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SUMMARY

Nutlin3a is a small-molecule antagonist of MDM2
that promotes non-genotoxic activation of p53
through p53 protein stabilization and transactivation
of p53 target genes. Nutlin3a is the forerunner of a
class of cancer therapeutics that have reached
clinical trials. Using transgenic and gene-targeted
mouse models lacking the critical p53 target genes,
p21, Puma, and Noxa, we found that only loss of
PUMA conferred profound protection against
Nutlin3a-induced killing in both non-transformed
lymphoid cells and Em-Myc lymphomas in vitro
and in vivo. CRISPR/Cas9-mediated targeting of
the PUMA gene rendered human hematopoietic
cancer cell lines markedly resistant to Nutlin3a-
induced cell death. These results demonstrate that
PUMA-mediated apoptosis, but not p21-mediated
cell-cycle arrest or senescence, is a critical determi-
nant of the therapeutic response to non-genotoxic
p53 activation by Nutlin3a. Importantly, in human
cancer, PUMA expression may predict patient re-
sponses to treatment with MDM2 antagonists.

INTRODUCTION

The tumor suppressor p53 is a transcription factor capable of

modulating activity in a wide range of cellular processes through

its regulation of recognized target genes. p53 is activated post-

translationally in response to diverse cellular stressors, such as

DNA damage, hypoxia, and activation of oncogenic proteins

(Riley et al., 2008). In unstressed cells, the levels of p53 protein

are kept low as a result of an auto-regulatory negative-feedback
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loop involving the E3 ubiquitin ligase, MDM2, which targets p53

for proteasomal degradation (Vogelstein et al., 2000).

Many frequently used anti-cancer therapeutics kill tumor

cells by inducing DNA damage, which activates p53. This, in

turn, causes the induction of downstream target genes, with

consequent activation of effector processes that limit tumor

expansion by inducing cell-cycle arrest, senescence, or death.

Studies utilizing gene-targeted mice have identified the down-

stream effectors critical for the induction of these processes.

The cyclin-dependent kinase inhibitor (CDKI) p21 is critical

for p53-mediated G1/S cell-cycle arrest and senescence (Bru-

garolas et al., 1995; Chang et al., 1999; Deng et al., 1995),

whereas the BH3-only proteins PUMA and (to a lesser extent)

NOXA are required for the induction of apoptosis (Jeffers et al.,

2003; Oda et al., 2000; Shibue et al., 2003; Villunger et al.,

2003).

While�50%of all human cancers bearmutations in p53, many

other cancers utilize indirect mechanisms to silence p53 tumor

growth suppressive pathways, such as MDM2 gene amplifica-

tion (Freedman et al., 1999; Momand et al., 1998). Thus, target-

ing the MDM2-p53 interaction constitutes an exciting approach

for the design of non-genotoxic anti-cancer therapeutics.

Nutlin3a, is the forerunner of this class of compounds. By binding

within the p53 interaction site on MDM2, Nutlin3a inhibits p53

ubiquitination and proteasomal degradation, thereby promoting

stabilization and activation of p53, with consequent induction of

downstream effector processes (Efeyan et al., 2007; Vassilev

et al., 2004). While genetic studies revealed the processes medi-

ating tumor regression in response to acute p53 restoration

(Martins et al., 2006; Ventura et al., 2007; Xue et al., 2007), and

microarray gene expression analyses have provided insight

into which target genes are expressed after Nutlin3a treatment

(Tovar et al., 2006; Vassilev et al., 2004), it remains unclear

which p53 target genes are essential for Nutlin3a’s therapeutic

activity.
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Figure 1. PUMA, but Not p21, Is Critical for Nutlin3a-Induced, p53-Dependent Killing of Non-transformed Quiescent and Proliferating

Lymphoid Cells In Vitro

(A) WT and p53�/� thymocytes were treated with 20 mMNutlin3a (or DMSO control) for 8 hr (in the presence of QVD-OPH (25 mM)) prior to analysis for p53, p21,

and PUMA protein expression by western blotting.

(B) Real-time PCR analysis for p53 target gene expression inWT and p53�/� thymocytes treated with 20 mMNutlin3a for 8 hr (or DMSO control) in the presence of

QVD-OPH.

(C) Cell-cycle analysis after 12 hr of Nutlin3a treatment in mitogen-stimulated proliferating T lymphocytes in vitro.

(D and E) Cell-survival analysis of sorted primary CD4+CD8+ thymocytes (D and E) and CD4+ T cells, CD8+ T cells, or B220+ B cells (E) (from lymph nodes) of mice

of the indicated genotypes (Figure S1).

(legend continued on next page)

Cell Reports 14, 1858–1866, March 1, 2016 ª2016 The Authors 1859



We utilized gene-targeted mice lacking critical p53 target

genes, or human hematopoietic cancer cell lines targeted with

CRISPR/Cas9, to define the pathways activated by p53 that

are critical for Nutlin3a’s therapeutic effects. Our results demon-

strate that apoptotic pathways initiated by the BH3-only protein

PUMA, but not anti-proliferative pathways mediated by the

CDKI p21, are responsible for Nutlin3a’s therapeutic activity in

lymphoid malignancies.

RESULTS AND DISCUSSION

Nutlin3a Activates p53 Target Gene Expression
and Causes Cell-Cycle Arrest and Apoptosis in
Non-transformed Mouse Lymphoid Cells In Vitro
First, we assessed the impact of Nutlin3a on non-transformed

cells. Accumulation of p53 protein and the p53 targets, PUMA

and p21, was readily detectable at the protein (Figure 1A) and

mRNA level (Puma, Noxa, p21, and Mdm2; Figure 1B) in wild-

type (WT) but not p53�/� thymocytes after 8-hr treatment.

Nutlin3a treatment promoted p53-dependent G1/S-phase

cell-cycle arrest in mitogen-stimulated proliferating WT T cells,

evidenced by an�50%decrease in the S-phase population (Fig-

ure 1C). In CD4+CD8+ WT thymocytes (isolated through fluores-

cence-activated cell sorting [FACS]), Nutlin3a promoted

apoptosis with >90% cell death within 24 hr, whereas p53�/�

thymocytes were protected (Figure 1D). Lymphocytes overex-

pressing the pro-survival gene BCL2 (Ogilvy et al., 1999) were

resistant to Nutlin3a, indicating that death was mediated by

the intrinsic apoptotic pathway (Figure S1). At 24 hr, a small sub-

set (�5%–20%) of p53�/� cells had undergone apoptosis,

whereas vav-Bcl2 lymphocytes remained completely protected

(Figure S1). This finding is, perhaps, explained by previous

studies reporting that Nutlin3a can induce a p53-independent

genotoxic response in cancer cells, evidenced by the appear-

ance of gH2AX foci (a marker of double-stranded DNA [dsDNA]

breaks), albeit to amuch lesser extent than that induced by DNA-

damage-inducing drugs (Rigatti et al., 2012; Valentine et al.,

2011; Verma et al., 2010).

Nutlin3a-Mediated Killing of Non-transformed Mouse
Lymphoid Cells In Vitro Requires PUMA, but Not p21
Next, we analyzed lymphoid cells from a panel of gene-targeted

mice lacking single or multiple downstream p53 effectors. Doses

of 4 mM Nutlin3a induced complete killing of diverse lymphoid

cell populations from WT, p21�/�, and Noxa�/� mice, but not

p53�/� mice, within 24 hr (Figure 1E). Puma�/� cells exhibited

comparable resistance to p53�/� cells after 8 hr of treatment

(Figure 1E). Interestingly, at 24 hr, significantly lower protection

was seen in the Puma�/� cells (albeit still much higher than in

WT cells) (Figure 1E).

Analysis of lymphocytes from Puma�/�Noxa�/� mice showed

that loss of NOXA did not further enhance the resistance to
(F and G) Cell-cycle analysis (F) and cell-survival analysis (G) after 12 hr of Nutlin3a

indicated genotypes.

Cells were treated with 4 mM (D and E) or 10 mM (C, F, and G) Nutlin3a (or DMSO co

(B)–(F), data represent mean ± SEM, from n = 3–4 mice per genotype. *p < 0.05.

See also Figure S1.
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Nutlin3a afforded by the loss of PUMA. This contrasts with pre-

vious studies in which NOXAwas shown to contribute, albeit to a

lesser extent, to p53- and p63-mediated apoptosis induced by

g-irradiation or DNA-damaging anti-cancer therapeutics (Kerr

et al., 2012; Michalak et al., 2008; Villunger et al., 2003) (Fig-

ure 1E). Lymphoid cells from Puma�/�p21�/� mice exhibited

resistance to Nutlin3a comparable to that of the Puma�/� cells,

demonstrating that loss of p21 cannot provide a protective effect

against Nutlin3a-induced cell killing, even in the context of

PUMA deficiency (Figure 1E).

In proliferating T cells, the loss of p21 significantly reduced

Nutlin3a-induced cell-cycle arrest, comparable to the reduction

seen in p53�/� T lymphoblasts, but PUMA deficiency had no

such impact (Figures 1E and 1F). Notably, although p21�/� T

lymphoblasts did not undergo cell-cycle arrest, they remained

normally sensitive to Nutlin3a-induced killing. In contrast, T lym-

phoblasts lacking PUMA or p53 were almost entirely resistant to

Nutlin3a-induced killing (Figure 1G).

Our finding that loss of p21 fails to impact Nutlin3a-induced

apoptosis is in contrast to previous studies, which suggested

a role for p21 in inhibiting p53-mediated apoptosis (induced

by DNA-damage-inducing compounds) (Gartel and Tyner,

2002; Jänicke et al., 2007; Tian et al., 2000), but they are

consistent with a report that dysregulated expression of p21

(overexpression or knockdown) had no impact on Nutlin3a-

induced apoptosis in human cancer-derived cell lines. This

suggests that p21’s ability to modulate p53-mediated

apoptosis may depend on the presence of DNA damage (Xia

et al., 2011).

Loss of PUMA, but Not Loss of p21, Protects
Non-transformed Mouse Lymphoid Cells against
Nutlin3a-Induced Killing In Vivo
Next, we treated mice lacking various p53 downstream effector

genes with Nutlin3a. Nutlin3a was shown to be well tolerated

in mice, with no weight loss or gross abnormalities (beyond

lymphocyte depletion) observed after treatment with 200 mg/kg

Nutlin3a for 20 days (Tovar et al., 2006; Vassilev et al.,

2004). Similarly, we observed no evidence of weight loss,

thrombocytopenia, or anemia in our Nutlin3a-treated mice

(Figure S2A).

In response to Nutlin3a treatment, upregulation of the p53

target genes p21, Puma, and Noxa was readily observed in

thymic and lymph node extracts from WT, but not p53�/�,
mice (Figure 2A; Figure S2B). In WT mice, Nutlin3a treatment

reduced thymocyte numbers by �90% (Figure 2B) and mature

T lymphocyte numbers in the lymph nodes by 50%–60% (Fig-

ure S2C). Loss of p21 did not protect against Nutlin3a in vivo,

with an �65% reduction of thymocytes recorded in Nutlin3a-

treated p21�/� mice (Figure 2B), but it provided minor (albeit

significant) protection against loss of mature T and B lympho-

cytes from lymph nodes (Figure S2C). This protection was,
treatment on mitogen-stimulated proliferating T lymphoblasts frommice of the

ntrol), and cell viability and cell-cycle distribution were assessed by FACS. For



Figure 2. The BH3-Only Protein PUMA, but

Not the CDKI p21, Is Critical for Nutlin3a-

Induced, p53-Dependent Depletion of Thy-

mocytes In Vivo

(A) Real-time qPCR analysis on thymi from mice

8 hr after one dose of Nutlin3a (200 mg/kg) or

vehicle. Mean ±SEM from n = 3mice per genotype

(Figure S2B).

(B) Total Thy1+CD4+CD8+ thymocyte numbers from

mice of the indicated genotypes 24 hr after treat-

ment with two doses of Nutlin3a (200 mg/kg) or

vehicle. Mean ± SEM from n = 3–6 Nutlin3a/vehicle

treatmentpairspergenotype (FigureS2C). *p<0.05.

(C) TUNEL staining on thymic sections from WT

(i and v), p53�/� (iv and viii), p21�/� (ii and vi), and

Puma�/� mice (iii and vii) that had been treated

with vehicle (upper row) or Nutlin3a (200 mg/kg,

lower row) for 8 hr; 3 Nutlin3a- and 3 vehicle-

treated mice per genotype (Figure S2D).

See also Figures S2B–S2D.
however, considerably less than the complete protection pro-

vided by loss of PUMA or p53 (Figure S2C). Loss of NOXA

did not provide resistance to Nutlin3a-induced depletion of

thymocytes or mature T and B lymphocytes (Figure 2B;

Figure S2C).

Histological TUNEL analysis (which reveals dsDNA breaks, a

marker of apoptosis) showed that Nutlin3a treatment caused

extensive alterations in the thymic architecture of WT mice, but

not p53�/� mice, with extensive accumulation of TUNEL+ cells,

predominantly within the cortex (Figure 2C). Nutlin3a-treated

p21�/� mice showed a similar increase in the numbers of

TUNEL+ cells in their thymi, as was seen in WT animals (Fig-

ure 2C). In contrast, thymi of Nutlin3a-treated Puma�/� mice

contained only a few TUNEL+ cells (Figure 2C). Large increases

in the numbers of TUNEL+ cells were also observed in the lymph

nodes of WT and p21�/� mice, but not in those of Puma�/� or

p53�/� mice (Figure S2D). The minor ‘‘protective’’ effect pro-

vided by the loss of p21 in the lymph nodes may, therefore, be

due to failure to induce proliferative arrest after p53 activation

rather than a direct effect on apoptosis. Notably, p21 has been

shown to play a critical role in the inhibition of T cell proliferation

after mitogen plus cytokine (concanavaline A [ConA] and inter-

leukin-2 [IL-2]) stimulation (Balomenos et al., 2000). Collectively,

these results demonstrate that losses of lymphoid cells induced

by Nutlin3a in vitro and in vivo are primarily driven by PUMA-

mediated apoptosis.

Malignant Em-Myc Lymphoma Cells Are Markedly More
Sensitive to Nutlin3a Compared to Non-transformed
Lymphoid Cells
To investigate the p53 effector processes critical for Nutlin3a’s

therapeutic effects on malignant cells, we utilized the Em-Myc

transgenic mouse model (Adams et al., 1985). In these mice, de-

regulated MYC expression, found in �70% of human cancers
Cell Reports 14, 1858–186
(Boxer and Dang, 2001), causes a pre-

leukemic expansion of cycling pre-B

cells, which, upon acquisition of cooper-
ating oncogenic mutations, progress to clonal pre-B or sIg+ B

cell lymphomas (Adams et al., 1985).

Initially, we compared the sensitivity to Nutlin3a treatment in

culture between pre-leukemic and malignant lymphoid cells

from Em-Myc mice and their non-transformed WT counterparts.

Both pre-leukemic Em-Myc pre-B and B cells and malignant

Em-Myc lymphomas were markedly more sensitive to Nutlin3a

than non-transformed mouse B lymphoid cells. This suggests

that dysregulatedMYCexpression alone (andnot the transformed

state) sensitizes lymphoid cells to Nutlin3a-induced killing (Fig-

ure 3A). Notably, >90% of WT non-transformed B lymphoid cells

remained viable after 4 hr of exposure to doses of Nutlin3a that

were able to kill >70% of the pre-leukemic as well as malignant

lymphoma cells from Em-Myc mice (Figure 3A). This suggests

that it may be possible to define a therapeutic window for drugs

that activate p53 via non-genotoxic processes inwhichmalignant

lymphoid cells are killed efficiently without inducing unacceptable

losses of normal lymphoid (and other) cell types.

Nutlin3a Promotes p53 Accumulation and Downstream
Effector Pathway Activation in Em-Myc Lymphoma Cells
In Vitro
Western blot analysis revealed that Nutlin3a treatment promoted

the accumulation of p53 protein within 4 hr, with co-incident in-

crease of its downstream targets—PUMA and p21—in Em-Myc

lymphoma-derived cell lines with confirmedWTp53 pathway ac-

tivity, but not in Em-Myc;p53�/� lymphomas (Figure 3B; Fig-

ure S3A). Accordingly, real-time qPCR analysis demonstrated

that Nutlin3a caused a p53-dependent increase in the levels of

the p53 target genes, Puma,Noxa, p21, andMdm2, in several in-

dependent Em-Myc lymphoma cell lines, but not in Em-Myc;

p53�/� lymphoma cells (Figure 3C).

Low doses of Nutlin3awere sufficient to cause rapid apoptosis

in Em-Myc lymphoma cell lines with WT p53, with 80%–90% cell
6, March 1, 2016 ª2016 The Authors 1861



Figure 3. PUMA, but Not p21, Is Critical for Nutlin3a-Induced, p53-Dependent Killing In Vitro, and Regression In Vivo, of Malignant Em-Myc

Lymphoma Cells

(A) Sorted primary B220+IgM+ mature B cells (lymph node), B220+IgM� pre B cells (bone marrow) of WT or pre-malignant (PM) Em-Myc mice, and malignant

Em-Myc lymphoma cells (with verified functional p53) were treated for 4 hr with 4–20 mM Nutlin3a or DMSO (control), and cell viability was assessed by FACS

(Figure S3A). n = 3 mice per cell type (for pre-B and sIg+ B cells), and n = 5 for Em-Myc lymphoma cell lines, 3 independent experiments per cell line. *p < 0.05.

(B) Western blot analysis of Em-Myc and Em-Myc;p53�/� lymphoma-derived cell lines treated for 4 hr with 4 mM Nutlin3a or DMSO (control) in the presence of

QVD-OPH (25 mM).

(C) Real-time qPCR analysis of Em-Myc and Em-Myc;p53�/� lymphoma cell lines treated for 4 hr with 4 mM Nutlin3a or DMSO (control) in the presence of

QVD-OPH.

(D and E) Cell-survival (D) and cell-cycle (E) analysis of Em-Myc lymphoma cell lines of the indicated genotypes treated with Nutlin3a in vitro (Figure S3).

(F) In vivo live imaging of C57BL/6 albino mice transplanted with Em-Myc lymphoma cell lines of the indicated genotypes transduced with a lentiviral vector

co-expressing luciferase and GFP. Mice were treated with Nutlin3a or vehicle for 3 days, and tumor growth was monitored, using live imaging of luciferase

bioluminescence as a marker of tumor burden.

(G) Quantitation of tumor burden inmice bearing Em-Myc (black), Em-Myc;p21�/� (gray), or Em-Myc;Puma�/� (blue) lymphomas (transducedwith a lentiviral vector

co-expressing luciferase and GFP) treated with Nutlin3a (solid line) or vehicle (dashed line). Tumor burden was determined by the total photon flux per second

emitted from a region of interest (ROI) drawn around the entire mouse. Data are expressed as percent change in photon flux compared to 0 hr. Mean ± SEM.

For (D) and (E), Em-Myc lymphoma cells were treated with 4 mMNutlin3a or DMSO (control), and cell viability and cell-cycle distribution (at 8 hr) were assessed by

FACS analysis. For (A) and (C)–(E), mean ± SEM, n = 3–5 cell lines per genotype, three independent experiments per cell line. *p < 0.05. For (F) and (G), n = 2

Em-Myc cell lines, 1 Em-Myc;p21�/� cell line, and 2 Em-Myc;Puma�/� cell lines, with n = 1 vehicle-treated and n = 2 Nutlin3a-treated mice per cell line.

See also Figure S3.
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death after 12 hr, whereas <5% killing was seen in Em-Myc;

p53�/� lymphoma cells (Figure 3D; Figure S3B). Prior to cell

death, Nutlin3a induced cell-cycle arrest (60%–70% decreases

in the proportions of S-phase cells) in Em-Myc but not in

Em-Myc;p53�/� lymphoma cells (Figure 3E).

PUMA, but Not p21, Is Critical for Nutlin3a-Induced
Killing of Em-Myc Lymphoma Cells In Vitro
Next, we utilized lymphoma-derived cell lines from Em-Myc

mice, which had been crossed to mice lacking the p53 down-

stream targets PUMA, NOXA, or p21, and tested their response

to Nutlin3a in culture. Although Em-Myc;p21�/� lymphoma lines

did not undergo G1-S boundary cell-cycle arrest upon treat-

ment with Nutlin3a, they were killed as efficiently as control

Em-Myc cell lines (Figures 3D and 3E). In contrast, Em-Myc;

Puma�/� lymphoma lines retained the ability to undergo cell-

cycle arrest but were resistant to Nutlin3a-induced killing,

with �60% of cells remaining viable after 12 hr of treatment,

when most (>95%) Em-Myc, Em-Myc;p21�/�, and Em-Myc;

Noxa�/� lymphoma cells had died (Figures 3D and 3E).

Notably, there was a significant difference in viability between

Em-Myc;Puma�/� and Em-Myc;p53�/� lymphoma lines, with

the latter showing <5% killing after 12-hr Nutlin3a treatment

(Figure 3D).

Loss of PUMA, but not Loss of p21, Impairs Regression
of Em-Myc Lymphomas in Response to Nutlin3a In Vivo
Then, we transduced Em-Myc lymphoma lines with a lentiviral

GFP-luciferase construct and transplanted them into non-

irradiated C57BL/6 albino mice (Kelly et al., 2014). Once

tumors were established, lymphoma-bearing mice were treated

with Nutlin3a or vehicle twice daily for 3 days, and tumor

growth was monitored using live imaging of luciferase

bioluminescence.

All Em-Myc lymphomas tested progressed at a similar rate in

the absence of Nutlin3a treatment (Figure 3F). In contrast,

Em-Myc (control) lymphomas treated with Nutlin3a regressed

substantially, with almost complete disappearance of the lym-

phoma (luciferase signal) observed after 72 hr of treatment

(Figures 3F and 3G). Loss of p21 did not impair the therapeutic

impact of Nutlin3a (Figures 3F and 3G). In striking contrast,

Em-Myc;Puma�/� lymphomas were markedly resistant to

Nutlin3a treatment, with mice bearing such lymphomas retaining

a similar tumor burden when compared to pre-treatment values

(Figures 3F and 3G). However, Em-Myc;Puma�/� lymphomas

progressed more slowly in Nutlin3a-treated recipients,

compared to their vehicle-treatedcontrols, suggesting that,while

PUMA-mediated apoptosis is critical for the regression of

lymphoid malignancies in response to Nutlin3a treatment, this

drug can impair lymphoma growth through additional processes

(Figures 3F and 3G). It is, however, important to note that, in other

tumors, such as solid cancers, p21-mediated growth arrest/

senescence might contribute to the therapeutic impact of

Nutlin3a. Indeed, previous studies showed that acute restoration

of p53 in spontaneously arising sarcomas andmutantHrasV12D-

drivenmurine liver carcinomas resulted in tumor regression in the

absence of apoptosis, but with the appearance of markers of

senescence (Martins et al., 2006; Ventura et al., 2007).
Ce
PUMA Contributes to Nutlin3a-Induced Apoptosis in
Human Hematopoietic-Tumor-Derived Cell Lines
In Vitro
Next, we tested whether PUMA is a critical determinant of

Nutlin3a-induced killing of tumor cells in human neoplastic

disease. We evaluated a panel of human hematopoietic-tumor-

derived cell lines of different sub-types, including myeloid leuke-

mia, multiple myeloma, and Burkitt lymphoma (Figure 4A), each

of which with known p53 status (Petitjean et al., 2007). Nutlin3a

efficiently induced apoptosis in all cell lines tested with wild-type

p53, but not in those harboring p53 mutations, and this killing

could be prevented by the caspase inhibitor QVD-OPH (Fig-

ure 4B; Figure S4). Nutlin3a treatment caused induction of

TP53 protein, PUMA, and p21 in all WT p53 human hematopoi-

etic-cancer-derived cell lines, but not in the p53 mutated BL41

cell line (Figure 4C).

To test the contribution of PUMA to Nutlin3a-induced

apoptosis, we used an inducible CRISPR/Cas9 platform to

target the PUMA gene in our human cancer lines (Aubrey et al.,

2015). Deletion of PUMA impaired induction of apoptosis in all

three p53 WT cell lines evaluated, as compared to the non-tar-

geting small guide RNA (sgRNA) transduced control cells (Fig-

ure 4D). Given that the cell survival experiments were performed

on a polyclonal population of cells, the gene deletion across the

whole-cell population may not be complete; therefore, the pro-

tection likely represents an underestimate of the true impact of

loss of PUMA. Efficient targeting of PUMA was confirmed by

western blot analysis showing loss of induction of the WT

PUMA protein, while induction of p53 protein and its target,

p21, remained intact (Figure 4E). Taken together, these results

indicate that PUMA-mediated apoptosis is a critical mediator

of the therapeutic response of human hematopoietic cancer

cells to Nutlin3a.

Interestingly, across multiple cellular contexts, and in both

human and mouse cells, the protection from Nutlin3a-induced

cell death afforded by loss of PUMA was not complete (Figures

1E, 3D, 3F, 3G, and 4D). This indicates that additional processes

can contribute to Nutlin3a-induced tumor regression. The pro-

apoptotic BH3-only protein BIM may be an interesting candi-

date, since the combined loss of BIM, along with PUMA and

NOXA, fully protects Em-Myc lymphoma cells against DNA-dam-

age-induced, p53-dependent killing (Happo et al., 2010) and

since BIM loss provides non-transformed thymocytes withminor

protection against etoposide (Bouillet et al., 1999; Erlacher et al.,

2006). Since theBim gene does not have an obvious p53-binding

site (Bouillet et al., 2001), it may be activated indirectly by this

tumor suppressor.

In conclusion, the results from this study demonstrate that

induction of apoptosis by PUMA, but not induction of G1/S

cell-cycle arrest by p21, is essential for p53-dependent

Nutlin3a-induced killing of non-transformed murine lymphoid

cells as well as malignant murine or human hematopoietic

cells. Since a pro-apoptotic BH3-only protein, PUMA, is critical

for the therapeutic impact of Nutlin3a, it may be possible to

boost its therapeutic efficacy by the addition of BH3 mimetic

drugs, such as ABT-263 (Navitoclax) or ABT-199, which inhibit

BCL-2, BCL-XL plus BCL-W, or BCL-2 alone, respectively

(Czabotar et al., 2014).
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Figure 4. PUMA Contributes to Nutlin3a-

Induced Killing of Human Hematopoietic-

Cancer-Derived Cell Lines In Vitro

(A) Panel of selected human hematopoietic-can-

cer-derived cell lines with p53 status indicated,

according to the International Agency for Research

on Cancer (IARC) p53 database (Petitjean et al.,

2007).

(B) Human cancer cell lines were treated with

Nutlin3a for 48 hr at the indicated concentrations,

and cell viability was assessed by FACS. Mean ±

SEM from 3 independent experiments.

(C) Western blot analysis of human hematopoietic-

tumor-derived cell lines after 24 hr treatment with

10 mM Nutlin3a. A cross-reacting protein (lower

band) was detected by the antibody against human

p53 in certain cell lines (arrow).

(D) Cell-survival analysis following Nutlin3a treat-

ment of BL2 (10 mM), OCI-AML (20 mM), and H929

(10 mM) cell lines that had been transduced with

either a non-targeting sgRNA (nt) (solid line) or a

PUMA-targeting sgRNA (dashed line). Mean ±

SEM; p values were derived from a paired two-

tailed t test for n = 3 independent experiments at

the 48-hr time point.

(E) Western blot analysis of Nutlin3a-treated

CRISPR/Cas9 PUMA-targeted human cancer cell

lines.

See also Figure S4.
EXPERIMENTAL PROCEDURES

Materials

Nutlin3a was provided by Roche Pharmaceuticals (Vassilev et al., 2004). For

in vitro use, lyophilized Nutlin3a was dissolved in DMSO; for in vivo use,

Nutlin3a was formulated in vehicle (2% Klucel, 0.5% Tween 80) and adminis-

tered at 200 mg/kg body weight per dose by oral gavage twice daily for

1–3 days. For cells used for western blot or real-time qPCR analysis, 25 mM

of the caspase inhibitor QVD-OPH (MP Biomedicals) was added 1 hr prior to

the addition of cytotoxic drugs.

Mice

All experiments with mice followed the guidelines of the Melbourne Direc-

torate Animal Ethics Committee. C57BL/6 mice were obtained from the

Walter and Eliza Hall Institute’s breeding facility. Generation and genotyping

of mice deficient for p21 (Deng et al., 1995); NOXA, PUMA (Villunger et al.,

2003); both PUMA and NOXA (Michalak et al., 2008); both PUMA and p21

(Valente et al., 2013); or p53 (Jacks et al., 1994) and Em-Myc transgenic

mice (Adams et al., 1985) have been described. All mice were kept on a

C57BL/6 background, generated either on this background using C57BL/

6-derived embryonic stem (ES) cells (Puma�/� and Noxa�/�) or on a mixed

C57BL/6x129SV background using 129SV-derived ES cells and back-

crossed with C57BL/6 mice for >12 generations (p21�/�, p53�/�). Em-Myc

transgenic mice lacking BH3-only proteins were generated as described in

the Supplemental Experimental Procedures.
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Cell-Viability Assays

Non-transformed CD4+CD8+ thymocytes; CD4+

and CD8+ T lymphocytes; and B220+sIg� pre-B

and B220+sIg+ mature B cells were FACS sorted

from the thymus, lymph nodes, and bone marrow,

respectively. Non-transformed lymphoid cells,

Em-Myc lymphoma cell lines, and human hemato-

poietic cancer cell lines were treated with the

indicated concentrations of compound, and cell
viability was assessed by FACS after staining with fluorescein isothiocyanate

(FITC)-conjugated Annexin V plus propidium iodide (PI; 2 mg/ml, Sigma); note

that, for human cancer cell lines, PI alone was used to assess cell viability.

Cell viability was expressed as percent Annexin-VnegativePInegative cells (or

PInegative for human cells) relative to untreated controls.

Cell-Cycle Analysis

Mitogen-stimulated T cell lymphoblasts were generated as described in the

Supplemental Experimental Procedures. Proliferating T cells and Em-Myc lym-

phoma lines were treated with the indicated concentrations of Nutlin3a or

DMSO (control). Cell-cycle distribution was assessed by PI staining and

FACS analysis (Riccardi and Nicoletti, 2006).

Western Blot and Real-Time qPCR Analyses

Total cell protein extractswere prepared in either ONYX or RIPA buffer, supple-

mentedwith complete protease inhibitor cocktail (Roche). The antibodies listed

here in parentheses were used to detect the following proteins: for detection of

mouse proteins, p21 (C-19; Santa Cruz Biotechnology); p53 (CM5; Novacas-

tra); PUMA (ab27669; Abcam); MDM2 (sc812; Santa Cruz Biotech); and

p19ARF (5.C3.1; Rockland Antibodies and Assays). For detection of human

proteins: p21 (ab7960; Abcam); p53 (FL-393) (sc-6243; Santa Cruz Biotech-

nology); PUMA (ab27669, Abcam); and HSP70 (both mouse and human, clone

N6; a gift from Dr. R. Anderson, Peter MacCallum Cancer Research Institute).

Total RNA was isolated from cells using TRIzol (Invitrogen) and reverse tran-

scribed using SuperScript II Reverse Transcriptase (Invitrogen) and Oligo-d(T)



primers. Real-time qPCR was performed in triplicate using Taqman Gene

Expression assays (Applied Biosystems) and an ABI 7900 Real-Time PCR

Machine (Applied Biosystems). mRNA expression levels were standardized

by comparison to the transcript levels of the reference gene, Hmbs, based

on the comparative threshold method (DDCt).

In Vivo Treatment Studies

Age-matched mice were treated for 1 day (two doses) with 200 mg/kg body

weight Nutlin3a or vehicle. Total organ cell counts were determined, and

leukocyte subset distribution was determined as described previously

(Strasser et al., 1991) by FACS analysis after staining with surface-marker-spe-

cific monoclonal antibodies that had been coupled to FITC, R-phycoerythrin

(R-PE), or allophycocyanin (APC). From this, total cell population counts

were calculated.

Em-Myc lymphoma-derived cell lines were transduced with a lentiviral

FUL2tG expression construct (driving co-expression of GFP and luciferase)

(Kelly et al., 2014). Cells transduced with the construct (GFP+) were sorted,

and 1 3 106 cells (in 200 ml PBS) injected intravenously (i.v.) into C57BL/6 al-

bino recipient mice. Tumor growth was monitored by live imaging using the

IVIS Spectrum In Vivo Imaging System (PerkinElmer) to detect luciferase biolu-

minescence. When lymphoma burden was sufficiently high (�7 days post-in-

jection, photon flux per second of >13 108), mice were treated with 200mg/kg

body weight Nutlin3a or vehicle twice daily for 3 days, and tumor growth was

monitored at the indicated time points.

Histology and TUNEL Staining

Organs fromNutlin3a- or vehicle-treated mice were harvested at 8 hr and fixed

in 10% formalin prior to sectioning. TUNEL staining was performed as previ-

ously described (Michalak et al., 2008).

CRISPR/Cas9-Mediated PUMA Gene Disruption

PUMA knockout cell lines were generated using a previously described in-

ducible lentiviral CRISPR/Cas9 platform (Aubrey et al., 2015). Lentivirus was

produced using packaging constructs pRSV-rev, pMDL, and pVSV-G, as pre-

viously described (Aubrey et al., 2015). We used inducible sgRNAs targeting

exon 3 (50- GCCGCTCGTACTGTGCGTTG-30) of the PUMA gene or a non-tar-

geting sgRNA (50-GACAATTGCAGCCTGCTGAG-30 ). Stable, constitutive,

lentivirus-mediated Cas9 expression, reported bymCherry fluorescent protein

expression, was achieved as previously described (Aubrey et al., 2015). Induc-

ible sgRNA lentiviral vectors were used, and their presence was reported by

EGFP expression. mCherry and eGFP double-positive cells were isolated us-

ing FACS sorting in an Influx flow cytometer (Becton Dickinson). Whole-cell

populations were treated for 1 week with doxycycline hyclate (Sigma-Aldrich,

D9891), at a final concentration of 1 mg/ml to induce expression of the PUMA-

targeting or non-targeting control sgRNA. To confirm correct PUMA gene tar-

geting, selected samples were assessed using the MiSeq Indel sequencing

platform as previously described (Aubrey et al., 2015) (data not shown).

Statistical Analysis

Prism (Version 5; GraphPad) software was used for all statistical analyses.

Two-group comparisons were made using two-tailed Student’s t tests

assuming equal variances. Comparisons between multiple groups were

made using One-way ANOVA (Tukey’s multiple comparison test/Kruskal-

Wallis test). p values < 0.05 were considered to indicate statistical significance.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and four figures and can be found with this article online at http://dx.doi.org/

10.1016/j.celrep.2016.01.059.
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