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Abstract  

 

Background: Transition metals including iron and manganese are necessary for life because 

of their ability to donate and accept electrons. Approximately one third of all proteins require 

essential transition metal ions to perform catalytic, structural and regulatory functions. These 

essential metal ions react differently to the presence of oxygen radicals with iron directly 

involved in the formation of toxic reactive oxygen species, whilst manganese can protect 

against oxidative stress.  

Highlight: Anaerobic bacterial species have been poorly studied with regard to transition 

metal homeostasis and behave differently in many respects when compared with aerobic or 

aerotolerant species. To optimize catabolism whilst protecting themselves from unwanted 

reactions bacterial cells must maintain intracellular metal levels in a very narrow range that 

varies, dependent on the environment. To maintain metal ion homoeostasis, bacteria have 

evolved complex regulatory mechanisms of metal uptake, secretion and storage. In this 

review we examine how iron, haem and manganese availability dictate the lifestyle and 

virulence of the anaerobic Gram-negative, periodontal pathogen Porphyromonas gingivalis.  

Conclusion: P. gingivalis has novel haem, iron and manganese transporters and 

metalloregulatory proteins that enable it to switch rapidly between an energy efficient iron-

dependent virulent phase and a protective manganese-dependent survival phase. 

 

 

Key words: P. gingivalis; metal ion homeostasis; virulence; survival 

 

 

  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

3 

 

Contents 

1. Introduction  

2. Divalent metal cations  

3. Oxidative stress 

4. Porphyromonas gingivalis  

5. Metal acquisition systems of Porphyromonas gingivalis 

6. The polymicrobial nature of health and disease. 

7. Metalloregulatory proteins 

8. Walking the tightrope: The nexus between haem, iron, manganese and oxygen 

9. Conclusion 

Conflicts of interest 

References 

Table 

Figure Captions 

  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

4 

 

1. Introduction 

Chronic periodontitis is the most common of the destructive periodontal diseases 

amongst adults and its prevalence and severity increase with age. The global age-standardised 

prevalence of severe periodontitis between 1990 and 2010 was 11%, however the exact 

percentage varies between and within countries [1-3]. In the USA, 38% of the adult population 

30 years and older and 65% of adults 65 years and older have either severe or moderate 

periodontitis [4, 5]. Epidemiological surveys have shown that clinical indicators of chronic 

periodontal disease are associated with a greater risk of certain cancers such as squamous cell 

carcinoma of the head, neck, and oesophagus [6], cancer of the tongue [7] and pancreatic 

cancer [8-10]. There is also a relationship between chronic periodontitis and systemic 

diseases and disorders such as cardiovascular disease [11], preterm and underweight birth 

[12], systemic inflammation in solid-organ transplant recipients [13], diabetes and rheumatoid 

arthritis [11, 14-16].  

The bacterial aetiology of chronic periodontitis is acknowledged to be polymicrobial in 

nature. Whilst the concepts of the roles of particular oral bacterial species in disease have 

changed over the past two decades, there is consensus that the anaerobic, proteolytic, amino 

acid fermenting species Porphyromonas gingivalis plays a significant role in either initiation 

or progression of disease [17-20]. Based on animal model data P. gingivalis has recently been 

proposed to be a “keystone pathogen” that manipulates the host response to favour the 

proliferation of a pathogenic polymicrobial biofilm (dysbiosis) and development of disease 

[19]. We have previously demonstrated in a longitudinal human study that the imminent 

progression of chronic periodontitis could be predicted by increases in the relative levels of 

P. gingivalis and/or Treponema denticola in subgingival plaque [21], which is consistent with 

other clinical studies demonstrating that P. gingivalis levels in subgingival plaque are 
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predictive of human disease progression [22-24]. P. gingivalis is also capable of causing 

periodontitis in animal models of disease [25, 26]. 

 

2. Divalent metal cations 

All living cells acquire transition metal ions to meet their basic cellular needs, with 

iron, manganese, copper, zinc, nickel and cobalt being of greatest physiological relevance 

[27, 28]. It has been estimated that about one third of all proteins require essential transition 

metal ions to perform catalytic, structural and regulatory functions [29, 30]. Metals such as 

iron, copper, chromium, manganese and cobalt are capable of redox cycling in which a single 

electron may be accepted or donated by the metal. These actions catalyse reactions that play 

critical roles in the function of many organisms but may also produce reactive radicals and 

reactive oxygen species [31-34]. 

Iron (Fe2+/Fe3+) is an obligate requirement for the vast majority of bacteria as it is a 

versatile prosthetic component incorporated into many proteins as a biocatalyst or electron 

carrier [35, 36]. It has a role as a prosthetic group in many biological enzymatic systems 

including cytochromes, RNA polymerase and various amino acid hydrolases [37, 38].  

Manganese is also essential with greater than 20 identified functions in enzymes and 

proteins involved in metabolism, signal transduction and as a stimulus for virulence gene 

regulation [36, 39-44]. It is a key cofactor of many metalloenzymes including oxidases and 

dehydrogenases, DNA and RNA polymerases, kinases, sugar transferases and decarboxylases 

[45].  

Mn3+ + e- ⇌	M n2+ has a standard reducing potential of +1.51 V, higher than Fe3+ + e- 

⇌ Fe2+ whose standard reducing potential is +0.77 V, thus Mn2+ has a lower potential to 

donate an electron compared with Fe2+ and thereby a lower potential to reduce other 

molecules [41]. Although manganese has similar characteristics to iron being a transition 
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metal capable of cycling readily in vivo between the +2 and +3 oxidation states [41], instead 

of catalyzing oxidative damage like iron, manganese can protect cells against oxidative 

damage via enzyme-dependent and protein-independent mechanisms [46, 47]. Manganese 

appears to play a significant role in oxidative defence systems in most pathogenic bacteria 

[46].  

 

3. Oxidative stress 

Stepwise reduction of molecular oxygen (O2) by high-energy exposure or electron-

transfer reactions leads to production of highly reactive oxygen species (ROS). The 

conversion of atmospheric oxygen to ROS occurs inside actively respiring aerobic or 

facultative bacterial cells [48]. However, few ROS are generated intracellularly by anaerobic 

bacteria due to the absence of molecular oxygen in their environment. Commensal and 

pathogenic bacteria can also be exposed to the oxidative burst of macrophages and 

neutrophils of the host inflammatory immune response [49]. Transition metal ions can play a 

major role in the exacerbation or relief of oxidative stress. Most biological molecules cannot 

be damaged at a significant rate by direct reactions with molecular oxygen, superoxide anion 

(O2
-) [50, 51] or hydrogen peroxide (H2O2) [52]. However, they can be oxidized by the highly 

reactive hydroxyl radical (HO•). This species is formed when a single electron is transferred 

to hydrogen peroxide. 

e- + H2O2 � HO• + OH- 

In vivo the most facile donor of single electrons to H2O2 is the transition metal, ferrous 

iron (Fe2+) via the Fenton reaction [53].  

Fe2+ + H2O2 � HO• + OH- + Fe3+ 

This reaction is driven to the right by the subsequent formation of poorly soluble 

Fe(OH)3. The hydroxyl radicals formed are extremely damaging for cellular components such 
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as nucleic acids (both DNA and RNA), proteins and lipids [35]. The presence of such metals 

in an uncomplexed form in biological systems can significantly increase the level of 

oxidative stress.  

Living organisms use defence systems to maintain the concentration of O2-derived 

radicals at acceptable levels or repair any damage caused by the toxic ROS [36]. These 

oxidative stress protection systems also utilise transition metal ions, in particular manganese 

ions, as co-factors for metalloenzymes that defend against reactive oxygen species. 

It is not surprising that some bacteria have evolved metabolic and survival strategies 

that minimize oxidative damage by acquiring Mn2+ instead of Fe2+/Fe3+. Borrelia 

burgdorferi, the etiological agent of Lyme disease and Lactobacillus plantarum, a probiotic 

bacterium were found to be free from Fe2+ requirements for their growth [42, 44]. Manganese 

was demonstrated to be the most essential divalent cation for these bacteria instead of iron 

[42, 44]. The absence of iron in these bacteria may be an advantage, as they are able to 

overcome the iron limitation found in most hosts and there is no requirement to minimize 

oxygen free radicals generated from the Fenton reaction [44]. However Mn2+ has a lower 

potential to donate an electron compared to Fe2+, thus limiting its effectiveness as a metabolic 

enzyme cofactor.  

 

4. Porphyromonas gingivalis 

P. gingivalis is a Gram-negative, sessile, obligate anaerobe that has an absolute 

requirement for iron and its growth and virulence are dependent on the availability of iron 

complexes such as haem [54-57] or ferrous iron [58]. In addition P. gingivalis cannot 

synthesize protoporphyrin IX [59], a porphyrin derivative that combines with ferrous iron to 

form haem, a cofactor for several enzymes, which can be bound transiently [60], or remain 

bound to the protein permanently [61].  
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P. gingivalis relies on the anaerobic fermentation of amino acids for energy production, 

which requires a number of iron-containing proteins that are involved in redox reactions (Fig. 

1). The P. gingivalis W83 genome contains at least 20 genes encoding predicted non-haem, 

iron-sulphur proteins with similarity to ferredoxins and other iron-containing enzymes. These 

include the fumarate reductase iron-sulfur subunit FrdB (PG1614), an iron-containing alcohol 

dehydrogenase 4hbD (PG0689), the indolepyruvate ferredoxin oxidoreductase IorA and IorB 

(PG0675, PG0674), the pyruvate ferredoxin/flavodoxin oxidoreductase family protein 

(PG0548), an iron-dependent fumarate hydratase FumB (PG1417) and a range of putative, 

uncharacterised ferredoxins (PG0472, PG1172, PG1421, PG1813). Some of these enzymes 

have been demonstrated biochemically to be involved in amino acid fermentation in P. 

gingivalis [62, 63]. The ferredoxins each contain two or more 4Fe-4S clusters.  

Several P. gingivalis proteins have been predicted to form complexes as part of the 

respiratory chain of this organism for the production of ATP [64]. These include the sodium-

dependent NADH: ubiquinone oxidoreductase (Na+-Nqr) complex composed of NqrA-F 

(PG2182-2177) which is the main ion pump and primary entry site for electrons into the 

respiratory chain [64, 65]. The Nqr complex mediates electron transfer from NADH to 

quinone, and uses iron as a redox cofactor in the 2Fe-2S centre of NqrF [65].  

Although there is little known about the function of the Rnf complex (RnfABCDGE; 

PG0303-0308) in P. gingivalis, characterisation in other anaerobic bacteria has shown it 

mediates electron transfer from ferredoxin to NAD+ [66] and utilises six 4Fe-4S clusters and 

two 4Fe-4S clusters as cofactors in RnfB and RnfC, respectively [65]. Due to the large 

amount of iron required by this complex, genes encoding Rnf proteins are down-regulated 

when P. gingivalis is grown in iron-limited conditions [67].  

Fumarate reductase, FrdBAC (PG1614-1616), is a trimeric enzyme complex belonging 

to the succinate:quinone oxidoreductase (SQOR) family that couples the reduction of 
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fumarate to succinate to the oxidation of quinol to quinone during anaerobic respiration [64]. 

This facilitates the formation of a proton/sodium gradient across the inner membrane coupled 

to ATP generation [64]. FrdB contains a 2Fe-2S, a 4Fe-4S and a 3Fe-4S cluster, whilst FrdC 

contains two haem molecules [62] and appears to be the main user of haem as a redox 

cofactor in the anaerobic respiratory chain of P. gingivalis [64]. Inhibition of fumarate 

reductase activity by oxantel pamoate stopped the growth of the bacterium and strongly 

inhibited biofilm formation, demonstrating the essential role of this enzyme in P. gingivalis 

metabolism [68, 69]. 

 

5. Metal acquisition systems of Porphyromonas gingivalis 

P. gingivalis like most anaerobic bacteria does not produce siderophores to scavenge 

environmental iron or compete with transferrin or lactoferrin for ferric iron binding [70]. P. 

gingivalis utilises human transferrin as a source of iron and peptides via proteolytic cleavage 

by the cell surface Arg- and Lys-specific cysteine proteinases, RgpA/B and Kgp, collectively 

known as gingipains [71, 72]. In the absence of gingipains P. gingivalis cannot remove the 

iron from transferrin [71]. The resulting degradation products of transferrin can catalyse the 

formation of a highly reactive hydroxyl radical (OH˙), due to the fragments containing iron or 

due to the release of iron [72]. 

P. gingivalis has been reported to have a high-affinity receptor which binds lactoferrin 

before complete cleavage by the gingipains [73]. Lactoferrin does have an inhibitory effect 

on bacterial growth due to its ability to sequester iron [74], and it also has an antimicrobial 

domain at the N-terminus, which when isolated has potent bactericidal activity [75]. Bovine 

lactoferrin inhibits P. gingivalis planktonic growth and biofilm formation [76] which may in 

part be due to its sustained inhibition of the gingipains which are required for biofilm 

formation [77]. 
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Haem is preferentially obtained by P. gingivalis from haemoglobin and is acquired 

through the activity of the gingipains [78-80] and other haem-binding proteins that some 

researchers have proposed act as haemophores [81]. Haemophores are specialized bacterial 

proteins that are secreted from the cell and released into the environment which then acquire 

haem and facilitate uptake through a specific cell surface transporter [82]. Although the 

gingipains have been shown to cleave haemoglobin and the HA2 domain of the gingipains 

Kgp and RgpA and the haemagglutinin HagA binds haemoglobin or haem via an iron-

independent mechanism that recognises the porphyrin ring [81, 83, 84], these proteins are 

covalently attached at the cell surface but are released by P. gingivalis on outer membrane 

vesicles (vide infra) [85].  

In fact, P. gingivalis produces a range of haem-binding lipoproteins anchored to the 

outer membrane (Fig. 2). The best studied example is HmuY, which uses two His residues to 

bind haem or haemin in a 1:1 molar ratio [86, 87] and is part of a haem acquisition 

mechanism with HmuR, a TonB-linked outer-membrane receptor involved in haem transport 

through the outer membrane [84, 88]. The proposed mechanism of action of the 

HmuY/HmuR acquisition system is that HmuY scavenges haem liberated by the cleavage of 

host haem-carrier proteins by the gingipains [87, 89]. Binding of haem leads to 

tetramerisation of HmuY, protecting the haem from host scavengers [87]. HmuR then induces 

disruption of the HmuY tetramer via its His axial ligands to enable haem transfer [87]. Haem 

is then passed through the outer membrane HmuR to the periplasm where it is transported 

from the periplasm to cytoplasm, presumably by the other hmu operon proteins HmuSTUV 

(Fig 2.) [90]. Expression of the entire hmu locus is upregulated under haemin-limited growth 

[62]. 

More recently, the novel haem binding protein HusA has been identified in P. 

gingivalis and was found to have more than 1,000-fold greater affinity for haem than HmuY. 
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With this high haem binding affinity and a fast haem association rate HusA could compete 

directly with host haemoproteins such as serum albumin [91]. HusA has a preference for 

dimeric haem and may serve as the predominant bishaem chelating protein under low haem 

growth conditions [91]. Like HmuY, HusA is bound to the cell surface and once dimeric 

haem is bound, is proposed to deliver haem to HusB, an integral outer membrane protein for 

transport to the periplasm (Fig. 2) [91].  

Several other haemin binding outer membrane proteins in P. gingivalis have been 

described including OMP26, OMP32, HBP35, HtrE (Tlr) and IhtB, many of which are 

expressed under low haemin growth conditions (Fig. 2) [62, 92-96]. The lipoprotein IhtB is 

an outer membrane haemin-binding ferrochelatase [93] homologous to a precorrin-2 cobalt 

chelatase [59]. The close proximity of the ihtB gene to a gene encoding a predicted TonB-

linked outer membrane protein (IhtA) led to the proposal that IhtB removes iron from haem 

prior to IhtA-mediated iron transport through the outer membrane [93].  

HtrE (Tlr) is a TonB-linked outer membrane transporter that is essential for growth at 

low concentrations of haemin [95]. The gene encoding HtrE is located adjacent to an operon 

encoding a putative ATP binding cassette transport system with sequence similarity to haem 

transport systems of other bacteria, thus together, these genes may encode a haem transport 

system [95]. The PG1019-1020 locus of P. gingivalis encodes a predicted outer membrane 

lipoprotein and an outer membrane TonB-linked receptor respectively that are greatly 

increased in abundance during haem-limitation [62] and iron-limitation [67], also suggesting 

a role in haem/iron transporter (Fig. 2). 

Strikingly, many of the outer membrane components of these putative iron-complex 

transport systems are composed of a haem-binding lipoprotein coupled with a TonB-linked 

transmembrane transporter (Fig. 2). A proteomics-based study of the outer membrane 

vesicles (OMVs) produced by P. gingivalis indicated that the lipoproteins HmuY and IhtB 
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were preferentially packaged onto the vesicle surface whilst their cognate TonB-linked 

receptor proteins HmuR and IhtA remained on the cell surface [85]. The increased abundance 

of these haem binding lipoproteins and the gingipains on OMVs suggests that OMVs may 

extend the functionality of these proteins and that P. gingivalis OMVs may be important for 

haem acquisition by acting as haemophores [85]. For example, the release of OMVs 

containing the gingipains from the biofilm on the tooth root into the gingival tissue has been 

suggested to play a role in vascular disruption and immune dysregulation [85, 97, 98]. 

Through the concerted action of the gingipains and haem-binding proteins in the tissue the 

OMVs may become loaded with haem. The resulting inflammation and gingival exudate 

could then return the loaded vesicles back to the biofilm allowing haem transfer to the 

biofilm cells. 

P. gingivalis like many other Gram-negative bacteria transports ferrous ion across the 

cytoplasmic membrane using the transmembrane FeoB protein, FB1 [58, 99]. FeoB proteins 

are 700-800 amino acids in length and have a cytoplasmic G protein domain directly tethered 

to a polytopic membrane domain [100]. GTP binding to the G protein domain initiates the 

transport of Fe2+ across the membrane, which is completed by the hydrolysis of GTP to GDP. 

The GTPase activity of FeoB is activated by K+ which leads to a 20-fold acceleration in its 

hydrolysis rate, bringing it close to the active transport rate of hydrolysis of the ATP-binding 

cassette transporters [101]. FB1 is the only ferrous ion transporter in P. gingivalis as 

inactivation of this transporter abolished ferrous ion transport and the iron content of the 

mutant was half that of the wild-type (Fig. 2) [58]. The FB1 mutant was avirulent in a mouse 

model of disease indicating the importance of this transporter to the in vivo survival of P. 

gingivalis [58]. 

The major manganese transporter in P. gingivalis has been identified as a FeoB 

transport protein homologue called FB2 that had likely arisen by gene duplication [58]. FB2 
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was found to contribute to the survival of P. gingivalis in human umbilical vein endothelial 

cells (HUVECs) [102]. Although the full mechanism has not been elucidated, it is the 

acquisition of manganese that is required for intracellular survival of P. gingivalis in host 

cells [102]. 

Little is known about the translocation of manganese and other divalent cations across 

the outer membrane and into the periplasm; it was generally thought that they would diffuse 

through porins in the outer membrane [103, 104]. However, it was recently demonstrated in 

Bradyrhizobium japonicum that Mn2+ does not diffuse through the outer membrane but is 

transported through a selective outer membrane channel that is expressed specifically under 

manganese limitation [105]. The gene encoding this outer membrane channel was in the same 

operon as the gene encoding the inner membrane Mn2+ transporter in this organism, MntH, 

ensuring co-ordinated expression of the whole transport system [105]. Such an outer 

membrane channel has not been identified in P. gingivalis, nor is there an outer membrane 

protein predicted to be encoded in the same operon as the Mn2+ transporter FB2.  

Whilst examining the P.gingivalis W50 global pattern of protein and transcript 

abundances in response to haem-limitation in continuous culture, 160 genes and 70 proteins 

were found differentially regulated by haem availability, with broad agreement between the 

transcriptomic and proteomic data (Fig. 1) [62]. Haem-limitation caused upregulation of a 

number of gene products in P. gingivalis that are linked to metabolism, oxidative stress 

response, virulence and invasion of host cells [62]. A change in abundance of the iron and 

haem containing enzymes of the aspartate and glutamate catabolic pathways was observed 

during haem-limitation which was reflected in organic acid end products. This included 

down-regulation of the fumarate reductase which is essential for energy production [62, 64]. 

There was a notable increase in expression of two haem transport systems encoded by 

the hmu and htr operons, as well as a large increase in the abundance of alkyl hydroperoxide 
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reductase subunits (AhpC, PG0618; AhpF, PG0619), a peroxide scavenging enzyme shown 

to play an important role in peroxide resistance in P. gingivalis. Haem-limitation also reduced 

P. gingivalis biofilm development with a 56% decrease in biomass and a 78% decrease in 

biofilm depth [77].  

Vascular disruption and bleeding are characteristics of periodontitis, providing a 

protein/peptide and iron/haem rich environment for bacterial growth during disease 

progression. However, inflamed gingival tissues contain considerable numbers of 

polymorphonuclear leucocytes (PMNs) that produce O2
- and H2O2 as part of their bactericidal 

armoury. As a consequence of this the bacterium must have a defence system against 

oxidative stress. Under conditions of haem excess the bacterium forms an oxidative shield by 

accumulating haem from haemoglobin on the cell surface as µ-oxo bishaem which binds 

reactive oxygen intermediates, hence maintaining a locally reduced environment [106]. This 

haem layer protects the bacterium from direct contact with reactive oxidants generated by 

neutrophils in periodontal lesions [106]. This is also a novel way to store reactive iron outside 

the cell where it can’t cause damage to intracellular components. 

P. gingivalis has developed various intracellular oxidative stress defence systems, 

including superoxide dismutase (SOD) which can utilise either iron or manganese as co-

factor, [107], the DNA-binding protein from starved cells (Dps) [108, 109], alkyl 

hydroperoxide peroxidase subunit C (AhpC) [110] and rubrerythrin (Rbr) [111]. Superoxide 

dismutase (SOD) is the only known P. gingivalis oxidative defence system which requires 

manganese as a cofactor, however, the intracellular accumulation of manganese itself has 

been shown to have anti-oxidative properties, protecting P. gingivalis from atmospheric 

oxygen and hydrogen peroxide [102]. 

 

6. The polymicrobial biofilm nature of health and disease 
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P. gingivalis is a normal component of the human oral microbiota and is a late 

colonizer of polymicrobial oral biofilms, relying on complex interactions with a range of 

other oral bacteria including Streptococcus gordonii, Fusobacterium nucleatum, Tannerella 

forsythia and T. denticola [112-114]. Therefore although much has been learnt by studying P. 

gingivalis in isolation, its interactions with other bacterial species in the biofilm will have a 

considerable influence on its role as an opportunistic pathogen in inducing dysbiosis and 

disease. For example results from a polymicrobial biofilm analysis showed a decrease in 

abundance of HtrE (Tlr), IhtB, HmuY and fumarate reductase which could possibly be due to 

the cross feeding of succinate from T. denticola to P. gingivalis thereby reducing the need for 

haem (Fig. 1), or due to reduced growth rates in the biofilm [115]. This is in contrast to 

findings in a monospecies biofilm, which would have a similar growth rate to a polymicrobial 

biofilm, where HmuY was more abundant than in planktonic cells [116]. Commensurate with 

this polymicrobial approach Mashburn et al. [117] have shown that Pseudomonas aeruginosa 

relies on Staphylococcus aureus as an iron source in vivo. It has also been shown that the 

presence of T. denticola reduces energy consuming processes of P. gingivalis such as fatty 

acid synthesis, which would reduce the need for cellular iron [114]. The expression of 134 P. 

gingivalis genes was modulated by the presence of T. denticola and the two species showed a 

range of symbioses and syntrophy that resulted in higher biomass when grown in coculture 

[114, 118]. 

When in association with S. gordonii 10 of the 33 genes that altered in expression in P. 

gingivalis were classified as encoding proteins involved in metabolic pathways whilst a 

further 4 encoded transport and binding proteins, including HmuY that was down-regulated 

[119]. These results suggested that the initial adaptation of P. gingivalis to a polymicrobial 

biofilm with S. gordonii involved a shift in metabolic and physiologic status, and that the 
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cells were stressed, as both superoxide dismutase and excinuclease were also upregulated 

[119].  

F. nucleatum is capable of generating a CO2-enriched environment [120] that enables it 

to support the growth of P. gingivalis in aerated and CO2-depleted environments in which P. 

gingivalis would not survive on its own [120]. When P. gingivalis was grown in a three 

species community with F. nucleatum and S. gordonii, proteomic differences were again 

noted that implied extensive interactions between the three organisms and suggested a 

favourable environment, which resulted in increased P. gingivalis protein expression and 

decreased stress [113]. 

P. gingivalis cells use LuxS-dependent signalling to communicate with each other in 

the biofilm [121, 122] and to mediate interspecies communication in mixed-species biofilms 

[123, 124]. Thus P. gingivalis interacts with other members of the polymicrobial biofilm that 

will modify its iron complex acquisition and use. 

In the healthy oral cavity P. gingivalis is exposed to low iron/haem environments that 

are also likely to have a higher oxygen exposure. In response to this dynamic environment, P. 

gingivalis must regulate gene expression to survive.  

 

7. Metalloregulatory Proteins 

To protect against the toxic effect of the Fenton reaction, cells must utilize, store and 

maintain iron concentrations with careful management of cellular free iron sequestered in 

high affinity protein-bound forms [125]. Intracellular concentrations of metal ions in living 

cells are maintained and co-ordinated through a system known as metal ion homeostasis that 

involves metal ion influx across the cell membrane depending on the intracellular metal ion 

concentration, availability and demand. Excess metal uptake may lead to toxic effects and 

cell death. In order to maintain and balance intracellular metal ion concentration, metal 
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homeostasis needs to be regulated at the level of transcription [30]. Proteins that are 

responsible for regulation are known as metalloregulatory or ‘metal sensor’ proteins, in 

which metal ions bind directly to the protein which in turn can then either repress, derepress 

or activate gene transcription depending on its mode of action [126]. To date, ten major 

families of metalloregulatory proteins in prokaryotic organisms have been identified and 

characterized as the ArsR (or ArsR/SmtB), MerR, DtxR, Fur, NikR, CopY, TetR, MarR, 

LysR and CsoR/RcnR families (Table 1.0) [27, 30]. These metalloregulatory proteins have 

been divided into two groups in relation to their functions: protein families that control gene 

expression linked to metal efflux / sequestration (ArsR, MerR, CopY, CsoR, TetR) and 

protein families that control the expression of genes for metal ion uptake (DtxR, Fur, NikR, 

MarR, LysR) (Table 1.0). Of these ten structural superfamilies of metalloregulatory proteins, 

only two are known to contain members that sense manganese and are thus required for 

manganese homeostasis (Table 1.0). These are MurR from the Fur superfamily and MntR 

from the DtxR superfamily. P. gingivalis encodes one homologue from each of the Fur and 

DtxR superfamilies of metalloregulators. 

In Gram-negative bacteria, gene regulation in response to intracellular iron availability 

is usually mediated by the ferric uptake regulatory (Fur) protein [127]. Fur is a small, 

approximately 17 kDa, global transcriptional regulator that in the presence of iron regulates 

the expression of genes involved in iron acquisition, transport, storage, oxidative stress and 

virulence [128]. The Fur protein of the facultative generalist bacterium, Escherichia coli (EC-

Fur) is the best characterised representative of this family of metalloregulatory repressor 

proteins. Fur acts as a transcriptional repressor due to its Fe2+-dependent DNA binding 

activity [129]. Fur binds free intracellular Fe2+ as its co-repressor, acquiring a conformation 

able to bind specific DNA sequences known as Fur boxes which overlap gene promoters, 

thus preventing transcription of these genes. When iron is scarce, Fur no longer binds Fe2+ or 
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DNA, thus the RNA polymerase can access the promoters and the genes are expressed [127]. 

Structural and functional studies of EC-Fur revealed that Fur exists as a dimer, with each 

monomer containing two metal-binding sites [130]. The N-terminal domains are involved in 

DNA binding, whilst the C-termini are involved in dimerisation [130]. Although the EC-Fur 

crystal structure has not been solved, the crystal structure derived from the Pseudomonas 

aeruginosa Fur (PA-Fur; Fig. 3) protein has provided a model for the EC-Fur structure. These 

structural studies predict that both the EC-Fur and PA-Fur share similar domain structures, 

they both exist as dimers and contain one Zn2+ and one Fe2+ binding site per monomer [130, 

131]. Later structural and biochemical studies of Fur orthologues HpFur and BsFur from 

Helicobacter pylori and Bacillus subtilis respectively showed three functional metal binding 

sites in each protein [132, 133]. Disruption of Site 3 in HpFur significantly reduced DNA 

binding affinity [132].  

P. gingivalis W83 has one Fur orthologue (PG0465) encoded in its genome, but the 

molecular mechanisms of iron-dependent regulation appear to be novel in P. gingivalis as the 

deletion of the Fur protein had no effect on the expression of iron-regulated genes or 

manganese-regulated genes [67, 134]. Instead, this Fur orthologue, called Har for haem 

associated regulator, was demonstrated to regulate haem-responsive biofilm formation [134]. 

Har dimerises in the presence of Zn2+ and binds one haemin molecule per monomer with high 

affinity via the haem regulatory motif Cys97-Pro98 [134]. The binding affinity of Har for 

haemin (Kd of 0.23 µM) [134] was comparable to the affinity for haemin for the Anabaena 

FurA (0.35 µM) [135] and E. coli Fur (<1 µM) [136]. When Har was inactivated, there was 

no significant change in metal content of P. gingivalis, suggesting that P. gingivalis does not 

use its only Fur orthologue to regulate metal homeostasis [134]. Instead Har conferred the 

ability to respond to environmental haem and develop biofilms, both of which are key 

attributes for the in vivo survival and pathogenicity of P. gingivalis.  
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P. gingivalis is an iron-dependent Gram-negative bacterium that has a distinct iron-

responsive regulon [67] but does not utilize a member of the Fur superfamily to regulate iron 

homeostasis, instead linking the transport of haem and ferrous iron from exogenous sources 

with quorum sensing via LuxS. James et al. [137] have shown that LuxS was required for a 

1.5-fold increase in transcript levels of the ferrous ion transport system but negative 

regulators of this system have not yet been identified. 

The DtxR family of transcriptional regulators was characterized after being discovered 

as the first iron metalloregulator in Corynebacterium diphtheriae (CdDtxR) [138]. CdDtxR is 

a 226 amino acid polypeptide, which functions as a homodimer [139, 140]. Each CdDtxR 

monomer consists of 3 domains. Domain 1 (residues 1-73) is the DNA binding domain, 

which contains the helix-turn-helix (HTH) motif. Domain 2 (residues 74-140) is the 

dimerisation domain and has two iron binding sites. The ancillary site has a higher iron-

binding affinity than the primary site and binds iron prior to the primary site [140]. Domain 3 

(residues 145-226) provides two amino acids to the ancillary iron-binding site and has 

structural similarity to an SH3 domain, an important domain in signal transduction in 

eukaryotes [141]. Between Domain 2 and 3 is a flexible poly-proline rich linker sequence. 

SH3 domains recognize poly-proline-rich sequences and are involved in protein-protein 

interactions [142]. The C-terminal domain of DtxR shares function and structural similarity 

with its SH3 counterpart but without sequence similarity [142]. The SH3 tail of DtxR plays 

two roles, providing amino acids Glu170 and Gln173 for iron-binding as part of the ancillary 

iron binding site of the dimeric DtxR holorepressor and binding the poly-proline linker found 

between domain 2 and domain 3 in a deep crevice of the monomeric DtxR aporepressor, thus 

acting as a regulatory switch that modulates the activation of repressor activity [143-146]. 

Domain 3 of DtxR is now known as a FeoA domain, due to a common-fold in bacterial FeoA 
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proteins and eukaryotic SH3 domains as revealed by crystal structures [99], suggesting a 

similar role in mediating protein-protein interactions [147].  

A homologue of CdDtxR, IdeR (MtIdeR) [148] and orthologues of DtxR, MntR 

(BsMntR) [149] and TroR (TpTroR) [43] were first discovered in Mycobacterium 

tuberculosis, Bacillus subtilis and Treponema pallidum respectively. Although MtIdeR 

responds to iron, BsMntR and TpTroR were found to respond to manganese [43, 149]. Other 

experimentally characterized DtxR-related manganese-responsive homologues identified are 

SirR (Staphylococcus epidermis; SeSirR) [150], ScaR (Streptococcus gordonii, SgScaR) 

[151], EfaR (Enterococcus faecalis; EfEfaR) [152] and SloR (Streptococcus mutans; 

SmSloR) [153]. Work by Guedon et al showed that specificity for Mn2+ originates from the 

primary metal binding site [154]. 

The DtxR homologue of P. gingivalis W83 (PG1044; PgMntR) is encoded in the same 

operon as the FB2 manganese transporter and based on its predicted amino acid sequence, 

has aspects of both an iron-binding and a manganese-binding primary metal binding site [58]. 

Recombinant PgMntR was used to probe the specificity of metal binding and its impact on 

PgMntR structure and DNA binding (unpublished). PgMntR dimerised in the absence of a 

structural divalent transition metal cation and unusually bound three Mn(II) or two Fe(II) per 

monomer. In vitro, Mn2+ increased the DNA binding affinity of PgMntR to the promoter 

region of the gene encoding the FB2 manganese transporter whilst Fe2+ destabilised the 

protein-DNA complex which would result in the derepression of the transcription of Mn2+ 

transport genes (unpublished). This may suggest a novel regulatory mechanism of the 

interplay between iron and manganese in bacterial pathogenesis. 

Although not a metalloregulatory protein, OxyR activity is significantly upregulated 

when P. gingivalis is grown in a haem-limited environment, indicating that P. gingivalis 

coordinately regulates expression of oxidative-stress-related genes by a haemin 
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concentration-dependent pathway [155]. The OxyR regulatory protein of P. gingivalis 

functions differently compared to the OxyR of facultative anaerobes and aerobic 

microorganisms where this regulator co-ordinates the response of these microorganisms to 

H2O2 [156]. Instead, OxyR does not act as a sensor of H2O2 in P. gingivalis but constitutively 

activates transcription of oxidative-stress-related genes under anaerobic growth. Common 

OxyR-regulated genes such as dps and ahpFC were not positively regulated in P. gingivalis 

in response to H2O2 [156], instead expression of sod, dps, and ahpC were upregulated when 

OxyR activity was increased in low-haemin growth conditions [155]. Phenotypic 

characterisation of an oxyR mutant showed that OxyR plays a role in both the resistance to 

H2O2 and the aerotolerance of P. gingivalis. 

 

8. Walking the tightrope: The nexus between haem, iron, manganese and oxygen 

There is interplay between iron and manganese homeostasis in P. gingivalis as in a 

FeoB mutant, which had half the cellular iron of wild-type, there was a concomitant three-

fold increase in cellular manganese [58]. This increase in cellular manganese content in the P. 

gingivalis mutant was attributed to manganous ions binding to vacant sites of ferrous ion 

binding proteins thus lowering the free manganous ion concentration within the cell. Given 

the link between increased OxyR expression under haem-limitation resulting in increased 

oxidative stress protection, this increase in Mn2+ could also be P. gingivalis using the 

antioxidative properties of Mn2+ itself [102, 125] or replacing iron in key enzymes 

susceptible to oxidative attack. E. coli cells shift from an iron to manganese central 

metabolism during oxidative stress and mononuclear enzymes such as ribulose-5-phosphate 

epimerase switch to using Mn2+ as a cofactor [157]. The shift to the use of manganese in P. 

gingivalis highlights the interdependence of these two ions and their critical role in virulence 

and survival. The close linkage between iron and manganese accumulation in P. gingivalis is 
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also reflected in the cambialistic nature of its superoxide dismutase (SOD, PG1545), which 

can utilise either manganese or iron to give maximum specific activity for the 

disproportionation of superoxide radicals into hydrogen peroxide and molecular oxygen [158-

161]. This flexibility in superoxide dismutase metal ion specificity may have evolved to aid 

P. gingivalis exploit habitats where iron is not freely available and may have resulted in a 

more coordinated balance between iron and manganese cellular content. 

The combination of a cambialistic SOD that is able to utilize Mn2+ or Fe2+ as well as 

the ability to use Mn2+ for oxidative stress protection, an OxyR-dependent peroxidase activity 

catalysed by Dps and a surface layer of µ-oxo-bishaem endows P. gingivalis with a high 

degree of aerotolerance to survive in the oral cavity. 

The tight interplay between iron and manganese in P. gingivalis has also extended to 

metal transport with the discovery of a ferrous ion transport system, Feo that has evolved to 

transport manganese; the first report of a FeoB orthologue used to transport a metal other 

than iron [58]. Thus P. gingivalis has two FeoB transporters, FB1 which transports ferrous 

iron and FB2 which transports manganese. Both FeoB transporters are required for P. 

gingivalis to colonise and cause disease in the oral cavity. When the FB1 transporter is 

inactivated P. gingivalis is avirulent in a murine abscess model of disease whereas when the 

FB2 transporter is inactivated P. gingivalis is not able to survive intracellularly [58, 102]. 

The interplay between Mn2+ and Fe2+ in P. gingivalis is also apparent in the PgMntR 

metalloregulatory protein which has a primary metal binding site capable of binding Mn(II) 

or Fe(II) [58](unpublished).  

 

9. Conclusion 
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The clear interplay between iron, manganese, haem and oxidative stress protection may 

enable the anaerobic P. gingivalis to maintain a high level of intracellular ferrous iron to 

maximise growth and virulence using energy efficient iron-dependent metabolism, but to 

rapidly replace this potentially deadly metal with manganese for survival during oxidative 

stress by switching to a more protective, but much more restrictive, manganese-based 

physiology. 
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Metals up 
regulate 
metal efflux / 
sequestration 
systems 

Metals down 
regulate 
metal uptake 
systems 

 

Table 1.0. Superfamilies of bacterial metalloregulatory proteins. 

Super-
familya 

Mode of 
action 

Metallo-
regulator 

Metal Effector 

ArsRb Derepression ArsR As(III), Sb(III) 
  AztR Zn(II), Cd(II), Pb(II) 
  BxmR Cu(I), Ag(I), Zn(II), Cd(II) 
  CadC Cd(II), Pb(II), Zn(II) 
  CmtR Cd(II), Pb(II) 
  CzrA Zn(II), Co(II) 
  SmtB Zn(II), Co(II), Cd(II) 

MerRc Activation CadR Cd(II) 
  CueR Cu(I), Ag(I), Au(I) 
  HmrR Cu(I) 
  MerR Hg(II) 
  PbrR Pb(II) 
  ZntR Zn(II), Cd(II), Pb(II) 

CsoR Derepression CsoR Cu(I) 
  RcnR Ni(II), Co(II) 

CopY Derepression CopR Cu(II) 
TetRd Derepression SczA Zn(II) 

  ComR Cu(II) 
Fur Corepression Fur Fe(II) 

  Hare Fe(II) of Haem 
  Irr Haem 
  Mur Mn(II) 
  Nur Ni(II) 
  Zur Zn(II) 

DtxR Corepression DtxR Fe(II) 
  IdeR Fe(II) 
  MntR Mn(II) 

NikR Corepression NikR Ni(II) 
MarR Corepression AdcR Zn(II) 
LysR Corepression ModE Mo(II) 

a [162] (http://regprecise.lbl.gov/RegPrecise/collections_tffam.jsp) 
b [163] 
c [164] 
d [165] 
e [134] 
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Figure Captions 

 

Figure 1. Major P. gingivalis metabolic pathways, highlighting the dependence on iron. 

Enzymes are shown that were identified in a proteomic analysis of P. gingivalis W50 grown 

in haem limitation and were found to be increased (▲), decreased (▼) or unchanged (▬) in 

abundance relative to growth in haem excess. Enzymes identified in the transcriptomic 

analysis are underlined. Enzymes that have iron as a cofactor are shaded. Figure modified 

from [62]. 

 

Figure 2. Characterised and proposed iron (complex) and manganese acquisition 

systems of P. gingivalis. Sources of haem and iron such as haemoglobin and transferrin are 

proteolytically cleaved by the surface associated gingipains Kgp and RgpA. The released 

haem is actively transported across the outer membrane (OM) via TonB-linked outer 

membrane proteins either with or without an associated lipoprotein; this transport is 

energized by TonB/ExbBD complexes. Once in the periplasm, haem is transported through 

the cell wall (CW) and across the inner membrane (IM) via ABC transporters where A is a 

periplasmic binding protein, B is an inner membrane permease and C is an ATPase. ABC 

transporters have been predicted as part of the Htr and Hmu transport systems. An ABC 

transporter system was also predicted for the transport of Fe2+ through the inner membrane 

following the removal of Fe2+ from haem by the ferrochelatase IhtB and transport through 

IhtA into the periplasm. Fe2+ and Mn2+ are also predicted to enter the periplasm via specific 

outer membrane channels prior to active transport across the inner membrane by FB1 and 

FB2, respectively. 
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Figure 3. Ribbon diagram of the crystal structure of the P. aeruginosa ferric uptake regulator 

(PA-Fur) dimer [131]. Each monomer consists of an N-terminal DNA-binding domain, a C-

terminal dimerisation domain and two metal binding sites represented by spheres. One 

monomer is boxed.  
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