex trade-off relationship, and are dependent on multiple design parameters
of different natures. Although the optimal co-design of engineering systems is
recognised, the approach is yet to be comprehensively studied for MPC.

2. A specialised optimiser that targets the key properties of the formulated multi-
objective MPC design optimisation problem is needed to effectively and effi-
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ciently find the optimal trade-off set. Most well-known optimiser in the cur-
rent literature are multi-purpose and generalised, potentially slow and inac-
curate when used to solve the optimisation problem in hand. For a fast and
accurate optimiser, the key properties of the problem – such as the relationship
between the design objectives and parameters – need to be understood.

3. Recent developments in the integration of autopilot and guidance for high-
performing missile control warrant for a controller architecture that can han-
dle complex dynamics. The ability of MPC in explicitly handling the non-
linearities, constraints and disturbance considered by the autopilot subsystem
makes its role crucial in this area of research, but yet to be thoroughly demon-
strated. Furthermore, guidance based on a receding horizon control that is
needed for the integration with the autopilot is underdeveloped. Therefore,
the full potential of MPC application in missile control has yet to be explored.

2.7 Research aims

To develop a design method for model-predictive control that optimises both
closed-loop performance and required computational capacity

To formulate a multi-objective design approach for model-predictive control

The research aims to develop an approach that looks to directly address the multi-
domain model-predictive control system design process without decomposition
into subsystems. The scheme will be introduced as a multi-objective design ap-
proach for MPC (MOD-MPC) and formalised as a mathematical problem. The
solution to the problem describes the optimal trade-off of control performance
and required computational capacity of MPC by tuning of pertinent parameters.

To analyse of the MOD-MPC approach and develop an effective and efficient optimiser

After the mathematical formulation of the proposed MOD-MPC, the approach
will be studied analytically. This is to reveal fundamental properties that define
the nature of the solution to the approach as a mathematical problem. The pre-
sented properties form the basis for the development of an effective and efficient
routine that can solve the proposed problem accurately and fast, providing prac-
titioners of MOD-MPC a specialised tool for the application of the approach.
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Illustrative results will be presented to demonstrate the proposed design
scheme. Tests will be conducted to show the effectiveness and efficiency of the
developed optimiser for MOD-MPC as compared to standard routines available
in the current literature.

To demonstrate the multi-objective design approach on a proposed advanced
missile control system

Finally, the MOD-MPC approach will be demonstrated for the design of an ad-
vanced missile control system. The control system will be based on a proposed
model-predictive missile autopilot and guidance that builds on recent develop-
ments in advanced missile control.
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Chapter 3
Multi-objective design of model-predictive control

A substantial proportion of this chapter has already appeared as an article in the
journal Control Engineering Practice [BMMK16a].

IN this chapter, the multi-objective design of model-predictive control (MPC)
approach is introduced and mathematically formalised. First, MPC is for-

mulated in a closed-loop system that is to be optimised for performance. The
associated optimal control problem is then introduced, which is the optimisation
problem that needs to be solved in each sampling instant to control the plant
of interest. After defining the control law, the design objectives of performance
and the required computational capacity to implement the controller, as a mea-
sure of implementation cost, are presented. Control performance is represented
by value functions that measure how well the system is controlled, for which a
metric based on closed-loop simulations of the system is proposed. For the sec-
ond objective, required computational capacity is defined by a non-dimensional
number that represents computing power in multiples of that associated with the
simulation hardware as the specifications benchmark. The design parameters for
the system are described and discussed, onto which tuning is to be performed for
an optimal balance of the design objectives. These parameters are classified as
either coupled or decoupled given that they affect both or only one of the objec-
tive functions, respectively. The two design objectives are inherently competing,
such that, under optimal conditions, a change in at least one of the pertinent

Multi-objective design of MPC

Closed-loop MPC system

Controller PlantDesign
optimiser

Optimal
design

Design
parameters

Design
objectives

Figure 3.1: MOD-MPC schematic.
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parameters that improves one objective comes at a comprise of the other. Once
the elements of the closed-loop system are introduced, the chapter concludes by
defining the design scheme as a multi-objective optimisation problem, whose the
solution is the Pareto front of the problem that can provide useful insights on the
trade-off between the two design objectives.

An illustrative overview of the design process is shown in Fig. 3.1. The closed-
loop MPC system is designed/tuned via an outer optimisation loop to find the
optimal design set that optimally balances the objectives over the calibration the
chosen design parameters. The solution method for the outer optimisation prob-
lem depends on the optimiser used, which will be discussed in the next chapter.

3.1 Closed-loop control system

The closed-loop system is described by a controller-plant feedback framework.
This is illustrated by the Controller and Plant subsystems in Fig. 3.1. Consider a
non-linear plant model that describes the dynamics of a system of interest,

ẋ = f(x, u)

with states x(t) ∈ Rnx and inputs u(t) ∈ Rnu . The dynamics satisfy the standard
smoothness property of Lipschitz continuity, so that its first derivative is
bounded. Lipschitz continuity implies that the dynamics of the system are
uniquely defined for a given state. Moreover, the function is assumed to be
continuously changing, either with non-continuous gradient i.e. class C1, or a
continuous gradient i.e. class C2, depending on its differentiability.

Assumption 3.1 (Continuous f(·)). (x, u) 7→ f(x, u) is continuous in (x, u) and glob-
ally Lipschitz continuous in x uniformly in u.

Assumption 3.2 (Differentiable f(·)). (x, u) 7→ f(x, u) is differentiable with respect to
u for all x ∈ Rnx .

Model-predictive control is implemented digitally, for which the system is dis-
cretised used such that the plant is controlled in a sampled-data fashion at sam-
pling instants ti := ih for i ∈ N≥0 with sampling time h. With discretisation in
mind, the control command sequence is restricted to a zero-order-hold (ZOH),

u(t) = ui ∀t ∈ [ih, ih + h), i ∈N≥0.
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3.2 Optimal control problem – general (non-linear) MPC

The aim is to control the plant by applying a control law κ to regulate the model
to the origin. The control law depends on the current state xi := x(ti) and the
control design parameters p,

ui = κ(xi, p). (3.1)

Let p := (p1, . . . , pnp) contain the design parameters p1, . . . , pnp to be tuned. Let
q := (q1, . . . , qnq) be the set of parameters that are fixed. To keep notational suc-
cinctness, dependence on the fixed parameter set q will not be explicitly stated as
an argument throughout this thesis. The closed-loop system is thus defined by
ẋ(t) = f(x, κ(xi, p)), ∀t ∈ [ih, ih + h), i ∈N≥0, or in discrete-time form,

xi+1 = xi +
∫ ti+h

ti

f(xi, κ(xi, p)) dτ ∀i ∈N≥0 (3.2)

where xi = x(ih).

Tracking formulation

Many real-world applications, including those that are studied in this thesis, are
more appropriately formulated as a tracking problem, where the controller has
to drive the state x̃ to some steady state x̃o with some plant model

˙̃x = f̃(x̃, u).

To transform the tracking problem into that of regulation, a simple coordinate
transformation can be performed,

x := x̃− x̃o f̃(x+ x̃o, u) = f(x, u) (3.3)

to define an error system that is to be regulated to zero.

3.2 Optimal control problem – general (non-linear) MPC

In MPC, the control command is obtained by solving a finite-horizon, optimal
control problem (OCP) at each sampling instant ti given the current state of the
plant xi. A common form of the OCP that will also be used throughout the study
is given in the following

(x∗(·), u∗(·)) := arg min
(x,u)

J(x, u, p) (3.4a)

s.t. x(0) = xi (3.4b)
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ẋ(τ) = f (x(τ), u(τ), p) ∀τ ∈ [0, T] (3.4c)

x(τ) ∈ X := [x, x] , u(τ) ∈ U := [u, u] ∀τ ∈ [0, T) (3.4d)

u(τ) = u(kh) =: uk, ∀k ∈N≥0 ∀τ ∈ [kh, kh + h). (3.4e)

For succinctness, the dependence of the optimal solution x∗(·) and u∗(·) on (xi, p)
is omitted here onwards unless needed for clarity. The real-time variable x is dis-
tinct from the predicted variable x used internally in the OCP, although sized
equally such that x(t) ∈ Rnx and inputs u(t) ∈ Rnu . The true plant model f(·)
is also distinct to the prediction model f (·) used internally in the OCP. The two
models have the same equilibrium at the origin, that is f (0, 0) = f(0, 0). The opti-
misation is subject to the prediction model (3.4c) representing the dynamics of the
plant initialised at (3.4b), as well as the plant constraints (3.4d) that are defined as
rectangular sets, with upper- and lower-bounds on the predictive states and in-
puts. The zero-order-hold control (3.4e) discretises the control command over the
sampling steps k ∈ {0, . . . , N − 1}. This is the general control problem in which
the constraints are non-linear, in the form of non-linear prediction model (3.4c)
and/or non-linear state/input constraints (3.4d). For this reason, the controller
associated with such and OCP will be labelled non-linear MPC (NMPC).

The OCP solution represents the optimal evolution of the plant within the pre-
diction horizon for the given cost function. The first part of the control command
will be applied in each sampling time such that the control law is defined by

κ(xi, p) := u∗(0). (3.5)

In most cases, the cost function is made up of the stage cost Js and terminal
cost Jt,

J(x, u, p) :=
∫ T(p)

0
Js(x(τ)), u(τ), p) dτ + Jt(x(T), u(T), p), (3.6)

where T(p) is the prediction horizon length dictating how far prediction is made
ahead on the dynamics of the controlled plant. In particular, a quadratic form

Js(x, u, p) := ‖x(τ)‖2
Q + ‖u(τ)‖2

R, Jt := ‖x(T)‖2
Qt

(3.7)

is predominantly used to penalise the state/input deviations from zero.
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Remark 3.1. The stage cost is weighted by a positive semi-definite Q and positive
definite R, and the terminal cost is weighted by a positive semi-definite Qt, so
that the cost function is positive definite.

Discrete-time form

Since the input is constrained with ZOH, the OCP can be recast in discrete-time
form. The prediction horizon T is divided into N prediction steps, each with
an interval length of the sampling time h. The predicted states and input are
presented in discrete-time with the vectors

x := (x0, . . . , xN) u := (u0, . . . , uN−1)

where xk := x(kh) uk := u(kh)
(3.8)

as per (3.4e). This yields the discrete-time OCP (dOCP),

(x∗, u∗) := arg min
(x,u)

J(x, u, p) (3.9a)

s.t. x0 = xi (3.9b)

xk+1 = f (xk, uk, p) := xk +
∫ ti+h

ti

f (x(τ), uk, p) dτ ∀k ∈ {0, . . . , N − 1} (3.9c)

xk ∈ [x, x] , uk ∈ [u, u] ∀k ∈ {0, . . . , N − 1}. (3.9d)

In this form, the cost function (3.9a) is cast in a discrete-time form,

J(x, u, p) :=
N−1

∑
k=0

∥∥∥∥∥
[

xk

uk

]∥∥∥∥∥
2

[
Q S
ST R

] + ‖xN‖2
Qt

. (3.10)

The control law is given by

κ(xi, p) := u∗0 . (3.11)

Remark 3.2. It is possible for the discrete-time cost function to be made equivalent
to the continuous-time counterpart,

J(x, u, p) = J(x, u, p)

where the states and input follow (3.8). For this to be true, the cost weights must
satisfy specific relationships as outlined later in (3.18) in the case of a linear pre-
diction model. When the cost functions are equivalent, equivalence in the con-
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trol law

u∗0 = u∗(0)

as per (3.5) and (3.11) is also achieved.

While the continuous-time OCP require more general optimisation routines
to numerically solve, discretisation of the OCP allows for the use of more spe-
cific numerical algorithms that is often lighter in computational load, allowing
for faster solution times. The non-linear dOCP can be solved using a sequen-
tial quadratic programming (SQP) algorithm, the details of which are given in
Appendix B.1.

3.3 The OCP as a quadratic program – MPC

The OCP (3.4) is defined generally as a non-linear program. It is common for
the problem to be reduced to a quadratic program (QP). The cost function used
is quadratic, and state and input constraints (3.4d) are linear, leaving only the
prediction model (3.4b) that must be linearised for the problem to reduce to a QP.
Specifically, the OCP in a reduced QP form (Q-OCP) is defined as

(x∗(·), u∗(·)) := arg min
(x,u)

J(x, u, p) (3.12a)

s.t. x(0) = xi

ẋ(τ) = Ax(τ) + Bu(τ) ∀τ ∈ [0, T] (3.12b)

x(τ) ∈ [x, x] , u(τ) ∈ [u, u] ∀τ ∈ [0, T)

where a linear time-invariant prediction model (3.12b) is used, following

A :=
∂f

∂x

∣∣∣∣
0,0

B :=
∂f

∂u

∣∣∣∣
0,0

.

Consequently, the associated controller will be labelled linear MPC, or simply
MPC. When the transformation of tracking into regulation (3.3) is applicable, the
constraint bounds will also shifted according to

x = x̃− x̃o x = x̃− x̃o. (3.13)

The cost function (3.12a) remains the quadratic that is used in the general
non-linear OCP J(x, u, p) :=

∫ T(p)
0 ‖x(τ)‖2

Q + ‖u(τ)‖2
R dτ + ‖x(T)‖2

Qt
with its

constituent stage and terminal cost terms.
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Discrete-time form

As with the case of the general OCP, the Q-OCP can be recast in
discrete-time form,

(x∗, u∗) := arg min
(x,u)

J(x, u, p) (3.14a)

s.t. x0 = xi (3.14b)

xk+1 = Axk + Buk ∀k ∈ {0, . . . , N − 1} (3.14c)

xk ∈ [x, x] , uk ∈ [u, u] ∀k ∈ {0, . . . , N − 1}. (3.14d)

Note that the dependence of the optimal solution x∗ and u∗ on (xi, p) is omitted.

The discretisation of the OCP can be generalised for the case when the predic-
tion horizon length is not an integer multiple of the sampling time, T 6= Nh. In
this case, a residual sampling time

hr := T − Nh

is used, where the number of prediction steps is determined by

N = bT/hc. (3.15)

The residual sampling step is required so that the discretised OCP is equivalent
to its continuous-time counterpart. The discrete OCP with the residual sampling
step is then given by the dQ-OCP

(x∗, u∗) := arg min
(x,u)

J(x, u, p) (3.16a)

s.t. x0 = xi (3.16b)

xk+1 = Axk + Buk ∀k ∈ {0, . . . , N − 1}
xt = ArxN + BruN

}
(3.16c)

xk ∈ [x, x] , uk ∈ [u, u] ∀k ∈ {0, . . . , N}. (3.16d)

The cost function is given as

J(x, u, p) :=
N−1

∑
k=0

∥∥∥∥∥
[

xk

uk

]∥∥∥∥∥
2Q S

ST R

 + Jr + ‖xt‖2
Qt

where residual cost term is either valued as
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1. Jr = 0 with xt = xN for (3.14), or

2. Jr =

∥∥∥∥∥
[

xN

uN

]∥∥∥∥∥
2

[
Qr Sr

ST
r Rr

] for (3.16).

The generalisation of the prediction horizon being a non-integer multiple of the
sampling time can be made for the non-linear d-OCP (3.9), but is left unwritten
due to its triviality.

Following the equivalence between the OCP and dOCP, the Q-OCP can be
made equivalent to dQ-OCP so that the solutions of the two problems are iden-
tical. For this to hold, the discrete-time transition matrices must be equivalent to
the linear dynamics as follows,

A := Φ(h) := eAh B := Γ(h) :=
∫ h

0
eA(h−τ) dτ B (3.17)

with the residual transition matrices

Ar := Φ(hr) Br := Γ(hr).

For the discrete-time cost function to be equivalent to the continuous-time coun-
terpart (see Remark 3.2), the weights are set to satisfy the following relationships,

Q :=
∫ h

0
‖Φ(τ)‖2

Q dτ R :=
∫ h

0
‖Γ(τ)‖2

Q dτ + hR S :=
∫ h

0
Φ(τ)TQΓ(τ) dτ

(3.18)

such that the solution obtained from (3.14) is identical to that of (3.12). The resid-
ual cost weighting terms are given by

Qr :=
∫ hr

0
‖Φ(τ)‖2

Q dτ Rr :=
∫ hr

0
‖Γ(τ)‖2

Q dτ + hR Sr :=
∫ hr

0
Φ(τ)TQΓ(τ) dτ.

In QP form, the dQ-OCP can be readily solved with relevant algorithms, for
example interior point methods [BV04]. Table 3.1 summarises the different forms

Name Label Timeframe Problem type

OCP (3.4) Continuous Non-linear
dOCP (3.9) Discrete Non-linear

Q-OCP (3.12) Continuous Quadratic
dQ-OCP (3.14) or (3.16) Discrete Quadratic

Table 3.1: OCP forms.
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of OCP that have been outlined. Here onwards, the name OCP will be inter-
changeably used for all four forms, unless a specific form needs to be referred to
for clarity.

3.4 Design objectives

Having now formulated the closed-loop system, the objectives of the controller
design can be formalised. The study will focus on two metrics that are under-
lying to model-predictive controllers. The first objective is control performance,
measuring the ability of the controller to regulate/track the plant. The second
objective is the required computational capacity which is pivotal especially in
the case of the computationally heavy MPC. This metric serves as an indicative
measure of the overall cost to implement the controller.

Intuitively, the two design objectives of performance and cost are often com-
peting, in the sense that improving one objective requires compromise of the
other. The optimal trade-off relationship between the two objectives is known
as Pareto optimality. This chapter will focus on introducing and formalising the
design objectives. Analysis of the competing relationship between the two objec-
tives will be explored in the next chapter.

3.4.1 Control performance

For the established model-predictive controller (3.4) which aims to regulate the
plant model, performance is measured by how well the controller steers the states
to the origin over time. An indicative measure can be obtained from the open-loop
value function, either in the non-linear OCP case,

J∗(xi, p) := J(x∗(xi, p), u∗(xi, p), p)

= J(x∗(xi, p), u∗(xi, p), p)

where (x∗, u∗) is obtained from (3.4) or (3.9)

or the quadratic case,

J∗(xi, p) := J(x∗(xi, p), u∗(xi, p), p)

= J(x∗(xi, p), u∗(xi, p), p)

where (x∗, u∗) is obtained from (3.12), (3.14), or (3.16).

(3.19)

These are the values of the OCP cost function at the optimal solution.
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In most applications, control is implemented in closed-loop instead of open-
loop so that control actions are calculated based on the feedback from the plant.
Although open-loop applications exist, most systems requires closed-loop con-
trol. The open-loop value function is a good indicative measure for performance
and has been used in previous studies [BKS14,BB14]. A measure based on closed-
loop simulation, however, might be a more accurate representation of perfor-
mance. Subsequently, closed-loop performance metrics can be obtained through
a simulation of the MPC system to draw various numerical measures. The most
common of these is the integrated squared error (ISE) of the states and inputs to
measure regulating performance.

The closed-loop performance is associated with a given initial condition

x0 or error state x0 = x̃0 − x̃o (3.20)

and defined as a value-function based on ISE as follows

U∗(x0, p) :=
∫ ∞

0
U(x(τ), u(τ)) dτ (3.21a)

s.t. x(0) = x0 (3.21b)

ẋ = f(x, u) (3.21c)

u(τ) = κ(x(ti), p) = u∗0 ∀τ ∈ [ih, ih + h), ∀i ∈N≥0. (3.21d)

The cost function is chosen as a quadratic

U(x, u) := ‖x(τ)‖2
Q + ‖u(τ)‖2

R (3.22)

in accordance with the stage cost of the MPC cost function (3.6) with equivalent
weights (3.7). The closed-loop value function provides a numerical measure of
the control performance of the MPC law with the associated OCP.

Assumption 3.3 (Recursive feasibility). The closed-loop system (3.21) is recursively
feasible such that for a given initial state x0 ∈ XS, the control law (3.21d) is feasible and
remains feasible at all subsequent sampling steps. XS is the associated feasible set.

Assumption 3.4 (Stability). The control law (3.21d) guarantees the stability of the
closed-loop system (3.21).

Stability of the closed-loop system can be guaranteed by an appropriate choice
of the OCP parameters. Some examples are given in the following.
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3.4 Design objectives

1. It has been noted in [LSA71] that there exist critical sampling times where the
discrete-time plant loses full controllability, which consequently leads to an
unstable closed-loop trajectory. Since fast systems are of interest, the sampling
times considered can safely be assumed to not include critical sampling times.

2. For f (·) = f(·), an appropriate choice of Qt in (3.7) is able to guarantee sta-
bility [May14]. The restriction on model fidelity might be relaxed so that the
discrepancy between the two is bounded. That is, for a given x(0) = x(0) and
u, if x(t) is a solution of ẋ = f (x, u) and x(t) is a solution of ẋ = f(x, u) in
t ∈ [0, T], then ‖x(t)− x(t)‖ < ε, ∀t ∈ [0, T] for some bound ε.

Exact conditions that guarantee feasibility and stability as per Assumptions 3.3
and 3.4 depend on the different choices of the control law and assumptions on the
plant model. Specification of these conditions is amply available in the literature,
for instance [KM00, MR09, PZ95].

A combination of the closed-loop value function for a range of initial condi-
tions X0 can be used as a more comprehensive measure of control performance.
For such a metric, X0 is the set of initial conditions representative of the intended
operating range of the controlled plant, each of which is weighed by wi to deter-
mine the relative significance of each scenario. A linear combination can be used
as given in the following

V∗(X0, p) := ∑
x0∈X0

wiU∗(x0, p). (3.23)

A linear combination is chosen to preserve the smoothness properties of the
value-function U∗.

3.4.2 Required computational capacity

In designing the controller, the capability of the computational hardware onto
which the controller will be implemented is often not known a priori. It is there-
fore imperative to treat the required computational capacity/resource, which is a
fundamental factor in determining cost, as a design objective.

In this study, numerical simulations are conducted instead of directly test-
ing the control plant to evaluate the closed-loop performance of the controller.
The computational data obtained in simulation is reflective of the hardware used
in the simulation platform, namely the simulation hardware. This is to be differ-
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entiated from the implementation hardware, which is the actual platform used to
implement the controller.

A number of pertinent parameters dictate the computational complexity of
the OCP (3.4). In turn, the complexity governs the required capacity, affecting
the time taken by a processing unit to generate a control command. For real-
time implementation, the solution time, i.e. the time taken for a command input
to be generated numerically, is upper-bounded by the sampling time h. Let the
upper-bound for the solution time for the simulation hardware and a given set
of design parameters be ζ (p). This indicates the computational complexity for
a given design p. Based on this, a dimensionless measure denoted the utilisation
(capacity) number can be derived,

η(p) := ζ(p)/h.

The utilisation number indicates the required computational power of the imple-
mentation hardware relative to that used in the numerical simulation. Specifi-
cally, η is a multiplier of the simulation hardware capacity that defines the mini-
mum capability needed so that the controller can be functionally implemented.

For the utilisation number to be a meaningful measure, it is necessary to de-
fine the relationship between the simulation and implementation hardware. Con-
sequently, the respective solution time upper-bound is assumed to be linearly
proportional between the simulation and implementation hardware. The impor-
tance of this assumption will be clarified later in Proposition 3.1 when the multi-
objective design problem is formulated.

Assumption 3.5 (Scalability of solution time upper-bound). The solution time
upper-bound of the simulation hardware ζ is scalable to the solution time upper-bound
ζI if the implementation hardware was used. That is, ζI = aζ for some constant
multiplier a ∈ R>0.

A measure ζFLOP specifying the number of floating-point operations to solve
the OCP can be used, instead of the temporal measure ζ, to indicate the required
computational capacity to practically implement the controller. In this case, the
required computational capacity can be indexed by ηFLOP/s = ξ/h. Here, η = 1
is equivalent to ηFLOP/s being equal to the floating-point operations per second
(FLOP/s) capability of the simulation hardware.
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3.5 Design parameters

A number of design parameters can be identified in the formulated
model-predictive controller. A key design parameter is the sampling time h that
dictates how often a new control input can be commanded to the plant. The
interval also sets the upper-bound on the time available for the computing
hardware to solve the OCP. Next, the length of the prediction horizon T is the
time period in which constraints can be applied in the prediction of the future
plant behaviour, and thus its value affects the performance of the controller. In a
discrete-time system, the horizon is typically defined by the number of
prediction steps N such that T = Nh. Other than governing the prediction
horizon length, the number of prediction steps directly affects the size of the
discrete-time OCP as it dictates the number of unknowns in the problem.
Another design parameter is the model type which is the choice of the prediction
model f (·), which is already shown to be able to take a linear or non-linear form.

Attributes of the cost function are also design parameters. For instance, in
most forms of cost function, these are cost weighting matrices that needs to be
set. These affect the solution of the OCP at a given sampling instant and hence
the control performance. Variations in cost function attributes also affect the nu-
merical conditioning of the OCP. Depending on the chosen solver algorithm, par-
ticularly its degree of sensitivity to ill-conditioning, the effect of cost function
attributes on the time taken to numerically solve the OCP may be assumed to be
negligible. On the other hand, the solver algorithm used to solve the OCP is a
design choice that affects computational complexity more so than control perfor-
mance. Control performance dependence on the solver arises from the fact that
there might be multiple local minima associated with the non-linear (d)OCP such
that a different solver might converge to a different minimum. The linear (d)Q-
OCP, is a convex problem, and so as long as the solver is convergent, it can be
assumed to find the one local (global) minimum of the OCP.

The choice of algorithm is closely related to the representation of the OCP,
for example, a dense or a sparse representation. Some algorithms are suited to
a dense representation whereas others handle a sparsely presented OCP better.
Both algorithm and representation, however, can be assumed to not affect control
performance so that the same control command is produced regardless of the al-
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Design Symbol(s) Effect on a
Association b

parameter (if applicable) V∗ η

Cost function attributes Q, R, and Qt X ? c

Algorithm
Sampling time h X X
Prediction horizon length T or N X X
Prediction model type d f (·) X X
State/input constraints typed X and U X X
OCP representation X
Solver algorithm ? X

ImplementationSolver tolerance X X
Numerical precision X X

aV denotes control performance, η denotes required computational capacity (cost).
bParameters are classified based on association to the algorithm or implementation of the OCP.
cQuestion mark denotes that the effect depends on the choice of other parameters.
dPrediction model and state/input constraints type constitute constitute the OCP constraints.

Table 3.2: Design parameters of the OCP.

gorithm and/or OCP representation used. Finally, a numerical tolerance can be
used as an algorithm attribute, dictating the accuracy and speed at which the nu-
merical solution of the OCP is obtained. That is, suboptimal solutions can be used
to accommodate fast control sampling rates [SMR99,ZJM11]. Thus, the parameter
affects both the control performance and required computational capacity.

The aforementioned design parameters are outlined in Table 3.2 and classified
in accordance to their effect on the design objectives and their association to either
the control algorithm or implementation. In multi-objective design, focus will be
given to design parameters that are coupled, which are those that affect both de-
sign objectives. On the other hand, decoupled parameters are those that only affect
one design objective and have no effect on the other, as well as those that affect
both objectives only if certain choices for the other parameters are picked. This
study focuses on parameters that are associated with the algorithm, so that pa-
rameters that exclusively are implementation attributes, such as numerical preci-
sion [Ker14], are not considered even though they affect both objectives. Conse-
quently, the proposed design problem will consider only parameters of the OCP
that are coupled, denoted as structural design parameters. Decoupled parameters
and/or those associated to numerics will be treated as fixed.
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3.6 Choice of design parameters

The design parameters that are to be calibrated are coupled and attributed to the
algorithm of the OCP. These parameters will be denoted as the structural design
parameters, which include the sampling time, length of prediction horizon, as
well as the type of prediction model and state/input constraints. Focus is given
on the two underlying structural parameters of the OCP, namely the sampling
time and prediction horizon length, and the prediction model type is treated as
constant. This is first motivated by the fact that the two design parameters are
closely correlated. As a consequence, the resulting system would have specific
characteristics that can be explored and revealed, allowing for a targeted numer-
ical optimiser to be proposed.

The sampling time and length of prediction horizon are the design parame-
ters, the latter of which can be determined by the choice of number of prediction
steps N with the definition that

T = Nh. (3.24)

Consequently, the design parameters are set as

p = (h, N) ∈ P (3.25)

where P := R>0 ×N>0.

In this study, the prediction model is defined to be linear-time invariant, a
choice that is especially relevant in real-world applications as it reduces the gen-
eral non-linear OCP into a quadratic program, a convex optimisation problem for
which many practical solvers exist as numerical routines for QPs have been much
developed [BV04]. Further, state and input constraints are prescribed to be upper-
and lower- bounds, such that the associated sets are rectangular. Consequently,
the analysis throughout the chapter refers to the dQ-OCP (3.14) (or, in the case
where T = Nh is not imposed, (3.16)). The associated controller is the common
(linear-quadratic) MPC, which is widely used in practice due to the convexity of
the problem allowing for necessary and sufficient conditions for optimality to be
established rather straightforwardly. This in turn allows for smoothness proper-
ties to be founded as given in Section 4.2.2 in the next chapter.
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Remark 3.3. The solution time, as defined in Section 3.4.2, depends on a number
of design parameters of the OCP as a quadratic program, given the choice of a
linear time-invariant prediction model. This dependence is outlined in Table 3.3.
Given that the cost function is positive definite (Remark 3.1), QP optimisation
is known to be a P problem so that is solvable in polynomial time [KTK80] as
its size increases. The size of the OCP is directly associated with the number
of unknowns, which is directly proportional to the number of prediction steps
N. Consequently, the solution time of the OCP as a quadratic program will be
modelled as a polynomial with respect to N.

Assumption 3.6 (Solution time upper-bound). The upper-bound on solution time ζ

is monotonically increasing with the number of prediction steps N, modelled by a poly-
nomial of degree na,

ζ(p) :=
na

∑
i=0

ai(p)Ni (3.26)

for some constants ai(p), i ∈ {0, . . . , na} that depend on design parameters other than N.

The other parameters affect the required computational capacity in less obvi-
ous ways and are aggregated into the constants ai(p). Consequently,

η(p) :=
ζ(p)

h
:=

1
h

na

∑
i=0

aiNi. (3.27)

Parameters associated with the implementation aspect of the system are fixed.
Consequently, the dependence of the constants ai in the model of the solution

Design parameter Effect on solution time (3.26)

Number of prediction steps Size of OCP
Cost function attributesa Matrices of the OCP and their conditioning
Sampling timea Matrices of the OCP and their conditioning
Prediction model typea,b OCP form, either an NLP or QP
State/input constraints typea,b OCP form, either an NLP or QP
OCP representationb No. of constraints and unknowns of the OCP

aAggregated in the constants ai in (3.26).
bPrediction model and state/input constraints type constitute constitute the OCP constraints.

Table 3.3: Design parameters affecting solution time.
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time upper-bound ζ (3.26) on these design parameters not part of the consider-
ation. These constants are aggregations of the dependence of the solution time
upper-bound on design parameters other than the number of prediction steps N,
including design parameters that are attributed to the OCP which are the cost
function attributes, sampling time, type of constraints and representation of the
OCP as outlined in Table 3.3. The chosen solver algorithm is assumed to be insen-
sitive to numerical conditioning of the OCP, so that sampling time and attributes
of the cost function are assumed to not affect solution time. Since the rest of the
analytical design parameters are fixed along with those associated with imple-
mentation, the constants ai are assumed to be independent of p.

Assumption 3.7. The constants ai in (3.26) are independent of the chosen design pa-
rameters in p.

Finally, given that the solver algorithm, tolerance and numerical precision are
well-chosen, the solver is convergent and able to accurately find the solution of
the chosen OCP. As discussed in the introduction of the solver algorithm as a
design parameter, control performance can be assumed to be independent of the
OCP solver in the case of dQ-OCP, as long as the solver is convergent so that it
will find the one local (thus global) minimum of the OCP as a convex problem.

Assumption 3.8. The numerical solution of the OCP obtained using the chosen solver
algorithm, tolerance, and numerical precision is close to the true/analytical solution.

3.7 Multi-objective design of MPC

Let the design objectives be contained in a vector

`(p) = (V∗(p), η(p))

for ` ∈ Rn` and n` = 2. In this case, the vector contains the closed-loop control
performance1 and required computational capacity. The multi-objective design
of MPC (MOD-MPC) is posed as the following,

P•(Ps) := arg m-min
p

`(p) (3.28a)

s.t. p ∈ Ps ⊂ P . (3.28b)

1 J∗(p) is used instead of V∗(p) for the first objective in the case of open-loop evaluations.
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The minimisation (denoted m-min) is a multi-objective optimisation to find the
Pareto optimal design set P• for a given search space Ps. The search space is a
bounded set, that is a subset of the open setP , defining the range of the parameter
to be explored by the optimiser2 for the problem. This solution set contains the
Pareto optimal design choices for the practitioner to select from, based on the
Pareto front

L(Ps) :=
{
`(p), ∀p ∈ P•(Ps)

}
(3.29)

that shows the optimal trade-off between the two objectives. This is contrasted
to that of a single-objective optimisation where the solution correspond to one
minimum objective point. The Pareto optimal points that make up the Pareto
front are said to be non-dominated, as per Definitions 1.4 and 1.5.

Having defined Pareto optimality of an evaluation point, the importance of
Assumption 3.5 that defines the scalability between the simulation and imple-
mentation hardware is now clearer.

Proposition 3.1. Given satisfaction of Assumption 3.5, then a Pareto optimal point ob-
tained using the simulation hardware stays Pareto optimal for the implementation hard-
ware.

Proof. Let the utilisation number η associated with the solution time
upper-bound model ζ for the simulation hardware be given as η := ζ/h as per
(3.27). Suppose that the utilisation number associated with the implementation
hardware is denoted by ηI := ζI/h. Given that Assumption 3.5 holds,
ηI = aζ/h = aη for some positive constant a ∈ R>0. Now consider a point
`• = (V∗• , η•) that is Pareto optimal within some set of points L. The point
`I• = (V∗• , aη•) = (V∗• , ηI•) and set LI = {`I := (V∗, ηI) | ηI = aη, ∀(V∗, η) ∈ L}
denotes the equivalent in the implementation environment. For any point
`I ∈ LI to dominate `I•, the inequality ηI ≤ ηI• must hold (see Definition 1.4).
That is, aη ≤ aη• or η ≤ η•, which cannot be true since η• is associated with the
Pareto optimal point `• in L. By this contradiction, it is implied that there is no
point in LI that dominates `I•, and so `I• is Pareto optimal within LI. This is
illustrated in Fig. 3.2.

2To establish clarity and consistency, the term optimiser is associated with the multi-objective
design optimisation whilst solver is used for the OCP optimisation throughout the thesis.
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Figure 3.2: Illustration of the implication of the scalability of the solution time
upper-bound between simulation and implementation, ζI = aζ as per Assump-
tion 3.5. Pareto optimality is retained between the two cases.

The Pareto front L establishes the optimal trade-off relationship between the
objectives of the design problem. From the Pareto solution, a number of insights
can be drawn to assist with an effective design of MPC. First and foremost, the
curve defines the best control performance that can be achieved for a range of
computational capacity. Subsequently, a practitioner can select a particular de-
sign on the curve to achieve a specified performance, with the information on
the minimum computational capacity of the hardware for real-time control im-
plementation. By extension, the minimum cost for the hardware is can also be
obtained. Other conclusions that can be made based on the Pareto front include
the gradient of the curve which tells how much needs to be paid in terms of com-
putational capacity for a unit increase in performance.

Lastly, although intended to be performed offline, note that to evaluate an ob-
jective point `(p) given the design parameter p a set of closed-loop simulations
of the controlled plant needs to be performed. Multiple simulations are done to
obtain a more representative measure of performance, for example, an average
for a range of initial conditions, trajectories, or average performance under dis-
turbance. This motivates the development of an optimiser that is both accurate
and fast in finding the optimal solution to reduce the time required to obtain the
Pareto front of interest.
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3.8 Conclusions

A mathematical formulation of the proposed multi-objective design of MPC ap-
proach was presented in this chapter. Different elements of the design problem
were formalised. First, the OCP that defines the MPC framework was formu-
lated for the closed-loop control of a dynamic plant with its associated design
objectives and parameters. The two pertaining design objectives were outlined,
the first of which is control performance that is defined by the closed-loop value
function, and the second being the required computational capacity measured
by the utilisation number that defines a multiplier of the simulation hardware as
the specified benchmark. Subsequently, coupled design parameters were identi-
fied, which are those that has dictates the design objectives. The parameters were
further classified as either associated to the control algorithm or implementation
aspect of the closed-loop system, the former being the focus of the investigation.
Finally, the MOD-MPC approach was cast as a multi-objective optimisation prob-
lem, with an associated solution of the Pareto design choices that defines the op-
timal trade-off between the two objectives, providing useful insights for the prac-
titioner. Obtaining the solution involves closed-loop simulations of the plant and
can be time-consuming. Therefore, there is motivation for the use of an effective
and efficient algorithm that can find the solution accurately and quickly, which
will be discussed as part of the analytical results in the next chapter.
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Chapter 4
Properties and solution of the MOD-MPC problem

A substantial proportion of this chapter has already appeared as articles in the
journals Automatica and Control Engineering Practice [BKMM16, BMMK16a].

THE proposed multi-objective design of model-predictive control
(MOD-MPC) approach has been defined as a multi-objective optimisation

problem in Chapter 3. The novelty of such a scheme is recognised in the
literature review, with current multi-objective design analyses existing almost
exclusively for non-model-based controllers and without consideration of
computational cost as a design objective [RMGNSB13]. In turn, a systematic
solution technique for the MOD-MPC problem is lacking, leaving only
general-purpose and off-the-shelf methods such as evolutionary algorithms
[Deb01] available to use. Such methods might not be sufficient for the problem
in hand as time-consuming closed-loop simulations are needed to evaluate
objective points, even if it is intended to be done offline. A targeted optimiser
algorithm that can solve the optimisation problem effectively and efficiently
thus needs to be developed. This chapter acts on the established motivation by
analytically investigating key properties of the optimisation problem, in
particular the nature of the design objective functions and bounds on the
optimal parameter set, for the purpose of developing a targeted algorithm
illustrated by the design optimiser block in Fig. 3.1. Such an algorithm is
subsequently presented and validated on two test cases involving missile pitch
and submarine diesel engine control. The algorithm satisfies conditions
prescribed for accuracy and speed of the optimiser, and compared against
benchmarks from the literature to demonstrate its superior performance.

4.1 The dQ-OCP in dense representation

For the purpose of analysis, it is useful to recast the dQ-OCP (3.16) problem in a
compact/dense representation. Although the decision variables of the dQ-OCP
are given by x and u, the relationship between the states and inputs is dictated
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by the prediction model. Therefore, a specified input sequence is sufficient to
define the entirety of the OCP decision variables. The problem then can be recast
by writing the OCP in a dense QP form, where it is specified by the least possible
number of optimisation variables and a uniform set of constraints (in this case, all
inequalities). For the OCP recasting, let the optimisation variable be denoted by

z := u +Rx + H−1FTxi (4.1)

where R := diag (R ST
, . . . , R ST

, RrS
T
r ), z =: (z0, . . . , zN) and z ∈ RNnu . The

composite cost weight

H := 2 (B̃TQ̃B̃ + R) (4.2)

is positive definite and invertible, as a consequence of the restriction of a posi-
tive semi-definite Q and Qt, and a positive definite R when (3.4) is defined (Re-
mark 3.1). Further, the following block matrices are defined,

L := 2ÃTQ̃Ã− FH−1FT F := 2ÃTQ̃B̃

with block transition matrices

Ã :=

[
Ã

ÃrÃN

]
B̃ :=

[
B̃

ÃrÃN−1B ÃrÃN−2B · · · Br

]
(4.3a)

Ã :=


Ã0

Ã1

...
ÃN

 B̃ :=



0 · · ·
B

...
ÃB B 0

... . . . ...
ÃN−1B ÃN−2B B


(4.3b)

and block cost weights

Q̃ := diag
(

Q̃, . . . , Q̃, Q̃r, Qt

)
R := diag

(
R, . . . , R, Rr

)
. (4.4)

Here, the shifted matrices Ã := A − B R−1ST
, Ãr := Ar − BrR−1

r ST
r , Q̃ := Q −

S R−1ST
and Q̃r := Qr − SrR−1

r ST
r account for the cross terms in the cost function

(3.12a). Finally, let the matrices associated with the constraints be

Y := E + GH−1FT (4.5a)

50



4.2 Preliminary analysis

G :=


I −RB̃

−(I −RB̃)
B̃
−B̃

 W :=


û
−ǔ

x̂
−x̌

 E :=


RÃ
−RÃ
−Ã

Ã

 . (4.5b)

Consequently, the OCP can be written in standard form as

z∗ := arg min
z

Jz(z, p) :=
1
2
‖z‖2

H(p) +
1
2
‖xi‖2

L(p) (4.6a)

s.t. G(p)z ≤W(p) + Y(p)xi. (4.6b)

The dependence of the solution z∗ to (xi, p) will be omitted unless needed for
clarity. The associated value function of the OCP is

J∗z (xi, p) := J∗z (z
∗(xi, p), p)

= J∗(xi, p) = J∗(xi, p) from (3.19)

The standard dense formulation is commonly used, e.g. in [BMDP02], except that
z in (4.1) is modified slightly to accommodate for the cross terms associated with
S and Sr in (4.6a). Further, the residual prediction step changes the constituents
of the block matrices.

4.2 Preliminary analysis

In this section, a preliminary analysis concerning the sensitivities of the objective
functions with respect to the design parameters sampling time and prediction
horizon length. In the investigations that follow, the restricting case (3.24) is not
asserted, so that the prediction horizon length is generalised as a continuous pa-
rameter that is allowed to be a non-integer multiple of sampling time,

p = (h, T) ∈ Pc

where Pc := {(h, T) : T ≥ h}
⊆ R>0 ×R>0

Analysis will first be performed on the OCP in open-loop, in the absence of a
controlled plant. The closed-loop system will be subsequently analysed with a
linear plant, before the more realistic yet complex case with a non-linear plant
is considered.
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4.2.1 Underlying dQ-OCP properties

Differentiability of transition and cost matrices

The matrices A, B, Q, R, and S are differentiable with respect to h and indepen-
dent of T. The Taylor series expansion for the perturbation h+ := h + δh as
δh → 0 is

A+ := A(h+) = A(h) + ∂h A(h)δh +O(δ2
h)

and similarly for B, Q, R and S. The matrices Ar, Br, Qr, Rr and Sr are differen-
tiable with respect to hr, thus differentiable with respect to (h, T), for all hr ∈ (0, h)
since hr := T − Nh.

Feasibility

Existence of a solution to the dQ-OCP (4.6) depends on the feasibility of the OCP,
which in the context of designing the parameters of sampling time and prediction
horizon length is given in the following definition.

Definition 4.1 (Feasible design set POL
F (xi) of (4.6)). POL

F (xi) contains all p for
which the OCP (4.6) is feasible given a current state xi

1.

Note that without state and input constraints (3.4d) such that X = Rnx and
U = Rnu , the OCP will always be feasible as long as the sampling time and pre-
diction horizon length are chosen sensibly, that is, POL

F (xi) = P , ∀xi ∈ Rnx under
no state/input constraint.

Optimality of the OCP solution

The number of feasible solutions to the dQ-OCP is indefinite, given that the cho-
sen design set is feasible according to Definition 4.1. Within the feasible solution
set, the optimal solution of the dQ-OCP is well-defined, denoted by z∗. The re-
sulting optimal value function J∗z is the global (and only local) minima, given the
convexity of the QP [BV04]. Optimality of the solution is identified by the Karush-
Kuhn-Tucker (KKT) conditions [WN99]. A solution z∗ is the optimal solution to

1The complementary view is also useful; the feasible region XF(p) for a given p is a set of all
current states xi so that xi ∈ XF(p) implies that the OCP (4.6) is feasible.
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the dQ-OCP iff

∃µ :


−Hz∗ = GTµ

µ ≥ 0

µjcj(z∗) = 0 ∀j ∈ {1, . . . , nc}.

(4.7a)

(4.7b)

(4.7c)

The solution is z∗ = −H−1GTµ. H is invertible as defined in (4.2).
µ := (µ1, . . . , µnc) contains the Lagrange multipliers associated with the
constraints denoted by c(z) ≤ 0 where c(z) := Gz−W − Yxi. cj denotes the jth

constraint i.e. the jth row of c(z).

The active set A(z∗) :=
{

j|cj(z∗) = 0
}

contains the indices of the active con-
straints at the solution z∗. Let the accent ′ denotes correspondence to active con-
straints, e.g. µ́ := {µj|j ∈ A(z∗)}, µ́ ∈ Rna and na := |A| is the number of active
constraints. From the complementarity condition (4.7c), elements of µ for inactive
constraints must be zero, and those for the active constraints are

0 = ć = Ǵz∗ − Ẃ − Ýxi

= −ǴH−1ǴTµ́− Ẃ − Ýxi.

Therefore,

µ́ = −
(

ǴH−1ǴT
)−1 (

Ẃ + Ýxi
)

µ = IA(z∗)µ́.
(4.8)

The inverse in (4.8) exists iff Ǵ is full rank. IA ∈ {0, 1}nc×na is used to organise
the Lagrange multipliers of the active constraint µ́ into respective rows of µ.

Uniqueness and non-degeneracy

Although the optimal value function J∗z is unique for the dQ-OCP, the associated
solution z∗ might not be unique i.e. there might be more than one value of z∗

that gives the optimal value function. It is therefore worthwhile to investigate
the uniqueness of the solution z∗. A sufficient condition for the uniqueness of
the dQ-OCP solution is satisfaction of the linear independence constraint qual-
ification (LICQ) [WN99], achieved if the active constraint gradients are linearly
independent, i.e. Ǵ has full row rank, so that the solution (4.8) to the KKT condi-
tions (4.7) is unique.
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Definition 4.2 (Non-degenerate OCP). An OCP (4.6) with solution z∗ and active
set A(z∗) whose active constraint gradients Ǵ satisfies LICQ is defined as non-
degenerate.

Non-degeneracy can, for example, be guaranteed by removing state
constraints, leaving only constraints on the predictive input.

Lemma 4.1. For a solution z∗ of the OCP (4.6), if X = Rnx and u < u, then LICQ
is satisfied.

Proof. With no state constraints, G constitutes only the upper two row blocks
in (4.5). Linear dependence comes from row pairs r and r + (N + 1)nu for r ∈
{1, . . . , Nnu}, each with rows that are negative multiples of each other. These
correspond to the upper and lower-bound for an input element that cannot both
be active simultaneously. Therefore the active constraint gradients in the rows of
Ǵ must be linearly independent.

The exact conditions that guarantee non-degeneracy is outside the scope of
the study, and the dQ-OCP is assumed to be non-degenerate, guaranteeing that
regardless of the choice of parameters p, the optimal solution is unique.

Assumption 4.1 (Non-degenerate OCP). The OCP (3.4) is non-degenerate so that its
solution (u∗, x∗) is unique.

Continuity of the OCP solution

The residual sampling time hr ensures that the solution of the dQ-OCP remains
continuous across changing N.

Lemma 4.2 (Continuity of z∗ at T/h ∈ N>0). Consider the OCP (4.6) that is non-
degenerate per Definition 4.3, given an xi ∈ Rnx such that p ∈ POL

F (xi) 6= ∅. The
unique optimal solution p 7→ z∗(xi, p) of the OCP is a continuous function of p at
T/h ∈N>0 i.e. at boundaries where N changes.

Proof. An OCP (4.6) with N prediction steps and hr = 0 has the same solution z∗

as that with N − 1 steps and hr = h, relying on the non-degeneracy of the OCP
(Assumption 4.1) hence uniqueness of z∗. z∗ has effectively the same dimension
N for both cases. Hence, z∗ must be continuous at the N to (N− 1) boundary.
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4.2.2 Open-loop analysis

The following analysis considers the optimal control at a given sampling instant
in open-loop, without being closed in a feedback with a plant. The analysis is
done around the sensitivity of the problem with respect to sampling time and
prediction horizon length. Such an analysis forms the basis for the more compre-
hensive closed-loop study. In itself, the open-loop analysis extends investigations
such as [BB14] that solely analyse sampling time.

Smoothness properties

To show smoothness properties, a perturbation h+ := h + δh and/or T+ := T +

δT as δh → 0 and/or δT → 0 is performed. Consider when the perturbation
does not change N = bT/hc. Let the perturbed optimal solution be z+, with
perturbed Lagrange multipliers µ+ and perturbed value function J∗+z . To prove
that J∗z is differentiable, the differentiability of the Lagrange multipliers and dQ-
OCP solution are first considered.

Lemma 4.3 (Differentiability of µ). The Lagrange multipliers µ associated with an
OCP (4.6) are differentiable with respect to p for a given N and satisfaction of Assump-
tion 4.1.

Proof. The proof is given in Appendix C.1.

Lemma 4.4 (Continuity of z∗). For an OCP (4.6), the solution z∗ is differentiable with
respect to p for a given N and satisfaction of Assumption 4.1. Guarantees of differentia-
bility are lost across changes in N.

Proof. The proof is given in Appendix C.2.

Knowing the differentiability of the Lagrange multipliers and solution to the
dQ-OCP, the main result of the differentiability of the open-loop value function
can be stated.

Theorem 4.1 (Continuity of J∗z ). Consider the OCP (4.6), given an xi ∈ Rnx such
that p ∈ POCP

F (xi) 6= ∅ and Assumption 4.1 is satisfied. The open-loop value function
p 7→ J∗z (xi, p) is a
• continuous function of p,
• differentiable function of p for a fixed N = bh/Tc.
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Proof. Consider the value function J∗z (xi, h, T) of problem (4.6) at a solution z∗,
with µ satisfying the KKT conditions (4.7). Consider a perturbation h+ := h + δh

as δh → 0 and T+ := T + δT as δT → 0 that does not change N = bT/hc. From
Lemma 4.4, and satisfaction of Assumption 4.1, the perturbed value function can
be expressed as

J∗z (xi, h+, T+)

= J+z (z+) + ∂h Jz(z+)δh + ∂T Jz(z+)δT +O(δ2
h, δ2

T)

= ‖z∗ + ∂hzδh + ∂TzδT‖2
H+∂h Hδh+∂T HδT

+ ‖xi‖2
L+∂hLδh+∂T LδT

+O(δ2
h, δ2

T)

= J∗z (xi, h, T) + ∂h J∗z δh + ∂T J∗z δT +O(δ2
h, δ2

T)

for some finite ∂h J∗z (p) and ∂T J∗z (p). Hence, the value function J∗z is differentiable,
thus also continuous with respect to p for a fixed N. At boundaries where N
changes, continuity of the value function is implied by Lemma 4.2.

Numerical example

To illustrate the results, consider a harmonic oscillator

ẋ =

[
0 ω

−ω 0

]
x+

[
0
1

]
u. (4.9)

with ω = 1. Following a number of trials on different plant models, the har-
monic oscillator is chosen as it helps to best demonstrate the theoretical results
numerically. The cost weights are chosen as

Q =

[
3 0
0 2

]
, R = 1 (4.10)

and Qt is chosen differently for the two examples considered, Qt = 10Q for the
first and Qt = 02×2 for the second.

If no state constraint is imposed, non-degeneracy is guaranteed (Lemma 4.1).
An illustrative case is given in Fig. 4.1, where only the input is constrained to be
u ∈ [−1/4, 1/4]. The open-loop value-function remains continuous and appears
differentiable with changing active set and non-differentiable across changes in
N, as per Theorem 4.1. Non-monotonicity with respect to p is observed, particu-
larly more often at small sampling times.

The problem is degenerate if state constraints are imposed (in relation to
Lemma 4.1). Solution to the KKT conditions is non-unique, inconsistent with
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Figure 4.1: Open-loop value function J∗z = J∗ for the harmonic oscillator (4.9)
with the dQ-OCP (4.6). u ∈ [−1/4, 1/4], xi = (1, 1), Qt = 10Q. The contour of
|A(z∗)| is plotted on the z-plane.

(3.27). Consequently, continuity is not guaranteed anymore across active set
changes, as seen in Fig. 4.2. Discontinuity happens at h = π, where the size of
the active set changes to 2 from either 5 or 4. The loss of guarantee is consistent
with the results in [BBBM08]. The figure also demonstrates the region associated
with the infeasible design set p /∈ POCP

F (xi).

T
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Figure 4.2: Open-loop value function J∗z = J∗ for the harmonic oscillator (4.9)
with the dQ-OCP (4.6). x ∈ [−1, 1], u ∈ [−1, 1], xi = (1, 1), Qt = 02×2. The
contour of |A(z∗)| is plotted on the z-plane.
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4.2.3 Closed-loop analysis with linear plant

The linear closed-loop system is defined by ẋ(t) = Ax+Bκ(x, p), ∀t ∈ [ih, ih + h),
∀i ∈N≥0, and its discrete-time equivalence

xi+1 = Axi + Bκ(xi, p) ∀i ∈N≥0 (4.11)

to follow the non-linear closed-loop system definition in (3.2). As in (3.17), A :=
eAh and B :=

∫ h
0 eA(h−τ)dτ B. Since the plant is linear, the control law

κ(xi, p) := u∗0 (4.12)

is naturally obtained from the OCP with a linear prediction model (4.6) (derived
from (3.16)) with A = A, and B = B.

The linear closed-loop value function is thus defined as follows

U∗(x0, p) :=
∞

∑
i=0

U(xi, ui, p) (4.13a)

s.t. xi+1 = Axi + Bui ∀i ∈N≥0

ui = κ(xi, p).

}
(4.13b)

The cost function is chosen, again, as a quadratic as per (3.22)

U(xi, ui, p) :=

[
xi

ui

]T [
Q S

ST R

] [
xi

ui

]
(4.14)

where the cost weighting matrices are as defined in (3.18) so that U(xi, ui, p) =

U(xi, ui). Note that the dependence of this cost function to ui can be omitted
when the full system (4.13) is considered, since ui = κ(xi, p). To numerically
calculate the value function U∗, the closed-loop simulation must be performed
in finite time t ∈ [0, Tsim := Nsimh] so that the infinite series is truncated after
Nsim ∈N>0 steps.

Feasibility and stability of the closed-loop system

In closed-loop, the notion of feasibility (Definition 4.1) is extended to recursive
feasibility. This requires control invariance, such that for an initial state x0 the
MPC law is feasible and keeps the system (4.11) feasible at all subsequent sam-
pling steps i.e. xi+1 = Axi + Bκ(xi, p) ∈ XF, ∀i ∈ N≥0 (see Footnote 1). This can
be guaranteed with appropriately chosen design parameters h and T [May14].

58



4.2 Preliminary analysis

Definition 4.3 (Feasible design set PCL
F ). The feasible design set PCL

F (x0) contains
all p such that the linear closed-loop system (4.13) is recursively feasible given an
initial state x0.

Remark 4.1. As in the open-loop case, under no state/input constraint, the feasible
design set of the closed-loop system covers all choice of the design parameters as
long as it is sensible so that PCL

F (x0) = P , ∀x0 ∈ Rnx .

The closed-loop value function in (4.13a) is an infinite series. For it to be
finite-valued, it has to be convergent, which can be guaranteed by stability of
the closed-loop system.

Definition 4.4 (Stable design set PCL
S ). The stable design set PCL

S (x0) ⊆ PCL
F (x0)

contains all p such that the linear closed-loop system (4.13) has a region of at-
traction containing the initial state x0 as well as an origin that is reachable and
exponentially stable.

Lemma 4.5 (Exponential stability). If (A, B) in the OCP (3.16) is reachable, and[
Q S
ST R

]
and

[
Qr Sr

ST
r Rr

]
are positive semi-definite, then the origin of the closed-loop system

(4.13) with an unconstrained OCP (3.16a)–(3.16c) is exponentially stable.

Proof. The proof of the lemma follows Theorem 4.1 in [CGS84].

Remark 4.2. In Lemma 4.5, the reachability condition requires that (A, B) is reach-
able, and h 6= 2πn/=(λi(A)− λj(A)), ∀i, j ∈ {1, . . . , nx}, i 6= j, n ∈ N>0 [LSA71]
when A has complex eigenvalues. Let PCR contain all of these ‘critical’ sam-
pling times. The second condition regarding positive semi-definiteness is equiv-
alent to having a positive semi-definite stage cost, which has been guaranteed
by a positive semi-definite Q and positive definite R. It follows that PCL

S (x0) ⊆
PCL

F (x0)\{p|h ∈ PC}. Stability of the closed-loop system (4.6) is discussed for
example in [RM93].

Lemma 4.6. For p ∈ PCL
S (x0), the closed-loop value function U(·, ·, x0) in (4.6) is a

convergent infinite series that is finite-valued.

Proof. p ∈ PCL
S (x0) implies the exponential stability of (4.13). Thus, the ratio test

[Ste11] on (4.14) yields

lim
i→∞

U(xi+1, p)
U(xi, p)

= ρ < 1.
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Therefore, U∗ is a convergent series and finite-valued in the limit i→ ∞.

Smoothness properties

In control applications, the closed-loop value function is a true measure of per-
formance. Smoothness properties of the closed-loop value function can be estab-
lished following the results for the open-loop case.

Lemma 4.7 (Differentiability of state transition). The transition of the state (4.13b)
of the closed-loop system (4.13) is differentiable with respect to (h, T) for a given N.

Proof. Consider the state transition at time i = 0; x1 = Ax0 + Bu∗0(x0, h, T)2.
The OCP solution is differentiable with respect to (h, T) for a given N as per
Lemma 4.4, hence also the optimal input. That is, the perturbation h+ := h + δh

as δh → 0 yields u∗0
+(xi) = u∗0(xi) + ∂hu∗0(xi)δh +O(δ2

h) and

x+1 =
(
A+ ∂hAδh

)
x0 +

(
B+ ∂hBδh

)
(u∗0(x0) + ∂hu∗0(x0)δh) +O(δ2

h)

= x1 + ∂hx1δh +O(δ2
h).

So, at each sampling instant after the initial, x+i = xi + ∂hxiδh +O(δ2
h), ∀i ∈ N>0.

A perturbation on T affects the system similarly.

Consider now the properties of the term U for the closed-loop value function
U∗ (4.13a), following Theorem 4.1.

Lemma 4.8 (Differentiability of U). Consider the OCP (3.16), given an xi ∈ Rnx such
that (h, T) ∈ POCP

F (xi) 6= ∅ and Assumption 4.1 is satisfied. The first element of the
cost function (h, T) 7→ U(xi, h, T) is differentiable with respect to (h, T) for a fixed N.

Proof. For a perturbation h+ := h + δh as δh → 0 which does not change N, U
(4.14) is expressed as

U+ := U(x+i , h+) =

∥∥∥∥∥
[

x+i
u∗0

+(xi)

]∥∥∥∥∥
2

[
Q+ S+

S+T
R+

]

for some perturbed cost weights Q+
, R+ and S+

, current state x+i , and optimal
input u∗0

+(xi). The cost weights are differentiable; Q+
= Q + ∂hQδh + O(δ2

h)

2Note that ui = κ(x0, p) = u∗0(x0, p) as per (4.12).
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etc. Lemma 4.7 states that the current state and optimal input are differentiable.
Hence, the perturbed value of U can be expressed as

U+
=

∥∥∥∥∥
[

xi + ∂hxiδh

u∗0(xi) + ∂hu∗δh

]∥∥∥∥∥
2

[
Q+∂hQδh S+∂hSδh
(S+∂hSδh)

T R+∂hRδh

] +O(δ2
h)

= U(xi, h) + ∂hUδh +O(δ2
h).

U is independent of T and thus the proof is complete.

Theorem 4.2 (Continuity of U∗). Consider the MPC system (4.13), given an x0 ∈ Rnx

such that (h, T) ∈ PCL
S (x0) 6= ∅ with an OCP (3.16) satisfying Assumption 4.1. The

closed-loop value function (h, T) 7→ U∗(x0, h, T) is a
• continuous function of (h, T),
• differentiable function of (h, T) for a fixed N = bh/Tc as per (3.15).

Proof. The closed-loop value function (4.13a) is a sum of the terms U so that

U∗+ := U∗(x0, h+, T+) = U(x0, h+, T+) +
∞

∑
i=1

U(x+i , h+, T+).

For (h, T) ∈ PCL
S (x0), the summation series would be convergent (finite-valued)

by Lemma 4.6. From Lemmas 4.7 and 4.8, U∗+ can be expanded to yield

U∗+ = U(h+, T+, x0) +

U(h+, T+, x1 + ∂hx1δh + ∂Tx1δT) +

U(h+, T+, x2 + ∂hx2δh + ∂Tx2δT) + . . .+

U(h+, T+, x∞ + ∂hx∞δh + ∂Tx∞δT) +O(δ2
h, δ2

T)

= U∗(x0, h, T) + ∂hU∗δh + ∂TU∗δT +O(δ2
h, δ2

T).

for some finite ∂hU∗(h, T) and ∂TU∗(h, T). Therefore, the value function U∗ is dif-
ferentiable with respect to (h, T) for a fixed N. At boundaries where N changes,
continuity of the value function is implied by Lemma 4.2.

Numerical example

Fig. 4.3 plots the closed-loop value function for the harmonic oscillator (4.9) with
cost weights (4.10) and Qt = PDARE. PDARE is the solution of the discrete alge-
braic Riccati equation, chosen to emulate an infinite horizon cost. The function is
continuous as per Theorem 4.2. Non-differentiability at changing N is observed.
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Figure 4.3: Closed-loop value function U∗ for the harmonic oscillator (4.9). |u| ≤
1
4 , x0 = [1 1]T, Qt = PDARE, Nsim = 250. z-axis is truncated for clarity.

The value function becomes very large around h = π, as π ∈ PC is a critical
sampling time for the system (4.9) [LSA71]. The discrete-time plant (A,B) loses
full controllability and is unstable, as {(h, T)|h = π} /∈ PCL

S (x0) (Remark 4.2). At
these points the value function U∗ becomes unbounded and continuity is lost.

One might expect that longer prediction horizons and/or shorter sampling
intervals are always desirable; a longer prediction horizon retrieves more future
information while a shorter sampling interval gives better information resolution
and more responsiveness, since control actions can be applied at a higher rate.
Fig. 4.3 demonstrates that these expectations are however not necessarily upheld.
It shows that there are multiple local minima on the surface with respect to both
sampling interval and prediction horizon, particularly at smaller sampling times.
The non-monotonicity is made clear by the subplots showing slices for a given h
or T. This is also observed in the open-loop case with respect to h (Fig. 4.1).

4.3 Key properties of the MOD-MPC system

Having analysed the preliminary case involving a linear controlled plant, this
section will consider the more relevant case where a non-linear plant is controlled
in a closed-loop MPC system. This section will analyse the MOD-MPC system
(3.28) to reveal its key attributes under the chosen design parameters defined in
Section 3.6. These include the smoothness properties and bounds on the objective

62



4.3 Key properties of the MOD-MPC system

and design parameters, establishing the underlying assumptions and guarantees
that are useful for the subsequent development of a numerical optimiser for the
problem. Based on the analytical foundation, a targeted solution method that is
both effective and efficient can be appropriately developed.

4.3.1 Nature of the design objectives

Smoothness properties of the two objectives are fundamental in the theoretical
formulation of the MOD-MPC problem. In particular monotonicity properties
underlies the conclusion of the nature of the extrema of the optimisation, which
is either associated with multiple local minima or a single minimum. Further-
more, monotonicity properties reveal the competing nature of the two objectives,
in which one objective can only be made better off by compromising the other. Fi-
nally, the revealed continuity properties of the design objectives can be adapted
for the efficiency of the developed optimiser.

Monotonicity

The model used for the required computational capacity η (3.27) has the follow-
ing monotonicity property.

Proposition 4.1 (Monotonicity of η). Consider the required computational capacity
η(·) in (3.27) and that Assumption 3.6 holds. For p := (h, N), p 7→ η(p) is:
• monotonically decreasing with respect to h,
• monotonically increasing with respect to N.

Proof. The monotonicity of η can be directly taken from the dependence of η to h
and N as given in (3.27).

On the other hand, the control performance as measured by the closed-loop
value function V∗ is non-monotonic.

Proposition 4.2 (Non-monotonicity of V∗ with respect to h). Consider the control
performance V∗(X0, ·), X0 ⊆ XS as in (3.23) and that Assumptions 3.3, 3.4, 3.8 and 4.1
hold. For p := (h, N), h 7→ V∗ (X0, p) is generally non-monotonic. Specifically, the sets
H+ and H− are such that h 7→ V∗ (X0, p) is monotonically increasing ∀h ∈ H+ and
monotonically decreasing ∀h ∈ H−.
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Proof. Consider the closed-loop system3. For a fixed N, increasing h both desir-
ably increases the prediction horizon length T = Nh but also undesirably slow-
ing down the sampling rate 1/h of the closed-loop system. At the limit h → 0
(T → 0), the system performs badly since the control prediction barely, if at all,
captures any dynamics of the system. As h is increased, performance is improved,
until some point where all important dynamics are captured. Increasing predic-
tion length is no longer as influential as the delayed sampling rate, after which
the performance is worsened with increasing h. Therefore, the value function
U(x0, (·, N)) is generally non-monotonic with respect to h. V is a linear combi-
nation of U and thus obeys the same properties. Consequently, there are two
mutually exclusive sets H+ and H−, where H+ ∪ H− = R>0, such that for all
ha ∈ H+ and hb ∈ H+, if hb ≥ ha then V(X0, (hb, N)) ≥ V(X0, (ha, N)). H− is
defined similarly.

Proposition 4.3 (Non-monotonicity of V∗ with respect to N). Consider the control
performance V∗(X0, ·), X0 ⊆ XS as in (3.23) and that Assumptions 3.3, 3.4, 3.8 and 4.1
hold. For p := (h, N), N 7→ V∗ (X0, p) is generally non-monotonic. Specifically, the
sets N+ and N− are such that N 7→ V∗ (X0, p) is monotonically increasing ∀N ∈ N+

and monotonically decreasing ∀N ∈ N−.

Proof. Consider the closed-loop system3. For a fixed h, increasing N increases the
prediction horizon length T = Nh. As a result more dynamics, as well as plant-
model mismatch, are captured by the prediction. There is a trade-off balance be-
tween the two so that the value function U(x0, (h, ·)) is generally non-monotonic
with respect to N. V is a linear combination of U and thus obeys the same prop-
erties. Consequently, there are two mutually exclusive sets N+ and N−, where
N+ ∪ N− = N>0, such that for all Na ∈ N− and Nb ∈ N−, if Nb ≥ Na then
V(X0, (h, Nb)) ≤ V(X0, (h, Na)). N+ is defined similarly.

Remark 4.3. Propositions 4.2 and 4.3 are confirmed by the numerical observations
in Section 4.2.

3with an OCP (3.16) satisfying Assumptions 3.3, 3.4, 3.8 and 4.1 with sampling time h, N
prediction steps, a solution (x∗, u∗) and closed-loop value function U∗(x0, (h, N)), ∀x0 ∈ XS as
in (3.21) .
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Continuity and differentiability

The continuity of the solution of the OCP (4.6) (derived from (3.16)) with respect
to p is described in the following.

Lemma 4.9 (Continuity of u∗). Consider the OCP (4.6) satisfying Assumptions 3.3,
3.4, 3.8 and 4.1. The unique optimal solution p 7→ u∗(xi, p) of the OCP is differentiable
with respect to h for a given N.

Proof. The proof follows the continuity of z∗ given in Lemma 4.4. From (4.1),
z∗ := u∗ +Rx∗ + H−1FTxi, therefore u∗ follows the continuity properties of z∗.

Theorem 4.3 (Continuity of V∗). Consider the control performance V∗(X0, p), X0 ⊆
XS as in (3.23) and that Assumptions 3.3, 3.4, 3.8 and 4.1 hold. If Assumption 3.1 holds,
for p := (h, N), h 7→ V∗ (p) is continuous with respect to h.

Proof. Let f(·, ·) satisfy Assumption 3.1. Let z(·, ·) be the solution of ẋ = f(x, u).
u 7→ z(t, u) is continuous with respect to u (Theorem 3.5 in [Kha02]). The control
law u(τ) = u∗0(x(ti), p), ∀τ ∈ [ih, ih + h), ∀i ∈ N≥0 in (3.21d) where p := (h, N).
From Lemma 4.9, u is continuous and differentiable with respect to h. This implies
that the solution h 7→ z(t, u∗0(x(ti), (h, N))) is continuous with respect to h for a
given N. h 7→ U∗(x0, (h, N)), ∀x0 ∈ XS in (3.21) is thus continuous with respect to
h for a given N and satisfaction of Assumptions 3.3, 3.4, 3.8 and 4.1. V∗ is a linear
combination of U∗ and thus has the same monotonicity properties.

The differentiability of the closed-loop value function can be described and is
stated in the following.

Theorem 4.4 (Differentiability of V∗). Consider the control performance V∗(X0, p),
X0 ⊆ XS as in (3.23) and that Assumptions 3.3, 3.4, 3.8 and 4.1 hold. If Assumptions 3.1
and 3.2 hold, for p := (h, N), p 7→ V∗ (p) is differentiable with respect to h for a
given N.

Proof. Let f(·, ·) satisfy Assumptions 3.1 and 3.2. Let z(·, ·) be the solution of ẋ =
f(x, u). u 7→ z(t, u) is differentiable with respect to u (Theorem 3.5 and Section 3.3
in [Kha02]). The control law u(τ) = u∗0(x(ti), p), ∀τ ∈ [ih, ih + h), ∀i ∈ N≥0 in
(3.21d) where p := (h, N). From Lemma 4.9, u is continuous and differentiable
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with respect to h. This implies that the solution h 7→ z(t, u∗0(x(ti), (h, N))) is dif-
ferentiable with respect to h for a given N. h 7→ U∗(x0, (h, N)), ∀x0 ∈ XS in (3.21)
is thus differentiable with respect to h for a given N and satisfaction of Assump-
tions 3.3, 3.4, 3.8 and 4.1. V∗ is a linear combination of U∗ and thus has the same
monotonicity properties.

Competing nature

The competing nature of a pair of functions that are both to be minimised (or
maximised) is defined in Definition 1.6. In the multi-objective design of MPC,
both the closed-loop value function V∗ and required computational capacity η

are to be minimised. Based on Proposition 4.1, as well as Propositions 4.2 and 4.3,
the two design objectives of control performance and required computational ca-
pacity are competing. This is detailed in the following.

Lemma 4.10 (Competing design objectives). The objective functions V∗(X0, ·),X0 ⊆
XS, and η(·) are competing as per Definition 1.6 within the design parameter set PC =

(H+ × N−) from Proposition 4.1, Propositions 4.2 and 4.3, and given that Assump-
tions 3.3, 3.4, 3.6–3.8 and 4.1 hold.

Proof. Consider Proposition 4.1, Propositions 4.2 and 4.3, and satisfaction of As-
sumptions 3.3, 3.4, 3.6–3.8 and 4.1. η is monotonically decreasing with respect
to h and increasing with N. V∗ is non-monotonic with respect to h and N, and
there exist a set such that V∗ is increasing with respect to h and decreasing with
respect to N, given by PC = (H+ ×N−) from Propositions 4.2 and 4.3. Within
this set, ∀p ∈ PC, p 7→ V∗(p) is monotonically increasing whilst p 7→ η(p) is
monotonically decreasing, or vice versa.

The search space Ps is assumed to intersect with PC so that the MOD-MPC
solution P• exist. Associated with the solution is the Pareto front L in (3.29)
which consists of Pareto optimal points as defined in Definition 1.5, each of which
is a Pareto design choice p ∈ P• ⊆ Ps.

Assumption 4.2. P• = Ps ∩ PC 6= ∅.

Further to its Pareto optimality, the quality of a point can be specified by its
rank, such that all Pareto optimal points in a given set of points have a rank of 1.
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The Pareto optimal points in the set that excludes points with rank 1 have rank 2,
and so on.

Definition 4.5 (Rank). Given a countable set of points P , if a point j is Pareto
optimal then its rank rj = 1. Subsequently, a point j has rank rj = ρ if it is Pareto
optimal in P \ Pρ−1 where Pρ is the set of all points with rank r ≤ ρ.

4.3.2 Bounds on the optimal parameter set

The first bounding of the design parameter comes from the fact that it is numer-
ically impractical to search the open set P in (3.25). Hence, the search space Ps

in (3.28) must be a closed set Ps ⊂ P that is able to be practically searched to find
the Pareto design set P•. Next, an assumption on the Pareto design set can be
made based on the nature of the design problem.

Assumption 4.3 (upper-bound on h). For a given N > 1, the Pareto design set is
upper-bounded by ĥ. This bound is defined by the notion that ∃ĥ ∈ Ps such that ∀h > ĥ,
`((h, N − 1)) ≺ `((h, N)).

Remark 4.4. Assumption 4.3 comes from the fact that as the sampling time h is
increased for a given number of prediction steps N, the competitive effect of re-
ducing the required computing capacity will be diminished and surpassed by the
deterioration in control performance as a result of more infrequent sampling. At
this point, using fewer prediction steps, e.g. N− 1, would reduce the capacity re-
quired more competitively than deteriorating performance. The opposite is also
true; as the sampling time is shortened, the effect of increasing control perfor-
mance due to a finer sampling would eventually be overtaken by an increase in
computing capacity required, after which increasing N, to e.g. N + 1, would be
more competitive in increasing performance.

Assumption 4.4 (Lower-bound on h). For a given N ≥ 1, the Pareto design set is
lower-bounded by ȟ. This bound is defined by the notion that ∃ȟ ∈ Ps such that ∀h < ȟ,
`((h, N + 1)) ≺ `((h, N)).

Based on the bounds on the sampling time and the smoothness properties of
the design objectives defined in the earlier subsection, bounds can be specified
for P•.
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Theorem 4.5 (Bound on P•). Consider a rectangular search space Ps = {(h, N) : h ∈
[h, h] and N ∈ [N, N]} and that Assumptions 4.3 and 4.4 is satisfied. The Pareto design
set P• is contained within the band Pb := {p : h ≤ m1N + h1 and h ≥ m2N + h2} for
some negative gradients mi ∈ R<0 and constants hi, i ∈ {1, 2}.

Proof. Consider a Pareto design set P• in a rectangular search space
Ps =

{
(h, N) : h ∈ [h, h] and N ∈ [N, N]

}
. For a given number of prediction

steps N > 1, let the sampling times corresponding to the Pareto design set have
an upper-bound from Assumption 4.3 denoted ĥN. Paraphrasing the
assumption, ∃h such that `((h, N − 1)) ≺ `((h, N)), ∀h > ĥN for the given
upper-bound ĥN. Consequently, there must exist an upper-bound associated
with N − 1 prediction steps ĥN−1 that is larger than the upper-bound ĥN, giving
ĥN < ĥN−1. Therefore, the Pareto design set can be upper-bounded by a line of
negative gradient with respect to N. An opposite notion can be made using
Assumption 4.4 to form a lower-bound with a negative gradient. This gives a
bound in the form of a band Pb as in the theorem.

4.4 Numerical solution of the MOD-MPC problem

4.4.1 Effective and efficient optimiser characteristics

Analysis of the key properties of the system results in a number of characteris-
tics required by a proposed numerical optimiser used to solve the MOD-MPC
problem (3.28) accurately and quickly, as summarised below.

Condition 4.1 (Convergent). Lemma 4.10 implies that there is a Pareto optimal
design set P• for a given search space Ps associated with the trade-off of the
competing objectives. The optimiser should be able to effectively find P• with
certain guarantees.

Condition 4.1a (Global). Propositions 4.1–4.3 define that the required computa-
tional capacity η is monotonic and that the value function V∗ is non-monotonic.
The optimiser needs to search globally and handle the many local optima on the
objective surface.

Condition 4.1b (Able to handle discrete parameters). The optimiser must be able
to handle discrete design parameters defined in (3.25).
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4.4 Numerical solution of the MOD-MPC problem

Remark 4.5. Conditions 4.1a and 4.1b are necessary conditions for Condition 4.1
to be fulfilled. Satisfaction of these two is not always sufficient to satisfy Condi-
tion 4.1.

Condition 4.1 (necessarily with Conditions 4.1a and 4.1b) is a sufficient con-
dition for a numerical optimiser to be accurate (convergent to the solution) for
the MOD-MPC problem. Additional features are necessary for the optimiser to
converge quickly and efficiently.

Condition 4.2 (Continuous). The optimiser could rely on Theorems 4.3 and 4.4
that define the continuity/differentiability of the value function V∗ based on the
knowledge of f(·, ·).

Condition 4.3 (Focussed). Theorem 4.5 states that for a rectangular search space,
the Pareto optimal design set is located within a specific space defined as a band.
As a consequence, the optimiser should be able to focus its search within the band
and omit any ineffectual space.

Remark 4.6. Conditions 4.2 and 4.3 are sufficient for the optimiser to be efficient
and performs better than a general-purpose optimiser.

4.4.2 Dividing Triangles (DITRI) optimiser

Having now specified the sufficient conditions for an effective and efficient op-
timiser, a specialised algorithm satisfying all the conditions can be proposed for
the MOD-MPC problem. The algorithm is based on Lipschitzian optimisation
[JPS93], denoted Dividing Triangles (DITRI).

Projection of bounds

The principles of Lipschitzian optimisation are outlined in Algorithm 1. In each
iteration, given a set of point(s) P, a point pj ∈ P is potentially optimal if its
projected lower-bound of the (minimised) objective within the associated search
space must be equal or better than all points in P. The search space of all poten-
tially optimal points will be partitioned into smaller divisions and a new point is
the evaluated in each subdivision.

The bound projection must be consistent throughout, dictated by a constant
referred to as the Lipschitz constant, hence the name of the algorithm. The pro-
jected bound L(dj) of an evaluated objective `(pj) ∈ R1 in a search space of size
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Algorithm 1 Generic Lipschitzian optimisation

Require: Search space bounds
1: Evaluate initial point(s)
2: repeat
3: Find a set O of potentially optimal points
4: for all o ∈ O do
5: Evaluate new points based on the search space division of poten-

tially optimal point o
6: end for
7: until iteration or evaluation count limit is reached

dj is defined as L(dj) = `(pj)−KLdj for some Lipschitz constant KL > 0. The pro-
jection relies on the continuity of the objective to comply with Condition 4.2. For
a point pj, the bound is better (smaller) if it has a smaller objective `(pj) and/or a
bigger search space size dj. The point j is potentially optimal if L(dj) ≤ L(di) for
all i ∈ P, that is

`(pj)− KLdj ≤ `(pi)− KLdi, ∀i ∈ P for a given KL > 0. (4.15)

Potential optimality classification

Potential optimality of a design choice is classified by its Pareto optimality (Def-
inition 1.5). More precisely, the classification is based on the rank r of the point
(Definition 4.5). The specification of the Lipschitz constant is tightened from
KL > 0 to KL = ε where ε is a very small positive number, giving

rj − KLdj ≤ rj − KLdi, ∀i ∈ P, KL = ε. (4.16)

This criterion helps to quickly localise regions of optimal solutions, ultimately
allowing for a more efficient convergence to comply with Condition 4.3.

Potential optimality selection can be intuitively illustrated on an f -d plot
(Fig. 4.4). A point j satisfies (4.15) if there is a line intersecting the point with a
gradient KL > 0 such that all other points lie above the line in f -d coordinates.
Consequently, all potentially optimal points lie on the lower right edge of the
convex hull of the points. The tightened requirement to KL = ε in (4.16)
effectively means that only points with the lowest objective values (rank) are
chosen to be potentially optimal.
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Figure 4.4: Potential optimality selection.

In addition to the criterion (4.16) to classify a point j as potentially optimal,
the criterion

dj > d(i) (4.17)

is used to guarantee convergence in Condition 4.1. d(i) is monotonically decreas-
ing with i and limi→∞ d(i) = 0. This asserts that search spaces that are relatively
much bigger are divided, effectively guaranteeing a global search. Consequently,
all the search space divisions will eventually be divided regardless of satisfaction
of the condition (4.16).

Search space normalisation, bounds, division and size

The search space is bounded rectangularly, specified by p and p containing the
lower- and upper-bounds for each design parameters. A normalised point c is
defined as

c = (p− p)� (p− p),

so that p = p + (p− p)⊗ c. (4.18)

Theorem 4.5 allows for improving search efficiency by focusing on the band Pb

defined in the theorem. To efficiently locate the specified band, the search will
be simplex-based (triangular) as illustrated in Fig. 4.5. In each iteration, every
potentially optimal simplex is divided to form two simplices of equal size. The
size measure d used in criteria (4.16) and (4.17) is the longest distance from the
centre to the vertices of the simplex.

The efficiency of a simplex-based search comes from the fact a simplex is the
basic polytope in any n-dimension. The approach is contrasted to the classical
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Figure 4.5: Illustration of simplex division over two iterations.

implementation of Lipschitzian optimisation whereby hyper-rectangles are used
(Dividing Rectangles, or DIRECT) [Jon01]. The efficiency of DITRI is demon-
strated in Fig. 4.6. DITRI does the minimum evaluations (two) per iteration and
thus can adjust the search location more efficiently compared to DIRECT (up to
four). For a given limit on evaluation count, DITRI can more efficiently locate
the optimal regions Pb in Theorem 4.5. This complies with Condition 4.3 for the
proposed algorithm.

Evaluation point location

Point evaluation within a simplex is determined stochastically instead of (deter-
ministically) at the centre. The uniform sampling is such that the expected value

Figure 4.6: Comparison between the more adaptable and effective simplex-based
search and rectangular search. Each evaluation point is placed in the middle of
the search space. Pb is defined in Theorem 4.5.
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4.4 Numerical solution of the MOD-MPC problem

for the evaluation point chosen is at the centre of the simplex,

c = snp+1 (4.19)

where s1 := b1, si := bi + U[0, 1]1/(i−1)(si−1 − bi), ∀i ∈ {2, . . . , np + 1}, and bi

defines the coordinates of the ith simplex vertex.
The approach of a random evaluation point allows a faster convergence rate

on average than that achieved by a deterministic evaluation. This is possible
because the number of instances when a random sample is better placed than the
midpoint is on average equal to the instant when it is worse placed. At the case
when a random sample is worse placed, its effect would be dominated by the
better placed sample evaluations and diminished at subsequent iterations.

Finally, integer-valued design parameters are handled simply by shifting the
design parameter pi to the nearest integer, or to the immediate larger integer in
the case of a half-integer, for any integer-valued design parameter i. This fulfils
condition 4.1b. For the MOD-MPC problem in (3.28), the number of prediction
steps N is the relevant integer-valued design parameter.

DITRI algorithm

The detailed outline of DITRI is given in Algorithm 2.
The choice of a Lipschitzian approach addresses Conditions 4.1a and 4.1b nec-

essary for the optimiser to be convergent. Lipschitzian optimisation is gradient-
free and is built for a global search, therefore addressing condition 4.1a. The
method directly handles discrete design parameters specified in condition 4.1b.
As a whole, the proposed optimiser is guaranteed to converge and satisfies Con-
dition 4.1, making it an accurate optimiser that can effectively find the solution
(Pareto design set) P• of the MOD-MPC problem (3.28) in a given search space.

Theorem 4.6 (Convergent DITRI). Consider a multi-objective optimal design problem
with objectives p 7→ `(p) for p ∈ Ps where Ps is a finite search space. Let the solution
of the problem be P• ⊆ Ps. Also let {Si}i

i=0 for some indexing variable i be a sequence
of solutions generated from a given initialisation S0. DITRI, described in Algorithm 2, is
a convergent algorithm such that limi→ic Si = P• for some ic < ∞.

Proof. Let P(iit) be the set containing all the evaluated points at iteration number
iit in Algorithm 2. After some i+ steps ahead, every point in P(iit) would even-
tually be classified as potentially optimal either via criterion (4.16) given its rank,
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or criterion (4.17) given that each search space size dj for all j ∈ {1, . . . , |P(iit)|}
would become smaller than d(iit + i+). Each potential optimal search space will
be divided and at least 1 new point will be evaluated after each division so that
P(iit + i+) ⊃ P(iit). Consequently, as iit → ∞, the algorithm would search the
space Ps entirely i.e. limiit→∞ P(iit) = Ps. Any point p ∈ P• ⊆ Ps in the Pareto
design set will be evaluated so that limiit→∞ Siit = P•.

Algorithm 2 DITRI

Require: Design parameter bounds (p, p), maximum evaluation count iev and

maximum iteration count iit

1: iit ← 0, iev ← 0
2: Let Φ contain all evaluated points
3: Evaluate the two initial points,

b1 = {(1, 0), (0, 1), (0, 0)} and b2 = {(1, 0), (0, 1), (1, 1)}, or
b1 = {(0, 0), (1, 1), (1, 0)} and b2 = {(0, 0), (1, 1), (0, 1)}

4: for the two initial points i = 1 and 2 do
5: Set normalised vertices of initial point bi
6: Evaluate point `(pi) in bi using (4.18) and (4.19)
7: Record initial point in Φ

8: iev ← iev + 1
9: end for

10: S0 ← {p1, p2}
11: loop
12: Find set O of potentially optimal points in Φ based on (4.16) and (4.17)
13: for all o ∈ O do
14: Divide simplex bo to obtain simplices b+

1 , b+
2

15: for both j = 1 and 2 do
16: Evaluate point `(p+) in b+

j using (4.18) and (4.19)
17: Record new point in Φ

18: iev ← iev + 1
19: Update Siev to be all Pareto points in Φ

20: if iev ≥ iev then terminate algorithm
21: end for
22: end for
23: iit ← iit + 1
24: if i ≥ iit then terminate algorithm
25: end loop
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As well as being accurate, DITRI is developed to be an efficient optimiser by
using projection of bounds. This assumes continuity in the objective function
and satisfies Condition 4.2. Finally, DITRI conducts a focussed search of a given
search space via a clever choice in potential optimality classification, search space
division and evaluation point location within a given search subdivision as out-
lined throughout the subsection. Such a targeted approach fulfils Condition 4.3.

4.5 Numerical illustrations

To demonstrate the workings of the MOD-MPC approach, two test cases based
on real-world examples are investigated. In these cases, Q and R are chosen ac-
cordingly for each case. The terminal cost is weighted by Qt = PARE, where PARE

is the solution of the algebraic Riccati equation for the simulated plant. The OCP
is represented as a sparse QP. The global search criterion (4.17) is set as

d(i) :=

√
5
9

i/8

so that no search space is larger than the simplex equivalent to i/8 divisions from
the initial simplex.

In the form (4.6), the resulting QP is classified as a dense program due to the
density and tallness of the constraint matrices (4.5), that is, most of the constraint
matrix elements are non-zero and that the number of optimisation variables is less
than the number of constraints. Although useful analytically, it can be numeri-
cally less advantageous than a sparse representation which sets the states and
inputs (x, u) explicitly as optimisation variables. A common example of such a
formulation is given in Appendix A.1 which is used when the OCP is numerically
solved to generate the results.

Intel R© CoreTMi7-3770 Processor

Cores (available for simulation) 4 (1)
Cycle frequency/core 3.4-3.9 GHz

Operations/cycle 8
FLOP/s (available for simulation) ∼109-125 (∼27-31) ×109

Table 4.1: Simulation hardware specifications [Int15].
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The OCP in sparse representation is solved using the interior point (barrier)
method from the Gurobi solver in MATLAB [Gur13] with all tolerance values set
as default. The specifications of the simulation hardware used are given in Ta-
ble 4.1. Fig. 4.7 shows a representative result for the relationship between the
solution time and number of prediction steps N for a range of sampling time h.
It is shown that the solution time is generally increasing with N, verifying As-
sumption 3.6, and very weakly, if at all, correlated to h to verify Assumption 3.7.
From the obtained data, the relationship for the chosen algorithm and QP form is
mostly linear. The solution time upper-bound ζ in (3.26) is modelled as a linear
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Figure 4.7: Relationship between solution time and number of prediction steps
for different QP representations and QP solver algorithms. The upper-bound
model ζ used in this paper is the thick solid line on the top-left graph. Left-to-
right: Interior point, primal simplex and concurrent methods. Top-to-bottom:
sparse, sparse-delta [LKC14] and dense QP representations. Data is obtained
from the PAA problem (4.21) given in Section 4.5.1. Across all plots, grey point
plots are data for h = 5 ms (point plots for other h values are not shown). The
solid, dashed and dot-dashed thin black lines – mostly overlapping – are linear
fits for the data with h = 5 ms, 10 ms and 5 s.
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function with the chosen constants a1 = 1.3× 10−4 and a0 = 3.5× 10−3 so that

ζ(p) = (0.13N + 3.5)× 10−3 (4.20)

The relevant data and model is shown on the top-left graph of Fig. 4.7.

4.5.1 Test plant models

The first test case looks at a missile pitch-axis autopilot (PAA) adapted from
[BMM+14]. The missile is flown at a cruising altitude and the autopilot is to con-
trol the missile to track a commanded acceleration. The second case aims to de-
sign a controller for diesel engine control in submarines. The engine is modelled
by a mean-value engine model (MVEM) taken from [BMBH15] and the control
objective is to track a given engine speed and power output.

Pitch-axis autopilot

The first test case looks at a missile pitch-axis autopilot (PAA) at 20 000 ft. The
study considers only the autopilot subsystem and serves as an introduction to
the full missile control problem. The non-linear tracking model4 is given as

f̃(x̃, u) =


x̃2 + cos(x̃1)FL(x̃1, u)/(mv)
M(x̃1, u)/Iy

x̃4

−ω2
0x̃3 − 2ζω0x̃4 + ω2

0x̃5

u

 (4.21)

where FL and M are the non-linear mapping for the aerodynamic lift force and
pitching moment respectively. x̃1 is the angle of attack and x̃2 is the pitch rate of
the missile. The actuation of the fin deflection x̃3 is modelled as a second order
system. The input u is the rate of the commanded fin deflection x̃5.

Missile speed v = Mvs, where vs is the speed of sound at 20 000 ft, is con-
stant at Mach number M = 2.5. m and Iy are the mass and moment of inertia of
the missile respectively. These parameter values, other missile frame parameters,
constants related to the actuation dynamics, along with the aerodynamic coeffi-
cients and models used for FL and L are the same as given in [BMM+14, NRR93].

4Symbols used in the plant model are used exclusively in the model and should not be con-
fused with symbols introduced elsewhere.
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The control objective is to track a given acceleration output y = FL/(mg)
where g is the gravitational acceleration. The test scenario is to track five dif-
ferent acceleration outputs from steady state at 0g, i.e. x̃0 = 0. The outputs to
track are 2, 4, 6, 8 and 10g, each associated with a unique steady state x̃o and ini-
tial (error) state as per (3.20). These scenarios make up the set of initial conditions
X0 in (3.23) and are equally weighed, wi = 0.2, i ∈ {0, . . . , 5}. The states are con-
strained with an upper-bound of x̃ = (20◦, 35◦/s, 45◦, 106 ◦/s, 45◦) and lower
bound of x̃ = −x̃. These define the predictive state constraint according to (3.13).
The input is upper- and lower-bounded by u = 106 ◦/s and u = −u respectively.
The stage cost weights for the states are set as

Q = CTC

where C := dy
dx̃

∣∣∣
x̃=x̃o,u=0

comes from the linearisation of the output y at the target

steady state. For the input, R = 10−6.

Diesel engine control with a mean-value engine model

The second case looks at engine control where the model is a 5-state 3-input
mean-value engine model (MVEM) taken from [BMBH15]. The 5 states are the
engine speed x̃1, turbine speed x̃2, VGT actuator position x̃3, intake manifold pres-
sure x̃4 and temperature x̃5. The three inputs are the injection duration u1, load
applied to the engine by the generator u2 and the VGT commanded position u3.
The model4 is given as

f̃(x̃, u) =



(τeng − u2)/Je

(Pt − Pc)/(Jtx̃2)

(u3 − x̃3)/τVGT
Ra

Vim
(ṁc + ṁEGR − ṁei)x̃5 +

x̃4

x̃5
˙̃x5

Ra

Vimcva

x̃5

x̃4

(
Ra(Ticṁc + TEGRṁEGR − x̃5ṁei)+

cvaṁc(Tic − x̃5) + cvaṁEGR(TEGR − x̃5)
)


(4.22)
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with static states determined after time-scale separation

0 =


ṁcyl(u1)− ṁEGR − ṁt

Ocyl(u1)−Oem

Tem −
cpeṁcylTcyl(u1) + hAem,iTem,s

cpeṁcyl(u1) + hAem,i


and the further assumptions that

0 =

[
x̃EGR

Oim −OFRs

]
.

Je, Jt, τVGT and Vim represent physical engine parameters. Ra is the specific gas
constant for the ambient gas. cva is the isometric specific heat of the ambience
and cpe is the isobaric specific heat of the exhaust gas. OFRs is the stoichiometric
mass ratio. τeng is the engine load. P, ṁ and T denote power outputs, mass flows
and temperatures respectively. h and A denotes the heat transfer coefficient and
its associated contact area. Subscripts t, c, EGR and ic represent associations with
the turbine, compressor, EGR and intercooler respectively. em, em,s and em,i are
associated with the exhaust manifold, whilst cyl and ei with the cylinders of the
engine. Expressions for these algebraic variables are given in [BMBH15].

The initial state of the engine is at 2 000 rpm producing 20 kW of
power. The control objective is for the engine to track a steady state at
2 500 rpm producing 36 kW of power. The states are upper-bounded
by x̃ =

(
2500 rpm, 150 000 rpm, 108, 108, 108) and lower-bounded by

x̃ = (1500 rpm, 45 000 rpm, 0, 0, 0). These define the predictive state
constraint according to (3.13). The input is upper- and lower-bounded by
u = (1 ms, 300 Nm, 90) and u = (0.5 ms, 10 Nm, 60). Q = diag(1, 0, 0, 0, 0) and
R = diag(0, 1, 1) as to track engine speed, power output and VGT position.

4.5.2 Results

Fig. 4.8 shows a representative result for the PAA test case (4.21). A resulting
trade-off curve is obtained after 20 evaluations using DITRI with p = (0.015, 15)
and p = (0.001, 3), consisting of 10 different designs. For the MVEM test
case (4.22), a representative result is shown on Fig. 4.9 for 20 evaluations using
DITRI with p = (0.4, 10) and p = (0.05, 1). After 20 evaluations, 11 designs on a
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Figure 4.8: Pareto optimal solution for the design of the PAA controller5.

trade-off curve are obtained. The associated solution in the design parameter
space is shown on the bottom plots of each figure.

The trade-off curves represent the set of optimal designs a practitioner can
choose from. For example, design 16 of the PAA test case (Fig. 4.8) has a con-
troller design with a sampling time of h = 6.5 ms and N = 11 prediction steps.
This gives a prediction horizon of around 70 ms. For this design choice, the im-
plementation hardware of the controller should be able to solve the OCP with
N = 11 in under 6.5 ms. To help design the implementation hardware, the capac-

5Top: trade-off curve (black) along with the Pareto front L obtained from a full design explo-
ration (grey). Each point is labelled by the associated evaluation number. The dashed-grey line is
a non-convergent HVOL solution. Bottom-left: the associated solution in parameter space along
with the band of Theorem 4.5. Bottom-right: accompanying plot showing the normalised space
c1-c2 and triangle divisions used internally in DITRI. Total number of evaluations is iev = 20.
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Figure 4.9: Pareto optimal solution for the design of the MVEM controller5.

ity number of the design choice can be examined. PAA design 16 is associated
with utilisation number η = 0.82, indicating that the implementation hardware
must have at least around 0.8 times the processing power of the simulation hard-
ware based on the specifications given in Table 4.1. This consideration depends
on several factors of hardware capabilities and implementation architecture, in-
cluding the use of compiled programming language, parallel-processing, an in-
creased clock-frequency, as well as pipelining.

Finally, the trade-off curves reveals the sensitivity of control performance to
computational capacity. In the PAA test case, performance improvement after
utilisation number around η = 0.6 is not significant any more. This implies that
there is not much benefit to be gained from hardware more powerful than around
η = 0.6. In the MVEM test case, the value is around η = 0.015.
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4.5.3 Validation of DITRI

To show the importance of the conditions for an effective and efficient optimiser
prescribed in Section 4.4.2, DITRI is compared to two other algorithms. One is
a non-dominated sorting genetic algorithm (NSGA) adapted from [DPAM02],
and the other is an algorithm based on surrogate hyper-volume improvement
(HVOL) adapted from [TSC13].

Table 4.2 outlines how each optimiser satisfies the conditions. As discussed
in Section 4.4.2, DITRI is a optimiser which fully meets the prescribed condi-
tions. NSGA handles integer variables directly and is an exhaustive search in the
limit of infinite evaluation number, thus satisfies Condition 4.1. However, it is an
all-purpose optimiser that does not rely on the continuity of the objectives. Simi-
larly, HVOL is neither a continuous nor focussed search and so would not satisfy
Conditions 4.2 and 4.3. Furthermore, although HVOL is able to handle integer
variable and performs a global search, it is not guaranteed to converge [TSC13].

Effective convergence – Condition 4.1

To assess the convergence of the trade-off curves obtained, the curves are com-
pared to the true Pareto front L. Since the true Pareto front is not known, it is
approximated by doing a full exploration on a uniform grid of 400 h values for
each value of N in the parameter space. For both case studies, it is shown that
the solution obtained by DITRI is close to the true Pareto front of the problem
(Figs. 4.8 and 4.9).

The closeness of a trade-off curve to the true Pareto front can be measured by
calculating the average of the closest Euclidean distance between each point on
the trade-off curve to the Pareto front. This measure is denoted Ψdis and plotted
in Fig. 4.10 against function evaluation count. A second metric calculates the Eu-

Condition
Algorithm 4.1 4.1a 4.1a 4.2 4.3

DITRI X X X X X
NSGA X X X
HVOL X X

Table 4.2: Fulfilment of conditions for convergence and efficiency.
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Figure 4.10: Closeness of solution against evaluation count for the PAA (top) and
MVEM (bottom) test cases6.

clidean distance of the tips (vertices) of the trade-off curve and Pareto front. This
measures the coverage of the solution, denoted Ψcov, and is shown in Fig. 4.11.
Calculation of both metrics are based on a normalised design objective values.

Figs. 4.10 and 4.11 show that trade-off curves produced by DITRI and NSGA
approach the Pareto front with increasing function evaluation counts. However,
HVOL struggles to converge. Figs. 4.8 and 4.9 show non-convergent trade-off
curves, each from 100 evaluations using HVOL, confirming HVOL’s inability to
find the Pareto front. This is consistent with the expectation, since both DITRI
and NSGA satisfies Condition 4.1 for convergence, whereas HVOL does not. The
fulfilment of Conditions 4.1a and 4.1b by HVOL is not sufficient to guarantee
convergence, consistent with Remark 4.5.

6The graphs show the mean across 500 trials with error bars showing the 25th and 75th per-
centiles.
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Figure 4.11: Coverage of solution against evaluation count for the PAA (top) and
MVEM (bottom) test cases6.

Efficient search – Conditions 4.2 and 4.3

The results in Figs. 4.8 and 4.9 show that the Pareto solution lies within a band
as described in Theorem 4.5. DITRI takes advantage of this, unlike NSGA and
HVOL. Comparing the results in Fig. 4.10, DITRI exhibits the best convergence
rate to the overall Pareto front. This is consistent with the fact that DITRI sat-
isfies Conditions 4.2 and 4.3 for efficiency, whereas the general-purpose NSGA
and HVOL do not. In Fig. 4.11, results indicate that HVOL is better in terms of
reaching to the tips of the Pareto front quickly. However, since HVOL does not
guarantee overall convergence to the Pareto front solution (see Figs. 4.8–4.10), the
fast convergence of HVOL should only be taken with a pinch of salt.
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4.6 Conclusions

This chapter analytically studied the multi-objective design of MPC problem pre-
sented in Chapter 3 to present several theoretical results that reveal the nature of
the design problem. Focus was given to tuning of structural parameters, namely
the sampling time and prediction horizon length of the optimal control problem.
The presented lemmas and theorems throughout the chapter outline key proper-
ties that include smoothness of the objective functions and bounds on the optimal
design parameters. This is motivated by the need of an effective and efficient opti-
miser due to the time-consuming nature of the objective evaluations in the MOD-
MPC problem. The findings that resulted from the analysis were subsequently
used as a basis to prescribe necessary and sufficient conditions for such an op-
timiser. Subsequently, a compliant optimiser was proposed, developed based
on Lipschitzian optimisation. Finally, two numerical tests on real-world exam-
ples were conducted to demonstrate the use of the proposed MOD-MPC design
approach. The first test case investigated a missile autopilot problem in the pitch-
axis as an introduction to the application of the thesis in missile control which
will be considered in the next chapters. The numerical results also validated the
sufficiency of the conditions specified for an effective and efficient optimiser of
the design problem.
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Chapter 5

Model-predictive integrated missile control

A substantial proportion of this chapter has been submitted for publication in the
AIAA Journal of Guidance, Control, and Dynamics [BMMK16b].

EXIGENT mission requirements present a missile control problem that deals
with non-linear, constrained and fast dynamics associated with the autopilot

and guidance subsystems. Advanced missile control designs have been founded
on recent developments that are aimed at a more streamlined engineering design
approach. Central to these developments is the attempt to integrate the subsys-
tems and the concept of co-design of multiple components in control system. In
particular, the autopilot and guidance subsystems share an intrinsic relationship
upon which a targeted integration of the two could utilise the specific synergies
to improve the performance of the missile [MO01a]. In light of this, the chapter
proposes a model-predictive integrated missile autopilot and guidance (iMAG).
The development of the integrated controller follows the application of MPC for
the pitch-axis autopilot plant model in Chapter 4 to present the full missile con-
trol system including both autopilot and guidance.

5.1 Engagement dynamics

Consider first the equations of motion for an engagement between a missile and
an incoming target. The model can be separated into its dynamics and kinemat-
ics part. A cruciform, tail-controlled, and roll-stabilised missile is considered in
this study. Focus is given on the end-game phase of the flight, in which the tar-
get can be assumed to be relatively close, and control can be separated into two
equivalent planar channels that are perpendicular to each other. Modelling of the
missile equations of motion is presented for control in one channel for pitch con-
trol. Note that since a cruciform missile is considered, the pitch control study can
be applied to that of yaw due to the symmetry of the missile.
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5.1.1 Missile dynamics

The missile dynamics are defined around the body and wind axes. The body
axis is fixed to the physical frame of the missile, whereas the wind axis is aligned
to the velocity of the missile (see Fig. 5.1). Both axes are centred at the center
of gravity of the missile. The missile translational and rotational dynamics are
described with respect to the body axis, defined as follows

α̇ = q− FL(α, δ)/(mV) (5.1)

θ̇ = q (5.2)

q̇ = M(α, δ)/Iy (5.3)

α is the angle of attack and q is the pitch rate of the missile. The missile speed
VM = MaVs, where Vs is the speed of sound, is constant at Mach number Ma =

2.5. The missile is flying at speed and altitude with dynamic pressure P. The
actuation of the effective control surface deflection δ for pitching is modelled as a
second order system,

δ̇ = δ̇ (5.4)

δ̈ = ω2
a(δc − δ− 2ξδ̇) (5.5)

δ̇c = u (5.6)

where the commanded fin deflection δc rate is the input u of the system. Aerody-
namic lift FL and moment M are modelled to be cubic with respect to the angle of
attack and linear with respect to the control surface deflection [BMM+14,NRR93].

Figure 5.1: Frame for the dynamics of the missile.
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That is,

FL = PSCL M = PSDCM (5.7)

where the aerodynamic coefficients are

CL :=
3

∑
i=1

cF
i αi + cF

δ δ CM :=
3

∑
i=1

cM
i αi + cM

δ δ. (5.8)

c is the stability and control derivatives of the missile, describing how forces and
moments (denoted by its superscript) change with respect to its parameters (de-
noted by its subscript).

5.1.2 Engagement kinematics

The kinematics of the missile is defined with respect to a fixed inertial coordi-
nates, e.g. ground/earth-based, as illustrated in Fig. 5.2. The missile flight-path
angle is denoted by γ. The seeker detects the location of the target relative to
the missile, which is defined at a distance r and angle χ. Based on the seeker
and pitch angles, χ and θ, a line-of-sight (LOS) angle λ can be derived, which
measures the relative location of the target to the missile with respect to the fixed
inertial axis.

The evolution of the missile location in Cartesian coordinates sM := (sM1, sM2)

with respect to the inertial axis is given by

ṡM1 := VM cos γ ṡM2 := VM sin γ

Figure 5.2: Frame for the kinematics of the missile and target.
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where γ := θ − α. The target is assumed to have a constant acceleration aT. The
target location and velocity is denoted by sT and vT,

ṡT =: vT v̇T =: aT.

In relative terms, the separation between the missile and target is denoted by s
and modelled as

ṡ1 =: v1 = vT1 −VM cos γ ṡ2 =: v2 = vT2 −VM sin γ (5.9)

and the relative acceleration between the missile and the target is

v̇1 = aT1 −
FL(α, δ)

m
sin(θ − α) v̇2 = aT2 −

FL(α, δ)

m
cos(θ − α). (5.10)

The LOS angle and its evolution in time can be derived from the relative distances
λ = arctan(s2/s1) such that the LOS second order rate is given as

λ̈ =

(
s2

1 + s2
2
)
(s1s̈2 − s2s̈1) + 2 (ṡ1s2 − s1ṡ2) (s1ṡ1 + s2ṡ2)(

s2
1 + s2

2
)2 . (5.11)

5.1.3 Engagement model

Summarizing the kinematics and dynamics is a plant model with states x :=
(α, θ, q, δ, δ̇, δc, s, v, λ̇) and control input u := δ̇c. Put concisely,

ẋ = f(x, u). (5.12)

where f is obtained from (5.1)–(5.6) and (5.9)–(5.11).

5.2 Model-predictive integrated missile controller formulation

In this section, the control system for the missile is formulated. As detailed in
Chapter 2, an integrated system has been the focus in advanced missile control
technology and will be used as a basis for the following controller design devel-
opment. A model-predictive control approach provides the means to handle the
non-linear and constrained dynamics of the engagement.

5.2.1 Control strategy

In this study, a control strategy for intercept will be employed. Intercept is
achieved when the relative position of the missile and the target s is zero. This is
contrasted to, for example, a rendezvous strategy where in addition to a zero
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5.2 Model-predictive integrated missile controller formulation

relative distance, the lateral relative velocity between the missile and the target
is required to be zero.

Remark 5.1. Although intercept is ideally achieved by an on-target hit, non-zero
miss-distances can still result in a successful engagement as anti-missiles in mis-
sile defence typically carry a warhead which allows for the missile to incapacitate
the target for a non-zero miss-distance [Zar99].

The proposed model-predictive integrated control scheme is based on a par-
allel navigation that regulates the rate of the LOS angle λ that dictates the relative
trajectory between the missile and the target. Parallel navigation relies on the
fact that a zero LOS rate during engagement is a sufficient condition for the mis-
sile to intercept the target given that the missile is approaching the target (see,
for example, [PBL10b]). Therefore, the control strategy employed will be to steer
the missile such that the LOS rate λ̇, whose evolution is as described in (5.11), is
regulated to zero.

As the relative distance approaches intercept at s = 0, the LOS second order
rate given in (5.11) approaches infinity,

if ṡ 6= 0 or s̈ 6= 0 or ṡ1 6= ṡ2 or s̈1 6= s̈2

then lim
s1→0, s2→0

λ̈ = ∞.
(5.13)

As the missile approaches the target, relative velocity and acceleration is non-zero
throughout the engagement and its components are not guaranteed to be equal.
Therefore, the conditions in (5.13) are satisfied and thus it is inevitable that the
LOS and its rates deviates significantly at the end of the engagement.

Remark 5.2. Note that the LOS can also be derived from the measurable angles
λ = θ − χ such that

λ̇ = q− χ̇ (5.14a)

λ̈ = q̇− χ̈. (5.14b)

In simulation, the angles q, χ, and their derivatives have to be calculated based
on the relative distances, so there is no advantage in using (5.14). However, in
practice, the seeker angle and its rate are readily available from the inertial mea-
surement unit (IMU) and seeker of the missile, whereas the distances s might be
more difficult to obtain directly. Therefore, (5.14) might be a preferable alternative
to (5.11) in the actual implementation of the controller.
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5.2.2 OCP formulation with measurement disturbance

The missile is controlled by commanding the fin deflection rate u := δ̇c to steer the
missile. Control is commanded in a sampled-data fashion at sampling instants ti,
i ∈ N0, with sampling interval h, and is restricted to a zero-order-hold (ZOH).
Let the control law be denoted by

ui = κ(oi, p)

to follow (3.1). The control is calculated based on the measured states oi available
at sampling instant ti, as well as control design parameters p. The control states
oi are measured from the real-time states xi that are relevant to the prediction
model, obtained via sensors. To better represent real-world conditions, a non-
zero disturbance from sensor imperfections is allowed, and will be modelled by

oi := xi + w. (5.15)

with w ∈ W ⊂ Rnx for some closed setW .

A controller based on model-predictive control (MPC) is formulated following
the outlined dynamics and kinematics of the missile. The control law is obtained
by solving an optimal control problem (OCP),

(x∗, u∗) := arg min
(x,u)

J(x, u, p) (5.16a)

s.t. x0 = oi := xi + w (5.16b)

xk+1 = f (xk, uk, p) := xk +
∫ ti+h

ti

f (x(τ), uk, p) dτ ∀k ∈ {0, . . . , Ne − 1}(5.16c)

xk ∈ X , uk ∈ U ∀k ∈ {0, . . . , Ne − 1}.
(5.16d)

Consequently, the control law is given by

u(t) = ui = κ(oi, p) := u∗0 ∀t ∈ [ih, ih + h), i ∈N≥0. (5.17)

The proposed control law is based on the discrete-time non-linear MPC (NMPC)
introduced in (3.9) with predictive states and inputs as per (3.8), constituting the
model-predictive integrated autopilot and guidance proposed in this study. The
use of a non-linear prediction model, as opposed to a linear one used in previous
chapters, is to better capture the full dynamics of the prediction model of the
missile engagement.
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5.2 Model-predictive integrated missile controller formulation

The OCP optimisation is subject to the (discrete-time) prediction model (5.16c)
representing the dynamics of the plant. This is based on the continuous-time
counterpart

ẋ = f (x, u)

with the states x := (α, θ, q, δ, δ̇, δc, s, v, λ̇) and input u := δ̇c. The first six predic-
tion model states are the missile dynamics modelled as (5.1)–(5.6). The last three
states in the prediction model are required for the modelling of the LOS angle λ

(5.9)–(5.11). The inclusion of the LOS angle in the prediction model used by the
controller is required by the control strategy based on the regulation of LOS rate.
Note the distinction to the real-time plant model ẋ = f(x, u). The distinction al-
lows for the fact that the predicted dynamics does not necessarily always match
the actual evolution of the states. The model is initialised at oi as given in (5.16b),
where oi consists of the relevant states available at sampling instant ti from pos-
sibly imperfect measurements. Finally, note that since the control strategy is the
regulation of LOS rate, the regulation-tracking transform (3.3) is not needed.

There is an operating envelope within which aerodynamic models used are
valid and the missile is able to operate stably. A constraint on the angle of attack
α is required to keep the flight conditions within an envelope where aerodynamic
forces can be accurately represented by the models (5.8). Fin deflection δ and its
rate δ̇ are mechanically limited by the actuator. Finally, the angle χ may be con-
strained to naturally reflect the effective scope of the seeker. These are modelled
by the sets X and U in the constraints (5.16d) for which the prediction model
states and inputs are allowed to be in.

The cost function (5.16a) is chosen as a quadratic as per (3.10),

J(x, u, p) :=
Ne−1

∑
k=0

∥∥∥∥∥
[

xk

uk

]∥∥∥∥∥
2

[
Q S
ST R

] + ‖xNe‖2
Qt

The prediction horizon length is set to be an integer multiple of the sampling
time, T := Neh associated with Ne prediction steps. The number of prediction
steps is chosen to be

Ne := min
{

N, btgo/hc
}

(5.18)
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where the time-to-go tgo := ‖s‖/‖v‖, to ensure that the prediction does not ex-
ceed the point beyond intercept. This is motivated by the fact that the LOS second
order rate λ̈ is very sensitive around the intercept as shown in (5.13), and would
easily cause numerical errors.

A natural choice for the weights is to penalise first and foremost the LOS rate.
Secondly, the pitch rate will also be penalised, with relatively less weight than
LOS rate, to avoid chattering. The terminal cost weight Qt will be set in a similar
fashion to the state stage cost weight for the same reasons. For the input, the
fin deflection rate, a small non-zero is desired to avoid chattering and ensuring a
positive definite cost function and uniqueness of the OCP solution.

Remark 5.3. The strategy of LOS rate regulation is employed as a zero LOS rate
throughout the engagement is feasible to be achieved. This is different to a
separation-nullifying strategy, e.g. in [KKK00], as the distance between the
missile and the target can only be zero at the end of the engagement. In an MPC
setting, when a shorter fixed prediction horizon (often shorter than the
time-to-go) is desirably used to reduce computational cost, the later strategy is
susceptible to undesirable control such as large overshoots.

5.3 Simulation illustrations

5.3.1 Preliminaries

Missile specifications

The missile used in this study is a tail-controlled axisymmetric ogive-nosed mis-
sile that is flying at a cruising altitude of 20 000 ft. Fig. 5.3 shows the shape of the
missile along with the dimensions proportional to the diameter D of the missile.
The physical, actuation and flight specifications of the missile is given in Table 5.1.

The models for aerodynamic lift and moment (5.7) of the missile are obtained
from DATCOM [VSB+88], yielding the polynomial models

CL = 9.0126α + 46.4585α3 + 3.2390δ

CM = −20.1395α− 51.7438α3 + 843.4588α5 − 24.1742δ.
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Symbol Description Value Unit

D diameter 0.2286 m
S surface area 0.04088 m2

m mass 204 kg
I moment of inertia 247.4 kg m2

ξ Actuator damping ratio 0.7 -
ωa Undamped natural frequency 150 rad/s
Vs speed of sound 315.9 m/s
VM missile speed 2.5Vs m/s
P dynamic pressure 210 000 Pa

Table 5.1: Physical, actuation and flight specifications of the missile. Adapted
from [BMM+14, NRR93].

Initial conditions, constraints and disturbance

The engagement scenarios considered are illustrative of a typical missile defence
where the target is a hypersonic cruise missile. Note that the specified scenar-
ios, which are adopted from [PBL10b], are particularly challenging, chosen to
represent the high requirements in advanced missile control. The initial condi-
tions represent the final stages of the engagement where the missile control is
employed, after the boosting and cruising phases. The missile is initially posi-
tioned at the origin, travelling in the crossrange at Mach 2.5. Two target scenarios
are considered. For the first scenario, the target is positioned at 4000 m cross-
range and 0 m downrange, and for the second, the target location is 5000 m and
300 m cross and downrange, respectively. For both cases, the target is travelling
at Mach 5, representing the speed of a typical cruise missile, in the crossrange to-

Figure 5.3: Missile dimensions. Adapted from [BMM+14, NRR93].
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Figure 5.4: Initial missile and target positions, speeds and accelerations.

wards the missile. At the given speeds, the missile has to accelerate and adjust its
direction in about only 2 seconds before it passes the target. The acceleration of
the target is at 5g either in the positive or negative downrange for the respective
scenarios. Finally, the initial missile location and all dynamic states are initialised
at zero. This is illustrated in Fig. 5.4.

The constraint sets X and U that bounds the predictive states and inputs are
chosen as polytopes formed by upper- and lower-bounding each state and input;
X =

{
x
∣∣|x| ≤ x

}
and U =

{
u
∣∣|u| ≤ u

}
, where the bound for the states and

input are

x = (20◦, 90◦, 500◦/s, 40◦, 500◦/s, 40◦, ∞, ∞, ∞, ∞, ∞)

u = 500◦/s.

The disturbance w in (5.15) is modelled to arise from imperfections of the LOS
angle λ sensor readings. That is,

wλ̇ = U[−0.02, 0.02]. (5.19)

Where the subscript λ̇ indicates that the disturbance acts only on the LOS rate.
The disturbance is time-varying and changes for each sampling instant (regard-
less of the sampling time length).

OCP formulation and solver

In the illustrative simulations that follow, sampling time is set at h = 15 ms and
the horizon length at N = 10 prediction steps. The cost weights are chosen as

Q = Qt = diag
(

010×10, 5× 103
)

S = 011×1 R = 1× 10−6.
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5.3 Simulation illustrations

For the results, simulations are done in MATLAB on a desktop computer with
specifications as outlined in Table 4.1. The non-linear OCP (5.16) is solved using a
sequential quadratic program (SQP) algorithm from [BMM+14] that is outlined in
Appendix B.1. The interior point (barrier) method from the Gurobi solver [Gur13]
in MATLAB is used in this study to solve each QP iteration in the SQP algorithm.

5.3.2 Simulation results

A simulation is carried out to demonstrate how the proposed control strategy
guides the missile to engage a target. First, a case with zero disturbance is con-
sidered. Figs. 5.5 and 5.6 show the evolution of the dynamic and kinematic states
of the missile for the two engagement scenarios. For the first scenario, within
the first half second or so, the system is mostly transient with angle-of-attack α

lying close to the constraint of 20◦. The fin deflection δ is quite actively controlled
as the missile accelerates upwards (positive s̈M2) to regulate LOS rate λ̇. After
around 0.5 s, the missile reaches close to a steady state as it moves to intercepts
the target. The same behaviour is also observed in the first second of the second
engagement scenario.

The proposed control strategy has a prediction horizon (5.18) that is short-
ened at the final stages of the engagement so that the prediction does not exceed
the intercept point. As a result, at the point of shortening, in this case around
0.15 s before intercept, there is a slight transient as the prediction horizon length
is shortened to not predict beyond the instant of intercept. Intercept happens at
around t = 1.7 s and 2.1 s for the first and second scenario respectively, as shown
by the path of the missile and target. A large deviation in LOS rate λ̇ is observed
at the final stages of the engagement. This is due to the fact that as the missile and
target gets closer, the LOS second order rate λ̈ deviates significantly as discussed
earlier and shown in (5.13).

For the considered simulations, it is observed that the missile intercepts the
target with near zero miss-distance under no disturbance. When subject to dis-
turbance, the miss-distance value is distributed over a set of simulations. Fig. 5.7
plots the histogram of miss-distance values for 100 simulations for the distur-
bance formulated in (5.19). Note that a non-zero miss-distance may be regarded
as a successful intercept to some allowable degree as per Remark 5.1. The figure
shows that the proposed missile controller achieves miss-distances much closer
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Figure 5.5: Evolution of dynamic and kinematic states for engagement scenario 1.
h = 0.015, N = 10.

to zero than that of APN. With smaller miss-distances, the missile would be more
effective in intercepting the target. For instance, the detonation of the warhead
will be more devastating given the close proximity of the target, or lighter war-
head explosive payloads can be used that allows for a lighter, more agile missile.

The main advantages of the model-predictive integrated missile control, i.e.
iMAG, over a separated guidance-autopilot system are demonstrated by the LOS
rate and acceleration plots in the second bottom row of Figs. 5.5 and 5.6, as well
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Figure 5.6: Evolution of dynamic and kinematic states for engagement scenario 2.
h = 0.015, N = 10.

as Fig. 5.7. The plots are accompanied by the result obtained using an augmented
proportional navigation guidance (APN) with an assumed ideal autopilot which
can track commanded accelerations perfectly (see Appendix A.2). These superi-
ority of iMAG to APN are given in the following.

1. Look ahead. Using the prediction from the model-based integrated controller,
the missile can correct its path as soon as the engagement starts and undergoes
large accelerations. During the second half of the engagement period, the mis-
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Figure 5.7: Histogram of miss-distances over a set of 100 simulations. The results
for iMAG are shown on the left and APN on the right. For the former, results
for both engagement scenarios are overlaid, whereas results are separated for
the latter.

sile is mainly in constant velocity with minimal acceleration. At this stage, the
missile is in a ‘neutral’ state and ready for any change in target acceleration ob-
tained from the seeker. In conventional separated guidance-autopilot systems
(e.g. with APN guidance) the missile has a non-zero acceleration throughout
the engagement period, even under ideal conditions of no autopilot lag, so that
it is at no time fully ready for changes in target manoeuvre. This is consistent
with results in [PBL10b].

2. Zero acceleration lag. In convectional guidance systems (e.g. APN),
discrepancies between the guidance command and the lagged actual
acceleration achieved by the autopilot in separated systems can cause an
undesirable growth in commanded acceleration as the instant of intercept is
approached [SDBP14]. In these systems, commanded acceleration is directly
proportional to LOS rate which grows unbounded close to intercept as
formalised in (5.13). Consequently, the presence of acceleration lag in tracking
would cause a deterioration in missile accuracy. Fig. 5.7 shows that APN,
even with ideal autopilot, generally fails to achieve zero miss-distance.
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5.4 Conclusions

A model-predictive integrated missile control was developed, aimed to improve
control performance by commanding optimal missile accelerations. Through nu-
merical simulations, it was shown that the proposed model-predictive integrated
control system pushes the missile to be more responsive than when a conven-
tional separated guidance-autopilot system is used. This was achieved by the
high-performance nature of the proposed MPC-based controller that predicts fu-
ture kinematics and dynamics of the engagement and finds the optimal missile
accelerations under the operational constraints. Furthermore, the integrated de-
sign circumvents control lag present when the guidance-autopilot subsystems are
implemented separately, improving accuracy under disturbance and ultimately
the missile effectiveness in intercepting the target.
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Chapter 6
Multi-objective design in advanced missile control

A substantial proportion of this chapter has been submitted for publication in the
AIAA Journal of Guidance, Control, and Dynamics [BMMK16b].

THIS chapter investigates a case study following analytical results
that has been developed so far in previous chapters. In Chapter 5, a

model-predictive integrated missile control is proposed, extending the pitch-axis
autopilot case considered in Chapter 4. In this chapter, the multi-objective
design approach formulated in Chapter 3 is demonstrated on the proposed
integrated missile control. In the earlier demonstrations of Chapter 4, control
performance is represented by the closed-loop value function – measuring the
integrated squared error of the states and inputs – whose smoothness properties
with respect to the structural design parameters sampling time and prediction
horizon are specified for when a linear prediction model is used. In this chapter,
the investigation is extended to incorporate a more specific measure for
performance that is based on the miss-distance of the missile when it passes the
target. Such a measure has a better practical meaning in capturing control
performance, and can be assumed to retain its competitive pairing with required
computational capacity. Moreover, the MPC-based integrated missile control
uses a non-linear prediction model for the OCP. The demonstration of the
MOD-MPC approach on an application with non-linear MPC and non-linear
plant numerically validates the theories in Chapter 4 to complement and
complete the investigation of a linear prediction model in the earlier chapters.

6.1 Miss-distance as a performance metric

One underlying design objective in a missile control system is the performance
of the controller based on the ability of the missile to intercept the target and
how well the controller guides the missile in doing so, especially under distur-
bance. In missile engagement, performance can be generally measured based
on the miss-distance, that is how close the missile intercepts the target [Ohl96].
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Such a measure is specific for a missile engagement and can be interpreted more
easily than the more MPC-general closed-loop value function (3.21) whose units
are rather arbitrary. In addition to the miss-distance, the evolution of the states
can also be qualitatively observed to see how the controller guides the missile in
intercepting the target.

An engagement scenario can be numerically simulated by integrating the
model (5.12) controlled by the MPC law (5.17) with the OCP (5.16) under
disturbance in the measured states (5.15). A set of simulations will be performed
to obtain the distribution of the performance. For a simulation, the miss-distance
as a metric for control performance can be calculated based on the relative
trajectory s of the missile and the target for a time period Tsim given an initial
state x0,

∆(x0, p) := ssgn

(
min

τ∈[0,Tsim]
‖s(τ)‖

)
for τ ∈ [0, Tsim] (6.1)

s.t. dynamics (5.12) and control law (5.17) for a given x(0) = x0.

The simulation time Tsim should be large enough to allow for the missile to reach
the target. An indicative lower-bound of this time would be ‖s(0)‖/‖v(0)‖. The
multiplier ssgn := sgn (sM2(Ts)− sT2(Ts)) indicates the relative position of the
missile when it reaches the target, differentiating between the missile passing
‘above’ or ‘below’ the target. The average value of the distributed miss-distance
is defined as

∆(x0, p) := mean(|∆(x0, p)|)

with a standard deviation denoted as σ∆(x0, p).

6.2 Solution time of SQP for required computational capacity

Non-linear MPC (NMPC) is used in the proposed model-predictive integrated
missile control as defined in (5.16). The associated non-linear OCP is solved with
the sequential quadratic programming (SQP) algorithm as outlined in
Appendix B.1. The solution time associated with the SQP solver will be
denoted ζSQP.

From Remark 3.3 and Assumption 3.6, the solution time of a quadratic
programming (QP) optimisation can be upper-bounded by a polynomial of N,
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denoted by ζ (3.26), which dictates the size of the QP, given that the cost function
is positive definite as per Remark 3.1 [KTK80]. In this study, the non-linear
OCP (5.16) is solved using a sequential quadratic program (SQP) algorithm
[BMM+14]. The routine performs a number of QP optimisation to iteratively
approach the non-linear OCP solution. The number of QP iterations the SQP
algorithm performs can be upper-bounded by a specified iteration limit iSQP.
Therefore, the solution time ζSQP associated with the problem can be
upper-bounded by a polynomial of N.

Proposition 6.1 (SQP solution time upper-bound). From Assumptions 3.6 and 3.7,
the solution time of an OCP as a quadratic program can be upper-bounded by a polyno-
mial of degree n with respect to N,

ζ(p) :=
n

∑
i=0

aiNi

for some constants ai, i ∈ {0, . . . , n}. The SQP performs a number of QP iterations, and
the iteration count is limited by iSQP. Therefore, the upper-bound on the SQP solution
time can be modelled by

ζSQP(p) := iSQP

n

∑
i=0

aiNi (6.2)

In the simulations of this study, the QP iteration limit is set at iSQP = 15. A
representative result for the relationship between the solution time and number
of prediction steps N for a range of sampling time h is shown in Fig. 6.1. The
QP solution time ζ is slightly different to that obtained in (4.20) from Fig. 4.7.
This is due to the different size of the model used in for the missile engagement
(5.12) and the and PAA (4.21) test cases, the former with 11 and the latter with 5
states. Nonetheless, the average solution time ζ for each QP solved in each of the
10 trials is generally increasing with N with mostly linear relationship. This is
consistent with Assumption 3.6. From the graph, the model for QP solution time
is chosen as ζ = (0.8N + 4)× 10−3 such that

ζSQP(p) = 15 (0.8N + 4)× 10−3

as per Proposition 6.1
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Figure 6.1: Relationship between the average solution time per QP iteration
against number of prediction steps N for 10 trials for the OCP (5.16). The solid
line depicts the model chosen for the solution time ζ.

6.3 Multi-objective design of iMAG

In this section, the multi-objective design of MPC (MOD-MPC) formulated in
Chapter 3 will be revisited. For the study, the closed-loop system of interest in-
volves a missile controlled by the model-predictive integrated control (iMAG)
proposed in Chapter 5 to intercept a target in a specified engagement scenario.
The approach aims to aid the practitioner in designing the controller by provid-
ing insights on the optimal trade-off between control performance and required
computational capacity. Consistent with Chapters 3 and 4, this study focuses on
the calibration of structural design parameters of the control algorithm, namely
the sampling time h and prediction horizon length N. These parameters, denoted
by p := (h, N), affect both design objectives. The parameter choice leads to the
competitive pairing between the two design objectives, following Lemma 4.10, so
that improvement of one objective by calibration of the design parameters comes
at the compromise of the other.

Given the closed-loop system of a missile in an engagement with a target, con-
trol performance is measured by miss-distance (6.1) that is based on the control
law (5.17) with the OCP (5.16). Monotonicity properties of the miss-distance with
respect to the design parameters can be identified similar to that of the closed-
loop value function in Propositions 4.2 and 4.3.
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Assumption 6.1 (Non-monotonicity of ∆ with respect to h and N). Consider the
control performance ∆(x0, ·) as in (6.1). For p := (h, N), h 7→ V∗ (X0, p) is generally
non-monotonic with respect to h for a given N, and generally non-monotonic with respect
to N for a given h

The required computational capacity can be measured based on the time taken
by a processor to solve the OCP (5.16). ζSQP(p) in (6.2) is the upper-bound of this
time for the simulation hardware for the design parameter p. Subsequently, the
non-dimensional utilisation number (3.27) is used to indicate the computational
power of the implementation hardware, relative to that used in simulation, that
is required for the implementation of the MPC design. This metric is given by

ηSQP(p) := ζSQP(p)/h. (6.3)

The utilisation number is a design objective that will be minimised. Based on the
choice of p, minimizing the required computational capacity implies reduction of
the cost of the control hardware to be implemented onboard the missile.

Theorem 6.1. The objective functions ∆(x0, ·) and ηSQP(·) are competing as per Defi-
nition 1.6 for the design parameter p := (h, N) given that Proposition 6.1 and Assump-
tion 6.1 hold.

Proof. The proof closely follows that of Lemma 4.10. Given the
non-monotonicity of ∆ from Assumption 6.1 and monotonicity of ηSQP as per
Proposition 6.1 and (6.3), there must exist some set Pc so that the two objective
functions are competing. A shorter sampling time in and/or longer prediction
horizon can potentially improve closed-loop control performance (decrease ∆)
as the control receives more frequent feedback and capture more future
dynamics of the plant, respectively. However, the faster sampling rate and/or
longer prediction horizon required more computational load (increase ηSQP).
The reverse is also true, a delayed sampling time and shorter prediction horizon
worsens performance and reduces computational burden.

The multi-objective co-design of MPC (MOD-MPC) problem can be formu-
lated following (3.28),

P•(Ps) := arg m-min
p

`(p) (6.4a)

s.t. p ∈ Ps. (6.4b)
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The two objectives are contained in the objective vector `(p) = (∆(p), ηSQP(p)).
Ps defines the search space and P• defines the set of the design parameters that
have an optimal trade-off, that is the Pareto optimal solution. The set of objective
evaluations L := {`(p)|p ∈ P•} shows the trade-off curve of the two objectives.
These set contain Pareto optimal points that are non-dominated as per Defini-
tions 1.4 and 1.5. That is, a point `(p•) where p• ∈ P is a Pareto optimal in P if
there does not exist another design choice p ∈ P such that `(p) ≺ `(p•).

6.4 Results

The formulated MOD-MPC problem (6.4) is solved to demonstrate the design
process of the proposed missile control system. Missile specifications, initial con-
ditions, constraints and disturbance, as well as OCP formulation and solver are as
specified in Section 5.3.1. The optimiser algorithm used is the Dividing Triangles
(DITRI) algorithm proposed in Section 4.4.2, motivated by its effectiveness and
efficiency in solving the MOD-MPC problem by performing a focused search and
is guaranteed to converge to the solution for a given search space. The bounded
search space is Ps = {(h, N)|h ∈ [0.005, 0.03], N ∈ [6, 15]}.

Two sets of initial conditions are considered, denoted respectively as engage-
ment scenario 1 and 2 in Section 5.3.1. Fig. 6.2 shows the solution of the MOD-
MPC problem with the disturbance (5.19) for the first engagement scenario. A
trade-off curve is obtained after 20 evaluation points in DITRI. There are 6 dif-
ferent designs in the resulting optimal design set from which a practitioner can
choose from. For example, the practitioner can choose design 20 with a sampling
time of around 26 ms and 8 prediction steps. Based on the result, the average
miss-distance would be around 1.2 m. From the value of utilisation number ηSQP,
this particular design choice would require around 6 times the speed achieved by
the simulation hardware. Similar conclusions can be made from the results for
the second engagement scenario given in Fig. 6.3. For instance, design 14 requires
around ηSQP = 8 to achieve 1.5 m miss-distance with h = 0.025 and N = 12. The
simulation results of control design 14 is given in Fig. 6.4.

In Fig. 6.2, it is observed that the resulting trade-off curve flattens at just over
1 m average miss-distance after around utilisation number ηSQP = 5 for the first
engagement scenario. This point is slightly different for the second scenario,
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Figure 6.2: Pareto optimal solution for the design of the iMAG controller in en-
gagement scenario 1. Evaluation points are plotted as dots with larger dots indi-
cating Pareto optimality1.

where performance starts to flattens at around ηSQP = 6. At this point, perfor-
mance comes close to the maximum, after which an increase in computational
capacity does not significantly improve control performance. Such an insight
provides a guidance in the necessary cost to implement the controller. The differ-
ent results between the two engagement scenarios highlight that insights drawn
from the results are dependent on the choice of initial conditions that represents
the intended closed-loop control conditions. More conservative designs are ob-
tained from the more challenging scenario 2. For example, a miss distance be-

1Subplot (a): the resulting solution in the objective space, making up the trade-off curve be-
tween performance, ∆ (black) or ∆ + σ∆ (grey), and required capacity ηSQP. Subplots (b) and (d):
the associated solution in parameter p space for both the mean (b) and deviated (d) performance
metrics. Subplots (c) and (e): the accompanying plot showing evaluation points in normalised
space and triangle divisions used internally in DITRI. Total number of evaluations is iev = 20.
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Figure 6.3: Pareto optimal solution for the design of the iMAG controller in en-
gagement scenario 2. Evaluation points are plotted as dots with larger dots indi-
cating Pareto optimality1.

low 1.5 m for the second engagement scenario is achieved with at least around
ηSQP = 6.5 instead of ηSQP = 4.5 for the first scenario.
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Figure 6.4: Evolution of dynamic and kinematic states for engagement scenario 2.
h = 0.025, N = 12.

A plot (shaded) showing the miss-distance 1σ away from the mean is given
to accompany the main result in Fig. 6.3. This can be used to explore Pareto op-
timal designs when smaller distributions of miss-distance (performance robust-
ness under disturbance) are prioritised more relative to nominal miss-distance.
As expected, the associated trade-off curve closely resembles that of the mean,
but shifted up in miss-distance as shown in Fig. 6.2(a). To competitively min-
imise this metric (instead of the mean) smaller values of prediction steps N are
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now Pareto optimal, whilst optimal sampling time values h remain similar as be-
fore, as shown in Fig. 6.2(d). This concludes that a reduced prediction horizon
length is more competitive in optimizing the required computational load than
control performance, when control performance is measured by ∆ + σ∆.

Finally, note that the overall required computational capacity for the obtained
design choices is considerably large, ranging from a utilisation number of around
ηSQP = 5 to 10. This highlights the high computational cost associated with MPC,
particularly as a non-linear MPC is considered in this study. To functionally im-
plement the controller, there are a number of techniques that can be used to ad-
dress the high computational cost by increasing the capacity of the implementa-
tion hardware, including the use of compiled programming language, parallel-
processing, an increased clock-frequency, and pipelining.

6.5 Conclusions

In this chapter, multi-objective tuning of the proposed model-predictive inte-
grated missile control system from Chapter 5 was demonstrated based on the
MOD-MPC approach from Chapter 3. The first objective function specifies con-
trol performance and is measured by the miss distance of the missile when it
intercepts the target. The second objective is the required computational capacity
to implement the controller formulated based on the non-linear MPC used for
the proposed integrated controller. The two objective functions are extensions
of the formulation given in Chapter 4, where the closed-loop value function and
computational capacity for a linear MPC were used to indicate performance and
implementation cost, respectively. Simulation results show that the competing
relationship between performance and required capacity remains, with an asso-
ciated Pareto front that defines the optimal trade-off between the two objectives,
upon which a practitioner can draw insights from to assist with design decisions.
In overall, this chapter demonstrated the MOD-MPC approach on a closed-loop
system with non-linear MPC, i.e. the model-predictive integrated missile control,
and a non-linear controlled plant representing an engagement – completing the
investigations in Chapter 4 for linear MPC with linear and non-linear plants – to
conclude the main body of this thesis.
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Chapter 7
Contributions and further work

7.1 Contributions to MPC design approach

Amulti-objective design approach for model-predictive control (MPC) has
been outlined in the thesis. The development and subsequent analysis of

the design scheme in Chapters 3 and 4 address the first and second research aims
that were summarised at the end of Chapter 2. This section recounts the main
contributions of the two chapters to the literature.

Multi-objective design of closed-loop performance and required computational capacity

The literature review has highlighted that required computational capacity is an
underlying design objective in MPC calibration alongside control performance.
This is primarily due to the fact that MPC is typically associated with high levels
of computational load. The required hardware capability to implement MPC in
real-time prescribes the overall implementation cost. Existing investigations fo-
cus mainly on the control performance both in single- [GS10] or multi-objective
fashion [RMBSM14], but often neglects required computational capacity or treats
it as a design constraint. Such an isolated approach could potentially lead to im-
plementation infeasibility and sub-optimality issues that extend the design cycle
as the algorithm and implementation designs are treated separately. Moreover,
in the studies involving model-based controllers, the open-loop value function is
often used as the measure for performance, e.g. [BB14], which is not always ideal
since control is applied in a closed-loop feedback system.

Chapter 3 of the thesis formulated a design approach for MPC with a multi-
objective outlook optimising both control performance based on closed-loop sim-
ulations and required computational capacity to implement the MPC. Perfor-
mance is measured by metrics that are based on closed-loop simulations of the
controlled plant, whilst the utilisation number is used to measure required com-
putational capacity in multiples of the capability of the simulation hardware.
Pertinent design parameters were outlined as those that are associated with the
control algorithm and affect both objectives, denoted as the structural parame-
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ters. The proposed design approach was cast as a multi-objective optimisation
problem, whose associated solution is the Pareto front that defines the optimal
trade-off relationship between control performance and required computational
capacity. From this solution, the practitioner can draw conclusions such as the
optimal control performance for a range of computational capacity, as well as the
required hardware capability for a unit change in performance based on the gra-
dient of the trade-off curve. This allows for a more streamlined design approach
that avoids sub-optimal or infeasible designs.

Analytical results for the multi-objective design of MPC

Although multi-objective optimisation has been highlighted as an effective de-
sign approach for autonomous systems [AH14, Ker14], discussions in MPC are
yet to be fully explored. Chapter 4 analysed the multi-objective design approach
for MPC that was proposed in Chapter 3. Analytical results in the chapter pro-
vide theoretical contributions concerning the nature of the open- and closed-loop
objective functions of the MPC system. In particular, smoothness properties of
the pertaining value functions were presented with respect to structural design
parameters, namely the sampling time and prediction horizon length, which are
often treated as constant [BKS14]. This extends previous studies on the perfor-
mance tuning via such design parameters, for example [BB14]. Subsequently,
the competitive pairing of the two design objectives of control performance and
required computational capacity were formalised to form the basis of the devel-
opment of a targeted design optimiser.

An effective and efficient multi-objective optimiser

Based on the lemmas and theorems presented in Chapter 4, several necessary and
sufficient conditions for an effective and efficient solver of the proposed multi-
objective design of MPC problem were prescribed. Based on the prescribed con-
ditions, an optimiser that can solve the proposed MOD-MPC approach accurately
and quickly can be developed. This is important as objective evaluations in the
design approach involve closed-loop simulations that can be time-consuming,
especially if multiple scenarios are considered, for instance, the consideration of
different initial conditions and control trajectories. The chapter concluded by
developing an effective and efficient solver that satisfies the prescribed condi-
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tions, whose performance was subsequently compared against existing standard
solvers from [DPAM02, TSC13]. Consequently, the sufficiency of the prescribed
conditions for effectiveness and efficiency was validated.

7.2 Contributions to missile control

As discussed in the literature review, the integration of autopilot and guidance
in missile control has been shown to lead to an improved performance [MO01a].
Several studies have followed the proposed integrated system with the devel-
opments based on linear control strategies [MSO03, PJ99, SIG06]. The dynamics
associated with the autopilot and guidance subsystems are non-linear and often
constrained. Therefore, the integration of the two subsystems warrants for an
advanced controller that can directly address the resulting difficult dynamics.

Consequently, a model-predictive integrated missile control system was de-
veloped in Chapter 5. The proposed control scheme was then tested in a simu-
lative study of an engagement between a controlled missile and a manoeuvring
target. Comparison was made with a separated missile control with the aug-
mented proportional navigation guidance and an ideal autopilot. The results
show that the proposed control is more accurate and responsive compared to
the conventional scheme, potentially suitable for high-performing missiles. In
closing, the missile control was designed using the proposed multi-objective de-
sign of MPC approach in Chapter 6. As part of the demonstration, a measure
for control performance was proposed based on the miss-distance of the missile
at the point of interception. Furthermore, the model-predictive control proposed
uses a non-linear prediction model. The investigation of the closed-loop system
with non-linear MPC and non-linear plant in Chapter 6 completes the studies of
Chapter 4 where a linear MPC was used for both linear and non-linear plant, to
address the third and final research aim.

7.3 Further studies

7.3.1 Consideration of other design parameters

The thesis focussed on the structural design parameters of sampling time and
prediction horizon length as the parameters that are calibrated in optimising con-
trol performance and required computational capacity. A potential extension is
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to consider other coupled design parameters, which are those that affect both
design objectives, including those that are associated with the implementation
design of the controller. This presents a logical, but non-trivial, potential work to
supplement the thesis.

Prediction model type as a design parameter

Structural design parameters are those that are coupled and associated with the
control algorithm design. Prediction model type is the only pertinent structural
design parameter that was excluded as a design parameter to be calibrated in
this thesis. Although the thesis considered different types of prediction model,
i.e. linear time-invariant (LTI) and non-linear models, the investigations are done
individually. In Chapter 4, the study was done with an LTI prediction model,
whilst the study with an OCP subject to a non-linear prediction model was done
in Chapter 6 for the proposed model-predictive integrated missile control system.

A logical extension of this thesis would be to consider prediction model type
as a design parameter. The extension would need to further analyse the MOD-
MPC approach for a closed-loop system with a non-linear MPC. Although nu-
merical results presented in Chapter 6 were consistent with that obtained for
linear MPC, complete analytical results were not presented to comprehensively
support the findings. This warrants an analysis to extend the theory presented in
Chapter 4 to include those associated with a non-linear prediction model.

Hardware design parameters

Although the sampling time and prediction horizon length dictate the implemen-
tation of the MPC, they are not associated exclusively to implementation design.
Parameters that are directly associated with the implementation aspect of MPC
include the solver algorithm, solver tolerance and numerical precision used. In-
clusion of these parameters presents a full co-design scheme for the software and
hardware of MPC as an extension to the MOD-MPC approach in this thesis. Such
an approach will follow previous useful studies in the topic, including [SLKC13].

7.3.2 Calibration of more complex MPC formulations

Many MPC developments rely on the addition of constraints and other cost func-
tion forms in the OCP. For instance, terminal state constraint can be used to guar-
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antee stability [MRRS00, MR09], whilst a more general cost function may be for-
mulated to consider an economic performance instead of tracking error [DAR11,
FRLC10]. The multi-objective design approach developed in this thesis can be
adopted for the design of such more extensive MPC formulations.

7.3.3 Investigation of other case studies

The case studies that were investigated in the thesis include a pitch autopilot and
engine control in Chapter 4, as well as a missile-target engagement control in
Chapter 6. For each of the cases, a set of initial conditions and control trajectories
was specified for the closed-loop simulation of the system. Although a number
of different scenarios were considered, it certainly did not represent the whole
operation range of the controlled plant. Consequently, a potential extension to
the case studies considered in the thesis is to consider more initial conditions
and/or control trajectories.

Further than the consideration of a more extensive range of initial conditions
and control trajectories, there are countless of other plant models that could be
studied. Although the chosen missile and engine control examples are real-world
scenarios adopted or developed from current literature, a more extensive set of
case studies is a potential further work that can demonstrate the value of the
proposed MOD-MPC scheme. For instance, the missile-target engagement con-
trol studied simulates the situation in a planar space. A full three-dimensional
study could better reflect the scenario and evaluate control performance more ac-
curately. A case study extension could also consider a scenario that is entirely
different from those studied in the thesis, in defence applications or otherwise.
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Mathematical formulations

A.1 The OCP in sparse representation

A sparse representation of the dQ-Q-OCP in (3.16) keeps the state and input as
optimisation variables instead of using a composite variable as, for instance, z in
(4.6). First, define the optimisation variable

zs := (u0, x1, u1, x2, . . . , uN−1, xN, uN, xt).

The concatenated cost function weight is given by

Hs := diag

(
R,

[
Q S

ST R

]
,

[
Q S

ST R

]
, . . . ,

[
Q S

ST R

]
, Qt

)
The prediction model can be rewritten as follows

B −Inx

A B1 −Inx

. . .

A B −Inx

Ar Br −Inx


zs = −



Axi

0nx×1
...

0nx×1

0nx×1


Gszs = Ws.

Consequently, this yields the sparse representation in standard form,

z∗s := arg min
zs
‖zs‖2

Hs
(A.1a)

s.t. Gszs = Ws (A.1b)

zs ≤ zs ≤ zs. (A.1c)

If the chosen numerical solver is unable to handle lower- and upper-bounds
(A.1c) directly, slack variables can be used to make the constraints (A.1b)
and (A.1c) uniform as either equality or inequality constraints.
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Mathematical formulations

A.2 Augmented PN with ideal autopilot

Proportional navigation (PN) is obtained from the unconstrained regulation of
the terminal distance between . Consider the kinematics of the engagement as
illustrated in Fig. 5.2. A linear-quadratic regulation can be formulated as the
following

(s∗2 , v∗2 , a∗T2) := arg min
(s2,v2,aT2)

1
2

∥∥∥∥∥∥∥
 s2(tgo)

v2(tgo)

aT2(tgo)


∥∥∥∥∥∥∥

2

QAPN

+
1
2

∫ tgo

0
a2

M2 dτ

s.t.
d
dt

 s2

v2

aT2

 =

0 1 0
0 0 1
0 0 0


 s2

v2

aT2

+

 0
−1
0

 aM2

to minimise the terminal engagement state at time tgo based on the cost weight
QAPN. The intercept time tgo (or an estimate) is assumed to be available. For an
intercept, the terminal distance between the missile and target is to be minimised
to zero, which can be achieved by setting the cost weight as follows

QAPN = diag (qAPN, 0, 0) ∀qAPN > 0.

The optimal control can be defined at the limit where a zero terminal distance s2

is infinitely weighted, yielding the APN guidance law

aAPN := lim
qAPN→∞

a∗M2 =
3

t2
go

(
s2 + v2tgo +

1
2

aT2t2
go

)
as given in [PBL10b].

Assuming an ideal autopilot, the commanded acceleration aAPN(t) is the
achieved (vertical) acceleration of the missile at any time t during the
engagement as the dynamics of the missile is ignored.
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Numerical methods

B.1 Sequential quadratic programming

The discrete-time optimal control problem (OCP) in (3.9) can be solved using
a sequential quadratic programming (SQP) algorithm. To do so, the prediction
model is recast as a linear time-varying (LTV) model for the algorithm to iter-
atively solve towards the original non-linear model. Note that dependence on
the design parameters p are not stated throughout the section to keep a succinct
notation.

First, the Jacobians and a new offset vector at each prediction step k are de-
fined as follow

Âk =
∂ f
∂x

∣∣∣∣∣
x̂k,ûk

B̂k =
∂ f
∂u

∣∣∣∣∣
x̂k,ûk

and

F̂k(x̂k, ûk) = f (x̂k, ûk)− Âk x̂k − B̂kûk.

The newly defined states x̂ := (x̂0, . . . , x̂N) and inputs û := (û0, . . . , ûN−1) are esti-
mates of the solution (x∗, u∗) of the OCP. The differences between the predictive
and estimated states and inputs can now be captured in the following equality
constraint

xk+1 = Âkxk + B̂kuk + F̂k ∀k ∈ {0, . . . , N − 1} (B.1)

or in matrix form


B̂0 −Inx

Â1 B̂1 −Inx

. . .

ÂN−1 B̂N−1 −Inx





u0

x1

u1

x2
...

uN−1

xN


= −


F̂0 + Â0x0

F̂1
...

F̂N−1

 .
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Algorithm 3 SQP

Require: Current state xi, (optional) hotstarted estimates (x̂, û)
1: Set tolerance εx � 1, εu � 1 and iQP
2: if not hotstarted then
3: Initialise the estimates

x̂k ← xi1nx×1, ∀k ∈ {0, . . . , N}
û← 0nu×1, ∀k ∈ {0, . . . , N − 1}

4: end if
5: iQP ← 0
6: loop
7: Solve the QP (B.2) given (x̂, û)

to obtain the solution (x̂∗, û∗)
8: iQP ← iQP + 1
9: Compute normalised errors (∆x, ∆u)

10: if ∆x < εx and ∆u < εu, or iQP > iQP then
11: Terminate loop
12: else
13: Re-initialise

x̂k ← x̂∗k , ∀k ∈ {0, . . . , N}
ûk ← û∗k , ∀k ∈ {0, . . . , N − 1}

14: end if
15: end loop

The equality defines an LTV model that replaces (3.9c) to reduce the OCP to a QP
with a linear time-varying prediction model,

(x∗, u∗) := arg min
(x,u)

N−1

∑
k=0

∥∥∥∥∥
[

xk

uk

]∥∥∥∥∥
2

[
Q S
ST R

] + ‖xN‖2
Qt

(B.2a)

s.t. x0 = xi (B.2b)

xk+1 = Âkxk + B̂kuk + F̂k ∀k ∈ {0, . . . , N − 1} (B.2c)

xk ∈ [x, x] , uk ∈ [u, u] ∀k ∈ {0, . . . , N − 1}. (B.2d)

Following [TDD10], the SQP algorithm to solve the dOCP is given in Algo-
rithm 3. In Step 7, the solver used for the QP is assumed to be convergent. Exam-
ples are given in [BV04]. When well-initialised, the algorithm imposes that

(x̂∗, û∗) ' (x∗, u∗).
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Consequently, from (B.1)

x∗k+1 = f (x∗k , u∗k) ∀k ∈ {0, . . . , N − 1}

to satisfy (3.9c).

Proposition B.1 (Convergence of Algorithm 3 [TDD10]). (x̂∗, û∗) in Algorithm 3
converges to (x∗, u∗) if (x̂, û) is initialised sufficiently close to (x∗, u∗).

In Step 9, an example error measure is a normalised mean squares of the state
and inputs,

∆x =
1

N + 1

N

∑
k=0

((x̂∗k − x̂k)/x)2 ∆u =
1
N

N−1

∑
k=0

((û∗k − ûk)/u)2

where x and u are the upper-bounds on the states and inputs respectively. In
Step 10, the condition iQP > iQP is used to limit the solution time of the routine.
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Appendix C

Proofs

C.1 Proof of Lemma 4.3

This proof will show that the Lagrange multipliers can be expressed in the form

µ+ = µ∗ + ∂hµδh + ∂TµδT +O(δ2
h, δ2

T) (C.1)

for some finite ∂hµ and ∂Tµ, showing the differentiability of µ. Consider a pertur-
bation h+ = h + δh as δh → 0.

Case 1 (A(z∗) = A(z+))

If the active set stays the same, the perturbed KKT conditions have a solution
of µ́+ = −

(
(Ǵ + ∂hǴδh)(H + ∂hHδh)

−1(Ǵ + ∂hǴδh)
T
)−1(Ẃ + (Ý + ∂hÝδh)xi

)
=

µ́∗ + ∂hµ́δh +O(δ2
h) for some finite ∂hµ́, instead of (4.8). This is organised as fol-

lows,

µ+ = IA(z+)µ́+ = IA(z∗)
(

µ́∗ + ∂hµ́δh +O(δ2
h)
)

= µ∗ + ∂hµδh +O(δ2
h).

Case 2 – Entering constraint (A(z∗) ⊂ A(z+))

Consider a perturbation causing a constraint e /∈ A(z∗) to be active at some point
along the perturbation, A(z∗) ⊂ A(z+) = A(z∗) ∪ {e}. The additional multipli-
ers µ́+ as constraint e activates are

µ́+ =

[
µ́+

o

µ́+
e

]
=


∥∥∥∥∥∥
[

Ǵ + ∂hǴδh

Ǵ+
e

]T∥∥∥∥∥∥
2

(H+∂h Hδh)
−1


−1 [

Ẃ + (Ý + ∂hÝδh)xi

Ẃ+
e + Ý+

e xi

]
+O(δ2

h)

=

[
ǴH−1ǴT ǴH−1Ǵ+

e
T

Ǵ+
e H−1ǴT Ǵ+

e H−1Ǵ+
e
T

]−1 [
Ẃ + Ýxi

Ẃ+
e + Ý+

e xi

]
+

[
∂hµ́o

∂hµ́e

]
δh +O(δ2

h)

(C.2)
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for some finite ∂hǴ, ∂hµ́o and ∂hµ́e. The subscript e denotes rows of Ǵ, Ẃ, etc.
associated with the entering constraint, and o for the original constraint set. Let[

ǴH−1ǴT ǴH−1Ǵ+
e
T

Ǵ+
e H−1ǴT Ǵ+

e H−1Ǵ+
e
T

]
=

[
G1 G2

G3 G4

]
=: G

and the Schur’s complement GS := G4 − G3G−1
1 G2. The solution to (C.2) can be

found first by block inversion of G 1.
First, the lower block can be expressed as

µ́+
e = −G−1

S G3G−1
1
(
Ẃ + Ýxi

)
+ G−1

S

(
Ẃ+

e + Ý+
e xi
)
+ ∂hµ́eδh +O(δ2

h)

= −G−1
S

(
G3G−1

1 (Ẃ + Ýxi)− Ẃ+
e − Ý+

e xi

)
+ ∂hµ́eδh +O(δ2

h).

After some algebra, expansion of the bracketed terms above would reveal that

G3G−1
1 (Ẃ + Ýxi)− Ẃ+

e − Ý+
e xi = Ǵ+

e H−1ǴT(ǴH−1ǴT)−1 (Ẃ + Ýxi
)
− Ẃ+

e − Ý+
e xi

= −Ǵ+
e H−1ǴTµ́∗ − Ẃ+

e − Ý+
e xi

=
(
Ǵe + ∂hGeδh

)
z∗ − Ẃe −

(
Ýe + ∂hYeδh

)
xi +O(δ2

h)

= ce(z∗) + ∂hGeδh +O(δ2
h)

= 0 + ∂hGeδh +O(δ2
h).

This consistent with the fact that µ∗e = 0 since the constraint e is inactive in the
unperturbed OCP i.e. ce(z∗) < 0. Substitution yields the Lagrange multiplier for
the newly active constraint µ́+

e = (∂hµ́e + ∂hGe) δh +O(δ2
h).

For the upper block, values are obtained by substituting (4.8) and the bracket
expansion above after the blockwise inversion, yielding

µ́+
o =

(
G−1

1 + G−1
1 G2G−1

S G3G−1
1

)
(Ẃ + Ýxi)

− G−1
1 G2GS (Ẃ+

e + Ý+
e xi) + ∂hµoδh +O(δ2

h)

= G−1
1 (Ẃ + Ýxi) + (∂hµo + ∂hGo) δh +O(δ2

h)

=
(

ǴH−1ǴT
)−1

(Ẃ + Ýxi) + (∂hµo + ∂hGo) δh +O(δ2
h)

= µ́∗ + (∂hµ́o + ∂hGo) δh +O(δ2
h).

1
[

A B
C D

]−1

=

[
(A−1 + A−1B(D− CA−1B)−1CA−1 −A−1B(D− CA−1B)−1

−(D− CA−1B)−1CA−1 (D− CA−1B)−1

]
.
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Substituting these into (C.2),

µ́+ =

[
µ́∗

0

]
+

[
∂

µ́o
h + ∂hGo

∂hµ́e + ∂Ge
h

]
δh +O(δ2

h)

yields

µ+ = IA(z+)µ́+ = µ∗ +
(
IA(z∗)(∂hµ́o + ∂hGo)+

I{e}(∂hµ́e + ∂hGe)
)

δh +O(δ2
h).

Case 3 – Exiting constraint (A(z∗) ⊃ A(z+))

To keep the working tidy, suppose that the exiting constraint
is located at the end of the set A(z∗). The perturbed solution is now
µ́+ = IA(z∗)

(
‖(Ǵ + ∂hGδh)

T‖2
(H+∂h Hδh)

−1

)−1(Ẃ + (Ý + ∂Y
h δh)xi

)
− I{e}

(
‖(Ǵe +

∂hGeδh)
T‖2

(H+∂h Hδh)−1

)−1(Ẃe + (Ýe + ∂hYeδh)xi
)
, where the subtractive term is to

make the Lagrange multipliers associated with the exiting constraint zero.
Further expansion yields

µ́+ = IA(z∗)
(
ǴH−1ǴT

)−1(Ẃ + Ýxi
)
−

I{e}
(
ǴeH−1ǴT

e
)−1(Ẃe + Ýexi

)
+ ∂hµδh +O(δ2

h)

=
[
IA(z+) 0

]
µ́∗ + ∂hµ́δh +O(δ2

h).

C.2 Proof of Lemma 4.4

Case 1 – Constant N

Consider a perturbation h+ := h + δh as δh → 0 and that, over the perturbation,
the number of prediction steps remains constant. Subject to this, H(h+) = H(h)+
∂H

h δh +O(δ2
h) and similarly for L, G, W and Y as these matrices consist of addition,

multiplication and/or inversion of the differentiable A, B, Q, R, S, Qr, Rr and/or
Sr. The perturbed OCP is

z∗+(xi) = arg min
z

`+z (z, h+) (C.3a)

where `+z (z, h+) := ‖z‖2
H+∂h Hδh

+ ‖xi‖2
L+∂hLδh

+ O(δ2
h) = `z(z) + ∂h`z(z)δh +

O(δ2
h). Subject to

0 ≥ c+(z∗+) = (G + ∂hGδh)z∗+ −W − (Y + ∂hYδh)xi +O(δ2
h) (C.3b)
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with a value function J+z = `+z (z∗+). The perturbed solution is z∗+ = −(H +

∂hHδh)
−1(G + ∂hGδh)

Tµ+ + O(δ2
h). Substituting (C.1) yields a solution of the

form z∗+ = z∗ + ∂hzδh + O(δ2
h). A similar sequence of derivations can be fol-

lowed for T, T+ = T + δT, affecting Qr, Rr and Sr and yielding the perturbed
system of the form (C.3). The solution can consequently be expressed as

z∗+ = z∗ + ∂hz∗δh + ∂TzδT +O(δ2
h, δ2

T) (C.4)

for some finite ∂hz and ∂Tz. Hence, z∗ is differentiable.

Case 2 – Changing N

Now consider a perturbation h+ := h + δh as 0 < δ → 0 applied to an OCP
with N − 1 prediction steps and hr = h. The unperturbed OCP has the following
matrices related to (4.3)–(4.5),

B̃ =

[
B̃
B̃•

]
Q̃ =

[
Q̃

Q f

]
R = R R = R.

Now consider a perturbation h− = h − δh as 0 < δ → 0 on an OCP with N
prediction steps and hr = 0. The unperturbed OCP now has

B̃ =

 B̃ 0
B̃• 0
B̃• 0

 Q̃ =

Q̃
0

Q f

 R =

[
R

0

]
R =

[
R

0

]
.

After some algebra, it can be shown that the solution z∗ = −H−1GTµ associated
with these block matrices are

z∗(1) = α
[
(I −RB̃) −(I −RB̃) B̃ B̃• −B̃ −B̃•

]
µ

z∗(2) =

[
α
[
(I −RB̃) 0 −(I −RB̃) 0 B̃ B̃• B̃• −B̃ −B̃• −B̃•

]
0

]
µ

(C.5)
respectively, where α := −2

(
B̃
T

Q̃B̃ + B̃T
•Q f B̃• + R

)
. The two equations in (C.5)

yields the same solution (the residual step in z∗(2) contributes only addition of
zeroes). However, the rate of change over the perturbation is not.

For the OCP with N prediction steps and hr = 0, the rate of change of z∗ w.r.t.
h can be obtained from ∂hz∗(2) before the substitution hr = 0. This would have
additional terms compared to ∂hz∗(1) of that with N − 1 steps. These terms are
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C.2 Proof of Lemma 4.4

associated with the constraints for the additional prediction step and will be zero
only if the additional constraints are inactive so that the Lagrange multipliers and
their rates of change are zero. Hence, the solution cannot be expressed as (C.4)
in general, since ∂hz∗ is not guaranteed to be unique and differentiability of z∗ at
changing N is not guaranteed. A similar result is obtained when looking at the
rate of change w.r.t. T.
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