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Abstract

Background: Transition metals including iron and manganesenacessary for life because
of their ability to donate and accept electronsprdgimately one third of all proteins require
essential transition metal ions to perform cataygtructural and regulatory functions. These
essential metal ions react differently to the pneseof oxygen radicals with iron directly
involved in the formation of toxic reactive oxygepecies, whilst manganese can protect
against oxidative stress.

Highlight: Anaerobic bacterial species have been poorlyietinith regard to transition
metal homeostasis and behave differently in masgaets when compared with aerobic or
aerotolerant species. To optimize catabolism wpilstecting themselves from unwanted
reactions bacterial cells must maintain intracalluhetal levels in a very narrow range that
varies, dependent on the environment. To maint&tahion homoeostasis, bacteria have
evolved complex regulatory mechanisms of metalkeggtaecretion and storage. In this
review we examine how iron, haem and manganeséahbilay dictate the lifestyle and
virulence of the anaerobic Gram-negative, perioalqoetthogerPor phyromonas gingivalis.
Conclusion: P. gingivalis has novel haem, iron and manganese transportérs an
metalloregulatory proteins that enable it to switgpidly between an energy efficient iron-

dependent virulent phase and a protective mangategsndent survival phase.
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1. Introduction

Chronic periodontitis is the most common of thetdeesive periodontal diseases
amongst adults and its prevalence and severitgaser with age. The global age-standardised
prevalence of severe periodontitis between 199@aa0 was 11%, however the exact
percentage varies between and within countried.[lr3he USA, 38% of the adult population
30 years and older and 65% of adults 65 years laied loave either severe or moderate
periodontitis [4, 5]. Epidemiological surveys hah®wn that clinical indicators of chronic
periodontal disease are associated with a graakeofrcertain cancers such as squamous cell
carcinoma of the head, neck, and oesophagus [@}eca@f the tongue [7] and pancreatic
cancer [8-10]. There is also a relationship betwaennic periodontitis and systemic
diseases and disorders such as cardiovasculasdifEH, preterm and underweight birth
[12], systemic inflammation in solid-organ transpleecipients [13], diabetes and rheumatoid
arthritis [11, 14-16].

The bacterial aetiology of chronic periodontitimtknowledged to be polymicrobial in
nature. Whilst the concepts of the roles of paldicaral bacterial species in disease have
changed over the past two decades, there is carstret the anaerobic, proteolytic, amino
acid fermenting specidorphyromonas gingivalis plays a significant role in either initiation
or progression of disease [17-20]. Based on aninaalel dateP. gingivalis has recently been
proposed to be a “keystone pathogen” that manipsifdie host response to favour the
proliferation of a pathogenic polymicrobial biofilfdysbiosis) and development of disease
[19]. We have previously demonstrated in a longitatihuman study that the imminent
progression of chronic periodontitis could be peeati by increases in the relative levels of
P. gingivalis and/orTreponema denticola in subgingival plaque [21], which is consistenttwi

other clinical studies demonstrating tRagingivalis levels in subgingival plaque are
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predictive of human disease progression [22-R4gingivalisis also capable of causing

periodontitis in animal models of disease [25, 26].

2. Divalent metal cations

All living cells acquire transition metal ions toeet their basic cellular needs, with
iron, manganese, copper, zinc, nickel and cobatigbef greatest physiological relevance
[27, 28]. It has been estimated that about ond tifilall proteins require essential transition
metal ions to perform catalytic, structural andulatpry functions [29, 30]. Metals such as
iron, copper, chromium, manganese and cobalt gr@bda of redox cycling in which a single
electron may be accepted or donated by the mdiakéactions catalyse reactions that play
critical roles in the function of many organismg may also produce reactive radicals and
reactive oxygen species [31-34].

Iron (FE*/Fe*) is an obligate requirement for the vast majooitpacteria as it is a
versatile prosthetic component incorporated intayraroteins as a biocatalyst or electron
carrier [35, 36]. It has a role as a prosthetiaigrim many biological enzymatic systems
including cytochromes, RNA polymerase and varianga acid hydrolases [37, 38].

Manganese is also essential with greater than&iifed functions in enzymes and
proteins involved in metabolism, signal transduttmd as a stimulus for virulence gene
regulation [36, 39-44]. It is a key cofactor of iganetalloenzymes including oxidases and
dehydrogenases, DNA and RNA polymerases, kinasgay sransferases and decarboxylases
[45].

Mn** + € 2 M n** has a standard reducing potential of +1.51 V, diighan F& + &
= Fe&*whose standard reducing potential is +0.77 V, Mo$" has a lower potential to
donate an electron compared wittfFend thereby a lower potential to reduce other

molecules [41]. Although manganese has similarattaristics to iron being a transition



O©CO~NOOOTA~AWNPE

metal capable of cycling readiig vivo between the +2 and +3 oxidation states [41], atkte
of catalyzing oxidative damage like iron, manganese protect cells against oxidative
damage via enzyme-dependent and protein-indepentitanisms [46, 47]. Manganese
appears to play a significant role in oxidativeahefe systems in most pathogenic bacteria

[46].

3.  Oxidative stress

Stepwise reduction of molecular oxygen)®y high-energy exposure or electron-
transfer reactions leads to production of highbctere oxygen species (ROS). The
conversion of atmospheric oxygen to ROS occursleactively respiring aerobic or
facultative bacterial cells [48]. However, few R@® generated intracellularly by anaerobic
bacteria due to the absence of molecular oxygémeiin environment. Commensal and
pathogenic bacteria can also be exposed to thaixadburst of macrophages and
neutrophils of the host inflammatory immune resgdd®]. Transition metal ions can play a
major role in the exacerbation or relief of oxidatstress. Most biological molecules cannot
be damaged at a significant rate by direct reastwith molecular oxygen, superoxide anion
(O2) [50, 51] or hydrogen peroxide £8,) [52]. However, they can be oxidized by the highly
reactive hydroxyl radical (HO¢). This species imi@d when a single electron is transferred
to hydrogen peroxide.

€ + H,0, > HO + OH

In vivo the most facile donor of single electrons t®klis the transition metal, ferrous
iron (F€") via the Fenton reaction [53].

FE" + H,0, > HO + OH + Fe"

This reaction is driven to the right by the subssddormation of poorly soluble

Fe(OH). The hydroxyl radicals formed are extremely damgdor cellular components such
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as nucleic acids (both DNA and RNA), proteins dpill$ [35]. The presence of such metals
in an uncomplexed form in biological systems camigicantly increase the level of
oxidative stress.

Living organisms use defence systems to mainta&rcémcentration of £derived
radicals at acceptable levels or repair any damagsed by the toxic ROS [36]. These
oxidative stress protection systems also utilisedition metal ions, in particular manganese
ions, as co-factors for metalloenzymes that detayadnst reactive oxygen species.

It is not surprising that some bacteria have ewbivetabolic and survival strategies
that minimize oxidative damage by acquiring¥mstead of F&/Fe**. Borrelia
burgdorferi, the etiological agent of Lyme disease &adtobacillus plantarum, a probiotic
bacterium were found to be free fronfFeequirements for their growth [42, 44]. Manganese
was demonstrated to be the most essential divesion for these bacteria instead of iron
[42, 44]. The absence of iron in these bacteria beagin advantage, as they are able to
overcome the iron limitation found in most hostd #mere is no requirement to minimize
oxygen free radicals generated from the Fentorticeat4]. HowevemMn®* has a lower
potential to donate an electron compared 3, Feus limiting its effectiveness as a metabolic

enzyme cofactor.

4.  Porphyromonasgingivalis

P. gingivalisis a Gram-negative, sessile, obligate anaerolidéisaan absolute
requirement for iron and its growth and virulence dependent on the availability of iron
complexes such as haem [54-57] or ferrous iron. [B8additionP. gingivalis cannot
synthesize protoporphyrin IX [59], a porphyrin detive that combines with ferrous iron to
form haem, a cofactor for several enzymes, whichbeabound transiently [60], or remain

bound to the protein permanently [61].
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P. gingivalis relies on the anaerobic fermentation of aminosafod energy production,
which requires a number of iron-containing protelrest are involved in redox reactions (Fig.
1). TheP. gingivalis W83 genome contains at least 20 genes encodidgcpd non-haem,
iron-sulphur proteins with similarity to ferredogimnd other iron-containing enzymes. These
include the fumarate reductase iron-sulfur subrdB (PG1614), an iron-containing alcohol
dehydrogenase 4hbD (PG0689), the indolepyruvatedexkin oxidoreductase lorA and lorB
(PGO0675, PG0674), the pyruvate ferredoxin/flavodaxidoreductase family protein
(PG0548), arron-dependenfumarate hydratase FumB (PG144&nd a range of putative,
uncharacterised ferredoxins (PG0472, PG1172, PGR21813). Some of these enzymes
have been demonstrated biochemically to be invoiveshino acid fermentation iA.
gingivalis[62, 63]. The ferredoxins each contain two or n#fe-4S clusters.

SeveralP. gingivalis proteins have been predicted to form complexgmesof the
respiratory chain of this organism for the productof ATP [64]. These include the sodium-
dependent NADH: ubiquinone oxidoreductase’tNar) complex composed of NqrA-F
(PG2182-2177) which is the main ion pump and prinantry site for electrons into the
respiratory chain [64, 65]. The Ngr complex mediagkectron transfer from NADH to
guinone, and uses iron as a redox cofactor in Hee25 centre of NgrF [65].

Although there is little known about the functidintike Rnf complex (RnfABCDGE;
PG0303-0308) ifP. gingivalis, characterisation in other anaerobic bacteriashasin it
mediates electron transfer from ferredoxin to NABG] and utilises six 4Fe-4S clusters and
two 4Fe-4S clusters as cofactors in RnfB and Rré€pectively [65]. Due to the large
amount of iron required by this complex, genes dmgpRnf proteins are down-regulated
whenP. gingivalis is grown in iron-limited conditions [67].

Fumarate reductase, FrdBAC (PG1614-1616), is a&ticmenzyme complex belonging

to the succinate:quinone oxidoreductase (SQOR)lyatmt couples the reduction of
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fumarate to succinate to the oxidation of quinadjtinone during anaerobic respiration [64].
This facilitates the formation of a proton/sodiuradjent across the inner membrane coupled
to ATP generation [64]. FrdB contains a 2Fe-2S-e-4S and a 3Fe-4S cluster, whilst FrdC
contains two haem molecules [62] and appears thdeain user of haem as a redox
cofactor in the anaerobic respiratory chaifPofjingivalis [64]. Inhibition of fumarate
reductase activity by oxantel pamoate stopped ety of the bacterium and strongly
inhibited biofilm formation, demonstrating the esial role of this enzyme iR. gingivalis

metabolism [68, 69].

5.  Metal acquisition systems oPorphyromonas gingivalis

P. gingivalis like most anaerobic bacteria does not produce®iteres to scavenge
environmental iron or compete with transferrinagtbferrin for ferric iron binding [70P.
gingivalis utilises human transferrin as a source of ironeytides via proteolytic cleavage
by the cell surface Arg- and Lys-specific cystgimeteinases, RgpA/B and Kgp, collectively
known as gingipains [71, 72]. In the absence ofigainsP. gingivalis cannot remove the
iron from transferrin [71]. The resulting degradatiproducts of transferrin can catalyse the
formation of a highly reactive hydroxyl radical (QHdue to the fragments containing iron or
due to the release of iron [72].

P. gingivalis has been reported to have a high-affinity receptach binds lactoferrin
before complete cleavage by the gingipains [73¢tafrrin does have an inhibitory effect
on bacterial growth due to its ability to sequestam [74], and it also has an antimicrobial
domain at the N-terminus, which when isolated haemt bactericidal activity [75]. Bovine
lactoferrin inhibitsP. gingivalis planktonic growth and biofilm formation [76] whichay in
part be due to its sustained inhibition of the gags which are required for biofilm

formation [77].
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Haem is preferentially obtained By gingivalis from haemoglobin and is acquired
through the activity of the gingipains [78-80] avttier haem-binding proteins that some
researchers have proposed act as haemophoresifgthophores are specialized bacterial
proteins that are secreted from the cell and retbago the environment which then acquire
haem and facilitate uptake through a specific mugtface transporter [82]. Although the
gingipains have been shown to cleave haemoglolritemHA2 domain of the gingipains
Kgp and RgpA and the haemagglutinin HagA binds ragabin or haem via an iron-
independent mechanism that recognises the porphiggr81, 83, 84], these proteins are
covalently attached at the cell surface but arassd by. gingivalis on outer membrane
vesicles Yide infra) [85].

In fact, P. gingivalis produces a range of haem-binding lipoproteins arezhto the
outer membrane (Fig. 2). The best studied examsgemuY, which uses two His residues to
bind haem or haemin in a 1:1 molar ratio [86, 81 & part of a haem acquisition
mechanism with HmuR, a TonB-linked outer-membraweptor involved in haem transport
through the outer membrane [84, 88]. The proposechamism of action of the
HmuY/HmuR acquisition system is that HmuY scaverfggeam liberated by the cleavage of
host haem-carrier proteins by the gingipains [&], Binding of haem leads to
tetramerisation of Hmuy, protecting the haem framstrscavengers [87]. HmuR then induces
disruption of the HmuY tetramer via its His axigidnds to enable haem transfer [87]. Haem
is then passed through the outer membrane Hmufetperiplasm where it is transported
from the periplasm to cytoplasm, presumably bydtierhmu operon proteins HmuSTUV
(Fig 2.) [90]. Expression of the entihenu locus is upregulated under haemin-limited growth
[62].

More recently, the novel haem binding protein Hias been identified iB.

gingivalis and was found to have more than 1,000-fold gresdfanity for haem than Hmuy.
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With this high haem binding affinity and a fast hmassociation rate HusA could compete
directly with host haemoproteins such as serumnaiib91]. HusA has a preference for
dimeric haem and may serve as the predominantdnsichelating protein under low haem
growth conditions [91]. Like HmuY, HusA is boundttee cell surface and once dimeric
haem is bound, is proposed to deliver haem to HaeBntegral outer membrane protein for
transport to the periplasm (Fig. 2) [91].

Several other haemin binding outer membrane preiaiR. gingivalis have been
described including OMP26, OMP32, HBP35, HtrE (Eind IhtB, many of which are
expressed under low haemin growth conditions &ig62, 92-96]. The lipoprotein IhtB is
an outer membrane haemin-binding ferrochelatageh@®ologous to a precorrin-2 cobalt
chelatase [59]. The close proximity of tintB gene to a gene encoding a predicted TonB-
linked outer membrane protein (IhtA) led to thegwsal that IntB removes iron from haem
prior to IhtA-mediated iron transport through theer membrane [93].

HtrE (TIr) is a TonB-linked outer membrane trangpothat is essential for growth at
low concentrations of haemin [95]. The gene enapditrE is located adjacent to an operon
encoding a putative ATP binding cassette transgy@tem with sequence similarity to haem
transport systems of other bacteria, thus togethese genes may encode a haem transport
system [95]. The PG1019-1020 locushofjingivalis encodes a predicted outer membrane
lipoprotein and an outer membrane TonB-linked reme@spectively that are greatly
increased in abundance during haem-limitation ggf] iron-limitation [67], also suggesting
a role in haem/iron transporter (Fig. 2).

Strikingly, many of the outer membrane componehti@se putative iron-complex
transport systems are composed of a haem-bingingribtein coupled with a TonB-linked
transmembrane transporter (Fig. 2). A proteomicetatudy of the outer membrane

vesicles (OMVs) produced . gingivalis indicated that the lipoproteins HmuY and IhtB

11
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were preferentially packaged onto the vesicle serfahilst their cognate TonB-linked
receptor proteins HmuR and IhtA remained on thesteface [85]. The increased abundance
of these haem binding lipoproteins and the gingipan OMVs suggests that OMVs may
extend the functionality of these proteins and Ehajingivalis OMVs may be important for
haem acquisition by acting as haemophores [85]ekample, the release of OMVs
containing the gingipains from the biofilm on tlo@th root into the gingival tissue has been
suggested to play a role in vascular disruptioniamdune dysregulation [85, 97, 98].
Through the concerted action of the gingipains lzaeein-binding proteins in the tissue the
OMVs may become loaded with haem. The resultingmnimation and gingival exudate
could then return the loaded vesicles back to ib#rn allowing haem transfer to the

biofilm cells.

P. gingivalis like many other Gram-negative bacteria transgert®us ion across the
cytoplasmic membrane using the transmembrane FemiBip, FB1 [58, 99]. FeoB proteins
are 700-800 amino acids in length and have a cy$opic G protein domain directly tethered
to a polytopic membrane domain [100]. GTP bindimghte G protein domain initiates the
transport of F& across the membrane, which is completed by theohysis of GTP to GDP.
The GTPase activity of FeoB is activated bywhich leads to a 20-fold acceleration in its
hydrolysis rate, bringing it close to the activangport rate of hydrolysis of the ATP-binding
cassette transporters [101]. FB1 is the only fexiion transporter i. gingivalis as
inactivation of this transporter abolished ferraustransport and the iron content of the
mutant was half that of the wild-type (Fig. 2) [58he FB1 mutant was avirulent in a mouse
model of disease indicating the importance of ti@asporter to thn vivo survival ofP.
gingivalis [58].

The major manganese transportePimingivalis has been identified as a FeoB

transport protein homologue called FB2 that haélyilarisen by gene duplication [58]. FB2

12
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was found to contribute to the survivalRfgingivalis in human umbilical vein endothelial
cells (HUVECS) [102]. Although the full mechanisrashnot been elucidated, it is the
acquisition of manganese that is required for gelalar survival ofP. gingivalisin host
cells [102].

Little is known about the translocation of manganasd other divalent cations across
the outer membrane and into the periplasm; it vesally thought that they would diffuse
through porins in the outer membrane [103, 104)weler, it was recently demonstrated in
Bradyrhizobium japonicum that Mrf* does not diffuse through the outer membrane but is
transported through a selective outer membranenehamat is expressed specifically under
manganese limitation [105]. The gene encodingdbter membrane channel was in the same
operon as the gene encoding the inner membrarié thémsporter in this organism, MntH,
ensuring co-ordinated expression of the whole frarisystem [105]. Such an outer
membrane channel has not been identifiel. igingivalis, nor is there an outer membrane
protein predicted to be encoded in the same opesdhe MA' transporter FB2.

Whilst examining thd®.gingivalis W50 global pattern of protein and transcript
abundances in response to haem-limitation in coatis culture, 160 genes and 70 proteins
were found differentially regulated by haem avaligh with broad agreement between the
transcriptomic and proteomic data (Fig. 1) [62]ehRmalimitation caused upregulation of a
number of gene products Ih gingivalis that are linked to metabolism, oxidative stress
response, virulence and invasion of host cells.[83jhange in abundance of the iron and
haem containing enzymes of the aspartate and gatéacatabolic pathways was observed
during haem-limitation which was reflected in orgaacid end products. This included
down-regulation of the fumarate reductase whiagsgential for energy production [62, 64].

There was a notable increase in expression of aeonhtransport systems encoded by

thehmu andhtr operons, as well as a large increase in the alogeda alkyl hydroperoxide

13
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reductase subunits (AhpC, PG0618; AhpF, PG0O618¢raxide scavenging enzyme shown
to play an important role in peroxide resistancB.igingivalis. Haem-limitation also reduced
P. gingivalis biofilm development with a 56% decrease in bionas$a 78% decrease in
biofilm depth [77].

Vascular disruption and bleeding are charactesstfqeriodontitis, providing a
protein/peptide and iron/haem rich environmentiacterial growth during disease
progression. However, inflamed gingival tissuestaimnconsiderable numbers of
polymorphonuclear leucocytes (PMNSs) that produgea@d HO, as part of their bactericidal
armoury. As a consequence of this the bacteriunt hraxge a defence system against
oxidative stress. Under conditions of haem exdes$acterium forms an oxidative shield by
accumulating haem from haemoglobin on the cellesgriagi-oxo bishaem which binds
reactive oxygen intermediates, hence maintainitogaly reduced environment [106]. This
haem layer protects the bacterium from direct atntdth reactive oxidants generated by
neutrophils in periodontal lesions [106]. This lisocea novel way to store reactive iron outside
the cell where it can’t cause damage to intracellobmponents.

P. gingivalis has developed various intracellular oxidativesstrgefence systems,
including superoxide dismutase (SOD) which cansatikither iron or manganese as co-
factor, [107], the DNA-binding protein from starveells (Dps) [108, 109], alkyl
hydroperoxide peroxidase subunit C (AhpC) [110] emraterythrin (Rbr) [111]. Superoxide
dismutase (SOD) is the only knowngingivalis oxidative defence system which requires
manganese as a cofactor, however, the intracetiatarmulation of manganese itself has
been shown to have anti-oxidative properties, ptotg P. gingivalis from atmospheric

oxygen and hydrogen peroxide [102].

6.  The polymicrobial biofilm nature of health and dsease

14



O©CO~NOOOTA~AWNPE

P. gingivalisis a normal component of the human oral microbéotd is a late
colonizer of polymicrobial oral biofilms, relyinghacomplex interactions with a range of
other oral bacteria includingreptococcus gordonii, Fusobacterium nucleatum, Tannerella
forsythia andT. denticola [112-114]. Therefore although much has been ldarstudyingP.
gingivalisin isolation, its interactions with other bactégpecies in the biofilm will have a
considerable influence on its role as an opportignathogen in inducing dysbiosis and
disease. For example results from a polymicrobailn analysis showed a decrease in
abundance of HtrE (TIr), IhtB, HmuY and fumaratduetase which could possibly be due to
the cross feeding of succinate frddenticola to P. gingivalis thereby reducing the need for
haem (Fig. 1), or due to reduced growth rateserbibfilm [115]. This is in contrast to
findings in a monospecies biofilm, which would haveimilar growth rate to a polymicrobial
biofilm, where HmuY was more abundant than in ptanic cells [116]. Commensurate with
this polymicrobial approach Mashbuenal. [117] have shown th&seudomonas aer uginosa
relies onStaphylococcus aureus as an iron sourd@ vivo. It has also been shown that the
presence of. denticola reduces energy consuming processda gfngivalis such as fatty
acid synthesis, which would reduce the need fdulegliron [114]. The expression of 184
gingivalis genes was modulated by the presenck dénticola and the two species showed a
range of symbioses and syntrophy that resultedbimein biomass when grown in coculture
[114, 118].

When in association witB. gordonii 10 of the 33 genes that altered in expressidh in
gingivalis were classified as encoding proteins involved etaholic pathways whilst a
further4 encoded transport and binding proteins, inclutinguY that was down-regulated
[119]. These results suggested that the initiaptateon ofP. gingivalisto a polymicrobial

biofilm with S. gordonii involved a shift in metabolic and physiologic s&tand that the
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cells were stressed, as both superoxide dismutakexa@inuclease were also upregulated
[119].

F. nucleatum is capable of generating a génriched environment [120] that enables it
to support the growth @®. gingivalisin aerated and C@&lepleted environments in whi€h
gingivalis would not survive on its own [120]. Whéhgingivalis was grown in a three
species community witR. nucleatum andS. gordonii, proteomic differences were again
noted that implied extensive interactions betwéernthree organisms and suggested a
favourable environment, which resulted in increa@egingivalis protein expression and
decreased stress [113].

P. gingivalis cells use LuxS-dependent signalling to communiwatie each other in
the biofilm [121, 122] and to mediate interspe@esmmunication in mixed-species biofilms
[123, 124]. Thu$. gingivalis interacts with other members of the polymicrolbialfilm that
will modify its iron complex acquisition and use.

In the healthy oral cavitl. gingivalisis exposed to low iron/haem environments that
are also likely to have a higher oxygen exposureesponse to this dynamic environmeht,

gingivalis must regulate gene expression to survive.

7. Metalloregulatory Proteins

To protect against the toxic effect of the Fenteection, cells must utilize, store and
maintain iron concentrations with careful managenoéigellular free iron sequestered in
high affinity protein-bound forms [125]. Intracdb concentrations of metal ions in living
cells are maintained and co-ordinated through tesy&nown as metal ion homeostasis that
involves metal ion influx across the cell membrdepending on the intracellular metal ion
concentration, availability and demand. Excess hugtiike may lead to toxic effects and

cell death. In order to maintain and balance imfitatar metal ion concentration, metal

16
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homeostasis needs to be regulated at the levemddription [30]. Proteins that are
responsible for regulation are known as metalldegguy or ‘metal sensor’ proteins, in
which metal ions bind directly to the protein whiarlturn can then either repress, derepress
or activate gene transcription depending on itserafdaction [126]. To date, ten major
families of metalloregulatory proteins in prokargadtrganisms have been identified and
characterized as the ArsR (or ArsR/SmtB), MerR,Rtxur, NikR, CopY, TetR, MarR,

LysR and CsoR/RcnR families (Table 1.0) [27, 3Gje3e metalloregulatory proteins have
been divided into two groups in relation to theindtions: protein families that control gene
expression linked to metal efflux / sequestratibrsR, MerR, CopY, CsoR, TetR) and
protein families that control the expression ofgefor metal ion uptake (DtxR, Fur, NikR,
MarR, LysR) (Table 1.0). Of these ten structurgdestamilies of metalloregulatory proteins,
only two are known to contain members that sensggar@ese and are thus required for
manganese homeostasis (Table 1.0). These are MurRtlie Fur superfamily and MntR
from the DtxR superfamilyP. gingivalis encodes one homologue from each of the Fur and
DtxR superfamilies of metalloregulators.

In Gram-negative bacteria, gene regulation in respdo intracellular iron availability
is usually mediated by the ferric uptake regula{®iyr) protein [127]. Fur is a small,
approximately 17 kDa, global transcriptional regoitahat in the presence of iron regulates
the expression of genes involved in iron acquisjticansport, storage, oxidative stress and
virulence [128]. The Fuprotein of the facultative generalist bacterilEscherichia coli (EC-
Fur) is the best characterised representativei®family of metalloregulatory repressor
proteins. Fur acts as a transcriptional represserta its F&-dependent DNA binding
activity [129]. Fur binds free intracellular s its co-repressor, acquiring a conformation
able to bind specific DNA sequences known as Fuebavhich overlap gene promoters,

thus preventing transcription of these genes. Witenis scarce, Fur no longer binds*Fer
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DNA, thus the RNA polymerase can access the pramaied the genes are expressed [127].
Structural and functional studies of EC-Fur revddleat Fur exists as a dimer, with each
monomer containing two metal-binding sites [130djeTN-terminal domains are involved in
DNA binding, whilst the C-termini are involved ifnderisation [130]. Although the EC-Fur
crystal structure has not been solved, the crgstatture derived from theseudomonas
aeruginosa Fur (PA-Fur; Fig. 3) protein has provided a mddeithe EC-Fur structure. These
structural studies predict that both the EC-Fur BAd-ur share similar domain structures,
they both exist as dimers and contain on& Znd one F& binding site per monomer [130,
131]. Later structural and biochemical studiesaf érthologues HpFur and BsFur from
Helicobacter pylori andBacillus subtilis respectively showed three functional metal binding
sites in each protein [132, 133]. Disruption oeS3tin HpFur significantly reduced DNA
binding affinity [132].

P. gingivalis W83 has one Fur orthologue (PG0465) encoded gei®me, but the
molecular mechanisms of iron-dependent regulatapear to be novel iR. gingivalis as the
deletion of the Fur protein had no effect on thpregsion of iron-regulated genes or
manganese-regulated genes [67, 134]. Instead;tinisrthologue, called Har for haem
associated regulator, was demonstrated to regudestim-responsive biofilm formation [134].
Har dimerises in the presence of Zand binds one haemin molecule per monomer with hig
affinity via the haem regulatory motif Cys97-Prda84]. The binding affinity of Har for
haemin (i of 0.23 uM) [134] was comparable to the affinity haemin for thé\nabaena
FurA (0.35 uM) [135] andE. coli Fur (<1 uM) [136]. When Har was inactivated, themwes
no significant change in metal contentRofgingivalis, suggesting tha. gingivalis does not
use its only Fur orthologue to regulate metal hosteesis [134]. Instead Har conferred the
ability to respond to environmental haem and dgvelofilms, both of which are key

attributes for thén vivo survival and pathogenicity &f. gingivalis.

18



O©CO~NOOOTA~AWNPE

P. gingivalisis an iron-dependent Gram-negative bacteriumhhata distinct iron-
responsive regulon [67] but does not utilize a mend the Fur superfamily to regulate iron
homeostasis, instead linking the transport of haethferrous iron from exogenous sources
with quorum sensing via LuxS. Janmatsl. [137] have shown that LuxS was required for a
1.5-fold increase in transcript levels of the fesdon transport system but negative
regulators of this system have not yet been idedtif

The DtxR family of transcriptional regulators wdsacacterized after being discovered
as the first iron metalloregulator @orynebacterium diphtheriae (CdDtxR) [138]. CdDtxR is
a 226 amino acid polypeptide, which functions asmodimer [139, 140]. Each CdDtxR
monomer consists of 3 domains. Domain 1 (residu&3)1s the DNA binding domain,
which contains the helix-turn-helix (HTH) motif. D@in 2 (residues 74-140) is the
dimerisation domain and has two iron binding siféee ancillary site has a higher iron-
binding affinity than the primary site and bindsrirprior to the primary site [140]. Domain 3
(residues 145-226) provides two amino acids tati@llary iron-binding site and has
structural similarity to an SH3 domain, an impottdomain in signal transduction in
eukaryotes [141]. Between Domain 2 and 3 is alblexpoly-proline rich linker sequence.
SH3 domains recognize poly-proline-rich sequenoelsaaie involved in protein-protein
interactions [142]. The C-terminal domain of DtxRages function and structural similarity
with its SH3 counterpart but without sequence sinty [142]. The SH3 tail of DixR plays
two roles, providing amino acids Gldand GId"®for iron-binding as part of the ancillary
iron binding site of the dimeric DtxR holorepresaad binding the poly-proline linker found
between domain 2 and domain 3 in a deep creviteeaihonomeric DtxR aporepressor, thus
acting as a regulatory switch that modulates thieaton of repressor activity [143-146].

Domain 3 of DtxR is now known as a FeoA domain, ttua common-fold in bacterial FeoA
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proteins and eukaryotic SH3 domains as revealathysfal structures [99], suggesting a
similar role in mediating protein-protein interacts [147].

A homologue of CdDtxR, IdeR (MtldeR) [148] and arfibgues of DtxR, MntR
(BsMntR) [149] and TroR (TpTroR) [43] were firstsdovered iMycobacterium
tuberculosis, Bacillus subtilis andTreponema pallidum respectively. Although MtldeR
responds to iron, BsMntR and TpTroR were founcegpond to manganese [43, 149]. Other
experimentally characterized DtxR-related manganesgonsive homologues identified are
SirR (&aphylococcus epidermis; SeSirR) [150], ScaRXreptococcus gordonii, SgScaR)
[151], EfaR Enterococcus faecalis; EfEfaR) [152] and SloRSreptococcus mutans;

SmSIoR) [153]. Work by Guedcet al showed that specificity for Mt originates from the
primary metal binding site [154].

The DtxR homologue d?. gingivalis W83 (PG1044; PgMntR) is encoded in the same
operon as the FB2 manganese transporter and basedpoedicted amino acid sequence,
has aspects of both an iron-binding and a mangdriedang primary metal binding site [58].
Recombinant PgMntR was used to probe the speyififimetal binding and its impact on
PgMntR structure and DNA binding (unpublished). PgRIdimerised in the absence of a
structural divalent transition metal cation andsurally bound three Mn(ll) or two Fe(ll) per
monomerlIn vitro, Mn®* increased the DNA binding affinity of PgMntR teethromoter
region of the gene encoding the FB2 manganesepates whilst F&" destabilised the
protein-DNA complex which would result in the deregsion of the transcription of N
transport genes (unpublished). This may suggesveal megulatory mechanism of the
interplay between iron and manganese in bactesithlqgenesis.

Although not a metalloregulatory protein, OxyR wityi is significantly upregulated
whenP. gingivalisis grown in a haem-limited environment, indicatthgtP. gingivalis

coordinately regulates expression of oxidativesstnelated genes by a haemin
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concentration-dependent pathway [155]. The OxyRileggry protein ofP. gingivalis
functions differently compared to the OxyR of fdative anaerobes and aerobic
microorganisms where this regulator co-ordinatesrésponse of these microorganisms to
H,0,[156]. Instead, OxyR does not act as a sensor0f kh P. gingivalis but constitutively
activates transcription of oxidative-stress-relajedes under anaerobic growth. Common
OxyR-regulated genes suchdps andahpFC were not positively regulated b gingivalis

in response to ¥D,[156], instead expression sfd, dps, andahpC were upregulated when
OxyR activity was increased in low-haemin growtimditions [155]. Phenotypic
characterisation of aoskyR mutant showed that OxyR plays a role in both #séstance to

H,O, and the aerotolerance Bf gingivalis.

8.  Walking the tightrope: The nexus between haemtan, manganese and oxygen
There is interplay between iron and manganese hstawge inP. gingivalisas in a
FeoB mutant, which had half the cellular iron ofdatype, there was a concomitant three-
fold increase in cellular manganese [58]. Thisease in cellular manganese content inRhe
gingivalis mutant was attributed to manganous ions bindingatant sites of ferrous ion
binding proteins thus lowering the free manganouscioncentration within the cell. Given
the link between increased OxyR expression undemHanitation resulting in increased
oxidative stress protection, this increase irfMiould also bé. gingivalis using the
antioxidative properties of Mhitself [102, 125] or replacing iron in key enzymes
susceptible to oxidative attadk. coli cells shift from an iron to manganese central
metabolism during oxidative stress and mononuaeaymes such as ribulose-5-phosphate
epimerase switch to using ¥fras a cofactor [157]. The shift to the use of maega irP.
gingivalis highlights the interdependence of these two iatstheir critical role in virulence

and survival. The close linkage between iron andgaaese accumulation i gingivalis is

21



O©CO~NOOOTA~AWNPE

also reflected in the cambialistic nature of itpemoxide dismutase (SOD, PG1545), which
can utilise either manganese or iron to give marinspecific activity for the
disproportionation of superoxide radicals into fogln peroxide and molecular oxygen [158-
161]. This flexibility in superoxide dismutase nietm specificity may have evolved to aid
P. gingivalis exploit habitats where iron is not freely avaiabhd may have resulted in a
more coordinated balance between iron and mangaed#s&r content.

The combination of a cambialistic SOD that is abletilize Mrf* or F€* as well as
the ability to use Mfi for oxidative stress protection, an OxyR-depengenoxidase activity
catalysed by Dps and a surface layer of pu-oxo-eishandows?. gingivalis with a high
degree of aerotolerance to survive in the oraltgavi

The tight interplay between iron and manganed® gingivalis has also extended to
metal transport with the discovery of a ferrousti@msport system, Feo that has evolved to
transport manganese; the first report of a FeoBotogue used to transport a metal other
than iron [58]. Thu®. gingivalis has two FeoB transporters, FB1 which transportsties
iron and FB2 which transports manganese. Both Fendporters are required fr
gingivalisto colonise and cause disease in the oral cadhen the FB1 transporter is
inactivatedP. gingivalis is avirulent in a murine abscess model of disedszeas when the
FB2 transporter is inactivaté?l gingivalis is not able to survive intracellularly [58, 102].

The interplay between Mhand Fé&" in P. gingivalisis also apparent in the PgMntR
metalloregulatory protein which has a primary métatling site capable of binding Mn(ll)

or Fe(ll) [58](unpublished).

9. Conclusion
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The clear interplay between iron, manganese, haehosdative stress protection may
enable the anaerobi gingivalis to maintain a high level of intracellular ferraosn to
maximise growth and virulence using energy effitiean-dependent metabolism, but to
rapidly replace this potentially deadly metal witlanganese for survival during oxidative

stress by switching to a more protective, but mmaoe restrictive, manganese-based

physiology.
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Table 1.0. Superfamilies of bacterial metalloregulry proteins.

Metals up
regulate
metal efflux /
sequestration
system:

Metals down
regulate
metal uptake
svstem:

Super- Mode of Metallo- | Metal Effector
family® action regulator
ArsR® | Derepression  ArsR As(lI), Sb(lln)
AztR | Zn(Il), Cd(ll), Pb(Il)
BxmR Cu(l), Ag(l), Zn(Il), Cd(ll)
CadC Cd(l1), Pb(ll), Zn(ll)
CmtR Cd(ll), Pb(ll)
CzrA Zn(11), Co(ll)
SmtB Zn(11), Co(Il), Cd(l)
MerR® | Activation CadR Cd(ll)
CueR Cu(l), Ag(l), Au(l)
HmrR Cu(l)
MerR Hg(ll)
PbrR | Pb(ll)
ZntR | Zn(I1), Cd(11), Pb(Il)
CsoR | Derepression CsoR Cu(l)
RcnR Ni(ll), Co(ll)
CopY | Derepression CopR Cu(ll
TetR® | Derepressic| SczA | Zn(ll)
ComFk Cu(ll)
Fur Corepression  Fur Fe(ll)
Har Fe(ll) of Haem
Irr Haem
Mur Mn(ll)
Nur Ni(ll)
Zur Zn(ll)
DitxR | Corepression DitxR Fe(ll)
IdeR Fe(ll)
MntR Mn(11)
NikR | Corepression NikR Ni(ll)
MarR | Corepression AdcR Zn(ll)
LysR | Corepression ModE Mo(ll)
Z[igé] (http://regprecise.lbl.gov/RegPrecise/cdilats_tffam.jsp)
“[164]
9[165]
°[134]
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Figure Captions

Figure 1. Major P. gingivalis metabolic pathways, highlighting the dependence aron.
Enzymes are shown that were identified in a prote@malysis of. gingivalis W50 grown
in haem limitation and were found to be increas&q, (decreased¥) or unchanged=¢) in
abundance relative to growth in haem excess. Enzydeatified in the transcriptomic
analysis are underlined. Enzymes that have iran@sactor are shaded. Figure modified

from [62].

Figure 2. Characterised and proposed iron (complexand manganese acquisition
systems ofP. gingivalis. Sources of haem and iron such as haemoglobin ansférrin are
proteolytically cleaved by the surface associaiadigains Kgp and RgpA. The released
haem is actively transported across the outer mameb{OM) via TonB-linked outer
membrane proteins either with or without an asdediéipoprotein; this transport is
energized by TonB/ExbBD complexes. Once in thepteesm, haem is transported through
the cell wall (CW) and across the inner membrak® {iia ABC transporters where A is a
periplasmic binding protein, B is an inner membrpaamease and C is an ATPase. ABC
transporters have been predicted as part of thardtHmu transport systems. An ABC
transporter system was also predicted for the p@msf Fé" through the inner membrane
following the removal of Fé from haem by the ferrochelatase 1htB and transpoough
IhtA into the periplasm. Féand Mrf" are also predicted to enter the periplasm viaiipec
outer membrane channels prior to active transmodss the inner membrane by FB1 and

FB2, respectively.
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Figure 3. Ribbon diagram of the crystal structure of Eheeruginosa ferric uptake regulator
(PA-Fur) dimer [131]. Each monomer consists of atefininal DNA-binding domain, a C-
terminal dimerisation domain and two metal bindsitgs represented by spheres. One

monomer is boxed.
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